Spring Integration Reference Manual

3.0.5.RELEASE

Mark Fisher , Marius Bogoevici , Iwein Fuld , Jonas Partner , Oleg Zhurakousky , Gary
Russell , Dave Syer , Josh Long , David Turanski , Gunnar Hillert , Artem Bilan , Amol Nayak

Copyright © 2009 2010 2011 2012 2013 2014 GoPivotal, Inc. All Rights Reserved.

Spring Integration

Table of Contents

L 1= 7= Lo Xiv
I (= To [T (=10 0 =T o1 £ Xiv
Compatible Java VEISIONSiiuiiiiiei e et et e e Xiv
Compatible Versions of the Spring Frameworkcoooviiiiiiiiiiiiiine e Xiv

2. COUE CONVENTIONS vttt ettt ettt e e e et e e ettt e b r e e e e et e e e ba e e e e e e e Xiv
VAV o= L =T TP 1
1. What's new in Spring INtegration 3.07oouuiiiiiiiiii e 2
I O N [TV @0 g o Lo 1= o | £ PP 2
HTTP ReqUESt MaPPING ...uueeiiiiieeie ettt e e e e aeans 2

Spring Expression Language (SpEL) Configurationocociiiiiiiiinieiiiinneiennnn, 2

SPEL FUNCHONS SUPPOIT ..uiiiiiieiii e et e e e e e e e e e et e e et e e eanaees 2

SPEL PropertyACCESSOrS SUPPOIT .. c.uieiii ittt e e e ees 2

Redis: NeW COMPONENTSuuuiiiiiiiii it e e e e 2

Header Channel REQISIIYcovuiiiii e e 3

MongoDB support: New ConfigurableMongoDbMessageStorecocvvevveeinnnens 3

3V (o] ST U] o] o Lo] o AT PP 3

B I VLS T o Lo) o 3

1 D QS 0] o] oL ¢ PP PP 3

TCP/IP Connection Events and Connection Managementcccoovveveiiinnenennnnnn. 3

Inbound Channel Adapter SCript SUPPOItiiiiiiii e e e 4

Content Enricher: Headers Enrichment SUPPOItc..iviiiiiiiiiiiie e, 4

1.2. GeNeral ChANQEScoouuiiiiiii e e et e e et e e e 4
MeSSage ID GENEIALIONciviiiiiii i e e e e e e e e e eaaaes 4
<gAtEWAY> CRANQES . .ceiiiiiei e e 4

HTTP ENdPOint ChaNGEScooouiiiiiiiiii ettt e eaaes 4

Jackson SUPPOIT (JSON) ..ouuiiiieiii e e e e e e e aaens 5

Chain Elements "id" AtHDULEc.uiiiiiiie e 5
Aggregator ‘empty-group-min-timeout’ Propertyoooeveveeiiiiinieeiii e 5
Persistent File List Filters (file, (S)FTP) oo 5

Scripting Support: Variables Changes ... 5

Direct Channel Load Balancing configurationcccooeviiiiiiiiiiiinieniiii e 6
PublishSubscribeChannel BEhavior ... 6

FTP, SFTP and FTPS Changescccuuiiiiiiiiiaiiiee e 6
'requires-reply' Attribute for Outbound Gatewaysccoceeveviiiiiiiiieii e, 7

AMQP Outbound Gateway Header Mappingcccccuvveviieiiiieiiiieeiiieeeineeeieeeaneeenn 7

Stored Procedure Components IMpProveMeNtsc..vvieuieeiiiiiiiieeieeeiiee e 8

Web Service Outbound URI Configurationcoooeiiiiiiiiiiniiiiecceeecin 8

Redis Adapter ChanQgEScouuiiiiiiiii e e e e e eaas 8

AVISING FIIEIS ..ot et e ea s 8

Advising Endpoints using ANNOLALIONSoooiiuiiiiiiiiiieie e 8
ObjectToStringTransformer IMProvemMeENtscoeveuviiiiiieiiiieiii e 9

JPA SUPPOIt CRANGES ...euiiiiieii et e e 9

Delayer: delay @XPrESSIONuuiiiiiiiiiieiiii ettt e e e e e e et e e e e aeen 9

JDBC Message Store IMProVEMENTSc.vuiieiiiiitiiiiiee e e e 9

IMAP Idle ConNection EXCEPLIONSoveuuiiiiiieiieeei e 9

Message Headers and TCP ... 10

JMS Message Driven Channel Adapterc..ovevviiiiiiiiii e 10

Spring Integration
3.0.5.RELEASE Reference Manual ii

Spring Integration

RMI INDOUND GAEWAYvuiiiiiieiii it e e e e e e e e e e e e eanas 10
XSItPayloadTranSfOrMEer ... 10

[I. Overview of Spring Integration FrameWworKcooouiiiiiiiiiii e 11
2. Spring INtegration OVEIVIEWcc.uuieiiieiiiee e e et e e e e e e e e e s e e e et e et e e aanaeenns 12
2.1, BACKGIOUNGeieeiiii et ettt e e e e e e e e et e eaa s 12
2.2. G0oals and PriNCIPIESuniiiiiiiei e 12
P2 T Y/ - V1 T @] a1 o To] 1= | 13
MBS SAGE .. ittt e e 13
MeSSage ChaNNEL ... e 13
MeSSage ENAPOINTcooiiiiiie e e e e e e e e e 14

2.4, MeSSage ENAPOINTScouuiiiiiiiii et 14
B = 1053 {0122 1= SR 15
L PP 15
01 U1 (=] PP PPTPPR 15

ST o] 11 1= PSP TOPPR 15
[0 =T = (0] 16
SEIVICE ACLVALOL ...t ettt e et e e eaans 16
ChannEl AAPLET ... oo e e 16

1B o =T Y/ LYY= T |1 o N 18
3. Messaging ChannEIS ... et 19
3.1. MeSSAGE CRANNEIS ...ttt 19
The MessageChannel INterfacecc.oviviiiiiii i 19
PollableChannel ... 19
SubscribableChannelco.iiiiii 19

Message Channel Implementationsccuoveiiiiiiii e 19
PublishSubscribeChannel ... 20
QUEUECINANNEL ... e 20
PriorityChannel ..o 20
ReNdezvousChannel oo 21
DIreCtCRANNEI ... oo 21
EXECULOrCRANNEL .. .o 22

Scoped ChannEl oo 23

Channel INTEICEPIOIS .. .oiiiiie i e 23
oYY o [T o [=T 0] 0] L 25
Configuring Message Channels ... 25
DirectChannel Configurationcoeuuiieiiiinieiii e 26

Datatype Channel Configurationcc.oiiiiiiiiiieii e 26
QueueChannel Configurationooeuiiiiiiiiiii e 27
PublishSubscribeChannel Configurationccoeiiiiiiiiiiiieii e 28
EXECULOrCRANNEL .. .o 29
PriorityChannel Configurationooouiiiiiiiiii e 29
RendezvousChannel Configurationc.cooveieiiiiiiiiiinie e 29

Scoped Channel Configurationcccoevuieiiiiiii e 29

Channel Interceptor Configurationcooouuiiiiiiiiiiiiii e 30

Global Channel INtEIrCEPLONviiieii i 30

LAY (= =T o 31

Global Wire Tap Configurationcooocuviiiiiiiiee e 32

Special ChannElscooouiiiiii e 32

3.2. Poller (POlliNg CONSUME) ...iuuuiiiieii e e e e e e e e e e e e e e e et e e e eanas 32
3.3, Channel AdaPLer ... et 33

Spring Integration
3.0.5.RELEASE Reference Manual iii

Spring Integration

Configuring An Inbound Channel Adaptercooveiiiiiiiiii e 33
Configuring An Outbound Channel Adapter ..o 35
Channel Adapter Expressions and SCrPLSovvvevviiieiiiiiniiiiiie e 35

G V1YY Y= o [To T = o o = 36
INEFOAUCTION ..t et e e e e e e e e e eaees 36
ConfiIgUIING BIIAGE ...t eeees 36

Y =TT To [I @0) 1 [o) o PP 38
4.1 MESSAGE ...nieniiieie ettt ettt e et a e ea e ens 38
The MeSSage INErfACEiiiiiiii e 38
MESSAJE HEAUEBISceviiii e e 38
MesSsage ID GENETALIONcc.uiiiiiiiiie et 39

Message IMPIEMENTALIONScoeuuiiiii e 40

The MessageBuilder Helper Classcc..viiiiiiiiiiie e 40

5. MESSAQE ROULING . eeniitiiiite ittt e e et e e e e et e et e et e e et e e eaneaenns 42
L0 I oo 11 (=] £ PP 42
OVEIVIEW ...ttt ettt e ettt e e e e e et e e e e tt e e e e eaa e e e eaan e eeeenns 42
Common ROULEr PArametersco.uiiuiiiiiiei et e e e e e 44
Inside and Outside of & Chainoooiiiiiiiii e 44

Top-Level (Outside of @ Chain)c.oiviiiiiiiic e 45

Router IMplemeNntationSiiiuiii e e 45
PayloadTyPEROULETiiiiiiiiiei s 45
HeaderValUBROULEToooiiiiiii e 46
ReCIPIENTLISTROULET .. .eeeiie e a7

D= 11 T o 10 =] 48

Routing and Error handlingcc.uoeviiiiiiic e 48
Configuring (Generic) ROULEToiiuiiiiii e e 48
Configuring a Content Based Router with XMLcccoiviiiiiiiiiiiiinieecie, 48
Configuring a Router with ANNOtationscocvuiiviiiiiii e, 50

DYNAMIC ROULEIS .. .oenieiie ettt e e e e e e e ean s 50
Manage Router Mappings using the Control BuScccoveviiiiiiiiiiiiennnns 53

Manage Router Mappings using JMXccoiiiiiiiiiieiiiecin e 53

I |1 = S PP PT PP 54
T 10T [T 1o) o PN 54

(O] a1iTo 8 g1 aTe [=11 (-1 54
Configuring a Filter With XIMLcoouiiii e 54
Configuring a Filter with Annotationsccccooviiiiiiii e 56

LSRR o 111 Y 57
TageTo 011 o] o PP PT PPN 57
Programming MOEIiiiiiiiiiiii e e e 57
L@70] a1{To 8 g aTe ST o] 11 €= S 57
Configuring a Splitter using XMLoiiiiiiiii e 57
Configuring a Splitter with AnNNOtAtioNScccouviiiiiiiiiiiii e 58

Lo o[| =T = (o 59
INEFOAUCTION ...ttt e e e et et e e e e e e aees 59
FUNCHONAIILY ...ttt e e enaans 59
Programming MOGEIcoouniiiii e 59
AggregatingMessageHandler ... 59
REICASESIIAEGY ...eevvuieiiiii ettt e e 61

(70 1] Fo Vi o] 11 1= 1 (=T | 62
Configuring @an AgQQIrEgALOLciuuuiiiii et 63

Spring Integration
3.0.5.RELEASE Reference Manual iv

Spring Integration

Configuring an Aggregator With XMLccoooiiiiiiiiiiic e 63
Configuring an Aggregator with ANNOtatioNnscocociviiiiiiiiineiiiecieeeenne, 67

Managing State in an Aggregator: MessageGroupStorecceveveveveineeenneeennnn 67

LR T =TS o [T= o Vo T 69
INEFOAUCTION ..t et e e e e e e e e e eaees 69
FUNCHONAIILY ...t e e e 69
Configuring @ RESEOQUENCETcuuuieiiiieii i ei e et e e e e e e e e e e e e et e e e eeanns 70

5.6. Message Handler Chain ...t 71
T 10T [T o) o S 71
Configuring @ ChaiNiie e 72

6. Message TranSfOrMEALIONcc..iiiu it e e e e e eaa e 75
L0 I I =T 0 1S 0T 1 1= 75
] o [N L1 1o o IR PRSPPI 75
Configuring TranSTOIMETiiii e e 75
Configuring Transformer With XMLooiiiiiiiiiiiii e 75
Configuring a Transformer with AnNnotationscccoveviiivii i, 81

Header FlEr ... et e 81

(I ©o] 01 1= | Al =t] X 1= 81
] o [N L1 1o o IR PRSPPI 81
Header ENFICNEN ... e e 82
Payload ENFCNEI ... 84

(O] o 1T 81 r=\1 1 o I 84

EXAMPIES ...t e 86

6.3, ClaimM CRECK ...iitiee e et e aen 87
] o [N L1 1o o IR PRSPPI 87
Incoming Claim Check TranSfOrmerooouiiiiiiii e 88
Outgoing Claim Check TransformMerco.uuiiiiiiiii e 89

A WOrd 0N MESSAQGE SO ...vvuiiiiiiiii et e e e e e e e e e e eaes 90

7. MesSSaging ENCPOINTSeuiiiiiii e et et e et e e e 91
7.1. MeSsage ENCPOINTScoouuiiiiiiiiiiii e 91
MESSAGE HANAIEKceeeiei e e e e 91
EveNnt DIVEN CONSUMETuiiiiiiii ettt e e e et e et e e e e ea e aaaaaes 91
POING CONSUMET ..ottt ettt ettt e e et et e e e et e e eaba e eeens 92

I F= T LT 0 F= Tt TS U]] Lo 93
Change Polling Rate at RUNIIMEooiiiiiiii e 98
Payload Type CONVEISIONuuiiiiiiiieieiii ettt eaens 98
ASYNChronous POHINGiiee e 99
ENdpoint INNEI BEANS ... ccuuiiiiiiiiiieee et 100

7.2. MeSSAQING GAEWAYScevvineiiiiiieeteti ettt e et e et e et e e e et e e e 100
Enter the GatewayProxyFactoryBeanccccuvviiiiiiiiieiiii e e e 100
Gateway XML NameSpace SUPPOITttt e 100
Setting the Default Reply Channel ... 101
Gateway Configuration with Annotations and/or XMLccooveviiieiiiniiiineennnnn, 101
Mapping Method Arguments t0 @ MESSAJEccuuiiiuiiiiiiiiiii e 103
Invoking NoO-Argument Methodscovoiiiiiiiiiii e 103

L o]l o =T o |7V P 104
ASYNCHIONOUS GAEWAYueeeniiiteiii et e et e et e et et e e e et e e ea e aean s 105
Gateway behavior when N0 reSPoNSE ArfiVESoveveeiiiieiiiinieeeiisee e 106

7.3, SEIVICE ACHVALOK ...iiiiii e e et e e et e e e 108
INEFOAUCTION ..ttt e et e e et e et e eaneas 108

Spring Integration
3.0.5.RELEASE Reference Manual Y,

Spring Integration

Configuring SErvice ACHVALOLcccuuiiii i e e e e e 108

T4, DEIAYET .. 109
T 10T [T 1o) o 1 P 109

(70 a1 To U g1 aTe [l D I=F= 1Y =] 110
Delayer and MeSSAgE SEOMEiiiuniiiiiiii et e e e 111

7.5. SCHPLNG SUPPOIT ..ttt ettt ettt e et e e et eeeeba s 112
Script CONfIQUIALIONiiiei e e e 113

7.6. GIOOVY SUPPOIT ..ottt ettt ettt e et et e et et et et e e e e ea e en e enaeenees 115
Groovy CONFIQUIALIONu.iiiii et et eaeans 115

(0] 110 I = L= PP 116

7.7. Adding Behavior t0 ENAPOINTScuuiiiiiiiiiiiiee e 117
Provided AAVICE ClIaSSESciuuiiiiiiiiii ettt e e e e e e e anaeees 118
L= 1V X0 AV o7 T 118

Circuit Breaker ACQVICEoiiuiiiiii ettt 122
Expression Evaluating AdVICecoeiiiiiiiiiiiiiiiie e 123

CUSIOM AQVICE ClASSES . .ievviieeiii et 124
Other Advice Chain EIEMENTScouuiiiiiiiiiiee e 125
AGVISING FIILEIS .eeiiiiii e e e 125
Advising Endpoints Using ANNOLAtIONScccuiiiiiiiiii e e e e e 125
Ordering Advices within an Advice Chainccoooiiiiiiiii e 125

7.8. Logging Channel AdAperoooeeuiiiiiii e 126
S TS VA1 (=T g T 1Y/ = Vg =T = 0 0 = o | 127
8.1, IMX SUPPOIT ettt ettt et et et et e et e e et e et e e e e eaaenns 127
Notification Listening Channel Adapter ... 127
Notification Publishing Channel Adaptercccooviviiiiiii e 128
Attribute Polling Channel Adapter ..o 128
Tree Polling Channel Adapter ... 128
Operation Invoking Channel Adapterccoveiieiiiiciie e 129
Operation Invoking Outbound Gatewaycccuivieiiiiiiiiiiiiee e, 129
MBEAN EXPOITEI ...eeiieii et 130
MBean ODBJECINAMESccvvnieii i e e e e 130
MessageChannel MBean Featurescccvciuiiiiiiiiiiiiiiiineeie e 131

Orderly Shutdown Managed Operationccoveveveinieriiiineeieiiieeeeeiien 132

8.2. MESSAQE HiSIOIY ..uuiiiiiiiiii e 133
Message History Configurationcocuiiiii i 133

8.3. MESSAGE SEOME ...iiiiiiiiiiii it 134
8.4, MEtAUAta STOTE ...ciiiiti it e e et e 135
[dEemMPOLENt RECEIVET ... 136

S T T O a1 o] I =1 L 136
8.6. Orderly SRULdOWN ... 137
V. INtegration ENAPOINTSiiiiiii et et e e et e e et et e e et e e et e e ean e eenas 139
9. Endpoint Quick Reference Table ... 140
O 1Y 1 T o o Lo 144
00 [10T [DT i To] ISP 144
10.2. Inbound Channel Aaperoooeuiiiiiiiie e 144
10.3. Outbound Channel AdAPLeriiiiieiie e e e aes 147
10.4. INDOUNT GAIEWAYuieeiiiiiieiit e ettt et et e e e e e e e et e e e e eaens 148
10.5. OUIDOUNI GAIEWAYceiiiiiieiiiiiee ettt e et 149
10.6. AMQP Backed Message Channelsccooeuiiiiiiiiiiiiciie e e e 150
10.7. AMQP MeSSage HEAUEISc.uiiiiiiiiii et 150

Spring Integration
3.0.5.RELEASE Reference Manual vi

Spring Integration

10.8. AMQP SAMPIES ...uiiiieiiiiei e 151
11. Spring AppliCatiONEVENT SUPPOITiee ittt ea e e 153
11.1. Receiving Spring ApplicatioNEVENTSccouuiiiiiiiiiii e 153
11.2. Sending Spring ApPPlICAtIONEVENLScovuiiiiieii e 153
N =T To B Ao Fo T o) =] PP 155
2 I 10 T [T o) o P 155
12.2. Feed Inbound Channel Adapteroiviiieiiiicie e 155
R R 1 (=T F o] o o] o A U PRSPPI 157
R 0 R 0T [T o) o P 157
13.2. REAAING FilES ...t e e 157
Tal'ING FIlES e et 159
13.3. WHEING TS .o e 161
Generating FileNamEScoouuiiiiiei e 161
Specifying the OULPUL DIFECLOIYiiuiiiii e 162
Dealing with Existing Destination Filesccoooiiiiiiiiiiic e 162
File Outbound Channel Adaptercooveiieiiie e 163
OULDOUNI GAEWAYnivtiiii et et e e e e e e e e eaa e eees 163
13.4. File TranSfOrMErS ... et e e e e e e e e eens 164
O e I e I R A o o] (=] £ 165
I I [10T [U T i [o] o I PP 165
14.2. FTP SESSION FACIOIY ..iiiiiiiiiiiiii et 165
14.3. FTP Inbound Channel AJapteroviiuiiriii e e e 167
14.4. FTP Outbound Channel Adapter ..o 169
14.5. FTP OUthoUNd GAEWAYcceuuiiiiiiiaeiiii ettt e et e et e et e e eeai e e eeri e eeens 171
14.6. FTP SeSSION CaChing ...uucvveiiiiiieii et e e e e eaes 174
14.7. RemMOteFileTemMPIALEcoouniiiii e 174
15, GEMFINE SUPPOM «.otineiiiiii ettt ettt ettt e et e e e et e e e eaa e e eenans 175
L 700 O [1o To [o 1T o I PP 175
15.2. Inbound Channel AdapLerooeu e 175
15.3. Continuous Query Inbound Channel Adaptercooviiiiiiiinniiiiiecei e, 175
15.4. Outbound Channel AdAPLeriiiiiiiii e e e e 176
15.5. GeMIire MESSAQE SEOIEccuuiiiiiit e eeas 177
G o I I S 0] o] oo] S PP PP 179
G700 O [1o To [o 1T o I PP 179
16.2. Http INDOUN GAIEWAYcceeniiiiiiii e 179
16.3. Http OutboUNd GAEWAYcceeviiiiiiii e 180
16.4. HTTP NameSPaCE SUPPOIT ..ueeueentineiieeteeeeeeeeeeeeaeeeaeetaeenaeanseaneeaneeaneenneeneens 181
16.5. TiIMeout HanNAliNgooouuiiiiii ettt e e e eeens 188
16.6. HTTP Proxy CONfigurationcoouuuioiiiiiioiiii e 190
16.7. HTTP Header MapPinNgSeveuieeieeiiieeiiee e e e e e e e e s e et e e et aesaaeeanneeeens 191
16.8. HTTP SAMPIES ..ttt et e e e e e e e ees 192
Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
ST 0771) IS 192
17, IDBC SUPPOIT ittt ettt e ettt et et et e e e e e e et e e e e anns 194
17.1. Inbound Channel Adapercoouuuii i 194
Polling and TranSaCHiONSiiiiiiiii e ee e e e e e e e e e e ees 195
Max-rows-per-poll versus Max-messages-per-poll ..., 195
17.2. Outbound Channel Adapteroooeuiiiii e 196
ARG T @ 111 oo 18 s [o I 7= 1117 Y 197
17.4. IDBC MESSAQE STOME ...eiiiiiiieiiieite ettt et ettt e e et e e et e e e en e enns 197

Spring Integration
3.0.5.RELEASE Reference Manual Vii

Spring Integration

The Generic JDBC MeSSAQE STOMEcvvvuiiiiieeiiieeeiieeeii e e e e e e e e e e e e 198
Backing Message Channelso 198
Initializing the Databaseuiiiiiiiiiii e 200
Partitioning a MEeSSAgEe STOIEccvvuiiiiiiiiii e e e e e e e e aen 200
17.5. StOred ProCeAUIESc.uuiiiiiii et 201
Supported Databasesooooiiiiiii 201

(@] 01T 8T r=\1 1o o I 201
Common Configuration AttHDULESooiuiiiiii e 202
Common Configuration Sub-Elements ... 203
Defining Parameter SOUICESccuuiiiiiiiii et e e e e e e e e e aen s 205
Stored Procedure Inbound Channel Adapteroovoeviiiiiiiiiiiiiiic e 206
Stored Procedure Outbound Channel Adaptercooveviiiiiiiiiinieiiii e, 207
Stored Procedure Outbound GatEWaYcceuueeiiiiiiiieiiieeeiiieeineeaneeeieeeaeeens 207
EXAMPIES ... e 208

L8, JPA SUPPOIT ettt ettt ettt 210
18.1. Supported PersistenCe ProVIdErScoouuiiiiiiiiiiiecie e e e 210
18.2. Java IMPIemMENTAtIONco.uuiiieiiii e 211
18.3. NAMESPACE SUPPOIT ..eerieiiieiei ettt e e e e e e e e enes 212
Common XML Namespace Configuration Attributescccooeiviiiiiiiiiiieineennn, 212
Providing JPA QUErY Parametersc..ieiiuiiiiieiiieeie e e 213
Transaction Handlingooovoiiiiii e 214
18.4. Inbound Channel AdapLerooviuiii e e 215
Configuration Parameter ReferencCeco.ov i 216
18.5. Outbound Channel Adaptercooouiiiiiii e 217
USIiNG an ENtity ClIasS ...vuiieiiiiiicii e e e e e e e ean s 217
Using JPA Query Language (JPA QL) ..o 217
USING NatiVE QUETIESuiiiiii ettt ettt ettt e e e e ena e e eeeas 218

L0 LS g o T A F= T a1 To O T 1= = 219
Configuration Parameter ReferencCeo.uiv i 220
18.6. OUIDOUNI GAIEWAYS .. .ceevviieeiiii ettt ettt e e et e et e e 221
Common Configuration Parameterscoeeuieiiiiieie e 222
Updating Outbound GAtEWAYc.uiiiiuniiiiiiiiaiie et e e e ean s 223
Retrieving OutbouNd GAEWAYcoeuvuiiiiiiiieiiiiie et eeeens 224

JPA Outbound Gateway Samplesccoeuiiiiiiiiiiiiiie e 225

TN 1Y IR ST ¥ o] o [0] AP PT PP 227
19.1. Inbound Channel AApLercooiuiii i 227
19.2. Message-Driven Channel Adaptervvviiiiiiiic e 228
19.3. Outbound Channel AdAPLETiiii e 229
19.4. INDOUNI GAIEWAYceiviiieeiiiiie ettt ettt e et e e et e e eebe e eeeees 229
19.5. OUDOUNT GAIEBWAYuivveieieii e i et e e e e e e e e e e e e e et e e eaneaeaes 230
AUNDULE REFEIENCE ... e 232
19.6. Mapping Message Headers to/from JMS MESSAQgec.cvevvvvieinieiiiieriineniineeeen, 234
19.7. Message Conversion, Marshalling and Unmarshallingccoooooiiiiiennnn. 234
19.8. JMS Backed Message Channels ..o 234
19.9. UsSiNg JMS MeSSage SEIECIOISciiiiiiieiiiii et 236
19.10. JMS SAMPIES ..ouiiieieiiii ettt e e e e e 236
20. MaII SUPPOIT <.ttt ettt e e et e e et e et e et e e e e aeen 237
20.1. Mail-Sending Channel Aaptero e 237
20.2. Mail-Receiving Channel Adapterooveuiieiiiieii e e 237
20.3. Mail NameSpaCe SUPPOITuiieiiei et e e e et e eaaeees 238

Spring Integration
3.0.5.RELEASE Reference Manual viii

Spring Integration

20.4. Email Message FilteriNgccouuioiiiiiiiicc e e 241
20.5. Transaction SYNCHroNIZAtIONcc.uiiuiiiiiiii e e 242

21. MONQGODD SUPPOIT ..ottt et e et e e e e een e e 244
P22 I O 1 oo o [T 1 oo PRSP 244
21.2. Connecting t0 MONGODDccuiiiiii e 244
21.3. MONQGODB MESSAJE STOMEuiiiiiiiiiiiitie i 245
21.4. MongoDB Inbound Channel Adapteroveeuiiiiiieiie e 246
21.5. MongoDB Outbound Channel Adapter ... 248

22. REAIS SUPPOIT ...ttt ettt ettt e e e et e e e et e e e aa e e eaans 249
P22 W 1o o U Tox 1 o o PRSP 249
22.2. CoNNECtING 10 REAIScetiiiiiieii e 249
22.3. Messaging With REdiScoouuiiiiiiii e 250
Redis Publish/Subscribe channel ..., 250

Redis Inbound Channel Adapterc.o i 250

Redis Outbound Channel Adapter ... 251

Redis Queue Inbound Channel Adapterco.ovevuiiiiiieii e 252

Redis Queue Outbound Channel Adapterccooooiiiiiiiiiii e 253

Redis Application EVENISiiiiiiiieiiii et 253

22.4. RediS MESSAQE STOMEiiveeiiiieiiiee e e e e e e e e e e e e e et e e e ean s 253
22.5. Redis Metadata StOreccuuiiiiiiiiiii et 254
22.6. RedisStore Inbound Channel Adapterooooieuiiiiiiiiiiiee e 254
22.7. RedisStore Outbound Channel Adaptercoovviiiiiiiiiiiee e, 256

23. RESOUICE SUPPOIT ettt ettt ettt ettt e ettt et e et e et e e et e et e e e e e ea e en e en e e aennns 258
b2 25 T [o1 o o (U] 1T o I PP 258
23.2. Resource Inbound Channel Adapterovvvuiiiiii e e 258

A Y | 10T o] oo APPSR 260
2 T [o1 (o o (U] 1T o I PP 260
24.2. OUBOUNT RMI ..ot e e et e eeeea e e eees 260
24.3. INDOUNA RMI ...ttt e e e e e 260
24.4. RMI NAMESPACE SUPPOIT ...uneerieiiieeet ettt et e et e r e e e e s 260

TS Tl I S X =T o) (=] £ 262
P2 I [0 (o o [FTod 1o o PP UUPTRUPTRN 262
25.2. SFTP SESSION FACIOMY ..oeviiiiiiiiiiee ittt 262
Configuration ProPertieScouuiiiii i e e e e e e e an s 263

25.3. SFTP SeSSioN CaChiNgccuuiiiiiiiiiiiii e 264
25.4. RemMOteFIleTEMPIALEcooveiiiiii e 265
25.5. SFTP Inbound Channel Adapterovevuieiiiiee e e 265
25.6. SFTP Outbound Channel Adapterooouiiiiiiiii e 267
25.7. SFTP OUuthoUNd GAIEWAYcevuiiiiiiiieeiiii ettt e e e et e eeeai e aees 268
25.8. SFTP/IISCH LOGQOING +tuuiviteiiiieiiiiee e et e e e e e e e s e et e e e e e e e e e e e eanneeanaees 271

26. SITEAIM SUPPOIT ..ttt ettt et et e e et et et e et e ea e e e e e e eaaenaennaes 272
b2 0 T [o o (U] 1T o I PP 272
26.2. Reading from SIrEAIMSccuuiiiiii i e e e e e e e e eees 272
26.3. WILING 1O SIrEAIMS ...ttt e e et e et e e e e et eeea e eanaas 272
26.4. Stream NamMESPACE SUPPOIT ...eevnieri et ieiri et e et e et e e e eeens 272
P27V (o o RS TUT o] o o] o A 274
A% T [o1 o o [FTod 1o o PP PP UUPTR PR 274
27.2. Syslog <inbound-channel-adapters>ccoooiiiiiiiii 274
Example Configurationooiiuioiiiiciie e e 274

28. TCP and UDP SUPPOIT ..ttt ettt e e e e et e e e e e et e e et e eanaeeees 276

Spring Integration
3.0.5.RELEASE Reference Manual 4

Spring Integration

P22 I 1o o [T 1 o] o PSP 276
28.2. UDP AGAPLEIS ..ttt ettt et e aaas 276
28.3. TCP CONNECLION FACLOMES ..o.uuiiitiiiiieiieeei et e e e e e e e e e e e e e eanaeees 278
TCP Caching Client Connection FACLOrYcccuvvviiieiiiieiiii e e e e e 281
TCP Failover Client Connection FACIONYocceuiiiiiiiiieiiieee e 281
28.4. TCP CoNNEeCtion INLEICEPLOIS .. .ciiiiiieiiiiii et 281
28.5. TCP CONNECION EVENES ...oiiiuiiiiiiiii e e e e eeees 282
28.6. TCP AGAPLEIS ...ceniiiiieii ettt e e e et e e e et e e et a e e ean e aaes 283
28.7. TCP GABWAYS ...eevuierieieieeti ettt e et ettt e e e et e e e e e e ern s 285
28.8. TCP Message COITElationveeeuiriiiiiiiiee e e e e e e e e e e e 286
OVEIVIBW ..ttt et et e et et e e et e e et a e et e e ean s 286
GALBWAY'S ...ieteetiee ettt ettt 286
Collaborating Outbound and Inbound Channel Adaptersccoevevvvvviiieeinnnnns 287
Transferring HEAUEIS ... e 288
28.9. A NOte ADOUL NIO ... 289
Thread Pool Task Executor with CALLER_RUNS Policycccoevviiiiviiiieinnnen, 290
28.10. SSLITLS SUPPOI «.eeeitiieeiiiiiee et e et e et e e et e e et e e e aa s e e e et aeaeasenneaeannns 291
L@ YT T 291
GettiNg STAMEA ...ouiiieiei e 292
Advanced TECHNIQUEScouuiiiiiii e 292
28.11. IP Configuration AHDULESoiiiiiiiiiii e 294
28.12. IP MeSSAge HEAUEIS .. c.vuiii ittt e e e e e e 300
A B 11 g =T o] (] PP PRSPPI 302
b4 5 T [o1 o o (U] 1T o I PP 302
29.2. Twitter OAUth Configurationoiiiiiiiii e e e 302
29.3. TWItter TEMPIALE ...ttt e e e ea e 302
29.4. Twitter INDOUNd AAPLETSvuiiiiii e 303
Inbound Message Channel Adapterooovviiriiiiiie e 304
Direct Inbound Message Channel Adapterco.vvieiiiiiiiiiiiie e 304
Mentions Inbound Message Channel Adapterc.ocoeeiiiiiiiiniiiiiiinee e 304
Search Inbound Message Channel Adaptercooovvveiiiiiiiiiiie e 304
29.5. Twitter OUtbOUNd AJAPLELiie e 305
Twitter Outbound Update Channel Adapterccoiiiiiiiiiiiiii e 305
Twitter Outbound Direct Message Channel Adaptercoovveieviiiiiiineeeneeennn. 305

30. WED SErVICES SUPPOIT ...ttt et et e e et e e e e ean s 307
30.1. Outbound Web Service GateWaySoveieeuiiieiiiiiiieieiiie e 307
30.2. Inbound Web SEervice GatEWaYSccuuiiivuieiiieiiieeiiieeeiee e e e e e e e e e aanaees 307
30.3. Web Service NamesSpace SUPPOITc.uuivetniiiaiiia et e e eenns 308
30.4. Outbound URI ConfIgUIAtioNccoeuuuiiiiiiiieieii e 309
31. XML Support - Dealing with XML Payloadscccoveviiiiiiiiiii e 310
3 I I [o o [U Tod 1o o PP UP PP UUPTRUPTRN 310
31.2. NAMESPACE SUPPOIT ...ieiieiieiir ettt e r e e e e en e enes 310
XPath EXPrESSIONSuciiinieiiiiii et e e e e et e e e e e e e e e e e e e e et e e et e e eaeeeees 311
Providing Namespaces (Optional) to XPath EXpressionscccceeeunn.. 311

Using XPath Expressions with Default Namespacesc.c.ccceveviviveinnnnnns 312

31.3. Transforming XML Payloadsccuoiiiiiiiiiiiei e 313
Configuring Transformers as BEANSociuuiiiiiiiiiiieii e 313
UnmarshallingTransformer ... 314
MarshallingTransSfOrmercooeuiiiiii e 314
XSItPayloadTranSfOrMero 315

Spring Integration
3.0.5.RELEASE Reference Manual X

Spring Integration

ReSURTIANSTOMMENSiiiiiii e 315

Namespace Support for XML TranSformerscoovieiiiiiiiiiieeece e 316
Namespace Configuration and ResultTransformersccoovvviiiiiiiiieeneeen, 318

31.4. Transforming XML Messages Using XPathcooooiiiiiiiii i, 319
31.5. SPlittiNg XML MESSAQES ... eeuuiitiieiiieiii ettt e e et e et e e e e e et eeanaaeees 320
31.6. Routing XML Messages Using XPathccoooiiiiiiiiiiii e 321
XML Payload CONVEIETiieiiiiiii i et e e e e e s e e e e e et e e e e e eanaees 323

31.7. XPath Header ENMChErcouuiiiii e 323
31.8. Using the XPath Filtercooiiiiii e 324
31.9. #xpath SPEL FUNCLONcoiiiii e e e e eaes 325
31.10. XML Validating Filtercc.uiiiiiiie e 326

32, XMPP SUPPOIT ittt ettt et 327
122 I 1 o o U Tox 1 o] o U SPP 327
32.2. XMPP CONNECHION ...cetiiiiiieie ettt e e e e aees 327
32.3. XMPP MESSAUES ... ceviiiiiieiiie ettt ettt et et 328
Inbound Message Channel Adapterooovviiriii i e 328

Outbound Message Channel Adaptero 328

32.4. XIMPP PIrESENCE ...ttt ettt e et et e e e e e eaaaeas 328
Inbound Presence Message Channel Adapterccooevveieviiiiiii i, 329

Outbound Presence Message Channel Adapterccoovviiiiiiiiiiiiniiiiieceeen, 329

32.5. Advanced ConfiQUIAtioNc.couuiiiiiiiieiiii et 330

R 2 o] o 1= Lo [T = 331
A. Spring Expression Language (SPEL)coeuniiiiiiiiii e 332
N I [11 o T [T o o PP 332

A.2. SpEL Evaluation Context CustOmMizationcocvuviieiiiieiiiierin e 332

A.3. SPEL FUNCLIONS ...eeii e e 333

A4, PrOPEITYACCESSOIS ...cviiieieeiiee ettt ettt et et e e et et e e e eeaneenes 334

B. Message PUDBIISNINGooueii e 336
B.1. Message Publishing Configurationcocouiiiiiiiiiiiiii e 336
Annotation-driven approach via @Publisher annotationccccceiveiiiinnens 336
XML-based approach via the <publishing-interceptor> elementccccecee.... 338
Producing and publishing messages based on a scheduled trigger 340

C. TranSaCON SUPPOMTuuiiiit ettt e e ettt e et e e e et e e e et e e e eraa s 342
C.1. Understanding Transactions in Message flowsccccocceiiiiiiiii i 342
Poller Transaction SUPPOITiii e 343

C.2. Transaction BOUNGAINEScoeuniiiiiieiii e e e e e 344

C.3. Transaction SynChronizationccceuiiriiiieii e e e e e 345

C.4. PSEUAO TraNSACLIONScetuiiiiieiiii ettt e et e e e e et e et e e e eeaens 346

D. Security in SPring INtEGratioNuiiieiuiiiiiii e eeeens 348
[200 O [1 o Yo [Tox 1T I PSPPI 348

D.2. SecUring ChaNNEISoouii e 348

E. Spring Integration SAmPIESccooiiiiiiii e 350
O i o o (U1 i o o KPP 350

E.2. Where t0 get SAMPIESouiiiiiiiii e e 350

E.3. Submitting Samples or Sample REQUESLSccoouiiiiiiiiiiiieiii e 350

E.4. SAMPIES SHIUCIUIE ...uieeiiii e e e e e e e e e e e et e e et n e e e e e anaees 351

E.5. SAMPIES ..o e 352
[0 T= T TN 2] o) = 353

The Cafe SAMPIE ... 357

The XML Messaging Sampleoooeiiiiii e 362

Spring Integration
3.0.5.RELEASE Reference Manual Xi

Spring Integration

L @0 oy o U= 11 o] o TN 363
S O 1 (o To [¥ (o 1 o] o KOO PP UPPRPPPR 363
F.2. NameSPaACE SUPPOITcvriiiii ettt ettt et et e e e e e eees 363
F.3. Configuring the Task SCheduleroiiiiiiiii e 364
F.4. Error HandliNgooeniiiii ettt 365
F.5. ANNOAtiON SUPPOITceitiiiiiii ettt et e e e e eaaens 366
F.6. Message Mapping rules and CONVENLIONScccuuiiviiieiiiieii e e e 368

SIMPIE SCENATOS ...eniiiieii e et e et e e e ea e 368
COMPIEX SCENANIOS ...ttt e e 371

G. AJAItIONAl RESOUICESuciiiiiiiee ettt e e et e e et e e e eae s 373
G.1. Spring INtegration HOMEiiiiiii et ea e 373

H. Change HISIOTYiiiii et 374
H.1. Changes between 1.0 and 2.0iiiiiiiiii e 374

SPIING 3 SUPPOIT .ttt et e et e e e e e e e e eeans 374
Support for the Spring Expression Language (SPEL)cccccovveviviineeiininnnnn. 374
ConversionService and CONVEIETovvvieiiieiiiiie e e 374
TaskScheduler and TrigOerc.. v 374
RestTemplate and HttpMessageCOoNVENErc..vvviiiiiiieiii e 374

Enterprise Integration Pattern Additionsccoovviiiiiii i 374
MESSAGE HISTOIY ...niiiiiiii e 374
MESSAGE SEOIE ...ieiiiiiieii e e 375
Claim ChECK ..uuiiiiii e 375
CONLIOI BUS ..t e 375

New Channel Adapters and GatEWAYSooeveuriiieiiiiiiieeiiiiie e 375
IO LU T Ao =T o] =] £ 375
TWILLEE AQBPLEIS .eeniiiiie ettt et eaans 375
XMPP AGAPLELS ...ttt 375
L Il W S Ao F= o] =1 £ 375
SFETP AQAPLEIS ..oeiiiiie ettt e et e e 375
FEEA AGBPLEIS ...eeiiiei et 376

Other AAItIONS ...oovuiiiii e e e ettt e e e et e e e eaa e aaees 376
LT (oTo)YV ATV] o] 0[] ¢ PPN 376
MapP TranSTOMMIEIS ...oouuiieii s 376
JSON TranSfOIMEIS ...oeiiiiie et eeees 376
Serialization TransSfOrMErS ... e 376

Framework RefACtONNGviiieeiiiiii e 376

New Source Control Management and Build Infrastructureccoooevveeennnn. 376

New Spring Integration SAMPIESooiiiiiiiii e 376

SpringSource Tool Suite Visual Editor for Spring Integrationccccoeevevnnnne.. 376

H.2. Changes between 2.0 and 2.1oiiiiiiiii e e e 377

NEW COMPONENES ...cuuitiiieeit ettt ettt e e e et e e e e e eaeenaens 377
JSR-223 SCripting SUPPOIT .eveneiiiiieet et 377
LCT=] 0 (=TS o] o Lo] o 377
AMOP SUPPOIT <ttt et et eaas 377
MONQGODB SUPPOIT ..t 377
L= To [1S TRS]]] o o] o (N 377
Support for Spring's Resource abstractioncccocoiiiiiiiiiiiniiiiiecieeen. 378
Stored Procedure COMPONENTSieiiuiinieiiiiiee it e e 378
XPath and XML Validating Filtercccccuiiiiiiiiiiiiiee e 378
Payload ENFCHET ... 378

Spring Integration

3.0.5.RELEASE Reference Manual Xii

Spring Integration

FTP and SFTP Outbound GateWayscccuvveiunieeiiieiiiieeiiieeeiieeeieeeanaeenes 379

FTP SesSion CacChingcccuuiiiiiiiiiai e 379
Framework RefACtONNGviiieeiiiiii e 379
Standardizing Router Configurationcccoiiiviiiiiii i 379
XML Schemas updated t0 2.1 ... 379
Source Control Management and Build Infrastructurecccooovviiiiiineeinnnnnn. 380
Source Code now hosted on Githubccoooiiiiiiii . 380
Improved Source Code Visibility with Sonar ..., 380

NEW SAMPIES ..o et 380
H.3. Changes between 2.1 and 2.2oiiviiiiiiiii e 381
NEW COMPONENES ...cuuiiiiiiit ettt et e et e et e e e e eenaens 381
RedisStore Inbound and Outbound Channel Adaptersc.ccoocevvviienennn. 381
MongoDB Inbound and Outbound Channel Adaptersccoooevvvevinenannn. 381

JPA ENAPOINTS ...ttt 381
GeNEral ChANGESciiiiiiiiii et 381
Spring 3.1 Used by Defaultooiiiiiiiii e 381
Adding Behavior t0 ENdPOINtSviiiiiiiiiiiee e 381
Transaction Synchronization and Pseudo Transactionscccccoevvunenn. 382

File Adapter - Improved File Overwrite/Append Handlingc.ceeeeee. 382
Reply-Timeout added to more Outbound Gatewaysc..ccceveeieneienneennnn. 382
SPrNG-AMOP 1.1 L e 382
JDBC Support - Stored Procedures COMPONENtSccuevevrieiinneriineennnns 383
JDBC Support - Outbound GatEWaYceuuiiiiinieiiiiiiieeieeei e e 383
JDBC Support - Channel-specific Message Store Implementation 383
Orderly ShULdOWNcoee e e 383

JMS Oubound Gateway IMpProvemMeNtscocuveeuiiiiiieeiieeeiieeeieeeaeeeee 383
0DbjeCt-to-JSON-ranSfOrMErcoouuiiiiii e 383

Lo T I S T o] o Lo o S 383

3.0.5.RELEASE

Spring Integration
Reference Manual Xiii

Spring Integration

Preface

1 Requirements

This section details the compatible Java and Spring Framewaork versions.

Compatible Java Versions

For Spring Integration 3.0.x, the minimum compatible Java version is Java SE 6. Older versions of
Java will not be supported any longer.

Spring Integration 3.0.x is also compatible with Java SE 7 as well as Java SE 8.

@ Note

Spring Integration 2.2.x is the last version that is compatible with Java 5 (J2SE 5.0).

Compatible Versions of the Spring Framework

The default dependency used by Spring Integration 3.0.0.RELEASE is Spring Framework 3.2.X.
Generally, Spring Integration 3.0.x is compatible with the following Spring Framework releases:
» Spring Framework 3.1.x

» Spring Framework 3.2.x

e Spring Framework 4.0.x

© Note

Spring Integration 2.2.x is the last version that is compatible with Spring Framework 3.0.x.

2 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifies the Xml configuration of
the application context, and consequently Spring Integration provides broad namespace support. This
reference guide applies the following conventions for all code examples that use hamespace support:

The int namespace prefix will be used for Spring Integration's core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the following
convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, ...

Spring Integration
3.0.5.RELEASE Reference Manual Xiv

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/spring-framework

Spring Integration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww.springframework. org/schena/integration"
xmns:int-twitter="http://ww. springfranmework. org/schema/integration/twitter"
xm ns:int-streans"http://ww. springfranmework. org/schena/integration/streant
xsi : schemalLocat i on="
http://ww. spri ngfranewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. spri ngfranewor k. org/ schenma/ i ntegration/spring-integration. xsd
http://ww. springfranework. org/ schena/integration/twtter
http://ww. springframework. org/ schema/integration/twi tter/spring-integration-
twitter. xsd
http://ww. springfranework. org/ schena/integration/stream
http://ww. springframework. org/ schema/ i nt egrati on/ strean spring-integration-
stream xsd" >

</ beans>

For a detailed explanation regarding Spring Integration's namespace support see Section F.2,
“Namespace Support”.

@ Note

Please note that the namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, apply the convention that suits your application needs best.
Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace conventions
for Spring Integration as used in this reference guide.

Spring Integration
3.0.5.RELEASE Reference Manual XV

Part I. What's new?

For those who are already familiar with Spring Integration, this chapter provides a brief overview of the
new features of version 3.0. If you are interested in the changes and features, that were introduced in
earlier versions, please see chapter: Appendix H, Change History

Spring Integration

1. What's new in Spring Integration 3.0?

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Integration 3.0. If you are interested in more details, please see the Issue Tracker tickets
that were resolved as part of the 3.0 development process.

1.1 New Components

HTTP Request Mapping

The HTTP module now provides powerful Request Mapping support for Inbound Endpoints. Class
Uri Pat hHandl er Mappi ng was replaced by | nt egr ati onRequest Mappi ngHandl er Mappi ng,
which is registered under the bean name i ntegrati onRequest Mappi nhgHandl er Mappi ng
in the application context. Upon parsing of the HTTP Inbound Endpoint, a new
I nt egr ati onRequest Mappi ngHandl er Mappi ng bean is either registered or an existing bean
is being reused. To achieve flexible Request Mapping configuration, Spring Integration provides
the <request - mappi ng/ > sub-element for the <htt p: i nbound- channel - adapt er/ > and the
<ht t p: i nbound- gat eway/ >. Both HTTP Inbound Endpoints are now fully based on the Request
Mapping infrastructure that was introduced with Spring MVC 3.1. For example, multiple paths are
supported on a single inbound endpoint. For more information see Section 16.4, “HTTP Namespace
Support”.

Spring Expression Language (SpEL) Configuration

Anewl nt egrati onEval uati onCont ext Fact or yBean is provided to allow configuration of custom
Pr opert yAccessor s and functions for use in SpEL expressions throughout the framework. For more
information see Appendix A, Spring Expression Language (SpEL).

SpEL Functions Support

To customize the SpEL Eval uati onCont ext with static Met hod functions, the new <spel -
functi on/ > component is introduced. Two built-in functions are also provided (#j sonPat h and
#xpat h). For more information see Section A.3, “SpEL Functions”.

SpEL PropertyAccessors Support

To customize the SpEL Eval uati onCont ext with PropertyAccessor implementations the new
<spel - property-accessors/ > component is introduced. For more information see Section A.4,
“PropertyAccessors”.

Redis: New Components

A new Redis-based Met adat aSt or e implementation has been added. The Redi sMet adat aSt or e
can be used to maintain state of a Met adat aSt ore across application restarts. This new
Met adat aSt or e implementation can be used with adapters such as:

» Twitter Inbound Adapters
* Feed Inbound Channel Adapter

New queue-based components have been added. The <i nt -redi s: queue- i nbound- channel -
adapter/> and the <int-redis:queue-out bound-channel -adapter/> components are
provided to perform 'right pop' and 'left push' operations on a Redis List, respectively.

Spring Integration
3.0.5.RELEASE Reference Manual 2

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/store/MetadataStore.html

Spring Integration

For more information see Chapter 22, Redis Support.

Header Channel Registry

It is now possible to instruct the framework to store reply and error channels in a registry for later
resolution. This is useful for cases where the r epl yChannel or error Channel might be lost; for
example when serializing a message. See the section called “Header Enricher” for more information.

MongoDB support: New ConfigurableMongoDbMessageStore

In addition to the existing eMbngoDbMessageSt or e, a new Conf i gur abl eMongoDbMessageSt or e
has been introduced. This provides a more robust and flexible implementation of MessageSt or e for
MongoDB. It does not have backward compatibility, with the existing store, but it is recommended to
use it for new applications. Existing applications can use it, but messages in the old store will not be
available. See Chapter 21, MongoDb Support for more information.

Syslog Support

Building on the 2.2 Sysl ogToMapTr ansf or ner Spring Integration 3.0 now introduces UDP and TCP
inbound channel adapters especially tailored for receiving SYSLOG messages. For more information,
see Chapter 27, Syslog Support.

‘Tail' Support

File 'tail'ing inbound channel adapters are now provided to generate messages when lines are added
to the end of text files; see the section called “Tail'ing Files”.

JMX Support

* Anew<int-jnx:tree-polling-channel - adapt er/ >is provided; this adapter queries the IMX
MBean tree and sends a message with a payload that is the graph of objects that matches the query.
By default the MBeans are mapped to primitives and simple Objects like Map, List and arrays -
permitting simple transformation, for example, to JSON.

e The IntegrationMBeanExporter now allows the configuration of a custom
oj ect Nami ngSt r at egy using the nam ng- st r at egy attribute.

For more information, see Section 8.1, “JMX Support”.
TCP/IP Connection Events and Connection Management

TcpConnecti ons now emit Appli cati onEvents (specifically TcpConnecti onEvents) when
connections are opened, closed, or an exception occurs. This allows applications to be informed of
changes to TCP connections using the normal Spring Appl i cat i onLi st ener mechanism.

Abst ract TcpConnecti on has been renamed TcpConnecti onSupport; custom connections
that are subclasses of this class, can use its methods to publish
events. Similarly, Abstract TcpConnecti onl nt er cept or has been renamed to
TcpConnect i onl nt er cept or Support.

In addition, a new <int-ip:tcp-connection-event-inbound-channel -adapter/> is
provided; by default, this adapter sends all TcpConnect i onEvent s to a Channel .

Spring Integration
3.0.5.RELEASE Reference Manual 3

Spring Integration

Further, the TCP Connection Factories, nhow provide a new method get OpenConnecti onl ds(),
which returns a list of identifiers for all open connections; this allows applications, for example, to
broadcast to all open connections.

Finally, the connection factories also provide a new method cl oseConnection(String
connect i onl d) which allows applications to explicitly close a connection using its ID.

For more information see Section 28.5, “TCP Connection Events”.

Inbound Channel Adapter Script Support

The <i nt: i nbound- channel - adapt er/ > now supports <expr essi on/ > and <scri pt/ > sub-
elements to create a MessageSour ce; see the section called “Channel Adapter Expressions and
Scripts”.

Content Enricher: Headers Enrichment Support

The Content Enricher now provides configuration for <header / > sub-elements, to enrich the outbound
Message with headers based on the reply Message from the underlying message flow. For more
information see the section called “Payload Enricher”.

1.2 General Changes

Message ID Generation

Previously, message ids were generated using the JDK UUI D. r andonJUl D() method. With this
release, the default mechanism has been changed to use a more efficient algorithm which is significantly
faster. In addition, the ability to change the strategy used to generate message ids has been added. For
more information see the section called “Message ID Generation”.

<gateway> Changes

* Itis now possible to set common headers across all gateway methods, and more options are provided
for adding, to the message, information about which method was invoked.

« Itis now possible to entirely customize the way that gateway method calls are mapped to messages.

e The Gat ewayMet hodMet adat a is now public class and it makes possible flexibly to configure the
Gat ewayPr oxyFact or yBean programmatically from Java code.

For more information see Section 7.2, “Messaging Gateways”.

HTTP Endpoint Changes

e Outbound Endpoint 'encode-uri’ - <htt p: out bound- gat eway/ > and <htt p: out bound-
channel - adapt er / > now provide an encode- uri attribute to allow disabling the encoding of the
URI object before sending the request.

e Inbound Endpoint 'merge-with-default-converters' - <htt p:inbound-gateway/> and
<htt p: i nbound- channel - adapter/> now have a nerge-w th-default-converters
attribute to include the list of default Htt pMessageConverters after the custom message
converters.

Spring Integration
3.0.5.RELEASE Reference Manual 4

Spring Integration

* 'If-(Un)Modified-Since'’ HTTP Headers - previously, 'If-Modified-Since' and 'lIf-Unmodified-
Since' HTTP headers were incorrectly processed within from/to HTTP headers
mapping in the Default Htt pHeader Mapper. Now, in addition correcting that issue,
Def aul t Ht t pHeader Mapper provides date parsing from formatted strings for any HTTP headers
that accept date-time values.

* Inbound Endpoint Expression Variables - In addition to the existing #requestParams and
#pathVariables, the <htt p: i nbound- gat eway/ > and <htt p: i nbound- channel - adapt er/ >
now support additional useful variables: #matrixVariables, #requestAttributes, #requestHeaders and
#cookies. These variables are available in both payload and header expressions.

e Outbound Endpoint 'uri-variables-expression' - HTTP Outbound Endpoints now support the uri -
vari abl es- expr essi on attribute to specify an Expr essi on to evaluate a Map for all URI variable
placeholders within URL template. This allows selection of a different map of expressions based on
the outgoing message.

For more information see Chapter 16, HTTP Support.

Jackson Support (JSON)

» A new abstraction for JSON conversion has been introduced. Implementations for Jackson 1.x and
Jackson 2 are currently provided, with the version being determined by presence on the classpath.
Previously, only Jackson 1.x was supported.

» The bj ect TodsonTr ansf or mer and JsonToObj ect Tr ansf or mer now emit/consume headers
containing type information.

For more information, see 'JSON Transformers' in Section 6.1, “Transformer”.
Chain Elements 'id" Attribute

Previously, the id attribute for elements within a <chai n> was ignored and, in some cases, disallowed.
Now, the id attribute is allowed for all elements within a <chai n>. The bean names of chain elements
is a combination of the surrounding chain's id and the id of the element itself. For example: 'fooChain
$child.fooTransformer.handler'. For more information see Section 5.6, “Message Handler Chain”.

Aggregator 'empty-group-min-timeout' property

The Abstract Correl ati ngMessageHandl er provides a new property enpty-group- ni n-
ti meout to allow empty group expiry to run on a longer schedule than expiring partial groups. Empty
groups will not be removed from the MessageSt or e until they have not been modified for at least this
number of milliseconds. For more information see the section called “Configuring an Aggregator”.

Persistent File List Filters (file, (S)FTP)

New Fi | eLi st Fi | t er s that use a persistent Met adat aSt or e are now available. These can be used
to prevent duplicate files after a system restart. See Section 13.2, “Reading Files”, Section 14.3, “FTP
Inbound Channel Adapter”, and Section 25.5, “SFTP Inbound Channel Adapter” for more information.

Scripting Support: Variables Changes

Anewvar i abl es attribute has been introduced for scripting components. In addition, variable bindings
are now allowed for inline scripts. See Section 7.6, “Groovy support” and Section 7.5, “Scripting support”
for more information.

Spring Integration
3.0.5.RELEASE Reference Manual 5

Spring Integration

Direct Channel Load Balancing configuration

Previously, when configuring LoadBal anci ngSt r at egy on the channel's 'dispatcher' sub-element,
the only available option was to use a pre-defined enumeration of values which did not allow one to
set a custom implementation of the LoadBal anci ngSt r at egy. You can now use | oad- bal ancer -
r ef to provide a reference to a custom implementation of the LoadBal anci ngSt r at egy. For more
information see the section called “DirectChannel”.

PublishSubscribeChannel Behavior

Previously, sending to a <publish-subscribe-channel/> that had no subscribers would return a f al se
result. If used in conjunction with a Messagi ngTenpl at e, this would result in an exception being
thrown. Now, the Publ i shSubscri beChannel has a property m nSubscri ber s (default 0). If the
message is sent to at least the minimum number of subscribers, the send is deemed to be successful
(even if zero). If an application is expecting to get an exception under these conditions, set the minimum
subscribers to at least 1.

FTP, SFTP and FTPS Changes

The FTP, SFTP and FTPS endpoints no longer cache sessions by default

The deprecated cached- sessi ons attribute has been removed from all endpoints. Previously, the
embedded caching mechanism controlled by this attribute's value didn't provide a way to limit the size
of the cache, which could grow indefinitely. The Cachi ngConnecti onFact ory was introduced in
release 2.1 and it became the preferred (and is now the only) way to cache sessions.

The Cachi ngConnect i onFact ory now provides a new method r eset Cache() . This immediately
closes idle sessions and causes in-use sessions to be closed as and when they are returned to the
cache.

The Defaul t Sft pSessi onFactory (in conjunction with a Cachi ngSessi onFact ory) now
supports multiplexing channels over a single SSH connection (SFTP Only).

FTP, SFTP and FTPS Inbound Adapters

Previously, there was no way to override the default filter used to process files retrieved
from a remote server. The filter attribute determines which files are retrieved but the
Fi | eReadi ngMessageSour ce uses an Accept OnceFi | eLi st Fi | t er. This means that if a new
copy of a file is retrieved, with the same name as a previously copied file, no message was sent from
the adapter.

With this release, a new attribute | ocal - fi | t er allows you to override the default filter, for example
with an Accept Al | Fi | eLi st Fi | t er, or some other custom filter.

For users that wish the behavior of the Accept OnceFi | eLi st Fi | t er to be maintained across JVM
executions, a custom filter that retains state, perhaps on the file system, can now be configured.

Inbound Channel Adapters now support the pr eser ve-t i nest anp attribute, which sets the local file
modified timestamp to the timestamp from the server (default false).

FTP, SFTP and FTPS Gateways

» The gateways now support the mv command, enabling the renaming of remote files.

Spring Integration
3.0.5.RELEASE Reference Manual 6

Spring Integration

» The gateways now support recursive Is and mget commands, enabling the retrieval of a remote file
tree.

» The gateways now support put and mput commands, enabling sending file(s) to the remote server.

e Thel ocal -fil enanme- gener at or - expr essi on attribute is now supported, enabling the naming
of local files during retrieval. By default, the same name as the remote file is used.

» The | ocal - di rect ory-expressi on attribute is now supported, enabling the naming of local
directories during retrieval based on the remote directory.

Remote File Template

A new higher-level abstraction (RenoteFil eTenplate) is provided over the Session
implementations used by the FTP and SFTP modules. While it is used internally by endpoints, this
abstraction can also be used programmatically and, like all Spring * Tenpl at e implementations, reliably
closes the underlying session while allowing low level access to the session when needed.

For more information, see Chapter 14, FTP/FTPS Adapters and Chapter 25, SFTP Adapters.
‘requires-reply' Attribute for Outbound Gateways

All Outbound Gateways (e.g. <j dbc: out bound- gat eway/ > or <j ns: out bound- gat eway/ >) are
designed for ‘request-reply' scenarios. A response is expected from the external service and will be
published to the r epl y- channel , or the r epl yChannel message header. However, there are some
cases where the external system might not always return aresult, e.g. a <j dbc: out bound- gat eway/
>, when a SELECT ends with an empty Resul t Set or, say, a Web Service is One-Way. An option is
therefore needed to configure whether or not a reply is required. For this purpose, the requires-reply
attribute has been introduced for Outbound Gateway components. In most cases, the default value for
requires-reply is t r ue and, if there is not any result, a Repl yRequi r edExcept i on will be thrown.
Changing the value to f al se means that, if an external service doesn't return anything, the message-
flow will end at that point, similar to an Outbound Channel Adapter.

© Note

The WebService outbound gateway has an additional attribute i gnor e- enpt y-r esponses;
this is used to treat an empty String response as if no response was received. It is true by default
but can be set to false to allow the application to receive an empty String in the reply message
payload. When the attribute is true an empty string is treated as no response for the purposes
of the requires-reply attribute. requires-reply is false by default for the WebService outbound
gateway.

Note, the requi resReply property was previously present in the
Abst ract Repl yPr oduci ngMessageHandl er but set to fal se, and there wasn't any way to
configure it on Outbound Gateways using the XML namespace.

© Important
Previously, a gateway receiving no reply would silently end the flow (with a DEBUG log message);
with this change an exception will now be thrown by default by most gateways. To revert to the
previous behavior, set r equi r es-r epl y to false.

AMQP Outbound Gateway Header Mapping

Previously, the <int-amgp:outbound-gateway/> mapped headers before invoking the message
converter, and the converter could overwrite headers such as cont ent -t ype. The outbound adapter

Spring Integration
3.0.5.RELEASE Reference Manual 7

Spring Integration

maps the headers after the conversion, which means headers like cont ent - t ype from the outbound
Message (if present) are used.

Starting with this release, the gateway now maps the headers after the message conversion, consistent
with the adapter. If your application relies on the previous behavior (where the converter's headers
overrode the mapped headers), you either need to filter those headers (before the message reaches
the gateway) or set them appropriately. The headers affected by the Si npl eMessageConverter are
cont ent -t ype and cont ent - encodi ng. Custom message converters may set other headers.

Stored Procedure Components Improvements

For more complex database-specific types, not supported by the standard
Cal | abl eSt at enent . get bj ect method, 2 new additional attributes were introduced to the <sq|l -
par aret er - def i ni ti on/ > element with OUT-direction:

* type-name
* return-type

The row mapper attribute of the Stored Procedure Inbound Channel Adapter <ret urni ng-
resul t set/ > sub-element now supports a reference to a Rowvapper bean definition. Previously, it
contained just a class name (which is still supported).

For more information see Section 17.5, “Stored Procedures”.
Web Service Outbound URI Configuration

Web Service Outbound Gateway 'uri' attribute now supports <uri - vari abl e/ > substitution for all
URI-schemes supported by Spring Web Services. For more information see Section 30.4, “Outbound
URI Configuration”.

Redis Adapter Changes

» The Redis Inbound Channel Adapter can now use a nul | value for seri al i zer property, with the
raw data being the message payload.

e The Redis Outbound Channel Adapter now has the t opi c- expr essi on property to determine the
Redis topic against the Message at runtime.

» The Redis Inbound Channel Adapter, in addition to the existing t opi cs attribute, now has thet opi c-
pat t er ns attribute.

For more information, see Chapter 22, Redis Support.
Advising Filters

Previously, when a <filter/> had a <request-handler-advice-chain/>, the discard action was all performed
within the scope of the advice chain (including any downstream flow on the di scar d- channel). The
filter element now has an attribute di scar d-wi t hi n- advi ce (default t r ue), to allow the discard
action to be performed after the advice chain completes. See the section called “Advising Filters”.

Advising Endpoints using Annotations

Request Handler Advice Chains can now be configured using annotations. See the section called
“Advising Endpoints Using Annotations”.

Spring Integration
3.0.5.RELEASE Reference Manual 8

Spring Integration

ObjectToStringTransformer Improvements

This transformer now correctly transforms byte[] and char[] payloads to String. For more
information see Section 6.1, “Transformer”.

JPA Support Changes

Payloads to persist or merge can now be of type j ava. | ang. | t er abl e.

In that case, each object returned by the |t er abl e is treated as an entity and persisted or merged
using the underlying Ent i t yManager . NULL values returned by the iterator are ignored.

The JPA adapters now have additional attributes to optionally ‘'flush’ and ‘clear' entities from the
associated persistence context after performing persistence operations.

Retrieving gateways had no mechanism to specify the first record to be retrieved which is a common
use case. The retrieving gateways now support specifying this parameter using a first-result
and first-result-expression attributes to the gateway definition. the section called “Retrieving
Outbound Gateway”.

The JPA retrieving gateway and inbound adapter now have an attribute to specify the maximum number
of results in aresult set as an expression. In addition, the max- r esul t s attribute has been introduced to
replace max- nunber - of - r esul t s, which has been deprecated. max-r esul t s and max-resul t s-
expressi on are used to provide the maximum number of results, or an expression to compute the
maximum number of results, respectively, in the result set.

For more information see Chapter 18, JPA Support.
Delayer: delay expression

Previously, the <del ayer > provided a del ay- header - nane attribute to determine the delay value at
runtime. In complex cases it was necessary to precede the <del ayer > with a <header - enri cher >.
Spring Integration 3.0 introduced the expr essi on attribute and expr essi on sub-element for dynamic
delay determination. The del ay- header - nanme attribute is now deprecated because the header
evaluation can be specified in the expr essi on. In addition, the i gnor e- expressi on-fail ures
was introduced to control the behavior when an expression evaluation fails. For more information see
Section 7.4, “Delayer”.

JDBC Message Store Improvements

Spring Integration 3.0 adds a new set of DDL scripts for MySQL version 5.6.4 and higher. Now MySQL
supports fractional seconds and is thus improving the FIFO ordering when polling from a MySQL-based
Message Store. For more information, please see the section called “The Generic JDBC Message
Store”.

IMAP Idle Connection Exceptions

Previously, if an IMAP idle connection failed, it was logged but there was no mechanism to
inform an application. Such exceptions now generate Appl i cat i onEvent s. Applications can obtain
these events using an <i nt - event : i nbound- channel - adapt er >orany Appl i cati onLi st ener
configured to receive an | mapl dl eExcepti onEvent or one of its super classes.

Spring Integration
3.0.5.RELEASE Reference Manual 9

http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

Spring Integration

Message Headers and TCP

The TCP connection factories now enable the configuration of a flexible mechanism to transfer selected
headers (as well as the payload) over TCP. A new TcpMessageMapper enables the selection of the
headers, and an appropriate (de)serializer needs to be configured to write the resulting Map to the
TCP stream. A MapJsonSeri al i zer is provided as a convenient mechanism to transfer headers and
payload over TCP. For more information see the section called “Transferring Headers”.

JMS Message Driven Channel Adapter

Previously, when configuring a <nessage- dri ven- channel - adapt er/ >, if you wished to use a
specific TaskExecut or, it was necessary to declare a container bean and provide it to the adapter
using the cont ai ner attribute. The t ask- execut or is now provided, allowing it to be set directly on
the adapter. This is in addition to several other container attributes that were already available.

RMI Inbound Gateway

The RMI Inbound Gateway now supports an err or - channel attribute. See Section 24.3, “Inbound
RMI”,

XsltPayloadTransformer

You can now specify the transformer factory class name using the t r ansf or ner - f act ory- cl ass
attribute. See the section called “XsltPayloadTransformer”

Spring Integration
3.0.5.RELEASE Reference Manual 10

Part Il. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns. It enables lightweight messaging within Spring-based applications and
supports integration with external systems via declarative adapters. Those adapters provide a higher-
level of abstraction over Spring's support for remoting, messaging, and scheduling. Spring Integration's
primary goal is to provide a simple model for building enterprise integration solutions while maintaining
the separation of concerns that is essential for producing maintainable, testable code.

http://www.eaipatterns.com/

Spring Integration

2. Spring Integration Overview

2.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring's simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring's existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different data formats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean”
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration's design is inspired by the
recognition of a strong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf
(Addison Wesley, 2004). Developers who have read that book should be immediately comfortable with
the Spring Integration concepts and terminology.

2.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide a simple model for implementing complex enterprise integration solutions.
 Facilitate asynchronous, message-driven behavior within a Spring-based application.
» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

Spring Integration
3.0.5.RELEASE Reference Manual 12

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

2.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for following
this best practice for the full-stack of an enterprise application. Message-driven architectures add a
horizontal perspective, yet these same goals are still relevant. Just as "layered architecture" is an
extremely generic and abstract paradigm, messaging systems typically follow the similarly abstract
"pipes-and-filters" model. The "filters" represent any component that is capable of producing and/or
consuming messages, and the "pipes" transport the messages between filters so that the components
themselves remain loosely-coupled. It is important to note that these two high-level paradigms are not
mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should still be
encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves
would typically be managed within a layer that is logically above the application's service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be
of any type and the headers hold commonly required information such as id, timestamp, correlation id,
and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from a received File, the file name may be stored in a header to
be accessed by downstream components. Likewise, if a Message's content is ultimately going to be
sent by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured
as Message header values by an upstream component. Developers can also store any arbitrary key-
value pairs in the headers.

Message

Header

Payload

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages
to a channel, and consumers receive Messages from a channel. The Message Channel therefore
decouples the messaging components, and also provides a convenient point for interception and
monitoring of Messages.

Spring Integration
3.0.5.RELEASE Reference Manual 13

Spring Integration

send{Message) . O receive()
Producer -

Consumer

Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other
hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail in the section called
“Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations,
and then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters,
you will see how Spring Integration's declarative configuration options provide a non-invasive way to
use each of these.

2.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same
in both cases: isolate application code from the infrastructure. These concepts are discussed at length
along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we provide

Spring Integration
3.0.5.RELEASE Reference Manual 14

http://www.eaipatterns.com

Spring Integration

only a high-level description of the main endpoint types supported by Spring Integration and their roles.
The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning
the modified Message. Probably the most common type of transformer is one that converts the payload
of the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed
based on some criteria.

© Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring
Integration's Message Endpoint: any component that can be connected to Message Channel(s)
in order to send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message's content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive alternative to the reactive Message Filters used by multiple

subscribers as described above.

. Message Channel A
e Router
Channel B

Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.
This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Spring Integration
3.0.5.RELEASE Reference Manual 15

Spring Integration

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often
downstream consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more
complex than a Splitter, because it is required to maintain state (the Messages to-be-aggregated), to
decide when the complete group of Messages is available, and to timeout if necessary. Furthermore, in
case of a timeout, the Aggregator needs to know whether to send the partial results or to discard them
to a separate channel. Spring Integration provides a Conpl et i onSt r at egy as well as configurable
settings for timeout, whether to send partial results upon timeout, and the discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

© Note

The output channel is optional, since each Message may also provide its own 'Return Address'
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message's payload and converting if necessary (if the method does not expect
a Message-typed parameter). Whenever the service object's method returns a value, that return value
will likewise be converted to a reply Message if necessary (if it's not already a Message). That reply
Message is sent to the output channel. If no output channel has been configured, then the reply will be
sent to the channel specified in the Message's "return address" if available.

handle(Message) input)
Meszage

- - - —m o T — -
Output

Message

Service
Activator

Message
Handler

Input
Channel

Output
Channel

A request-reply "Service Activator" endpoint connects a target
object's method to input and output Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter
may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

Spring Integration
3.0.5.RELEASE Reference Manual 16

Spring Integration

E Channel

Adapter

e e
Message

—-

Message
Channel

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

E Channel

Adapter

Message
Channel

[,
| Message |——=| Target

An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

3.0.5.RELEASE

Spring Integration
Reference Manual

17

Part Ill. Core Messaging

This section covers all aspects of the core messaging APl in Spring Integration. Here you will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration

3. Messaging Channels

3.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface
Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {
bool ean send(Message nessage);

bool ean send(Message nmessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here is the definition of Pol | abl eChannel .

public interface Poll abl eChannel extends MessageChannel {
Message<?> recei ve();

Message<?> recei ve(long timeout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHand| er s. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

Spring Integration
3.0.5.RELEASE Reference Manual 19

Spring Integration

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending Event Messages whose primary role
is notification as opposed to Document Messages which are generally intended to be processed
by a single handler. Note that the Publ i shSubscri beChannel is intended for sending only.
Since it broadcasts to its subscribers directly when its send(Message) method is invoked,
consumers cannot poll for Messages (it does not implement Pol | abl eChannel and therefore has no
recei ve() method). Instead, any subscriber must be a MessageHandl er itself, and the subscriber's
handl eMessage(Message) method will be invoked in turn.

Prior to version 3.0, invoking the send method on a Publi shSubscri beChannel that had
no subscribers returned fal se. When used in conjunction with a Messagi ngTenpl ate, a
MessageDel i ver yExcept i on was thrown. Starting with version 3.0, the behavior has changed such
that a send is always considered successful if at least the minimum subscribers are present (and
successfully handle the message). This behavior can be modified by setting the m nSubscri bers
property, which defaults to 0.

© Note

If a TaskExecut or is used, only the presence of the correct number of subscribers is used for
this determination, because the actual handling of the message is performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default no-
argument constructor (providing an essentially unbounded capacity of | nt eger . MAX_VALUE) as well
as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but
if the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue's state by
passing a timeout value of 0. Note however, that calls to the no-arg versions of send() andr ecei ve()
will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the Pri ori t yChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'pri ori t y' header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pri ori t yChannel 's constructor.

Spring Integration
3.0.5.RELEASE Reference Manual 20

Spring Integration

RendezvousChannel

The RendezvousChannel enables a "direct-handoff* scenario where a sender will block until another
party invokes the channel's recei ve() method or vice-versa. Internally, this implementation is
quite similar to the QueueChannel except that it uses a Synchr onousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel , the message would have been stored to
the internal queue and potentially never received.

@ Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only
by default. When persistence is required, you can either provide a 'message-store’ attribute
within the 'queue’ element to reference a persistent MessageStore implementation, or you can
replace the local channel with one that is backed by a persistent broker, such as a IMS-backed
channel or Channel Adapter. The latter option allows you to take advantage of any JMS provider's
implementation for message persistence, and it will be discussed in Chapter 19, JMS Support.
However, when buffering in a queue is not necessary, the simplest approach is to rely upon the
Di r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'replyChannel' header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for a reply
Message. This is very similar to the implementation used internally by many of Spring Integration's
request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described
above. It implements the Subscri babl eChannel interface instead of the Pol | abl eChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however,
it differs from the Publ i shSubscri beChannel in that it will only send each Message to a single
subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides" of the channel. For example,
if a handler is subscribed to a Di r ect Channel , then sending a Message to that channel will trigger
invocation of that handler's handl eMessage(Message) method directly in the sender's thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler's invocation (e.g. updating a database record) will play a role in determining the ultimate result
of that transaction (commit or rollback).

Spring Integration
3.0.5.RELEASE Reference Manual 21

Spring Integration

© Note

Since the Di r ect Channel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages,
it should not be a Di r ect Channel but rather a Publ i shSubscri beChannel . Below you will
see how each of these can be configured.

The Di r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy exposed via load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the Message
Dispatcher to help determine how Messages are distributed amongst Message Handlers in the case
that there are multiple Message Handlers subscribed to the same channel. As a convinience the
load-balancer attribute exposes enumeration of values pointing to pre-existing implementations of
LoadBal anci ngSt r at egy. The "round-robin" (load-balances across the handlers in rotation) and
"none" (for the cases where one wants to explicitely disable load balancing) are the only available values.
Other strategy implementations may be added in future versions. However, since version 3.0 you can
provide your own implementation of the LoadBal anci ngSt r at egy and inject it using load-balancer-
ref attribute which should point to a bean that implements LoadBal anci ngSt r at egy.
<i nt:channel id="I|bRef Channel ">
<i nt:di spat cher |oad-bal ancer-ref="1b"/>

</int:channel >

<bean id="Ib" class="foo. bar. Sanpl eLoadBal anci ngStr at egy"/ >

Note that load-balancer or load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in combination with a boolean failover property. If the "failover”" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback
in the same fixed order sequence every time an error occurs, no load-balancing strategy should be
provided. In other words, the dispatcher still supports the failover boolean property even when no load-
balancing is enabled. Without load-balancing, however, the invocation of handlers will always begin with
the first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

© Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The Execut or Channel is a point-to-point channel that supports the same dispatcher configuration
as Di rect Channel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the Execut or Channel delegates to an instance

Spring Integration
3.0.5.RELEASE Reference Manual 22

Spring Integration

of TaskExecut or to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender's thread. It therefore does not
support transactions spanning the sender and receiving handler.

@ Tip
Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender's thread will execute the method
directly anytime the thread pool is at its maximum capacity and the executor's work queue is full.
Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

Scoped Channel

Spring Integration 1.0 provided a Thr eadLocal Channel implementation, but that has been removed
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here's an example of a ThreadLocal-based
scope being applied to a channel, including the registration of the Scope itself.

<int:channel id="threadScopedChannel" scope="t hread">
<i nt:queue />
</int:channel >

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<n’ap>

<entry key="thread" val ue="org. springframework. cont ext.support.Si npl eThreadScope" />
</ map>
</ property>
</ bean>

The channel above also delegates to a queue internally, but the channel is bound to the current thread,
so the contents of the queue are as well. That way the thread that sends to the channel will later be able to
receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where Di r ect Channel s are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal”" channel.
If that terminal channel is thread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopes in addition to Thread Local.
Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive way.
Since the Messages are being sent to and received from MessageChannel s, those channels provide
an opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

Spring Integration
3.0.5.RELEASE Reference Manual 23

Spring Integration

public interface Channel |l nterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

}
After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel . addl nt er cept or (someChannel | nt er cept or) ;

The methods that return a Message instance can be used for transforming the Message or can return
‘null’ to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the pr eRecei ve method can return 'f al se' to prevent the receive operation from proceeding.

@ Note

Keep in mind that recei ve() calls are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface does not even define ar ecei ve() method. The reason for
this is that when a Message is sent to a Subscr i babl eChannel it will be sent directly to one
or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel sends
to all of its subscribers). Therefore, the pr eRecei ve(..) and post Recei ve(..) interceptor
methods are only invoked when the interceptor is applied to a Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor
that sends the Message to another channel without otherwise altering the existing flow. It can be very
useful for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
Channel | nt er cept or Adapt er class is also available for sub-classing. It provides no-op methods
(the voi d method is empty, the Message returning methods return the Message as-is, and the bool ean
method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nt ercept or Adapter {
private final Atom clnteger sendCount = new Atomni clnteger();

@verride

publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncr ement AndGet () ;
return nmessage

@ Tip
The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted
in the first place. Additionally, the relationship between send and receive interception depends
on the timing of separate sender and receiver threads. For example, if a receiver is already
blocked while waiting for a message the order could be: preSend, preReceive, postReceive,
postSend. However, if a receiver polls after the sender has placed a message on the channel
and already returned, the order would be: preSend, postSend, (some-time-elapses) preReceive,

Spring Integration
3.0.5.RELEASE Reference Manual 24

http://eaipatterns.com/WireTap.html

Spring Integration

postReceive. The time that elapses in such a case depends on a number of factors and is
therefore generally unpredictable (in fact, the receive may never happen!). Obviously, the type
of queue also plays a role (e.g. rendezvous vs. priority). The bottom line is that you cannot rely
on the order beyond the fact that preSend will precede postSend and preReceive will precede
postReceive.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code from the messaging system. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides a Messagi ngTenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl ate();

Message reply = tenpl ate. sendAndRecei ve(sonmeChannel , new Generi cMessage("test"));

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other exchange
types are also supported.

publ i c bool ean send(final MessageChannel channel, final Message<?> nmessage) { ... }

publ i c Message<?> sendAndRecei ve(final MessageChannel channel, final Message<?> request)

{1

publ i c Message<?> receive(final Pollabl eChannel <?> channel) { ... }

© Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in the section called “Enter the
GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<i nt:channel id="exanpl eChannel"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publish-
subscribe-channel/> element:

<i nt: publ i sh-subscri be-channel id="exanpl eChannel"/>

When using the <channel/> element without any sub-elements, it will create a Di r ect Channel instance
(a Subscri babl eChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the pollable
channel types (as described in the section called “Message Channel Implementations”). Examples of
each are shown below.

Spring Integration
3.0.5.RELEASE Reference Manual 25

Spring Integration

DirectChannel Configuration

As mentioned above, Di r ect Channel is the default type.

<i nt:channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <dispatcher/> sub-element and configure the attributes:

<int:channel id="fail FastChannel">
<int:dispatcher failover="fal se"/>
</ channel >

<int:channel id="channel WthFi xedO der SequenceFai | over ">
<i nt:di spat cher | oad-bal ancer="none"/>
</'int:channel >

Datatype Channel Configuration

There are times when a consumer can only process a particular type of payload and you need to
therefore ensure the payload type of input Messages. Of course the first thing that comes to mind is
Message Filter. However all that Message Filter will do is filter out Messages that are not compliant with
the requirements of the consumer. Another way would be to use a Content Based Router and route
Messages with non-compliant data-types to specific Transformers to enforce transformation/conversion
to the required data-type. This of course would work, but a simpler way of accomplishing the same thing
is to apply the Datatype Channel pattern. You can use separate Datatype Channels for each specific
payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide
the fully-qualified class name in the channel element's dat at ype attribute:

<i nt:channel id="nunberChannel" datatype="java.|ang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other
words, the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger
orj ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<int:channel id="stringO Nunber Channel " datatype="java.l ang. String,java.l|lang. Nunber"/>

So the 'numberChannel’ above will only accept Messages with a data-type of j ava. | ang. Nunber .
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named "integrationConversionService" that is an instance of Spring's
Conversion Service. If not, then an Exception would be thrown immediately, but if you do have an
"integrationConversionService" bean defined, it will be used in an attempt to convert the Message's
payload to the acceptable type.

You can even register custom converters. For example, let's say you are sending a Message with a
String payload to the 'numberChannel' we configured above.

MessageChannel inChannel = context.get Bean("nunber Channel ", MessageChannel . cl ass);
i nChannel . send(new Generi cMessage<String>("5"));

Typically this would be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Spring Integration
3.0.5.RELEASE Reference Manual 26

http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration

Exception in thread "main" org.springframework.integrati on. MessageDel i ver yExcepti on
Channel ' nunber Channel

expected one of the follow ng datataypes [class java.lang. Nunber],

but received [class java.lang. String]

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do is implement a Converter.

public static class StringTolntegerConverter inplenents Converter<String, |nteger> {
public Integer convert(String source) {
return | nteger. parselnt(source);

}

}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strTolnt"/>

<bean
id="strTolnt" class="org.springframework.integration.util.Denp.StringTolntegerConverter"/
>

When the 'converter' element is parsed, it will create the "integrationConversionService" bean on-
demand if one is not already defined. With that Converter in place, the send operation would now be
successful since the Datatype Channel will use that Converter to convert the String payload to an Integer.

© Note

For more information regarding Payload Type Conversion, please read the section called
“Payload Type Conversion”.

QueueChannel Configuration

To create a QueueChannel , use the <queue/> sub-element. You may specify the channel's capacity:

<i nt:channel id="queueChannel ">
<queue capacity="25"/>
</int:channel >

© Note

If you do not provide a value for the 'capacity' attribute on this <queue/> sub-element, the
resulting queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly
recommended to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation
of the MessageG oupSt or e strategy interface. For more details on MessageG oupSt ore and
MessagesSt or e see Section 8.3, “Message Store”.

When a QueueChannel receives a Message, it will add it to the Message Store, and when a Message
is polled from a QueueChannel , it is removed from the Message Store.

Spring Integration
3.0.5.RELEASE Reference Manual 27

Spring Integration

By default any QueueChannel only stores its Messages in an in-memory Queue and can therefore
lead to the lost message scenario mentioned above. However Spring Integration provides a
JdbcMessageSt or e to allow a QueueChannel to be backed by an RDBMS.

You can configure a Message Store for any QueueChannel by adding the message- st or e attribute
as shown in the next example.

<i nt:channel id="dbBackedChannel ">
<i nt:queue nessage-store="nmessageStore"/>
</int:channel >

<int-jdbc: nessage-store id="messageStore" data-source="soneDataSource"/>

The above example also shows that JdbcMessageSt or e can be configured with the namespace
support provided by the Spring Integration JDBC module. All you need to do is inject any
j avax. sqgl . Dat aSour ce instance. The Spring Integration JDBC module also provides schema DDL
for most popular databases. These schemas are located in the org.springframework.integration.jdbc
package of that module (spring-integration-jdbc).

© Important
One important feature is that with any transactional persistent store (e.g., JdbcMessageStore),
as long as the poller has a transaction configured, a Message removed from the store will only
be permanently removed if the transaction completes successfully, otherwise the transaction will
roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always
provide your own implementation of the MessageGroupStore interface if you cannot find one that meets
your particular needs.

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the <publish-subscribe-channel/> element. When
using this element, you can also specify the t ask- execut or used for publishing Messages (if none
is specified it simply publishes in the sender's thread):

<i nt: publ i sh-subscri be-channel id="pubsubChannel" task-executor="someExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel ,
then you can set the 'apply-sequence' property on the channeltot r ue. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior
to passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be
set to 5, and the Messages would have sequence-number header values ranging from 1 to 5.

<i nt: publish-subscri be-channel id="pubsubChannel" apply-sequence="true"/>

© Note

The appl y- sequence value is f al se by default so that a Publish Subscribe Channel can
send the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

Spring Integration
3.0.5.RELEASE Reference Manual 28

Spring Integration

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a t ask- execut or
attribute. Its value can reference any TaskExecut or within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<i nt:channel id="executorChannel">
<i nt:di spat cher task-executor="someExecutor"/>
</int:channel >

@ Note

The | oad- bal ancer and f ai | over options are also both available on the <dispatcher/> sub-
element as described above in the section called “DirectChannel Configuration”. The same
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with
failover enabled unless explicit configuration is provided for one or both of those attributes.

<i nt:channel id="executorChannel Wt hout Fai | over" >
<int:di spat cher task-executor="sonmeExecutor" failover="fal se"/>
</int:channel >

PriorityChannel Configuration
To create a Pri ori t yChannel , use the <priority-queue/> sub-element:

<i nt:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel >
By default, the channel will consult the priority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the other
types) does support the dat at ype attribute. As with the QueueChannel, it also supports a capaci ty
attribute. The following example demonstrates all of these:

<int:channel id="priorityChannel" datatype="exanpl e. W dget" >
<int:priority-queue conpar ator="w dget Conpar at or "
capaci ty="10"/>
</int:channel >

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described above, and its queue does not accept
any capacity value since it is a 0-capacity direct handoff queue.

<i nt:channel id="rendezvousChannel"/>
<i nt:rendezvous- queue/ >
</int:channel >

Scoped Channel Configuration

Any channel can be configured with a "scope" attribute.

<int:channel id="threadLocal Channel" scope="thread"/>

Spring Integration
3.0.5.RELEASE Reference Manual 29

Spring Integration

Channel Interceptor Configuration

Message channels may also have interceptors as described in the section called “Channel Interceptors”.
The <interceptors/> sub-element can be added within <channel/> (or the more specific element
types). Provide the ref attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<i nt:channel id="exanpl eChannel ">
<int:interceptors>
<ref bean="trafficMonitoringlnterceptor"/>
</int:interceptors>
</int:channel >
In general, it is a good idea to define the interceptor implementations in a separate location since they

usually provide common behavior that can be reused across multiple channels.
Global Channel Interceptor Configuration

Channel Interceptors provide a clean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration while
also enabling interceptors to apply to multiple channels, Spring Integration provides Global Interceptors.
Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo" order="3">
<bean cl ass="f 00. bar Sanpl el nt erceptor"/>
</int:channel -interceptor>

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo" order="3"/>

<bean i d="nylnterceptor" class="foo0.bar Sanpl el nterceptor"/>

Each <channel-interceptor/> element allows you to define a global interceptor which will be applied on
all channels that match any patterns defined via the pat t er n attribute. In the above case the global
interceptor will be applied on the 'foo’' channel and all other channels that begin with 'bar' or 'input'.
The order attribute allows you to manage where this interceptor will be injected if there are multiple
interceptors on a given channel. For example, channel 'inputChannel’ could have individual interceptors
configured locally (see below):

<i nt:channel id="inputChannel ">
<int:interceptors>
<int:w re-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides a
very simple mechanism for defining the order of interceptor execution. A positive number in the or der
attribute will ensure interceptor injection after any existing interceptors and a negative number will ensure
that the interceptor is injected before existing interceptors. This means that in the above example, the
global interceptor will be injected AFTER (since its order is greater than 0) the 'wire-tap’ interceptor
configured locally. If there were another global interceptor with a matching pat t er n, its order would be
determined by comparing the values of the or der attribute. To inject a global interceptor BEFORE the
existing interceptors, use a negative value for the or der attribute.

Spring Integration
3.0.5.RELEASE Reference Manual 30

Spring Integration

© Note

Note that both the or der and pat t er n attributes are optional. The default value for or der will
be 0 and for pat t er n, the default is *' (to match all channels).

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an <interceptors/> element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration's logging Channel Adapter as follows:

<i nt:channel id="in">
<int:interceptors>
<int:w re-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

<i nt: | oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/ >

@ Tip
The 'logging-channel-adapter' also accepts an ‘expression’ attribute so that you can evaluate a
SpEL expression against '‘payload' and/or 'headers' variables. Alternatively, to simply log the full
Message toString() result, provide a value of "true" for the 'log-full-message' attribute. That is
f al se by default so that only the payload is logged. Setting that to t r ue enables logging of
all headers in addition to the payload. The 'expression’ option does provide the most flexibility,
however (e.g. expression="payload.user.name").

A little more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (Section B.1,
“Message Publishing Configuration”) is that they are automatically asynchronous in nature. Wire-tap as
a component is not invoked asynchronously be default. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the Message Channel. What makes certain
parts of the message flow sync or async is the type of Message Channel that has been configured within
that flow. That is one of the primary benefits of the Message Channel abstraction. From the inception
of the framework, we have always emphasized the need and the value of the Message Channel as
a first-class citizen of the framework. It is not just an internal, implicit realization of the EIP pattern, it
is fully exposed as a configurable component to the end user. So, the Wire-tap component is ONLY
responsible for performing the following 3 tasks:

* intercept a message flow by tapping into a channel (e.g., channelA)
» grab each message

» send the message to another channel (e.g., channelB)

It is essentially a variation of the Bridge, but it is encapsulated within a channel definition (and
hence easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically forks
another message flow. Is that flow synchronous or asynchronous? The answer simply depends on
the type of Message Channel that ‘channelB' is. And, now you know that we have: Direct Channel,
Pollable Channel, and Executor Channel as options. The last two do break the thread boundary making
communication via such channels asynchronous simply because the dispatching of the message from
that channel to its subscribed handlers happens on a different thread than the one used to send the
message to that channel. That is what is going to make your wire-tap flow sync or async. It is consistent
with other components within the framework (e.g., Message Publisher) and actually brings a level of

Spring Integration
3.0.5.RELEASE Reference Manual 31

Spring Integration

consistency and simplicity by sparing you from worrying in advance (other than writing thread safe code)
whether a particular piece of code should be implemented as sync or async. The actual wiring of two
pieces of code (component A and component B) via Message Channel is what makes their collaboration
sync or async. You may even want to change from sync to async in the future and Message Channel
is what's going to allow you to do it swiftly without ever touching the code.

One final point regarding the Wire Tap is that, despite the rationale provided above for not being async
be default, one should keep in mind it is usually desirable to hand off the Message as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap's outbound
channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break a transactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit Messages to be sent within the original transaction. As an example,
you might connect the wire-tap to a JMS outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of a IMS Message can occur within the transaction while 2) it is still a "fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the Global Channel Interceptor. Simply
configure a top level wi r e- t ap element. Now, in addition to the normal wi r e-t ap namespace support,
the pattern and order attributes are supported and work in exactly the same way as with the
channel -i nt er cept or

<int:wire-tap pattern="input*, bar*, foo" order="3" channel ="wi retapChannel "/ >

@ Tip
A global wire tap provides a convenient way to configure a single channel wire tap externally
without modifying the existing channel configuration. Simply set the patt er n attribute to the
target channel name. For example, This technique may be used to configure a test case to verify
messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: er r or Channel and nul | Channel . The 'nullChannel’ acts like / dev/ nul | , simply logging
any Message sentto it at DEBUG level and returning immediately. Any time you face channel resolution
errors for a reply that you don't care about, you can set the affected component's out put - channel

attribute to 'nullChannel’ (the name 'nullChannel' is reserved within the application context). The
‘errorChannel’ is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Section F.4, “Error Handling”.

3.2 Poller (Polling Consumer)

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following 2 instances:

¢ PollingConsumer

» EventDrivenConsumer

The actual implementation depends on which type of channel these Endpoints are
connected to. A channel adapter connected to a channel that implements the
org. springfranmework.integration. core. Subscri babl eChannel interface will produce an

Spring Integration
3.0.5.RELEASE Reference Manual 32

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/core/SubscribableChannel.html

Spring Integration

instance of Event Dri venConsuner . On the other hand, a channel adapter connected to a channel that
implements the or g. spri ngf ranewor k. i nt egrati on. core. Pol | abl eChannel interface (e.g. a
QueueChannel) will produce an instance of Pol | i ngConsurner .

Polling Consumers allow Spring Integration components to actively poll for Messages, rather than to
process Messages in an event-driven manner.

They represent a critical cross cutting concern in many messaging scenarios. In Spring Integration,
Polling Consumers are based on the pattern with the same name, which is described in the book
"Enterprise Integration Patterns” by Gregor Hohpe and Bobby Woolf. You can find a description of the
pattern on the book's website at:

* http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Furthermore, in Spring Integration a second variation of the Polling Consumer pattern exists.
When Inbound Channel Adapters are being used, these adapters are often wrapped by a
Sour cePol | i ngChannel Adapt er. For example, when retrieving messages from a remote FTP
Server location, the adapter described in Section 14.3, “FTP Inbound Channel Adapter” is configured
with a poller to retrieve messages periodically. So, when components are configured with Pollers, the
resulting instances are of one of the following types:

* PollingConsumer

» SourcePollingChannelAdapter

This means, Pollers are used in both inbound and outbound messaging scenarios. Here are some use-
cases that illustrate the scenarios in which Pollers are used:

» Polling certain external systems such as FTP Servers, Databases, Web Services
 Polling internal (pollable) Message Channels
» Polling internal services (E.g. repeatedly execute methods on a Java class)

This chapter is meant to only give a high-level overview regarding Polling Consumers and how they
fit into the concept of message channels - Section 3.1, “Message Channels” and channel adapters
- Section 3.3, “Channel Adapter”. For more in-depth information regarding Messaging Endpoints in
general and Polling Consumers in particular, please see Section 7.1, “Message Endpoints”.

3.3 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as JMS, File, HTTP, Web Services, Mail, and more. Those will be discussed
in upcoming chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

Configuring An Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
a non-null return value to a MessageChannel after converting it to a Message. When the adapter's
subscription is activated, a poller will attempt to receive messages from the source. The poller will be

Spring Integration
3.0.5.RELEASE Reference Manual 33

http://static.springsource.org/spring-integration/api/org/springframework/integration/core/PollableChannel.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html

Spring Integration

scheduled with the TaskSchedul er according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a 'poller' element with one of the
scheduling attributes, such as ‘fixed-rate' or 'cron'.

<i nt:inbound- channel - adapter ref="sourcel" nethod="nethodl" channel ="channel 1">

<int:poller fixed-rate="5000"/>

</int:inbound- channel - adapt er >

<i nt:inbound-channel - adapt er ref="source2" nethod="nethod2" channel ="channel 2" >

<int:poller cron="30 * 9-17 * * MON-FRI "/ >

</int:channel - adapt er >

Also see the section called “Channel Adapter Expressions and Scripts”.

o

Note

If no poller is provided, then a single default poller must be registered within the context. See the
section called “Namespace Support” for more detail.

Important

Poller Configuration

Some i nbound- channel - adapt er types are backed by a
Sour cePol | i ngChannel Adapt er which means they contain Poller configuration which will
poll the MessageSour ce (invoke a custom method which produces the value that becomes a
Message payload) based on the configuration specified in the Poller.

For example:
<int:poller max-nmessages-per-poll="1" fixed-rate="1000"/>
<int:poller max-nmessages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such task
(poll) the method (which results in the production of the Message) will be invoked once based on
the max- nessages- per - pol | attribute value. In the second configuration the polling task will
be invoked 10 times per poll or until it returns 'null’ thus possibly producing 10 Messages per poll
while each poll happens at 1 second intervals. However what if the configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max- nmessages- per - pol | specified. As you'll learn later the identical poller
configuration in the Pol | i ngConsurmer (e.g., service-activator, filter, router etc.) would have a
default value of -1 for max- messages- per - pol | which means "execute poling task non-stop
unless polling method returns null (e.g., no more Messages in the QueueChannel)" and then
sleep for 1 second.

However in the SourcePollingChannelAdapter it is a bit different. The default value for max-
messages- per - pol | will be set to 1 by default unless you explicitly set it to a negative value
(e.g., -1). It is done so to make sure that poller can react to a LifeCycle events (e.g., start/stop)
and prevent it from potentially spinning in the infinite loop if the implementation of the custom
method of the MessageSour ce has a potential to never return null and happened to be non-
interruptible.

Spring Integration

3.0.5.RELEASE Reference Manual 34

Spring Integration

However if you are sure that your method can return null and you need the behavior where you
want to poll for as many sources as available per each poll, then you should explicitly set max-
nmessages- per - pol | to negative value.

<int:poller max-nessages-per-poll="-1" fixed-rate="1000"/>

Configuring An Outbound Channel Adapter

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<i nt: out bound- channel - adapt er channel ="channel 1" ref="target" nmet hod="handl e"/>

<beans: bean id="target" class="org.Foo"/>

If the channel being adapted is a Pol | abl eChannel , provide a poller sub-element:

<i nt : out bound- channel - adapt er channel ="channel 2" ref="target" method="handl e">
<int:poller fixed-rate="3000"/>
</i nt: out bound- channel - adapt er >

<beans: bean i d="target" class="org. Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <out bound- channel - adapt er > definitions. However if the consumer implementation is only
referenced by a single definition of the <out bound- channel - adapt er >, you can define it as inner
bean:

<i nt : out bound- channel - adapt er channel ="channel " net hod="handl e" >
<beans: bean cl ass="org. Foo"/ >
</i nt: out bound- channel - adapt er >

© Note

Using both the "ref* attribute and an inner handler definition in the same <out bound-
channel - adapt er > configuration is not allowed as it creates an ambiguous condition. Such a
configuration will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of Di r ect Channel . The created channel's name will match the "id" attribute of
the <i nbound- channel - adapt er > or <out bound- channel - adapt er > element. Therefore, if the
"channel” is not provided, the "id" is required.

Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <i nbound-channel -adapter> and
<out bound- channel - adapt er > also provide support for SpEL expression evaluation. To use SpEL,
provide the expression string via the 'expression’ attribute instead of providing the 'ref' and 'method'
attributes that are used for method-invocation on a bean. When an Expression is evaluated, it follows
the same contract as method-invocation where: the expression for an <i nbound- channel - adapt er >
will generate a message anytime the evaluation result is a non-null value, while the expression for an
<out bound- channel - adapt er > must be the equivalent of a void returning method invocation.

Spring Integration
3.0.5.RELEASE Reference Manual 35

Spring Integration

Starting with Spring Integration 3.0, an <i nt : i nbound- channel - adapt er / > can also be configured
with a SpEL <expr essi on/ > (or even with <scri pt/ >) sub-element, for when more sophistication
is required than can be achieved with the simple 'expression' attribute. If you provide a script as
a Resour ce using the | ocati on attribute, you can also set the refresh-check-delay allowing the
resource to be refreshed periodically. If you want the script to be checked on each poll, you would need
to coordinate this setting with the poller's trigger:

<i nt:inbound- channel - adapter ref="sourcel" nethod="nethodl" channel ="channel 1">
<int:poller max-nmessages-per-poll="1" fixed-del ay="5000"/>
<script:script |ang="ruby" |ocation="Foo.rb" refresh-check-del ay="5000"/>
</int:inbound- channel - adapt er >

Also see the cacheSeconds property on the Rel oadabl eResour ceBundl eExpr essi onSour ce
when using the <expressi on/ > sub-element. For more information regarding expressions see
Appendix A, Spring Expression Language (SpEL), and for scripts - Section 7.6, “Groovy support” and
Section 7.5, “Scripting support”.

© Important

The <i nt:i nbound- channel - adapt er/ > is an endpoint that starts a message flow via
periodic triggering to poll some underlying MessageSour ce. Since, at the time of polling, there
is not yet a message object, expressions and scripts don't have access to a root Message, so
there are no payload or headers properties that are available in most other messaging SpEL
expressions. Of course, the script can generate and return a complete Message object with
headers and payload, or just a payload, which will be added to a message with basic headers.

3.4 Messaging Bridge

Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels
or Channel Adapters. For example, you may want to connect a Pol | abl eChannel to a
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller's trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the 'input-
channel' and 'output-channel' of a Transformer endpoint. If data format translation is not required, the
Messaging Bridge may indeed be sufficient.

Configuring Bridge

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<int:bridge input-channel ="input" out put-channel ="out put"/>

Spring Integration
3.0.5.RELEASE Reference Manual 36

Spring Integration

As mentioned above, a common use case for the Messaging Bridge is to connect a Pol | abl eChannel
to a Subscri babl eChannel , and when performing this role, the Messaging Bridge may also serve
as a throttler:

<int:bridge input-channel ="pol | able" output-channel ="subscri babl e">
<int:poller max-nmessages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration's "stream" namespace.

<i nt-stream stdi n-channel - adapter id="stdin"/>
<i nt-stream stdout-channel -adapter id="stdout"/>

<int:bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,
such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming
chapters.

© Note

If no 'output-channel' is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be thrown.

Spring Integration
3.0.5.RELEASE Reference Manual 37

Spring Integration

4. Message Construction

4.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

The Message Interface

Here is the definition of the Message interface:
public interface Message<T> {
T get Payl oad();

MessageHeader s get Headers();

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data's type. As an
application evolves to support new types, or when the types themselves are modified and/or extended,
the messaging system will not be affected by such changes. On the other hand, when some component
in the messaging system does require access to information about the Message, such metadata can
typically be stored to and retrieved from the metadata in the Message Headers.

Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports
any Object types as header values. In fact, the MessageHeader s class implements the java.util. Map
interface:

public final class MessageHeaders inplenments Map<String, Object>, Serializable {

}

© Note

Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an Unsupport edOper at i onExcept i on.
The same applies for remove and clear. Since Messages may be passed to multiple consumers,
the structure of the Map cannot be modified. Likewise, the Message's payload Object can not
be set after the initial creation. However, the mutability of the header values themselves (or the
payload Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

Spring Integration
3.0.5.RELEASE Reference Manual 38

Spring Integration

hj ect soneVal ue = nmessage. get Headers(). get ("soneKey");
Custonmer|d custonerld = message. get Headers(). get ("custonerld", Custonerld.class);

Long ti nestanp = nessage. get Header s(). get Ti mest anp() ;

The following Message headers are pre-defined:

Table 4.1. Pre-defined Message Headers

Header Name
ID

TIMESTAMP

Header Type
java.util.UUID

java.lang.Long

CORRELATION_ID

java.lang.Object

REPLY_CHANNEL

ERROR_CHANNEL

SEQUENCE_NUMBER

java.lang.Object (can be a String
MessageChannel)

java.lang.Object (can be a String
MessageChannel)

java.lang.Integer

or

or

SEQUENCE_SIZE

java.lang.Integer

EXPIRATION_DATE

java.lang.Long

PRIORITY java.lang.Integer

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,

and additional user-defined headers can also be configured.

Message ID Generation

When a message transitions through an application, each time it is mutated (e.g. by a transformer) a new
message id is assigned. The message id is a UUI D. Beginning with Spring Integration 3.0, the default
strategy used for id generation is more efficient than the previous j ava. uti | . UUl D. r andonJuUl D)
implementation. It uses simple random numbers based on a secure random seed, instead of creating

a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements

MessageHeader s. | dGener at or in the application context.

© Important

Only one UUID generation strategy can be used in a classloader. This means that if two or more
application contexts are running in the same classloader, they will share the same strategy. If
one of the contexts changes the strategy, it will be used by all contexts. If two or more contexts in
the same classloader declare a bean of type MessageHeader s. | dGener at or , they must all
be an instance of the same class, otherwise the context attempting to replace a custom strategy
will fail to initialize. If the strategy is the same, but parameterized, the strategy in the first context

to initialize will be used.

Spring Integration

3.0.5.RELEASE Reference Manual

39

Spring Integration

In additon to the default strategy, two additional |dGenerators are provided;
MessageHeader s. Jdkl dGener at or uses the previous UUl D.randonJUl D() mechanism;
MessageHeader s. Si nmpl el ncr enent i ngl dGener at or can be used in cases where a UUID is not
really needed and a simple incrementing value is sufficient.

Message Implementations

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:

new Generi cMessage<T>(T payl oad);

new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map
of headers will copy the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions. This
implementation takes Thr owabl e object as its payload:

Error Message nmessage = new Error Message(soneThr owabl e) ;

Throwabl e t = nessage. get Payl oad();

Notice that this implementation takes advantage of the fact that the Generi cMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
no setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore,
when a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if
one of those consumers needs to send a reply with a different payload type, it will need to create a new
Message. As aresult, the other consumers are not affected by those changes. Keep in mind, that multiple
consumers may access the same payload instance or header value, and whether such an instance is
itself immutable is a decision left to the developer. In other words, the contract for Messages is similar to
that of an unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though
the MessageHeaders class implements j ava. uti | . Map, any attempt to invoke a put operation (or
‘remove’ or ‘clear’) on the MessageHeaders will result in an Unsuppor t edOper ati onExcepti on.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload
of that Message will be copied to the new Message:

Message<String> nmessagel = MessageBuil der. wit hPayl oad("test")
. set Header ("foo", "bar")
Lbuild();

Message<Stri ng> nmessage2 = MessageBui |l der. fromvessage(nmessagel) . buil d();

assert Equal s("test", nessage2.get Payl oad());
assert Equal s("bar", nessage2.get Headers().get("foo"));

Spring Integration
3.0.5.RELEASE Reference Manual 40

Spring Integration

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Message<Stri ng> nmessage3 = MessageBui | der. wi t hPayl oad("t est 3")
. copyHeader s(nessagel. get Header s())
Cbuild();

Message<Stri ng> nessage4 = MessageBui | der. wi t hPayl oad("test4")
. set Header ("fo0", 123)
. copyHeader sl f Absent (nessagel. get Headers())
Cbuild();

assert Equal s("bar", message3. get Headers().get("foo"));
assert Equal s(123, nessage4. get Headers().get("fo00"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Finally, there are
set methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

Message<I nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(5)
. bui ld();

assert Equal s(5, inportant Message. get Headers().getPriority());

Message<I nt eger > | essl nport ant Message = MessageBui | der. fromVessage(i nmport ant Message)
. set Header | f Absent (MessageHeaders. PRICRI TY, 2)
Lbuild();

assert Equal s(2, |esslnportant Message. get Headers().getPriority());

The pri ori ty header is only considered when using a Pri ori t yChannel (as described in the next
chapter). It is defined as java.lang.Integer.

Spring Integration
3.0.5.RELEASE Reference Manual 41

Spring Integration

5. Message Routing

5.1 Routers

Overview

Routers are a crucial element in many messaging architectures. They consume Messages from a
Message Channel and forward each consumed message to one or more different Message Channel

depending on a set of conditions.

Spring Integration provides the following routers out-of-the-box:

» Payload Type Router

» Header Value Router

* Recipient List Router

» XPath Router (Part of the XML Module)

» Error Message Exception Type Router

* (Generic) Router

Router implementations share many configuration parameters. Yet, certain differences exist between
routers. Furthermore, the availability of configuration parameters depends on whether Routers are used
inside or outside of a chain. In order to provide a quick overview, all available attributes are listed in

the 2 tables below.

Table 5.1. Routers Outside of a Chain

Attribute router header xpath payload recipient exception
value router type list type
router router router router

apply-sequence « e e « v v

default-output-channel Ve e " " v v

resolution-required Ve Ve Ve « v v

ignore-send-failures e e Ve e v v

timeout « e e « v v

id « v « « v v

auto-startup e e Ve e v v

input-channel e Ve Ve e v v

order ' ' ' ' 5 ' 5 '

3.0.5.RELEASE

Spring Integration
Reference Manual

42

Spring Integration

Attribute router header xpath payload recipient exception
value router type list type
router router router router

method e

ref &

expression &

header-name e

evaluate-as-string

xpath-expression-ref

converter

Table 5.2. Routers Inside of a Chain

Attribute router header xpath payload recipient exception
value router type list type
router router router router

apply-sequence 4 & v v v

default-output-channel <« v v v v

resolution-required <« v v v v

ignore-send-failures Ve « v v v

timeout Ve Ve v v v

id

auto-startup

input-channel

order

method e

ref &

expression &

header-name e

evaluate-as-string

Spring Integration
3.0.5.RELEASE Reference Manual 43

Spring Integration

Attribute router header xpath payload recipient exception
value router type list type
router router router router

xpath-expression-ref Ve

converter v

© Important

Router parameters have been more standardized across all router implementations with Spring
Integration 2.1. Consequently, there are a few minor changes that leave the possibility of breaking
older Spring Integration based applications.

Since Spring Integration 2.1 the i gnor e- channel - nane-r esol uti on- f ai | ur es attribute is
removed in favor of consolidating its behavior with the r esol ut i on- r equi r ed attribute. Also,
the resol uti on-requi r ed attribute now defaults to t r ue.

Prior to these changes, the resol uti on-required attribute defaulted to f al se causing
messages to be silently dropped when no channel was resolved and no def aul t - out put -
channel was set. The new behavior will require at least one resolved channel and by default
will throw an MessageDel i ver yExcept i on if no channel was determined (or an attempt to
send was not successful).

If you do desire to drop messages silently simply set default-output-
channel =" nul | Channel ".

Common Router Parameters
Inside and Outside of a Chain
The following parameters are valid for all routers inside and outside of chains.

apply-sequence
This attribute specifies whether sequence number and size headers should be added to each
Message. This optional attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel, where Messages should be sent, if channel
resolution fails to return any channels. If no default output channel is provided, the router will throw
an Exception. If you would like to silently drop those messages instead, add the nul | Channel as
the default output channel attribute value.

resolution-required
If true this attribute specifies that channel names must always be successfully resolved to channel
instances that exist. If set to true, a Messagi ngExcept i on will be raised, in case the channel
cannot be resolved. Setting this attribute to false, will cause any unresovable channels to be ignored.
This optional attribute will, if not explicitly set, default to true.

ignore-send-failures
If set to true, failures to send to a message channel will be ignored. If set to false, a
MessageDel i ver yExcept i on will be thrown instead, and if the router resolves more than one
channel, any subsequent channels will not receive the message.

Spring Integration
3.0.5.RELEASE Reference Manual 44

Spring Integration

The exact behavior of this attribute depends on the type of the Channel messages are sent to. For
example, when using direct channels (single threaded), send-failures can be caused by exceptions
thrown by components much further down-stream. However, when sending messages to a simple
gueue channel (asynchronous) the likelihood of an exception to be thrown is rather remote.

@ Note

While most routers will route to a single channel, they are allowed to return more than one
channel name. The reci pi ent-1i st-rout er, for instance, does exactly that. If you set
this attribute to true on a router that only routes to a single channel, any caused exception is
simply swallowed, which usually makes little sense to do. In that case it would be better to
catch the exception in an error flow at the flow entry point. Therefore, setting the i gnor e-
send- f ai | ur es attribute to true usually makes more sense when the router implementation
returns more than one channel name, because the other channel(s) following the one that
fails would still receive the Message.

This attribute defaults to false.

timeout
Theti meout attribute specifies the maximum amount of time in milliseconds to wait, when sending
Messages to the target Message Channels. By default the send operation will block indefinitely.

Top-Level (Outside of a Chain)
The following parameters are valid only across all top-level routers that are ourside of chains.

id
Identifies the underlying Spring bean definition which in case of Routers is an instance of
EventDrivenConsumer or PollingConsumer depending on whether the Router's input-channel is a
SubscribableChannel or PollableChannel, respectively. This is an optional attribute.

auto-startup
This Li f ecycl e attribute signaled if this component should be started during startup of the
Application Context. This optional attribute defaults to true.

input-channel
The receiving Message channel of this endpoint.

order
This attribute defines the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching strategy. It
has no effect when this endpoint itself is a Polling Consumer for a channel with a queue.

Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require
Spring Integration's options for delegating to POJOs using the XML namespace support and/or
Annotations. Both of these are discussed below, but first we present a couple implementations that are
available out-of-the-box since they fulfill common requirements.

PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

Spring Integration
3.0.5.RELEASE Reference Manual 45

Spring Integration

<bean i d="payl oadTypeRout er"
cl ass="org. springframework.integration.router.Payl oadTypeRout er ">
<property nane="channel | dentifierMap">
<n’ap>
<entry key="java.lang. String" val ue-ref="stringChannel"/>
<entry key="java.lang.|nteger" val ue-ref="integerChannel "/ >
</ map>
</ property>
</ bean>

Configuration of the Payl oadTypeRout er is also supported via the namespace provided by Spring
Integration (see Section F.2, “Namespace Support”), which essentially simplifies configuration by
combining the <r out er / > configuration and its corresponding implementation defined using a <bean/
> element into a single and more concise configuration element. The example below demonstrates
a Payl oadTypeRout er configuration which is equivalent to the one above using the namespace
support:

<i nt: payl oad-type-router input-channel="routingChannel">
<int:mappi ng type="java.lang. String" channel ="stri ngChannel " />
<i nt:nappi ng type="java.l ang. | nteger" channel ="i nt eger Channel " />
</int:payl oad-type-router>

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header value
mappings. When a Header Val ueRout er is created it is initialized with the name of the header to be
evaluated. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary then additional mappings for these header values to channel names is required, otherwise
no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
Header Val ueRout er . The example below demonstrates two types of namespace-based configuration
for the Header Val ueRout er .

1. Configuration where mapping of header values to channels is required

<i nt: header-val ue-router input-channel ="routingChannel" header-nanme="t est Header" >
<int:mappi ng val ue="sonmeHeader Val ue" channel ="channel A" />
<i nt: nmappi ng val ue="soneC her Header Val ue" channel ="channel B" />

</i nt: header - val ue-rout er >

During the resolution process this router may encounter channel resolution failures, causing an
exception. If you want to suppress such exceptions and send unresolved messages to the default output
channel (identified with the def aul t - out put - channel attribute) set resol uti on-required to
fal se.

Normally, messages for which the header value is not explicitly mapped to a channel will be sent to
the def aul t - out put - channel . However, in cases where the header value is mapped to a channel
name but the channel cannot be resolved, setting the r esol uti on-r equi r ed attribute to f al se will
result in routing such messages to the def aul t - out put - channel .

Spring Integration
3.0.5.RELEASE Reference Manual 46

Spring Integration

© Important
With Spring Integration 2.1 the attribute was changed from i gnore-channel - name-
resol ution-failures toresol uti on-required. Attribute r esol uti on-requi red will
defaultto t r ue.

2. Configuration where mapping of header values to channel names is not required since header values
themselves represent channel names

<i nt: header - val ue-router input-channel ="routingChannel" header-nanme="t est Header"/ >

© Note

Since Spring Integration 2.1 the behavior of resolving channels is more explicit. For example,
if you ommit the def aul t - out put - channel attribute and the Router was unable to resolve
at least one valid channel, and any channel name resolution failures were ignored by setting
resol ution-requiredtofal se, thenaMessageDel i ver yExcepti on is thrown.

Basically, by default the Router must be able to route messages successfully to at least one
channel. If you really want to drop messages, you must also have def aul t - out put - channel
set to nul | Channel .

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically defined list of Message
Channels:

<bean i d="reci pi entLi st Router"
cl ass="org. springframework.integration.router.RecipientListRouter">
<property nane="channel s">
<list>
<ref bean="channel 1"/ >
<ref bean="channel 2"/ >
<ref bean="channel 3"/ >
</[list>
</ property>
</ bean>

Spring Integration also provides namespace support for the Reci pi ent Li st Rout er configuration
(see Section F.2, “Namespace Support”) as the example below demonstrates.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel"
ti meout ="1234"
i gnor e-send-failures="true"
appl y- sequence="true">
<int:recipient channel ="channel 1"/ >
<int:recipient channel ="channel 2"/ >
</int:recipient-list-router>

©@ Note
The 'apply-sequence’ flag here has the same effect as it does for a publish-subscribe-channel,
and like a publish-subscribe-channel, it is disabled by default on the recipient-list-router. Refer
to the section called “PublishSubscribeChannel Configuration” for more information.

Another convenient option when configuring a Reci pi ent Li st Rout er is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. This is similar to using a Filter

Spring Integration
3.0.5.RELEASE Reference Manual 47

Spring Integration

at the beginning of 'chain' to act as a "Selective Consumer". However, in this case, it's all combined
rather concisely into the router's configuration.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel ">
<int:recipi ent channel ="channel 1" sel ect or - expr essi on="payl oad. equal s('foo')"/>
<int:recipient channel ="channel 2" sel ect or-expressi on="headers. cont ai nsKey("' bar')"/>
</int:recipient-list-router>

In the above configuration a SpEL expression identified by the sel ect or - expr essi on attribute will be
evaluated to determine if this recipient should be included in the recipient list for a given input Message.
The evaluation result of the expression must be a boolean. If this attribute is not defined, the channel
will always be among the list of recipients.

XPath Router

The XPath Router is part of the XML Module. As such, please read chapter Routing XML Messages
Using XPath

Routing and Error handling

Spring Integration also provides a special type-based router called
Error MessageExcept i onTypeRout er for routing Error Messages (Messages whose payl oad
is a Throwabl e instance). Error MessageExcepti onTypeRouter is very similar to the
Payl oadTypeRouter. In fact they are almost identical. The only difference is that
while Payl oadTypeRout er navigates the instance hierarchy of a payload instance (e.g.,
payl oad. get O ass() . get Supercl ass()) to find the most specific type/channel mappings,
the Error MessageExcepti onTypeRout er navigates the hierarchy of 'exception causes' (e.g.,
payl oad. get Cause()) to find the most specific Thr owabl e type/channel mappings.

Below is a sample configuration for Er r or MessageExcept i onTypeRout er.

<i nt:exception-type-router input-channel="i nputChannel"
def aul t - out put - channel =" def aul t Channel ">
<i nt: mappi ng exception-type="java.lang. ||| egal Argunent Excepti on"
channel ="i | | egal Channel "/ >

<i nt: mappi ng exception-type="java. |l ang. Nul | Poi nt er Excepti on"
channel =" npeChannel "/ >
</int:exception-type-router>

<int:channel id="illegal Channel" />
<i nt:channel id="npeChannel" />

Configuring (Generic) Router
Configuring a Content Based Router with XML

The "router" element provides a simple way to connect a router to an input channel and also accepts
the optional def aul t - out put - channel attribute. The r ef attribute references the bean name of a
custom Router implementation (extending Abst r act MessageRout er):

Spring Integration
3.0.5.RELEASE Reference Manual 48

Spring Integration

<int:router ref="payl oadTypeRouter" input-channel ="input1"
def aul t - out put - channel =" def aul t Qut put 1"/ >

<int:router ref="recipientListRouter" input-channel="input2"
def aul t - out put - channel =" def aul t Qut put 2"/ >

<int:router ref="custonRouter" input-channel="input3"
def aul t - out put - channel =" def aul t Qut put 3"/ >

<beans: bean i d="cust onmRout er Bean cl ass="org. f oo. M/Cust onRout er"/ >

Alternatively, r ef may point to a simple POJO that contains the @Router annotation (see below), or the
r ef may be combined with an explicit et hod name. Specifying a met hod applies the same behavior
described in the @Router annotation section below.

<int:router input-channel="input" ref="somePojo" nethod="someMethod"/>

Using a r ef attribute is generally recommended if the custom router implementation is referenced in
other <r out er > definitions. However if the custom router implementation should be scoped to a single
definition of the <r out er >, you may provide an inner bean definition:

<int:router nethod="someMethod" i nput-channel ="input 3"
def aul t - out put - channel =" def aul t Qut put 3" >

<beans: bean cl ass="org. f oo. MyCust onRout er"/ >
</int:router>

© Note

Using both the r ef attribute and an inner handler definition in the same <r out er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Routers and the Spring Expression Language (SpEL)

Sometimes the routing logic may be simple and writing a separate class for it and configuring it as a
bean may seem like overkill. As of Spring Integration 2.0 we offer an alternative where you can now use
SpEL to implement simple computations that previously required a custom POJO router.

@ Note

For more information about the Spring Expression Language, please refer to the respective
chapter in the Spring Framework Reference Documentation at:

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
expressions.html

Generally a SpEL expression is evaluated and the result is mapped to a channel:

<int:router input-channel="inChannel" expressi on="payl oad. paynent Type" >
<i nt:mappi ng val ue="CASH' channel =" cashPaynent Channel "/ >
<i nt: nmappi ng val ue="CREDI T" channel =" aut hori zePaynent Channel "/ >
<i nt:mappi ng val ue="DEBI T* channel ="aut hori zePaynment Channel "/ >
</int:router>

To simplify things even more, the SpEL expression may evaluate to a channel name:

<int:router input-channel="inChannel" expression="payload + ' Channel'"/>

Spring Integration
3.0.5.RELEASE Reference Manual 49

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration

In the above configuration the result channel will be computed by the SpEL expression which simply
concatenates the value of the payl oad with the literal String 'Channel'.

Another value of SpEL for configuring routers is that an expression can actually return a Col | ecti on,
effectively making every <r out er > a Recipient List Router. Whenever the expression returns multiple
channel values the Message will be forwarded to each channel.

<int:router input-channel="inChannel" expression="headers. channel s"/>

In the above configuration, if the Message includes a header with the name ‘channels' the value of which
is a Li st of channel names then the Message will be sent to each channel in the list. You may also
find Collection Projection and Collection Selection expressions useful to select multiple channels. For
further information, please see:

» Collection Projection

» Collection Selection

Configuring a Router with Annotations

When using @Rout er to annotate a method, the method may return either a MessageChannel or
String type. In the latter case, the endpoint will resolve the channel nhame as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

@Rout er
publ i c MessageChannel route(Message nmessage) {...}

@Rout er
publ i c List<MessageChannel > rout e(Message nmessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a Message may be routed based on metadata available within the
message header as either a property or attribute. In this case, a method annotated with @Rout er may
include a parameter annotated with @deader which is mapped to a header value as illustrated below
and documented in Section F.5, “Annotation Support”.

@Rout er
public List<String> route(@eader("orderStatus") OrderStatus status)

© Note

For routing of XML-based Messages, including XPath support, see Chapter 31, XML Support -
Dealing with XML Payloads.

Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for common
content-based routing use cases as well as the option of implementing custom routers as POJOs. For
example Payl oadTypeRout er provides a simple way to configure a router which computes channel s

Spring Integration
3.0.5.RELEASE Reference Manual 50

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-selection

Spring Integration

based on the payl oad t ype of the incoming Message while Header Val ueRout er provides the same
convenience in configuring a router which computes channel s by evaluating the value of a particular
Message Header. There are also expression-based (SpEL) routers where the channel is determined
based on evaluating an expression. Thus, these type of routers exhibit some dynamic characteristics.

However these routers all require static configuration. Even in the case of expression-based routers,
the expression itself is defined as part of the router configuration which means that the same expression
operating on the same value will always result in the computation of the same channel. This is acceptable
in most cases since such routes are well defined and therefore predictable. But there are times when
we need to change router configurations dynamically so message flows may be routed to a different
channel.

Example:

You might want to bring down some part of your system for maintenance and temporarily re-reroute
messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of j ava. | ang. Nunber (in the case of
Payl oadTypeRout er).

Unfortunately with static router configuration to accomplish this, you would have to bring down your
entire application, change the configuration of the router (change routes) and bring it back up. This is
obviously not the solution.

The Dynamic Router pattern describes the mechanisms by which one can change/configure routers
dynamically without bringing down the system or individual routers.

Before we getinto the specifics of how this is accomplished in Spring Integration, let's quickly summarize
the typical flow of the router, which consists of 3 simple steps:

» Step 1 - Compute channel identi fier which is avalue calculated by the router once it receives
the Message. Typically itis a St ri ng or and instance of the actual MessageChannel .

» Step 2 - Resolve channel identifier tochannel name.We'll describe specifics of this process
in a moment.

* Step 3 - Resolve channel nane to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual instance
of the MessageChannel , simply because the MessageChannel is the final product of any router's job.
However, if Step 1 results in a channel identifier thatis not an instance of MessageChannel ,
then there are quite a few possibilities to influence the process of deriving the Message Channel . Lets
look at couple of the examples in the context of the 3 steps mentioned above:

Payload Type Router

<i nt: payl oad-type-router input-channel ="routingChannel ">
<i nt:nappi ng type="java.lang. String" channel ="channel 1" />
<int:mappi ng type="java.lang.|nteger" channel ="channel 2" />
</int:payl oad-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

» Step 1-Compute channel identifier which is the fully qualified name of the payload type (e.g.,
java.lang.String).

Spring Integration
3.0.5.RELEASE Reference Manual 51

http://www.eaipatterns.com/DynamicRouter.html

Spring Integration

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the payload type mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

In other words, each step feeds the next step until the process completes.

Header Value Router

<i nt: header-val ue-router input-channel ="input Channel " header - nane="t est Header " >
<i nt: mappi ng val ue="fo0" channel ="fooChannel" />
<int:mappi ng val ue="bar" channel ="bar Channel " />

</int: header-val ue-router>

Similar to the PayloadTypeRouter:

» Step 1- Compute channel identifier which isthe value of the header identified by the header -
nane attribute.

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the general mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

The above two configurations of two different router types look almost identical. However if we look at
the alternate configuration of the Header Val ueRout er we clearly see that there is no mappi ng sub
element:

<i nt: header-val ue-router input-channel="input Channel " header - nane="t est Header ">

But the configuration is still perfectly valid. So the natural question is what about the mapping in the
Step 27?

What this means is that Step 2 is now an optional step. If mappi ng is not defined then the channel
i denti fi er value computed in Step 1 will automatically be treated as the channel nane, which will
now be resolved to the actual MessageChannel as in Step 3. What it also means is that Step 2 is one
of the key steps to provide dynamic characteristics to the routers, since it introduces a process which
allows you to change the way 'channel identifier' resolves to ‘channel name', thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For Example:

In the above configuration let's assume that the t est Header value is 'kermit' which is now a channel
i denti fier (Step 1). Since there is no mapping in this router, resolving this channel i dentifier
toachannel nane (Step 2) is impossible and this channel identi fi er isnow treated as channel
name. However what if there was a mapping but for a different value? The end result would still be the
same and that is: if a new value cannot be determined through the process of resolving the 'channel
identifier' to a ‘channel name’, such 'channel identifier' becomes 'channel name'.

So all that is left is for Step 3 to resolve the channel nane (‘kermit’) to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the name provided.

Spring Integration
3.0.5.RELEASE Reference Manual 52

Spring Integration

So now all messages which contain the header/value pair as t est Header =ker m t are going to be
routed to a MessageChannel whose bean name (id) is 'kermit'.

But what if you want to route these messages to the 'simpson’ channel? Obviously changing a static
configuration will work, but will also require bringing your system down. However if you had access to
the channel identifier map,thenyou could justintroduce a new mapping where the header/value
pair is now ker m t =si npson, thus allowing Step 2 to treat 'kermit' as a channel i dentifi er while
resolving it to 'simpson’ as the channel nane .

The same obviously applies for Payl oadTypeRout er, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-based
routers, since their computed values will now have a chance to go through Step 2 to be additionally
resolved to the actual channel nane.

In Spring Integration 2.0 the router hierarchy underwent significant refactoring, so that now any
router that is a subclass of the Abstract MessageRout er (which includes all framework defined
routers) is a Dynamic Router simply because the channel | dentifer Map is defined at the
Abst ract MessageRout er level. That map's setter method is exposed as a public method along with
'setChannelMapping' and ‘removeChannelMapping’ methods. These allow you to change/add/remove
router mappings at runtime as long as you have a reference to the router itself. It also means that you
could expose these same configuration options via JMX (see Section 8.1, “JIMX Support”) or the Spring
Integration ControlBus (see Section 8.5, “Control Bus”) functionality.

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the Control Bus pattern which exposes a Control
Channel where you can send control messages to manage and monitor Spring Integration components,
including routers.

@ Note

For more information about the Control Bus, please see chapter Section 8.5, “Control Bus”.

Typically you would send a control message asking to invoke a particular operation on a particular
managed component (e.g. router). The two managed operations (methods) that are specific to changing
the router resolution process are:

* public voi d set Channel Mappi ng(String channel l dentifier, String channel Nane)
- will allow you to add a new or modify an existing mapping between channel identifier and
channel nane

* public void renmoveChannel Mappi ng(String channelldentifier) - will allow you
to remove a particular channel mapping, thus disconnecting the relationship between channel
i dentifier and channel nane

Manage Router Mappings using JMX

You can also expose a router instance with Spring's JMX support, and then use your favorite JMX client
(e.g., JConsole) to manage those operations (methods) for changing the router's configuration.

© Note

For more information about Spring Integration's JMX suppor, please see chapter JIMX Support.

Spring Integration
3.0.5.RELEASE Reference Manual 53

http://www.eaipatterns.com/ControlBus.html

Spring Integration

5.2 Filter

Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on
some criteria such as a Message Header value or Message content itself. Therefore, a Message Filter
is similar to a router, except that for each Message received from the filter's input channel, that same
Message may or may not be sent to the filter's output channel. Unlike the router, it makes no decision
regarding which Message Channel to send the Message to but only decides whether to send.

© Note

As you will see momentarily, the Filter also supports a discard channel, so in certain cases it can
play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to an
implementation of the MessageSel ect or interface. That interface is itself quite simple:

public interface MessageSel ector {
bool ean accept (Message<?> nmessage) ;

}
The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector);

In combination with the namespace and SpEL, very powerful filters can be configured with very little
java code.

Configuring Filter

Configuring a Filter with XML

The <filter> element is used to create a Message-selecting endpoint. In addition to "i nput - channel
and out put - channel attributes, it requires a ref. The ref may point to a MessageSel ect or
implementation:

<int:filter input-channel="input" ref="sel ector" output-channel ="output"/>

<bean i d="sel ector" cl ass="exanpl e. MessageSel ector| npl"/>

Alternatively, the et hod attribute can be added at which point the r ef may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages.
The method must return a boolean value. If the method returns 'true’, the Message will be sent to the
output-channel.

<int:filter input-channel="input" output-channel ="out put"
ref ="exanpl eObj ect" met hod="soneBool eanRet ur ni ngMet hod" / >

<bean i d="exanpl eObj ect" cl ass="exanpl e. SomeChj ect"/ >

If the selector or adapted POJO method returns f al se, there are a few settings that control the handling
of the rejected Message. By default (if configured like the example above), rejected Messages will be

Spring Integration
3.0.5.RELEASE Reference Manual 54

Spring Integration

silently dropped. If rejection should instead resultin an error condition, then setthe t hr ow except i on-
on-rej ection attribute to t r ue:

<int:filter input-channel="input" ref="selector"
out put - channel =" out put" t hr ow excepti on-on-rejection="true"/>

If you want rejected messages to be routed to a specific channel, provide that reference as the
di scard- channel :

<int:filter input-channel="input" ref="selector"
out put - channel ="out put" di scard-channel ="rej ect edMessages"/ >

© Note

Message Filters are commonly used in conjunction with a Publish Subscribe Channel. Many filter
endpoints may be subscribed to the same channel, and they decide whether or not to pass the
Message to the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router
with a single Point-to-Point input channel and multiple output channels.

Using ar ef attribute is generally recommended if the custom filter implementation is referenced in other
<filter> definitions. However if the custom filter implementation is scoped to a single <filter>
element, provide an inner bean definition:

<int:filter nethod="sonmeMet hod" i nput-channel ="i nChannel " out put-channel =" out Channel ">
<beans: bean cl ass="org.foo. My\CustonFilter"/>
</filter>

© Note

Using both the r ef attribute and an inner handler definition in the same <f i | t er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

With the introduction of SpEL support, Spring Integration added the expr essi on attribute to the filter
element. It can be used to avoid Java entirely for simple filters.

<int:filter input-channel="input" expressi on="payl oad. equal s(' nonsense')"/>

The string passed as the expression attribute will be evaluated as a SpEL expression with the Message
available in the evaluation context. If it is necessary to include the result of an expression in the scope of
the application context you can use the #{} notation as defined in the SpEL reference documentation .

<int:filter input-channel="input"
expressi on="payl oad. mat ches(#{filterPatterns.nonsensePattern})"/>

If the Expression itself needs to be dynamic, then an 'expression’ sub-element may be used. That
provides a level of indirection for resolving the Expression by its key from an ExpressionSource. That
is a strategy interface that you can implement directly, or you can rely upon a version available in
Spring Integration that loads Expressions from a "resource bundle" and can check for modifications
after a given number of seconds. All of this is demonstrated in the following configuration sample where
the Expression could be reloaded within one minute if the underlying file had been modified. If the
ExpressionSource bean is named "expressionSource", then it is not necessary to provide the sour ce
attribute on the <expression> element, but in this case it's shown for completeness.

Spring Integration
3.0.5.RELEASE Reference Manual 55

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration

<int:filter input-channel="input" output-channel ="out put">
<i nt:expression key="filterPatterns. exanpl e" source="nyExpressi ons"/>
</int:filter>

<beans: bean i d="nyExpressi ons" i d="nyExpressi ons"
class="0.s.i.expression. Rel oadabl eResour ceBundl eExpr essi onSour ce" >
<beans: property nane="basenane" val ue="config/integration/expressions"/>
<beans: property nane="cacheSeconds" val ue="60"/>

</ beans: bean>

Then, the 'config/integration/expressions.properties’ file (or any more specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) would contain a key/value
pair:

‘ filterPatterns. exanpl e=payl oad > 100

© Note

All of these examples that use expr essi on as an attribute or sub-element can also be applied
within transformer, router, splitter, service-activator, and header-enricher elements. Of course,
the semantics/role of the given component type would affect the interpretation of the evaluation
result in the same way that the return value of a method-invocation would be interpreted. For
example, an expression can return Strings that are to be treated as Message Channel names by
a router component. However, the underlying functionality of evaluating the expression against
the Message as the root object, and resolving bean names if prefixed with '@’ is consistent across
all of the core EIP components within Spring Integration.

Configuring a Filter with Annotations

A filter configured using annotations would look like this.

public class PetFilter {

@ilter O
publ i c bool ean dogsOnly(String input) {

}

0 An annotation indicating that this method shall be used as a filter. Must be specified if this class
will be used as a filter.

All of the configuration options provided by the xml element are also available for the @il ter
annotation.

The filter can be either referenced explicitly from XML or, if the @/ssageEndpoi nt annotation is
defined on the class, detected automatically through classpath scanning.

Also see the section called “Advising Endpoints Using Annotations”.

Spring Integration
3.0.5.RELEASE Reference Manual 56

Spring Integration

5.3 Splitter

Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

Programming model

The API for performing splitting consists of one base class, Abst ract MessageSplitter, which
is a MessageHandl er implementation, encapsulating features which are common to splitters,
such as filling in the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and
SEQUENCE_NUMBER on the messages that are produced. This enables tracking down the messages
and the results of their processing (in a typical scenario, these headers would be copied over to the
messages that are produced by the various transforming endpoints), and use them, for example, in a
Composed Message Processor scenario.

An excerpt from Abst r act MessageSpl i tt er can be seen below:

public abstract class Abstract MessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Object splitMssage(Message<?> nessage);

}

To implement a specific Splitter in an application, extend Abst r act MessageSpl i tt er and implement
the spl i t Message method, which contains logic for splitting the messages. The return value may be
one of the following:

» a Col | ection (or subclass thereof) or an array of Message objects - in this case the messages
will be sent as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER
are populated). Using this approach gives more control to the developer, for example for populating
custom message headers as part of the splitting process.

e aCol | ecti on (or subclass thereof) or an array of non-Message objects - works like the prior case,
except that each collection element will be used as a Message payload. Using this approach allows
developers to focus on the domain objects without having to consider the Messaging system and
produces code that is easier to test.

» aMessage or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except a single message will be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will
be interpreted as described above. The input argument might either be a Message or a simple POJO.
In the latter case, the splitter will receive the payload of the incoming message. Since this decouples the
code from the Spring Integration API and will typically be easier to test, it is the recommended approach.

Configuring Splitter
Configuring a Splitter using XML

A splitter can be configured through XML as follows:

Spring Integration
3.0.5.RELEASE Reference Manual 57

http://www.eaipatterns.com/DistributionAggregate.html

Spring Integration

<i nt:channel id="inputChannel"/>

<int:splitter id="splitter" O
ref="splitterBean" 0O
met hod="split" O
i nput - channel ="i nput Channel * O
out put - channel =" out put Channel * 0O/ >

<i nt:channel id="out putChannel"/>

<beans: bean i d="splitterBean" class="sanple.PojoSplitter"/>

O Theid of the splitter is optional.

O Areference to a bean defined in the application context. The bean mustimplement the splitting logic
as described in the section above .Optional. If reference to a bean is not provided, then it is assumed
that the payload of the Message that arrived on the i nput - channel is an implementation
of java. util. Col |l ecti on and the default splitting logic will be applied to the Collection,
incorporating each individual element into a Message and sending it to the out put - channel .

0 The method (defined on the bean specified above) that implements the splitting logic. Optional.

The input channel of the splitter. Required.

0 The channel to which the splitter will send the results of splitting the incoming message. Optional
(because incoming messages can specify a reply channel themselves).

O

Using ar ef attribute is generally recommended if the custom splitter implementation may be referenced
in other <spl i tter> definitions. However if the custom splitter handler implementation should be
scoped to a single definition of the <spl i t t er >, configure an inner bean definition:

<int:splitter id="testSplitter" input-channel="inChannel" method="split"
out put - channel =" out Channel " >
<beans: bean cl ass="org.foo. TestSplitter"/>
</int:spliter>

© Note

Using both a ref attribute and an inner handler definition in the same <int:splitter>
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Configuring a Splitter with Annotations

The @plitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a Col | ect i on of any type. If
the returned values are not actual Message objects, then each item will be wrapped in a Message as
its payload. Each message will be sent to the designated output channel for the endpoint on which the
@Bpl itter isdefined.

@plitter
Li st<Li neltenr extractltens(Order order) {
return order.getltens()

}

Also see the section called “Advising Endpoints Using Annotations”.

Spring Integration
3.0.5.RELEASE Reference Manual 58

Spring Integration

5.4 Aggregator

Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, an Aggregator is often a
downstream consumer in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is stateful as it must hold the
Messages to be aggregated and determine when the complete group of Messages is ready to be
aggregated. In order to do this it requires a MessageSt or e.

Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group
is deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the aggregated message as output.

Implementing an Aggregator requires providing the logic to perform the aggregation (i.e., the creation
of a single message from many). Two related concepts are correlation and release.

Correlation determines how messages are grouped for aggregation. In Spring Integration correlation is
done by default based on the MessageHeader s. CORRELATI ON_| D message header. Messages with
the same MessageHeader s. CORRELATI ON_I D will be grouped together. However, the correlation
strategy may be customized to allow other ways of specifying how the messages should be grouped
together by implementing a Corr el ati onSt r at egy (see below).

To determine the point at which a group of messages is ready to be processed, a Rel easeSt r at egy
is consulted. The default release strategy for the Aggregator will release a group when all messages
included in a sequence are present, based on the MessageHeader s. SEQUENCE_SI ZE header.
This default strategy may be overridden by providing a reference to a custom Rel easeStr at egy
implementation.

Programming model

The Aggregation API consists of a number of classes:

e The interface MessageG oupProcessor, and its subclasses:
Met hodl nvoki ngAggr egat i ngMessageG oupPr ocessor and
Expr essi onEval uat i ngMessageG oupPr ocessor

* The Rel easeSt r at egy interface and its default implementation
SequenceSi zeRel easeSt r at egy

* The Correl ati onStrat egy interface and its default implementation
Header Attri but eCorrel ati onStrat egy

AggregatingMessageHandler

The Aggr egat i ngMessageHand| er (subclass of Abstract Correl ati ngMessageHandl er) is a
MessageHandl| er implementation, encapsulating the common functionalities of an Aggregator (and
other correlating use cases), which are:

 correlating messages into a group to be aggregated

Spring Integration
3.0.5.RELEASE Reference Manual 59

Spring Integration

* maintaining those messages in a MessageSt or e until the group can be released

deciding when the group can be released
» aggregating the released group into a single message

* recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ati onSt r at egy instance. The responsibility of deciding whether the message group can be
released is delegated to a Rel easeSt r at egy instance.

Here is a brief highlight of the base Abstract Aggregati ngMessageG oupProcessor (the
responsibility of implementing the aggr egat ePayl oads method is left to the developer):

public abstract class Abstract Aggregati ngMessageG oupProcessor
i mpl enents MessageG oupProcessor {

protected Map<String, Object> aggregat eHeaders(MessageG oup group) {
/] default inplenmentation exists

}

protected abstract Object aggregatePayl oads(MessageG oup group, Map<String, Object>
def aul t Header s) ;

}

The Correl ati onStrat egy is owned by the Abst r act Corr el ati ngMessageHand| er and it has
a default value based on the MessageHeader s. CORRELATI ON_| D message header:

publ i c Abstract Correl ati ngMessageHandl er (MessageG oupPr ocessor processor,
MessageG oupSt ore store,
Correl ationStrategy correl ationStrategy, ReleaseStrategy rel easeStrategy) {

this.correlationStrategy = correlationStrategy == null ?
new Header Attri buteCorrel ati onStrat egy(MessageHeaders. CORRELATION_I D) :
correl ati onStrategy;
this.releaseStrategy = rel easeStrategy == null ? new SequenceSi zeRel easeStrategy() :
rel easeStr at egy;

As for actual processing of the message group, the default implementation is the
Def aul t Aggr egat i ngMessageG oupPr ocessor . It creates a single Message whose payload
is a List of the payloads received for a given group. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

@ Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario,
be sure to enable the flag to appl y-sequence. That will add the necessary headers
(CORRELATION_ID, SEQUENCE_NUMBER and SEQUENCE_SIZE). That behavior is enabled
by default for Splitters in Spring Integration, but it is not enabled for the Publish Subscribe
Channel or Recipient List Router because those components may be used in a variety of contexts
in which these headers are not necessary.

When implementing a specific aggregator strategy for an application, a developer can extend
Abst ract Aggr egat i ngMessageG oupProcessor and implement the aggregat ePayl oads

Spring Integration
3.0.5.RELEASE Reference Manual 60

Spring Integration

method. However, there are better solutions, less coupled to the API, for implementing the aggregation
logic which can be configured easily either through XML or through annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts a
singlej ava. util . Li st as an argument (parameterized lists are supported as well). This method will
be invoked for aggregating messages as follows:

 iftheargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message, then
the whole list of messages accumulated for aggregation will be sent to the aggregator

« if the argument is a non-parameterized j ava. uti | . Li st or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

« if the return type is not assignable to Message, then it will be treated as the payload for a Message
that will be created automatically by the framework.

© Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for configuring it in the application.

ReleaseStrategy

The Rel easeSt r at egy interface is defined as follows:

public interface Rel easeStrategy {

bool ean canRel ease(MessageG oup group);

}

In general, any POJO can implement the completion decision logic if it provides a method that accepts
asingle j ava. util.Li st as an argument (parameterized lists are supported as well), and returns a
boolean value. This method will be invoked after the arrival of each new message, to decide whether
the group is complete or not, as follows:

 iftheargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

« if the argument is a non-parametrized j ava. uti | . Li st or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

» the method must return true if the message group is ready for aggregation, and false otherwise.
For example:

public class M/Rel easeStrategy {

@rel easeStr at egy
publ i c bool ean canMessagesBeRel eased(Li st <Message<?>>) {...}

public class M/Rel easeStrategy {

@Rel easeStr at egy
publ i c bool ean canMessagesBeRel eased(List<String>) {...}

Spring Integration
3.0.5.RELEASE Reference Manual 61

Spring Integration

As you can see based on the above signatures, the POJO-based Release Strategy will be passed
a Col | ection of not-yet-released Messages (if you need access to the whole Message) or a
Col I ecti on of payload objects (if the type parameter is anything other than Message). Typically
this would satisfy the majority of use cases. However if, for some reason, you need to access the full
MessageG oup then you should simply provide an implementation of the Rel easeSt r at egy interface.

When the group is released for aggregation, all its not-yet-released messages are processed and
removed from the group. If the group is also complete (i.e. if all messages from a sequence have
arrived or if there is no sequence defined), then the group is marked as complete. Any new messages
for this group will be sent to the discard channel (if defined). Setting expi r e- gr oups- upon-
conpl eti on totrue (default is f al se) removes the entire group and any new messages, with the
same correlation id as the removed group, will form a new group. Partial sequences can be released
by using a MessageG oupSt or eReaper together with send- parti al -resul t - on- expi ry being
settotrue.

© Important
To facilitate discarding of late-arriving messages, the aggregator must maintain state about the
group after it has been released. This can eventually cause out of memory conditions. To avoid
such situations, you should consider configuring a MessageG oupSt or eReaper to remove the
group metadata; the expiry parameters should be set to expire groups after it is not expected
that late messages will arrive. For information about configuring a reaper, see the section called
“Managing State in an Aggregator: MessageGroupStore”.

Spring Integration provides an out-of-the box implementation for Rel easeStrategy, the
SequenceSi zeRel easeSt r at egy. This implementation consults the SEQUENCE_NUMBER and
SEQUENCE_SIZE headers of each arriving message to decide when a message group is complete
and ready to be aggregated. As shown above, it is also the default strategy.

CorrelationStrategy
The Correl ati onStr at egy interface is defined as follows:

public interface Correl ationStrategy {

Obj ect get Correl ati onKey(Message<?> nessage) ;

The method returns an Object which represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equals() and hashCode().

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method's argument (or arguments) are the same as for a Ser vi ceAct i vat or (including support for
@Header annotations). The method must return a value, and the value must not be nul | .

Spring Integration provides an out-of-the box implementation for Correl ati onStrat egy, the
Header Attri but eCorrel ati onStrat egy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By
default, the correlation strategy is a Header At tri but eCorrel ati onStr at egy returning the value
of the CORRELATION_ID header attribute. If you have a custom header name you would like to use for
correlation, then simply configure that on an instance of Header Attri but eCorr el ati onStr at egy
and provide that as a reference for the Aggregator's correlation-strategy.

Spring Integration
3.0.5.RELEASE Reference Manual 62

Spring Integration

Configuring an Aggregator
Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggr egat or/ >
element. Below you can see an example of an aggregator.

<channel id="input Channel "/ >

<i nt:aggregator id="nyAggregator" 0O
auto-startup="true" O
i nput - channel ="i nput Channel * O
out put - channel =" out put Channel " 0O
di scard- channel ="t hr owAway Channel " [
message- st or e="per si st ent MessageStore" [
order="1" 0O
send-partial -result-on-expiry="false" 0O
send-ti meout ="1000" O

correlation-strategy="correl ati onStrategyBean" O
correl ati on-strategy-nmethod="correl ate"
correl ati on-strategy-expressi on="headers['foo']"

ref =" aggr egat or Bean"
net hod=" aggr egat e"

rel ease-strategy="rel easeSt r at egyBean"
rel ease- strat egy- net hod="r el ease"

rel ease-strat egy-expression="size() == 5"

expi re-groups- upon-conpl eti on="f al se"
enpt y- gr oup- m n-ti meout =" 60000" />

<i nt:channel id="out put Channel"/>

<int:channel id="throwAwayChannel "/ >

<bean i d="persi stent MessageSt ore" cl ass="org. springfranmework.integration.jdbc.JdbcMessageStore">
<constructor-arg ref="dataSource"/>

</ bean>

<bean i d="aggregat or Bean" cl ass="sanpl e. Poj oAggr egat or"/ >

<bean i d="rel easeStrat egyBean" cl ass="sanpl e. Poj oRel easeStrat egy"/ >

<bean id="correl ati onStrat egyBean" cl ass="sanpl e. Poj oCorrel ati onStrategy"/>

O The id of the aggregator is Optional.

O Lifecycle attribute signaling if aggregator should be started during Application Context startup.
Optional (default is 'true’).

0 The channel from which where aggregator will receive messages. Required.

0 The channel to which the aggregator will send the aggregation results. Optional (because incoming
messages can specify a reply channel themselves via 'replyChannel' Message Header).

O The channel to which the aggregator will send the messages that timed out (if send- parti al -
resul t - on- expi ry is false). Optional.

O Areference to a MessageG oupSt or e used to store groups of messages under their correlation
key until they are complete. Optional, by default a volatile in-memory store.

Spring Integration
3.0.5.RELEASE Reference Manual 63

Spring Integration

Order of this aggregator when more than one handle is subscribed to the same DirectChannel (use
for load balancing purposes). Optional.

Indicates that expired messages should be aggregated and sent to
the ‘output-channel'’ or ‘replyChannel’ once their containing MessageG oup
is expired (see MessageG oupStore.expireMessageG oups(long)). One way
of expiring MessageG oups is by configuring a MessageG oupStoreReaper.
However MessageGroups can alternatively be expired by simply calling
MessageG oupSt or e. expi reMessageG oup(groupl d). That could be accomplished via
a Control Bus operation or by simply invoking that method if you have a reference to the
MessageG oupsSt or e instance. Otherwise by itself this attribute has no behavior. It only serves
as an indicator of what to do (discard or send to the output/reply channel) with Messages that are
still in the MessageG oup that is about to be expired. Optional.

Default - 'false'.

The timeout interval for sending the aggregated messages to the output or reply channel. Optional.
Areference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the MessageHeader s. CORRELATI ON_I D header) .

A method defined on the bean referenced by correl ati on-strat egy, that implements the
correlation decision algorithm. Optional, with restrictions (requires correl ati on-strat egy to
be present).

A SpEL expression representing the correlation strategy. Example: " headers[' foo']". Only
one ofcorrel ati on-strategy orcorrel ati on-strategy-expressi on is allowed.
Areference to a bean defined in the application context. The bean must implement the aggregation
logic as described above. Optional (by default the list of aggregated Messages will become a
payload of the output message).

A method defined on the bean referenced by r ef , that implements the message aggregation
algorithm. Optional, depends on r ef attribute being defined.

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
MessageHeader s. SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be
present).

A SpEL expression representing the release strategy; the root object for the expression is a
Col | ecti on of Messages. Example: "si ze() == 5". Only one of r el ease-strategy or
rel ease-strat egy- expressi on is allowed.

When set to true (default false), completed groups are removed from the message store, allowing
subsequent messages with the same correlation to form a new group. The default behavior is to
send messages with the same correlation as a completed group to the discard-channel.

Only applies if a MessageG oupSt or eReaper is configured for the <aggregator>'s
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then
not be removed from the MessageSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper's timeout property and it could be as much as this value plus the timeout.

Spring Integration

3.0.5.RELEASE Reference Manual 64

Spring Integration

Using ar ef attribute is generally recommended if a custom aggregator handler implementation may be
referenced in other <aggr egat or > definitions. However if a custom aggregator implementation is only
being used by a single definition of the <aggr egat or >, you can use an inner bean definition (starting
with version 1.0.3) to configure the aggregation POJO within the <aggr egat or > element:

<aggregat or input-channel ="input" method="suni out put-channel ="out put">
<beans: bean cl ass="org. f 00. Poj 0Aggr egat or"/ >
</ aggr egat or >

@ Note

Using both ar ef attribute and an inner bean definition in the same <aggr egat or > configuration
is not allowed, as it creates an ambiguous condition. In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public cl ass Poj oAggregator {

public Long add(List<Long> results) ({
long total = 0l;
for (long partial Result: results) {
total += partial Result;

}

return total;

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoRel easeStrategy {

publ i c bool ean canRel ease(Li st<Long> nunbers) {
int sum= 0;
for (long nunber: nunbers) {
sum += numnber ;

}

return sum >= maxVal ue;

© Note

Wherever it makes sense, the release strategy method and the aggregator method can be
combined in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrel ationStrategy {

publ i c Long groupNunbersBylLastDi git(Long nunmber) {
return nunber % 10;

}

}

Spring Integration
3.0.5.RELEASE Reference Manual 65

Spring Integration

For example, this aggregator would group numbers by some criterion (in our case the remainder after
dividing by 10) and will hold the group until the sum of the numbers provided by the payloads exceeds
a certain value.

© Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in a single bean (all of them or any two).

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, the various strategies (correlation, release, and aggregation) may be
handled with SpEL which is recommended if the logic behind such release strategy is relatively simple.
Let's say you have a legacy component that was designed to receive an array of objects. We know that
the default release strategy will assemble all aggregated messages in the List. So now we have two
problems. First we need to extract individual messages from the list, and then we need to extract the
payload of each message and assemble the array of objects (see code below).

public String[] processRel ease(List<Message<String>> messages){
Li st<String> stringList = new ArrayLi st<String>();
for (Message<String> nessage : nessages) {
stringLi st. add(nessage. get Payl oad()) ;

}
return stringlList.toArray(new String[]{})

However, with SpEL such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean.

<i nt:aggregator input-channel ="aggChannel "
out put - channel ="r epl yChannel "
expressi on="#t his.![payl oad].toArray()"/>

In the above configuration we are using a Collection Projection expression to assemble a new collection
from the payloads of all messages in the list and then transforming it to an Array, thus achieving the
same result as the java code above.

The same expression-based approach can be applied when dealing with custom Release and
Correlation strategies.

Instead of defining a bean for a custom Correl ati onStr at egy via the correl ati on-strat egy
attribute, you can implement your simple correlation logic via a SpEL expression and configure it via
the correl ati on-strat egy-expressi on attribute.

For example:

correl ati on-strategy-expressi on="payl oad. person.id"

In the above example it is assumed that the payload has an attribute per son with an i d which is going
to be used to correlate messages.

Likewise, for the Rel easeStrat egy you can implement your release logic as a SpEL expression
and configure it via the r el ease- st r at egy- expr essi on attribute. The only difference is that since
ReleaseStrategy is passed the List of Messages, the root object in the SpEL evaluation context is the
List itself. That List can be referenced as #t hi s within the expression.

Spring Integration
3.0.5.RELEASE Reference Manual 66

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12113

Spring Integration

For example:

rel ease- strat egy- expressi on="#t hi s. si ze() gt 5"

In this example the root object of the SpEL Evaluation Context is the MessageG oup itself, and you are
simply stating that as soon as there are more than 5 messages in this group, it should be released.

Configuring an Aggregator with Annotations

An aggregator configured using annotations would look like this.
public class Waiter {

@\ggregator O

public Delivery aggregatingMet hod(List<Orderlten> itens) {

}

@Rel easeStrategy O
publ i c bool ean rel easeChecker (Li st <Message<?>> nessages) ({

}

@orrel ationStrategy O
public String correlateBy(Orderltemitemn) {

}

O An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

O An annotation indicating that this method shall be used as the release strategy of an aggregator.
If not present on any method, the aggregator will use the SequenceSizeReleaseStrategy.

0 An annotation indicating that this method shall be used as the correlation strategy
of an aggregator. If no correlation strategy is indicated, the aggregator will use the
HeaderAttributeCorrelationStrategy based on CORRELATION_ID.

All of the configuration options provided by the xml element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined
on the class, detected automatically through classpath scanning.

Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions
to be made based on a group of messages that have arrived over a period of time, all with the same
correlation key. The design of the interfaces in the stateful patterns (e.g. Rel easeSt r at egy) is driven
by the principle that the components (whether defined by the framework or a user) should be able to
remain stateless. All state is carried by the MessageG oup and its management is delegated to the
MessageG oupSt or e.

Spring Integration
3.0.5.RELEASE Reference Manual 67

Spring Integration

public interface MessageG oupStore {
i nt get MessageCount For Al | MessageG oups() ;

i nt get Mar kedMessageCount For Al | MessageG oups() ;

int get MessageG oupCount () ;

MessageG oup get MessageG oup(Obj ect groupl d);

MessageG oup addMessageToGr oup(Obj ect groupld, Message<?> message);
MessageG oup mar kMessageG oup(MessageG oup group);

MessageG oup renpveMessageFr onsroup(Obj ect key, Message<?> nessageToRenove);
MessageG oup mar kMessageFr onGr oup(Obj ect key, Message<?> nessageToMarKk) ;

voi d renpveMessageG oup(Qhj ect groupld);

voi d regi ster MessageG oupExpi ryCal | back(MessageG oupCal | back cal | back) ;

int expi reMessageG oups(long tineout);

}
For more information please refer to the JavaDoc.

The MessageG oupSt or e accumulates state information in MessageG oups while waiting for a
release strategy to be triggered, and that event might not ever happen. So to prevent stale messages
from lingering, and for volatile stores to provide a hook for cleaning up when the application shuts down,
the MessageG oupSt or e allows the user to register callbacks to apply to its MessageG oups when
they expire. The interface is very straightforward:

public interface MessageG oupCall back {

voi d execut e(MessageG oupSt ore nmessageG oupStore, MessageG oup group);

The callback has direct access to the store and the message group so it can manage the persistent
state (e.g. by removing the group from the store entirely).

The MessageG oupSt ore maintains a list of these callbacks which it applies, on demand,
to all messages whose timestamp is earlier than a time supplied as a parameter (see
the regi st er MessageG oupExpi ryCal | back(..) and expi reMessageG oups(..) methods
above).

The expi r eMessageG oups method can be called with a timeout value. Any message older than the
current time minus this value will be expired, and have the callbacks applied. Thus it is the user of the
store that defines what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form
of a MessageG oupSt or eReaper :

Spring Integration
3.0.5.RELEASE Reference Manual 68

http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

Spring Integration

<bean i d="reaper" class="org...MssageG oupSt or eReaper" >

<property nane="nmessageG oupStore" ref="nmessageStore"/>
<property nanme="tineout" val ue="30000"/>

</ bean>

<t ask: schedul ed-t asks schedul er="schedul er">

<t ask: schedul ed ref="reaper" method="run" fi xed-rate="10000"/>

</t ask: schedul ed-t asks>

The reaper is a Runnabl e, and all that is happening in the example above is that the message group
store's expire method is being called once every 10 seconds. The timeout itself is 30 seconds.

7]

Note

It is important to understand that the 'timeout' property of the MessageG oupSt or eReaper is
an approximate value and is impacted by the the rate of the task scheduler since this property
will only be checked on the next scheduled execution of the MessageG oupSt or eReaper
task. For example if the timeout is set for 10 min, but the MessageG oupSt or eReaper task is
scheduled to run every 60 min and the last execution of the MessageG oupSt or eReaper task
happened 1 min before the timeout, the MessageG oup will not expire for the next 59 min. So
it is recommended to set the rate at least equal to the value of the timeout or shorter.

In addition to the reaper, the expiry callbacks are invoked when the application shuts down via a lifecycle
callback in the Abst r act Corr el ati ngMessageHandl er.

The Abstract Correl ati ngMessageHandl er registers its own expiry callback, and this is the link
with the boolean flag send- parti al - resul t - on- expi ry in the XML configuration of the aggregator.
If the flag is set to true, then when the expiry callback is invoked, any unmarked messages in groups
that are not yet released can be sent on to the output channel.

©

Important

When using a MessageG& oupSt or eReaper, it is generally recommended to use a separate
MessageSt ore for each correlating endpoint. Otherwise, unexpected results may occur
because one endpoint may remove another endpoint's groups.

Some MessageSt ore implementations allow using the same physical resources, by
partitioning the data; for example, the JdbcMessageSt ore has a regi on property; the
MongoDbMessageSt or e has a col | ecti onNane property.

For more information about MessageSt or e interface and its implementations, please read
Section 8.3, “Message Store”.

5.5 Resequencer

Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that the Resequencer does not

Spring Integration

3.0.5.RELEASE Reference Manual 69

Spring Integration

process the messages in any way. It simply releases them in the order of their SEQUENCE_NUMBER
header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.

Configuring a Resequencer

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

O o0Oood

<i nt:channel id="inputChannel"/>

<i nt:channel id="outputChannel"/>

<i nt:resequencer id="conpl etel yDefi nedResequencer" 0O

i nput - channel ="i nput Channel * O

out put - channel =" out put Channel " O

di scard- channel ="di scardChannel " O

rel ease-partial -sequences="true" 0O
message- st ore="nessageStore" [0

send-partial -result-on-expiry="true" 0O
send-ti meout =" 86420000" 0O

correl ation-strategy="correl ati onStrat egyBean" 0O

correl ati on-strategy-nethod="correlate" 0O

correl ati on-strategy-expressi on="headers['foo']" H
rel ease-strat egy="rel easeSt r at egyBean" H

rel ease-strat egy- net hod="rel ease" K

rel ease- strat egy-expression="size() == 10" &

enpt y- group- m n-ti meout =" 60000" />4

The id of the resequencer is optional.

The input channel of the resequencer. Required.

The channel to which the resequencer will send the reordered messages. Optional.

The channel to which the resequencer will send the messages that timed out (if send- parti al -
resul t-on-tineout is false). Optional.

Whether to send out ordered sequences as soon as they are available, or only after the whole
message group arrives. Optional (false by default).

A reference to a MessageG oupSt or e that can be used to store groups of messages under their
correlation key until they are complete. Optional with default a volatile in-memory store.

Whether, upon the expiration of the group, the ordered group should be sent out (even if some of
the messages are missing). Optional (false by default). See the section called “Managing State in
an Aggregator: MessageGroupStore”.

The timeout for sending out messages. Optional.

Areference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the MessageHeader s. CORRELATI ON_I D header) .

A method defined on the bean referenced by correl ati on-strat egy, that implements the
correlation decision algorithm. Optional, with restrictions (requires correl ati on-strat egy to
be present).

A SpEL expression representing the correlation strategy. Example: "headers[' foo']". Only
oneofcorrel ation-strategy orcorrel ati on-strategy-expression is allowed.

Spring Integration

3.0.5.RELEASE Reference Manual 70

Spring Integration

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
MessageHeader s. SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be

present).
A SpEL expression representing the release strategy; the root object for the expression is a
Col | ecti on of Messages. Example: "si ze() == 5". Only one of r el ease-strategy or

rel ease-strat egy- expressi on is allowed.

Only applies if a MessageG oupSt or eReaper is configured for the <resequcencer>'s
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then
not be removed from the MessagesSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper's timeout property and it could be as much as this value plus the timeout.

© Note

Since there is no custom behavior to be implemented in Java classes for resequencers, there
is no annotation support for it.

5.6 Message Handler Chain

Introduction

The MessageHandl er Chai n is an implementation of MessageHandl er that can be configured as
a single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires
a single i nput - channel and a single out put - channel eliminating the need to define channels for
each individual component.

@ Tip

Spring Integration's Fi | t er provides a boolean property t hr onExcepti onOnRej ecti on.
When providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true' (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on to
other subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if
the Message had been passed on successfully even though the Filter had dropped the Message
to prevent further processing. If you do indeed want to "drop" the Messages, then the Filter's
‘discard-channel' might be useful since it does give you a chance to perform some operation with
the dropped message (e.g. send to a IMS queue or simply write to a log).

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it is trivial to modify the configuration if at some point a non-linear
arrangement is required.

Spring Integration
3.0.5.RELEASE Reference Manual 71

http://www.eaipatterns.com/MessageSelector.html

Spring Integration

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by anonymous
channels. The reply channel header will not be taken into account within the chain: only after the last
handler is invoked will the resulting message be forwarded on to the reply channel or the chain's output
channel. Because of this setup all handlers except the last required to implement the MessageProducer
interface (which provides a 'setOutputChannel()' method). The last handler only needs an output channel
if the outputChannel on the MessageHandlerChain is set.

© Note

As with other endpoints, the out put - channel is optional. If there is a reply Message at the
end of the chain, the output-channel takes precedence, but if not available, the chain handler will
check for a reply channel header on the inbound Message as a fallback.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators
and Transformers, are suitable for use within a MessageHand| er Chai n.

Configuring a Chain

The <chain> element provides an i nput - channel attribute, and if the last element in the chain is
capable of producing reply messages (optional), it also supports an out put - channel attribute. The
sub-elements are then filters, transformers, splitters, and service-activators. The last element may also
be a router or an outbound-channel-adapter.

<i nt:chain input-channel ="i nput" out put-channel ="out put">
<int:filter ref="someSel ector" throw exception-on-rejection="true"/>
<i nt: header-enri cher>
<i nt: header name="foo" val ue="bar"/>
</int: header-enricher>
<int:service-activator ref="soneService" nethod="soneMet hod"/>
</int:chai n>

The <header-enricher> element used in the above example will set a message header named "foo" with
a value of "bar" on the message. A header enricher is a specialization of Tr ansf or mer that touches
only header values. You could obtain the same result by implementing a MessageHandler that did the
header modifications and wiring that as a bean, but the header-enricher is obviously a simpler option.

The <chain> can be configured as the last 'black-box' consumer of the message flow. For this solution
it is enough to put at the end of the <chain> some <outbound-channel-adapter>:

<i nt:chain input-channel ="input">
<si-xm : marshal l i ng-transformer marshal |l er="marshaller" result-type="StringResult" />
<int:service-activator ref="soneService" nethod="sonmeMet hod"/>
<i nt: header-enricher>
<i nt:header nane="foo" val ue="bar"/>
</int: header-enricher>
<i nt:|oggi ng- channel - adapter |evel ="I NFO' |og-full-nmessage="true"/>
</int:chai n>

Disallowed Attributes and Elements

It is important to note that certain attributes, such as order and input-channel are not allowed to be
specified on components used within a chain. The same is true for the poller sub-element.

Spring Integration
3.0.5.RELEASE Reference Manual 72

Spring Integration

© Important

For the Spring Integration core components, the XML Schema itself will enforce some of
these constraints. However, for non-core components or your own custom components, these
constraints are enforced by the XML namespace parser, not by the XML Schema.

These XML namespace parser constraints were added with Spring Integration 2.2. The XML
namespace parser will throw an BeanDef i ni ti onPar si ngExcepti on if you try to use
disallowed attributes and elements.

'id" Attribute

Beginning with Spring Integration 3.0, if a chain element is given an id, the bean name for the element is
a combination of the chain's id and the id of the element itself. Elements without an id are not registered
as beans, but they are given conponent Nanes that include the chain id. For example:

<int:chain id="fooChain" input-channel ="input">
<int:service-activator id="fooService" ref="someService" nmethod="sonmeMt hod"/>
<int:object-to-json-transformer/>

</int:chai n>

e The <chai n> root element has an id 'fooChain'. So, the Abst ract Endpoi nt implementation
(Pol I i ngConsuner or Event Dri venConsurer , depending on the input-channel type) bean takes
this value as it's bean name.

* The MessageHandl er Chai n bean acquires a bean alias 'fooChain.handler', which allows direct
access to this bean from the BeanFact ory.

e The <servi ce-activator> is not a fully-fledged Messaging Endpoint (Pol | i ngConsuner or
Event Dri venConsuner) - it is simply a MessageHand| er within the <chai n>. In this case, the
bean name registered with the BeanFact ory is 'fooChain$child.fooService.handler'.

* The componentName of this Ser vi ceAct i vat i ngHandl er takes the same value, but without the
".handler' suffix - ‘fooChain$child.fooService'.

e The last <chai n> sub-component, <obj ect-to-json-transforner>, doesn't have an id
attribute. Its componentName is based on its position in the <chai n>. In this case, it is 'fooChain
$child#1'. (The final element of the name is the order within the chain, beginning with '#0'). Note, this
transformer isn't registered as a bean within the application context, so, it doesn't get a beanName,
however its componentName has a value which is useful for logging etc.

The id attribute for <chai n> elements allows them to be eligible for IMX export and they are trackable
via Message History. They can also be accessed from the BeanFact or y using the appropriate bean
name as discussed above.

@ Tip

It is useful to provide an explicit id attribute on <chai n>s to simplify the identification of sub-
components in logs, and to provide access to them from the BeanFact ory etc.

Calling a Chain from within a Chain

Sometimes you need to make a nested call to another chain from within a chain and then come back and
continue execution within the original chain. To accomplish this you can utilize a Messaging Gateway
by including a <gateway> element. For example:

Spring Integration
3.0.5.RELEASE Reference Manual 73

Spring Integration

<int:chain id="main-chain" input-channel ="in" out put-channel =" out
<i nt: header-enricher>
<i nt: header nanme="nanme" val ue="Many" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
<i nt:gat eway request-channel ="input A"/ >
</int:chai n>

<int:chain id="nested-chain-a" input-channel ="input A">
<i nt: header-enricher>
<i nt:header nane="nane" val ue="Me" />
</int:header-enricher>
<i nt:gateway request-channel ="inputB"/>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

<int:chain id="nested-chain-b" input-channel ="input B">
<i nt: header-enricher>
<i nt: header nane="nane" val ue="Jack" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

"

In the above example the nested-chain-a will be called at the end of main-chain processing by the
'‘gateway' element configured there. While in nested-chain-a a call to a nested-chain-b will be made
after header enrichment and then it will come back to finish execution in nested-chain-b. Finally the flow
returns to the main-chain. When the nested version of a <gateway> element is defined in the chain, it
does not require the ser vi ce- i nt er f ace attribute. Instead, it simple takes the message in its current
state and places it on the channel defined via the r equest - channel attribute. When the downstream
flow initiated by that gateway completes, a Message will be returned to the gateway and continue its

journey within the current chain.

Spring Integration
3.0.5.RELEASE Reference Manual

74

Spring Integration

6. Message Transformation

6.1 Transformer

Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what
type is expected by the next consumer, Transformers can be added between those components.
Generic transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role
of Message Transformers. These configuration options will be described below.

© Note

For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see Chapter 31, XML Support - Dealing with XML Payloads.

Configuring Transformer

Configuring Transformer with XML

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-
channel" and "output-channel” attributes, it requires a "ref". The "ref" may either point to an Object that
contains the @Transformer annotation on a single method (see below) or it may be combined with an
explicit method name value provided via the "method" attribute.

<int:transforner id="testTransformer" ref="testTransformerBean" input-channel="i nChannel "
met hod="t ransform' out put - channel =" out Channel "/ >
<beans: bean i d="test Transf or mer Bean" cl ass="org. foo. Test Transformer" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation
can be reused in other <transf or mer > definitions. However if the custom transformer handler
implementation should be scoped to a single definition of the <t r ansf or mer >, you can define an inner
bean definition:

<int:transforner id="testTransforner" input-channel="inChannel" nethod="transforni
out put - channel =" out Channel ">
<beans: bean cl ass="org. foo. Test Transforner"/>
</ transf or nmer >

© Note

Using both the "ref" attribute and an inner handler definition in the same <t ransf or mer >
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Spring Integration
3.0.5.RELEASE Reference Manual 75

http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration

The method that is used for transformation may expect either the Message type or the payload type of
inbound Messages. It may also accept Message header values either individually or as a full map by
using the @Header and @Header s parameter annotations respectively. The return value of the method
can be any type. If the return value is itself a Message, that will be passed along to the transformer's
output channel.

As of Spring Integration 2.0, a Message Transformer's transformation method can no longer return
nul | . Returning nul | will result in an exception since a Message Transformer should always be
expected to transform each source Message into a valid target Message. In other words, a Message
Transformer should not be used as a Message Filter since there is a dedicated <filter> option for that.
However, if you do need this type of behavior (where a component might return NULL and that should
not be considered an error), a service-activator could be used. Its r equi r es- r epl y value is FALSE
by default, but that can be set to TRUE in order to have Exceptions thrown for NULL return values as
with the transformer.

Transformers and Spring Expression Language (SpEL)

Just like Routers, Aggregators and other components, as of Spring Integration 2.0 Transformers can also
benefit from SpEL support (http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/
html/expressions.html) whenever transformation logic is relatively simple.

<int:transformer input-channel="inChannel"

out put - channel =" out Channel "

expressi on="payl oad. t oUpper Case() + '- [' + T(java.lang.System).currentTineMIlis() +
BTN

In the above configuration we are achieving a simple transformation of the payload with a simple SpEL
expression and without writing a custom transformer. Our payload (assuming String) will be upper-cased
and concatenated with the current timestamp with some simple formatting.

Common Transformers

There are also a few Transformer implementations available out of the box. Because, it is fairly
common to use the toString() representation of an Object, Spring Integration provides an
nj ect ToStri ngTr ansf or mer whose output is a Message with a String payload. That String is the
result of invoking the toString() operation on the inbound Message's payload.

<int:object-to-string-transforner input-channel="in" output-channel="out"/>

A potential example for this would be sending some arbitrary object to the 'outbound-channel-adapter' in
the file namespace. Whereas that Channel Adapter only supports String, byte-array, orj ava. i o. Fi |l e
payloads by default, adding this transformer immediately before the adapter will handle the necessary
conversion. Of course, that works fine as long as the result of the t oSt ri ng() call is what you want
to be written to the File. Otherwise, you can just provide a custom POJO-based Transformer via the
generic 'transformer' element shown previously.

Q@ Tip
When debugging, this transformer is not typically necessary since the 'logging-channel-adapter’
is capable of logging the Message payload. Refer to the section called “Wire Tap” for more detail.

© Note

The object-to-string-transformer is very simple; it invokes toString() on the inbound
payload. There are two exceptions to this (since 3.0): if the payload is a char[], it invokes

Spring Integration
3.0.5.RELEASE Reference Manual 76

Spring Integration

new String(payl oad); if the payload is a byt e[], it invokes new Stri ng(payl oad,
char set), where char set is "UTF-8" by default. The char set can be modified by supplying
the charset attribute on the transformer.

For more sophistication (such as selection of the charset dynamically, at runtime), you can use
a SpEL expression-based transformer instead; for example:

<int:transfornmer input-channel="in" output-channel ="out"
expressi on="new j ava. | ang. Stri ng(payl oad, headers[' myCharset']" />

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers. These will use standard Java serialization
by default, but you can provide an implementation of Spring 3.0's Serializer or Deserializer strategies
via the 'serializer' and 'deserializer' attributes, respectively.

<i nt: payl oad-seri al i zi ng-transforner input-channel ="objectsln" output-channel ="bytesCQut"/>

<i nt: payl oad- deseri al i zi ng-transforner input-channel ="bytesln" out put-
channel =" obj ect sQut "/ >

Object-to-Map Transformer

Spring Integration also provides Object-to-Map and Map-to-Object transformers which utilize the Spring
Expression Language (SpEL) to serialize and de-serialize the object graphs. The object hierarchy is
introspected to the most primitive types (String, int, etc.). The path to this type is described via SpEL,
which becomes the key in the transformed Map. The primitive type becomes the value.

For example:

public class Parent{
private Child child;
private String nane;
/| setters and getters are onitted

}

public class Child{
private String nane;
private List<String> ni ckNanes;
/| setters and getters are onmitted

will be transformed to a Map which looks like this: {person. nane=Geor ge,
person. chil d. nane=Jenna, person.child.nickNanes[0]=Binbo . . . etc}

The SpEL-based Map allows you to describe the object structure without sharing the actual types
allowing you to restore/rebuild the object graph into a differently typed Object graph as long as you
maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via the
Map-to-Object transformer:

Spring Integration
3.0.5.RELEASE Reference Manual 77

Spring Integration

public class Father {
private Kid child;
private String nane;
/| setters and getters are onitted

}

public class Kid {
private String nane;
private List<String> ni ckNanes;
/| setters and getters are onitted

If you need to create a "structured" map, you can provide the ‘flatten’ attribute. The default value for
this attribute is 'true’ meaning the default behavior; if you provide a ‘false’ value, then the structure will
be a map of maps.

For example:

public class Parent {
private Child child;
private String nane;
/'l setters and getters are omtted

}

public class Child {

private String nane;

private List<String> nickNanes;

/'l setters and getters are omtted

}

... will be transformed to a Map which looks like this: { name=Geor ge, chil d={nanme=Jenna,
ni ckNames=[Bi nbo, ...]}}

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<i nt:object-to-nmap-transforner input-channel="directlnput" output-channel ="output"/>

or

<i nt:object-to-map-transforner input-channel="directlnput" output-
channel ="out put" flatten="fal se"/>

Map-to-Object

<i nt: map-to-obj ect-transformer input-channel="input"
out put - channel =" out put "
type="org. f oo. Person"/>

or

<i nt: map-to-obj ect-transformer input-channel="inputA"
out put - channel =" out put A"
ref ="person"/>
<bean i d="person" class="org.foo.Person" scope="prototype"/>

© Note

NOTE: 'ref' and 'type' attributes are mutually exclusive. You can only use one. Also, if using the
'ref attribute, you must point to a 'prototype’ scoped bean, otherwise a BeanCreationException
will be thrown.

Spring Integration
3.0.5.RELEASE Reference Manual 78

Spring Integration

JSON Transformers

Object to JISON and JSON to Object transformers are provided.

<i nt:object-to-json-transforner input-channel="objectMapperl|nput"/>

<int:json-to-object-transfornmer input-channel="objectMapper! nput"

type="foo. MyDonmai nChj ect"/ >

These use a vanilla Jackson ObjectMapper by default. If you wish to customize the ObjectMapper
(for example, to configure the 'ALLOW_COMMENTS' feature when parsing JSON), you can supply a
reference to your custom ObjectMapper bean using the object-mapper attribute.

o

<int:json-to-object-transforner input-channel="objectMapper! nput"

type="foo. MyDonmai nChj ect" obj ect - napper =" cust onObj ect Mapper"/ >

Note

Beginning with version 3.0, the obj ect - mapper attribute references an instance of a new
strategy interface JsonObj ect Mapper . This abstraction allows multiple implementations of json
mappers to be used. Implementations that wrap Jackson 1.x and Jackson 2 are provided, with
the version being detected on the classpath. These classes are JacksonJsonChj ect Mapper
and Jackson2JsonCbj ect Mapper .

For backward compatibility, a simple Jackson 1.x Cbj ect Mapper can be provided instead of a
JsonObj ect Mapper . This will be removed in a future release.

Important

If there are requirements to use both Jackson libraries in the same application, keep in mind
that before version 3.0, the JSON transformers used only Jackson 1.x and, from 3.0 on, the
framework will select Jackson 2 by default, if both are on the classpath. So, to avoid unexpected
issues with Jackson's mapping features, when using annotations, there may be a need to apply
annotations from both Jacksons on domain classes:

@r g. codehaus. j ackson. annot at e. Jsonl gnor ePr operti es(i gnor eUnknown=t r ue)
@om fasterxnm .jackson. annot ati on. Jsonl gnor eProperti es(i gnor eUnknown=t r ue)
public class Foo {

@r g. codehaus. j ackson. annot at e. JsonPr operty("fooBar")
@om fasterxnl . jackson. annot ati on. JsonProperty("fooBar")
public Object bar;

You may wish to consider using a FactoryBean or simple factory method to create the
JsonObj ect Mapper with the required characteristics.

public class Object MapperFactory {

public static Jackson2JsonObj ect Mapper get Mapper () {
bj ect Mapper mapper = new Obj ect Mapper () ;
mapper . conf i gure(JsonPar ser. Feat ur e. ALLONV COMMVENTS, true);
return new Jackson2JsonCbhj ect Mapper (mapper) ;

Spring Integration

3.0.5.RELEASE Reference Manual 79

http://jackson.codehaus.org
https://github.com/FasterXML

Spring Integration

<bean i d="cust ombj ect Mapper" cl ass="fo00. Obj ect Mapper Fact ory"
fact ory- net hod="get Mapper"/ >

© Important

Beginning with version 2.2, the obj ect -t o- j son-t r ansf or ner sets the content-type header
to appl i cati on/j son, by default, if the input message does not already have that header
present.

It you wish to set the content type header to some other value, or explicitly overwrite any existing
header with some value (including appl i cati on/j son), use the cont ent - t ype attribute. If
you wish to suppress the setting of the header, set the cont ent - t ype attribute to an empty
string (""). This will result in a message with no cont ent - t ype header, unless such a header
was present on the input message.

Beginning with version 3.0, the Cbj ect ToJsonTr ansf or mer adds headers, reflecting the source
type, to the message. Similarly, the JsonToObj ect Tr ansf or mer can use those type headers when
converting the JSON to an object. These headers are mapped in the AMQP adapters so that they are
entirely compatible with the Spring-AMQP JsonMessageConverter.

This enables the following flows to work without any special configuration...
... ->angp- out bound- adapter---->
- - -->angp- i nbound- adapt er - >j son-t o- obj ect-transformer->. ..

Where the outbound adapter is configured with a JsonMessageConver t er and the inbound adapter
uses the default Si npl eMessageConverter.

..->0bj ect-to-json-transforner->anqgp- out bound- adapter---->
- --->angp- i nbound- adapter->. ..

Where the outbound adapter is configured with a Si npl eMessageConvert er and the inbound adapter
uses the default JsonMessageConverter.

..->0bj ect-to-json-transforner->anmgp-out bound- adapter---->
- --->angp- i nbound- adapt er - >j son-t o- obj ect -transf or mer - >

Where both adapters are configured with a Si npl eMessageConverter.

© Note

When using the headers to determine the type, you should not provide a cl ass attribute,
because it takes precedence over the headers.

In addition to JSON Transformers, Spring Integration provides a built-in #jsonPath SpEL function for
use in expressions. For more information see Appendix A, Spring Expression Language (SpEL).

#xpath SpEL Function

Since version 3.0, Spring Integration also provides a built-in #xpath SpEL function for use in expressions.
For more information see Section 31.9, “#xpath SpEL Function”.

Spring Integration
3.0.5.RELEASE Reference Manual 80

http://docs.spring.io/spring-amqp/api/

Spring Integration

Configuring a Transformer with Annotations

The @ ansf or mer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above
in the section describing the <transformer> element.

@r ansf or ner
Order generateOrder (String productld) {
return new O der(productld);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented
in Section F.5, “Annotation Support”

@r ansf or ner
Order generateOrder(String productld, @leader("custonmerNane") String customer) {
return new Order(productld, customer);

}

Also see the section called “Advising Endpoints Using Annotations”.

Header Filter

Some times your transformation use case might be as simple as removing a few headers. For such a
use case, Spring Integration provides a Header Filter which allows you to specify certain header names
that should be removed from the output Message (e.g. for security reasons or a value that was only
needed temporarily). Basically the Header Filter is the opposite of the Header Enricher. The latter is
discussed in the section called “Header Enricher”

<int:header-filter input-channel="input Channel "
out put - channel =" out put Channel * header - nanes="1 ast Nane, state"/>

As you can see, configuration of a Header Filter is quite simple. It is a typical endpoint with input/output
channels and a header - nanes attribute. That attribute accepts the names of the header(s) (delimited
by commas if there are multiple) that need to be removed. So, in the above example the headers named
'lastName' and 'state’ will not be present on the outbound Message.

6.2 Content Enricher

Introduction

At times you may have a requirement to enhance a request with more information than was provided by
the target system. The Content Enricher pattern describes various scenarios as well as the component
(Enricher), which allows you to address such requirements.

The Spring Integration Cor e module includes 2 enrichers:

» Header Enricher

» Payload Enricher

Furthermore, several Adapter specific Header Enrichers are included as well:

» XPath Header Enricher (XML Module)

» Mail Header Enricher (Mail Module)

Spring Integration
3.0.5.RELEASE Reference Manual 81

http://www.eaipatterns.com/DataEnricher.html

Spring Integration

* XMPP Header Enricher (XMPP Module)

Please go to the adapter specific sections of this reference manual to learn more about those adapters.

For more information regarding expressions support, please see Appendix A, Spring Expression
Language (SpEL).

Header Enricher

If you only need to add headers to a Message, and they are not dynamically determined by the Message
content, then referencing a custom implementation of a Transformer may be overkill. For that reason,
Spring Integration provides support for the Header Enricher pattern. It is exposed via the <header -
enri cher > element.

<i nt: header-enricher input-channel="in" output-channel ="out">
<i nt: header nane="foo" val ue="123"/>
<i nt: header nane="bar" ref="soneBean"/>
</int:header-enricher>

The Header Enricher also provides helpful sub-elements to set well-known header names.

<i nt: header-enricher input-channel="in" output-channel ="out">
<int:error-channel ref="applicationErrorChannel"/>
<int:reply-channel ref="quoteReplyChannel"/>
<int:correlation-id val ue="123"/>
<int:priority val ue="H GHEST"/ >
<i nt:header nane="bar" ref="sonmeBean"/>
</int:header-enricher>

In the above configuration you can clearly see that for well-known headers such as err or Channel ,
correlationld, priority, repl yChannel etc., instead of using generic <header> sub-elements
where you would have to provide both header 'name’ and 'value', you can use convenient sub-elements
to set those values directly.

POJO Support

Often a header value cannot be defined statically and has to be determined dynamically based on some
content in the Message. That is why Header Enricher allows you to also specify a bean reference using
the r ef and net hod attribute. The specified method will calculate the header value. Let's look at the
following configuration:

<i nt: header-enricher input-channel="in" output-channel ="out">
<i nt: header name="foo0" nethod="conputeVal ue" ref="nyBean"/>
</int:header-enricher>

<bean i d="nyBean" cl ass="foo0. bar. M/Bean"/>

public class MyBean {
public String conputeVal ue(String payl oad) {
return payl oad. t oUpper Case() + "_US";
}

You can also configure your POJO as inner bean:

Spring Integration
3.0.5.RELEASE Reference Manual 82

Spring Integration

<int:header-enricher input-channel ="inputChannel" out put-channel =" out put Channel ">
<i nt: header nane="sonme_header">
<bean cl ass="org. MyEnri cher"/>
</int: header>
</int:header-enricher>

as well as point to a Groovy script:

<i nt:header-enricher input-channel ="inputChannel" out put-channel =" out put Channel ">
<i nt: header nanme="some_header">
<int-groovy:script |ocation="org/ Sanpl eG oovyHeader Enri cher. groovy"/>
</i nt: header >
</int:header-enricher>

SpEL Support

In Spring Integration 2.0 we have introduced the convenience of the Spring Expression Language
(SpEL) to help configure many different components. The Header Enricher is one of them. Looking
again at the POJO example above, you can see that the computation logic to determine the header
value is actually pretty simple. A natural question would be: "is there a simpler way to accomplish this?".
That is where SpEL shows its true power.

<i nt: header-enricher input-channel="in" output-channel ="out">
<i nt:header nanme="foo0" expression="payl oad.toUpperCase() + '_US "/>
</int:header-enricher>

As you can see, by using SpEL for such simple cases, we no longer have to provide a separate class
and configure it in the application context. All we need is the expression attribute configured with a valid
SpEL expression. The 'payload' and 'headers' variables are bound to the SpEL Evaluation Context,
giving you full access to the incoming Message.

Header Channel Registry

Starting with Spring Integration 3.0, a new sub-element <i nt : header - channel s-to-string/>is
available; it has no attributes. This converts existing r epl yChannel and error Channel headers
(whenthey are a MessageChannel) to a String and stores the channel(s) in aregistry for later resolution
when it is time to send a reply, or handle an error. This is useful for cases where the headers might be
lost; for example when serializing a message into a message store or when transporting the message
over JMS. If the header does not already exist, or it is not a MessageChannel , no changes are made.

Use of this functionality requires the presence of a Header Channel Regi stry bean. By default,
the framework creates a Def aul t Header Channel Regi st ry with the default expiry (60 seconds).
Channels are removed from the registry after this time. To change this, simply define a bean with
id i nt egrati onHeader Channel Regi stry and configure the required delay using a constructor
argument (milliseconds).

The Header Channel Regi stry has a si ze() method to determine the current size of the registry.
The runReaper () method cancels the current scheduled task and runs the reaper immediately; the
task is then scheduled to run again based on the current delay. These methods can be invoked directly
by getting a reference to the registry, or you can send a message with, for example, the following content
to a control bus:

" @ nt egr at i onHeader Channel Regi stry. runReaper ()"

Spring Integration
3.0.5.RELEASE Reference Manual 83

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html

Spring Integration

This sub-element is a convenience only, and is the equivalent of specifying:

<int:reply-channel

expressi on="@ nt egr ati onHeader Channel Regi st ry. channel ToChannel Nane(headers. r epl yChannel)"/
>
<int:error-channel

expressi on=" @ nt egr at i onHeader Channel Regi st ry. channel ToChannel Nane(headers. err or Channel)"/
>

Q@ Tip
For more examples for configuring header enrichers, see _Header Enricher Advanced
Configuration.

Payload Enricher

In certain situations the Header Enricher, as discussed above, may not be sufficient and payloads
themselves may have to be enriched with additional information. For example, order messages that
enter the Spring Integration messaging system have to look up the order's customer based on the
provided customer number and then enrich the original payload with that information.

Since Spring Integration 2.1, the Payload Enricher is provided. A Payload Enricher defines an endpoint
that passes a Message to the exposed request channel and then expects a reply message. The reply
message then becomes the root object for evaluation of expressions to enrich the target payload.

The Payload Enricher provides full XML namespace support via the enri cher element. In order to
send request messages, the payload enricher has a r equest - channel attribute that allows you to
dispatch messages to a request channel.

Basically by defining the request channel, the Payload Enricher acts as a Gateway, waiting for the
message that were sent to the request channel to return, and the Enricher then augments the message's
payload with the data provided by the reply message.

When sending messages to the request channel you also have the option to only send a subset of the
original payload using the r equest - payl oad- expr essi on attribute.

The enriching of payloads is configured through SpEL expressions, providing users with a maximum
degree of flexibility. Therefore, users are not only able to enrich payloads with direct values from the
reply channel's Message, but they can use SpEL expressions to extract a subset from that Message,
only, or to apply addtional inline transformations, allowing them to further manipulate the data.

If you only need to enrich payloads with static values, you don't have to provide the r equest - channel
attribute.

© Note

Enrichers are a variant of Transformers and in many cases you could use a Payload Enricher
or a generic Transformer implementation to add additional data to your messages payloads.
Thus, familiarize yourself with all transformation-capable components that are provided by Spring
Integration and carefully select the implementation that semantically fits your business case best.

Configuration

Below, please find an overview of all available configuration options that are available for the payload
enricher:

Spring Integration
3.0.5.RELEASE Reference Manual 84

https://github.com/SpringSource/spring-integration/wiki/Header-Enricher-Advanced-Configuration
https://github.com/SpringSource/spring-integration/wiki/Header-Enricher-Advanced-Configuration

Spring Integration

<int:enricher request-channel =
aut o-startup="true"
id=""
order=""

out put - channel =

request - payl oad- expr essi on=""

repl y- channel =

send-ti meout =
shoul d- cl one- payl oad="f al se">

OO0 ooooooOoogoao

<int:poller></int:poller>
<int:property name="" expression=""/>

<int:property name="" val ue=""/>
<i nt: header name="" expression=""/>
<i nt:header name="" val ue="" overwite="" type=""/>

</int:enricher>

O Channel to which a Message will be sent to get the data to use for enrichment. Optional.

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Optional.

0 Id of the underlying bean definition, which is either an Event Dri venConsuner or a
Pol I i ngConsuner . Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a "failover" dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Optional.

0 Identifies the Message channel where a Message will be sent after it is being processed by this
endpoint. Optional.

0 Bydefaultthe original message's payload will be used as payload that will be send to the r equest -
channel . By specifying a SpEL expression as value for the r equest - payl oad- expr essi on
attribute, a subset of the original payload, a header value or any other resolvable SpEL expression
can be used as the basis for the payload, that will be sent to the request-channel.

For the Expression evaluation the full message is available as the 'root object'.
For instance the following SpEL expressions (among others) are possible:

* payload.foo

* headers.foobar

e new java.util.Date()

 'foo' + 'bar'

If more sophisticated logic is required (e.g. changing the message headers etc.) please use
additional downstream transformers. Optional.

O Channel where a reply Message is expected. This is optional; typically the auto-generated
temporary reply channel is sufficient. Optional.

0 Maximum amount of time in milliseconds to wait when sending a message to the channel, if such
channel may block.

For example, a Queue Channel can block until space is available, if its maximum capacity has been
reached. Internally the send timeout is set on the Messagi ngTenpl at e and ultimately applied
when invoking the send operation on the MessageChannel .

Spring Integration
3.0.5.RELEASE Reference Manual 85

Spring Integration

By default the send timeout is set to '-1', which may cause the send operation on the
MessageChannel , depending on the implementation, to block indefinitely. Optional.

0 Boolean value indicating whether any payload that implements C oneabl e should be cloned prior
to sending the Message to the request chanenl for acquiring the enriching data. The cloned version
would be used as the target payload for the ultimate reply. Default is f al se. Optional.

O Allows you to configure a Message Poller if this endpoint is a Polling Consumer. Optional.

Each pr opert y sub-element provides the name of a property (via the mandatory name attribute).
That property should be settable on the target payload instance. Exactly one of the val ue or
expr essi on attributes must be provided as well. The former for a literal value to set, and the latter
for a SpEL expression to be evaluated. The root object of the evaluation context is the Message
that was returned from the flow initiated by this enricher, the input Message if there is no request
channel, or the application context (using the '@<beanName>.<beanProperty>' SpEL syntax).

Each header sub-element provides the name of a Message header (via the mandatory nane
attribute). Exactly one of the val ue or expr essi on attributes must be provided as well. The
former for a literal value to set, and the latter for a SpEL expression to be evaluated. The root
object of the evaluation context is the Message that was returned from the flow initiated by this
enricher, the input Message if there is no request channel, or the application context (using the
‘@<beanName>.<beanProperty>' SpEL syntax). Note, similar to the <header - enri cher >, the
<enri cher >'s header element has t ype and overwr it e attributes. However, a difference is
that, with the <enri cher >, the overwri t e attribute is t r ue by default, to be consistent with
<enri cher >'s <pr opert y> sub-element.

Examples
Below, please find several examples of using a Payload Enricher in various situations.

In the following example, a User object is passed as the payload of the Message. The User has several
properties but only the user name is set initially. The Enricher's r equest - channel attribute below is
configured to pass the User on to the f i ndUser Ser vi ceChannel .

Through the implicitly set r epl y- channel a User object is returned and using the pr operty sub-
element, properties from the reply are extracted and used to enrich the original payload.

<int:enricher id="findUserEnricher"
i nput - channel ="fi ndUser Enri cher Channel "
request - channel ="fi ndUser Ser vi ceChannel ">
<int:property name="emil" expressi on="payl oad. enwni | "/ >
<int:property name="password" expression="payl oad. password"/ >
</int:enricher>

© Note

The code samples shown here, are part of the Spring Integration Samples project. Please feel
free to check it out at: https://github.com/SpringSource/spring-integration-samples

How do | pass only a subset of data to the request channel?

Using ar equest - payl oad- expr essi on attribute a single property of the payload can be passed on
to the request channel instead of the full message. In the example below on the username property is
passed on to the request channel. Keep in mind, that alwhough only the username is passed on, the
resulting message send to the request channel will contain the full set of MessageHeader s.

Spring Integration
3.0.5.RELEASE Reference Manual 86

https://github.com/SpringSource/spring-integration-samples

Spring Integration

<int:enricher id="findUserByUsernanmeEnri cher"
i nput - channel ="fi ndUser ByUser naneEnr i cher Channel "
request - channel ="fi ndUser ByUser naneSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property nane="enail" expressi on="payl oad. emai | "/ >
<int:property nane="password" expression="payl oad. password"/>
</int:enricher>

How can | enrich payloads that consist of Collection data?

In the following example, instead of a User object, a Map is passed in. The Map contains the username
under the map key user nane. Only the user nane is passed on to the request channel. The reply
contains a full User object, which is ultimately added to the Map under the user key.

<int:enricher id="findUser WthMapEnricher"
i nput - channel ="fi ndUser Wt hMapEnri cher Channel "
request - channel ="f i ndUser ByUser nanmeSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property nane="user" expr essi on="payl oad"/ >
</int:enricher>

How can | enrich payloads with static information without using a request channel?

Here is an example that does not use a request channel at all, but solely enriches the message's payload
with static values. But please be aware that the word 'static' is used loosly here. You can still use SpEL
expressions for setting those values.

<int:enricher id="userEnricher"
i nput - channel ="i nput" >
<int:property nanme="user.updat eDate" expression="new java.util.Date()"/>
<int:property name="user.firstNane" val ue="foo"/>
<int:property name="user.| ast Nane" val ue="bar"/>
<int:property nane="user.age" val ue="42"/>
</int:enricher>

6.3 Claim Check

Introduction

In the earlier sections we've covered several Content Enricher type components that help you deal with
situations where a message is missing a piece of data. We also discussed Content Filtering which lets
you remove data items from a message. However there are times when we want to hide data temporarily.
For example, in a distributed system we may receive a Message with a very large payload. Some
intermittent message processing steps may not need access to this payload and some may only need
to access certain headers, so carrying the large Message payload through each processing step may
cause performance degradation, may produce a security risk, and may make debugging more difficult.

The Claim Check pattern describes a mechanism that allows you to store data in a well known place
while only maintaining a pointer (Claim Check) to where that data is located. You can pass that pointer
around as a payload of a new Message thereby allowing any component within the message flow to get
the actual data as soon as it needs it. This approach is very similar to the Certified Mail process where
you'll get a Claim Check in your mailbox and would have to go to the Post Office to claim your actual
package. Of course it's also the same idea as baggage-claim on a flight or in a hotel.

Spring Integration provides two types of Claim Check transformers:

Spring Integration
3.0.5.RELEASE Reference Manual 87

http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration

 Incoming Claim Check Transformer

» Outgoing Claim Check Transformer

Convenient namespace-based mechanisms are available to configure them.
Incoming Claim Check Transformer

An Incoming Claim Check Transformer will transform an incoming Message by storing it in the Message
Store identified by its message- st or e attribute.

<int:clai mcheck-in id="checkin"
i nput - channel =" checki nChannel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "/ >

In the above configuration the Message that is received on the i nput - channel will be persisted to
the Message Store identified with the nessage- st or e attribute and indexed with generated ID. That
ID is the Claim Check for that Message. The Claim Check will also become the payload of the new
(transformed) Message that will be sent to the out put - channel .

Now, lets assume that at some point you do need access to the actual Message. You can of course
access the Message Store manually and get the contents of the Message, or you can use the same
approach as before except now you will be transforming the Claim Check to the actual Message by
using an Outgoing Claim Check Transformer.

Here is an overview of all available parameters of an Incoming Claim Check Transformer:

<int:claimcheck-in auto-startup="true" O
id=""
i nput - channel =""

nmessage- st or e="nessageSt ore"

OO0Oo0o0OooOooao

<int:poller></int:poller>
</int:clai mcheck-in>

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

0 Id identifying the underlying bean definition (MessageTr ansf or mi ngHandl er). Attribute is not
available inside a Chai n element. Optional.

O Thereceiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

Spring Integration
3.0.5.RELEASE Reference Manual 88

Spring Integration

O Specify the maximum amount of time in milliseconds to wait when sending a reply Message to the
output channel. By default the send will block for one second. Attribute is not available inside a
Chai n element. Optional.

O Defines a poller. Element is not available inside a Chai n element. Optional.

Outgoing Claim Check Transformer

An Outgoing Claim Check Transformer allows you to transform a Message with a Claim Check payload
into a Message with the original content as its payload.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt ore"
out put - channel =" out put "/ >

In the above configuration, the Message that is received on the i nput - channel should have a Claim
Check as its payload and the Outgoing Claim Check Transformer will transform it into a Message with
the original payload by simply querying the Message store for a Message identified by the provided
Claim Check. It then sends the newly checked-out Message to the out put - channel .

Here is an overview of all available parameters of an Outgoing Claim Check Transformer:

<int:clai mcheck-out auto-startup="true" 0O
id=""
i nput - channel =""
message- st or e="nessageSt or e"
order=""
out put - channel =""
renove- message="f al se"
send-ti meout ="">

OoO0Oo0ooOooooQg

<int:poller></int:poller>
</int:clai mcheck-out>

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

O Id identifying the underlying bean definition (MessageTr ansf or m ngHandl er). Attribute is not
available inside a Chai n element. Optional.

0 The receiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

O If setto true the Message will be removed from the MessageStore by this transformer. Useful
when Message can be "claimed" only once. Defaults to f al se. Optional.

O Specify the maximum amount of time in milliseconds to wait when sending a reply Message to the
output channel. By default the send will block for one second. Attribute is not available inside a
Chai n element. Optional.

0 Defines a poller. Element is not available inside a Chai n element. Optional.

Spring Integration
3.0.5.RELEASE Reference Manual 89

Spring Integration

Claim Once

There are scenarios when a particular message must be claimed only once. As an analogy, consider the
airplane luggage check-in/out process. Checking-in your luggage on departure and and then claiming
it on arrival is a classic example of such a scenario. Once the luggage has been claimed, it can not be
claimed again without first checking it back in. To accommodate such cases, we introduced ar enove-
nmessage boolean attribute on the cl ai m check- out transformer. This attribute is set to f al se by
default. However, if setto t r ue, the claimed Message will be removed from the MessageStore, so that
it can no longer be claimed again.

This is also something to consider in terms of storage space, especially in the case of the in-memory
Map-based Si npl eMessagesSt or e, where failing to remove the Messages could ultimately lead to an
Qut O Menor yExcept i on. Therefore, if you don't expect multiple claims to be made, it's recommended
that you set the r enbve- nessage attribute's value to t r ue.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "
renove- nessage="true"/ >

A word on Message Store

Although we rarely care about the details of the claim checks as long as they work, it is still worth
knowing that the current implementation of the actual Claim Check (the pointer) in Spring Integration
is a UUID to ensure uniqueness.

org. springframework.integration.store. MessageStore is a strategy interface for storing
and retrieving messages. Spring Integration provides two convenient implementations of it.
Si npl eMessageSt or e: an in-memory, Map-based implementation (the default, good for testing) and
JdbcMessagesSt or e: an implementation that uses a relational database via JDBC.

Spring Integration
3.0.5.RELEASE Reference Manual 90

Spring Integration

7. Messaging Endpoints

7.1 Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying
API that drives Spring Integration's various messaging components. This information can be helpful if
you want to really understand what's going on behind the scenes. However, if you want to get up and
running with the simplified namespace-based configuration of the various elements, feel free to skip
ahead to the section called “Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, you will see a number of different
components that consume Messages. Some of these are also capable of sending reply Messages.
Sending Messages is quite straightforward. As shown above in Section 3.1, “Message Channels”, it's
easy to send a Message to a Message Channel. However, receiving is a bit more complicated. The main
reason is that there are two types of consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration's subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a container for the consumer instance. The
benefit is similar to that of using a container for hosting Message Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring's own MessageListener containers.

Message Handler

Spring Integration's MessageHandl er interface is implemented by many of the components within
the framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandI er directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandl er {

voi d handl eMessage(Message<?> nessage) ;

}

Despite its simplicity, this provides the foundation for most of the components that will be covered
in the following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc).
Those components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and event-
driven behavior is also the same. Spring Integration provides two endpoint implementations that host
these callback-based handlers and allow them to be connected to Message Channels.

Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first.
You may recall that the Subscri babl eChannel interface provides a subscri be() method

Spring Integration
3.0.5.RELEASE Reference Manual 91

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration

and that the method accepts a MessageHandl er parameter (as shown in the section called
“SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;

Since a handler that is subscribed to a channel does not have to actively poll that channel, this
is an Event Driven Consumer, and the implementation provided by Spring Integration accepts a a
Subscri babl eChannel and a MessageHand| er:

Subscri babl eChannel channel = context.getBean("subscri babl eChannel ",
Subscri babl eChannel . cl ass) ;

Event Dri venConsuner consuner = new Event Dri venConsuner (channel , exanpl eHandl er);

Polling Consumer

Spring Integration also provides a Pol | i ngConsuner, and it can be instantiated in the same way
except that the channel must implement Pol | abl eChannel :

Pol | abl eChannel channel = context. getBean("pol | abl eChannel ", Pol | abl eChannel . cl ass);

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , exanpl eHandl er) ;

© Note

For more information regarding Polling Consumers, please also read Section 3.2, “Poller (Polling
Consumer)” as well as Section 3.3, “Channel Adapter”.

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

consuner . set Tri gger (new | nterval Tri gger (30, Ti meUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface:
Interval Tri gger and CronTri gger. The | nterval Tri gger is typically defined with a simple
interval (in milliseconds), but also supports an initialDelay property and a boolean fixedRate property
(the default is false, i.e. fixed delay):

Interval Trigger trigger = new Interval Tri gger (1000);
trigger.setlnitial Del ay(5000);
trigger.setFixedRate(true);

The CronTri gger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

Pol | i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner . set MaxMessagesPer Pol | (10) ;
consuner . set Recei veTi neout (5000) ;

Spring Integration
3.0.5.RELEASE Reference Manual 92

Spring Integration

The maxMessagesPerPoll property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller will continue calling receive() without waiting until either
nul | is returned or that max is reached. For example, if a poller has a 10 second interval trigger and
a maxMessagesPerPoll setting of 25, and it is polling a channel that has 100 messages in its queue,
all 100 messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next
25, and so on.

The receiveTimeout property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem similar on
the surface but are actually quite different: the first has an interval trigger of 5 seconds and a receive
timeout of 50 milliseconds while the second has an interval trigger of 50 milliseconds and a receive
timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds later than it arrived
on the channel (if that message arrived immediately after one of its poll calls returned). On the other
hand, the second configuration will never miss a message by more than 50 milliseconds. The difference
is that the second option requires a thread to wait, but as a result it is able to respond much more
quickly to arriving messages. This technique, known as long polling, can be used to emulate event-
driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or, as illustrated in the following
example:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

TaskExecut or taskExecutor = context.getBean("exanpl eExecutor", TaskExecutor. cl ass);
consuner . set TaskExecut or (t askExecut or) ;

Furthermore, a Pol | i ngConsumner has a property called adviceChain. This property allows you to
specify a Li st of AOP Advices for handling additional cross cutting concerns including transactions.
These advices are applied around the doPol | () method. For more in-depth information, please see the
sections AOP Advice chains and Transaction Support under the section called “Namespace Support”.

The examples above show dependency lookups, but keep in mind that these consumers will most often
be configured as Spring bean definitions. In fact, Spring Integration also provides a Fact or yBean called
Consuner Endpoi nt Fact or yBean that creates the appropriate consumer type based on the type of
channel, and there is full XML namespace support to even further hide those details. The namespace-
based configuration will be featured as each component type is introduced.

© Note

Many of the MessageHand!| er implementations are also capable of generating reply Messages.
As mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless, when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as
a downstream consumer for a Splitter which may generate multiple replies for each Message
it handles. When using the namespace configuration, you do not strictly need to know all
of the details, but it still might be worth knowing that several of these components share a
common base class, the Abst ract Repl yPr oduci ngMessageHandl er, and it provides a
set Qut put Channel (..) method.

Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an input-channel

Spring Integration
3.0.5.RELEASE Reference Manual 93

Spring Integration

attribute and many will support an output-channel attribute. After being parsed, these endpoint elements
produce an instance of either the Pol | i ngConsuner or the Event Dri venConsumer depending
on the type of the input-channel that is referenced: Pol | abl eChannel or Subscri babl eChannel
respectively. When the channel is pollable, then the polling behavior is determined based on the
endpoint element's poller sub-element and its attributes.

Configuration

Below you find a poller with all available configuration options:

<int:poller cron=""
def aul t ="f al se"
error-channel =""
fixed-del ay=""
fixed-rate=""
id=""
max- nessages- per - pol | =""
recei ve-tineout =""
ref=""

t ask- execut or=""

time-unit="M LLI SECONDS"

<int:advice-chain />

<int:transactional />
</int:poller>

EEEEDDDDDDDDDD

O Provides the ability to configure Pollers using Cron expressions. The underlying implementation
uses aorg. spri ngframewor k. schedul i ng. support. CronTri gger. If this attribute is set,
none of the following attributes must be specified: fi xed-del ay,tri gger,fi xed-rate, ref.

O By setting this attribute to true, it is possible to define exactly one (1) global default
poller. An exception is raised if more than one default poller is defined in the
application context. Any endpoints connected to a PollableChannel (PollingConsumer) or any
SourcePollingChannelAdapter that does not have any explicitly configured poller will then use the
global default Poller. Optional. Defaults to f al se.

O Identifies the channel which error messages will be sent to if a failure occurs in this poller's
invocation. To completely suppress Exceptions, provide a reference to the nul | Channel .
Optional.

0 The fixed delay trigger uses a Peri odi cTri gger under the covers. If the ti me-uni t attribute
is not used, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: f i xed-rate, trigger,cron,ref.

O The fixed rate trigger uses a Peri odi cTri gger under the covers. If the ti ne-unit attribute
is not used the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: f i xed- del ay, tri gger, cron,ref.

O The |Id referring to the Poller's underlying bean-definition, which is of type
org. springframework. i ntegration. scheduling. Pol | er Met adat a. The id attribute is
required for a top-level poller element unless it is the default poller (def aul t ="t rue").

0 Please see the section called “Configuring An Inbound Channel Adapter” for more information.
Optional. If not specified the default values used depends on the context. If a Pol | i ngConsurner
is used, this atribute will default to -1. However, if a Sour cePol | i ngChannel Adapt er is used,
then the max- nessages- per - pol | attribute defaults to 1.

O Valueis seton the underlying class Pol | er Met adat a Optional. If not specified it defaults to 1000
(milliseconds).

Spring Integration
3.0.5.RELEASE Reference Manual 94

Spring Integration

0 Bean reference to another top-level poller. The r ef attribute must not be present on the top-level
pol | er element. However, if this attribute is set, none of the following attributes must be specified:
fixed-rate,trigger,cron,fixed-del eay.

O Provides the ability to reference a custom task executor. Please see the section below titled
TaskExecutor Support for further information. Optional.

This attribute specifies the java.util.concurrent. TineUnit enum value on the
underlying or g. spri ngf ranmewor k. schedul i ng. support. Peri odi cTri gger. Therefore,
this attribute can ONLY be used in combination with the f i xed- del ay orfi xed- r at e attributes.
If combined with either cron oratri gger reference attribute, it will cause a failure.

The minimal supported granularity for a Peri odi cTri gger is MILLISECONDS. Therefore, the
only available options are MILLISECONDS and SECONDS. If this value is not provided, then any
fi xed- del ay or fi xed- r at e value will be interpreted as MILLISECONDS by default.

Basically this enum provides a convenience for SECONDS-based interval trigger values. For
hourly, daily, and monthly settings, consider using a cr on trigger instead.

Reference to any spring configured bean which implements the
org. spri ngfranmewor k. schedul i ng. Tri gger interface. Optional. However, if this attribute
is set, none of the following attributes must be specified: f i xed- del ay, fi xed-rat e,cron,ref.

Allows to specify extra AOP Advices to handle additional cross cutting concerns. Please see the
section below titled Transaction Support for further information. Optional.

Pollers can be made transactional. Please see the section below titled AOP Advice chains for
further information. Optional.

Examples

For example, a simple interval-based poller with a 1-second interval would be configured like this:

<int:transfornmer input-channel ="poll abl e"
ref ="transfornmer"
out put - channel =" out put " >
<int:poller fixed-rate="1000"/>
</int:transforner>

As an alternative to fixed-rate you can also use the fixed-delay attribute.

For a poller based on a Cron expression, use the cron attribute instead:

<int:transfornmer input-channel="poll abl e"
ref="transforner"
out put - channel =" out put " >
<int:poller cron="*/10 * * * * MON-FRI"/>
</int:transforner>

If the input channel is a Pol | abl eChannel , then the poller configuration is required. Specifically, as
mentioned above, the trigger is a required property of the PollingConsumer class. Therefore, if you omit
the poller sub-element for a Polling Consumer endpoint's configuration, an Exception may be thrown.
The exception will also be thrown if you attempt to configure a poller on the element that is connected
to a non-pollable channel.

It is also possible to create top-level pollers in which case only a ref is required:

Spring Integration
3.0.5.RELEASE Reference Manual 95

Spring Integration

<int:poller id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

<int:transforner input-channel="poll abl e"
ref ="transfornmer"
out put - channel =" out put " >
<int:poller ref="weekdayPoller"/>
</int:transfornmer>

@ Note

The ref attribute is only allowed on the inner-poller definitions. Defining this attribute on a top-
level poller will result in a configuration exception thrown during initialization of the Application
Context.

Global Default Pollers

In fact, to simplify the configuration even further, you can define a global default poller. A single top-level
poller within an ApplicationContext may have the def aul t attribute with a value of true. In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured poller sub-element will use that default.

<int:poller id="defaultPoller" default="true" max-nessages-per-poll="5" fixed-rate="3000"/
>

<I-- No <poller/> sub-elenment is necessary since there is a default -->
<int:transforner input-channel="poll abl e"

ref ="transfornmer"

out put - channel =" out put "/ >

Transaction Support

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the <transactional/> sub-element. The attributes for this element should be familiar to anyone who has
experience with Spring's Transaction management:

<int:poller fixed-delay="1000">
<int:transactional transaction-nmanager="txManager"
pr opagat i on=" REQUI RED"
i sol at i on=" REPEATABLE_READ"
ti meout ="10000"
read-onl y="fal se"/ >

</int:poller>

For more information please refer to the section called “Poller Transaction Support”.
AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with Tr ansact i onl nt er cept or
(AOP Advice) handling transactional behavior of the message flow initiated by the poller, some times
there is a need to provide extra Advice(s) to handle other cross cutting behavior associated with the
poller. For that poller defines an advice-chain element allowing you to add more advices - class that
implements Met hodl nt er cept or interface..

Spring Integration
3.0.5.RELEASE Reference Manual 96

Spring Integration

<int:service-activator id="advicedSa" input-channel ="goodl nput Wt hAdvi ce" ref="testBean"
met hod="good" out put - channel =" out put " >
<int:poller max-nessages-per-poll="1" fixed-rate="10000">
<int:transactional transaction-nmanager="txManager" />
<i nt:advi ce-chai n>
<ref bean="advi ceA" />
<beans: bean cl ass="org. bar. Sanpl eAdvi ce"/ >
</int:advi ce-chai n>
</int:poller>
</int:service-activator>

For more information on how to implement MethodInterceptor please refer to AOP sections of Spring
reference manual (section 8 and 9). Advice chain can also be applied on the poller that does not have
any transaction configuration essentially allowing you to enhance the behavior of the message flow
initiated by the poller.

TaskExecutor Support

The polling threads may be executed by any instance of Spring's TaskExecut or abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a task namespace
in the core Spring Framework, and its <executor/> element supports the creation of a simple thread
pool executor. That element accepts attributes for common concurrency settings such as pool-size and
gueue-capacity. Configuring a thread-pooling executor can make a substantial difference in how the
endpoint performs under load. These settings are available per-endpoint since the performance of an
endpoint is one of the major factors to consider (the other major factor being the expected volume
on the channel to which the endpoint subscribes). To enable concurrency for a polling endpoint that
is configured with the XML namespace support, provide the task-executor reference on its <poller/>
element and then provide one or more of the properties shown below:

<int:poller task-executor="pool" fixed-rate="1000"/>

<t ask: execut or i d="pool"
pool - si ze="5- 25"
queue- capaci t y="20"
keep-al i ve="120"/>

If no task-executor is provided, the consumer's handler will be invoked in the caller's thread. Note that
the caller is usually the default TaskSchedul er (see Section F.3, “Configuring the Task Scheduler”).
Also, keep in mind that the task-executor attribute can provide a reference to any implementation of
Spring's TaskExecut or interface by specifying the bean name. The executor element above is simply
provided for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message
source. Note that this will only apply to sources that have a blocking wait call with a timeout. For example,
the File poller does not block, each receive() call returns immediately and either contains new files or
not. Therefore, even if a poller contains a long receive-timeout, that value would never be usable in such
a scenario. On the other hand when using Spring Integration's own queue-based channels, the timeout
value does have a chance to participate. The following example demonstrates how a Polling Consumer
will receive Messages nearly instantaneously.

Spring Integration
3.0.5.RELEASE Reference Manual 97

Spring Integration

<int:service-activator input-channel="someQueueChannel "
out put - channel =" out put " >
<int:poller receive-tineout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait
thread which does not require nearly as much CPU resource usage as a thrashing, infinite while loop
for example.

Change Polling Rate at Runtime

When configuring Pollers with a f i xed- del ay or fi xed- r at e attribute, the default implementation
willuse a Peri odi cTri gger instance. The Peri odi cTri gger is part of the Core Spring Framework
and it accepts the interval as a constructor argument, only. Therefore it cannot be changed at runtime.

However, you can define your own implementation of the
or g. spri ngframewor k. schedul i ng. Tri gger interface. You could even use the PeriodicTrigger
as a starting point. Then, you can add a setter for the interval (period), or you could even embed your
own throttling logic within the trigger itself if desired. The period property will be used with each call to
nextExecutionTime to schedule the next poll. To use this custom trigger within pollers, declare the bean
defintion of the custom Trigger in your application context and inject the dependency into your Poller
configuration using the t r i gger attribute, which references the custom Trigger bean instance. You can
now obtain a reference to the Trigger bean and the polling interval can be changed between polls.

For an example, please see the Spring Integration Samples project. It contains a sample called dynamic-
poller, which uses a custom Trigger and demonstrates the ability to change the polling interval at runtime.

» https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate

The sample provides a custom Trigger which implements the org.springframework.scheduling.Trigger
interface. The sample's Trigger is based on Spring's PeriodicTrigger implementation. However, the
fields of the custom trigger are not final and the properties have explicit getters and setters, allowing to
dynamically change the polling period at runtime.

© Note

It is important to note, though, that because the Trigger method is nextExecutionTime(), any
changes to a dynamic trigger will not take effect until the next poll, based on the existing
configuration. It is not possible to force a trigger to fire before it's currently configured next
execution time.

Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples
of various endpoints which can accept a Message or any arbitrary Object as an input parameter. In the
case of an Object, such a parameter will be mapped to a Message payload or part of the payload or
header (when using the Spring Expression Language). However there are times when the type of input
parameter of the endpoint method does not match the type of the payload or its part. In this scenario
we need to perform type conversion. Spring Integration provides a convenient way for registering type
converters (using the Spring 3.x ConversionService) within its own instance of a conversion service bean
named integrationConversionService. That bean is automatically created as soon as the first converter
is defined using the Spring Integration namespace support. To register a Converter all you need is

Spring Integration
3.0.5.RELEASE Reference Manual 98

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/Trigger.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/support/PeriodicTrigger.html

Spring Integration

to implement or g. spri ngf ramewor k. core. convert. converter. Converter and define it via
convenient namespace support:

<int:converter ref="sanpl eConverter"/>

<bean i d="sanpl eConverter" cl ass="foo. bar. Test Converter"/>

or as an inner bean:

<i nt:converter>
<bean cl ass="0.s.i.config.xmn .ConverterParserTest s$Test Converter3"/>
</int:converter>

© Important

When configuring an Application Context, the Spring Framework allows you to add a
conversionService bean (see Configuring a ConversionService chapter). This service is used,
when needed, to perform appropriate conversions during bean creation and configuration.

In contrast, the integrationConversionService is used for runtime conversions. These uses are
quite different; converters that are intended for use when wiring bean constructor-args and
properties may produce unintended results if used at runtime for Spring Integration expression
evaluation against Messages within Datatype Channels, Payload Type transformers etc.

However, if you do want to use the Spring conversionService as the Spring Integration
integrationConversionService, you can configure an alias in the Application Context:

<al i as name="conversi onServi ce" alias="integrati onConversi onService"/>

In this case the conversionService's Converters will be available for Spring Integration runtime
conversion.

Asynchronous polling

If you want the polling to be asynchronous, a Poller can optionally specify a task-executor attribute
pointing to an existing instance of any TaskExecut or bean (Spring 3.0 provides a convenient
namespace configuration via the t ask namespace). However, there are certain things you must
understand when configuring a Poller with a TaskExecutor.

The problem is that there are two configurations in place. The Poller and the TaskExecutor, and they
both have to be in tune with each other otherwise you might end up creating an artificial memory leak.

Let's look at the following configuration provided by one of the users on the Spring Integration forum
(http://forum.springsource.org/showthread.php?t=94519):

<int:service-activator input-channel ="publishChannel" ref="myService">
<int:poller receive-tineout="5000" task-executor="taskExecutor" fixed-rate="50"/>
</int:service-activator>

<t ask: execut or id="taskExecutor" pool -si ze="20" queue-capacity="20"/>

The above configuration demonstrates one of those out of tune configurations.

The poller keeps scheduling new tasks even though all the threads are blocked waiting for either a new
message to arrive, or the timeout to expire. Given that there are 20 threads executing tasks with a 5
second timeout, they will be executed at a rate of 4 per second (5000/20 = 250ms). But, new tasks are

Spring Integration
3.0.5.RELEASE Reference Manual 99

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-Spring-config

Spring Integration

being scheduled at a rate of 20 per second, so the internal queue in the task executor will grow at a rate
of 16 per second (while the process is idle), so we essentially have a memory leak.

One of the ways to handle this is to set the queue- capaci ty attribute of the Task Executor to O.
You can also manage it by specifying what to do with messages that can not be queued by setting the
rej ection-pol i cy attribute of the Task Executor (e.g., DISCARD). In other words there are certain
details you must understand with regard to configuring the TaskExecutor. Please refer to - Section 25 -
Task Execution and Scheduling of the Spring reference manual for more detail on the subject.

Endpoint Inner Beans

Many endpoints are composite beans; this includes all consumers and all polled inbound channel
adapters. Consumers (polled or event- driven) delegate to a MessageHandl er; polled adapters
obtain messages by delegating to a MessageSour ce. Often, it is useful to obtain a reference to the
delegate bean, perhaps to change configuration at runtime, or for testing. These beans can be obtained
from the Appl i cati onCont ext with well-known names. MessageHandl er s are registered with the
application context with a bean id soneConsuner . handl er (where 'consumer' is the endpoint's i d
attribute). MessageSour ces are registered with a bean id sonePol | edAdapt er . sour ce, again
where 'somePolledAdapter’ is the id of the adapter.

7.2 Messaging Gateways

The primary purpose of a Gateway is to hide the messaging API provided by Spring Integration. It allows
your application's business logic to be completely unaware of the Spring Integration APl and using a
generic Gateway, your code interacts instead with a simple interface, only.

Enter the GatewayProxyFactoryBean

As mentioned above, it would be great to have no dependency on the Spring Integration
APl at all - including the gateway class. For that reason, Spring Integration provides the
Gat ewayPr oxyFact or yBean that generates a proxy for any interface and internally invokes the
gateway methods shown below. Using dependency injection you can then expose the interface to your
business methods.

Here is an example of an interface that can be used to interact with Spring Integration:

package org.cafeteria;
public interface Cafe {

voi d pl aceOrder (Order order);

Gateway XML Namespace Support

Namespace support is also provided which allows you to configure such an interface as a service as
demonstrated by the following example.

<i nt: gat eway i d="cafeService"
service-interface="org.cafeteria. Cafe"
def aul t - request - channel ="r equest Channel "
def aul t -repl y- channel ="r epl yChannel "/ >

Spring Integration
3.0.5.RELEASE Reference Manual 100

Spring Integration

With this configuration defined, the "cafeService" can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the Spring
Integration API. The general approach is similar to that of Spring Remoting (RMI, Httpinvoker, etc.). See
the "Samples" Appendix for an example that uses this "gateway" element (in the Cafe demao).

Setting the Default Reply Channel

Typically you don't have to specify the def aul t - r epl y- channel , since a Gateway will auto-create
a temporary, anonymous reply channel, where it will listen for the reply. However, there are some
cases which may prompt you to define adef aul t - r epl y- channel (orr epl y- channel with adapter
gateways such as HTTP, JMS, etc.).

For some background, we'll quickly discuss some of the inner-workings of the Gateway. A Gateway
will create a temporary point-to-point reply channel which is anonymous and is added to the Message
Headers with the name repl yChannel . When providing an explicit def aul t - r epl y- channel
(repl y- channel with remote adapter gateways), you have the option to point to a publish-subscribe
channel, which is so named because you can add more than one subscriber to it. Internally Spring
Integration will create a Bridge between the temporary r epl yChannel and the explicitly defined
def aul t-repl y- channel .

So let's say you want your reply to go not only to the gateway, but also to some other consumer. In
this case you would want two things: a) a named channel you can subscribe to and b) that channel
is a publish-subscribe-channel. The default strategy used by the gateway will not satisfy those needs,
because the reply channel added to the header is anonymous and point-to-point. This means that no
other subscriber can get a handle to it and even if it could, the channel has point-to-point behavior such
that only one subscriber would get the Message. So by defining a def aul t - r epl y- channel you can
point to a channel of your choosing, which in this case would be a publ i sh- subscri be- channel .
The Gateway would create a bridge from it to the temporary, anonymous reply channel that is stored
in the header.

Another case where you might want to provide a reply channel explicitly is for monitoring or auditing via
an interceptor (e.g., wiretap). You need a named channel in order to configure a Channel Interceptor.

Gateway Configuration with Annotations and/or XML
The reason that the attributes on the 'gateway’ element are named 'default-request-channel’ and 'default-

reply-channel' is that you may also provide per-method channel references by using the @zt eway
annotation.

public interface Cafe {

@zat eway (request Channel =" or ders")
voi d pl aceOrder (Order order);

You may alternatively provide such content in met hod sub-elements if you prefer XML configuration
(see the next paragraph).

It is also possible to pass values to be interpreted as Message headers on the Message that is created
and sent to the request channel by using the @Header annotation:

Spring Integration
3.0.5.RELEASE Reference Manual 101

Spring Integration

public interface FileWiter {

@zat eway(request Channel ="fil esCut")
void wite(byte[] content, @eader(FileHeaders. FI LENAVE) String fil enane);

If you prefer the XML approach of configuring Gateway methods, you can provide method sub-elements
to the gateway configuration.

<i nt:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat eway"

def aul t -request - channel ="i nput C' >
<int:defaul t-header name="cal | edMet hod" expressi on="#gat ewayMet hod. nane"/ >
<i nt:nethod nanme="echo" request-channel ="input A" reply-timeout="2" request-
ti meout ="200"/>
<i nt:nethod nanme="echoUpper Case" request-channel ="i nputB"/>

<i nt:net hod name="echoVi aDefaul t"/>
</int:gat eway>

You can also provide individual headers per method invocation via XML. This could be very useful if
the headers you want to set are static in nature and you don't want to embed them in the gateway's
method signature via @Header annotations. For example, in the Loan Broker example we want to
influence how aggregation of the Loan quotes will be done based on what type of request was initiated
(single quote or all quotes). Determining the type of the request by evaluating what gateway method
was invoked, although possible, would violate the separation of concerns paradigm (the method is a
java artifact), but expressing your intention (meta information) via Message headers is natural in a
Messaging architecture.

<i nt:gat eway id="|oanBroker Gat eway"
servi ce-interface="org. springframework.integration.| oanbroker.LoanBroker Gat enay" >
<int:nethod name="get LoanQuot e" request-channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE TYPE" val ue="BEST"/>
</int: net hod>
<int:nethod name="get Al | LoanQuot es" request-channel ="| oanBr oker PrePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE TYPE" val ue="ALL"/>
</int: net hod>
</int:gat eway>

In the above case you can clearly see how a different value will be set for the 'RESPONSE_TYPE'
header based on the gateway's method.

Expressions and "Global" Headers

The <header/ > element supports expr essi on as an alternative to val ue. The SpEL expression is
evaluated to determine the value of the header. There is no #r oot object but the following variables
are available:

» #args - an Qbj ect [] containing the method arguments

» #gatewayMethod - the j ava. r ef | ect . Met hod object representing the method in the servi ce-
i nterface that was invoked. A header containing this variable can be used later in the flow, for
example, for routing. For example, if you wish to route on the simple method name, you might add
a header, with expression #gat ewayMet hod. nane.

Spring Integration
3.0.5.RELEASE Reference Manual 102

Spring Integration

© Note

Thej ava. refl ect. Met hod is not serializable; a header with expression #gat eway Met hod
will be lost if you later serialize the message. So, you may wish to use
#gat ewayMet hod. name or #gatewayMethod.toString() in those cases; the
toSt ri ng() method provides a String representation of the method, including parameter and
return types.

© Note

Prior to 3.0, the #net hod variable was available, representing the method name only. This is
still available, but deprecated; use #gat ewayMet hod. nane instead.

Since 3.0, <def aul t - header/ >s can be defined to add headers to all messages produced by the
gateway, regardless of the method invoked. Specific headers defined for a method take precedence
over default headers. Specific headers defined for a method here will override any @deader annotations
in the service interface. However, default headers will NOT override any @Header annotations in the
service interface.

The gateway now also supports a def aul t - payl oad- expr essi on which will be applied for all
methods (unless overridden).

Mapping Method Arguments to a Message

Using the configuration techniques in the previous section allows control of how method arguments are
mapped to message elements (payload and header(s)). When no explicit configuration is used, certain
conventions are used to perform the mapping. In some cases, these conventions cannot determine
which argument is the payload and which should be mapped to headers.

public String sendl(Qnoject foo, Map bar);

public String send2(Map foo, Map bar);

In the first case, the convention will map the first argument to the payload (as long as it is not a Map)
and the contents of the second become headers.

In the second case (or the first when the argument for parameter f 0o is a Map), the framework cannot
determine which argument should be the payload; mapping will fail. This can generally be resolved
using a pay! oad- expr essi on, a @ayl oad annotation and/or a @Header s annotation.

Alternatively, and whenever the conventions break down, you can take the entire responsibility for
mapping the method calls to messages. To do this, implement an Met hodAr gsMessageMapper and
provide it to the <gat eway/ > using the mapper attribute. The mapper maps a Met hodAr gsHol der,
which is a simple class wrapping the j ava. r ef | ect . Met hod instance and an Cbj ect[] containing
the arguments. When providing a custom mapper, the def aul t - payl oad- expr essi on attribute and
<def aul t - header / > elements are not allowed on the gateway; similarly, the payl oad- expr essi on
attribute and <header / > elements are not allowed on any <net hod/ > elements.

Invoking No-Argument Methods

When invoking methods on a Gateway interface that do not have any arguments, the default behavior
is to receive a Message from a Pol | abl eChannel .

Spring Integration
3.0.5.RELEASE Reference Manual 103

Spring Integration

At times however, you may want to trigger no-argument methods so that you can in fact interact
with other components downstream that do not require user-provided parameters, e.g. triggering no-
argument SQL calls or Stored Procedures.

In order to achieve send-and-receive semantics, you must provide a payload. In order to generate a
payload, method parameters on the interface are not necessary. You can either use the @&ayl oad
annotation or the payl oad- expr essi on attribute in XML on the net hod sub-element. Below please
find a few examples of what the payloads could be:

* aliteral string

» #method (for the method name)

* new java.util.Date()

» @someBean.someMethod()'s return value

Here is an example using the @ay| oad annotation:
public interface Cafe {

@rayl oad("new java.util.Date()")
Li st<Order> retrieveCOpenOrders();

If a method has no argument and no return value, but does contain a payload expression, it will be
treated as a send-only operation.

Error Handling

Of course, the Gateway invocation might result in errors. By default any error that has occurred
downstream will be re-thrown as a Messagi ngExcept i on (RuntimeException) upon the Gateway's
method invocation. However there are times when you may want to simply log the error rather than
propagating it, or you may want to treat an Exception as a valid reply, by mapping it to a Message that will
conform to some "error message" contract that the caller understands. To accomplish this, our Gateway
provides support for a Message Channel dedicated to the errors via the error-channel attribute. In the
example below, you can see that a 'transformer' is used to create a reply Message from the Exception.

<i nt:gateway id="sanpl eGat enay"
def aul t - request - channel =" gat ewayChannel "
servi ce-interface="foo. bar. Si npl eGat eway"
error-channel ="excepti onTransf or mat i onChannel "/ >

<int:transforner input-channel ="exceptionTransfornati onChannel "
ref ="exceptionTransformer" nethod="creat eError Response"/ >

The exceptionTransformer could be a simple POJO that knows how to create the expected error
response objects. That would then be the payload that is sent back to the caller. Obviously, you could
do many more elaborate things in such an "error flow" if necessary. It might involve routers (including
Spring Integration's ErrorMessageExceptionTypeRouter), filters, and so on. Most of the time, a simple
‘transformer’ should be sufficient, however.

Alternatively, you might want to only log the Exception (or send it somewhere asynchronously). If you
provide a one-way flow, then nothing would be sent back to the caller. In the case that you want to
completely suppress Exceptions, you can provide a reference to the global "nullChannel" (essentially

Spring Integration
3.0.5.RELEASE Reference Manual 104

Spring Integration

a /dev/null approach). Finally, as mentioned above, if no "error-channel" is defined at all, then the
Exceptions will propagate as usual.

©® Important

Exposing the messaging system via simple POJI Gateways obviously provides benefits, but
"hiding" the reality of the underlying messaging system does come at a price so there are
certain things you should consider. We want our Java method to return as quickly as possible
and not hang for an indefinite amount of time while the caller is waiting on it to return (void,
return value, or a thrown Exception). When regular methods are used as a proxies in front of
the Messaging system, we have to take into account the potentially asynchronous nature of
the underlying messaging. This means that there might be a chance that a Message that was
initiated by a Gateway could be dropped by a Filter, thus never reaching a component that is
responsible for producing a reply. Some Service Activator method might result in an Exception,
thus providing no reply (as we don't generate Null messages). So as you can see there are
multiple scenarios where a reply message might not be coming. That is perfectly natural in
messaging systems. However think about the implication on the gateway method. The Gateway's
method input arguments were incorporated into a Message and sent downstream. The reply
Message would be converted to a return value of the Gateway's method. So you might want to
ensure that for each Gateway call there will always be a reply Message. Otherwise, your Gateway
method might never return and will hang indefinitely. One of the ways of handling this situation
is via an Asynchronous Gateway (explained later in this section). Another way of handling it is to
explicitly set the reply-timeout attribute. That way, the gateway will not hang any longer than the
time specified by the reply-timeout and will return 'null’ if that timeout does elapse. Finally, you
might want to consider setting downstream flags such as 'requires-reply' on a service-activator
or 'throw-exceptions-on-rejection’ on a filter. These options will be discussed in more detail in
the final section of this chapter.

Asynchronous Gateway

As a pattern the Messaging Gateway is a very nice way to hide messaging-specific code
while still exposing the full capabilities of the messaging system. As you've seen, the
Gat ewayPr oxyFact or yBean provides a convenient way to expose a Proxy over a service-interface
thus giving you POJO-based access to a messaging system (based on objects in your own domain, or
primitives/Strings, etc). But when a gateway is exposed via simple POJO methods which return values
it does imply that for each Request message (generated when the method is invoked) there must be
a Reply message (generated when the method has returned). Since Messaging systems naturally are
asynchronous you may not always be able to guarantee the contract where "for each request there will
always be be a reply". With Spring Integration 2.0 we are introducing support for an Asynchronous
Gateway which is a convenient way to initiate flows where you may not know if a reply is expected or
how long will it take for replies to arrive.

A natural way to handle these types of scenarios in Java would be relying upon
java.util.concurrent.Future instances, and that is exactly what Spring Integration uses to support an
Asynchronous Gateway.

From the XML configuration, there is nothing different and you still define Asynchronous Gateway the
same way as a regular Gateway.

<i nt: gat eway i d="nmat hhServi ce"
servi ce-

i nterface="org.springfranework.integration.sanpl e.gateway. futures. Mat hServi ceGat eway"
def aul t -request - channel ="r equest Channel "/ >

Spring Integration
3.0.5.RELEASE Reference Manual 105

Spring Integration

However the Gateway Interface (service-interface) is a bit different.

public interface MathServiceGateway {
Fut ure<lnteger> nul tiplyByTwo(int i);

}

As you can see from the example above the return type for the gateway method is a Future.
When Gat ewayPr oxyFact or yBean sees that the return type of the gateway method is a Fut ur e,
it immediately switches to the async mode by utilizing an AsyncTaskExecut or. That is all. The call
to such a method always returns immediately with a Fut ur e instance. Then, you can interact with the
Fut ur e at your own pace to get the result, cancel, etc. And, as with any other use of Future instances,
calling get() may reveal a timeout, an execution exception, and so on.

Mat hServi ceGat eway mat hServi ce = ac. get Bean(" mat hServi ce", MathServi ceGat eway. cl ass) ;
Future<l nteger> result = mathService. nultipl yByTwo(nunber);

/'l do sonething el se here since the reply m ght take a nonent

int final Result = result.get (1000, Ti meUnit.SECONDS);

For a more detailed example, please refer to the async-gateway sample distributed within the Spring
Integration samples.

Asynchronous Gateway and AsyncTaskExecutor

By default Gat ewayPr oxyFact or yBean uses
org. spri ngframework. core. task. Si npl eAsyncTaskExecut or when submitting internal
Asyncl nvocat i onTask instances for any gateway method whose return type is Fut ure. cl ass.
However the async- execut or attribute in the <gat eway/ > element's configuration allows you to
provide a reference to any implementation of j ava. uti | . concurrent. Execut or available within
the Spring application context.

Gateway behavior when no response arrives

As it was explained earlier, the Gateway provides a convenient way of interacting with a Messaging
system via POJO method invocations, but realizing that a typical method invocation, which is generally
expected to always return (even with an Exception), might not always map one-to-one to message
exchanges (e.g., a reply message might not arrive - which is equivalent to a method not returning). It is
important to go over several scenarios especially in the Sync Gateway case and understand the default
behavior of the Gateway and how to deal with these scenarios to make the Sync Gateway behavior
more predictable regardless of the outcome of the message flow that was initialed from such Gateway.

There are certain attributes that could be configured to make Sync Gateway behavior more predictable,
but some of them might not always work as you might have expected. One of them is reply-timeout.
So, lets look at the reply-timeout attribute and see how it can/can't influence the behavior of the Sync
Gateway in various scenarios. We will look at single-threaded scenario (all components downstream are
connected via Direct Channel) and multi-threaded scenarios (e.g., somewhere downstream you may
have Pollable or Executor Channel which breaks single-thread boundary)

Long running process downstream

Sync Gateway - single-threaded. If a component downstream is still running (e.g., infinite loop or a
very slow service), then setting a reply-timeout has no effect and the Gateway method call will not
return until such downstream service exits (via return or exception). Sync Gateway - multi-threaded. If
a component downstream is still running (e.g., infinite loop or a very slow service), in a multi-threaded
message flow setting the reply-timeout will have an effect by allowing gateway method invocation to

Spring Integration
3.0.5.RELEASE Reference Manual 106

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate/async-gateway

Spring Integration

return once the timeout has been reached, since the Gat ewayPr oxyFact or yBean will simply poll on
the reply channel waiting for a message until the timeout expires. However it could result in a 'null’ return
from the Gateway method if the timeout has been reached before the actual reply was produced. It is
also important to understand that the reply message (if produced) will be sent to a reply channel after
the Gateway method invocation might have returned, so you must be aware of that and design your
flow with this in mind.

Downstream component returns 'null’

Sync Gateway - single-threaded. If a component downstream returns 'null' and no reply-timeout has
been configured, the Gateway method call will hang indefinitely unless: a) a reply-timeout has been
configured or b) the requires-reply attribute has been set on the downstream component (e.g., service-
activator) that might return 'null'. In this case, an Exception would be thrown and propagated to the
Gateway. Sync Gateway - multi-threaded. Behavior is the same as above.

Downstream component return signature is 'void' while Gateway method signature is non-void

Sync Gateway - single-threaded. If a component downstream returns 'void' and no reply-timeout has
been configured, the Gateway method call will hang indefinitely unless a reply-timeout has been
configured Sync Gateway - multi-threaded Behavior is the same as above.

Downstream component results in Runtime Exception (regardless of the method signature)

Sync Gateway - single-threaded. If a component downstream throws a Runtime Exception, such
exception will be propagated via an Error Message back to the gateway and re-thrown. Sync Gateway
- multi-threaded Behavior is the same as above.

©® Important

It is also important to understand that by default reply-timeout is unbounded* which means
that if not explicitly set there are several scenarios (described above) where your Gateway
method invocation might hang indefinitely. So, make sure you analyze your flow and if there
is even a remote possibility of one of these scenarios to occur, set the reply-timeout attribute
to a 'safe' value or, even better, set the requires-reply attribute of the downstream component
to 'true' to ensure a timely response as produced by the throwing of an Exception as soon as
that downstream component does return null internally. But also, realize that there are some
scenarios (see the very first one) where reply-timeout will not help. That means it is also important
to analyze your message flow and decide when to use a Sync Gateway vs an Async Gateway.
As you've seen the latter case is simply a matter of defining Gateway methods that return Future
instances. Then, you are guaranteed to receive that return value, and you will have more granular
control over the results of the invocation.

Also, when dealing with a Router you should remember that setting the resolution-required
attribute to 'true' will result in an Exception thrown by the router if it can not resolve a particular
channel. Likewise, when dealing with a Filter, you can set the throw-exception-on-rejection
attribute. In both of these cases, the resulting flow will behave like that containing a service-
activator with the 'requires-reply’ attribute. In other words, it will help to ensure a timely response
from the Gateway method invocation.

@ Note

* reply-timeout is unbounded for <gateway/> elements (created by the
GatewayProxyFactoryBean). Inbound gateways for external integration (ws, http, etc.) share

Spring Integration
3.0.5.RELEASE Reference Manual 107

Spring Integration

many characteristics and attributes with these gateways. However, for those inbound gateways,
the default reply-timeout is 1000 milliseconds (1 second). If a downstream async handoff is made
to another thread, you may need to increase this attribute to allow enough time for the flow to
complete before the gateway times out.

7.3 Service Activator

Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel
so that it may play the role of a service. If the service produces output, it may also be connected to an
output channel. Alternatively, an output producing service may be located at the end of a processing
pipeline or message flow in which case, the inbound Message's "replyChannel" header can be used.
This is the default behavior if no output channel is defined, and as with most of the configuration options
you'll see here, the same behavior actually applies for most of the other components we have seen.

Configuring Service Activator

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref'
attributes:

<int:service-activator input-channel="exanpl eChannel" ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated
with the @ServiceActivator annotation or that it contains only one public method at all. To delegate to
an explicitly defined method of any object, simply add the "method" attribute.

<int:service-activator input-channel ="exanpl eChannel " ref="sonePoj 0" nethod="someMet hod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<int:service-activator input-channel ="exanpl eChannel" out put-channel ="repl yChannel "
ref ="somePoj 0" net hod="soneMet hod"/ >

If no "output-channel" is available, it will then check the Message's r epl yChannel header value. If
that value is available, it will then check its type. If it is a MessageChannel , the reply message will be
sent to that channel. If it is a St ri ng, then the endpoint will attempt to resolve the channel name to a
channel instance. If the channel cannot be resolved, then a Channel Resol uti onExcepti on will be
thrown. It it can be resolved, the Message will be sent there. This is the technique used for Request
Reply messaging in Spring Integration, and it is also an example of the Return Address pattern.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then
it will be assumed that it is a Message payload, which will be extracted from the message and injected
into such service method. This is generally the recommended approach as it follows and promotes a
POJO model when working with Spring Integration. Arguments may also have @Header or @Headers
annotations as described in Section F.5, “Annotation Support”

© Note

The service method is not required to have any arguments at all, which means you can implement
event-style Service Activators, where all you care about is an invocation of the service method,

Spring Integration
3.0.5.RELEASE Reference Manual 108

Spring Integration

not worrying about the contents of the message. Think of it as a NULL JMS message. An example
use-case for such an implementation could be a simple counter/monitor of messages deposited
on the input channel.

Using a "ref" attribute is generally recommended if the custom Service Activator handler implementation
can be reused in other <servi ce- act i vat or > definitions. However if the custom Service Activator
handler implementation is only used within a single definition of the <ser vi ce- act i vat or >, you can
provide an inner bean definition:

<int:service-activator id="exanpl eServiceActivator" input-channel ="i nChannel "
out put - channel = "out Channel " met hod="f oo" >
<beans: bean cl ass="org. f oo. Exanpl eSer vi ceActivator"/>
</int:service-activator>

© Note

Using both the "ref" attribute and an inner handler definition in the same <servi ce-
act i vat or > configuration is not allowed, as it creates an ambiguous condition and will result
in an Exception being thrown.

Service Activators and the Spring Expression Language (SpEL)

Since Spring Integration 2.0, Service Activators can also benefit from SpEL (http:/
static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html).

For example, you may now invoke any bean method without pointing to the bean via a r ef attribute or
including it as an inner bean definition. For example:

<int:service-activator input-channel="in" out put-channel =" out"
expressi on="@ccount Servi ce. processAccount (payl oad, headers.accountld)"/>

<bean i d="account Servi ce" cl ass="foo. bar. Account"/>

In the above configuration instead of injecting 'accountService' using a r ef or as an inner bean, we
are simply using SpEL's @eanl d notation and invoking a method which takes a type compatible with
Message payload. We are also passing a header value. As you can see, any valid SpEL expression
can be evaluated against any content in the Message. For simple scenarios your Service Activators do
not even have to reference a bean if all logic can be encapsulated by such an expression.

<int:service-activator input-channel="in" output-channel ="out" expression="payload * 2"/>

In the above configuration our service logic is to simply multiply the payload value by 2, and SpEL lets
us handle it relatively easy.

7.4 Delayer

Introduction

A Delayer is a simple endpoint that allows a Message flow to be delayed by a certain interval. When a
Message is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled
with an instance of or g. spri ngf ramewor k. schedul i ng. TaskSchedul er to be sent to the output
channel after the delay has passed. This approach is scalable even for rather long delays, since it does
not result in a large number of blocked sender Threads. On the contrary, in the typical case a thread pool
will be used for the actual execution of releasing the Messages. Below you will find several examples
of configuring a Delayer.

Spring Integration
3.0.5.RELEASE Reference Manual 109

Spring Integration

Configuring Delayer

The <del ayer > element is used to delay the Message flow between two Message Channels. As
with the other endpoints, you can provide the 'input-channel’ and 'output-channel' attributes, but the
delayer also has 'default-delay' and 'expression’ attributes (and 'expression’ sub-element) that are used
to determine the number of milliseconds that each Message should be delayed. The following delays
all messages by 3 seconds:

<int:del ayer id="del ayer" input-channel ="input"
def aul t - del ay="3000" out put - channel =" out put"/>

If you need per-Message determination of the delay, then you can also provide the SpEL expression
using the 'expression' attribute:

<int:delayer id="delayer" input-channel ="input" output-channel ="out put"
def aul t - del ay="3000" expressi on="headers['delay']"/>

In the example above, the 3 second delay would only apply when the expression evaluates to null for
a given inbound Message. If you only want to apply a delay to Messages that have a valid result of the
expression evaluation, then you can use a 'default-delay' of O (the default). For any Message that has
a delay of 0 (or less), the Message will be sent immediately, on the calling Thread.

@ Tip

The delay handler supports expression evaluation results that represent an interval in
milliseconds (any Object whose t oSt ri ng() method produces a value that can be parsed
into a Long) as well as j ava. uti | . Dat e instances representing an absolute time. In the first
case, the milliseconds will be counted from the current time (e.g. a value of 5000 would delay
the Message for at least 5 seconds from the time it is received by the Delayer). With a Date
instance, the Message will not be released until the time represented by that Date object. In
either case, a value that equates to a non-positive delay, or a Date in the past, will not result in
any delay. Instead, it will be sent directly to the output channel on the original sender's Thread.
If the expression evaluation result is not a Date, and can not be parsed as a Long, the default
delay (if any) will be applied.

© Important

The expression evaluation may throw an evaluation Exception for various reasons, including
an invalid expression, or other conditions. By default, such exceptions are ignored (logged at
DEBUG level) and the delayer falls back to the default delay (if any). You can modify this behavior
by setting the i gnor e- expr essi on- f ai | ur es attribute. By default this attribute is settot r ue
and the Delayer behavior is as described above. However, if you wish to not ignore expression
evaluation exceptions, and throw them to the delayer's caller, set the i gnor e- expr essi on-
fail ures attribute to f al se.

@ Tip
Notice in the example above that the delay expression is specified as header s[' del ay'] . This
is the SpEL | ndexer syntax to access a Map element (MessageHeader s implements Map),
it invokes: header s. get (" del ay") . For simple map element names (that do not contain ".")
you can also use the SpEL dot accessor syntax, where the above header expression can be
specified as header s. del ay. But, different results are achieved if the header is missing. In the
first case, the expression will evaluate to nul | ; the second will result in something like:

Spring Integration
3.0.5.RELEASE Reference Manual 110

Spring Integration

org. spri ngframewor k. expr essi on. spel . Spel Eval uati onExcepti on: EL1008E: (pos 8):
Field or property 'delay' cannot be found on object of
type 'org.springfranmework.integration. MessageHeaders

So, if there is a possibility of the header being omitted, and you want to fall back to the default
delay, it is generally more efficient (and recommended) to use the Indexer syntax instead of dot
property accessor syntax, because detecting the null is faster than catching an exception.

The delayer delegates to an instance of Spring's TaskSchedul er abstraction. The default scheduler
used by the delayer is the Thr eadPool TaskSchedul er instance provided by Spring Integration on
startup: Section F.3, “Configuring the Task Scheduler”. If you want to delegate to a different scheduler,
you can provide a reference through the delayer element's 'scheduler' attribute:

<int:del ayer id="del ayer" input-channel="input" out put-channel =" out put "
expr essi on="header s. del ay"
schedul er =" exanpl eTaskSchedul er "/ >

<t ask: schedul er id="exanpl eTaskSchedul er" pool -si ze="3"/>

O Tip

If you configure an external Thr eadPool TaskSchedul er you can set on this scheduler
property wai t For TasksToConpl et eOnShut down = t r ue. It allows successful completion of
‘delay' tasks, which already in the execution state (releasing the Message), when the application
is shutdown. Before Spring Integration 2.2 this property was available on the <del ayer >
element, because Del ayHandl er could create its own scheduler on the background. Since 2.2
delayer requires an external scheduler instance and wai t For TasksToConpl et eOnShut down
was deleted; you should use the scheduler's own configuration.

Q@ Tip

Also keep in mind Thr eadPool TaskSchedul er has a property
error Handl er which can be injected with some implementation of
org.springframework. util.ErrorHandl er. This handler allows to process an
Exception from the thread of the scheduled task sending the delayed message.
By default it uses an org.springfranmework.scheduling. support. TaskUtils
$Loggi ngEr r or Handl er and you will see a stack trace
in the logs. You might want to consider using an
org. springframework. i ntegration. channel . MessagePubl i shi ngErr or Handl er,
which sends an Error Message into an error-channel , either from the failed Message's
header or into the default er r or - channel .

Delayer and Message Store

The Del ayHandl er persists delayed Messages into the Message Group in the provided
MessagesSt or e. (The 'groupld’ is based on required 'id" attribute of <del ayer > element.) A delayed
message is removed from the MessageSt or e by the scheduled task just before the Del ayHandl er
sends the Message to the out put - channel . If the provided MessageSt or e is persistent (e.g.
JdbcMessagesSt or e) it provides the ability to not lose Messages on the application shutdown.
After application startup, the Del ayHandl er reads Messages from its Message Group in the
MessagesSt or e and reschedules them with a delay based on the original arrival time of the Message
(if the delay is numeric). For messages where the delay header was a Dat e, that is used when
rescheduling. If a delayed Message remained in the MessageSt or e more than its 'delay’, it will be sent
immediately after startup.

Spring Integration
3.0.5.RELEASE Reference Manual 111

Spring Integration

The <del ayer> can be enriched with mutually exclusive sub-elements <transactional >
or <advi ce-chain> The List of these AOP Advices is applied to the proxied internal
Del ayHandl er . Rel easeMessageHandl er, which has the responsibility to release the Message,
after the delay, on a Thr ead of the scheduled task. It might be used, for example, when the downstream
message flow throws an Exception and the Rel easeMessageHand! er's transaction will be rolled
back. In this case the delayed Message will remain in the persistent MessagesSt or e. You can use any
custom or g. aopal | i ance. aop. Advi ce implementation within the <advi ce- chai n>. A sample
configuration of the <del ayer > may look like this:

<int:delayer id="delayer" input-channel ="input" output-channel ="out put"
expressi on="header s. del ay"
message- st ore="j dbcMessageSt ore" >
<i nt:advi ce-chai n>
<beans: ref bean="customAdvi ceBean"/>
<t x: advi ce>
<tx:attributes>
<t x: net hod name="*" read-only="true"/>
</[tx:attributes>
</tx: advi ce>
</int:advi ce-chai n>
</int:del ayer>

The Del ayHandl er can be exported as a JMX MBean with managed operations
get Del ayedMessageCount and r eschedul ePer si st edMessages, which allows the rescheduling
of delayed persisted Messages at runtime, for example, if the TaskSchedul er has previously been
stopped. These operations can be invoked via a Cont rol Bus command:

Message<Stri ng> del ayer Reschedul i ngMessage =

MessageBui | der. wi t hPayl oad(" @ del ayer . handl er' . reschedul ePer si st edMessages()"). bui I d();
control BusChannel . send(del ayer Reschedul i ngMessage) ;

@ Note

For more information regarding the Message Store, JMX and the Control Bus, please read
Chapter 8, System Management.

7.5 Scripting support

With Spring Integration 2.1 we've added support for the JSR223 Scripting for Java specification,
introduced in Java version 6. This allows you to use scripts written in any supported language including
Ruby/JRuby, Javascript and Groovy to provide the logic for various integration components similar to
the way the Spring Expression Language (SpEL) is used in Spring Integration. For more information
about JSR223 please refer to the documentation

© Important
Note that this feature requires Java 6 or higher. Sun developed a JSR223 reference
implementation which works with Java 5 but it is not officially supported and we have not tested
it with Spring Integration.

In order to use a JVM scripting language, a JSR223 implementation for that language must be included
in your class path. Java 6 natively supports Javascript. The Groovy and JRuby projects provide JSR233
support in their standard distribution. Other language implementations may be available or under
development. Please refer to the appropriate project website for more information.

Spring Integration
3.0.5.RELEASE Reference Manual 112

http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://groovy.codehaus.org
http://jruby.org/

Spring Integration

© Important

Various JSR223 language implementations have been developed by third parties. A particular
implementation's compatibility with Spring Integration depends on how well it conforms to the
specification and/or the implementer's interpretation of the specification.

Q@ Tip
If you plan to use Groovy as your scripting language, we recommended you use Section 7.6,

“Groovy support” as it offers additional features specific to Groovy. However you will find this
section relevant as well.

Script configuration

Depending on the complexity of your integration requirements scripts may be provided inline as CDATA
in XML configuration or as a reference to a Spring resource containing the script. To enable scripting
support Spring Integration defines a Scri pt Execut i ngMessagePr ocessor which will bind the
Message Payload to a variable named payl oad and the Message Headers to a header s variable,
both accessible within the script execution context. All that is left for you to do is write a script that uses
these variables. Below are a couple of sample configurations:

Filter

<int:filter input-channel ="referencedScriptlnput">
<int-script:script lang="ruby" |ocation="sone/path/to/ruby/script/RubyFilterTests.rb"/>
</int:filter>

<int:filter input-channel="inlineScriptlnput">
<int-script:script |ang="groovy">
<! [CDATA[
return payl oad == ' good

11>
</int-script:script>
</int:filter>

Here, you see that the script can be included inline or can reference a resource location via the
| ocat i on attribute. Additionally the | ang attribute corresponds to the language name (or JSR223 alias)

Other Spring Integration endpoint elements which support scripting include router, service-activator,
transformer, and splitter. The scripting configuration in each case would be identical to the above
(besides the endpoint element).

Another useful feature of Scripting support is the ability to update (reload) scripts without having to
restart the Application Context. To accomplish this, specify the r ef r esh- check- del ay attribute on
the script element:

<int-script:script |location="..." refresh-check-del ay="5000"/>

In the above example, the script location will be checked for updates every 5 seconds. If the script is
updated, any invocation that occurs later than 5 seconds since the update will result in execution of
the new script.

<int-script:script location="..." refresh-check-del ay="0"/>

In the above example the context will be updated with any script modifications as soon as such
modification occurs, providing a simple mechanism for 'real-time' configuration. Any negative number
value means the script will not be reloaded after initialization of the application context. This is the default
behavior.

Spring Integration
3.0.5.RELEASE Reference Manual 113

Spring Integration

© Important

Inline scripts can not be reloaded.

<int-script:script location="..." refresh-check-del ay="-1"/>

Script variable bindings

Variable bindings are required to enable the script to reference variables externally provided to the
script's execution context. As we have seen, payl oad and header s are used as binding variables by
default. You can bind additional variables to a script via <var i abl e> sub-elements:

<script:script lang="js" |ocation="fool/bar/MScript.js">
<scri pt:variabl e name="f 00" val ue="fo00"/>
<script:variabl e name="bar" val ue="bar"/>
<script:variabl e name="date" ref="date"/>
</script:script>

As shown in the above example, you can bind a script variable either to a scalar value or a Spring bean
reference. Note that payl oad and header s will still be included as binding variables.

With Spring Integration 3.0, in addition to the vari abl e sub-element, the vari abl es attribute has
been introduced. This attribute and vari abl e sub-elements aren't mutually exclusive and you can
combine them within one scri pt component. However variables must be unique, regardless of where
they are defined. Also, since Spring Integration 3.0, variable bindings are allowed for inline scripts too:

<servi ce-activator input-channel="input">
<script:script lang="ruby" vari abl es="fo00=FOO, date-ref=dat eBean">
<scri pt:variabl e name="bar" ref="barBean"/>
<scri pt:variabl e name="baz" val ue="bar"/>
<! [CDATA[
payl oad. foo = foo
payl oad. date = date
payl oad. bar = bar
payl oad. baz = baz
payl oad
11>
</script:script>
</ servi ce-activator>

The example above shows a combination of an inline script, a vari abl e sub-element and a
vari abl es attribute. The vari abl es attribute is a comma-separated value, where each segment
contains an '=' separated pair of the variable and its value. The variable name can be suffixed with -
r ef ,asinthe dat e- r ef variable above. That means that the binding variable will have the name dat e,
but the value will be a reference to the dat eBean bean from the application context. This may be useful
when using Property Placeholder Configuration or command line arguments.

If you need more control over how variables are generated, you can implement your own Java class
using the Scri pt Var i abl eGener at or strategy:

public interface ScriptVariabl eGenerator {

Map<String, Object> generateScriptVariabl es(Message<?> nessage) ;

}

This interface requires you to implement the method gener at eScri pt Vari abl es(Message) . The
Message argument allows you to access any data available in the Message payload and headers and
the return value is the Map of bound variables. This method will be called every time the script is executed

Spring Integration
3.0.5.RELEASE Reference Manual 114

Spring Integration

for a Message. All you need to do is provide an implementation of Scri pt Vari abl eGener at or and
reference it with the scri pt - vari abl e- gener at or attribute:

<int-script:script |ocation="fool/bar/MScript.groovy"
scri pt-vari abl e- generat or ="vari abl eGenerator"/ >

<bean id="vari abl eGenerator" class="foo.bar. WScri ptVari abl eGenerator"/>

If a script-variabl e-generator is not provided, script components use
org. springframework.integration.scripting.DefaultScriptVariabl eGenerator,
which merges any provided <var i abl e>s with payload and headers variables from the Message in
its gener at eScri pt Vari abl es(Message) method.

© Important

You cannot provide both the scri pt - vari abl e- gener at or attribute and <var i abl e> sub-
element(s) as they are mutually exclusive.

7.6 Groovy support

In Spring Integration 2.0 we added Groovy support allowing you to use the Groovy scripting language to
provide the logic for various integration components similar to the way the Spring Expression Language
(SpEL) is supported for routing, transformation and other integration concerns. For more information
about Groovy please refer to the Groovy documentation which you can find on the project website

Groovy configuration

With Spring Integration 2.1, Groovy Support's configuration namespace is an extension of Spring
Integration's Scripting Support and shares the core configuration and behavior described in detail in
the Section 7.5, “Scripting support” section. Even though Groovy scripts are well supported by generic
Scripting Support, Groovy Support provides the Groovy configuration namespace which is backed by the
Spring Framework's or g. spri ngf ramewor k. scri pti ng. groovy. G oovyScri pt Fact ory and
related components, offering extended capabilities for using Groovy. Below are a couple of sample
configurations:

Filter

<int:filter input-channel="referencedScriptlnput">
<int-groovy:script |ocation="sone/path/to/groovy/filel G oovyFilterTests.groovy"/>
</int:filter>

<int:filter input-channel="inlineScriptlnput">
<i nt-groovy: scri pt ><! [CDATA[
return payl oad == ' good
]11></int-groovy: script>
</int:filter>

As the above examples show, the configuration looks identical to the general Scripting Support
configuration. The only difference is the use of the Groovy hamespace as indicated in the examples by
the int-groovy namespace prefix. Also note that the | ang attribute on the <scri pt > tag is not valid
in this namespace.

Groovy object customization

If you need to customize the Groovy object itself, beyond setting variables, you can reference a
bean that implements or g. spri ngf ramewor k. scri pting. groovy. G oovyObj ect Cust oni zer
via the cust oni zer attribute. For example, this might be useful if you want to implement a domain-

Spring Integration
3.0.5.RELEASE Reference Manual 115

http://groovy.codehaus.org

Spring Integration

specific language (DSL) by modifying the MetaClass and registering functions to be available within
the script:

<int:service-activator input-channel ="groovyChannel ">
<int-groovy:script |ocation="foo/ SomeScript.groovy" custom zer="groovyCustom zer"/>
</int:service-activator>

<beans: bean i d="groovyCustom zer" cl ass="org.foo. MyG oovyObj ect Cust omi zer"/>

Setting a custom GroovyObjectCustomizer is not mutually exclusive with <vari abl e> sub-elements
orthe scri pt-vari abl e- gener at or attribute. It can also be provided when defining an inline script.

With Spring Integration 3.0, in addition to the vari abl e sub-element, the vari abl es attribute
has been introduced. Also, groovy scripts have the ability to resolve a variable to a bean in the
BeanFact ory, if a binding variable was not provided with the name:

<i nt-groovy:script>

<! [CDATA[
entityManager. persi st (payl oad)
payl oad

11>

</int-groovy:script>

where variable ent i t yManager is an appropriate bean in the application context.

For more information regarding <var i abl e>,vari abl es,and scri pt - vari abl e- gener at or, see
the paragraph 'Script variable bindings' of the section called “Script configuration”.

Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"
messaging. In Spring Integration we build upon the adapters described above so that it's possible to
send Messages as a means of invoking exposed operations. One option for those operations is Groovy
scripts.

<i nt-groovy: control - bus input-channel ="operati onChannel "/ >

The Control Bus has an input channel that can be accessed for invoking operations on the beans in
the application context.

The Groovy Control Bus executes messages on the input channel as Groovy scripts. It takes
a message, compiles the body to a Script, customizes it with a GroovyQbj ect Cust omi zer,
and then executes it. The Control Bus' MessagePr ocessor exposes all beans in the application
context that are annotated with @/hanagedResour ce, implement Spring's Li f ecycl e interface or
extend Spring's Cust oni zabl eThr eadCr eat or base class (e.g. several of the TaskExecut or and
TaskSchedul er implementations).

© Important
Be careful about using managed beans with custom scopes (e.g. ‘request’) in the Control
Bus' command scripts, especially inside an async message flow. If The Control Bus'
MessageProcessor can't expose a bean from the application context, you may end up
with some BeansExcepti on during command script's executing. For example, if a custom
scope's context is not established, the attempt to get a bean within that scope will trigger a
BeanCr eat i onExcepti on.

Spring Integration
3.0.5.RELEASE Reference Manual 116

http://www.eaipatterns.com/ControlBus.html

Spring Integration

If you need to further customize the Groovy objects, you can also provide a reference to a bean
that implements or g. spri ngframewor k. scri pting. groovy. G oovyQbj ect Cust om zer via
the cust oni zer attribute.

<i nt-groovy: control - bus i nput-channel ="i nput "
out put - channel =" out put "
cust om zer ="groovyCust om zer"/>

<beans: bean i d="groovyCustom zer" cl ass="org.foo. MG oovyObj ect Cust oni zer"/>

7.7 Adding Behavior to Endpoints

Prior to Spring Integration 2.2, you could add behavior to an entire Integration flow by adding an AOP
Advice to a poller's <advice-chain /> element. However, let's say you want to retry, say, just a ReST
Web Service call, and not any downstream endpoints.

For example, consider the following flow:
inbound-adapter->poller->http-gateway1->http-gateway2->jdbc-outbound-adapter

If you configure some retry-logic into an advice chain on the poller, and, the call to http-gateway?2 failed
because of a network glitch, the retry would cause both http-gatewayl and http-gateway?2 to be called a
second time. Similarly, after a transient failure in the jdbc-outbound-adapter, both http-gateways would
be called a second time before again calling the jdbc-outbound-adapter.

Spring Integration 2.2 adds the ability to add behavior to individual endpoints. This is achieved by the
addition of the <request-handler-advice-chain /> element to many endpoints. For example:

<i nt-http: out bound-gat eway i d="w t hAdvi ce"
url -expression=""http://local host/test1""
request - channel ="r equest s"
repl y- channel =" next Channel " >
<i nt:request-handl er - advi ce- chai n>
<ref bean="nyRetryAdvice" />
</ request - handl er - advi ce- chai n>
</int-http: out bound- gat eway>

In this case, myRetryAdvice will only be applied locally to this gateway and will not apply to further
actions taken downstream after the reply is sent to the nextChannel. The scope of the advice is limited
to the endpoint itself.

© Important

At this time, you cannot advise an entire <chain/> of endpoints. The schema does not allow a
<request-handler-advice-chain/> as a child element of the chain itself.

However, a <request-handler-advice-chain/> can be added to individual reply-producing
endpoints within a <chain/> element. An exception is that, in a chain that produces no reply,
because the last element in the chain is an outbound-channel-adapter, that last element cannot
be advised. If you need to advise such an element, it must be moved outside of the chain (with
the output-channel of the chain being the input-channel of the adapter. The adapter can then be
advised as normal. For chains that produce a reply, every child element can be advised.

Spring Integration
3.0.5.RELEASE Reference Manual 117

Spring Integration

Provided Advice Classes

In addition to providing the general mechanism to apply AOP Advice classes in this way, three standard
Advices are provided:

* RequestHandlerRetryAdvice

* RequestHandlerCircuitBreakerAdvice

» ExpressionEvaluatingRequestHandlerAdvice

These are each described in detail in the following sections.
Retry Advice

The retry advice (0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce) leverages the rich
retry mechanisms provided by the Spring Retry project. The core component of spring-retry is the
Ret r yTenpl at e, which allows configuration of sophisticated retry scenarios, including Ret r yPol i cy
and Backof f Pol i cy strategies, with a number of implementations, as well as a Recover yCal | back
strategy to determine the action to take when retries are exhausted.

Stateless Retry

Stateless retry is the case where the retry activity is handled entirely within the advice, where the thread
pauses (if so configured) and retries the action.

Stateful Retry

Stateful retry is the case where the retry state is managed within the advice, but where an exception is
thrown and the caller resubmits the request. An example for stateful retry is when we want the message
originator (e.g. JMS) to be responsible for resubmitting, rather than performing it on the current thread.
Stateful retry needs some mechanism to detect a retried submission.

Further Information

For more information on spring-retry, refer to the project's javadocs, as well as the reference
documentation for Spring Batch, where spring-retry originated.

© Caution

The default back off behavior is no back off - retries are attempted immediately. Using a back off
policy that causes threads to pause between attempts may cause performance issues, including
excessive memory use and thread starvation. In high volume environments, back off policies
should be used with caution.

Configuring the Retry Advice
The following examples use a simple <service-activator />> that always throws an exception:

public class FailingService {

public void service(String message) {
throw new Runti meException("foo");

}

Spring Integration
3.0.5.RELEASE Reference Manual 118

https://github.com/SpringSource/spring-retry
http://static.springsource.org/spring-batch/reference/html/retry.html

Spring Integration

Simple Stateless Retry

This example uses the default RetryTemplate which has a SimpleRetryPolicy which tries 3 times. There
is no BackoffPolicy so the 3 attempts are made back-to-back-to-back with no delay between attempts.
There is no RecoveryCallback so, the result is to throw the exception to the caller after the final failed
retry occurs. In a Spring Integration environment, this final exception might be handled using an error-
channel on the inbound endpoint.

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce"/ >
</ request - handl er - advi ce- chai n>
</int:service-activator>

DEBUG [t ask-schedul er-2] preSend on channel 'input', message: [Payload=...]
DEBUG [t ask-schedul er-2] Retry: count=0

DEBUG [t ask- schedul er - 2] Checking for rethrow count=1

DEBUG [t ask-schedul er-2] Retry: count=1

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=2

DEBUG [t ask-schedul er-2] Retry: count =2

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=3

DEBUG [t ask-schedul er-2] Retry failed |last attenpt: count=3

Simple Stateless Retry with Recovery

This example adds a RecoveryCallback to the above example; it uses a
Err or MessageSendi ngRecover er to send an ErrorMessage to a channel.

<int:service-activator input-channel="input" ref="failer" method="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property nanme="recoveryCal | back">
<bean cl ass="0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nmyErrorChannel " />
</ bean>
</ property>
</ bean>
</ request - handl| er - advi ce- chai n>
</int:int:service-activator>

DEBUG [t ask-schedul er-2] preSend on channel 'input', message: [Payload=...]
DEBUG [t ask-schedul er-2] Retry: count=0

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=1

DEBUG [t ask-schedul er-2] Retry: count=1

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=2

DEBUG [t ask-schedul er-2] Retry: count =2

DEBUG [t ask-schedul er - 2] Checking for rethrow count=3

DEBUG [t ask-schedul er-2] Retry failed |last attenpt: count=3

DEBUG [t ask-schedul er - 2] Sendi ng Error Message :fail edMessage: [Payl oad=. . .]

Stateless Retry with Customized Policies, and Recovery

For more sophistication, we can provide the advice with a customized RetryTemplate. This example
continues to use the Sinpl eRetryPolicy but it increases the attempts to 4. It also adds an
Exponent i al Backof f Pol i cy where the first retry waits 1 second, the second waits 5 seconds and
the third waits 25 (for 4 attempts in all).

Spring Integration
3.0.5.RELEASE Reference Manual 119

Spring Integration

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property nanme="recoveryCal | back">
<bean cl ass="0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nyErrorChannel" />
</ bean>
</ property>
<property nane="retryTenpl ate" ref="retryTenpl ate" />
</ bean>
</ request - handl er - advi ce- chai n>
</int:service-activator>

<bean id="retryTenpl ate" class="org.springfranmework.retry.support.RetryTenpl ate">
<property name="retryPolicy">
<bean cl ass="org. springframework.retry. policy. Si npl eRetryPolicy">
<property nanme="maxAttenpts" val ue="4" />
</ bean>
</ property>
<property name="backCr f Policy">
<bean cl ass="org. spri ngfranework. retry. backoff. Exponenti al BackCf f Pol i cy" >
<property nane="initiallnterval" val ue="1000" />
<property name="multiplier" value="5" />
</ bean>
</ property>
</ bean>

27.058 DEBUG [task-schedul er-1] preSend on channel 'input', message: [Payl oad=...]
27.071 DEBUG [t ask-schedul er-1] Retry: count=0

27.080 DEBUG [task-schedul er-1] Sl eepi ng for 1000

28. 081 DEBUG [t ask-schedul er-1] Checking for rethrow count=1

28. 081 DEBUG [t ask-schedul er-1] Retry: count=1

28. 081 DEBUG [task-schedul er-1] Sl eepi ng for 5000

33. 082 DEBUG [task-schedul er-1] Checking for rethrow count=2

33. 082 DEBUG [t ask-schedul er-1] Retry: count=2

33. 083 DEBUG [t ask-schedul er-1] Sl eepi ng for 25000

58. 083 DEBUG [t ask-schedul er- 1] Checking for rethrow count=3

58. 083 DEBUG [t ask-schedul er-1] Retry: count=3

58. 084 DEBUG [t ask-schedul er-1] Checking for rethrow count=4

58. 084 DEBUG [task-scheduler-1]Retry failed |last attenpt: count=4

58. 086 DEBUG [t ask-schedul er-1] Sendi ng Error Message :fail edMessage: [Payl oad=. . .]

Simple Stateful Retry with Recovery

To make retry stateful, we need to provide the Advice with a RetryStateGenerator implementation.
This class is used to identify a message as being a resubmission so that the RetryTemplate
can determine the current state of retry for this message. The framework provides a
Spel Expressi onRet rySt at eGener at or which determines the message identifier using a SpEL
expression. This is shown below; this example again uses the default policies (3 attempts with no back
off); of course, as with stateless retry, these policies can be customized.

Spring Integration
3.0.5.RELEASE Reference Manual 120

Spring Integration

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property name="retryStateCenerator">
<bean cl ass="0.s.i.handl er. advi ce. Spel Expr essi onRet rySt at eGener at or" >
<constructor-arg val ue="headers['jnms_nessageld']" />
</ bean>
</ property>
<property nanme="recoveryCal | back">
<bean cl ass="0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nyErrorChannel " />
</ bean>
</ property>
</ bean>
</int:request-handl er-advi ce-chai n>
</int:service-activator>

24. 351 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', message: [Payload=...]
24. 368 DEBUG [Cont ai ner #0- 1] Retry: count =0

24. 387 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow count=1

24.387 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=1

24.387 WARN [Contai ner#0-1]failure occurred in gateway sendAndReceive

org. springframework. i ntegrati on. Messagi ngException: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
24.391 DEBUG [Cont ai ner#0-1] I nitiating transaction rollback on application exception

25. 412 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', nessage: [Payl oad=...]
25. 412 DEBUG [Cont ai ner #0- 1] Retry: count =1

25. 413 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow count=2

25. 413 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=2

25.413 WARN [Cont ai ner#0-1]failure occurred in gateway sendAndRecei ve

org. springframewor k. i ntegrati on. Messagi ngException: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
25. 414 DEBUG [Cont ai ner#0-1] I nitiating transaction rollback on applicati on exception

26. 418 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', message: [Payload=...]
26. 418 DEBUG [Cont ai ner #0- 1] Retry: count =2

26. 419 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow. count=3

26. 419 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=3

26.419 WARN [Contai ner#0-1]failure occurred in gateway sendAndRecei ve

org. springframework. integrati on. Messagi ngException: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
26. 420 DEBUG [Cont ai ner#0-1]Initiating transaction rollback on applicati on exception
27. 425 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', message: [Payload=...]

27.426 DEBUG [Cont ai ner#0-1] Retry failed | ast attenpt: count=3
27.426 DEBUG [Cont ai ner #0- 1] Sendi ng Error Message :fail edMessage: [Payl oad=. . .]

Comparing with the stateless examples, you can see that with stateful retry, the exception is thrown to
the caller on each failure.

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The default
configuration will retry for all exceptions and the exception classifier just looks at the top level exception.

Spring Integration
3.0.5.RELEASE Reference Manual 121

Spring Integration

If you configure it to, say, only retry on Bar Except i on and your application throws a FooExcepti on
where the cause is a Bar Except i on, retry will not occur.

Since Spring Retry 1.0.3, the Bi nar yExcepti onCl assifi er has a property traver seCauses
(default f al se). When t r ue it will traverse exception causes until it finds a match or there is no cause.

To use this classifier for retry, use a Si npl eRet r yPol i cy created with the constructor that takes the
max attempts, the Map of Excepti ons and the boolean (traverseCauses), and inject this policy into
the Ret ryTenpl at e.

Circuit Breaker Advice

The general idea of the Circuit Breaker Pattern is that, if a service is not
currently available, then don't waste time (and resources) trying to wuse it. The
0.s.i.handl er. advi ce. Request Handl er Gi r cui t Br eaker Advi ce implements this pattern.
When the circuit breaker is in the closed state, the endpoint will attempt to invoke the service. The circuit
breaker goes to the open state if a certain number of consecutive attempts fail; when it is in the open
state, new requests will "fail fast" and no attempt will be made to invoke the service until some time
has expired.

When that time has expired, the circuit breaker is set to the half-open state. When in this state, if even
a single attempt fails, the breaker will immediately go to the open state; if the attempt succeeds, the
breaker will go to the closed state, in which case, it won't go to the open state again until the configured
number of consecutive failures again occur. Any successful attempt resets the state to zero failures for
the purpose of determining when the breaker might go to the open state again.

Typically, this Advice might be used for external services, where it might take some time to fail (such
as a timeout attempting to make a network connection).

The RequestHandl erCircuitBreakerAdvice has two properties: threshold and
hal f OpenAf t er. The threshold property represents the number of consecutive failures that need to
occur before the breaker goes open. It defaults to 5. The halfOpenAfter property represents the time after
the last failure that the breaker will wait before attempting another request. Default is 1000 milliseconds.

Example:

Spring Integration
3.0.5.RELEASE Reference Manual 122

Spring Integration

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er G r cui t Br eaker Advi ce" >
<property nanme="t hreshol d* val ue="2" />
<property nanme="hal f OpenAfter" val ue="12000" />
</ bean>
</int:request-handl er-advi ce-chai n>
</int:service-activator>

05. 617 DEBUG [task-schedul er-1] preSend on channel 'input', message: [Payload=...]
05. 638 ERROR [t ask-schedul er-1] org. spri ngframework. i ntegrati on. MessageHandl i ngExcepti on:
java. | ang. Runt i mreExcepti on: foo

10. 598 DEBUG [t ask-schedul er-2] preSend on channel 'input', nessage: [Payload=...]
10. 600 ERROR [t ask-schedul er-2]org. springfranmework.integration. MessageHandl i ngExcepti on:
java. | ang. Runt i meExcepti on: foo

15. 598 DEBUG [t ask-schedul er-3] preSend on channel 'input', nessage: [Payload=...]
15. 599 ERROR [t ask-schedul er-3]org. springfranework.integration. Messagi ngeException: Crcuit
Breaker is Open for ServiceActivator

20. 598 DEBUG [t ask-schedul er-2] preSend on channel 'input', message: [Payload=...]
20. 598 ERROR [task-schedul er-2] org. springfranmework. i ntegrati on. Messagi ngException: Circuit
Breaker is Open for ServiceActivator

25.598 DEBUG [t ask-schedul er-5] preSend on channel 'input', nessage: [Payload=...]
25. 601 ERROR [task-schedul er-5]org. springframework. integrati on. MessageHandl i ngExcepti on:
java. | ang. Runt i meExcepti on: foo

30. 598 DEBUG [t ask-schedul er-1] preSend on channel 'input', nessage: [Payl oad=foo...]
30. 599 ERROR [task-schedul er-1] org. springframework. integrati on. Messagi ngException: Crcuit
Breaker is Open for ServiceActivator

In the above example, the threshold is set to 2 and halfOpenAfter is set to 12 seconds; a new request
arrives every 5 seconds. You can see that the first two attempts invoked the service; the third and fourth
failed with an exception indicating the circuit breaker is open. The fifth request was attempted because
the request was 15 seconds after the last failure; the sixth attempt fails immediately because the breaker
immediately went to open.

Expression Evaluating Advice

The final supplied advice class is the
0.s.i.handl er. advi ce. Expr essi onEval uat i ngRequest Handl er Advi ce. This advice is
more general than the other two advices. It provides a mechanism to evaluate an expression on the
original inbound message sent to the endpoint. Separate expressions are available to be evaluated,
either after success, or failure. Optionally, a message containing the evaluation result, together with the
input message, can be sent to a message channel.

A typical use case for this advice might be with an <ftp:outbound-channel-adapter />, perhaps to move
the file to one directory if the transfer was successful, or to another directory if it fails:

The Advice has properties to set an expression when successful, an expression for failures,
and corresponding channels for each. For the successful case, the message sent to the
successChannel is an Advi ceMessage, with the payload being the result of the expression
evaluation, and an additional property i nput Message which contains the original message sent to
the handler. A message sent to the failureChannel (when the handler throws an excecption) is an
ErrorMessage with a payload of MessageHand!l i ngExpr essi onEval uat i ngAdvi ceExcepti on.

Spring Integration
3.0.5.RELEASE Reference Manual 123

Spring Integration

Like all Messagi ngExcept i ons, this payload has f ai | edMessage and cause properties, as well as
an additional property eval uat i onResul t , containing the result of the expression evaluation.

Custom Advice Classes

In addition to the provided Advice classes above, you can implement your own Advice classes. While you
can provide any implementation of or g. aopal | i ance. aop. Advi ce, it is generally recommended
that you subclass o.s.i.handl er. advi ce. Abst r act Request Handl er Advi ce. This has the
benefit of avoiding writing low-level Aspect Oriented Programming code as well as providing a starting
point that is specifically tailored for use in this environment.

Subclasses need to implement the dolnvoke() method:

/**

* Subcl asses inplement this nmethod to apply behavior to the {@ink MessageHandl er}

cal | back. execut e()

* invokes the handler nethod and returns its result, or null).

* @aram cal | back Subcl asses i nvoke the execute() nmethod on this interface to invoke the
handl er net hod.

* @aramtarget The target handl er.

* @aram message The nessage that will be sent to the handl er.

* @eturn the result after invoking the {@ink MessageHandl er}.

* @hrows Exception

*/

protected abstract Object dol nvoke(ExecutionCallback call back, Cbject target, Message<?>
message) throws Exception;

The callback parameter is simply a convenience to avoid subclasses dealing with AOP directly; invoking
the cal | back. execut e() method invokes the message handler.

The target parameter is provided for those subclasses that need to maintain state for a specific handler,
perhaps by maintaining that state in a Map, keyed by the target. This allows the same advice to be
applied to multiple handlers. The Request Handl er Ci r cui t Br eaker Advi ce uses this to keep circuit
breaker state for each handler.

The message parameter is the message that will be sent to the handler. While the advice cannot
modify the message before invoking the handler, it can modify the payload (if it has mutable properties).
Typically, an advice would use the message for logging and/or to send a copy of the message
somewhere before or after invoking the handler.

The return value would normally be the value returned by call back.execute();
but the advice does have the abilty to modify the return value. Note that only
Abst r act Repl yPr oduci ngMessageHandl er s return a value.

public class MyAdvice extends Abstract Request Handl er Advi ce {

@verride
protected Cbject dol nvoke(ExecutionCall back cal | back, Cbject target, Message<?>
message) throws Exception {
/] add code before the invocation
bj ect result = call back. execute();
/| add code after the invocation
return result;

Spring Integration
3.0.5.RELEASE Reference Manual 124

Spring Integration

© Note

In addition to the execute() method, the Executi onCal | back provides an additional
method cl oneAndExecute(). This method must be used in cases where the
invocation might be called multiple times within a single execution of dol nvoke(),
such as in the RequestHandl er RetryAdvi ce. This is required because the Spring
AOP org. springframewor k. aop. franewor k. Ref | ecti veMet hodl nvocati on object
maintains state of which advice in a chain was last invoked,; this state must be reset for each call.

For more information, see the ReflectiveMethodInvocation JavaDocs.

Other Advice Chain Elements

While the abstract class mentioned above is provided as a convenience, you can add any Advi ce
to the chain, including a transaction advice.

Advising Filters

There is an additional consideration when advising Fi | t er s. By default, any discard actions (when the
filter returns false) are performed within the scope of the advice chain. This could include all the flow
downstream of the discard channel. So, for example if an element downstream of the discard-channel
throws an exception, and there is a retry advice, the process will be retried. This is also the case if
throwExceptionOnRejection is set to true (the exception is thrown within the scope of the advice).

Setting discard-within-advice to "false" modifies this behavior and the discard (or exception) occurs after
the advice chain is called.

Advising Endpoints Using Annotations

When configuring certain endpoints using annotations (@i | t er , @er vi ceActi vator, @plitter,
and @r ansf or mer), you can supply a bean name for the advice chain in the advi ceChai n attribute.
In addition, the @i | t er annotation also has the di scar dW t hi nAdvi ce attribute, which can be used
to configure the discard behavior as discussed in the section called “Advising Filters”. An example with
the discard being performed after the advice is shown below.

@kessageEndpoi nt
public class MyAdvi sedFilter {

@il ter(inputChannel ="i nput", output Channel ="out put",
advi ceChai n="advi ceChai n", discardWthi nAdvi ce="fal se")
public boolean filter(String s) {
return s.contains("good");
}
}

Ordering Advices within an Advice Chain

Advice classes are "around" advices and are applied in a nested fashion. The first advice is the
outermost, the last advice the innermost (closest to the handler being advised). It is important to put the
advice classes in the correct order to achieve the functionality you desire.

For example, let's say you want to add a retry advice and a transaction advice. You may want to place
the retry advice advice first, followed by the transaction advice. Then, each retry will be performed in a

Spring Integration
3.0.5.RELEASE Reference Manual 125

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/aop/framework/ReflectiveMethodInvocation.html

Spring Integration

new transaction. On the other hand, if you want all the attempts, and any recovery operations (in the retry
Recover yCal | back), to be scoped within the transaction, you would put the transaction advice first.

7.8 Logging Channel Adapter

The <l oggi ng- channel - adapt er/ > is often used in conjunction with a Wire Tap, as discussed in
the section called “Wire Tap”. However, it can also be used as the ultimate consumer of any flow. For
example, consider a flow that ends with a <ser vi ce- act i vat or/ > that returns a result, but you wish
to discard that result. To do that, you could send the result to Nul | Channel . Alternatively, you can route
it to an | NFOlevel <| oggi ng- channel - adapt er/ >; that way, you can see the discarded message
when logging at | NFOlevel, but not see it when logging at, say, WARN level. With a Nul | Channel , you
would only see the discarded message when logging at DEBUG level.

<i nt: | oggi ng- channel - adapt er
channel =""0O
| evel =" 1 NFO'O
expressi on=""0
| og-full-nessage="fal se" [
| ogger - nane=""0/>

0 The channel connecting the logging adapter to an upstream component.

The logging level at which messages sent to this adapter will be logged. Default: | NFO

O A SpEL expression representing exactly what part(s) of the message will be logged. Default:
payl oad - just the payload will be logged. This attribute cannot be specified if | og-ful I -
nmessage is specified.

O When true, the entire message will be logged (including headers). Default: f al se - just the
payload will be logged. This attribute cannot be specified if expr essi on is specified.

O Specifies the name of the logger (known as category in |og4j) used for log
messages created by this adapter. This enables setting the log name (in the logging
subsystem) for individual adapters. By default, all adapters will log under the name
org. springframework. i ntegration. handl er. Loggi ngHandl er.

O

Spring Integration
3.0.5.RELEASE Reference Manual 126

Spring Integration

8. System Management

8.1 JMX Support

Spring Integration provides Channel Adapters for receiving and publishing JMX Notifications. There is
also an Inbound Channel Adapter for polling JIMX MBean attribute values, and an Outbound Channel
Adapter for invoking JMX MBean operations.

Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes
notifications to which this listener should be registered. A very simple configuration might look like this:

<int-jnx:notification-I|istening-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. domai n: nanme=publ i sher"/ >

@ Tip
The notification-listening-channel-adapter registers with an MBeanSer ver at startup, and the
default bean name is mbeanServer which happens to be the same bean name generated when
using Spring's <context:mbean-server/> element. If you need to use a different name, be sure
to include the mbean-server attribute.

The adapter can also accept areferencetoaNoti fi cati onFi | t er and a handback Object to provide
some context that is passed back with each Notification. Both of those attributes are optional. Extending
the above example to include those attributes as well as an explicit MBeanSer ver bean name would
produce the following:

<int-jnx:notification-listening-channel -adapter id="adapter"
channel =" channel "
nbean- server =" soneSer ver"
obj ect - nane="exanpl e. donai n: nane=sonePubl i sher"
notification-filter="notificationFilter"
handback="myHandback" / >

The Notification-listening Channel Adapter is event-driven and registered with the MBeanSer ver
directly. It does not require any poller configuration.

@ Note

For this component only, the object-name attribute can contain an ObjectName pattern (e.g.
"org.foo:type=Bar,name=*") and the adapter will receive notifications from all MBeans with
ObjectNames that match the pattern. In addition, the object-name attribute can contain a SpEL
reference to a <util:list/> of ObjectName patterns:

<j nx:notification-listening-channel -adapter id="manyNoti fi cati onsAdapter"
channel ="manyNot i fi cati onsChannel "
obj ect - name="#{patterns}"/>

<util:list id="patterns">
<val ue>org. f 0o: t ype=Foo, nane=*</ val ue>
<val ue>org. f 0oo: t ype=Bar, name=*</ val ue>
<futil:list>

The names of the located MBean(s) will be logged when DEBUG level logging is enabled.

Spring Integration
3.0.5.RELEASE Reference Manual 127

Spring Integration

Notification Publishing Channel Adapter

The Natification-publishing Channel Adapter is relatively simple. It only requires a JMX ObjectName in
its configuration as shown below.

<cont ext : mhean- export/ >

<int-jnx:notification-publishing-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. donmai n: nane=publ i sher"/>

It does also require that an MBeanExpor t er be presentin the context. That is why the <context:mbean-
export/> element is shown above as well.

When Messages are sent to the channel for this adapter, the Notification is created from the Message
content. If the payload is a String it will be passed as the message text for the Notification. Any other
payload type will be passed as the userData of the Notification.

JMX Notifications also have a type, and it should be a dot-delimited String. There are two ways to
provide the type. Precedence will always be given to a Message header value associated with the
JnxHeader s. NOTI FI CATI ON_TYPE key. On the other hand, you can rely on a fallback default-
notification-type attribute provided in the configuration.

<cont ext : mhean- export/ >

<int-jnx:notification-publishing-channel -adapter id="adapter"
channel ="channel "
obj ect - nane="exanpl e. donmai n: nane=publ i sher"
defaul t-notification-type="sone.default.type"/>

Attribute Polling Channel Adapter

The Attribute Polling Channel Adapter is useful when you have a requirement, to periodically check on
some value that is available through an MBean as a managed attribute. The poller can be configured
in the same way as any other polling adapter in Spring Integration (or it's possible to rely on the default
poller). The object-name and attribute-name are required. An MBeanServer reference is also required,
but it will automatically check for a bean named mbeanServer by default, just like the Natification-
listening Channel Adapter described above.

<int-jnx:attribute-polling-channel -adapter id="adapter"
channel ="channel "
obj ect - nane="exanpl e. donai n: nane=soneSer vi ce"
attri but e- name="1nvocati onCount" >
<int:poller max-nmessages-per-poll="1" fixed-rate="5000"/>
</int-jmx:attribute-polling-channel -adapter>

Tree Polling Channel Adapter

The Tree Polling Channel Adapter queries the JMX MBean tree and sends a message with a payload
that is the graph of objects that matches the query. By default the MBeans are mapped to primitives and
simple Objects like Map, List and arrays - permitting simple transformation, for example, to JSON. An
MBeanServer reference is also required, but it will automatically check for a bean named mbeanServer
by default, just like the Notification-listening Channel Adapter described above. A basic configuration
would be:

Spring Integration
3.0.5.RELEASE Reference Manual 128

Spring Integration

<int-jnx:tree-polling-channel -adapter id="adapter"
channel =" channel "
quer y- nane="exanpl e. domai n: t ype=*">
<int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jm:tree-polling-channel - adapter>

This will include all attributes on the MBeans selected. You can filter the attributes by providing an
MBeanOhj ect Convert er that has an appropriate filter configured. The converter can be provided
as a reference to a bean definition using the convert er attribute, or as an inner <bean/> definition.
A Def aul t MBeanObj ect Convert er is provided which can take a MBeanAttri buteFilter inits
constructor argument.

Two standard filters are provided; the NanedFi el dsMBeanAt tri but eFi | t er allows you to specify a
list of attributes to include and the Not NamedFi el dsiMBeanAttri but eFi | t er allows you to specify
a list of attributes to exclude. You can also implement your own filter

Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation
exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName
of the target MBean. Both of these must be explicitly provided via adapter configuration:

<i nt-j nx: oper ati on-i nvoki ng- channel - adapt er i d="adapter"
obj ect - nane="exanpl e. domai n: name=Test Bean"
oper ati on- nane="pi ng"/ >

Then the adapter only needs to be able to discover the mbeanServer bean. If a different bean name is
required, then provide the mbean-server attribute with a reference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs, whereas a List or array would be passed as
a simple argument list (with no explicit parameter names). If the operation requires a single parameter
value, then the payload can represent that single value, and if the operation requires no parameters,
then the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by Messages that need
not contain headers, then that option works well.

Operation Invoking Outbound Gateway

Similar to the operation-invoking-channel-adapter Spring Integration also provides a operation-invoking-
outbound-gateway, which could be used when dealing with non-void operations and a return value
is required. Such return value will be sent as message payload to the reply-channel specified by this
Gateway.

<i nt-j nx: oper ati on-i nvoki ng- out bound- gat eway request -channel ="request Channel "
repl y- channel ="r epl yChannel "
obj ect-nane="o0.s.i.jnm.config:type=Test Bean, name=t est BeanGat eway"
oper ati on-nanme="t est Wt hReturn"/>

If the reply-channel attribute is not provided, the reply message will be sent to the channel that is
identified by the MessageHeader s. REPLY_CHANNEL header. That header is typically auto-created by
the entry point into a message flow, such as any Gateway component. However, if the message flow

Spring Integration
3.0.5.RELEASE Reference Manual 129

Spring Integration

was started by manually creating a Spring Integration Message and sending it directly to a Channel,
then you must specify the message header explicitly or use the provided reply-channel attribute.

MBean Exporter

Spring Integration components themselves may be exposed as MBeans when
the |Integrati onMBeanExporter is configured. To create an instance of the
I nt egr ati onMBeanExport er, define a bean and provide a reference to an MBeanSer ver and
a domain name (if desired). The domain can be left out, in which case the default domain is
org.springframework.integration.

<i nt-j mx: mbean-export id="integrati onMBeanExporter"
def aul t - domai n="ny. conpany. donai n" server="nbeanServer"/>

<bean i d="nbeanServer" class="org. springfranework.jnmx.support.MBeanServer Fact or yBean" >
<property nane="|ocat eExi sti ngServer|fPossi bl e" val ue="true"/>
</ bean>

Once the exporter is defined, start up your application with:

- Dcom sun. managenent . j nxr enot e

- Dcom sun. nanagenent . j nxr enot e. port =6969

- Dcom sun. nanagenent . j nxr enot e. ssl =f al se

- Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se

Then start JConsole (free with the JDK), and connect to the local process on | ocal host: 6969 to
get a look at the management endpoints exposed. (The port and client are just examples to get you
started quickly, there are other JMX clients available and some offer more sophisticated features than
JConsole.)

© Important

The MBean exporter is orthogonal to the one provided in Spring core - it registers message
channels and message handlers, but not itself. You can expose the exporter itself, and certain
other components in Spring Integration, using the standard <cont ext : nbean- export/ > tag.
The exporter has a some metrics attached to it, for instance a count of the number of active
handlers and the number of queued messages.

It also has a useful operation, as discussed in the section called “Orderly Shutdown Managed
Operation”.

MBean ObjectNames

All the MessageChannel , MessageHandl er and MessageSour ce instances in the application are
wrapped by the MBean exporter to provide management and monitoring features. The generated JMX
object names for each component type are listed in the table below:

Table 8.1.
Component Type ObjectName
MessageChannel 0.s.i:type=MessageChannel,name=<channelName>
MessageSource o0.s.i:type=MessageSource,name=<channelName>,bean=<source>
MessageHandler 0.s.i;type=MessageSource,name=<channelName>,bean=<source>

Spring Integration
3.0.5.RELEASE Reference Manual 130

Spring Integration

The bean attribute in the object names for sources and handlers takes one of the values in the table
below:

Table 8.2.
Bean Value Description

endpoint The bean name of the enclosing endpoint (e.g. <service-activator>) if there
is one

anonymous An indication that the enclosing endpoint didn't have a user-specified bean
name, so the JMX name is the input channel name

internal For well-known Spring Integration default components

handler None of the above: fallback to the toString() of the object being

monitored (handler or source)

Custom elements can be appended to the object name by providing a reference to a Properties
object in the obj ect - nane- st ati c- properti es attribute.

Also, since Spring Integration 3.0, you can use a custom ObjectNamingStrategy using the obj ect -
nam ng- st rat egy attribute. This permits greater control over the naming of the MBeans. For
example, to group all Integration MBeans under an 'Integration’ type. A simple custom naming strategy
implementation might be:

public class Namer inplenents CbjectNam ngStrategy {

private final ObjectNam ngStrategy real Nanmer = new KeyNani ngStrategy();

@verride

publ i c Obj ect Name get Obj ect Name(Obj ect managedBean, String beanKey) throws

Mal f or nedObj ect NaneExcepti on {
String actual BeanKey = beanKey. repl ace("type=", "type=Integration, conponent Type=");
return real Namer. get Obj ect Name(nanagedBean, act ual BeanKey);

}

The beanKey argument is a String containing the standard object name beginning with the def aul t -
domai n and including any additional static properties. This example simply moves the standard t ype
partto conponent Type and sets the t ype to 'Integration’, enabling selection of all Integration MBeans
in one query: " nry. domai n: t ype=Il nt egr ati on, *. This also groups the beans under one tree entry
under the domain in tools like VisualVM.

© Note

The default naming strategy is a MetadataNamingStrategy. The exporter propagates the
def aul t - donai n to that object to allow it to generate a fallback object name if parsing of the
bean key fails. If your custom naming strategy is a Met adat aNam ngSt r at egy (or subclass),
the exporter will not propagate the def aul t - donmi n; you will need to configure it on your
strategy bean.

MessageChannel MBean Features

Message channels report metrics according to their concrete type. If you are looking at a
Di r ect Channel , you will see statistics for the send operation. If it is a QueueChannel , you will also
see statistics for the receive operation, as well as the count of messages that are currently buffered by

Spring Integration
3.0.5.RELEASE Reference Manual 131

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/ObjectNamingStrategy.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/MetadataNamingStrategy.html

Spring Integration

this QueueChannel . In both cases there are some metrics that are simple counters (message count
and error count), and some that are estimates of averages of interesting quantities. The algorithms used
to calculate these estimates are described briefly in the table below:

Table 8.3.
Metric Type Example Algorithm

Count Send Count Simple incrementer. Increase by one when an event

occurs.

Duration Send Duration (method | Exponential Moving Average with decay factor 10.
execution time in | Average of the method execution time over roughly the
milliseconds) last 10 measurements.

Rate Send Rate (number of | Inverse of Exponential Moving Average of the interval
operations per second) between events with decay in time (lapsing over 60

seconds) and per measurement (last 10 events).

Ratio Send Error Ratio (ratio of | Estimate the success ratio as the Exponential Moving
errors to total sends) Average of the series composed of values 1 for

success and 0 for failure (decaying as per the rate
measurement over time and events). Error ratio is 1 -
success ratio.

A feature of the time-based average estimates is that they decay with time if no new measurements
arrive. To help interpret the behaviour over time, the time (in seconds) since the last measurement is
also exposed as a metric.

There are two basic exponential models: decay per measurement (appropriate for duration and anything
where the number of measurements is part of the metric), and decay per time unit (more suitable for rate
measurements where the time in between measurements is part of the metric). Both models depend
on the fact that

‘S(n) = sun(i=0,i=n) wi) x(i)

has a special form whenw(i) = r”i,with r=const ant:

‘S(n) = x(n) +r S(n-1)

(so you only have to store S(n- 1) , not the whole series x(i), to generate a new metric estimate from
the last measurement). The algorithms used in the duration metrics use r =exp(- 1/ M with M=10. The
net effect is that the estimate S(n) is more heavily weighted to recent measurements and is composed
roughly of the last Mmeasurements. So Mis the "window" or lapse rate of the estimate In the case of
the vanilla moving average, i is a counter over the number of measurements. In the case of the rate we
interpret i as the elapsed time, or a combination of elapsed time and a counter (so the metric estimate
contains contributions roughly from the last Mmeasurements and the last T seconds).

Orderly Shutdown Managed Operation

The MBean exporter provides a JMX operation to shut down the application in an orderly manner,
intended for use before terminating the JVM.

public void stopActiveConponents(bool ean force, |ong howiLong)

Spring Integration
3.0.5.RELEASE Reference Manual 132

Spring Integration

Its use and operation are described in Section 8.6, “Orderly Shutdown”.

8.2 Message History

The key benefit of a messaging architecture is loose coupling where participating components do not
maintain any awareness about one another. This fact alone makes your application extremely flexible,
allowing you to change components without affecting the rest of the flow, change messaging routes,
message consuming styles (polling vs event driven), and so on. However, this unassuming style of
architecture could prove to be difficult when things go wrong. When debugging, you would probably like
to get as much information about the message as you can (its origin, channels it has traversed, etc.)

Message History is one of those patterns that helps by giving you an option to maintain some level
of awareness of a message path either for debugging purposes or to maintain an audit trail. Spring
integration provides a simple way to configure your message flows to maintain the Message History
by adding a header to the Message and updating that header every time a message passes through
a tracked component.

Message History Configuration

To enable Message History all you need is to define the nessage- hi story element in your
configuration.

<i nt: nessage- hi story/>

Now every named component (component that has an 'id' defined) will be tracked. The framework will
set the 'history' header in your Message. Its value is very simple - Li st <Pr operti es>.

<i nt:gateway id="sanpl eGat eway"
servi ce-interface="org.springframework.integration. history. sanpl e. Sanpl eGat eway"
def aul t -request - channel =" bri dgel nChannel "/ >

<int:chain id="sanpl eChai n" input-channel ="chai nChannel " out put -channel ="filter Channel ">
<i nt: header-enricher>
<i nt: header nane="baz" val ue="baz"/>
</int: header-enricher>
</int:chai n>

The above configuration will produce a very simple Message History structure:

[{nane=sanpl eGat eway, type=gateway, tinestanp=1283281668091},
{name=sanpl eChai n, type=chain, tinestanp=1283281668094}]

To get access to Message History all you need is access the MessageHistory header. For example:

Iterator<Properties> historylterator =
message. get Header s() . get (MessageHi st ory. HEADER NAME, MessageHi story. class).iterator();
assert True(historylterator. hasNext());
Properties gatewayH story = historylterator.next();
assert Equal s("sanpl eGat eway", gatewayHi story. get("nanme"));
assert True(historylterator. hasNext());
Properties chainHi story = historylterator. next();
assert Equal s("sanpl eChai n", chai nH story. get("nane"));

You might not want to track all of the components. To limit the history to certain components based
on their names, all you need is provide the t r acked- conponent s attribute and specify a comma-
delimited list of component names and/or patterns that match the components you want to track.

Spring Integration
3.0.5.RELEASE Reference Manual 133

Spring Integration

<i nt:nessage-hi story tracked-conponent s="*Cat eway, sanple*, foo"/>

In the above example, Message History will only be maintained for all of the components that end with
'‘Gateway', start with 'sample’, or match the name ‘foo’ exactly.

© Note

Remember that by definition the Message History header is immutable (you can't re-write history,
although some try). Therefore, when writing Message History values, the components are either
creating brand new Messages (when the component is an origin), or they are copying the history
from a request Message, modifying it and setting the new list on a reply Message. In either
case, the values can be appended even if the Message itself is crossing thread boundaries. That
means that the history values can greatly simplify debugging in an asynchronous message flow.

8.3 Message Store

Enterprise Integration Patterns (EIP) identifies several patterns that have the capability to buffer
messages. For example, an Aggregator buffers messages until they can be released and a
QueueChannel buffers messages until consumers explicitly receive those messages from that channel.
Because of the failures that can occur at any point within your message flow, EIP components that buffer
messages also introduce a point where messages could be lost.

To mitigate the risk of losing Messages, EIP defines the Message Store pattern which allows EIP
components to store Messages typically in some type of persistent store (e.g. RDBMS).

Spring Integration provides support for the Message Store pattern by a) defining a
org. springframework. integration. store. MessageSt ore strategy interface, b) providing
several implementations of this interface, and c¢) exposing a nessage- st ore attribute on all
components that have the capability to buffer messages so that you can inject any instance that
implements the MessagesSt or e interface.

Details on how to configure a specific Message Store implementation and/or how to inject a
MessagesSt or e implementation into a specific buffering component are described throughout the
manual (see the specific component, such as QueueChannel, Aggregator, Resequencer etc.), but here
are a couple of samples to give you an idea:

QueueChannel

<i nt:channel id="nyQueueChannel ">
<i nt:queue nessage-store="ref ToMessageStore"/>
<i nt: channel >

Aggregator
<i nt:aggregator ..nessage-store="ref ToMessageStore"/>
By default Messages are stored in-memory using

org. springframework.integration.store. Si npl eMessageSt ore, an implementation of
MessagesSt or e. That might be fine for development or simple low-volume environments where the
potential loss of non-persistent messages is not a concern. However, the typical production application
will need a more robust option, not only to mitigate the risk of message loss but also to avoid potential
out-of-memory errors. Therefore, we also provide MessageStore implementations for a variety of data-
stores. Below is a complete list of supported implementations:

Spring Integration
3.0.5.RELEASE Reference Manual 134

http://eaipatterns.com/MessageStore.html

Spring Integration

Section 17.4, “JDBC Message Store” - uses RDBMS to store Messages

Section 22.4, “Redis Message Store” - uses Redis key/value datastore to store Messages

Section 21.3, “MongoDB Message Store” - uses MongoDB document store to store Messages

Section 15.5, “Gemfire Message Store” - uses Gemfire distributed cache to store Messages

© Important

However be aware of some limitations while using persistent implementations of the
MessageSt or e.

The Message data (payload and headers) is serialized and deserialized using different
serialization strategies depending on the implementation of the MessagesSt or e. For example,
when using JdbcMessageStore, only Serializabl e data is persisted by default. In
this case non-Serializable headers are removed before serialization occurs. Also be
aware of the protocol specific headers that are injected by transport adapters (e.g.,
FTP, HTTP, JMS etc.). For example, <ht t p: i nbound- channel - adapt er/ > maps HTTP-
headers into Message Headers and one of them is an Arrayli st of non-Serializable
org. spri ngframewor k. htt p. Medi aType instances. However you are able to inject your
own implementation of the Seri al i zer and/or Deseri al i zer strategy interfaces into some
MessageSt or e implementations (such as JdbcMessageStore) to change the behaviour of
serialization and deserialization.

Special attention must be paid to the headers that represent certain types of data. For example,
if one of the headers contains an instance of some Spring Bean, upon deserialization you may
end up with a different instance of that bean, which directly affects some of the implicit headers
created by the framework (e.g., REPLY_CHANNEL or ERROR_CHANNEL). Currently they are
not serializable, but even if they were, the deserialized channel would not represent the expected
instance.

Beginning with Spring Integration version 3.0, this issue can be resolved with a header
enricher, configured to replace these headers with a name after registering the channel with the
Header Channel Regi stry.

Also when configuring a message-flow like this: gateway -> queue-channel (backed by a
persistent Message Store) -> service-activator That gateway creates a Temporary Reply
Channel, and it will be lost by the time the service-activator's poller reads from the queue. Again,
you can use the header enricher to replace the headers with a String representation.

For more information, refer to the the section called “Header Enricher”.

8.4 Metadata Store

Many external systems, services or resources aren't transactional (Twitter, RSS, file system etc.) and
there is no any ability to mark the data as read. Or there is just need to implement the Enterprise
Integration Pattern ldempotent Receiver in some integration solutions. To achieve this goal and store
some previous state of the Endpoint before the next interaction with external system, or deal with the
next Message, Spring Integration provides the Metadata Store component being an implementation of
the or g. spri ngframewor k. i nt egrati on. met adat a. Met adat aSt or e interface with a general
key-value contract.

Spring Integration
3.0.5.RELEASE Reference Manual 135

http://eaipatterns.com/IdempotentReceiver.html

Spring Integration

The Metadata Store is designed to store various types of generic meta-data (e.g., published date
of the last feed entry that has been processed) to help components such as the Feed adapter deal
with duplicates. If a component is not directly provided with a reference to a Met adat aSt or e, the
algorithm for locating a metadata store is as follows: First, look for a bean with id net adat aSt or e in
the ApplicationContext. If one is found then it will be used, otherwise it will create a new instance of
Si npl eMet adat aSt or e which is an in-memory implementation that will only persist metadata within
the lifecycle of the currently running Application Context. This means that upon restart you may end
up with duplicate entries.

If you need to persist metadata between Application Context restarts, two persistent Met adat aSt or es
are provided by the framework:

* PropertiesPersistingMetadataStore
» Section 22.5, “Redis Metadata Store”

The PropertiesPersistingMetadataStore is backed by a properties file and a
Properti esPersister.

<bean i d="net adat aSt or e"
class="org. springframework.integration.store.PropertiesPersistingMetadataStore"/>

Alternatively, you can provide your own implementation of the Met adat aSt ore interface (e.g.
JdbcMetadataStore) and configure it as a bean in the Application Context.

Idempotent Receiver

The Metadata Store is useful for implementating the EIP ldempotent Receiver pattern, when there is
need to filter an incoming Message if it has already been processed, and just discard it or perform some
other logic on discarding. The following configuration is an example of how to do this:

<int:filter input-channel ="serviceChannel"

out put - channel ="i denpot ent Ser vi ceChannel "
di scard- channel ="di scardChannel "
expressi on=" @ret adat aSt or e. get (header s. busi nessKey) == null"/>

<i nt: publ i sh-subscri be-channel id="idenpotent Servi ceChannel "/ >

<i nt : out bound- channel - adapt er channel ="i denpot ent Ser vi ceChannel "
expressi on=" @ret adat aSt or e. put (headers. busi nessKey, '')"/>
<int:service-activator input-channel="idenpotent Servi ceChannel" ref="service"/>

The val ue of the idempotent entry may be some expiration date, after which that entry should be
removed from Metadata Store by some scheduled reaper.

8.5 Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"
messaging. In Spring Integration we build upon the adapters described above so that it's possible to
send Messages as a means of invoking exposed operations.

<int:control -bus input-channel ="operati onChannel />

Spring Integration
3.0.5.RELEASE Reference Manual 136

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/PropertiesPersister.html
http://eaipatterns.com/IdempotentReceiver.html

Spring Integration

The Control Bus has an input channel that can be accessed for invoking operations on the beans in
the application context. It also has all the common properties of a service activating endpoint, e.g. you
can specify an output channel if the result of the operation has a return value that you want to send
on to a downstream channel.

The Control Bus executes messages on the input channel as Spring Expression Language expressions.
It takes a message, compiles the body to an expression, adds some context, and then executes
it. The default context supports any method that has been annotated with @ManagedAttribute
or @ManagedOperation. It also supports the methods on Spring's Lifecycle interface, and it
supports methods that are used to configure several of Spring's TaskExecutor and TaskScheduler
implementations. The simplest way to ensure that your own methods are available to the Control Bus
is to use the @ManagedAttribute and/or @ManagedOperation annotations. Since those are also used
for exposing methods to a JMX MBean registry, it's a convenient by-product (often the same types of
operations you want to expose to the Control Bus would be reasonable for exposing via JMS). Resolution
of any particular instance within the application context is achieved in the typical SpEL syntax. Simply
provide the bean name with the SpEL prefix for beans (@). For example, to execute a method on a
Spring Bean a client could send a message to the operation channel as follows:

Message operation = MessageBui |l der. wi t hPayl oad(" @rySer vi ceBean. shut down()") . bui I d();
oper ati onChannel . send(operati on)

The root of the context for the expression is the Message itself, so you also have access to the 'payload'
and 'headers' as variables within your expression. This is consistent with all the other expression support
in Spring Integration endpoints.

8.6 Orderly Shutdown

As described in the section called “MBean Exporter”, the MBean exporter provides a JMX operation
stopActiveComponents, which is used to stop the application in an orderly manner. The operation has
two parameters, a boolean and a long. The boolean indicates whether attempts will be made to stop
(interrupt) active threads; in most cases this will be set to false for orderly shutdown. The long parameter
indicates how long (in milliseconds) the operation will wait to allow in-flight messages to complete. The
operation works as follows:

The first step calls bef or eShut down() on all beans that implement O der | yShut downCapabl e.
This allows such components to prepare for shutdown. Examples of components that implement this
interface, and what they do with this call include: JMS and AMQP message-driven adapters stop their
listener containers; TCP server connection factories stop accepting new connections (while keeping
existing connections open); TCP inbound endpoints drop (log) any new messages received; http
inbound endpoints return 503 - Service Unavailable for any new requests.

The second step stops any active channels, such as JMS- or AMQP-backed channels.
The third step stops all TaskSchedul er s, preventing any new scheduled operations (polling etc).

The fourth step stops all TaskExecut or s, preventing any new tasks from running.

© Note

If the shutdown is running from a Spring-managed Task Execut or , shutting down that executor
would cause all the timeout time to be consumed by this step, because the thread won't
terminate). For this reason, either use a dedicated executor (via the shutdownExecutor property
on the MBean exporter), or do not use a Spring-managed executor to invoke this operation.

Spring Integration
3.0.5.RELEASE Reference Manual 137

Spring Integration

The fifth step stops all MessageSour ces.

The sixth step waits for any remaining time left, as defined by the value of the long parameter passed
in to the operation. This is intended to allow any in-flight messages to complete their journeys. It is
therefore important to select an appropriate timeout when invoking this operation.

The seventh step calls af t er Shut down() on all OrderlyShutdownCapable components. This allows
such components to perform final shutdown tasks (closing all open sockets, for example).

© Note

If no time is left when we get to step 6, it probably means some thread is hung; in which case,
the operation attempts a forced shutdown on all schedulers and executors before exiting.

As discussed in the section called “Orderly Shutdown Managed Operation” this operation can be invoked
using JMX. If you wish to programmatically invoke the method, you will need to inject, or otherwise
get a reference to, the | nt egrati onMBeanExporter. If noid attribute is provided on the <i nt -
j mx: mbean- expor t / > definition, the bean will have a generated name. This name contains a random
component to avoid Cbj ect Nane collisions if multiple Spring Integration contexts exist in the same
JVM (MBeanServer).

For this reason, if you wish to invoke the method programmatically, it is recommended that you provide
the exporter with an i d attribute so it can easily be accessed in the application context.

Finally, the operation can be invoked using the <cont r ol - bus>; see the monitoring Spring Integration
sample application for details.

Spring Integration
3.0.5.RELEASE Reference Manual 138

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring
https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring

Part IV. Integration Endpoints

This section covers the various Channel Adapters and Messaging Gateways provided by Spring
Integration to support Message-based communication with external systems.

Spring Integration

9. Endpoint Quick Reference Table

As discussed in the sections above, Spring Integration provides a number of endpoints used to interface
with external systems, file systems etc. The following is a summary of the various endpoints with quick
links to the appropriate chapter.

Torecap, Inbound Channel Adapters are used for one-way integration bringing data into the messagng
application. Outbound Channel Adapters are used for one-way integration to send data out of the
messaging application. Inbound Gateways are used for a bidirectional integration flow where some
other system invokes the messaging application and receives a reply. Outbound Gateways are used
for a bidirectional integration flow where the messaging application invokes some external service or
entity, expecting a result.

Table 9.1.

Module Inbound Adapter Outbound Inbound Outbound
Adapter Gateway Gateway

AMQP Section 10.2, Section 10.3, Section 10.4, Section 10.5,
“Inbound Channel “Outbound “Inbound “Outbound
Adapter” Channel Adapter” Gateway” Gateway”

Events Section 11.1, Section 11.2, N N
“Receiving Spring “Sending Spring
ApplicationEvents” ApplicationEvents”

Feed Section 12.2, N N N
“Feed Inbound
Channel Adapter”

File Section 13.2, Section 13.3, N Section 13.3,
“Reading Files” “Writing files” “Writing files”
and the section
called “Tail'ing
Files”

FTP(S) Section 14.3,“FTP Section 14.4, N Section 14.5,
Inbound Channel “FTP Outbound “FTP Outbound
Adapter” Channel Adapter” Gateway”

Gemfire Section 15.2, Section 154, N N
“Inbound Channel “Outbound
Adapter” and Channel Adapter”

Section 15.3,
“Continuous

Query Inbound
Channel Adapter”

HTTP Section 16.4, Section 16.4, Section 16.2, “Http Section 16.3,
“HTTP “HTTP Inbound Gateway” “Http Outbound
Namespace Namespace Gateway”
Support” Support”

Spring Integration
3.0.5.RELEASE Reference Manual 140

Spring Integration

Module Inbound Adapter Outbound Inbound Outbound
Adapter Gateway Gateway
JDBC Section 17.1, Section 17.2, N Section 17.3,
“Inbound Channel “Outbound “Outbound
Adapter” and the Channel Adapter” Gateway” and
section called and the section the section called
“Stored Procedure called “Stored “Stored Procedure
Inbound Channel Procedure Outbound
Adapter” Outbound Gateway”
Channel Adapter”
JMS Section 19.1, Section 19.3, Section 19.4, Section 19.5,
“Inbound Channel “Outbound “Inbound “Outbound
Adapter” and Channel Adapter” Gateway” Gateway”
Section 19.2,
“Message-Driven
Channel Adapter”
JMX the section called the section called N the section called
“Notification “Notification “Operation
Listening Channel Publishing Invoking
Adapter” and the Channel Adapter” Outbound
section called and the section Gateway”
“Attribute Polling called “Operation
Channel Adapter” Invoking Channel
and the section Adapter”
called “Tree
Polling Channel
Adapter”
JPA Section 18.4, Section 18.5, N the section called
“Inbound Channel “Outbound “Updating
Adapter” Channel Adapter” Outbound
Gateway” and
the section called
“Retrieving
Outbound
Gateway”
Mail Section 20.2, Section 20.1, N N
“Mail-Receiving “Mail-Sending
Channel Adapter” Channel Adapter”
MongoDB Section 21.4, Section 215, N N
“MongoDB “MongoDB
Inbound Channel Outbound
Adapter” Channel Adapter”
Redis the section called the section called N N
“Redis Inbound “Redis Outbound
Channel Adapter” Channel Adapter”
Spring Integration
3.0.5.RELEASE Reference Manual 141

Spring Integration

Module Inbound Adapter Outbound Inbound Outbound
Adapter Gateway Gateway
and the section and the section
called “Redis called “Redis
Queue Inbound Queue Outbound
Channel Adapter” Channel Adapter”
and Section 22.6, and Section 22.7,
“RedisStore “RedisStore
Inbound Channel Outbound
Adapter” Channel Adapter”
Resource Section 23.2, N N N
“Resource
Inbound Channel
Adapter”
RMI N N Section 24.3, Section 24.2,
“Inbound RMI” “Outbound RMI”
SFTP Section 25.5, Section 25.6, N Section 25.7,
“SFTP Inbound “SFTP Outbound “SFTP Outbound
Channel Adapter” Channel Adapter” Gateway”
Stream Section 26.2, Section 26.3, N N
“Reading from “Writing to
streams” streams”
Syslog Section 27.2, N N N
“Syslog <inbound-
channel-adapter>"
TCP Section 28.6, Section 28.6, Section 28.7, Section 28.7,
“TCP Adapters” “TCP Adapters” “TCP Gateways” “TCP Gateways”
Twitter Section 29.4, Section 295, N N
“Twitter Inbound “Twitter Outbound
Adapters” Adapter”
UDP Section 28.2, Section 28.2, N N
“UDP Adapters” “UDP Adapters”
Web Services N N Section 30.2, Section 30.1,
“Inbound Web “Outbound Web
Service Service
Gateways” Gateways”
XMPP Section 32.3, Section 32.3, N N
“XMPP “XMPP
Messages” and Messages” and
Section 32.4, Section 32.4,
“XMPP Presence” “XMPP Presence”
Spring Integration
3.0.5.RELEASE Reference Manual 142

Spring Integration

In addition, as discussed in Part lll, “Core Messaging”, endpoints are provided for interfacing with Plain
Old Java Objects (POJOs). As discussed in Section 3.3, “Channel Adapter”, the <i nt : i nbound-
channel - adapt er > allows polling a java method for data; the <i nt: outbound-channel -
adapt er > allows sending data to a voi d method, and as discussed in Section 7.2, “Messaging
Gateways”, the <i nt : gat eway> allows any Java program to invoke a messaging flow. Each of these
without requiring any source level dependencies on Spring Integration. The equivalent of an outbound
gateway in this context would be to use a Section 7.3, “Service Activator” to invoke a method that returns

an Object of some kind.

Spring Integration
3.0.5.RELEASE Reference Manual 143

Spring Integration

10. AMQP Support

10.1 Introduction

Spring Integration provides Channel Adapters for receiving and sending messages using the Advanced
Message Queuing Protocol (AMQP). The following adapters are available:

Inbound Channel Adapter

Outbound Channel Adapter

Inbound Gateway
e Outbound Gateway

Spring Integration also provides a point-to-point Message Channel as well as a publish/subscribe
Message Channel backed by AMQP Exchanges and Queues.

In order to provide AMQP support, Spring Integration relies on Spring AMQP (http:/
www.springsource.org/spring-amgp) which "applies core Spring concepts to the development of
AMQP-based messaging solutions”. Spring AMQP provides similar semantics as Spring JMS (http://
static.springsource.org/spring/docs/current/spring-framework-reference/html/jms.html).

Whereas the provided AMQP Channel Adapters are intended for unidirectional Messaging (send or
receive) only, Spring Integration also provides inbound and outbound AMQP Gateways for request/
reply operations.

@ Tip

Please familiarize yourself with the reference documentation of the Spring AMQP project as well.
It provides much more in-depth information regarding Spring's integration with AMQP in general
and RabbitMQ in particular.

You can find the documentation at: http://static.springsource.org/spring-amaqp/reference/html/

10.2 Inbound Channel Adapter

A configuration sample for an AMQP Inbound Channel Adapter is shown below.

Spring Integration
3.0.5.RELEASE Reference Manual 144

http://www.springsource.org/spring-amqp
http://www.springsource.org/spring-amqp
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jms.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jms.html
http://static.springsource.org/spring-amqp/reference/html/

Spring Integration

<i nt - angp: i nbound- channel - adapt er i d="i nboundAngp" O

channel ="i nboundChannel "0
queue- nanes="si . test. queue"
acknow edge- node="AUTO' [
advi ce-chai n=""0

channel -transact ed=""0
concurrent-consuners=""01
connection-factory=""0
error-channel ="" 0

expose- | i stener-channel =""0
header - mapper ="" 4

mapped- r equest - header s="" 4
mapped- r epl y- header s=""

i stener-container=""H
message- converter=""
nessage- properties-converter=""
phase=""

pref et ch- count =""

recei ve-ti nmeout ="" K
recovery-interval =""El

shut down-t i neout ="" E4

t ask- executor=""E4
transaction-attribute=""E
transacti on- manager =""E4
tx-size=""HE/ >

O

Unique ID for this adapter. Optional.

Message Channel to which converted Messages should be sent. Required.

Names of the AMQP Queues from which Messages should be consumed (comma-separated list).
Required.

Acknowledge Mode for the MessageListenerContainer. Optional (Defaults to AUTO).

Extra AOP Advice(s) to handle cross cutting behavior associated with this Inbound Channel
Adapter. Optional.

Flag to indicate that channels created by this component will be transactional. Ff true, tells the
framework to use a transactional channel and to end all operations (send or receive) with a commit
or rollback depending on the outcome, with an exception signalling a rollback. Optional (Defaults
to false).

Specify the number of concurrent consumers to create. Default is 1. Raising the number of
concurrent consumers is recommended in order to scale the consumption of messages coming in
from a queue. However, note that any ordering guarantees are lost once multiple consumers are
registered. In general, stick with 1 consumer for low-volume queues. Optional.

Bean reference to the RabbitMQ ConnectionFactory. Optional (Defaults to ‘connectionFactory").
Message Channel to which error Messages should be sent. Optional.

Shall the listener channel (com.rabbitmg.client.Channel) be exposed to a registered
ChannelAwareMessageListener. Optional (Defaults to true).

AngpHeader Mapper to use when receiving AMQP Messages. Optional. By default only
standard AMQP properties (e.g. contentType) will be copied to and from Spring Integration
MessageHeaders. Any user-defined headers within the AMQP MessageProperties will NOT be
copied to or from an AMQP Message unless explicitly identified via 'requestHeaderNames' and/
or 'replyHeaderNames' properties of this Def aul t AngpHeader Mapper . If you need to copy all
user-defined headers simply use wild-card character *'.

Spring Integration

3.0.5.RELEASE Reference Manual 145

Spring Integration

N NEN
EBE

Comma-separated list of names of AMQP Headers to be mapped from the AMQP request into
the MessageHeaders. This can only be provided if the 'header-mapper' reference is not being set
directly. The values in this list can also be simple patterns to be matched against the header names
(e.g. "*" or "foo*, bar" or "*foo").

Comma-separated list of names of MessageHeaders to be mapped into the AMQP Message
Properties of the AMQP reply message. All standard Headers (e.g., contentType) will be mapped
to AMQP Message Properties while user-defined headers will be mapped to 'headers' property
which itself is a Map. This can only be provided if the 'header-mapper’ reference is not being set
directly. The values in this list can also be simple patterns to be matched against the header names
(e.g. "*" or "foo*, bar" or "*foo").

Reference to the Si npl eMessageli st ener Cont ai ner to use for receiving AMQP Messages.
If this attribute is provided, then no other attribute related to the listener container configuration
should be provided. In other words, by setting this reference, you must take full responsibility of
the listener container configuration. The only exception is the MessageListener itself. Since that
is actually the core responsibility of this Channel Adapter implementation, the referenced listener
container must NOT already have its own MessageListener configured. Optional.

© Note

Note that when configuring an external container, you cannot use the Spring AMQP
namespace to define the container. This is because the namespace requires at least one
<l i st ener/ > element. In this environment, the listener is internal to the adapter. For this
reason, you must define the container using a normal Spring <bean/ > definition, such as:

<bean id="contai ner"

cl ass="org. spri ngframewor k. angp. rabbi t. i stener. Si npl eMessagelLi st ener Cont ai ner" >
<property nanme="connectionFactory" ref="connectionFactory" />

<property name="queueNanes" val ue="f 0o. queue" />

<property nanme="def aul t RequeueRej ect ed" val ue="fal se"/>

</ bean>

The MessageConverter to use when receiving AMQP Messages. Optional.

The MessagePropertiesConverter to use when receiving AMQP Messages. Optional.

Specify the phase in which the underlying SimpleMessageListenerContainer should be started and
stopped. The startup order proceeds from lowest to highest, and the shutdown order is the reverse
of that. By default this value is Integer. MAX_VALUE meaning that this container starts as late as
possible and stops as soon as possible. Optional.

Tells the AMQP broker how many messages to send to each consumer in a single request. Often
this can be set quite high to improve throughput. It should be greater than or equal to the transaction
size (see attribute "tx-size"). Optional (Defaults to 1).

Receive timeout in milliseconds. Optional (Defaults to 1000).

Specifies the interval between recovery attempts of the underlying
SimpleMessagelListenerContainer (in milliseconds). Optional (Defaults to 5000).

The time to wait for workers in milliseconds after the underlying SimpleMessageListenerContainer
is stopped, and before the AMQP connection is forced closed. If any workers are active when the
shutdown signal comes they will be allowed to finish processing as long as they can finish within
this timeout. Otherwise the connection is closed and messages remain unacked (if the channel is
transactional). Defaults to 5000 milliseconds. Optional (Defaults to 5000).

By default, the underlying SimpleMessageListenerContainer uses a SimpleAsyncTaskExecutor
implementation, that fires up a new Thread for each task, executing it asynchronously. By default,
the number of concurrent threads is unlimited. NOTE: This implementation does not reuse threads.

Spring Integration

3.0.5.RELEASE Reference Manual 146

Spring Integration

Consider a thread-pooling TaskExecutor implementation as an alternative. Optional (Defaults to
SimpleAsyncTaskExecutor).

By default the underlying SimpleMessageListenerContainer creates a new instance of the
DefaultTransactionAttribute (takes the EJB approach to rolling back on runtime, but not checked
exceptions. Optional (Defaults to DefaultTransactionAttribute).

Sets a Bean reference to an external PlatformTransactionManager on the underlying
SimpleMessagelListenerContainer. The transaction manager works in conjunction with the
"channel-transacted" attribute. If there is already a transaction in progress when the framework
is sending or receiving a message, and the channelTransacted flag is true, then the commit or
rollback of the messaging transaction will be deferred until the end of the current transaction. If the
channelTransacted flag is false, then no transaction semantics apply to the messaging operation
(it is auto-acked). For further information see chapter 1.9 of the Spring AMQP reference guide:
http://static.springsource.org/spring-amqp/docs/1.0.x/reference/html/#d0e525 Optional.

Tells the SimpleMessageListenerContainer how many messages to process in a single transaction
(if the channel is transactional). For best results it should be less than or equal to the set "prefetch-
count". Optional (Defaults to 1).

Important

Even though the Spring Integration JIMS and AMQP support is very similar, important differences
exist. The JMS Inbound Channel Adapter is using a JmsDestinationPollingSource under the
covers and expects a configured Poller. The AMQP Inbound Channel Adapter on the other side
uses a SimpleMessageListenerContainer and is message driven. In that regard it is more similar
to the JIMS Message Driven Channel Adapter.

10.3 Outbound Channel Adapter

A configuration sample for an AMQP Outbound Channel Adapter is shown below.

<i nt - angp: out bound- channel - adapt er i d="out boundAmgp" O

channel =" out boundChannel " O

anmgp-t enpl at e="nyAngpTenpl at e" O
exchange- name=""01

order="1"0

routing-key=""0

routi ng- key-expression=""010
confirmcorrel ation-expressi on=""0
confirm ack-channel ="" 0

confi rm nack- channel ="" [

r et ur n- channel ="" &/ >

Unique ID for this adapter. Optional.

Message Channel to which Messages should be sent in order to have them converted and
published to an AMQP Exchange. Required.

Bean Reference to the configured AMQP Template Optional (Defaults to "amgpTemplate").

The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Optional.

The order for this consumer when multiple consumers are registered thereby enabling
load- balancing and/or failover. Optional (Defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

Spring Integration

3.0.5.RELEASE Reference Manual 147

Spring Integration

The fixed routing-key to use when sending Messages. By default, this will be an empty String.
Optional.

The routing-key to use when sending Messages evaluated as an expression on the message (e.g.
'‘payload.key"). By default, this will be an empty String. Optional.

An expression defining correlation data. When provided, this configures the underlying amqp
template to receive publisher confirms. Requires a dedicated Rabbit Tenpl ate and a
Cachi ngConnecti onFact ory with the publ i sher Confi rns property set to true. When a
publisher confirm is received, and correlation data is supplied, it is written to either the confirm-
ack-channel, or the confirm-nack-channel, depending on the confirmation type. The payload of the
confirm is the correlation data as defined by this expression and the message will have a header
‘amqgp_publishConfirm' set to true (ack) or false (nack). Examples: "headers['myCorrelationData’",
"payload". Optional.

The channel to which positive (ack) publisher confirms are sent; payload is the correlation data
defined by the confirm-correlation-expression. Optional, default=nullChannel.

The channel to which negative (nack) publisher confirms are sent; payload is the correlation data
defined by the confirm-correlation-expression. Optional, default=nullChannel.

The channel to which returned messages are sent. When provided, the underlying amqp template
is configured to return undeliverable messages to the adapter. The message will be constructed
from the data received from amqp, with the following additional headers: amqgp_returnReplyCode,
amgp_returnReplyText, amgp_returnExchange, amqgp_returnRoutingKey. Optional.

© Important
Using a r et ur n- channel requires a Rabbi t Tenpl at e with the mandat ory property
set to true, and a Cachi ngConnecti onFactory with the publisherReturns
property set to t r ue. When using multiple outbound endpoints with returns, a separate
Rabbi t Tenpl at e is needed for each endpoint.

10.4 Inbound Gateway

A configuration sample for an AMQP Inbound Gateway is shown below.

O

<i nt - angp: i nbound- gat eway i d="i nboundGat eway" [

request - channel =" nyRequest Channel " [
queue- nanes="si . test. queue"

advi ce-chai n=""0
concurrent-consuners="1"0J
connection-factory="connectionFactory"[
repl y- channel =" nyRepl yChannel "0/ >

Unique ID for this adapter. Optional.

Message Channel to which converted Messages should be sent. Required.

Names of the AMQP Queues from which Messages should be consumed (comma-separated list).
Required.

Extra AOP Advice(s) to handle cross cutting behavior associated with this Inbound Gateway.
Optional.

Specify the number of concurrent consumers to create. Default is 1. Raising the number of
concurrent consumers is recommended in order to scale the consumption of messages coming in
from a queue. However, note that any ordering guarantees are lost once multiple consumers are
registered. In general, stick with 1 consumer for low-volume queues. Optional (Defaults to 1).

Spring Integration

3.0.5.RELEASE Reference Manual 148

Spring Integration

Bean reference to the RabbitMQ ConnectionFactory. Optional (Defaults to ‘connectionFactory").
Message Channel where reply Messages will be expected. Optional.

See the note in Section 10.2, “Inbound Channel Adapter” about configuring the | i st ener - cont ai ner
attribute.

10.5 Outbound Gateway

A configuration sample for an AMQP Outbound Gateway is shown below.

<i nt - angp: out bound- gat eway i d="i nboundGat eway" O

r equest - channel =" nyRequest Channel "
angp-tenpl ate=""0

exchange- nane=""0

order="1"0

repl y-channel ="" 0O

routing-key=""0

routi ng- key-expression=""01
return-channel =""0/>

Unique ID for this adapter. Optional.

Message Channel to which Messages should be sent in order to have them converted and
published to an AMQP Exchange. Required.

Bean Reference to the configured AMQP Template Optional (Defaults to "amgpTemplate").

The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Optional.

The order for this consumer when multiple consumers are registered thereby enabling
load- balancing and/or failover. Optional (Defaults to Ordered.LOWEST PRECEDENCE
[=Integer.MAX_VALUE])).

Message Channel to which replies should be sent after being received from an AQMP Queue and
converted. Optional.

The routing-key to use when sending Messages. By default, this will be an empty String. Optional.
The routing-key to use when sending Messages evealuated as an expression on the message
(e.g. 'payload.key"). By default, this will be an empty String. Optional.

The channel to which returned messages are sent. When provided, the underlying amqp template
is configured to return undeliverable messages to the gateway. The message will be constructed
from the data received from amqp, with the following additional headers: amqgp_returnReplyCode,
amgp_returnReplyText, amgp_returnExchange, amqgp_returnRoutingKey. Optional.

© Important
Using a r et ur n- channel requires a Rabbi t Tenpl at e with the mandat ory property
set to true, and a Cachi ngConnecti onFactory with the publisherReturns
property set to t r ue. When using multiple outbound endpoints with returns, a separate
Rabbi t Tenpl at e is needed for each endpoint.

Note

Prior to Spring Integration 2.2, and Spring AMQP 1.1, the outbound gateway used a new,
temporary, reply queue for each request. This is still the default, but now the RabbitTemplate
can be configured with a specific queue for replies; headers are added to the outbound message

Spring Integration

3.0.5.RELEASE Reference Manual 149

Spring Integration

for request/reply correlation. It is important that the consuming application returns these headers
unchanged. The headers are spring_reply_correl ati on and spring_reply_to.If the
consuming application is a Spring Integration application, these headers will be managed
automatically, including the case where that application might send a request/reply to a third
application using an outbound gateway.

10.6 AMQP Backed Message Channels

There are two Message Channel implementations available. One is point-to-point, and the other
is publish/subscribe. Both of these channels provide a wide range of configuration attributes for
the underlying AmgpTemplate and SimpleMessageListenerContainer as you have seen on the
Channel Adapters and Gateways. However, the examples we'll show here are going to have minimal
configuration. Explore the XML schema to view the available attributes.

A point-to-point channel would look like this:

<i nt - angp: channel id="p2pChannel "/>

Under the covers a Queue named "si.p2pChannel” would be declared, and this channel will send to
that Queue (technically by sending to the no-name Direct Exchange with a routing key that matches
this Queue's name). This channel will also register a consumer on that Queue. If for some reason, you
want the Queue to be "pollable” instead of message-driven, then simply provide the "message-driven”
flag with a value of false:

<i nt - angp: channel id="p2pPol | abl eChannel" nessage-driven="false"/>

A publish/subscribe channel would look like this:

<i nt - angp: publ i sh-subscri be- channel i d="pubSubChannel "/ >

Under the covers a Fanout Exchange named "si.fanout.pubSubChannel" would be declared, and this
channel will send to that Fanout Exchange. This channel will also declare a server-named exclusive,
autodelete, non-durable Queue and bind that to the Fanout Exchange while registering a consumer on
that Queue to receive Messages. There is no "pollable" option for a publish-subscribe-channel; it must
be message-driven.

10.7 AMQP Message Headers

The Spring Integration AMPQ Adapters will map standard AMQP properties automatically. These
properties will be copied by default to and from Spring Integration MessageHeader s using the
Def aul t AngpHeader Mapper .

Of course, you can pass in your own implementation of AMQP specific header mappers, as the adapters
have respective properties to support that.

Any user-defined headers within the AMQP MessagePr operti es will NOT be copied to or from an
AMQP Message, unless explicitly specified by the requestHeaderNames and/or replyHeaderNames
properties of the Def aul t AngpHeader Mapper .

Q@ Tip
When mapping user-defined headers, the values can also contain simple wildcard patterns (e.g.

"foo*" or "*foo") to be matched. For example, if you need to copy all user-defined headers simply
use the wild-card character ',

Spring Integration
3.0.5.RELEASE Reference Manual 150

http://static.springsource.org/spring-integration/api/org/springframework/integration/MessageHeaders.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/amqp/support/DefaultAmqpHeaderMapper.html
http://static.springsource.org/spring-amqp/api/org/springframework/amqp/core/MessageProperties.html

Spring Integration

Class AngpHeaders identifies
Def aul t AngpHeader Mapper :

amgp_appld
amgp_clusterld
amgp_contentEncoding
amgp_contentLength
content-type
amgp_correlationid
amgp_deliveryMode
amgp_deliveryTag
amgp_expiration
amgp_messageCount
amgp_messageld
amgp_receivedExchange
amgp_receivedRoutingKey
amgp_redelivered
amgp_replyTo
amqp_timestamp
amgp_type

amgp_userld
amgp_springReplyCorrelation
amgp_springReplyToStack
amgp_publishConfirm
amgp_returnReplyCode
amqp_returnReplyText
amgp_returnExchange

amgp_returnRoutingKey

10.8 AMQP Samples

the

default

headers

that

will

be

used

by

the

To experiment with the AMQP adapters, check out the samples available in the Spring Integration
Samples Git repository at:

3.0.5.RELEASE

Spring Integration
Reference Manual

151

http://static.springsource.org/spring-integration/api/org/springframework/integration/amqp/AmqpHeaders.html

Spring Integration

 https://github.com/SpringSource/spring-integration-samples

Currently there is one sample available that demonstrates the basic functionality of the Spring Integration
AMQP Adapter using an Outbound Channel Adapter and an Inbound Channel Adapter. As AMQP Broker

implementation the sample uses RabbitMQ (http://www.rabbitmg.com/).

© Note

In order to run the example you will need a running instance of RabbitMQ. A local installation with
just the basic defaults will be sufficient. For detailed RabbitMQ installation procedures please
visit: _http://www.rabbitmg.com/install.html

Once the sample application is started, you enter some text on the command prompt and a message
containing that entered text is dispatched to the AMQP queue. In return that message is retrieved via
Spring Integration and then printed to the console.

The image belows illustrates the basic set of Spring Integration components used in this sample.

— -
D,

consoleln

_— _—
I:—JI I:—JI
@ @
toRabhit fromRabbit

The Spring Integration graph of the AMQP sample

-
iy

:a—ﬂg

consoleQut

. ::—{E

loggingChannel

3.0.5.RELEASE

Spring Integration
Reference Manual

152

https://github.com/SpringSource/spring-integration-samples
http://www.rabbitmq.com/
http://www.rabbitmq.com/install.html

Spring Integration

11. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound Appl i cati onEvent s as defined by the
underlying Spring Framework. For more information about Spring's support for events and listeners,
refer to the Spring Reference Manual.

11.1 Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
Appl i cati onEvent Li st eni ngMessagePr oducer. This class is an implementation of Spring's
Appl i cationLi st ener interface. By default it will pass all received events as Spring Integration
Messages. To limit based on the type of event, configure the list of event types that you want to receive
with the 'eventTypes' property. If a received event has a Message instance as its 'source’, then that
will be passed as-is. Otherwise, if a SpEL-based "payloadExpression” has been provided, that will be
evaluated against the ApplicationEvent instance. If the event's source is not a Message instance and no
"payloadExpression" has been provided, then the ApplicationEvent itself will be passed as the payload.

For convenience namespace support is provided to configure an
Appl i cati onEvent Li st eni ngMessagePr oducer via the inbound-channel-adapter element.

<i nt - event: i nbound-channel - adapt er channel =" event Channel "
error-channel ="event Err or Channel "
event -t ypes="exanpl e. FooEvent, exanpl e. Bar Event"/ >

<i nt: publish-subscribe-channel id="event Channel"/>

In the above example, all Application Context events that match one of the types specified by the 'event-
types' (optional) attribute will be delivered as Spring Integration Messages to the Message Channel
named 'eventChannel'. If a downstream component throws an exception, a MessagingException
containing the failed message and exception will be sent to the channel named 'eventErrorChannel'. If
no "error-channel” is specified and the downstream channels are synchronous, the Exception will be
propagated to the caller.

11.2 Sending Spring ApplicationEvents

To send Spring Appl i cati onEvents, create an instance of the
Appl i cati onEvent Publ i shi ngMessageHandl er and register it within an endpoint.
This implementation of the MessageHandl er interface also implements Spring's
Appl i cati onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring Integration
Messages and Appl i cati onEvent s.

For convenience namespace support is provided to configure an
Appl i cati onEvent Publ i shi ngMessageHandI er via the outbound-channel-adapter element.

<i nt:channel id="eventChannel"/>

<i nt - event : out bound- channel - adapt er channel =" event Channel "/ >

If you are using a PollableChannel (e.g., Queue), you can also provide poller as a sub-element of the
outbound-channel-adapter element. You can also optionally provide a task-executor reference for that
poller. The following example demonstrates both.

Spring Integration
3.0.5.RELEASE Reference Manual 153

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Spring Integration

<i nt:channel id="eventChannel">
<i nt:queue/ >
</int:channel >

<i nt - event : out bound- channel - adapt er channel =" event Channel ">
<int:pol |l er max-nessages-per-poll="1" task-executor="executor" fixed-rate="100"/>
</int-event: out bound- channel - adapt er >

<t ask: execut or id="executor" pool -size="5"/>

In the above example, all messages sent to the 'eventChannel' channel will be published as
ApplicationEvents to any relevant ApplicationListener instances that are registered within the same
Spring ApplicationContext. If the payload of the Message is an ApplicationEvent, it will be passed as-
is. Otherwise the Message itself will be wrapped in a MessagingEvent instance.

Spring Integration
3.0.5.RELEASE Reference Manual 154

Spring Integration

12. Feed Adapter

Spring Integration provides support for Syndication via Feed Adapters

12.1 Introduction

Web syndication is a form of publishing material such as news stories, press releases, blog posts, and
other items typically available on a website but also made available in a feed format such as RSS or
ATOM.

Spring integration provides support for Web Syndication via its 'feed' adapter and provides convenient
namespace-based configuration for it. To configure the 'feed' namespace, include the following elements
within the headers of your XML configuration file:

xm ns:int-feed="http://wwm. springfranmework. org/schema/integration/feed"
Xsi : schemaLocati on="htt p: //ww. spri ngfranework. org/ schema/ i nt egration/feed
http://ww. springframework. org/ schema/i ntegration/feed/spring-integration-feed. xsd"

12.2 Feed Inbound Channel Adapter

The only adapter that is really needed to provide support for retrieving feeds is an inbound channel
adapter. This allows you to subscribe to a particular URL. Below is an example configuration:

<i nt-feed: i nbound- channel - adapter id="feedAdapter"
channel ="f eedChannel "
url ="http://feeds. bbci.co. uk/news/rss. xm ">
<int:poller fixed-rate="10000" nax-messages-per-poll="100" />
</int-feed:inbound-channel - adapt er >

In the above configuration, we are subscribing to a URL identified by the ur | attribute.

As news items are retrieved they will be converted to Messages and sent to a
channel identified by the channel attribute. The payload of each message will be a
com sun. syndi cat i on. f eed. synd. SyndEnt r y instance. That encapsulates various data about a
news item (content, dates, authors, etc.).

You can also see that the Inbound Feed Channel Adapter is a Polling Consumer. That means
you have to provide a poller configuration. However, one important thing you must understand
with regard to Feeds is that its inner-workings are slightly different then most other poling
consumers. When an Inbound Feed adapter is started, it does the first poll and receives a
com sun. syndi cati on. f eed. synd. SyndEnt r yFeed instance. That is an object that contains
multiple SyndEnt r y objects. Each entry is stored in the local entry queue and is released based on the
value in the max- nessages- per - pol | attribute such that each Message will contain a single entry.
If during retrieval of the entries from the entry queue the queue had become empty, the adapter will
attempt to update the Feed thereby populating the queue with more entries (SyndEntry instances) if
available. Otherwise the next attempt to poll for a feed will be determined by the trigger of the poller
(e.g., every 10 seconds in the above configuration).

Duplicate Entries

Polling for a Feed might result in entries that have already been processed ("l already read that news
item, why are you showing it to me again?"). Spring Integration provides a convenient mechanism to
eliminate the need to worry about duplicate entries. Each feed entry will have a published date field.

Spring Integration
3.0.5.RELEASE Reference Manual 155

Spring Integration

Every time a new Message is generated and sent, Spring Integration will store the value of the latest
published date in an instance of the Met adat aSt or e strategy (Section 8.4, “Metadata Store”).

© Note

The key used to persist the latest published date is the value of the (required) i d attribute of the
Feed Inbound Channel Adapter component plus the f eedUr | from the adapter's configuration.

Spring Integration
3.0.5.RELEASE Reference Manual 156

Spring Integration

13. File Support

13.1 Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary to deal
with reading, writing, and transforming files. It provides a namespace that enables elements defining
Channel Adapters dedicated to files and support for Transformers that can read file contents into strings
or byte arrays.

This section will explain the workings of Fil eReadi ngMessageSource and
Fil eWitingMessageHandl er and how to configure them as beans. Also the support for dealing with
files through file specific implementations of Tr ansf or mer will be discussed. Finally the file specific
namespace will be explained.

13.2 Reading Files

A Fi | eReadi ngMessageSour ce can be used to consume files from the filesystem. This is an
implementation of MessageSour ce that creates messages from a file system directory.

<bean i d="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="${input.directory}"/>

To prevent creating messages for certain files, you may supply a Fi | eLi st Fi | t er. By default, an
Accept OnceFi | eLi stFil ter is used. This filter ensures files are picked up only once from the
directory.

@ Note

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a
system restart, consider using the Fi | eSyst enPer si st ent Accept OnceFil eListFilter
instead. This filter stores the accepted file names in a Met adat aSt or e strategy (Section 8.4,
“Metadata Store”). This filter matches on the filename and modified time.

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="${input.directory}"
p:filter-ref="custonFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
Accept OnceFi | eLi st Fi | t er does not prevent this. In most cases, this can be prevented if the file-
writing process renames each file as soon as it is ready for reading. A filename-pattern or filename-
regex filter that accepts only files that are ready (e.g. based on a known suffix), composed with the
default Accept OnceFi | eLi st Fi | t er allows for this. The Conposi t eFi | eLi st Fi | t er enablesthe
composition.

Spring Integration
3.0.5.RELEASE Reference Manual 157

Spring Integration

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="${i nput.directory}"
p:filter-ref="conpositeFilter"/>
<bean i d="conpositeFilter"
class="org.springframework.integration.file.filters. ConpositeFilelListFilter">
<const ruct or - ar g>
<list>
<bean class="o0.s.i.file.filters. AcceptOnceFilelListFilter"/>
<bean class="o0.s.i.file.filters. RegexPatternFilelListFilter">
<constructor-arg val ue=""test.*$"/>

</ bean>
</list>
</ constructor-ar g>

</ bean>

The configuration can be simplified using the file specific namespace. To do this use the following
template.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://ww. springframework. org/schema/integration"
xmns:int-file="http://ww:.springframework. org/schema/integration/file"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. springfranmework. org/schema/integration/file
http://ww. springframework. org/ schema/integration/file/spring-integration-file.xsd">
</ beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound
Channel Adapter like this:

<int-file:inbound-channel -adapter id="fileslnl"
directory="file:${input.directory}" prevent-duplicates="true"/>

<int-file:inbound-channel -adapter id="filesln2"
directory="file: ${input.directory}"
filter="custonFilterBean" />

<int-file:inbound-channel -adapter id="filesln3"
directory="file: ${i nput.directory}"
filenane-pattern="test*" />

<int-file:inbound-channel -adapter id="filesln4"
directory="file:${input.directory}"
filenane-regex="test[0-9]+\.txt" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is using
a custom filter, the third is using the filename-pattern attribute to add an Ant Pat hat cher based filter,
and the fourth is using the filename-regex attribute to add a regular expression Pattern based filter
to the Fi | eReadi ngMessageSour ce. The filename-pattern and filename-regex attributes are each
mutually exclusive with the regular filter reference attribute. However, you can use the filter attribute to
reference an instance of Conposi t eFi | eLi st Fi | t er that combines any number of filters, including
one or more pattern based filters to fit your particular needs.

Spring Integration
3.0.5.RELEASE Reference Manual 158

Spring Integration

When multiple processes are reading from the same directory it can be desirable to lock files to prevent
them from being picked up concurrently. To do this you can use a Fi | eLocker . There is a java.nio
based implementation available out of the box, but it is also possible to implement your own locking
scheme. The nio locker can be injected as follows

<int-file:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<int-file:nio-Ilocker/>

</int-file:inbound-channel -adapter>

A custom locker you can configure like this:

<int-file:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<int-file:locker ref="custonlocker"/>
</int-file:inbound-channel -adapter>

© Note

When a file inbound adapter is configured with a locker, it will take the responsibility to acquire
a lock before the file is allowed to be received. It will not assume the responsibility to unlock
the file. If you have processed the file and keeping the locks hanging around you have a memory
leak. If this is a problem in your case you should call FileLocker.unlock(File file) yourself at the
appropriate time.

When filtering and locking files is not enough it might be needed to control the way files are listed entirely.
To implement this type of requirement you can use an implementation of Di r ect or yScanner . This
scanner allows you to determine entirely what files are listed each poll. This is also the interface that
Spring Integration uses internally to wire FileListFilters FileLocker to the FileReadingMessageSource. A
custom DirectoryScanner can be injected into the <int-file:inbound-channel-adapter/> on the scanner
attribute.

<int-file:inbound-channel -adapter id="filesln" directory="file:${input.directory}"
prevent - dupl i cat es="true" scanner="custonDi rectoryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

© Important

It is important to understand that filters (including patterns, regex, prevent-duplicates etc) and
lockers, are actually used by the scanner. Any of these attributes set on the adapter are
subsequently injected into the scanner. For this reason, if you need to provide a custom scanner
and you have multiple file inbound adapters in the same application context, each adapter must
be provided with its own instance of the scanner, either by declaring separate beans, or declaring
scope="pr ot ot ype" on the scanner bean so that the context will create a new instance for
each use.

‘Tail'ing Files

Another popular use case is to get 'lines' from the end (or tail) of a file,
capturing new lines when they are added. Two implementations are provided; the first,
OSDel egati ngFi | eTai | i ngMessagePr oducer, uses the native tail command (on operating
systems that have one). This is likely the most efficient implementation on those platforms.
For operating systems that do not have a tail command, the second implementation

Spring Integration
3.0.5.RELEASE Reference Manual 159

Spring Integration

ApacheCommonsFi | eTai | i ngMessagePr oducer which uses the Apache conmons-io Tail er
class.

In both cases, file system events, such as files being unavailable etc, are published as
Appl i cati onEvent s using the normal Spring event publishing mechanism. Examples of such events
are:

[message=tail: cannot open /tnp/foo' for reading: No such file or directory,
file=/tnpl/foo]

[message=tail: “/tnp/foo' has becone accessible, file=/tnp/foo]

[message=tail: “/tnp/foo' has becone i naccessible: No such file or directory,
file=/tnpl/foo]

[message=tail: “/tnp/foo' has appeared; followng end of new file, file=/
t np/ f 00]

This sequence of events might occur, for example, when a file is rotated.

© Note

Not all platforms supporting at ai | command provide these status messages.
Example configurations:

<int-file:tail-inbound-channel -adapter id="native"
channel ="i nput "

t ask- execut or =" exec"

file="/tnp/foo"/>

This creates a native adapter with default '-F -n 0" options (follow the file name from the current end).

<int-file:tail-inbound-channel -adapter id="native"
channel ="i nput"

native-options="-F -n +0"

t ask- execut or =" exec"

file-del ay=10000

file="/tnp/foo"/>

This creates a native adapter with '-F -n +0' options (follow the file name, emitting all existing lines). If the
tail command fails (on some platforms, a missing file causes the t ai | to fail, even with - F specified),
the command will be retried every 10 seconds.

<int-file:tail-inbound-channel -adapter id="apache"
channel ="i nput"

t ask- execut or =" exec"

file="/tnp/bar"

del ay="2000"

end="fal se"

reopen="true"

file-del ay="10000"/ >

This creates an Apache commons-io Tai | er adapter that examines the file for new lines every 2
seconds, and checks for existence of a missing file every 10 seconds. The file will be tailed from the
beginning (end="f al se") instead of the end (which is the default). The file will be reopened for each
chunk (the default is to keep the file open).

Spring Integration
3.0.5.RELEASE Reference Manual 160

Spring Integration

© Important

Specifying the del ay, end or r eopen attributes, forces the use of the Apache commons-io
adapter and the nat i ve- opti ons attribute is not allowed.

13.3 Writing files

To write messages to the file system you can use a Fi | eW i ti ngMessageHandl er. This class can
deal with File, String, or byte array payloads.

You can configure the encoding and the charset that will be used in case of a String payload.

To make things easier, you can configure the Fi | eW i t i ngMessageHandl| er as part of an Outbound
Channel Adapter or Outbound Gateway using the provided XML namespace support.

Generating Filenames

Inits simplestform, the Fi | eW it i ngMessageHandl er only requires a destination directory for writing
the files. The name of the file to be written is determined by the handler's Fi | eNanmeGener at or .
The default implementation looks for a Message header whose key matches the constant defined as
Fi | eHeader s. FI LENANE.

Alternatively, you can specify an expression to be evaluated against the Message in order to generate
a file name, e.g.: headers['myCustomHeader'] + ".foo'". The expression must evaluate to a St ri ng. For
convenience, the Def aul t Fi | eNaneCGener at or also provides the setHeaderName method, allowing
you to explicitly specify the Message header whose value shall be used as the filename.

Once setup, the Def aul t Fi | eNameGener at or will employ the following resolution steps to determine
the filename for a given Message payload:

1. Evaluate the expression against the Message and, if the result is a non-empty St ri ng, use it as
the filename.

2. Otherwise, if the payload is aj ava. i 0. Fi | e, use the file's filename.
3. Otherwise, use the Message ID appended with “.msg” as the filename.

When using the XML namespace support, both, the File Oubound Channel Adapter and the File
Outbound Gateway support the following two mutually exclusive configuration attributes:

« fil ename- gener at or (areference to a Fi | eNaneGener at or) implementation)
e fil ename- gener at or - expr essi on (an expression evaluating to a St ri ng)

While writing files, a temporary file suffix will be used (default: “.writing”). It is appended to the filename
while the file is being written. To customize the suffix, you can set the temporary-file-suffix attribute on
both, the File Oubound Channel Adapter and the File Outbound Gateway.

© Note

When using the APPEND file mode, the temporary-file-suffix attribute is ignored, since the data
is appended to the file directly.

Spring Integration
3.0.5.RELEASE Reference Manual 161

http://static.springsource.org/spring-integration/api/org/springframework/integration/file/FileWritingMessageHandler.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/file/FileNameGenerator.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/file/DefaultFileNameGenerator.html
http://static.springsource.org/spring-integration/api/constant-values.html#org.springframework.integration.file.FileHeaders.FILENAME

Spring Integration

Specifying the Output Directory

Both, the File Oubound Channel Adapter and the File Outbound Gateway provide two configuration
attributes for specifying the output directory:

« directory

* directory-expression

© Note

The directory-expression attribute is available since Spring Integration 2.2,
Using the directory attribute

When using the directory attribute, the output directory will be set to a fixed value, that is set at
intialization time of the Fi | eWi ti ngMessageHandl er . If you don't specify this attribute, then you
must use the directory-expression attribute.

Using the directory-expression attribute

If you want to have full SpEL support you would choose the directory-expression attribute. This attribute
accepts a SpEL expression that is evaluated for each message being processed. Thus, you have full
access to a Message's payload and its headers to dynamically specify the output file directory.

The SpEL expression must resolve to eithera St ri ng ortoj ava. i o. Fi | e. Furthermore the resulting
String or Fi | e must point to a directory. If you don't specify the directory-expression attribute, then
you must set the directory attribute.

Using the auto-create-directory attribute

If the destination directory does not exists, yet, by default the respective destination directory and any
non-existing parent directories are being created automatically. You can set the auto-create-directory
attribute to false in order to prevent that. This attribute applies to both, the directory and the directory-
expression attribute.

© Note

When using the directory attribute and auto-create-directory is f al se, the following change was
made starting with Spring Integration 2.2:

Instead of checking for the existence of the destination directory at initialization time of the
adapter, this check is now performed for each message being processed.

Furthermore, if auto-create-directory is true and the directory was deleted between the
processing of messages, the directory will be re-created for each message being processed.

Dealing with Existing Destination Files

When writing files and the destination file already exists, the default behavior is to overwrite that target
file. This behavior, though, can be changed by setting the mode attribute on the respective File Outbound
components. The following options exist:

« REPLACE (Default)

* APPEND

Spring Integration
3.0.5.RELEASE Reference Manual 162

Spring Integration

* FAIL

* IGNORE

© Note

The mode attribute and the options APPEND, FAIL and IGNORE, are available since Spring
Integration 2.2.

REPLACE

If the target file already exists, it will be overwritten. If the mode attribute is not specified, then this is
the default behavior when writing files.

APPEND

This mode allows you to append Message content to the existing file instead of creating a new file
each time. Note that this attribute is mutually exclusive with temporary-file-suffix attribute since when
appending content to the existing file, the adapter no longer uses a temporary file.

FAIL

If the target file exists, a MessageHandlingException is thrown.

IGNORE

If the target file exists, the message payload is silently ignored.

© Note

When using a temporary file suffix (default: . wri t i ng), the IGNORE mode will apply if the final
file name exists, or the temporary file name exists.

File Outbound Channel Adapter

<int-file:outbound-channel -adapter id="filesQut" directory="${input.directory. property}"/>

The namespace based configuration also supports a del et e- sour ce-fi | es attribute. If settot r ue,
it will trigger the deletion of the original source files after writing to a destination. The default value for
that flag is f al se.

<int-file:outbound-channel -adapter id="filesCQut"
di rectory="${output.directory}"
del ete-source-files="true"/>

© Note

The del et e- source-fil es attribute will only have an effect if the inbound Message has a
File payload or if the Fi | eHeader s. ORI G NAL_FI LE header value contains either the source
File instance or a String representing the original file path.

Outbound Gateway

In cases where you want to continue processing messages based on the written file, you can use
the out bound- gat eway instead. It plays a very similar role as the out bound- channel - adapt er.
However, after writing the file, it will also send it to the reply channel as the payload of a Message.

Spring Integration
3.0.5.RELEASE Reference Manual 163

http://static.springsource.org/spring-integration/api/org/springframework/integration/MessageHandlingException.html

Spring Integration

<int-file:outbound-gateway id="nover" request-channel ="novel nput"
repl y- channel =" out put "
directory="${output.directory}"
nmode="REPLACE" del ete-source-files="true"/>

As mentioned earlier, you can also specify the mode attribute, which defines the behavior of how to
deal with situations where the destination file already exists. Please see the section called “Dealing with
Existing Destination Files” for further details. Generally, when using the File Outbound Gateway, the
result file is returned as the Message payload on the reply channel.

This also applies when specifying the IGNORE mode. In that case the pre-existing destination file is
returned. If the payload of the request message was a file, you still have access to that original file
through the Message Header FileHeaders.ORIGINAL FILE.

© Note

The 'outbound-gateway' works well in cases where you want to first move a file and then send it
through a processing pipeline. In such cases, you may connect the file namespace's 'inbound-
channel-adapter' element to the 'outbound-gateway' and then connect that gateway's reply-
channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be
converted to file content you could extend the FileWritingMessageHandler, but a much better option is
to rely on a Tr ansf or ner .

13.4 File Transformers

To transform data read from the file system to objects and the other way around you
need to do some work. Contrary to Fil eReadi ngMessageSource and to a lesser extent
FileWitingMessageHandl er, it is very likely that you will need your own mechanism to
get the job done. For this you can implement the Transformer interface. Or extend the
Abst ract Fi | ePayl oadTr ansf or mer for inbound messages. Some obvious implementations have
been provided.

Fi | eToByt eArrayTr ansf or ner transforms Files into byte[]s using Spring's Fi | eCopyUtil s. Itis
often better to use a sequence of transformers than to put all transformations in a single class. In that
case the File to byte[] conversion might be a logical first step.

Fil eToStri ngTransf or mer will convert Files to Strings as the name suggests. If nothing else, this
can be useful for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<int-file:file-to-bytes-transforner input-channel="input" output-channel ="output"
del ete-files="true"/>

<int-file:file-to-string-transformer input-channel="input" output-channel ="output"
del ete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File
after the transformation is complete. This is in no way a replacement for using the
Accept OnceFi l eLi stFilter when the FileReadingMessageSource is being used in a multi-
threaded environment (e.g. Spring Integration in general).

Spring Integration
3.0.5.RELEASE Reference Manual 164

http://static.springsource.org/spring-integration/api/org/springframework/integration/file/FileHeaders.html

Spring Integration

14. FTP/FTPS Adapters

Spring Integration provides support for file transfer operations via FTP and FTPS.

14.1 Introduction

The File Transfer Protocol (FTP) is a simple network protocol which allows you to transfer files between
two computers on the Internet.

There are two actors when it comes to FTP communication: client and server. To transfer files with FTP/
FTPS, you use a client which initiates a connection to a remote computer that is running an FTP server.
After the connection is established, the client can choose to send and/or receive copies of files.

Spring Integration supports sending and receiving files over FTP/FTPS by providing three client side
endpoints: Inbound Channel Adapter, Outbound Channel Adapter, and Outbound Gateway. It also
provides convenient namespace-based configuration options for defining these client components.

To use the FTP namespace, add the following to the header of your XML file:

xm ns:int-ftp="http://ww. springfranmework. org/schema/integration/ftp"
Xxsi : schemaLocati on="htt p://ww. spri ngfranework. org/ schema/i ntegration/ftp
http://ww. springframework. org/ schema/integration/ftp/spring-integration-ftp.xsd"

14.2 FTP Session Factory

© Important
Starting with version 3.0, sessions are no longer cached by default. See Section 14.6, “FTP
Session Caching”.

Before configuring FTP adapters you must configure an FTP Session Factory. You can configure
the FTP Session Factory with a regular bean definition where the implementation class is
org.springframework.integration.ftp.session. Defaul t Ft pSessi onFact ory: Below is
a basic configuration:

<bean i d="ftpCientFactory"
cl ass="org. springframework.integration.ftp.session. Defaul tFtpSessi onFactory">
<property nane="host" val ue="| ocal host"/>
<property nanme="port" val ue="22"/>
<property nane="user nanme" val ue="kermt"/>
<property nane="password" val ue="frog"/>

<property name="cl i ent Mode" val ue="0"/>
<property name="fil eType" val ue="2"/>
<property nane="bufferSi ze" val ue="100000"/>

</ bean>

For FTPS connections all you need to do is use
org. springframework. integration.ftp.session. DefaultFtpsSessionFact ory instead.
Below is the complete configuration sample:

Spring Integration
3.0.5.RELEASE Reference Manual 165

Spring Integration

<bean id="ftpCientFactory"
cl ass="org. springframework.integration.ftp.client.DefaultFtpsCientFactory">
<property nane="host" val ue="1|ocal host"/>
<property nanme="port" val ue="22"/>
<property nanme="user nane" val ue="ol eg"/>
<property nane="password" val ue="password"/>
<property nanme="client Mode" val ue="1"/>
<property name="fil eType" val ue="2"/>
<property nane="useC i ent Mode" val ue="true"/>
<property name="ci pher Suites" value="a,b.c"/>
<property nane="keyManager" ref="keyManager"/>
<property nanme="protocol" val ue="SSL"/>
<property nanme="trustManager" ref="trustManager"/>
<property nanme="prot" val ue="P"'/>
<property nane="needd i ent Auth" val ue="true"/>
<property nane="aut hVal ue" val ue="ol eg"/ >
<property nane="sessi onCreation" val ue="true"/>
<property nanme="protocol s" val ue="SSL, TLS"/>
<property name="inplicit" value="true"/>

</ bean>

Every time an adapter requests a session object from its Sessi onFact ory the session is returned
from a session pool maintained by a caching wrapper around the factory. A Session in the session pool
might go stale (if it has been disconnected by the server due to inactivity) so the Sessi onFact or y will
perform validation to make sure that it never returns a stale session to the adapter. If a stale session
was encountered, it will be removed from the pool, and a new one will be created.

© Note

If you experience connectivity problems and would like to trace Session creation as well as
see which Sessions are polled you may enable it by setting the logger to TRACE level (e.g.,
log4j.category.org.springframework.integration.file=TRACE)

Now all you need to do is inject these session factories into your adapters. Obviously the protocol (FTP
or FTPS) that an adapter will use depends on the type of session factory that has been injected into
the adapter.

@ Note

A more practical way to provide values for FTP/FTPS Session Factories is by using
Spring's property placeholder support (See: http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer).

Advanced Configuration

Def aul t Ft pSessi onFact ory provides an abstraction over the underlying client API which, since
Spring Integration 2.0, is Apache Commons Net. This spares you from the low level configuration
details of the or g. apache. cormons. net . ft p. FTPC i ent . However there are times when access
to lower level FTPC i ent details is necessary to achieve more advanced configuration (e.g., setting
data timeout, default timeout etc.). For that purpose, Abst r act Ft pSessi onFact or y (the base class
for all FTP Session Factories) exposes hooks, in the form of the two post-processing methods below.

Spring Integration
3.0.5.RELEASE Reference Manual 166

http://commons.apache.org/net/

Spring Integration

/**

* WIIl handle additional initialization after client.connect() nethod was invoked
* but before any action on the client has been taken
&/
protected void post Processd ientAfterConnect (T t) throws | OException {
/1 NOOP

}
/**
* WIIl handle additional initialization before client.connect() nethod was invoked
*/
protected voi d post Processd i ent Bef oreConnect (T client) throws | OException {

/1 NOOP

}

As you can see, there is no default implementation for these two methods. However, by
extending Def aul t Ft pSessi onFact or y you can override these methods to provide more advanced
configuration of the FTPC i ent . For example:

public class AdvancedFt pSessi onFactory extends Defaul t Ft pSessi onFactory {
protected void postProcessCl i ent Bef oreConnect (FTPClient ftpCient) throws | OException

ftpCdient. setDataTi neout (5000) ;
ftpCient.setDefaul tTi mout(5000);

14.3 FTP Inbound Channel Adapter

The FTP Inbound Channel Adapter is a special listener that will connect to the FTP server and will listen
for the remote directory events (e.g., new file created) at which point it will initiate a file transfer.

<i nt-ftp:inbound-channel - adapter id="ftpl nbound"
channel ="ft pChannel "
session-factory="ft pSessi onFact ory"
char set =" UTF- 8"
aut o-create-local -directory="true"
del ete-remote-files="true"
fil enanme-pattern="*.txt"
renot e-di rect ory="sone/ r enot e/ pat h"

preserve-tinestanp="true"

I ocal -fil enane- gener at or - expr essi on="#t hi s. t oUpperCase() + '.a""

local -filter="nmyFilter"

| ocal -directory=".">

<int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel - adapt er >

As you can see from the configuration above you can configure an FTP Inbound Channel Adapter via
the i nbound- channel - adapt er element while also providing values for various attributes such as
| ocal -directory, fil ename-pattern (which is based on simple pattern matching, not regular
expressions), and of course the reference to a sessi on-factory.

By default the transferred file will carry the same name as the original file. If you want to override this
behavior you can set the | ocal - fi | enane- gener at or - expr essi on attribute which allows you
to provide a SpEL Expression to generate the name of the local file. Unlike outbound gateways and
adapters where the root object of the SpEL Evaluation Context is a Message, this inbound adapter does
not yet have the Message at the time of evaluation since that's what it ultimately generates with the

Spring Integration
3.0.5.RELEASE Reference Manual 167

Spring Integration

transferred file as its payload. So, the root object of the SpEL Evaluation Context is the original name
of the remote file (String).

Starting with Spring Integration 3.0, you can specify the preserve-ti nest anp attribute (default
f al se); whent r ue, the local file's modified timestamp will be set to the value retrieved from the server;
otherwise it will be set to the current time.

Sometimes file filtering based on the simple pattern specified via fil ename- pattern attribute
might not be sufficient. If this is the case, you can use the fil enane-regex attribute to specify
a Regular Expression (e.g. fi | ename-regex=".*\.test$"). And of course if you need complete
control you can use fi |l t er attribute and provide a reference to any custom implementation of the
org.springframework.integration.file.filters.FileListFilter, a strategy interface
for filtering a list of files. This filter determines which remote files are retrieved. You can also combine a
pattern based filter with other filters, such as an Accept OnceFi | eLi st Fi | t er to avoid synchronizing
files that have previously been fetched, by using a ConpositeFil eListFilter.

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a system
restart, consider using the Ft pPer si st ent Accept OnceFi | eLi st Fi | t er instead. This filter stores
the accepted file names in an instance of the Met adat aSt or e strategy (Section 8.4, “Metadata Store”).
This filter matches on the filename and the remote modified time.

© Note

Beginning with version 3.0, you can also specify a filter used to filter the files locally, once they
have been retrieved. The default filter is an Accept OnceFi | eLi st Fi | t er which prevents
processing files with the same name multiple times in the same JVM execution; this can now
be overridden (for example with an Accept Al | Fil eLi st Filter), usingthel ocal -filter
attribute. Previously, the default Accept OnceFi | eLi st Fi | t er could not be overridden.

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a
system restart, consider using the Fi | eSyst enPer si st ent Accept OnceFil eListFilter
as a local filter instead. This filter stores the accepted file names in an instance of the
Met adat aSt or e strategy (Section 8.4, “Metadata Store”).

©® Important
This filter compares the filename and modified timestamp. If you wish to use this technique
to avoid a re-synchronized file from being processed, you should use the preserve-
ti mest anp attribute discussed above.

The 'remote-file-separator' attribute allows you to configure a file separator character to use if the default
"' is not applicable for your particular environment.

Please refer to the schema for more details on these attributes.

It is also important to understand that the FTP Inbound Channel Adapter is a Polling Consumer and
therefore you must configure a poller (either via a global default or a local sub-element). Once a file has
been transferred, a Message with a j ava. i 0. Fi | e as its payload will be generated and sent to the
channel identified by the channel attribute.

More on File Filtering and Large Files

Sometimes the file that just appeared in the monitored (remote) directory is not complete. Typically such
a file will be written with temporary extension (e.g., foo.txt.writing) and then renamed after the writing

Spring Integration
3.0.5.RELEASE Reference Manual 168

Spring Integration

process finished. As a user in most cases you are only interested in files that are complete and would
like to filter only files that are complete. To handle these scenarios you can use the filtering support
provided by the fi | ename-pattern,fil ename-regex andfilter attributes. Here is an example
that uses a custom Filter implementation.

<int-ftp:inbound-channel - adapt er
channel ="ft pChannel "
session-factory="ft pSessi onFact ory"
filter="custonFilter"
local -directory="file:/ny_transfers">
renot e-di rect ory="some/ r enot e/ pat h"
<int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel - adapter>

<bean id="custonFilter" class="org.exanple.CustonFilter"/>

Poller configuration notes for the inbound FTP adapter

The job of the inbound FTP adapter consists of two tasks: 1) Communicate with a remote server in
order to transfer files from a remote directory to a local directory. 2) For each transferred file, generate a
Message with that file as a payload and send it to the channel identified by the 'channel’ attribute. That
is why they are called 'channel-adapters' rather than just 'adapters'. The main job of such an adapter
is to generate a Message to be sent to a Message Channel. Essentially, the second task mentioned
above takes precedence in such a way that *IF* your local directory already has one or more files it will
first generate Messages from those, and *ONLY* when all local files have been processed, will it initiate
the remote communication to retrieve more files.

Also, when configuring a trigger on the poller you should pay close attention to the max- nessages-
per - pol | attribute. Its default value is 1 for all SourcePol | i ngChannel Adapt er instances
(including FTP). This means that as soon as one file is processed, it will wait for the next execution
time as determined by your trigger configuration. If you happened to have one or more files sitting in the
| ocal - di rectory, it would process those files before it would initiate communication with the remote
FTP server. And, if the max- messages- per - pol | were set to 1 (default), then it would be processing
only one file at a time with intervals as defined by your trigger, essentially working as one-poll = one-file.

For typical file-transfer use cases, you most likely want the opposite behavior: to process all the files
you can for each poll and only then wait for the next poll. If that is the case, set nax- nessages- per -
pol | to -1. Then, on each poll, the adapter will attempt to generate as many Messages as it possibly
can. In other words, it will process everything in the local directory, and then it will connect to the remote
directory to transfer everything that is available there to be processed locally. Only then is the poll
operation considered complete, and the poller will wait for the next execution time.

You can alternatively set the 'max-messages-per-poll' value to a positive value indicating the upward
limit of Messages to be created from files with each poll. For example, a value of 10 means that on each
poll it will attempt to process no more than 10 files.

14.4 FTP Outbound Channel Adapter

The FTP Outbound Channel Adapter relies upon a MessageHandl er implementation that will
connect to the FTP server and initiate an FTP transfer for every file it receives in the payload of
incoming Messages. It also supports several representations of the File so you are not limited only to
java.io.File typed payloads. The FTP Outbound Channel Adapter supports the following payloads: 1)
java.io. Fil e - the actual file object; 2) byt e[] - a byte array that represents the file contents; and
3)j ava. |l ang. Stri ng - text that represents the file contents.

Spring Integration
3.0.5.RELEASE Reference Manual 169

Spring Integration

<i nt-ftp: out bound- channel - adapter id="ft pQutbound"
channel ="ft pChannel "
sessi on-factory="ft pSessi onFact ory"
char set =" UTF- 8"
aut o-create-directory="true"
renot e-di rect ory- expressi on="headers.['renmote_dir']"
tenporary-renote-directory-expression="headers.['tenp_renote_dir']"
fil enane-generator="fil eNaneGenerator"/>

As you can see from the configuration above you can configure an FTP Outbound
Channel Adapter via the outbound-channel -adapter element while also providing
values for various attributes such as filenane-generator (an implementation of
the org.springframework.integration.file.FileNaneGenerator strategy interface), a
reference to a session-factory, as well as other attributes. You can also see some
examples of *expression attributes which allow you to use SpEL to configure things like
renot e- di rect ory-expressi on,tenporary-renote-directory-expressi onandr enot e-
fil enanme- gener at or - expressi on (a SpEL alternative to f i | enane- gener at or shown above).
As with any component that allows the usage of SpEL, access to Payload and Message Headers is
available via 'payload’' and 'headers' variables. Please refer to the schema for more details on the
available attributes.

© Note

By default Spring Integration will use 0. s.i.fil e. Def aul t Fi | eNaneGener at or if none is
specified. Def aul t Fi | eNameGener at or will determine the file name based on the value of
the f i | e_name header (if it exists) in the MessageHeaders, or if the payload of the Message is
already a j ava. i 0. Fi | e, then it will use the original name of that file.

© Important
Defining certain values (e.g., remote-directory) might be platform/ftp server dependent. For
example as it was reported on this forum http://forum.springsource.org/showthread.php?
p=333478&posted=1#post333478 on some platforms you must add slash to the end of the
directory definition (e.g., remote-directory="/foo/bar/" instead of remote-directory="/foo/bar")

Avoiding Partially Written Files

One of the common problems, when dealing with file transfers, is the possibility of processing a partial
file - a file might appear in the file system before its transfer is actually complete.

To deal with this issue, Spring Integration FTP adapters use a very common algorithm where files are
transferred under a temporary name and then renamed once they are fully transferred.

By default, every file that is in the process of being transferred will appear in the file system with an
additional suffix which, by default, is . wri t i ng; this can be changed using the t enporary-fil e-
suf fi x attribute.

However, there may be situations where you don't want to use this technique (for example, if the server
does not permit renaming files). For situations like this, you can disable this feature by setting use-
tenporary-file-nane tofal se (default is t r ue). When this attribute is f al se, the file is written
with its final name and the consuming application will need some other mechanism to detect that the
file is completely uploaded before accessing it.

Spring Integration
3.0.5.RELEASE Reference Manual 170

Spring Integration

14.5 FTP Outbound Gateway

The FTP Outbound Gateway provides a limited set of commands to interact with a remote FTP/FTPS
server.

Commands supported are:

* |s (list files)

» get (retrieve file)

» mget (retrieve file(s))

* rm (remove file(s))

* mv (move/rename file)

 put (send file)

* mput (send multiple files)

Is

Is lists remote file(s) and supports the following options:
» -1 -just retrieve a list of filenames, default is to retrieve a list of Fi | el nf o objects.
e -a-include all files (including those starting with '.")

» -f-do not sort the list

» -dirs - include directories (excluded by default)

* -links - include symbolic links (excluded by default)

-R - list the remote directory recursively
In addition, filename filtering is provided, in the same manner as the i nbound- channel - adapt er.

The message payload resulting from an Is operation is a list of file names, or a list of Fi | el nf o objects.
These objects provide information such as modified time, permissions etc.

The remote directory that the Is command acted on is provided inthef i | e_r enot eDi r ect or y header.

When using the recursive option (- R), the f i | eNarre includes any subdirectory elements, representing
a relative path to the file (relative to the remote directory). If the - di r s option is included, each recursive
directory is also returned as an element in the list. In this case, it is recommended that the - 1 is not
used because you would not be able to determine files Vs. directories, which is achievable using the
Fi | el nf o objects.

get
get retrieves a remote file and supports the following option:
e -P - preserve the timestamp of the remote file

The message payload resulting from a get operation is a Fi | e object representing the retrieved file.

Spring Integration
3.0.5.RELEASE Reference Manual 171

Spring Integration

The remote directory is provided inthe fi | e_r enot eDi r ect or y header, and the filename is provided
inthefil e_renoteFil e header.

mget

mget retrieves multiple remote files based on a pattern and supports the following option:
» -P - preserve the timestamps of the remote files

» -x - Throw an exception if no files match the pattern (otherwise an empty list is returned)

The message payload resulting from an mget operation is a Li st <Fi | e> object - a List of File objects,
each representing a retrieved file.

The remote directory is provided in the fil e_renot eDi rect ory header, and the pattern for the
filenames is provided inthe fi | e_r enot eFi | e header.

© Notes for when using recursion (- R)

The pattern is ignored, and * is assumed. By default, the entire remote tree is retrieved.
However, files in the tree can be filtered, by providing a Fi | eLi st Fi | t er; directories in
the tree can also be filtered this way. A Fil eLi stFilter can be provided by reference
or by filenanme-pattern or fil enane-regex attributes. For example, fil enamne-
regex="(subDir|.*1.txt)" will retrieve all files ending with 1. t xt in the remote directory
and the subdirectory subDir. If a subdirectory is filtered, no additional traversal of that
subdirectory is performed.

The - di r s option is not allowed (the recursive mget uses the recursive | s to obtain the directory
tree and the directories themselves cannot be included in the list).

Typically, you would use the #renoteDirectory variable in the | ocal -directory-
expr essi on so that the remote directory structure is retained locally.

put

put sends a file to the remote server; the payload of the message canbe aj ava.io. Fil e,abyte[]
ora String. Arenote-fil enanme-generator (or expression) is used to name the remote file.
Other available attributes include r enot e- di rect ory, t enpor ar y- r enot e- di r ect ory (and their
*- expr essi on) equivalents, use-t enporary-fil e- nanme, and aut o- cr eat e- di r ect ory. Refer
to the schema documentation for more information.

The message payload resulting from a put operation is a St r i ng representing the full path of the file
on the server after transfer.

mput

mput sends multiple files to the server and supports the following option:

* -R - Recursive - send all files (possibly filtered) in the directory and subdirectories
The message payload must be aj ava. i 0. Fi | e representing a local directory.

The same attributes as the put command are supported. In addition, files in the local directory can be
filtered with one of nput - patt ern, nmput -regex or nmput - fi | t er. The filter works with recursion,
as long as the subdirectories themselves pass the filter. Subdirectories that do not pass the filter are
not recursed.

Spring Integration
3.0.5.RELEASE Reference Manual 172

Spring Integration

The message payload resulting from an mget operation is a Li st <St ri ng> object - a List of remote
file paths resulting from the transfer.

rm
The rm command has no options.

The message payload resulting from an rm operation is Boolean. TRUE if the remove was successful,
Boolean.FALSE otherwise. The remote directory is provided in the fi | e_r enot eDi r ect or y header,
and the filename is provided inthe fi | e_r enot eFi | e header.

mv
The mv command has no options.

The expression attribute defines the "from" path and the rename-expression attribute defines the "to"
path. By default, the rename-expression is header s[' fi | e_renanmeTo'] . This expression must not
evaluate to null, or an empty St ri ng. If necessary, any remote directories needed will be created.
The payload of the result message is Bool ean. TRUE. The original remote directory is provided in the
file_renoteDirectory header, and the filename is provided in the fi |l e_renot eFi | e header.
The new path isinthefil e_r enanmeTo header.

Additional Information

The get and mget commands support the local-filename-generator-expression attribute. It defines
a SpEL expression to generate the name of local file(s) during the transfer. The root object of
the evaluation context is the request Message but, in addition, the r enot eFi | eNane variable is
also available, which is particularly useful for mget, for example: | ocal - fi | enanme- gener at or -
expr essi on="#r enot eFi | eNane. t oUpper Case() + headers. foo0".

The get and mget commands support the local-directory-expression attribute. It defines a SpEL
expression to generate the name of local directory(ies) during the transfer. The root object of the
evaluation context is the request Message but, in addition, the r enot eDi r ect ory variable is also
available, which is particularly useful for mget, for example: | ocal - di r ect ory- expr essi on=""/
tnp/local/' + #renmoteDirectory.toUpperCase() + headers.foo0". This attribute is
mutually exclusive with local-directory attribute.

For all commands, the PATH that the command acts on is provided by the 'expression' property of
the gateway. For the mget command, the expression might evaluate to "', meaning retrieve all files,
or 'somedirectory/* etc.

Here is an example of a gateway configured for an Is command...

<i nt-ftp: out bound- gat eway i d="gat enwayl"
sessi on-factory="ft pSessi onFact ory"
request - channel ="i nbound1"
command="1s"
command- opt i ons="-1"
expressi on="payl oad"
repl y-channel ="toSplitter"/>

The payload of the message sent to the toSplitter channel is a list of String objects containing the
filename of each file. If the comrand- opt i ons was omitted, it would be a list of Fi | el nf o objects.
Options are provided space-delimited, e.g. conmand-opti ons="-1 -dirs -1inks".

Spring Integration
3.0.5.RELEASE Reference Manual 173

Spring Integration

14.6 FTP Session Caching

© Important
Starting with Spring Integration version 3.0, sessions are no longer cached by default;
the cache-sessi ons attribute is no longer supported on endpoints. You must use a
Cachi ngSessi onFact ory (see below) if you wish to cache sessions.

In versions prior to 3.0, the sessions were cached automatically by default. A cache-sessi ons
attribute was available for disabling the auto caching, but that solution did not provide a way to
configure other session caching attributes. For example, you could not limit on the number of sessions
created. To support that requirement and other configuration options, a Cachi ngSessi onFact ory
was provided. It provides sessi onCacheSi ze and sessi onWi t Ti meout properties. As its name
suggests, the sessi onCacheSi ze property controls how many active sessions the factory will maintain
in its cache (the DEFAULT is unbounded). If the sessi onCacheSi ze threshold has been reached,
any attempt to acquire another session will block until either one of the cached sessions becomes
available or until the wait time for a Session expires (the DEFAULT wait time is Integer. MAX_VALUE).
The sessi onVi t Ti meout property enables configuration of that value.

If you want your Sessions to be cached, simply configure your default Session Factory as described
above and then wrap it in an instance of Cachi ngSessi onFact ory where you may provide those
additional properties.

<bean i d="ftpSessionFactory" class="0.s.i.ftp.session.DefaultFtpSessionFactory">
<property nane="host" val ue="| ocal host"/>
</ bean>

<bean i d="cachi ngSessi onFactory" class="0.s.i.file.renote.session. Cachi ngSessi onFactory" >
<constructor-arg ref="ftpSessi onFactory"/>
<constructor-arg val ue="10"/>
<property nane="sessi onWi t Ti meout" val ue="1000"/>

</ bean>

In the above example you see a Cachi ngSessi onFact ory created with the sessi onCacheSi ze
set to 10 and the sessi onWai t Ti neout set to 1 second (its value is in millliseconds).

Starting with Spring Integration version 3.0, the Cachi ngConnecti onFactory provides a
reset Cache() method. When invoked, all idle sessions are immediately closed and in-use sessions
are closed when they are returned to the cache. New requests for sessions will establish new sessions
as necessary.

14.7 RemoteFileTemplate

Starting with Spring Integration version 3.0 a new abstraction is provided over the Ft pSessi on object.
The template provides methods to send, retrieve (as an | nput St r eam), remove, and rename files.
In addition an execut e method is provided allowing the caller to execute multiple operations on the
session. In all cases, the template takes care of reliably closing the session. For more information, refer
to the javadocs for Renot eFi | eTenpl at e.

Spring Integration
3.0.5.RELEASE Reference Manual 174

Spring Integration

15. GemFire Support

Spring Integration provides support for VMWare vFabric GemFire

15.1 Introduction

VMWare vFabric GemFire (GemkFire) is a distributed data management platform providing a key-
value data grid along with advanced distributed system features such as event processing, continuous
guerying, and remote function execution. This guide assumes some familiarity with GemFire and its API.

Spring integration provides support for GemFire by providing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and MessageStore
and MessageGr oupSt or e implementations. Spring integration leverages the Spring Gemfire project,
providing a thin wrapper over its components.

To configure the ‘int-gfe' namespace, include the following elements within the headers of your XML
configuration file:

xm ns:int-gfe="http://ww. springfranmework. org/schema/integration/genfire"
Xsi : schemaLocati on="htt p://ww. spri ngfranework. org/ schema/i ntegration/genfire
http://ww. springframework. org/ schema/integration/genfire/spring-integration-genfire.xsd"

15.2 Inbound Channel Adapter

The inbound-channel-adapter produces messages on a channel triggered by a GemFire Ent r yEvent .
GemFire generates events whenever an entry is CREATED, UPDATED, DESTROYED, or
INVALIDATED in the associated region. The inbound channel adapter allows you to filter on a subset
of these events. For example, you may want to only produce messages in response to an entry being
CREATED. In addition, the inbound channel adapter can evaluate a SpEL expression if, for example,
you want your message payload to contain an event property such as the new entry value.

<gf e: cache/ >

<gfe:replicated-region id="regi on"/>

<i nt - gf e: i nbound- channel - adapt er i d="i nput Channel " regi on="regi on"

cache- event s=" CREATED"' expressi on="newal ue"/ >

In the above configuration, we are creating a GemFire Cache and Regi on using Spring GemFire's
'gfe’ namespace. The inbound-channel-adapter requires a reference to the GemFire region for which
the adapter will be listening for events. Optional attributes include cache- event s which can contain
a comma separated list of event types for which a message will be produced on the input channel. By
default CREATED and UPDATED are enabled. Note that this adapter conforms to Spring integration
conventions. If no channel attribute is provided, the channel will be created from the i d attribute. This
adapter also supports an er r or - channel . If expr essi on is not provided the message payload will
be a GemFire Ent r yEvent

15.3 Continuous Query Inbound Channel Adapter

The cg-inbound-channel-adapter produces messages a channel triggered by a GemFire continuous
query or CgEvent event. Spring GemFire introduced continuous query support in release 1.1, including
aConti nuousQuer yLi st ener Cont ai ner which provides a nice abstraction over the GemFire native
API. This adapter requires a reference to a ContinuousQueryListenerContainer, and creates a listener

Spring Integration
3.0.5.RELEASE Reference Manual 175

http://www.vmware.com/support/pubs/vfabric-gemfire.html
http://www.vmware.com/support/developer/vfabric-gemfire/662-api/index.html
http://www.springsource.org/spring-gemfire

Spring Integration

for a given quer y and executes the query. The continuous query acts as an event source that will fire
whenever its result set changes state.

© Note

GemFire queries are written in OQL and are scoped to the entire cache (not just one region).
Additionally, continuous queries require a remote (i.e., running in a separate process or
remote host) cache server. Please consult the GemFire documentation for more information on
implementing continuous queries.

<gfe:client-cache id="client-cache" pool-nanme="client-pool"/>

<gf e: pool id="client-pool" subscription-enabl ed="true" >
<I--configure server or locator here required to address the cache server -->
</ gf e: pool >

<gfe:client-region id="test" cache-ref="client-cache" pool-nane="client-pool"/>

<gfe:cqg-listener-container id="queryListenerContainer" cache="client-cache"
pool - nane="cl i ent - pool "/ >

<i nt-gf e: cqg-i nbound- channel - adapt er i d="i nput Channel "
cqg-listener-container="queryLi st ener Cont ai ner"
query="select * from/test"/>

In the above configuration, we are creating a GemFire client cache (recall a remote cache server is
required for this implementation and its address is configured as a sub-element of the pool), a client
region and a Cont i nuousQuer yLi st ener Cont ai ner using Spring GemFire. The continuous query
inbound channel adapter requires a cq- | i st ener - cont ai ner attribute which contains a reference
to the Conti nuousQueryLi st ener Cont ai ner. Optionally, it accepts an expr essi on attribute
which uses SpEL to transform the CgEvent or extract an individual property as needed. The cg-
inbound-channel-adapter provides a quer y- event s attribute, containing a comma separated list of
event types for which a message will be produced on the input channel. Available event types are
CREATED, UPDATED, DESTROYED, REGION_DESTROYED, REGION_INVALIDATED. CREATED
and UPDATED are enabled by default. Additional optional attributes include, query- name which
provides an optional query name, and expr essi on which works as described in the above section, and
dur abl e - a boolean value indicating if the query is durable (false by default). Note that this adapter
conforms to Spring integration conventions. If no channel attribute is provided, the channel will be
created from the i d attribute. This adapter also supports an er r or - channel

15.4 Outbound Channel Adapter

The outbound-channel-adapter writes cache entries mapped from the message payload. In its simplest
form, it expects a payload of type j ava. uti | . Map and puts the map entries into its configured region.

<i nt - gf e: out bound- channel - adapt er i d="cacheChannel" regi on="regi on"/>

Given the above configuration, an exception will be thrown if the payload is not a Map. Additionally, the
outbound channel adapter can be configured to create a map of cache entries using SpEL of course.

<i nt - gf e: out bound- channel - adapt er i d="cacheChannel" regi on="regi on">
<int-gfe:cache-entries>
<entry key="payl oad.t oUpper Case()" val ue="payl oad. t oLower Case()"/>
<entry key="'foo'" value=""bar"'"/>
</int-gfe:cache-entries>
</'i nt - gf e: out bound- channel - adapt er >

Spring Integration
3.0.5.RELEASE Reference Manual 176

http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Continuous%20Querying

Spring Integration

In the above configuration, the inner element cache- ent ri es is semantically equivalent to Spring
'map’ element. The adapter interprets the key and val ue attributes as SpEL expressions with the
message as the evaluation context. Note that this contain arbitrary cache entries (not only those
derived from the message) and that literal values must be enclosed in single quotes. In the above
example, if the message sent to cacheChannel has a String payload with a value "Hello", two entries
[HELLG hel | o, foo: bar] will be written (created or updated) in the cache region. This adapter also
supports the or der attribute which may be useful if it is bound to a PublishSubscribeChannel.

15.5 Gemfire Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful
when dealing with components that have a capability to buffer messages (QueueChannel, Aggregator,
Resequencer, etc.) if reliability is a concern. In Spring Integration, the MessageStore strategy also
provides the foundation for the ClaimCheck pattern, which is described in EIP as well.

Spring Integration's Gemfire module provides the Genf i r eMessageSt or e which is an implementation
of both the the MessageSt or e strategy (mainly used by the QueueChannel and ClaimCheck patterns)
and the MessageG oupSt or e strategy (mainly used by the Aggregator and Resequencer patterns).

<bean i d="genfireMessageStore" class="0.s.i.genfire.store. GenfireMessageStore">
<constructor-arg ref="myCache"/>
</ bean>

<bean i d="nyCache" class="org. springframework. data. genfire. CacheFact oryBean"/>
<i nt:channel id="somePersi stentQueueChannel ">
<i nt:queue nessage-store="genfireMssageStore"/>

<i nt: channel >

<i nt:aggregator input-channel ="input Channel" out put-channel =" out put Channel "
message- st ore="genfi reMessageSt ore"/ >

Above is a sample Genf i r eMessagesSt or e configuration that shows its usage by a QueueChannel
and an Aggregator. As you can see it is a normal Spring bean configuration. The simplest configuration
requires a reference to a Genti r eCache (created by CacheFact or yBean) as a constructor argument.
If the cache is standalone, i.e., embedded in the same JVM, the MessageStore will create a
message store region named "messageStoreRegion". If your application requires customization of the
messageStore region, for example, multiple Gemfire message stores each with its own region, you can
configure a region for each message store instance and use the Regi on as the constructor argument:

<bean id="genfireMessageStore" class="0.s.i.genfire.store. GenfireMessageStore">
<constructor-arg ref="myRegi on"/>
</ bean>

<gf e: cache/ >

<gfe:replicated-region i d="nmyRegi on"/>

In the above examle, the cache and region are configured using the spring-gemfire namespace (not to
be confused with the spring-integration-gemfire namespace). Often it is desirable for the message store
to be maintained in one or more remote cache servers in a client-server configuration (See the GemFire
product documentation for more details). In this case, you configure a client cache, client region, and
client pool and inject the region into the MessageStore. Here is an example:

Spring Integration
3.0.5.RELEASE Reference Manual 177

http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.vmware.com/support/pubs/vfabric-gemfire.html
http://www.vmware.com/support/pubs/vfabric-gemfire.html

Spring Integration

<bean i d="genfireMessageSt ore"
cl ass="org. springframework.integration.genfire.store. GenfireMessageStore">
<constructor-arg ref="nmyRegion"/>

</ bean>

<gfe:client-cachel/>
<gfe:client-region id="nyRegi on" shortcut="PROXY" pool - nane="nessageSt or ePool "/ >
<gf e: pool i d="nmessageSt or ePool ">

<gfe: server host="|ocal host" port="40404" />
</ gf e: pool >

Note the pool element is configured with the address of a cache server (a locator may be substituted
here). The region is configured as a 'PROXY" so that no data will be stored locally. The region's id
corresponds to a region with the same name configured in the cache server.

Spring Integration
3.0.5.RELEASE Reference Manual 178

Spring Integration

16. HTTP Support

16.1 Introduction

The HTTP support allows for the execution of HTTP requests and the processing of inbound HTTP
requests. Because interaction over HTTP is always synchronous, even if all that is returned is a 200
status code, the HTTP support consists of two gateway implementations: Ht t pl nboundEndpoi nt and
Ht t pRequest Execut i ngMessageHand| er .

16.2 Http Inbound Gateway

To receive messages over HTTP, you need to use an HTTP Inbound Channel Adapter or Gateway.
To support the HTTP Inbound Adapters, they need to be deployed within a servlet container such as
Apache Tomcat or Jetty. The easiest way to do this is to use Spring's Ht t pRequest Handl er Ser vl et ,
by providing the following servlet definition in the web.xml file:

<servl et >

<ser vl et - nane>i nboundGat eway</ ser vl et - nane>

<servl et-cl ass>o0.s.web. context.support. Htt pRequest Handl er Ser vl et </ servl et -cl ass>
</ servl et >

Notice that the servlet name matches the bean name. For more information on using the
Ht t pRequest Handl er Ser vl et , see chapter "Remoting and web services using Spring", which is
part of the Spring Framework Reference documentation.

If you are running within a Spring MVC application, then the aforementioned explicit servlet definition is
not necessary. In that case, the bean name for your gateway can be matched against the URL path just
like a Spring MVC Controller bean. For more information, please see the chapter "Web MVC framework",
which is part of the Spring Framework Reference documentation.

@ Tip
For a sample application and the corresponding configuration, please see the Spring Integration

Samples repository. It contains the Http Sample application demonstrating Spring Integration's
HTTP support.

Below is an example bean definition for a simple HTTP inbound endpoint.

<bean i d="htt pl nbound"
cl ass="org. springframework.integration.http.inbound. Ht t pRequest Handl i ngMessagi ngGat eway" >
<property nane="request Channel " ref="httpRequest Channel " />
<property nane="repl yChannel " ref="httpRepl yChannel" />

</ bean>

The HttpRequest Handl i ngMessagi ngGat eway accepts a list of Htt pMessageConverter
instances or else relies on a default list. The converters allow customization of the mapping from
Ht t pSer vl et Request to Message. The default converters encapsulate simple strategies, which for
example will create a String message for a POST request where the content type starts with "text", see
the Javadoc for full details. An additional flag (mer geW t hDef aul t Convert er s) can be set along with
the list of custom Ht t pMessageConvert er to add the default converters after the custom converters.
By default this flag is set to false, meaning that the custom converters replace the default list.

Starting with Spring Integration 2.0, MultiPart File support is implemented. If the request has been
wrapped as a MultipartHttpServletRequest, when using the default converters, that request will be

Spring Integration
3.0.5.RELEASE Reference Manual 179

http://tomcat.apache.org/
http://www.eclipse.org/jetty/
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/context/support/HttpRequestHandlerServlet.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/remoting.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html
https://github.com/SpringSource/spring-integration-samples
https://github.com/SpringSource/spring-integration-samples
https://github.com/SpringSource/spring-integration-samples/tree/master/basic/http

Spring Integration

converted to a Message payload that is a MultiValueMap containing values that may be byte arrays,
Strings, or instances of Spring's Mul t i part Fi | e depending on the content type of the individual parts.

© Note

The HTTP inbound Endpoint will locate a MultipartResolver in the context if one exists with the
bean name "multipartResolver” (the same name expected by Spring's DispatcherServlet). If it
does in fact locate that bean, then the support for MultipartFiles will be enabled on the inbound
request mapper. Otherwise, it will fail when trying to map a multipart-file request to a Spring
Integration Message. For more on Spring's support for MultipartResolvers, refer to the Spring
Reference Manual.

In sending a response to the client there are a number of ways to customize the behavior of the gateway.
By default the gateway will simply acknowledge that the request was received by sending a 200 status
code back. It is possible to customize this response by providing a 'viewName' to be resolved by the
Spring MVC Vi ewResol ver . In the case that the gateway should expect a reply to the Message then
setting the expectReply flag (constructor argument) will cause the gateway to wait for a reply Message
before creating an HTTP response. Below is an example of a gateway configured to serve as a Spring
MVC Controller with a view name. Because of the constructor arg value of TRUE, it wait for a reply.
This also shows how to customize the HTTP methods accepted by the gateway, which are POST and
GET by default.

<bean i d="htt pl nbound"
class="org. springframework.integration. http.inbound. H t pRequest Handl i ngControl | er">
<constructor-arg value="true" /> <!-- indicates that a reply is expected -->
<property nane="request Channel " ref="httpRequest Channel" />
<property nane="replyChannel" ref="httpRepl yChannel" />
<property nanme="vi ewNane" val ue="jsonView' />
<property nane="supportedMet hodNanes" >
<list>
<val ue>GET</ val ue>
<val ue>DELETE</ val ue>
</list>
</ property>
</ bean>

The reply message will be available in the Model map. The key that is used for that map entry by default
is 'reply’, but this can be overridden by setting the 'replyKey' property on the endpoint's configuration.

16.3 Http Outbound Gateway

To configure the Ht t pRequest Execut i ngMessageHandl er write a bean definition like this:

<bean i d="htt pQut bound"
cl ass="org. springframework.integration. http.outbound. Ht t pRequest Execut i ngMessageHandl| er " >
<constructor-arg val ue="http://Il ocal host: 8080/ exanpl e" />
<property nane="out put Channel " ref="responseChannel" />

</ bean>

This bean definition will execute HTTP requests by delegating to a Rest Tenpl at e. That template in
turn delegates to a list of HttpMessageConverters to generate the HTTP request body from the Message
payload. You can configure those converters as well as the ClientHttpRequestFactory instance to use:

Spring Integration
3.0.5.RELEASE Reference Manual 180

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-multipart

Spring Integration

<bean i d="htt pQut bound"
cl ass="org. springframework.integration. http.outbound. Ht t pRequest Execut i ngMessageHand| er " >
<constructor-arg value="http://|ocal host: 8080/ exanpl e" />
<property nane="out put Channel " ref="responseChannel" />
<property nanme="nmessageConverters" ref="messageConverterlList" />
<property nane="request Factory" ref="custonRequestFactory" />
</ bean>

By default the HTTP request will be generated using an instance of
Si npl edl i ent Ht t pRequest Factory which uses the JDK HttpURLConnection. Use
of the Apache Commons HTTP Client is also supported through the provided
ConmonsC i ent Ht t pRequest Fact or y which can be injected as shown above.

© Note

In the case of the Outbound Gateway, the reply message produced by the gateway will contain
all Message Headers present in the request message.

Cookies

Basic cookie support is provided by the transfer-cookies attribute on the outbound gateway. When set
to true (default is false), a Set-Cookie header received from the server in a response will be converted to
Cookie in the reply message. This header will then be used on subsequent sends. This enables simple
stateful interactions, such as...

...->logonGateway->...->doWorkGateway->...->logoffGateway->...

If transfer-cookies is false, any Set-Cookie header received will remain as Set-Cookie in the reply
message, and will be dropped on subsequent sends.

© Note: Empty Repsonse Bodies

HTTP is a request/response protocol. However the response may not have a body, just headers.
In this case, the Htt pRequest Execut i ngMessageHandl er produces a reply Message
with the payload being an org. spri ngfranmework. http. Htt pEntity, regardless of any
provided expect ed- r esponse-t ype. According to the HTTP RFC Status Code Definitions,
there are many statuses which identify that a response MUST NOT contain a message-body (e.g.
204 No Content). There are also cases where calls to the same URL might, or might not, return a
response body; for example, the first request to an HTTP resource returns content, but the second
does not (e.g. 304 Not Modified). In all cases, however, the ht t p_st at usCode message header
is populated. This can be used in some routing logic after the Http Outbound Gateway. You could
also use a <payl oad-t ype- r out er/ > to route messages with an Ht t pEnt i t y to a different
flow than that used for responses with a body.

16.4 HTTP Namespace Support

Spring Integration provides an http namespace and the corresponding schema definition. To include it
in your configuration, simply provide the following namespace declaration in your application context
configuration file:

Spring Integration
3.0.5.RELEASE Reference Manual 181

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Spring Integration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww.springframework. org/schena/integration"
xm ns:int-http="http://ww. springfranmework. org/schema/integration/http"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans
http: //wwv. spri ngfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. spri ngfranewor k. org/ schema/ i ntegration/http
http://ww. springframework. org/ schema/integration/ http/spring-integration-http.xsd">

</ beans>

Inbound

The XML Namespace provides two components for handling HTTP Inbound requests. In order to
process requests without returning a dedicated response, use the inbound-channel-adapter:

<int-http:inbound-channel -adapter id="httpChannel Adapter" channel ="requests"
support ed- net hods="PUT, DELETE"/>

To process requests that do expect a response, use an inbound-gateway:

<int-http:inbound-gateway id="i nboundGat enway"
request - channel ="r equest s"
repl y-channel ="responses"/ >

Request Mapping support

© Note

Spring Integration 3.0 is improving the REST support by introducing the
I nt egrati onRequest Mappi ngHandl er Mappi ng. The implementation relies on the
enhanced REST support provided by Spring Framework 3.1 or higher.

The parsing of the HTTP Inbound Gateway or the HTTP Inbound Channel
Adapter registers an i ntegrationRequest Mappi ngHandl er Mappi ng bean of type
I nt egr ati onRequest Mappi ngHandl er Mappi ng, in case there is none registered, yet.
This particular implementation of the Handl er Mappi ng delegates its logic to the
Request Mappi ngl nf oHandl er Mappi ng. The implementation provides similar functionality as
the one provided by the org. springfranmework.web. bi nd. annot ati on. Request Mappi ng
annotation in Spring MVC.

© Note

For more information, please see Mapping Requests With @RequestMapping.

For this purpose, Spring Integration 3.0 introduces the <request-mappi ng> sub-element.
This optional sub-element can be added to the <htt p:i nbound-channel - adapt er > and the
<ht t p: i nbound- gat eway>. It works in conjunction with the path and support ed- net hods
attributes:

Spring Integration
3.0.5.RELEASE Reference Manual 182

http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/HandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfoHandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping

Spring Integration

<i nbound- gat eway i d="i nboundControl | er"
request - channel ="r equest s"
repl y- channel ="r esponses"
pat h="/f oo/ {f ool d}"
support ed- net hods=" GET"
vi ew- namre="f 00’
error-code="oops" >
<r equest - mappi ng header s="User - Agent "
par ans="myPar am=my Val ue"
consunmes="appl i cati on/json"
produces="!text/plain"/>
</ i nbound- gat eway>

Based on this configuration, the namespace parser creates an instance
of the IntegrationRequestMappi ngHandl er Mapping (f none exists, vyet), a
Ht t pRequest Handl i ngCont r ol | er bean and associated with it an instance of Request Mappi ng,
which in turn, is converted to the Spring MVC Request Mappi ngl nf o.

The <r equest - mappi ng> sub-element provides the following attributes:
» headers

e params

* consumes

e produces

With the path and supported-nethods attributes of the <http:inbound-
channel - adapt er > or the <ht t p: i nbound- gat eway>, <r equest - nappi ng>
attributes translate directly into the respective options provided by the
or g. spri ngf ramewor k. web. bi nd. annot at i on. Request Mappi ng annotation in Spring MVC.

The <r equest - mappi ng> sub-element allows you to configure several Spring Integration HTTP
Inbound Endpoints to the same pat h (or even the same suppor t ed- net hods) and to provide different
downstream message flows based on incoming HTTP requests.

Alternatively, you can also declare just one HTTP Inbound Endpoint and apply routing and filtering logic
within the Spring Integration flow to achieve the same result. This allows you to get the Message into
the flow as early as possibly, e.g.:

<int-http:inbound-gateway request-channel ="htt pMet hodRout er"
support ed- net hods=" GET, DELETE"
pat h="/process/{ent|d}"
payl oad- expr essi on="#pat hVari abl es. ent1d"/ >

<int:router input-channel="httpMethodRouter" expressi on="headers. http_request Met hod" >
<i nt: mappi ng val ue="GET" channel ="inl1"/>
<i nt: mappi ng val ue="DELETE" channel ="i n2"/>

</int:router>

<int:service-activator input-channel="inl" ref="service" method="getEntity"/>

<int:service-activator input-channel="in2" ref="service" nethod="del ete"/>

For more information regarding Handler Mappings, please see:

Spring Integration
3.0.5.RELEASE Reference Manual 183

http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/RequestMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfo.html

Spring Integration

 http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-
handlermapping

URI Template Variables and Expressions

By Using the path attribute in conjunction with the payload-expression attribute as well as the header
sub-element, you have a high degree of flexibility for mapping inbound request data.

In the following example configuration, an Inbound Channel Adapter is configured to accept requests
using the following URI: /first-name/{firstName}/last-name/{lastName}

Using the payload-expression attribute, the URI template variable {firstName} is mapped to be the
Message payload, while the {lastName} URI template variable will map to the Iname Message header.

<i nt-http:inbound-channel - adapter id="i nboundAdapt er Wt hExpr essi ons"
path="/first-nanme/ {firstName}/I ast-nane/{l ast Nane}"
channel ="r equest s"
payl oad- expr essi on="#pat hVari abl es. fi rst Name" >
<int-http: header nane="| nane" expressi on="#pat hVari abl es. | ast Nane"/ >
</int-http:inbound-channel - adapt er >

For more information about URI template variables, please see the Spring Reference Manual:

 http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-
ann-requestmapping-uri-templates

Since Spring Integration 3.0, in addition to the existing #pat hVari abl es and #r equest Par ans
variables being available in payload and header expressions, other useful variables have been added.

The entire list of available expression variables:
» #requestParams - the Mul ti Val ueMap from the Ser vl et Request par anet er Map.
» #pathVariables - the Map from URI Template placeholders and their values;

» #matrixVariables - the Map of Mul ti Val ueMap according to Spring MVC Specification. Note,
#matrixVariables require Spring MVC 3.2 or higher;

 #requestAttributes - the
org. spri ngframewor k. web. cont ext . request. Request Attri but es associated with the
current Request;

» #requestHeaders - the org. spri ngfranmework. http. Ht t pHeader s object from the current
Request;

» #cookies - the Map<String, Cookie> of javax.servlet. http. Cooki es from the current
Request.

Note, all these values (and others) can be accessed within expressions in the downstream message flow
via the ThreadLocal org. springfranework. web. cont ext.request. Request Attri butes
variable, if that message flow is single-threaded and lives within the request thread:

<int-:transformer
expressi on="T(org. springframework. web. cont ext . request. Request Cont ext Hol der) .
request Attri butes. request.queryString"/>

Spring Integration
3.0.5.RELEASE Reference Manual 184

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-handlermapping
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-handlermapping
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping-uri-templates
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping-uri-templates
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-matrix-variables

Spring Integration

Outbound

To configure the outbound gateway you can use the namespace support as well. The following code
shippet shows the different configuration options for an outbound Http gateway. Most importantly, notice
that the 'http-method' and 'expected-response-type' are provided. Those are two of the most commonly
configured values. The default http-method is POST, and the default response type is null. With a null
response type, the payload of the reply Message would contain the ResponseEntity as long as it's http
status is a success (non-successful status codes will throw Exceptions). If you are expecting a different
type, such as a St r i ng, then provide that fully-qualified class name as shown below. See also the note
about empty response bodies in Section 16.3, “Http Outbound Gateway”.

© Important
Beginning with Spring Integration 2.1 the request-timeout attribute of the HTTP Outbound
Gateway was renamed to reply-timeout to better reflect the intent.

<i nt - http: out bound- gat eway i d="exanpl e"
request - channel ="r equest s"
url ="http://|ocal host/test"
ht t p- net hod=" POST"
extract -request - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
char set =" UTF- 8"
request - fact ory="request Fact ory"
reply-timeout ="1234"
repl y-channel ="replies"/>

© Important

Since Spring Integration 2.2, Java serialization over HTTP is no longer enabled by default.
Previously, when setting the expect ed-response-type attribute to a Serializabl e
object, the Accept header was not properly set up. Since Spring Integration 2.2, the
SerializingHtt pMessageConvert er has now been updated to set the Accept header to
application/x-java-serialized-object.

However, because this could cause incompatibility with existing applications, it was decided
to no longer automatically add this converter to the HTTP endpoints. If you wish to use
Java serialization, you will need to add the Seri alizi ngHtt pMessageConverter to
the appropriate endpoints, using the nessage-converters attribute, when using XML
configuration, or using the set MessageConvert er s() method. Alternatively, you may wish to
consider using JSON instead which is enabled by simply having Jackson on the classpath.

Beginning with Spring Integration 2.2 you can also determine the HTTP Method dynamically using
SpEL and the http-method-expression attribute. Note that this attribute is obviously murually exclusive
with http-method You can also use expect ed-r esponse-t ype- expr essi on attribute instead of
expect ed- r esponse-t ype and provide any valid SpEL expression that determines the type of the
response.

Spring Integration
3.0.5.RELEASE Reference Manual 185

Spring Integration

<i nt-http: out bound- gat eway i d="exanpl e"
request - channel ="r equest s"
url="http://|ocal host/test"
ht t p- net hod- expr essi on="header s. htt pMet hod"
extract-request - payl oad="f al se"
expect ed-response-type- expressi on="payl oad"
char set =" UTF- 8"
request - f act ory="request Fact or y"
reply-tineout="1234"
repl y-channel ="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-channel-
adapter instead. This means that a successful response will simply execute without sending any
Messages to a reply channel. In the case of any non-successful response status code, it will throw an
exception. The configuration looks very similar to the gateway:

<i nt-http: out bound- channel - adapt er i d="exanpl e"
url ="http://1ocal host/exanpl e"
ht t p- net hod=" GET"
channel ="r equest s"
char set =" UTF- 8"
extract - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
request - f act or y="soneRequest Fact or y"
order="3"
aut o-startup="fal se"/>

© Note

To specify the URL; you can use either the 'url’ attribute or the 'url-expression' attribute. The 'url'is
a simple string (with placedholders for URI variables, as described below); the ‘url-expression’ is
a SpEL expression, with the Message as the root object, enabling dynamic urls. The url resulting
from the expression evaluation can still have placeholders for URI variables.

In previous releases, some users used the place holders to replace the entire URL with a URI
variable. Changes in Spring 3.1 can cause some issues with escaped characters, such as '?'.
For this reason, it is recommended that if you wish to generate the URL entirely at runtime, you
use the 'url-expression' attribute.

Mapping URI Variables

If your URL contains URI variables, you can map them using the uri - vari abl e sub-element. This
sub-element is available for the Http Outbound Gateway and the Http Outbound Channel Adapter.

<i nt-http:out bound-gateway id="trafficGateway"
url ="http://1ocal.yahooapis.comtrafficData?appi d=YdnDeno&anp; zi p={ zi pCode}"
request - channel ="traf fi cChannel "
ht t p- net hod=" GeT"
expect ed-response-type="java. |l ang. Stri ng">
<int-http:uri-variabl e nanme="zi pCode" expressi on="payl oad. getZip()"/>
</int-http: out bound- gat eway>

The uri - vari abl e sub-element defines two attributes: name and expr essi on. The nane attribute
identifies the name of the URI variable, while the expr essi on attribute is used to set the actual value.
Using the expr essi on attribute, you can leverage the full power of the Spring Expression Language
(SpEL) which gives you full dynamic access to the message payload and the message headers. For

Spring Integration
3.0.5.RELEASE Reference Manual 186

Spring Integration

example, in the above configuration the get Zi p() method will be invoked on the payload object of the
Message and the result of that method will be used as the value for the URI variable named 'zipCode'.

Since Spring Integration 3.0, HTTP Outbound Endpoints support the uri - vari abl es- expressi on
attribute to specify an Expr essi on which should be evaluated, resulting in a Map for all URI variable
placeholders within the URL template. It provides a mechanism whereby different variable expressions
can be used, based on the outbound message. This attribute is mutually exclusive with the <uri -
vari abl e/ > sub-element:

<i nt-http: out bound- gat eway
url ="http://foo. host/{foo}/bars/{bar}"
request - channel ="traf fi cChannel "
ht t p- net hod=" GeT"
uri-vari abl es- expressi on="@uri Vari abl esBean. popul at e(payl oad) "
expect ed-response-type="java.l ang. String"/>

where uri Var i abl esBean might be:

public class Uri Vari abl esBean {
private static final ExpressionParser EXPRESSI ON PARSER = new Spel Expressi onParser();

public Map<String, ?> popul ate(Cbject payl oad) {
Map<String, Object> variables = new HashMap<String, Object>();
if (payload instanceOf String.class)) {

vari abl es. put ("foo", "foo"));

}

el se {
vari abl es. put ("foo0", EXPRESSI ON_PARSER. par seExpr essi on("headers. bar"));

}

return vari abl es;

}
}
© Note

The uri - vari abl es- expr essi on must evaluate to a Map. The values of the Map must be
instances of Stri ng or Expr essi on. This Map is provided to an Expr essi onEval Map for
further resolution of URI variable placeholders using those expressions in the context of the
outbound Message.

Controlling URI Encoding

By default, the URL string is encoded (see UriComponentsBuilder) to the URI object before sending
the request. In some scenarios with a non-standard URI (e.g. the RabbitMQ Rest API) it is undesirable
to perform the encoding. The <htt p: out bound- gat eway/ > and <htt p: out bound- channel -
adapt er/ > provide an encode- uri attribute. To disable encoding the URL, this attribute should be
settof al se (by defaultitist r ue). If you wish to partially encode some of the URL, this can be achieved
using an expr essi on within a <uri - vari abl e/ >:

<ht t p: out bound- gat eway url ="http://sonehost/%2f/fooApps?bar={parant" encode-uri="fal se">
<http:uri-variabl e nane="par ant
expressi on="T(org. apache. cormons. httpclient.util.UR Util)
.encodeW t hi nQuery(' Hel ow World!")"/>
</ htt p: out bound- gat eway>

Spring Integration
3.0.5.RELEASE Reference Manual 187

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html

Spring Integration

16.5 Timeout Handling

In the context of HTTP components, there are two timing areas that have to be considered.
» Timeouts when interacting with Spring Integration Channels
» Timeouts when interacting with a remote HTTP server

First, the components interact with Message Channels, for which timeouts can be specified. For
example, an HTTP Inbound Gateway will forward messages received from connected HTTP Clients to a
Message Channel (Request Timeout) and consequently the HTTP Inbound Gateway will receive a reply
Message from the Reply Channel (Reply Timeout) that will be used to generate the HTTP Response.
Please see the figure below for an illustration.

| Request Timeout ‘

N | —

/ \
Request Channel
*r—
\

HTTP Inbound Service Activator

| Reply Timeout ‘

Reply Channel

How timeout settings apply to an HTTP Inbound Gateway

For outbound endpoints, the second thing to consider is timing while interacting with the remote server.

java.net.URLConnection
connectTimeout
, readTimeout
Message | | ummm— \q
Request Channel | —
Gateway
Reply Channel ‘ Reply Timeout

How timeout settings apply to an HTTP Outbound Gateway

You may want to configure the HTTP related timeout behavior, when making active HTTP requests
using the HTTP Oubound Gateway or the HTTP Outbound Channel Adapter. In those instances, these
two components use Spring's Rest Tenpl at e support to execute HTTP requests.

In order to configure timeouts for the HTTP Oubound Gateway and the HTTP Outbound Channel
Adapter, you can either reference a Rest Tenpl at e bean directly, using the rest-template attribute, or

Spring Integration
3.0.5.RELEASE Reference Manual 188

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

Spring Integration

you can provide a reference to a ClientHttpRequestFactory bean using the request-factory attribute.
Spring provides the following implementations of the Cl i ent Ht t pRequest Fact or y interface:

Si npl ed i ent Ht t pRequest Fact ory - Uses standard J2SE facilities for making HTTP Requests

Ht t pConponent sCl i ent Ht t pRequest Fact ory - Uses Apache HttpComponents HttpClient (Since
Spring 3.1)

CientHt t pRequest Fact ory - Uses Jakarta Commons HttpClient (Deprecated as of Spring 3.1)

If you don't explicitly configure the request-factory or rest-template attribute respectively, then a default
RestTemplate which uses a Si npl eCl i ent Ht t pRequest Fact or y will be instantiated.

© Note

With some JVM implementations, the handling of timeouts using the URLConnection class may
not be consistent.

E.g. from the Java™ Platform, Standard Edition 6 API Specification on setConnectTimeout:
“Some non-standard implmentation of this method may ignore the specified timeout. To see the
connect timeout set, please call getConnectTimeout().”

Please test your timeouts if you have specific needs. Consider using
the HttpComponentsd ientHttpRequest Factory which, in turn, uses Apache
HttpComponents HttpClient instead.

© Important

When using the Apache HttpComponents HttpClient with a Pooling Connection Manager, be
aware that, by default, the connection manager will create no more than 2 concurrent connections
per given route and no more than 20 connections in total. For many real-world applications these
limits may prove too constraining. Refer to the Apache documentation (link above) for information
about configuring this important component.

Here is an example of how to configure an HTTP Outbound Gateway using a
Si npl ed i ent Ht t pRequest Fact ory, configured with connect and read timeouts of 5 seconds
respectively:

<int-http:out bound-gateway url="http://ww. googl e. conii g/ api ?weat her ={city}"
ht t p- net hod="GET"
expect ed-response-type="java. |l ang. Stri ng"
request - f act ory="request Fact ory"
request - channel ="r equest Channel "
repl y- channel ="r epl yChannel ">
<int-http:uri-variable nane="city" expressi on="payl oad"/>
</int-http: out bound- gat eway>

<bean i d="request Fact ory"
cl ass="org. springframework. http.client.SinpleCientHtpRequestFactory">
<property nane="connect Ti meout" val ue="5000"/>
<property nane="readTi meout" val ue="5000"/ >
</ bean>

HTTP Outbound Gateway

For the HTTP Outbound Gateway, the XML Schema defines only the
reply-timeout. The reply-timeout maps to the sendTimeout property of the

Spring Integration
3.0.5.RELEASE Reference Manual 189

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/ClientHttpRequestFactory.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/SimpleClientHttpRequestFactory.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/HttpComponentsClientHttpRequestFactory.html
http://hc.apache.org/httpcomponents-client-ga/
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/CommonsClientHttpRequestFactory.html
http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/

Spring Integration

org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler class. More
precisely, the property is set on the extended Abst r act Repl yPr oduci ngMessageHandl er class,
which ultimatelly sets the property on the MessagingTemplate.

The value of the sendTimeout property defaults to "-1" and will be applied to the connected
MessageChannel . This means, that depending on the implementation, the Message Channel's send
method may block indefinitely. Furthermore, the sendTimeout property is only used, when the actual
MessageChannel implementation has a blocking send (such as 'full' bounded QueueChannel).

HTTP Inbound Gateway

For the HTTP Inbound Gateway, the XML Schema defines the request-timeout attribute, which will be
used to set the requestTimeout property on the Ht t pRequest Handl i ngMessagi ngGat eway class
(on the extended MessagingGatewaySupport class). Secondly, the reply-timeout attribute exists and it
maps to the replyTimeout property on the same class.

The default for both timeout properties is "1000ms". Ultimately, the request-timeout property will be used
to set the sendTimeout on the used Messagi ngTenpl at e instance. The replyTimeout property on the
other hand, will be used to set the receiveTimeout property on the used Messagi ngTenpl at e instance.

Q@ Tip
In order to simulate connection timeouts, connect to a non-routable IP address, for example
10.255.255.10.

16.6 HTTP Proxy configuration

If you are behind a proxy and need to configure proxy settings for HTTP outbound adapters and/or
gateways, you can apply one of two approaches. In most cases, you can rely on the standard Java
System Properties that control the proxy settings. Otherwise, you can explicitly configure a Spring bean
for the HTTP client request factory instance.

Standard Java Proxy configuration

There are 3 System Properties you can set to configure the proxy settings that will be used by the HTTP
protocol handler:

 http.proxyHost - the host name of the proxy server.
* http.proxyPort - the port number, the default value being 80.

« http.nonProxyHosts - a list of hosts that should be reached directly, bypassing the proxy. This is a list
of patterns separated by '|'. The patterns may start or end with a "' for wildcards. Any host matching
one of these patterns will be reached through a direct connection instead of through a proxy.

And for HTTPS:

* https.proxyHost - the host name of the proxy server.

* https.proxyPort - the port number, the default value being 80.
For more information please refer to this document: http://download.oracle.com/javase/6/docs/
technotes/guides/net/proxies.html

Spring's SimpleClientHttpRequestFactory

Spring Integration
3.0.5.RELEASE Reference Manual 190

Spring Integration

If for any reason, you need more explicit control over the proxy configuration, you can use Spring's
Si mpl ed i ent Ht t pRequest Fact or y and configure its 'proxy' property as such:

<bean i d="request Fact ory"
cl ass="org. springframework. http.client.SinpleCdientHtpRequest Factory">
<property nanme="proxy">
<bean id="proxy" class="java.net.Proxy">
<const ruct or - ar g>
<util:constant static-field="java.net.Proxy. Type. HTTP"/>
</ const ruct or - ar g>
<const ruct or - ar g>
<bean cl ass="j ava. net. | net Socket Addr ess" >
<constructor-arg val ue="123.0.0.1"/>
<constructor-arg val ue="8080"/>
</ bean>
</ const ructor - ar g>
</ bean>
</ property>
</ bean>

16.7 HTTP Header Mappings

Spring Integration provides support for Http Header mapping for both HTTP Request and HTTP
Responses.

By default all standard Http Headers as defined here http://en.wikipedia.org/wiki/
List_ of HTTP_header_fields will be mapped from the message to HTTP request/response headers
without further configuration. However if you do need further customization you may provide additional
configuration via convenient namespace support. You can provide a comma-separated list of header
names, and you can also include simple patterns with the *' character acting as a wildcard. If you do
provide such values, it will override the default behavior. Basically, it assumes you are in complete
control at that point. However, if you do want to include all of the standard HTTP headers, you can
use the shortcut patterns: HTTP_REQUEST_HEADERS and HTTP_RESPONSE_HEADERS. Here are
some examples:

<i nt - htt p: out bound- gat eway i d="htt pGat eway"
url ="http://1ocal host/test2"
nmapped- r equest - header s="f oo, bar"
mapped- r esponse- header s="X-*, HTTP_RESPONSE HEADERS"
channel =" someChannel "/ >

<i nt - htt p: out bound- channel - adapt er i d="htt pAdapter"
url ="http://1ocal host/test2"
mapped- r equest - header s="f oo, bar, HITP_REQUEST_ HEADERS"
channel =" someChannel "/ >

The adapters and gateways will use the Def aul t Ht t pHeader Mapper which now provides two static
factory methods for "inbound" and "outbound" adapters so that the proper direction can be applied
(mapping HTTP requests/responses IN/OUT as appropriate).

If further customization is required you can also configure a Defaul t Htt pHeader Mapper
independently and inject it into the adapter via the header - mapper attribute.

Spring Integration
3.0.5.RELEASE Reference Manual 191

Spring Integration

<i nt-http: out bound-gat eway i d="htt pGateway"
url="http://|ocal host/test2"
header - mapper =" header Mapper "
channel =" someChannel "/ >

<bean i d="header Mapper" class="0.s.i.http.support.Defaul tHttpHeader Mapper" >
<property nane="i nboundHeader Nanes" val ue="foo*, *bar, baz"/>
<property nane="out boundHeader Nanes" val ue="a*h, d"/>

</ bean>

Of course, you can even implement the HeaderMapper strategy interface directly and provide a
reference to that if you need to do something other than what the Def aul t Ht t pHeader Mapper
supports.

16.8 HTTP Samples

Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
(server)

This example demonstrates how simple itis to send a Multipart HTTP request via Spring's RestTemplate
and receive it with a Spring Integration HTTP Inbound Adapter. All we are doing is creating a
Mul ti Val ueMap and populating it with multi-part data. The Rest Tenpl at e will take care of the rest
(no pun intended) by converting it to a Mul ti part Ht t pSer vl et Request . This particular client will
send a multipart HTTP Request which contains the name of the company as well as an image file with
the company logo.

Rest Tenpl ate tenpl ate = new Rest Tenpl ate();
String uri = "http://1ocal host: 8080/ nultipart-http/inboundAdapter. htnt;
Resource s2logo =
new Cl assPat hResour ce("or g/ spri ngfranmewor k/ sanpl es/ nul ti part/spring09_I ogo. png");
Mul ti Val ueMap map = new Li nkedMul ti Val ueMap() ;
map. add(" conpany", "SpringSource");
map. add(" conpany- | ogo", s2l 0go);
Ht t pHeader s headers = new Htt pHeaders();
header s. set Cont ent Type(new Medi aType("nultipart”, "formdata"));
HtpEntity request = new HttpEntity(nap, headers);
ResponseEntity<?> httpResponse = tenpl ate. exchange(uri, HttpMethod. POST, request, null);

That is all for the client.

On the server side we have the following configuration:

<i nt-http:inbound-channel - adapt er id="httpl nboundAdapter"
channel ="r ecei veChannel "
nane="/i nboundAdapt er . ht nt
support ed- net hods="GET, POST"/>

<i nt:channel id="receiveChannel"/>
<int:service-activator input-channel="recei veChannel ">
<bean cl ass="org. spri ngfranework.integration.sanples.nultipart.MltipartReceiver"/>

</int:service-activator>

<bean id="nul ti part Resol ver"
cl ass="org. spri ngframewor k. web. mul ti part.conmmons. ConmonsMuil ti part Resol ver"/>

Spring Integration
3.0.5.RELEASE Reference Manual 192

Spring Integration

The ‘httpInboundAdapter' will receive the request, convert it to a Message with a payload that is
a Li nkedMul ti Val ueMap. We then are parsing that in the 'multipartReceiver' service-activator;

public void receive(Li nkedMul ti Val ueMap<String, Object> nultipartRequest){
System out. printl n("### Successfully received nultipart request ###");
for (String elenmentNane : nultipart Request. keySet ()) {
i f (el ement Nanme. equal s("conpany")){
Systemout.println("\t" + el ementName + " - " +
((String[]) nultipartRequest.getFirst("company"))[0]);

}
el se if (el ement Nane. equal s("conpany-1|0go")){
Systemout.printIn("\t" + elenentNane + " - as UploadedMultipartFile: " +
((Upl oadedMul tipartFile) nultipartRequest
.get First("conpany-|ogo")).getOiginal Fil enane());
}

You should see the following output:

Successful ly received nul tipart request
conpany - SpringSource
conpany-l ogo - as Upl oadedMul ti partFile: spring09 | ogo.png

Spring Integration
3.0.5.RELEASE Reference Manual 193

Spring Integration

17. JDBC Support

Spring Integration provides Channel Adapters for receiving and sending messages via database
queries. Through those adapters Spring Integration supports not only plain JDBC SQL Queries, but also
Stored Procedure and Stored Function calls.

The following JDBC components are available by default:

* Inbound Channel Adapter

e Outbound Channel Adapter

e Qutbound Gateway

» Stored Procedure Inbound Channel Adapter

» Stored Procedure Outbound Channel Adapter

» Stored Procedure Outbound Gateway

Furthermore, the Spring Integration JDBC Module also provides a JDBC Message Store

17.1 Inbound Channel Adapter

The main function of an inbound Channel Adapter is to execute a SQL SELECT query and turn the result
set as a message. The message payload is the whole result set, expressed as a Li st , and the types of
the items in the list depend on the row-mapping strategy that is used. The default strategy is a generic
mapper that just returns a Map for each row in the query result. Optionally, this can be changed by
adding a reference to a Rowiapper instance (see the Spring JDBC documentation for more detailed
information about row mapping).

© Note

If you want to convert rows in the SELECT query result to individual messages you can use a
downstream splitter.

The inbound adapter also requires a reference to either a JdbcTenpl at e instance or a Dat aSour ce.

As well as the SELECT statement to generate the messages, the adapter above also has an UPDATE
statement that is being used to mark the records as processed so that they don't show up in the next
poll. The update can be parameterized by the list of ids from the original select. This is done through a
naming convention by default (a column in the input result set called "id" is translated into a list in the
parameter map for the update called "id"). The following example defines an inbound Channel Adapter
with an update query and a Dat aSour ce reference.

<i nt-jdbc:inbound-channel - adapter query="select * fromitem where status=2"
channel ="target" dat a- source="dat aSour ce"
updat e="update item set status=10 where id in (:id)" />

© Note

The parameters in the update query are specified with a colon (:) prefix to the name of a parameter
(which in this case is an expression to be applied to each of the rows in the polled result set).
This is a standard feature of the named parameter JDBC support in Spring JDBC combined with

Spring Integration
3.0.5.RELEASE Reference Manual 194

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jdbc.html

Spring Integration

a convention (projection onto the polled result list) adopted in Spring Integration. The underlying
Spring JDBC features limit the available expressions (e.g. most special characters other than
period are disallowed), but since the target is usually a list of or an individual object addressable
by simple bean paths this isn't unduly restrictive.

To change the parameter generation strategy you can inject a Sql Par anet er Sour ceFact ory into
the adapter to override the default behavior (the adapter has a sql - par anet er - sour ce-f actory
attribute).

Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a sub element, so for instance the
frequency of the polling can be controlled. A very important feature of the poller for JIDBC usage is the
option to wrap the poll operation in a transaction, for example:

<i nt-jdbc:inbound-channel - adapter query="..."
channel ="t arget" dat a- source="dat aSource" update="...">
<int:poller fixed-rate="1000">
<int:transactional/>
</int:poller>
</int-jdbc:inbound-channel - adapt er >

© Note

If a poller is not explicitly specified, a default value will be used (and as per normal with Spring
Integration can be defined as a top level bean).

In this example the database is polled every 1000 milliseconds, and the update and select queries are
both executed in the same transaction. The transaction manager configuration is not shown, but as long
as itis aware of the data source then the poll is transactional. A common use case is for the downstream
channels to be direct channels (the default), so that the endpoints are invoked in the same thread, and
hence the same transaction. Then if any of them fail, the transaction rolls back and the input data is
reverted to its original state.

Max-rows-per-poll versus Max-messages-per-poll

The JDBC Inbound Channel Adapter defines an attribute max-rows-per-poll. When you specify the
adapter's Poller, you can also define a property called max-messages-per-poll. While these two
attributes look similar, their meaning is quite different.

max-messages-per-poll specifies the number of times the query is executed per polling interval, whereas
max-rows-per-poll specifies the number of rows returned for each execution.

Under normal circumstances, you would likely not want to set the Poller's max-messages-per-poll
property when using the JDBC Inbound Channel Adapter. Its default value is 1, which means that the
JDBC Inbound Channel Adapter's receive() method is executed exactly once for each poll interval.

Setting the max-messages-per-poll attribute to a larger value means that the query is executed that
many times back to back. For more information regarding the max-messages-per-poll attribute, please
see the section called “Configuring An Inbound Channel Adapter”.

In contrast, the max-rows-per-poll attribute, if greater than 0, specifies the maximum number of rows
that will be used from the query result set, per execution of the receive() method. If the attribute is set to
0, then all rows will be included in the resulting message. If not explicitly set, the attribute defaults to 0.

Spring Integration
3.0.5.RELEASE Reference Manual 195

http://static.springsource.org/spring-integration/api/org/springframework/integration/jdbc/JdbcPollingChannelAdapter.html#receive()

Spring Integration

17.2 Outbound Channel Adapter

The outbound Channel Adapter is the inverse of the inbound: its role is to handle a message and use it to
execute a SQL query. The message payload and headers are available by default as input parameters
to the query, for instance:

<i nt-j dbc: out bound- channel - adapt er
query="insert into foos (id, status, nanme) values (:headers[id], O, :payload[foo])"
dat a- sour ce="dat aSour ce"
channel ="i nput"/>

In the example above, messages arriving on the channel labelled input have a payload of a map with key
foo, so the [] operator dereferences that value from the map. The headers are also accessed as a map.

© Note

The parameters in the query above are bean property expressions on the incoming message
(not Spring EL expressions). This behavior is part of the Sql Par armet er Sour ce which is the
default source created by the outbound adapter. Other behavior is possible in the adapter, and
requires the user to inject a different Sql Par anet er Sour ceFact ory.

The outbound adapter requires a reference to either a Dat aSour ce or a JdbcTenpl at e. It can also
have a Sql Par anet er Sour ceFact or y injected to control the binding of each incoming message to
a query.

If the input channel is a direct channel, then the outbound adapter runs its query in the same thread,
and therefore the same transaction (if there is one) as the sender of the message.

Passing Parameters using SpEL Expressions

A common requirement for most JDBC Channel Adapters is to pass parameters as part of Sql queries
or Stored Procedures/Functions. As mentioned above, these parameters are by default bean property
expressions, not SpEL expressions. However, if you need to pass SpEL expression as parameters, you
must inject a Sql Par anet er Sour ceFact or y explicitly.

The following example uses a Expr essi onEval uat i ngSql Par anet er Sour ceFact or y to achieve
that requirement.

<j dbc: out bound- channel - adapt er dat a- sour ce="dat aSour ce" channel ="i nput "
query="insert into MESSAGES (MESSAGE | D, PAYLOAD, CREATED DATE) \
values (:id, :payload, :createdDate)"
sql - par anet er - sour ce- f act or y="spel Source"/ >

<bean i d="spel Sour ce"
class="o.s.integration.jdbc. Expressi onEval uati ngSql Par anet er Sour ceFact ory" >
<property nane="paraneter Expressi ons">

<map>
<entry key="id" val ue="headers['id"].toString()"/>
<entry key="createdDate" value="new java.util.Date()"/>
<entry key="payl oad" val ue="payl oad"/ >
</ map>
</ property>

</ bean>

For further information, please also see the section called “Defining Parameter Sources”

Spring Integration
3.0.5.RELEASE Reference Manual 196

Spring Integration

17.3 Outbound Gateway

The outbound Gateway is like a combination of the outbound and inbound adapters: its role is to handle
a message and use it to execute a SQL query and then respond with the result sending it to a reply
channel. The message payload and headers are available by default as input parameters to the query,
for instance:

<i nt-j dbc: out bound- gat eway
update="insert into foos (id, status, nane) values (:headers[id], O, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a-source="dat aSource" />

The result of the above would be to insert a record into the "foos" table and return a message to the
output channel indicating the number of rows affected (the payload is a map: { UPDATED=1}).

If the update query is an insert with auto-generated keys, the reply message can be populated with the
generated keys by adding keys- gener at ed="t rue" to the above example (this is not the default
because it is not supported by some database platforms). For example:

<i nt -j dbc: out bound- gat eway
update="insert into foos (status, nane) values (0, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a-source="dat aSour ce"
keys- gener at ed="true"/ >

Instead of the update count or the generated keys, you can also provide a select query to execute and
generate a reply message from the result (like the inbound adapter), e.g:

<i nt -j dbc: out bound- gat eway
update="insert into foos (id, status, nanme) values (:headers[id], O, :payload[foo])"
query="sel ect * fromfoos where id=: headers[$id]"
request - channel ="i nput" reply-channel ="out put" dat a- source="dat aSource"/ >

Since Spring Integration 2.2 the update SQL query is no longer mandatory. You can now solely provide
a select query, using either the query attribute or the query sub-element. This is extremely useful if you
need to actively retrieve data using e.g. a generic Gateway or a Payload Enricher. The reply message
is then generated from the result, like the inbound adapter, and passed to the reply channel.

<i nt - j dbc: out bound- gat eway
query="select * from foos where id=: headers[id]"
request - channel ="i nput "
repl y- channel =" out put "
dat a- sour ce="dat aSour ce"/ >

As with the channel adapters, there is also the option to provide Sql Par anet er Sour ceFact ory
instances for request and reply. The default is the same as for the outbound adapter, so the request
message is available as the root of an expression. If keys-generated="true" then the root of the
expression is the generated keys (a map if there is only one or a list of maps if multi-valued).

The outbound gateway requires a reference to either a DataSource or a JdbcTemplate. It can also have a
Sql Par anet er Sour ceFact or y injected to control the binding of the incoming message to the query.

17.4 JDBC Message Store

Spring Integration provides 2 JDBC specifc Message Store implementations. The first one, is the
JdbcMessagesSt or e which is suitable to be used in conjunction with Aggregators and the Claimcheck

Spring Integration
3.0.5.RELEASE Reference Manual 197

Spring Integration

pattern. While it can be used for backing Message Channels as well, you may want to consider using
the JdbcChannel MessageSt or e implementation instead, as it provides a more targeted and scalable
implementation.

The Generic JDBC Message Store

The JDBC module provides an implementation of the Spring Integration MessageSt or e (important in
the Claim Check pattern) and MessageG oupSt or e (important in stateful patterns like Aggregator)
backed by a database. Both interfaces are implemented by the JdbcMessageSt or e, and there is also
support for configuring store instances in XML. For example:

<int-jdbc: nessage-store id="nmessageStore" data-source="dat aSource"/>

A JdbcTenpl at e can be specified instead of a Dat aSour ce.

Other optional attributes are show in the next example:

<int-jdbc: nessage-store id="nmessageStore" data-source="dataSource"
| ob- handl er="1 obHandl er" tabl e-prefix="MY_INT_"/>

Here we have specified a LobHandl er for dealing with messages as large objects (e.g. often necessary
if using Oracle) and a prefix for the table names in the queries generated by the store. The table name
prefix defaults to "INT_".

© Note

If you plan on using MySQL, please use MySQL version 5.6.4 or higher, if possible. Prior versions
do not support fractional seconds for temporal data types. Because of that, messages may not
arrive in the precise FIFO order when polling from such a MySQL Message Store.

Therefore, starting with Spring Integration 3.0, we provide an additional set of DDL scripts for
MySQL version 5.6.4 or higher:

» schema-drop-mysql-5_6_4.sql
« schema-mysql-5 6 _4.sql
For more information, please see:

http://dev.mysgl.com/doc/refman/5.6/en/fractional-seconds.html

Also important, please ensure that you use an up-to-date version of the JDBC driver for MySQL
(Connector/J), e.g. version 5.1.24 or higher.

Backing Message Channels

If you intent backing Message Channels using JDBC, it is recommended to use the provided
JdbcChannel MessageSt or e implementation instead. It can only be used in conjuntion with Message
Channels.

© Note

The provided JdbcChannel MessageSt ore implementation is available since Spring
Integration 2.2..

Spring Integration
3.0.5.RELEASE Reference Manual 198

http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html

Spring Integration

Supported Database

The JdbcChannel MessageSt or e uses database specific SQL queries to retrieve messages from
the database. Therefore, users must set the Channel MessageSt or eQuer yPr ovi der property on
the JdbcChannel MessagesSt or e. This channel MessageSt or eQuer yPr ovi der provides the SQL
gueries and Spring Integration provides support for the following relational databases:

PostgreSQL

HSQLDB
« MySQL
* Oracle
» Derby

If your database is not listed, you can easily extend the
Abst ract Channel MessageSt or eQuer yPr ovi der class and provide your own custom queries.

© Important

Generally it is not recommened to use a relational database for the purpose of queuing. Instead,
if possible, consider using either JIMS or AMQP, for which message store implementation are
provided as well. For further reference please see the following resources:

» 5 subtle ways you're using MySQL as a queue, and why it'll bite you

» The Database As Queue Anti-Pattern

Concurrent Polling

When polling a Message Channel, you have the option to configure the associated Pol | er with a
TaskExecut or reference.

© Important

Keep in mind, though, that if you use a JDBC backed Message Channel and you are planning on
polling the channel and consequently the message store transactionally with multiple threads,
you should ensure that you use a relational database that supports Multiversion Concurrency
Control (MVCC). Otherwise, locking may be an issue and the performance, when using multiple
threads, may not materialize as expected. For example Apache Derby is problematic in that
regard.

To achieve better JDBC queue throughput, and avoid issues when different threads may poll
the same Message from the queue, it is important to set the usi ngl dCache property of
JdbcChannel MessageSt or e to t r ue when using databases that do not support MVCC:

Spring Integration
3.0.5.RELEASE Reference Manual 199

https://www.engineyard.com/blog/2011/5-subtle-ways-youre-using-mysql-as-a-queue-and-why-itll-bite-you/
http://mikehadlow.blogspot.com/2012/04/database-as-queue-anti-pattern.html
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Spring Integration

<bean i d="queryProvider"
class="o0.s.i.]jdbc.store. channel . Post gr esChannel MessageSt or eQuer yProvi der"/ >

<int:transaction-synchroni zati on-factory id="syncFactory">
<int:after-conmt expression="@tore.renpveFromn dCache(headers.id.toString())" />
<int:after-rollback expressi on="@tore.renoveFrom dCache(headers.id.toString())"/>
</int:transaction-synchroni zation-factory>

<t ask: execut or id="pool" pool -size="10"
queue- capaci ty="10" rejection-policy="CALLER RUNS* />

<bean i d="store" class="0.s.i.]jdbc.store.JdbcChannel MessageSt ore" >
<property nane="dat aSource" ref="dataSource"/>
<property nane="channel MessageSt or eQueryProvi der" ref="queryProvider"/>
<property nane="regi on" val ue="TX_ TI MEQUT"/ >
<property nane="usi ngl dCache" val ue="true"/>

</ bean>

<i nt:channel id="inputChannel">
<i nt:queue nessage-store="store"/>
</'int:channel >

<int:bridge input-channel ="input Channel " out put - channel =" out put Channel ">
<int:poller fixed-delay="500" receive-tinmeout="500"
max- nessages- per - pol | =" 1" t ask- execut or =" pool ">
<int:transactional propagation="REQU RED' synchroni zati on-factory="syncFactory"
i sol ati on="READ _COWM TTED" transacti on-manager ="transacti onManager" />
</int:poller>

</int:bridge>

<i nt:channel id="outputChannel" />

Initializing the Database

Spring Integration ships with some sample scripts that can be used to initialize a database. In the spring-
integration-jdbc JAR file you will find scripts in the or g. spri ngf r amewor k. i nt egr ati on. j dbc and
in the or g. spri ngframewor k. i ntegration.jdbc. store.channel package: there is a create
and a drop script example for a range of common database platforms. A common way to use these
scripts is to reference them in a Spring JDBC data source initializer. Note that the scripts are provided
as samples or specifications of the the required table and column names. You may find that you need
to enhance them for production use (e.g. with index declarations).

Partitioning a Message Store

It is common to use a JdbcMessageSt or e as a global store for a group of applications, or nodes in
the same application. To provide some protection against name clashes, and to give control over the
database meta-data configuration, the message store allows the tables to be partitioned in two ways.
One is to use separate table names, by changing the prefix as described above, and the other is to
specify a "region" name for partitioning data within a single table. An important use case for this is when
the MessageStore is managing persistent queues backing a Spring Integration Message Channel. The
message data for a persistent channel is keyed in the store on the channel name, so if the channel
names are not globally unique then there is the danger of channels picking up data that was not intended
for them. To avoid this, the message store region can be used to keep data separate for different physical
channels that happen to have the same logical name.

Spring Integration
3.0.5.RELEASE Reference Manual 200

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-intializing-datasource

Spring Integration

17.5 Stored Procedures

In certain situations plain JDBC support is not sufficient. Maybe you deal with legacy relational database
schemas or you have complex data processing needs, but ultimately you have to use Stored Procedures
or Stored Functions. Since Spring Integration 2.1, we provide three components in order to execute
Stored Procedures or Stored Functions:

» Stored Procedures Inbound Channel Adapter
» Stored Procedures Outbound Channel Adapter

 Stored Procedures Outbound Gateway

Supported Databases

In order to enable calls to Stored Procedures and Stored Functions, the Stored Procedure components
usetheorg. springframework. j dbc. core. si npl e. Si npl eJdbcCal | class. Consequently, the
following databases are fully supported for executing Stored Procedures:

» Apache Derby
 DB2

« MySQL

» Microsoft SQL Server
» Oracle

* PostgreSQL

» Sybase

If you want to exute Stored Functions instead, the following databases are fully supported:
« MySQL

» Microsoft SQL Server
» Oracle

* PostgreSQL

© Note

Even though your particular database may not be fully supported, chances are, that you can use
the Stored Procedure Spring Integration components quite successfully anyway, provided your
RDBMS supports Stored Procedures or Functions.

As a matter of fact, some of the provided integration tests use the H2 database. Nevertheless,
it is very important to thoroughly test those usage scenarios.

Configuration

The Stored Procedure components provide full XML Namespace support and configuring the
components is similar as for the general purpose JDBC components discussed earlier.

Spring Integration
3.0.5.RELEASE Reference Manual 201

http://en.wikipedia.org/wiki/Stored_procedure
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html
http://www.h2database.com/

Spring Integration

Common Configuration Attributes

Certain configuration parameters are shared among all Stored Procedure components and are
described below:

auto-startup

Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to t r ue. Optional.

data-source
Reference to aj avax. sql . Dat aSour ce, which is used to access the database. Required.
id

Identifies the underlying Spring bean definition, which is an instance of either Event Dr i venConsuner
or Pol I i ngConsuner, depending on whether the Outbound Channel Adapter's channel attribute
references a Subscri babl eChannel or aPol | abl eChannel . Optional.

ignore-column-meta-data

For fully supported databases, the underlying Si npl eJdbcCal | class can automatically retrieve the
parameter information for the to be invoked Stored Procedure or Function from the JDBC Meta-data.

However, if the used database does not support meta data lookups or if you like to provide customized
parameter definitions, this flag can be setto t r ue. It defaults to f al se. Optional.

is-function

If true, a SQL Function is called. In that case the st ored- procedure-nanme or stored-
pr ocedur e- nanme- expr essi on attributes define the name of the called function. Defaults to f al se.
Optional.

stored-procedure-name

The attribute specifies the name of the stored procedure. If the i s-functi on attribute is set to
t r ue, this attribute specifies the function name instead. Either this property or stored-procedure-name-
expression must be specified.

stored-procedure-name-expression

This attribute specifies the name of the stored procedure using a SpEL expression. Using SpEL you have
access to the full message (if available), including its headers and payload. You can use this attribute to
invoke different Stored Procedures at runtime. For example, you can provide Stored Procedure names
that you would like to execute as a Message Header. The expression must resolve to a String.

If the i s-functi on attribute is set to true, this attribute specifies a Stored Function. Either this
property or stored-procedure-name must be specified.

jdbc-call-operations-cache-size

Defines the maximum number of cached Si npl eJdbcCal | Oper at i ons instances. Basically, for each
Stored Procedure Name a new Si npl eJdbcCal | Oper ati ons instance is created that in return is
being cached.

Spring Integration
3.0.5.RELEASE Reference Manual 202

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCallOperations.html

Spring Integration

© Note

The stored-procedure-name-expression attribute and the jdbc-call-operations-cache-size were
added with Spring Integration 2.2.

The default cache size is 10. A value of 0 disables caching. Negative values are not permitted.

If you enable JMX, statistical information about the jdbc-call-operations-cache is exposed as MBean.
Please see the section called “MBean Exporter” for more information.

sql-parameter-source-factory (Not available for the Stored Procedure Inbound Channel Adapter.)

Reference to a Sql Par amet er Sour ceFact ory. By default bean properties of the passed in
Message payload will be used as a source for the Stored Procedure's input parameters using a
BeanPr oper t ySql Par anmet er Sour ceFact ory.

This may be sufficient for basic use cases. For more sophisticated options, consider passing in one or
more Pr ocedur ePar anet er . Please also refer to the section called “Defining Parameter Sources”.
Optional.

use-payload-as-parameter-source (Not available for the Stored Procedure Inbound Channel
Adapter.)

If setto t r ue, the payload of the Message will be used as a source for providing parameters. If false,
however, the entire Message will be available as a source for parameters.

If no Procedure Parameters are passed in, this property will default to t r ue. This means that using
a default BeanPr oper t ySql Par anet er Sour ceFact or y the bean properties of the payload will be
used as a source for parameter values for the to-be-executed Stored Procedure or Stored Function.

However, if Procedure Parameters are passed in, then this property will by default evaluate to f al se.
Pr ocedur ePar anet er allow for SpEL Expressions to be provided and therefore it is highly beneficial
to have access to the entire Message. The property is set on the underlying St or edPr ocExecut or.
Optional.

Common Configuration Sub-Elements

The Stored Procedure components share a common set of sub-elements to define and pass parameters
to Stored Procedures or Functions. The following elements are available:

» parameter

* returning-resultset
 sgl-parameter-definition
» poller

parameter

Provides a mechanism to provide Stored Procedure parameters. Parameters can be either static or
provided using a SpEL Expressions. Optional.

Spring Integration
3.0.5.RELEASE Reference Manual 203

Spring Integration

<int-jdbc: paraneter name=

expressi on=""/>0

00 The name of the parameter to be passed into the Stored Procedure or Stored Function. Required.
O This attribute specifies the type of the value. If nothing is provided this attribute will default to
j ava. | ang. St ri ng. This attribute is only used when the val ue attribute is used. Optional.

0 The value of the parameter. You have to provider either this attribute or the expr essi on attribute

must be provided instead. Optional.
0 Instead of the val ue attribute, you can also specify a SpEL expression for passing the value of
the parameter. If you specify the expr essi on the val ue attribute is not allowed. Optional.

returning-resultset

Stored Procedures may return multiple resultsets. By setting one or more r et ur ni ng-resul t set
elements, you can specify Rowapper s in order to convert each returned Resul t Set to meaningful
objects. Optional.

<int-jdbc:returning-resultset name=

sql-parameter-definition

If you are using a database that is fully supported, you typically don't have to specify the Stored
Procedure parameter definitions. Instead, those parameters can be automatically derived from the
JDBC Meta-data. However, if you are using databases that are not fully supported, you must set those
parameters explicitly using the sql - par anet er - def i ni ti on sub-element.

You can also choose to turn off any processing of parameter meta data information obtained via JDBC
using the i gnor e- col umm- et a- dat a attribute.

<int-jdbc:sql-paraneter-definition
name="" 0
direction="IN' O
t ype="STRI NG' O
scal e="5" O
t ype- nane="FOO_STRUCT" O
return-type="fooSql Ret urnType"/> O

O Specifies the name of the SQL parameter. Required.

O Specifies the direction of the SQL parameter definition. Defaults to | N. Valid values are: | N, OUT
and | NOUT. If your procedure is returning ResultSets, please use the r et ur ni ng-resul t set
element. Optional.

0 The SQL type used for this SQL parameter definition. Will translate into the integer value as defined
by java.sqgl.Types. Alternatively you can provide the integer value as well. If this attribute is not
explicitly set, then it will default to 'VARCHAR'. Optional.

0 The scale of the SQL parameter. Only used for numeric and decimal parameters. Optional.

O The typeName for types that are user-named like: STRUCT, DISTINCT, JAVA_OBJECT, named
array types. This attribute is mutually exclusive with the scale attribute. Optional.

Spring Integration
3.0.5.RELEASE Reference Manual 204

Spring Integration

O The reference to a custom value handler for complex types. An implementation of SglReturnType.
This attribute is mutually exclusive with the scale attribute and is applicable for OUT(INOUT)-
parameters only. Optional.

poller

Allows you to configure a Message Poller if this endpoint is a Pol | i ngConsuner . Optional.

Defining Parameter Sources

Parameter Sources govern the techniques of retrieving and mapping the Spring Integration Message
properties to the relevant Stored Procedure input parameters. The Stored Procedure components follow
certain rules.

By default bean properties of the passed in Message payload will be used as a source for the Stored
Procedure's input parameters. In that case a BeanPr opert ySql Par anet er Sour ceFact ory will be
used. This may be sufficient for basic use cases. The following example illustrates that default behavior.

© Important

Please be aware that for the “automatic" Ilookup of bean properties
using the BeanPropertySql Paramet er SourceFactory to work, your bean
properties must be defined in lower case. This is due to the fact
that in or g. spri ngfranmewor k. j dbc. cor e. net adat a. Cal | Met aDat aCont ext (method
matchinParameterValuesWithCallParameters()), the retrieved Stored Procedure parameter
declarations are converted to lower case. As a result, if you have camel-case bean
properties such as "lastName", the lookup will fail. In that case, please provide an explicit
Procedur ePar anet er .

Let's assume we have a payload that consists of a simple bean with the following three properties: id,
name and description. Furthermore, we have a simplistic Stored Procedure called INSERT_COFFEE
that accepts three input parameters: id, name and description. We also use a fully supported database.
In that case the following configuration for a Stored Procedure Oubound Adapter will be sufficient:

<i nt-jdbc: stored- proc-out bound- channel - adapt er dat a- sour ce="dat aSour ce"
channel ="i nsert Cof f eePr ocedur eRequest Channel "
st or ed- pr ocedur e- name=" | NSERT_COFFEE"/ >

For more sophisticated options consider passing in one or more Pr ocedur ePar anet er .

If you do provide Pr ocedur ePar anet er explicitly, then as default an
Expr essi onEval uat i ngSql Par anmet er Sour ceFact or y will be used for parameter processing in
order to enable the full power of SpEL expressions.

Furthermore, if you need even more control over how parameters are retrieved, consider passing in a
custom implementation of a Sgl Par amet er Sour ceFact ory using the sql - par anet er - sour ce-
fact ory attribute.

Spring Integration
3.0.5.RELEASE Reference Manual 205

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/jdbc/core/SqlReturnType.html

Spring Integration

Stored Procedure Inbound Channel Adapter

<i nt-jdbc: stored-proc-i nbound- channel - adapt er
channel ="" O
st or ed- pr ocedur e- nanme=""
dat a- source=""
aut o-startup="true"
id=""
i gnor e- col unm- net a- dat a="f al se"
i s-function="fal se"

max-r ows- per - poI | = .
ski p-undecl ared-resul t s="" .
return-val ue-required="fal se" .

<int:poller/>

<int-jdbc:sql-paraneter-definition nane="" direction="I|N"
type="STRI NG'
scale=""/>

<int-jdbc: paranmeter name="" type="" val ue=""/>

<i nt-jdbc: paraneter name="" expression=""/>

<int-jdbc:returning-resultset name="" row mapper="" />

</int-jdbc:stored-proc-inbound-channel - adapt er >

O Channel to which polled messages will be sent. If the stored procedure or function does not return
any data, the payload of the Message will be Null. Required.

O Limits the number of rows extracted per query. Otherwise all rows are extracted into the outgoing
message. Optional.

O If this attribute is set to t r ue, then all results from a stored procedure call that don't have a
corresponding Sql Qut Par anet er declaration will be bypassed.

E.g. Stored Procedures may return an update count value, even though your Stored Procedure
only declared a single result parameter. The exact behavior depends on the used database. The
value is set on the underlying JdbcTenpl at e.

Few developers will probably ever want to process update counts, thus the value defaultstot r ue.

Optional.

O Indicates whether this procedure's return value should be included. Since Spring Integration 3.0.
Optional.

@ Note

When you declare a Poller, you may notice the Poller's max-messages-per-poll attribute. For
information about how it relates to the max-rows-per-poll attribute of the Stored Procedure
Inbound Channel Adapter, please see the section called “Max-rows-per-poll versus Max-
messages-per-poll” for a thourough discussion. The meaning of the attributes is the same as for
the JDBC Inbound Channel Adapter.

Spring Integration
3.0.5.RELEASE Reference Manual 206

Spring Integration

Stored Procedure Outbound Channel Adapter

<i nt-jdbc: stored- proc-out bound- channel - adapt er channel ="" O

st or ed- pr ocedur e- nane=""
dat a- source=""
aut o-startup="true"
id=""
i gnor e- col um- et a- dat a="f al se"
order="" O
sql - par anet er - sour ce-factory=""
use- payl oad- as- par anet er - sour ce="">

<int:poller fixed-rate=""/>

<int-jdbc:sql-paraneter-definition name=""/>

<i nt-jdbc: paraneter name=""/>

</int-jdbc: stored-proc-out bound- channel - adapt er >

O The receiving Message Channel of this endpoint. Required.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Optional.

Stored Procedure Outbound Gateway

<i nt-j dbc: st ored- proc- out bound- gat eway request-channel ="" O
st or ed- procedur e- nane=""
dat a- source=""
aut o-startup="true"
id=""
i gnor e- col um- net a- dat a="f al se"
i s-function="fal se"

repl y-channel =""

reply-ti meout =
return-val ue-required="fal se"

O 0Oooo

ski p- undecl ar ed-resul t s=

sql - par anet er - sour ce-f act ory=

use- payl oad- as- par anet er - sour ce="">
<int-jdbc:sql -paraneter-definition nane="" direction="IN"

type=

scal e="10"/ >
<int-jdbc:sql-paraneter-definition nane=""/>
<int-jdbc: paraneter name="" type="" val ue=""/>
<int-jdbc: paraneter name="" expression=""/>
<int-jdbc:returning-resultset name="" row mapper="" />

O The receiving Message Channel of this endpoint. Required.

Message Channel to which replies should be sent, after receiving the database response. Optional.

O Allows you to specify how long this gateway will wait for the reply message to be sent successfully
before throwing an exception. Keep in mind that when sending to a Di r ect Channel , the
invocation will occur in the sender's thread so the failing of the send operation may be caused by
other components further downstream. By default the Gateway will wait indefinitely. The value is
specified in milliseconds. Optional.

O Indicates whether this procedure's return value should be included. Optional.

O If the ski p-undecl ared-resul ts attribute is set to true, then all results from a stored
procedure call that don't have a corresponding Sql Qut Par anet er declaration will be bypassed.

O

Spring Integration
3.0.5.RELEASE Reference Manual 207

Spring Integration

E.g. Stored Procedures may return an update count value, even though your Stored Procedure
only declared a single result parameter. The exact behavior depends on the used database. The
value is set on the underlying JdbcTenpl at e.

Few developers will probably ever want to process update counts, thus the value defaultstot r ue.
Optional.

Examples

In the following two examples we call Apache Derby Stored Procedures. The first procedure will call
a Stored Procedure that returns a Resul t Set , and using a Rowivapper the data is converted into a
domain object, which then becomes the Spring Integration message payload.

In the second sample we call a Stored Procedure that uses Output Parameters instead, in order to
return data.

© Note

Please have a look at the Spring Integration Samples project, located at https://github.com/
SpringSource/spring-integration-samples

The project contains the Apache Derby example referenced here, as well as instruction on how
to run it. The Spring Integration Samples project also provides an example using Oracle Stored
Procedures.

In the first example, we call a Stored Procedure named FIND_ALL COFFEE_BEVERAGES that does
not define any input parameters but which returns a Resul t Set .

In Apache Derby, Stored Procedures are implemented using Java. Here is the method signature
followed by the corresponding Sql:

public static void findAl| CoffeeBeverages(ResultSet[] coffeeBeverages)
throws SQLException {

CREATE PROCEDURE FI ND_ALL_COFFEE_BEVERAGES() \

PARAVETER STYLE JAVA LANGUAGE JAVA MODI FI ES SQL DATA DYNAM C RESULT SETS 1 \
EXTERNAL NAVE

‘org. springframework.integration.jdbc.storedproc. derby. DerbySt or edPr ocedur es. fi ndAl | Cof f eeBever ages' ;

In Spring Integration, you can now call this Stored Procedure using e.g. a st or ed- pr oc- out bound-
gat eway

<int-jdbc: stored-proc- out bound- gat eway i d="out bound- gat eway- st oredproc-find-all"
dat a- sour ce="dat aSour ce"
request - channel ="fi ndAl | Procedur eRequest Channel "
expect -singl e-resul t="true"
st or ed- procedur e- nanme="FI ND_ALL_COFFEE_BEVERAGES" >
<int-jdbc:returning-resultset nane="coff eeBeverages"
r ow- napper =" org. spri ngfranewor k. i nt egrati on. support . Cof f eBever ageMapper "/ >
</int-jdbc: stored-proc-out bound- gat eway>

In the second example, we call a Stored Procedure named FIND_COFFEE that has one input
parameter. Instead of returning a ResultSet, an output parameter is used:

Spring Integration
3.0.5.RELEASE Reference Manual 208

http://db.apache.org/derby/
https://github.com/SpringSource/spring-integration-samples
https://github.com/SpringSource/spring-integration-samples
https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate/stored-procedures-oracle

Spring Integration

public static void findCoffee(int coffeeld, String[] coffeeDescription)
throws SQLException {

CREATE PROCEDURE FI ND_COFFEE(I N | D | NTEGER, OUT COFFEE_DESCRI PTI ON VARCHAR(200)) \
PARAMETER STYLE JAVA LANGUAGE JAVA EXTERNAL NAME \
‘org.springframework. i ntegration.jdbc.storedproc. derby. Der bySt or edPr ocedur es. fi ndCof f ee’

In Spring Integration, you can now call this Stored Procedure using e.g. a st or ed- pr oc- out bound-
gat eway

<i nt-jdbc: st ored-proc-out bound- gat eway i d="out bound- gat eway- st or edproc-fi nd- cof f ee"
dat a- sour ce="dat aSour ce"
request - channel =" f i ndCof f eePr ocedur eRequest Channel "
ski p- undecl ared-resul t s="true"
st or ed- pr ocedur e- nane="F| ND_COFFEE"
expect-single-result="true">

<int-jdbc: paranmeter name="1D"' expression="payl oad" />
</int-jdbc: stored-proc-out bound- gat eway>

Spring Integration
3.0.5.RELEASE Reference Manual 209

Spring Integration

18. JPA Support

Spring Integration's JPA (Java Persistence API) module provides components for performing various
database operations using JPA. The following components are provided:

Inbound Channel Adapter

Outbound Channel Adapter

Updating Outbound Gateway

» Retrieving Outbound Gateway

These components can be used to perform select, create, update and delete operations on the targeted
databases by sending/receiving messages to them.

The JPA Inbound Channel Adapter lets you poll and retrieve (select) data from the database using JPA
whereas the JPA Outbound Channel Adapter lets you create, update and delete entities.

Outbound Gateways for JPA can be used to persist entities to the database, yet allowing you to continue
with the flow and execute further components downstream. Similarly, you can use an Outbound Gateway
to retrieve entities from the database.

For example, you may use the Outbound Gateway, which receives a Message with a user Id as payload
on its request channel, to query the database and retrieve the User entity and pass it downstream for
further processing.

Recognizing these semantic differences, Spring Integration provides 2 separate JPA Outbound
Gateways:

* Retrieving Outbound Gateway
» Updating Outbound Gateway
Functionality

All JPA components perform their respective JPA operations by using either one of the following:

Entity classes

« Java Persistence Query Language (JPQL) for update, select and delete (inserts are not supported
by JPQL)

* Native Query
* Named Query
In the following sections we will describe each of these components in more detail.

18.1 Supported Persistence Providers

The Spring Integration JPA support has been tested using the following persistence providers:

Spring Integration
3.0.5.RELEASE Reference Manual 210

Spring Integration

+ Hibernate
* OpenJPA
» EclipseLink

When using a persistence provider, please ensure that the provider is compatible with JPA 2.0.

18.2 Java Implementation

Each of the provided components will use the o.s.i.jpa.core.JpaExecutor class which
in turn will use an implementation of the o0.s.i.jpa.core.JpaQperations interface.
JpaQper ati ons operates like a typical Data Access Object (DAO) and provides methods such
as find, persist, executeUpdate etc. For most use cases the provided default implementation
0.S.i.]pa.core. Def aul t JpaOper at i ons should be sufficient. Nevertheless, you have the option
to optionally specify your own implementation in case you require custom behavior.

For initializing a JpaExecut or you have to use one of 3 available constructors that accept one of:
« EntityManagerFactory
» EntityManager or

» JpaOperations

© Note

The XML Namespace Support described further below is also very flexible and provides
configuration attributes for each JPA component to pass in an EntityManagerFactory,
EntityManager or JpaOperations reference.

Java Configuration Example

The following example of a JPA Retrieving Outbound Gateway is configured purely through Java. In
typical usage scenarios you will most likely prefer the XML Namespace Support described further below.
However, the example illustrates how the classes are wired up. Understanding the inner workings can
also be very helpful for debugging or customizing the individual JPA components.

First, we instantiate a JpaExecutor using an EntityManager as constructor
argument. The JpaExecutor is then in return used as constructor argument for the
0.S.i.]j pa.out bound. JpaQut boundGat eway and the JpaCQut boundGat eway will be passed as
constructor argument into the Event Dri venConsuner .

Spring Integration
3.0.5.RELEASE Reference Manual 211

Spring Integration

<bean id="j paExecutor" class="0.s.i.]jpa.core.JpaExecutor">
<constructor-arg nane="entityManager" ref="entityManager"/>
<property nane="entityd ass" val ue="o.s.i.jpa.test.entity. Student Dormai n"/ >
<property nanme="j paQuery" val ue="select s from Student s where s.id = :id"/>

<property nane="expect Si ngl eResul t" val ue="true"/>
<property nane="j paParaneters" >

<util:list>
<bean cl ass="org. spri ngfranework.integration.jpa.support.JpaParaneter">
<property nane="nane" val ue="id"/>
<property nanme="expression" val ue="payl oad"/>
</ bean>
</futil:list>
</ property>

</ bean>

<bean i d="j paQut boundGat eway" cl ass="0.s.i.]j pa.outbound. JpaQut boundGat eway" >
<constructor-arg ref="jpaExecutor"/>

<property name="gat eway Type" val ue="RETRI EVI NG'/ >
<property name="out put Channel " ref ="student Repl yChannel "/ >
</ bean>

<bean i d="get St udent Endpoi nt"
cl ass="org. spri ngfranmework. i ntegration. endpoi nt. Event Dri venConsuner " >
<constructor-arg nanme="i nput Channel " ref="get St udent Channel "/ >

<constructor-arg name="handl er" ref ="j paQut boundGat eway" / >
</ bean>
© Note

For more examples of constructing JPA components purely through Java, see the JUnit test-
cases for the JPA Adapters.

18.3 Namespace Support

When using XML namespace support, the underlying parser classes will instantiate the relevant Java
classes for you. Thus, you typically don't have to deal with the inner workings of the JPA adapter. This
section will document the XML Namespace Support provided by the Spring Integration and will show
you how to use the XML Namespace Support to configure the Jpa components.

Common XML Namespace Configuration Attributes
Certain configuration parameters are shared amongst all JPA components and are described below:
auto-startup

Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to t r ue. Optional.

id
Identifies the underlying Spring bean definition, which is an instance of either Event Dri venConsuner
or Pol | i ngConsurmer . Optional.

entity-manager-factory

The reference to the JPA Entity Manager Factory that will be used by the adapter to create the
Enti t yManager . Either this attribute or the entity-manager attribute or the jpa-operations attribute
must be provided.

Spring Integration
3.0.5.RELEASE Reference Manual 212

Spring Integration

entity-manager

The reference to the JPA Entity Manager that will be used by the component. Either this attribute or the
enity-manager-factory attribute or the jpa-operations attribute must be provided.

© Note

Usually your Spring Application Context only defines a JPA Entity Manager Factory and the
EntityManager is injected using the @PersistenceContext annotation. This, however, is not
applicable for the Spring Integration JPA components. Usually, injecting the JPA Entity Manager
Factory will be best but in case you want to inject an EntityManager explicitly, you have to define
a Shar edEnt i t yManager Bean. For more information, please see the relevant JavaDoc.

<bean id="entityManager"
cl ass="org. spri ngframewor k. orm j pa. support . Shar edEnti t yManager Bean" >
<property nane="entityManager Factory" ref="entityManager Fact oryBean" />
</ bean>

jpa-operations

Reference to a bean implementing the JpaQper at i ons interface. In rare cases it might be advisable
to provide your own implementation of the JpaQper at i ons interface, instead of relying on the default
implementation org. spri ngfranmework. i ntegration.jpa.core. Defaul t JpaQperati ons.
As JpaQper at i ons wraps the necessary datasource; the JPA Entity Manager or JPA Entity Manager
Factory must not be provided, if the jpa-operations attribute is used.

entity-class

The fully qualified name of the entity class. The exact semantics of this attribute vary, depending on
whether we are performing a persist/update operation or whether we are retrieving objects from the
database.

When retrieving data, you can specify the entity-class attribute to indicate that you would like to retrieve
objects of this type from the database. In that case you must not define any of the query attributes (
jpa-query, native-query or named-query)

When persisting data, the entity-class attribute will indicate the type of object to persist. If not specified
(for persist operations) the entity class will be automatically retrieved from the Message's payload.

jpa-query

Defines the JPA query (Java Persistence Query Language) to be used.
native-query

Defines the native SQL query to be used.

named-query

This attribute refers to a named query. A named query can either be defined in Native SQL or JPAQL
but the underlying JPA persistence provider handles that distinction internally.

Providing JPA Query Parameters

For providing parameters, the parameter XML sub-element can be used. It provides a mechanism to
provide parameters for the queries that are either based on the Java Persistence Query Language
(JPQL) or native SQL queries. Parameters can also be provided for Named Queries.

Spring Integration
3.0.5.RELEASE Reference Manual 213

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/orm/jpa/support/SharedEntityManagerBean.html

Spring Integration

Expression based Parameters

<i nt-jpa: paraneter expression="payl oad. nane" nane="firstNanme"/>

Value based Parameters

<int-jpa: paraneter nane="nane" type="java.lang. String" val ue="nyNanme"/>

Positional Parameters

<i nt-j pa: paranet er expressi on="payl oad. nane"/ >
<int-jpa:paraneter type="java.lang.|nteger" val ue="21"/>

Transaction Handling

All JPA operations like Insert, Update and Delete require a transaction to be active whenever they are
performed. For Inbound Channel Adapters there is nothing special to be done, it is similar to the way we
configure transaction managers with pollers used with other inbound channel adapters.The xml snippet
below shows a sample where a transaction manager is configured with the poller used with an Inbound
Channel Adapter.

<i nt-j pa: i nbound- channel - adapt er
channel ="i nboundChannel Adapt er One"
entity-manager ="ent
aut o-startup="true"
j pa-query="sel ect s from Student s"
expect-single-result="true"
del ete-after-poll ="true">
<int:poller fixed-rate="2000" >
<int:transactional propagation="REQU RED'
transacti on- manager ="t ransact i onManager"/ >
</int:poller>
</int-jpa:inbound-channel - adapt er >

However, it may be necessary to specifically start a transaction when using an Outbound Channel
Adapter/Gateway. If a DirectChannel is an input channel for the outbound adapter/gateway, and if
transaction is active in the current thread of execution, the JPA operation will be performed in the same
transaction context. We can also configure to execute this JPA operation in a new transaction as below.

<i nt-j pa: out bound- gat enay
request - channel =" namedQuer yRequest Channel "
repl y- channel =" nanedQuer yResponseChannel "
named- quer y="updat eSt udent ByRol | Nunber "
entity-manager ="enf
gat eway-t ype="UPDATI NG' >
<int-jpa: paranmeter name="I| ast Nane" expressi on="payl oad"/ >
<int-jpa: paranmeter name="rol | Nunber" expression="headers['roll Nunber']"/>

<int-jpa:transactional propagation="REQU RES NEW
transacti on- manager ="t ransacti onManager"/ >

</int-j pa: out bound- gat eway>

As we can see above, the transactional sub element of the outbound gateway/adapter will be used to
specify the transaction attributes. It is optional to define this child element if you have DirectChannel
as an input channel to the adapter and you want the adapter to execute the operations in the same

Spring Integration
3.0.5.RELEASE Reference Manual 214

Spring Integration

transaction context as the caller. If, however, you are using an ExecutorChannel, it is required to have
the transactional sub element as the invoking client's transaction context is not propagated.

o

Note

Unlike the transactional sub element of the poller which is defined in the spring integration's
namespace, the transactional sub element for the outbound gateway/adapter is defined in the
jpa namespace.

18.4 Inbound Channel Adapter

An Inbound Channel Adapter is used to execute a select query over the database using JPA QL and
return the result. The message payload will be either a single entity or a Li st of entities. Below is a
sample xml snippet that shows a sample usage of inbound-channel-adapter.

<i nt -j pa: i nbound- channel - adapt er channel ="i nboundChannel Adapt er One" 0O

entity-manager="enl' O
auto-startup="true" O
query="select s from Student s" 0O
expect-single-result="true" 0O

max- nunber - of -resul ts="" 0O
max-resul ts="" 0O

max-resul ts-expression="" 0O
del ete-after-poll="true" 0O

flush-after-del ete="true"> O
<int:poller fixed-rate="2000" >
<int:transactional propagati on="REQUI RED' transaction-manager="transacti onManager"/>
</int:poller>

</int-jpa:inbound-channel - adapt er >

The channel over which the inbound-channel-adapter will put the messages with the payload
received after executing the provided JPA QL in the query attribute.

The Ent i t yManager instance that will be used to perform the required JPA operations.
Attribute signalling if the component should be automatically started on startup of the Application
Context. The value defaultsto t r ue

The JPA QL that needs to be executed and whose result needs to be sent out as the payload of
the message

The attribute that tells if the executed JPQL query gives a single entity in the result or a Li st of
entities. If the value is setto t r ue, the single entity retrieved is sent as the payload of the message.
If, however, multiple results are returned after setting this to t r ue, a Messagi ngExcepti on is
thrown. The value defaults to f al se.

Deprecated. Use max-r esul t s instead. Optional.

This non zero, non negative integer value tells the adapter not to select more than given number
of rows on execution of the select operation. By default, if this attribute is not set, all the possible
records are selected by given query. This attribute is mutually exclusive with max-resul t s-
expr essi on. Optional.

An expression, mutually exclusive with max- r esul t s, that can be used to provide an expression
that will be evaluated to find the maximum number of results in a result set. Optional.

Set this value to t r ue if you want to delete the rows received after execution of the query. Please
ensure that the component is operating as part of a transaction. Otherwise, you may encounter an
Exception such as: java.lang.lllegalArgumentException: Removing a detached instance ...

Spring Integration

3.0.5.RELEASE Reference Manual 215

Spring Integration

O

Set this value to t r ue if you want to the persistence context immediately after deleting received
entities and if you don't want rely on theEnt i t yManager 's flushMode. The default value is set
tofal se.

Configuration Parameter Reference

<i nt-j pa: i nbound- channel - adapt er

auto-startup="true" O

channel ="" 0O

del ete-after-poll="false" 0O
del ete-per-row="fal se" [
entity-class="" [
entity-manager="" [
entity-manager-factory="" 0O
expect-single-result="false" O
id=""

j pa-operations="" [J

j pa-query="" [

named- quer y=""

nati ve- query=""

par anet er - sour ce=""
send-ti nmeout ="" >

<int:poller ref="nyPoller"/>

</int-jpa:inbound-channel - adapt er >

This Lifecycle attribute signaled if this component should be started during startup of the Application
Context. This attribute defaults to true.Optional.

The channel to which the adapter will send a message with the payload that was received after
performing the desired JPA operation.

A boolean flag that indicates whether the records selected are to be deleted after they are
being polled by the adapter. By default the value is f al se, that is, the records will not be
deleted. Please ensure that the component is operating as part of a transaction. Otherwise, you
may encounter an Exception such as: java.lang.lllegalArgumentException: Removing a detached
instanceOptional.

A boolean flag that indicates whether the records can be deleted in bulk or are deleted one record
at a time. By default the value is f al se, that is, the records are bulk deleted.Optional.

The fully qualified name of the entity class that would be queried from the database. The adapter will
automatically build a JPA Query to be executed based on the entity class name provided.Optional.
An instance of j avax. persi stence. EntityManager that will be used to perform the JPA
operations. Optional.

An instance of j avax. persi stence. EntityManager Fact ory that will be used to obtain
an instance of j avax. persi stence. Entit yManager that will perform the JPA operations.
Optional.

A boolean flag indicating whether the select operation is expected to return a single result or a
Li st of results. If this flag is set to t r ue, the single entity selected is sent as the payload of the
message. If multiple entities are returned, an exception is thrown. If f al se, the Li st of entities is
being sent as the payload of the message. By default the value is f al se.Optional.

An implementation of org. spri ngfranmework.integration.jpa.core.JpaQperations
that would be used to perform the JPA operations. It is
recommended not to provide an implementation of your own but use
the default org.springframework.integration.jpa.core. Defaul t JpaOperations

Spring Integration

3.0.5.RELEASE Reference Manual 216

Spring Integration

implementation. Either of the entity-manager, entity-manager-factory or jpa-operations attributes
is to be used. Optional.

The JPA QL that needs to be executed by this adapter.Optional.

The named query that needs to be executed by this adapter.Optional.

The native query that will be executed by this adapter. Either of the jpa-query, named-query,entity-
class or native-query attributes are to be used. Optional.

An implementation of o0.s.i.j pa. support. paramnetersource. Par amet er Sour ce which
will be used to resolve the values of the parameters provided in the query. Ignored if entity-class
attribute is provided.Optional.

Maximum amount of time in milliseconds to wait when sending a message to the channel.Optional.

N ™
EEC

-
B

18.5 Outbound Channel Adapter

The JPA Outbound channel adapter allows you to accept messages over a request channel. The
payload can either be used as the entity to be persisted, or used along with the headers in parameter
expressions for a defined JPQL query to be executed. In the following sub sections we shall see what
those possible ways of performing these operations are.

Using an Entity Class

The XML snippet below shows how we can use the Outbound Channel Adapter to persist an entity to
the database.

<i nt-j pa: out bound- channel - adapt er channel ="entityTypeChannel " O
entity-class="org.springframework.integration.jpa.test.entity.Student" 0O
per si st - node=" PERSI ST* [
entity-manager="en'/ >0

0 The channel over which a valid JPA entity will be sent to the JPA Outbound Channel Adapter.

O The fully qualified name of the entity class that would be accepted by the adapter to be persisted in
the database. You can actually leave off this attribute in most cases as the adapter can determine
the entity class automatically from the Spring Integration Message payload.

0 The operation that needs to be done by the adapter, valid values are PERSIST, MERGE and
DELETE. The default value is MERGE.

0 The JPA entity manager to be used.

As we can see above these 4 attributes of the outbound-channel-adapter are all we need to configure
it to accept entities over the input channel and process them to PERSIST,MERGE or DELETE it from
the underlying data source.

© Note

As of Spring Integration 3.0, payloads to persist or merge can also be of type
java.l ang. | terabl e. In that case, each object returned by the I t er abl e is treated as an
entity and persisted or merged using the underlying Ent i t yManager . NULL values returned by
the iterator are ignored.

Using JPA Query Language (JPA QL)

We have seen in the above sub section how to perform a PERSIST action using an entity We will now see
how to use the outbound channel adapter which uses JPA QL (Java Persistence API Query Language)

Spring Integration
3.0.5.RELEASE Reference Manual 217

http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

Spring Integration

<i nt - j pa: out bound- channel - adapt er channel ="j paQ Channel * O
j pa-query="update Student s set s.firstName = :firstName where s.roll Nunber
= :roll Nunmber" 0O
entity-manager="enl'> [
<int-jpa:paranmeter name="firstName" expression="payload['firstNanme']"/> O
<int-jpa:paraneter name="rol | Nunber" expression="payl oad['roll Nunber']"/>
</int-j pa: out bound- channel - adapt er >

0 The input channel over which the message is being sent to the outbound channel adapter

0 The JPA QL that needs to be executed.This query may contain parameters that will be evaluated
using the parameter child tag.

0 The entity manager used by the adapter to perform the JPA operations

0 This sub element, one for each parameter will be used to evaluate the value of the parameter
names specified in the JPA QL specified in the query attribute

The parameter sub element accepts an attribute name which corresponds to the named parameter
specified in the provided JPA QL (point 2 in the above mentioned sample). The value of the parameter
can either be static or can be derived using an expression. The static value and the expression to derive
the value is specified using the value and the expression attributes respectively. These attributes are
mutually exclusive.

If the value attribute is specified we can provide an optional type attribute. The value of this attribute is
the fully qualified name of the class whose value is represented by the value attribute. By default the
type is assumed to be aj ava. | ang. Stri ng.

<i nt - pa: out bound- channel - adapter ... >
<int-jpa: paranmeter name="level" val ue="2" type="java.l ang.|nteger"/>
<int-jpa: paranmeter name="nanme" expression="payload[' nanme']"/>
</int-j pa: out bound- channel - adapt er >

As seen in the above snippet, it is perfectly valid to use multiple parameter sub elements within
an outbound channel adapter tag and derive some parameters using expressions and some with
static value. However, care should be taken not to specify the same parameter name multiple times,
and, provide one parameter sub element for each hamed parameter specified in the JPA query. For
example, we are specifying two parameters level and name where level attribute is a static value of type
j ava. | ang. | nt eger, where as the name attribute is derived from the payload of the message

© Note

Though specifying select is valid for JPA QL, it makes no sense as outbound channel adapters
will not be returning any result. If you want to select some values, consider using the outbound
gateway instead.

Using Native Queries

In this section we will see how to use native queries to perform the operations using JPA outbound
channel adapter. Using native queries is similar to using JPA QL, except that the query specified here
is a native database query. By choosing native queries we lose the database vendor independence
which we get using JPA QL.

One of the things we can achieve using native queries is to perform database inserts, which is not
possible using JPA QL (To perform inserts we send JPA entities to the channel adapter as we have
seen earlier). Below is a small xml fragment that demonstrates the use of native query to insert values
in a table. Please note that we have only mentioned the important attributes below. All other attributes

Spring Integration
3.0.5.RELEASE Reference Manual 218

Spring Integration

like channel, entity-manager and the parameter sub element has the same semantics as when we use
JPA QL.

© Important
Please be aware that named parameters may not be supported by your JPA provider in
conjunction with native SQL queries. While they work fine using Hibernate, OpenJPA and
EclipseLink do NOT support them: https://issues.apache.org/jira/browse/OPENJPA-111 Section
3.8.12 of the JPA 2.0 spec states: "Only positional parameter binding and positional access to
result items may be portably used for native queries."

<i nt-j pa: out bound- channel - adapt er channel ="nati veQ Channel "
native-query="insert into STUDENT_TABLE(FI RST_NAME, LAST_UPDATED) val ues
(: 1 astNane, : | ast Updated) " O
entity-manager="enf >
<int-jpa:paranmeter name="| ast Nane" expressi on="payl oad[' updat edLast Nane']"/>
<i nt-jpa: paraneter nane="| ast Updat ed" expression="new java.util.Date()"/>
</i nt-j pa: out bound- channel - adapt er >

O The native query that will be executed by this outbound channel adapter

Using Named Queries

We will now see how to use hamed queries after seeing using entity, JPA QL and native query in previous
sub sections. Using named query is also very similar to using JPA QL or a native query, except that
we specify a named query instead of a query. Before we go further and see the xml fragment for the
declaration of the outbound-channel-adapter, we will see how named JPA named queries are defined.

In our case, if we have an entity called St udent, then we have the following in the class to define
two named queries selectStudent and updateStudent. Below is a way to define named queries using
annotations

@ntity
@rabl e(name=" St udent ")

@NanedQueri es({
@anmedQuer y(nane="sel ect St udent ",

query="sel ect s from Student s where s.|astName = 'Last One'"),
@NanedQuer y(name="updat eSt udent ",
query="update Student s set s.l|astNane = :|ast Naneg,
| ast Updat ed = : | ast Updated where s.id in (select max(a.id) from Student

a)")
})
public class Student {

You can alternatively use the orm.xml to define named queries as seen below
<entity-mappings ...>

<naned- query nane="sel ect St udent " >
<query>sel ect s from Student s where s.|astNanme = 'Last One' </ query>
</ naned- quer y>
</ entity-mappi ngs>

Now that we have seen how we can define named queries using annotations or using orm.xml, we will
now see a small xml fragment for defining an outbound-channel-adapter using named query

Spring Integration
3.0.5.RELEASE Reference Manual 219

Spring Integration

a

<i nt-j pa: out bound- channel - adapt er channel =" nanedQuer yChannel "

named- quer y="updat eSt udent" 0[O

entity-manager ="eni >
<int-jpa: paranmeter name="| ast Nane" expressi on="payl oad[' updat edLast Nane']"/>
<int-jpa: paraneter name="I| ast Updat ed" expression="new java.util.Date()"/>

</int-j pa: out bound- channel - adapt er >

The named query that we want the adapter to execute when it receives a message over the channel

Configuration Parameter Reference

<i nt - j pa: out bound- channel - adapt er

auto-startup="true" O

channel ="" 0O

entity-class="" 0
entity-manager="" 0O
entity-manager-factory="" [
id=""

j pa-operations="" [

j pa-query="" [

named- query="" [
native-query="" [

order="" [

par anet er - sour ce-fact ory=""
per si st - nrode=" MERGE"
flush="true"
flush-size="10"

cl ear-on-flush="true"

use- payl oad- as- par anet er - sour ce="t r ue"

<int:poller/>
<int-jpa:transactional />
<i nt-jpa: paraneter/>

</int-j pa: out bound- channel - adapt er >

Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to t r ue. Optional.

The channel from which the outbound adapter will receive messages for performing the desired
operation.

The fully qualified name of the entity class for the JPA Operation. The attributes entity-class, query
and named-query are mutually exclusive. Optional.

An instance of j avax. persi stence. EntityManager that will be used to perform the JPA
operations. Optional.

An instance of j avax. persi stence. EntityManager Fact ory that will be used to obtain
an instance of j avax. persi st ence. Enti t yManager that will perform the JPA operations.

Optional.
An implementation of org. spri ngfranework.integration.jpa.core.JpaOperations
that would be used to perform the JPA operations. It is

recommended not to provide an implementation of your own but use
the default org.springfranmework.integration.jpa.core. DefaultJpaQperations
implementation. Either of the entity-manager, entity-manager-factory or jpa-operations attributes
is to be used. Optional.

The JPA QL that needs to be executed by this adapter.Optional.

The named query that needs to be executed by this adapter.Optional.

Spring Integration

3.0.5.RELEASE Reference Manual 220

Spring Integration

0 The native query that will be executed by this adapter. Either of the jpa-query, nhamed-query or
native-query attributes are to be used. Optional.

0 The order for this consumer when multiple consumers are registered thereby managing load-
balancing and/or failover. Optional (Defaults to Ordered. LOWEST_PRECEDENCE).

An instance of 0. s.i.]j pa.support. paranet ersource. Par anet er Sour ceFact ory that
will be used to get an instance of
0.S.i.]jpa.support. paranet ersource. Par anet er Sour ce which will be used to resolve
the values of the parameters provided in the query. Ignored if operations are
performed using a JPA entity. If a parameter sub element is used, the factory
must be of type Expressi onEval uati ngPar anet er Sour ceFact ory located in package
0.S.i.]jpa.support. paranetersource. Optional.

Accepts one of the following: PERSIST, MERGE or DELETE. Indicates the operation that the
adapter needs to perform. Relevant only if an entity is being used for JPA operations. Ignored if
JPA QL, named query or native query is provided. Defaults to MERGE. Optional.

As of Spring Integration 3.0, payloads to persist or merge can also be of type
java.l ang. I terabl e. In that case, each object returned by the It er abl e is treated as an
entity and persisted or merged using the underlying Ent i t yManager . NULL values returned by
the iterator are ignored.

Set this value to t r ue if you want to flush the persistence context immediately after persist, merge
or delete operations and don't want to rely on the Ent i t yManager 's flushMode. The default value
is set to f al se. Applies only if the f | ush- si ze attribute isn't specified. If this attribute is set to
true, then fl ush- si ze will be implicitly set to 1, if it wasn't configured to any other value.

Set this attribute to a value greater than '0' if you want to flush the persistence context
immediately after persist, merge or delete operations and don't want to rely on the
Enti t yManager's flushMode. The default value is set to 0 which means 'no flush'. This
attribute is geared towards messages with | t er abl e payloads. For instance, if f| ush-si ze
is set to 3, then entityManager.flush() is called after every third entity. Furthermore,
entityManager. fl ush() will be called once more after the entire loop. There is no reason to
configure the f | ush attribute, if the 'flush-size' attribute is specified with a value greater than '0'.

Set this value to ‘'true' if you want to clear persistence context immediately after each flush
operation. The attribute's value is applied only if the f | ush attribute is settot r ue orifthe f | ush-
si ze attribute is set to a value greater than 0.

If set to true, the payload of the Message will be used as a source for providing parameters. If false,
however, the entire Message will be available as a source for parameters.Optional.

Defines the transaction management attributes and the reference to transaction manager to be
used by the JPA adapter.Optional.

One or more parameter attributes, one for each parameter used in the query. The value or
expression provided will be evaluated to compute the value of the parameter.Optional.

18.6 Outbound Gateways

The JPA Inbound Channel Adapter allows you to poll a database in order to retrieve one or more JPA
entities and the retrieved data is consequently used to start a Spring Integration flow using the retrieved
data as message payload.

Additionally, you may use JPA Outbound Channel Adapters at the end of your flow in order to persist
data, essentially terminating the flow at the end of the persistence operation.

However, how can you execute JPA persistence operation in the middle of a flow? For example, you
may have business data that you are processing in your Spring Integration message flow, that you

Spring Integration
3.0.5.RELEASE Reference Manual 221

http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

Spring Integration

would like to persist, yet you still need to execute other components further downstream. Or instead of
polling the database using a poller, you rather have the need to execute JPQL queries and retrieve data
actively which then is used to being processed in subsequent components within your flow.

This is where JPA Outbound Gateways come into play. They give you the ability to persist data as
well as retrieving data. To facilitate these uses, Spring Integration provides two types of JPA Outbound
Gateways:

» Updating Outbound Gateway
» Retrieving Outbound Gateway

Whenever the Outbound Gateway is used to perform an action that saves, updates or soley deletes
some records in the database, you need to use an Updating Outbound Gateway gateway. If for example
an entity is used to persist it, then a merged/persisted entity is returned as a result. In other cases the
number of records affected (updated or deleted) is returned instead.

When retrieving (selecting) data from the database, we use a Retrieving Outbound Gateway. With a
Retrieving Outbound Gateway gateway, we can use either JPQL, Named Queries (native or JPQL-
based) or Native Queries (SQL) for selecting the data and retrieving the results.

An Updating Outbound Gateway is functionally very similar to an Outbound Channel Adapter, except
that an Updating Outbound Gateway is used to send a result to the Gateway's reply channel after
performing the given JPA operation.

A Retrieving Outbound Gateway is quite similar to an Inbound Channel Adapter.

© Note

We recommend you to first refer to the JPA Outbound Channel Adapter section and the JPA
Inbound Channel Adapter sections above, as most of the common concepts are being explained
there.

This similarity was the main factor to use the central JpaExecut or class to unify common functionality
as much as possible.

Common for all JPA Outbound Gateways and simlar to the outbound-channel-adapter, we can use

Entity classes

JPA Query Language (JPQL)
» Native query
» Named query

for performing various JPA operations. For configuration examples please see the section called “JPA
Outbound Gateway Samples”.

Common Configuration Parameters

JPA Outbound Gateways always have access to the Spring Integration Message as input. As such the
following parameters are available:

Spring Integration
3.0.5.RELEASE Reference Manual 222

Spring Integration

parameter-source-factory

Aninstance of 0. s. i . j pa. support. par anet er sour ce. Par amet er Sour ceFact or y that will be
used to get an instance of 0.s.i.]pa.support. paranetersource. Paranet er Source. The
ParameterSource is used to resolve the values of the parameters provided in the query. The parameter-
source-factory attribute is ignored, if operations are performed using a JPA entity. If a parameter sub-
element is used, the factory must be of type Expr essi onEval uat i ngPar anet er Sour ceFact ory,
located in package o.s.i.jpa.support.parametersource. Optional.

use-payload-as-parameter-source

If set to true, the payload of the Message will be used as a source for providing parameters.
If set to false, the entire Message will be available as a source for parameters. If no JPA
Parameters are passed in, this property will default to true. This means that using a default
BeanPr opert yPar anet er Sour ceFact ory, the bean properties of the payload will be used as a
source for parameter values for the to-be-executed JPA query. However, if JPA Parameters are passed
in, then this property will by default evaluate to false. The reason is that JPA Parameters allow for SpEL
Expressions to be provided and therefore it is highly beneficial to have access to the entire Message,
including the Headers.

Updating Outbound Gateway

<i nt-j pa: updat i ng- out bound- gat eway request-channel ="" 0O
aut o-startup="true"
entity-class=""
entity-manager=""
entity-manager-factory=
id=""

j pa- operati ons=""

j pa- query=""
named- query=
nati ve- query=""

par amet er - sour ce-f actory=
per si st - nrode=" MERGE"

repl y-channel ="" 0O
reply-timeout="" 0

use- payl oad- as- par anet er - source="true" >

<int:poller/>
<int-jpa:transactional />

<int-jpa:paranmeter name="" type="" val ue=""/>
<int-jpa: paranmeter name="" expression=""/>
</int-j pa: updati ng-out bound- gat enay>

0 The channel from which the outbound gateway will receive messages for performing the desired
operation. This attribute is similar to channel attribute of the outbound-channel-adapter.Optional.

0 The channel to which the gateway will send the response after performing the required JPA
operation. If this attribute is not defined, the request message must have a replyChannel header.
Optional.

0 Specifies the time the gateway will wait to send the result to the reply channel. Only applies when
the reply channel itself might block the send (for example a bounded QueueChannel that is currently
full). By default the Gateway will wait indefinitely. The value is specified in milliseconds. Optional.

Spring Integration
3.0.5.RELEASE Reference Manual 223

Spring Integration

Retrieving Outbound Gateway

<int-jpa:retrieving-out bound-gat eway request-channel =""
aut o-startup="true"
del ete-after-poll ="fal se"
del et e-in-batch="fal se"
entity-class=""
entity-manager=
entity-manager-factory=""

expect-single-result="false" 0O

id=""

j pa- oper ati ons=""

i pa- query=""

max- nunber - of -resul ts="" 0O
max-resul ts="" 0O

max-resul ts-expression="" [
first-result="" 0
first-result-expression="" [

named- quer y=""

nati ve- query=""

order=""

par anet er - sour ce-fact ory=""
repl y-channel =""

reply-ti meout =
use- payl oad- as- par anet er - sour ce="true" >
<int:poller></int:poller>
<int-jpa:transactional/>

<int-jpa: paraneter name= type= val ue=""/>
<i nt-j pa: paranmeter name= expressi on=""/>
</int-jpa:retrieving-outbound-gat enay>

O A boolean flag indicating whether the select operation is expected to return a single result or a
Li st of results. If this flag is set to t r ue, the single entity selected is sent as the payload of the
message. If multiple entities are returned, an exception is thrown. If f al se, the Li st of entities is
being sent as the payload of the message. By default the value is f al se.Optional.

0 Deprecated. Use max-r esul t s instead. Optional.

O This non zero, non negative integer value tells the adapter not to select more than given number
of rows on execution of the select operation. By default, if this attribute is not set, all the possible
records are selected by given query. This attribute is mutually exclusive with max-resul t s-
expr essi on. Optional.

0 An expression, mutually exclusive with max- r esul t s, that can be used to provide an expression
that will be evaluated to find the maximum number of results in a result set. Optional.

O This non zero, non negative integer value tells the adapter the first record from which the results are
to be retrieved This attribute is mutually exclusivetofi r st -resul t - expr essi on. This attribute
is introduced since version 3.0. Optional.

O This expression is evaluated against the message to find the position of first record in the result set
to be retrieved This attribute is mutually exclusive to fi r st - r esul t . This attribute is introduced
since version 3.0. Optional.

© Important

When choosing to delete entities upon retrieval and you have retrieved a collection of entities,
please be aware that by default entities are deleted on a per entity basis. This may cause
performance issues.

Spring Integration
3.0.5.RELEASE Reference Manual 224

Spring Integration

Alternatively, you can set attribute deletelnBatch to true, which will perform a batch delete.
However, please be aware of the limitation that in that case cascading deletes are not supported.

JSR 317: Java™ Persistence 2.0 states in chapter Chapter 4.10, Bulk Update and Delete
Operations that:

"A delete operation only applies to entities of the specified class and its subclasses. It does not
cascade to related entities."

For more information please see JSR 317: Java™ Persistence 2.0

JPA Outbound Gateway Samples

This section contains various examples of the Updating Outbound Gateway and Retrieving Outbound
Gateway

Update using an Entity Class

In this example an Updating Outbound Gateway is persisted using solely the entity class
org.springframework.integration.jpa.test.entity.Student as JPA defining parameter.

<i nt -j pa: updat i ng- out bound- gat eway request -channel ="entit yRequest Channel * O
repl y-channel ="ent i t yResponseChannel * 0O
entity-class="org.springframework.integration.jpa.test.entity.Student"
entity-manager="eni'/ >

0 Thisis the request channel for the outbound gateway, this is similar to the channel attribute of the
outbound-channel-adapter

0 This is where a gateway differs from an outbound adapter, this is the channel over which the
reply of the performed JPA operation is received. If, however, you are not interested in the reply
received and just want to perform the operation, then using a JPA outbound-channel-adapter is
the appropriate choice. In above case, where we are using entity class, the reply will be the entity
object that was created/merged as a result of the JPA operation.

Update using JPQL

In this example, we will see how we can update an entity using the Java Persistence Query Language
(JPQL). For this we use an Updating Outbound Gateway.

<i nt-j pa: updat i ng- out bound- gat eway request - channel ="j paql Request Channel "
repl y- channel ="j paql ResponseChannel "
j pa- query="update Student s set s.l|lastName = :|astNanme where s.roll Nunber

= :rol |l Nunmber" 0O
entity-manager ="ent >
<int-jpa: paraneter nane="|ast Nane" expressi on="payl oad"/>
<int-jpa: paraneter nanme="rol | Nunber" expressi on="headers['rol | Nunber']"/>
</int-jpa:updating-outbound- gat eway>

0 The JPQL query that will be executed by the gateway. Since an Updating Outbound Gateway is
used, only update and delete JPQL queries would be sensible choices.

When sending a message with a String payload and containing a header rolINumber with a long value,
the last name of the student with the provided roll number is updated to the value provided in the
message payload. When using an UPDATING gateway, the return value is always an integer value
which denotes the number of records affected by execution of the JPA QL.

Spring Integration
3.0.5.RELEASE Reference Manual 225

http://jcp.org/en/jsr/detail?id=317

Spring Integration

Retrieving an Entity using JPQL

The following examples uses a Retrieving Outbound Gateway together with JPQL to retrieve (select)
one or more entities from the database.

<int-jpa:retrievi ng-outbound-gat eway request-channel ="retri evi ngGat ewayRegChannel "
repl y-channel ="retri evi ngGat ewayRepl yChannel "
j pa-query="select s from Student s where s.firstNane = :firstNane and s.| ast Nane
= :l ast Name"
entity-manager="enf >
<int-jpa: paraneter nanme="firstNanme" expression="payl oad"/>
<int-jpa: paranmeter name="| ast Nane" expressi on="headers['|astNane']"/>
</int-j pa: out bound- gat enway>

Update using a Named Query

Using a Named Query is basically the same as using a JPQL query directly. The difference is that the
named-query attribute is used instead, as seen in the xml snippet below.

<i nt -j pa: updat i ng- out bound- gat eway request - channel =" nanedQuer yRequest Channel "
repl y- channel =" nanedQuer yResponseChannel "
nanmed- quer y="updat eSt udent ByRol | Nunber "
entity-manager="enf >
<int-jpa: paranmeter name="| ast Nane" expressi on="payl oad"/>
<int-jpa: paraneter nanme="rol | Nunber" expression="headers['roll Nunber']"/>
</int-j pa: out bound- gat eway>

© Note

You can find a complete Sample application for using Spring Integration's JPA adapter at:

https://github.com/SpringSource/spring-integration-samples/tree/master/basic/jpa

Spring Integration
3.0.5.RELEASE Reference Manual 226

https://github.com/SpringSource/spring-integration-samples/tree/master/basic/jpa

Spring Integration

19. JMS Support

Spring Integration provides Channel Adapters for receiving and sending JMS messages. There are
actually two JMS-based inbound Channel Adapters. The first uses Spring's JnsTenpl at e to receive
based on a polling period. The second is "message-driven” and relies upon a Spring MessageListener
container. There is also an outbound Channel Adapter which uses the JnmsTenpl at e to convert and
send a JMS Message on demand.

As you can see from above by using JnsTenpl ate and Messageli st ener container Spring
Integration relies on Spring's JMS support. This is important to understand since most of the
attributes exposed on these adapters will configure the underlying Spring's JnsTenpl at e and/
or Messageli st ener container. For more details about JmsTenpl at e and Messageli st ener
container please refer to Spring JMS documentation.

Whereas the JMS Channel Adapters are intended for unidirectional Messaging (send-only or receive-
only), Spring Integration also provides inbound and outbound JMS Gateways for request/reply
operations. The inbound gateway relies on one of Spring's MessageListener container implementations
for Message-driven reception that is also capable of sending a return value to the r epl y- t o Destination
as provided by the received Message. The outbound Gateway sends a JMS Message to a r equest -
destinati on (or request-desti nati on-nane or r equest - desti nati on- expressi on) and
then receives a reply Message. The r epl y- dest i nat i on reference (orr epl y- desti nati on- nane
orrepl y-desti nati on-expr essi on) can be configured explicitly or else the outbound gateway will
use a JMS TemporaryQueue.

Prior to Spring Integration 2.2, if necessary, a Tenpor ar yQueue was created (and removed) for each
request/reply. Beginning with Spring Integration 2.2, the outbound gateway can be configured to use a
Messageli st ener container to receive replies instead of directly using a new (or cached) Consuner
to receive the reply for each request. When so configured, and no explicit reply destination is provided,
a single Tenpor ar yQueue is used for each gateway instead of one for each request.

19.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JnsTenpl at e instance or
both Connecti onFactory and Desti nati on (a 'destinationName' can be provided in place of
the 'destination' reference). The following example defines an inbound Channel Adapter with a
Desti nati on reference.

<i nt-jns:inbound-channel -

adapter id="jmsln" destination="inQueue" channel ="exanpl eChannel ">
<int:poller fixed-rate="30000"/>

</int-jms:inbound-channel - adapt er >

@ Tip
Notice from the configuration that the inbound-channel-adapter is a Polling Consumer. That
means that it invokes receive() when triggered. This should only be used in situations where
polling is done relatively infrequently and timeliness is not important. For all other situations (a
vast majority of IMS-based use-cases), the message-driven-channel-adapter described below
is a better option.

Spring Integration
3.0.5.RELEASE Reference Manual 227

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html
http://docs.oracle.com/javaee/6/api/javax/jms/TemporaryQueue.html

Spring Integration

© Note

All of the JMS adapters that require a reference to the ConnectionFactory will automatically
look for a bean named "connectionFactory" by default. That is why you don't see a "connection-
factory" attribute in many of the examples. However, if your JMS ConnectionFactory has a
different bean name, then you will need to provide that attribute.

If 'extract-payload’ is set to true (which is the default), the received JMS Message will be passed
through the MessageConverter. When relying on the default SimpleMessageConverter, this means
that the resulting Spring Integration Message will have the JMS Message's body as its payload. A
JMS TextMessage will produce a String-based payload, a JMS BytesMessage will produce a byte
array payload, and a JMS ObjectMessage's Serializable instance will become the Spring Integration
Message's payload. If instead you prefer to have the raw JMS Message as the Spring Integration
Message's payload, then set 'extract-payload' to false.

<i nt-jns:inbound-channel -adapter id="jnsln"
destinati on="i nQueue"
channel =" exanpl eChannel "
extract - payl oad="fal se"/ >
<int:poller fixed-rate="30000"/>
</int-jms:inbound-channel - adapt er >

19.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter” requires a reference to either an instance of a Spring
MessagelListener container (any subclass of Abstract Messageli st ener Cont ai ner) or both
Connecti onFactory and Destination (a 'destinationName' can be provided in place of the
‘destination’ reference). The following example defines a message-driven Channel Adapter with a
Desti nat i on reference.

<int-jms: message-driven-channel -
adapter id="jmsln" destination="inQueue" channel ="exanpl eChannel "/ >

© Note

The Message-Driven adapter also accepts several properties that pertain to the MessageListener
container. These values are only considered if you do not provide a cont ai ner reference.
In that case, an instance of DefaultMessageListenerContainer will be created and configured
based on these properties. For example, you can specify the "transaction-manager" reference,
the "concurrent-consumers" value, and several other property references and values. Refer to
the JavaDoc and Spring Integration's JMS Schema (spring-integration-jms.xsd) for more details.

If you have a custom listener container implementation (usually a subclass of
Def aul t Messageli st ener Cont ai ner), you can either provide a reference to an instance
of it using the cont ai ner attribute, or simply provide its fully qualified class name using the
cont ai ner - cl ass attribute. In that case, the attributes on the adapter are transferred to an
instance of your custom container.

The 'extract-payload’ property has the same effect as described above, and once again its default value
is 'true'. The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be
actively invoked. For most usage scenarios, the message-driven approach is better since the Messages
will be passed along to the MessageChannel as soon as they are received from the underlying JMS
consumer.

Spring Integration
3.0.5.RELEASE Reference Manual 228

Spring Integration

Finally, the <message-driven-channel-adapter> also accepts the 'error-channel' attribute. This provides
the same basic functionality as described in the section called “Enter the GatewayProxyFactoryBean”.

<int-jms: message-driven-channel -adapter id="jmsln" destination="i nQueue"
channel =" exanpl eChannel "
error - channel =" exanpl eErr or Channel "/ >

When comparing this to the generic gateway configuration, or the JMS ‘inbound-gateway' that will be
discussed below, the key difference here is that we are in a one-way flow since this is a 'channel-
adapter', not a gateway. Therefore, the flow downstream from the 'error-channel' should also be one-
way. For example, it could simply send to a logging handler, or it could be connected to a different IMS
<outbound-channel-adapter> element.

19.3 Outbound Channel Adapter

The JnmsSendi ngMessageHandl er implements the MessageHandl er interface and is capable of
converting Spring Integration Messages to JMS messages and then sending to a JMS destination.
It requires either a 'jmsTemplate’ reference or both ‘connectionFactory' and 'destination’ references
(again, the 'destinationName' may be provided in place of the 'destination’). As with the inbound
Channel Adapter, the easiest way to configure this adapter is with the namespace support. The
following configuration will produce an adapter that receives Spring Integration Messages from the
"exampleChannel" and then converts those into IMS Messages and sends them to the JMS Destination
reference whose bean name is "outQueue".

<i nt-j ms: out bound- channel -
adapter id="jnmsQut" destination="out Qeue" channel ="exanpl eChannel "/ >

As with the inbound Channel Adapters, there is an 'extract-payload' property. However, the meaning
is reversed for the outbound adapter. Rather than applying to the JMS Message, the boolean property
applies to the Spring Integration Message payload. In other words, the decision is whether to pass the
Spring Integration Message itself as the JIMS Message body or whether to pass the Spring Integration
Message's payload as the JMS Message body. The default value is once again 'true'. Therefore, if you
pass a Spring Integration Message whose payload is a String, a JMS TextMessage will be created. If
on the other hand you want to send the actual Spring Integration Message to another system via JMS,
then simply set this to ‘false’.

@ Note

Regardless of the boolean value for payload extraction, the Spring Integration MessageHeaders
will map to JMS properties as long as you are relying on the default converter or provide
a reference to another instance of HeaderMappingMessageConverter (the same holds true
for 'inbound’ adapters except that in those cases, it's the JMS properties mapping to Spring
Integration MessageHeaders).

19.4 Inbound Gateway

Spring Integration’'s message-driven JMS inbound-gateway delegates to a Messageli st ener
container, supports dynamically adjusting concurrent consumers, and can also handle replies. The
inbound gateway requires references to a Connect i onFact ory, and a request Dest i nati on (or
'requestDestinationName’). The following example defines a IMS "inbound-gateway" that receives from
the JMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named
"exampleChannel".

Spring Integration
3.0.5.RELEASE Reference Manual 229

Spring Integration

<int-jms:inbound-gateway id="j nsl nGat eway"
request - desti nati on="i nQueue"
request - channel =" exanpl eChannel "/ >

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also
have two distinct properties for the "payload extraction” (as discussed above for the Channel Adapters'
‘extract-payload’ setting). For an inbound-gateway, the 'extract-request-payload' property determines
whether the received JMS Message body will be extracted. If 'false’, the IMS Message itself will become
the Spring Integration Message payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload’ property applies to the Spring Integration
Message that is going to be converted into a reply JMS Message. If you want to pass the whole Spring
Integration Message (as the body of a JMS ObjectMessage) then set this to ‘false’. By default, it is also
'true' such that the Spring Integration Message payload will be converted into a JMS Message (e.g.
String payload becomes a JMS TextMessage).

As with anything else, Gateway invocation might result in error. By default Producer will not be notified
of the errors that might have occurred on the consumer side and will time out waiting for the reply.
However there might be times when you want to communicate an error condition back to the consumer,
in other words treat the Exception as a valid reply by mapping it to a Message. To accomplish this IMS
Inbound Gateway provides support for a Message Channel to which errors can be sent for processing,
potentially resulting in a reply Message payload that conforms to some contract defining what a caller
may expect as an "error” reply. Such a channel can be configured via the error-channel attribute.

<int-jms:inbound-gat emay request-destinati on="request Queue"
request - channel ="j nsi nput channel "
error-channel ="error Tr ansf or mat i onChannel "/ >

<int:transformer input-channel="exceptionTransformati onChannel "
ref ="exceptionTransforner" nethod="createErrorResponse"/ >

You might notice that this example looks very similar to that included within the section called “Enter
the GatewayProxyFactoryBean”. The same idea applies here: The exceptionTransformer could be a
simple POJO that creates error response objects, you could reference the "nullChannel" to suppress
the errors, or you could leave 'error-channel' out to let the Exception propagate.

19.5 Outbound Gateway

The outbound Gateway creates JMS Messages from Spring Integration Messages and then sends to
a 'request-destination'. It will then handle the JMS reply Message either by using a selector to receive
from the 'reply-destination’ that you configure, or if no 'reply-destination' is provided, it will create JIMS
Tenpor ar yQueues.

© Caution

Using a reply-destination (or reply-destination-name), together with a
Cachi ngConnecti onFact ory with cacheConsumers set to true, can cause Out of Memory
conditions. This is because each request gets a new consumer with a new selector (selecting
on the correlation-key value, or on the sent IMSMessagelD when there is no correlation-key).
Given that these selectors are unique, they will remain in the cache unused after the current
request completes.

Spring Integration
3.0.5.RELEASE Reference Manual 230

Spring Integration

If you specify a reply destination, you are advised to NOT use cached consumers. Alternatively,
consider using a <reply-listener/> as described below.

<i nt-j ms: out bound- gat eway i d="j nsQut Gat enway"
request - desti nati on="out Queue"
request - channel =" out boundJnsRequest s"
repl y-channel ="j nsRepl i es"/ >

The 'outbound-gateway' payload extraction properties are inversely related to those of the 'inbound-
gateway' (see the discussion above). That means that the 'extract-request-payload’ property value
applies to the Spring Integration Message that is being converted into a JMS Message to be sent as
a request, and the 'extract-reply-payload’ property value applies to the JMS Message that is received
as a reply and then converted into a Spring Integration Message to be subsequently sent to the 'reply-
channel' as shown in the example configuration above.

<reply-listener/>

Spring Integration 2.2 introduced an alternative technique for handling replies. If you add a <r epl y-
i stener/> child element to the gateway, instead of creating a consumer for each reply, a
MessagelLi st ener container is used to receive the replies and hand them over to the requesting
thread. This provides a number of performance benefits as well as alleviating the cached consumer
memory utilization problem described in the caution above.

When using a <reply-listener/>, instead of creating a Tenpor ar yQueue for each request, a single
Tempor ar yQueue is used (the gateway will create an additional Tenpor ar yQueue, as necessary, if
the connection to the broker is lost and recovered).

When using a correlation-key, multiple gateways can share the same reply destination because the
listener container uses a selector that is unique to each gateway.

© Caution

If you specify a reply listener, and specify a reply destination (or reply destination name), but
provide NO correlation key, the gateway will log a warning and fall back to pre-2.2 behavior. This
is because there is no way to configure a selector in this case, thus there is no way to avoid a
reply going to a different gateway that might be configured with the same reply destination.

Note that, in this situation, a new consumer is used for each request, and consumers can build
up in memory as described in the caution above; therefore cached consumers should not be
used in this case.

<i nt-j ms: out bound- gat eway i d="j nsQut Gat eway"
request - desti nati on="out Queue"
request - channel =" out boundJnsRequest s"
repl y-channel ="j msRepl i es" >
<int-jms:reply-listener />

</int-j ms-out bound- gat enway>

In the above example, a reply listener with default attributes is used. The listener is very lightweight and
it is anticipated that, in most cases, only a single consumer will be needed. However, attributes such
as concurrent-consumers, max-concurrent-consumers etc., can be added. Refer to the schema for a
complete list of supported attributes, together with the Spring JIMS documentation for their meanings.

Spring Integration
3.0.5.RELEASE Reference Manual 231

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jms.html

Spring Integration

Attribute Reference

<i nt-j ns: out bound- gat enay
connection-factory="connectionFactory"[O
correl ation-key=""0
del i very-persistent=""0
destination-resolver=""010
explicit-qos-enabl ed=""0
extract-reply-payl oad="true"
extract -request - payl oad="true" [
header - mapper ="" 0
nmessage-converter=""01

priority=""0
recei ve-timeout =""
repl y-channel ="" 4

repl y-destination=""

repl y-desti nati on- expressi on=""

repl y-desti nati on- name=""g

repl y- pub- sub- domai n="" g

reply-timeout =""[d

request - channel ="" g

request -destinati on=""[g

request - desti nati on- expressi on=""Eg

request - desti nati on- name=""gq

request - pub- sub- domai n=""g4

time-to-live=""E

requires-reply="">gq

<int-jms:reply-listener />
</int-jnms: out bound- gat eway>

0 Referencetoaj avax. j ms. Connecti onFact ory; default connecti onFact ory.

O The name of a property that will contain correlation data to correlate responses with replies.
If omitted, the gateway will expect the responding system to return the value of the outbound
JMSMessagelD header in the JMSCorrelationID header. If specified, the gateway will generate a
correlation id and populate the specified property with it; the responding system must echo back
that value in the same property. Can be set to JMSCor r el at i onl D, in which case the standard
header is used instead of a simple String property to hold the correlation data. When a <r epl y-
cont ai ner/ > isused, the correlation-key MUST be specified if an explicitr epl y- desti nati on
is provided.

0 Aboolean value indicating whether the delivery mode should be DeliveryMode.PERSISTENT (true)
or DeliveryMode.NON_PERSISTENT (false). This setting will only take effect if expl i ci t - qos-
enabl edistrue.

0 A DestinationResol ver; default is a Dynam cDest i nati onResol ver which simply maps
the destination name to a queue or topic of that name.

O Whensettotrue, enables the use of quality of service attributes - pri ori ty, del i very- node,
time-to-1live.

0 When set to t r ue (default), the payload of the Spring Integration reply Message will be created
from the JMS Reply Message's body (using the MessageConvert er). When set to f al se, the
entire JMS Message will become the payload of the Spring Integration Message.

0 When settotrue (default), the payload of the Spring Integration Message will be converted to a
JMSMessage (using the MessageConvert er). When set to f al se, the entire Spring Integration
Message will be converted to the the IMSMessage. In both cases, the Spring Integration Message
Headers are mapped to JMS headers and properties using the HeaderMapper.

Spring Integration
3.0.5.RELEASE Reference Manual 232

Spring Integration

O

O

O

~—~N-
ERE

A Header Mapper used to map Spring Integration Message Headers to/from JMS Message
Headers/Properties.

A reference to a MessageConverter for converting between JMS Messages and the Spring
Integration Message payloads (or messages if ext r act - r equest - payl oad is f al se). Default
is a Si npl eMessageConverter.

The default priority of request messages. Overridden by the message priority header, if present;
range 0-9. This setting will only take effect if expl i ci t - qos- enabl ed istr ue.

The time (in millseconds) to wait for a reply. Default 5 seconds.

The channel to which the reply message will be sent.

A reference to a Dest i nat i on which will be set as the IMSReplyTo header. At most, only one of
reply-destination, reply-destination-expression, or reply-destination-name
is allowed. If none is provided, a Tenpor ar yQueue is used for replies to this gateway.

A SpEL expression evaluating to a Dest i nat i on which will be set as the IMSReplyTo header.
The expression can result in a Destination object, or a String, which will be used
by the Desti nati onResol ver to resolve the actual Desti nati on. At most, only one of
repl y-destination, reply-destination-expression, or repl y-destinati on-name
is allowed. If none is provided, a Tenpor ar yQueue is used for replies to this gateway.

The name of the destination which will be set as the JMSReplyTo header; used by
the Desti nati onResol ver to resolve the actual Destination. At most, only one of
reply-destination, reply-destination-expression, or reply-destination-name
is allowed. If none is provided, a Tenpor ar yQueue is used for replies to this gateway.

When set to true, indicates that any reply Destination resolved by the
Desti nati onResol ver should be a Topi ¢ rather then a Queue.

The time the gateway will wait when sending the reply message to the r epl y- channel . This only
has an effect if the r epl y- channel can block - such as a QueueChannel with a capacity limit
that is currently full. Default: infinity.

The channel on which this gateway receives request messages.

A reference to a Dest i nati on to which request messages will be sent. One, and only one, of
reply-destination, reply-destination-expression, or reply-destination-name
is required.

A SpEL expression evaluating to a Desti nati on to which request messages will be sent.
The expression can result in a Destination object, or a String, which will be used
by the Desti nati onResol ver to resolve the actual Desti nati on. One, and only one, of
repl y-destination, reply-destination-expression, or repl y-destinati on-name
is required.

The name of the destination to which request messages will be sent; used by the
Desti nati onResol ver to resolve the actual Destination. One, and only one, of
reply-destination, reply-destination-expression, or reply-destination-name
is required.

When set to true, indicates that any request Destination resolved by the
Desti nati onResol ver should be a Topi c¢ rather then a Queue.

Specify the message time to live. This setting will only take effect if expli cit - qos- enabl ed
istrue.

Specify whether this outbound gateway must return a non-null value. This value is t r ue by default,
and a MessageTi meout Except i on will be thrown when the underlying service does not return
a value after the r ecei ve-ti neout . Note, it is important to keep in mind that, if the service is
never expected to return a reply, it would be better to use a <i nt - j ms: out bound- channel -
adapt er/ > instead of a<i nt - j ns: out bound- gat eway/ > withr equi res-repl y="f al se".
With the latter, the sending thread is blocked, waiting for a reply for ther ecei ve-ti meout period.

Spring Integration

3.0.5.RELEASE Reference Manual 233

Spring Integration

When this element is included, replies are received by a MessagelLi st ener Cont ai ner rather
than creating a consumer for each reply. This can be more efficient in many cases.

19.6 Mapping Message Headers to/from JMS Message

JMS Message can contain meta-information such as JMS API headers as well as simple properties. You
can map those to/from Spring Integration Message Headers using JnsHeader Mapper . The JMS API
headers are passed to the appropriate setter methods (e.g. setJMSReplyTo) whereas other headers
will be copied to the general properties of the IMS Message. JMS Outbound Gateway is bootstrapped
with the default implementation of JnsHeader Mapper which will map standard JMS API Headers as
well as primitive/String Message Headers. Custom header mapper could also be provided via header -
mapper attribute of inbound and outbound gateways.

19.7 Message Conversion, Marshalling and Unmarshalling

If you need to convert the message, all JMS adapters and gateways, allow you to provide
a MessageConverter via message-converter attribute. Simply provide the bean name of an
instance of MessageConverter that is available within the same ApplicationContext. Also,
to provide some consistency with Marshaller and Unmarshaller interfaces Spring provides
Mar shal | i ngMessageConvert er which you can configure with your own custom Marshallers and
Unmarshallers

<i nt-jns:inbound-gat eway request-destination="request Queue"
request - channel ="i nbound- gat eway- channel "
message- converter="marshal | i ngMessageConverter"/>

<bean i d="marshal | i ngMessageConverter"
cl ass="org. springframework.jns. support.converter.Marshal | i ngMessageConverter" >
<constructor-arg>
<bean cl ass="org. bar. Sanpl eMarshal | er"/ >
</ const ructor-ar g>
<constructor-arg>
<bean cl ass="org. bar. Sanpl eUnmar shal | er"/ >
</ const ructor - ar g>
</ bean>

© Note

Note, however, that when you provide your own MessageConverter instance, it will still be
wrapped within the HeaderMappingMessageConverter. This means that the 'extract-request-
payload' and ‘extract-reply-payload’ properties may affect what actual objects are passed
to your converter. The HeaderMappingMessageConverter itself simply delegates to a target
MessageConverter while also mapping the Spring Integration MessageHeaders to JIMS Message
properties and vice-versa.

19.8 JMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applications that are integrating
with other external systems. The inbound options assume that some other system is sending JMS
Messages to the JMS Destination and the outbound options assume that some other system is receiving
from the Destination. The other system may or may not be a Spring Integration application. Of course,
when sending the Spring Integration Message instance as the body of the IMS Message itself (with the
‘extract-payload' value set to false), it is assumed that the other system is based on Spring Integration.

Spring Integration
3.0.5.RELEASE Reference Manual 234

Spring Integration

However, that is by no means a requirement. That flexibility is one of the benefits of using a Message-
based integration option with the abstraction of "channels” or Destinations in the case of JMS.

There are cases where both the producer and consumer for a given JMS Destination are intended to
be part of the same application, running within the same process. This could be accomplished by using
a pair of inbound and outbound Channel Adapters. The problem with that approach is that two adapters
are required even though conceptually the goal is to have a single Message Channel. A better option
is supported as of Spring Integration version 2.0. Now it is possible to define a single "channel" when
using the JMS namespace.

<int-jns:channel id="jnmsChannel" queue="exanpl eQueue"/>

The channel in the above example will behave much like a normal <channel/> element from the
main Spring Integration namespace. It can be referenced by both "input-channel” and "output-channel"
attributes of any endpoint. The difference is that this channel is backed by a JMS Queue instance named
"exampleQueue". This means that asynchronous messaging is possible between the producing and
consuming endpoints, but unlike the simpler asynchronous Message Channels created by adding a
<queue/> sub-element within a non-JMS <channel/> element, the Messages are not just stored in an
in-memory queue. Instead those Messages are passed within a JIMS Message body, and the full power
of the underlying JMS provider is then available for that channel. Probably the most common rationale
for using this alternative would be to take advantage of the persistence made available by the store
and forward approach of JMS messaging. If configured properly, the JMS-backed Message Channel
also supports transactions. In other words, a producer would not actually write to a transactional JMS-
backed channel if its send operation is part of a transaction that rolls back. Likewise, a consumer would
not physically remove a JMS Message from the channel if the reception of that Message is part of a
transaction that rolls back. Note that the producer and consumer transactions are separate in such a
scenario. This is significantly different than the propagation of a transactional context across the simple,
synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a JMS Queue instance, it will act as a point-to-point channel.
If on the other hand, publish/subscribe behavior is needed, then a separate element can be used, and
a JMS Topic can be referenced instead.

<int-jmns: publish-subscribe-channel id="jmsChannel" topic="exanpl eTopic"/>

For either type of JMS-backed channel, the name of the destination may be provided instead of a
reference.

<int-jns:channel id="jmsQueueChannel" queue-nanme="exanpl eQueueNanme"/ >

<j ms: publ i sh-subscri be- channel id="jnmsTopi cChannel " topi c-nanme="exanpl eTopi cName"/ >

In the examples above, the Destination names would be resolved by Spring's
default Dynami cDesti nati onResol ver implementation, but any implementation of the
Desti nati onResol ver interface could be provided. Also, the JMS Connecti onFactory is a
required property of the channel, but by default the expected bean name would be "connectionFactory".
The example below provides both a custom instance for resolution of the JMS Destination names and
a different name for the ConnectionFactory.

<int-jnms:channel id="jmsChannel" queue-nanme="exanpl eQueueNane"
destination-resol ver ="cust omDest i nati onResol ver"
connecti on-factory="cust onConnecti onFactory"/>

Spring Integration
3.0.5.RELEASE Reference Manual 235

Spring Integration

19.9 Using JMS Message Selectors

With JMS message selectors you can filter JIMS Messages based on JMS headers as well as JMS
properties. For example, if you want to listen to messages whose custom JMS header property
fooHeaderProperty equals bar, you can specify the following expression:

f ooHeader Property = ' bar'

Message selector expressions are a subset of the SQL-92 conditional expression syntax, and are
defined as part of the Java Message Service specification (Version 1.1 April 12, 2002). Specifically,
please see chapter "3.8 Message Selection”. It contains a detailed explanation of the expressions
syntax.

You can specify the JMS message selector attribute using XML Namespace configuration for the
following Spring Integration JMS components:

* JMS Channel

JMS Publish Subscribe Channel

JMS Inbound Channel Adapter

* JMS Inbound Gateway

JMS Message-driven Channel Adapter

© Important

Itis important to remember that you cannot reference message body values using JMS Message
selectors.

19.10 JMS Samples

To experiment with these JMS adapters, check out the IMS samples available in the Spring Integration
Samples Git repository:

» https://github.com/SpringSource/spring-integration-samples/tree/master/basic/ims

There are two samples included. One provides Inbound and Outbound Channel Adapters, and the other
provides Inbound and Outbound Gateways. They are configured to run with an embedded ActiveMQ
process, but the samples' common.xml Spring Application Context file can easily be modified to support
either a different JMS provider or a standalone ActiveMQ process.

In other words, you can split the configuration, so that the Inbound and Outbound Adapters are running
in separate JVMs. If you have ActiveMQ installed, simply modify the brokerURL property within the
common.xml file to use tcp://localhost:61616 (instead of vm://localhost). Both of the samples accept
input via stdin and then echo back to stdout. Look at the configuration to see how these messages are
routed over JMS.

Spring Integration
3.0.5.RELEASE Reference Manual 236

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://en.wikipedia.org/wiki/SQL-92
http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf
https://github.com/SpringSource/spring-integration-samples/tree/master/basic/jms
http://activemq.apache.org/
https://github.com/SpringSource/spring-integration-samples/blob/master/basic/jms/src/main/resources/META-INF/spring/integration/common.xml

Spring Integration

20. Mail Support

20.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the Mai | Sendi ngMessageHandl er . It
delegates to a configured instance of Spring's JavaMai | Sender :

JavaMai | Sender nmi | Sender = context. get Bean("nuil Sender”, JavaMil Sender. cl ass);

Mai | Sendi ngMessageHandl er mai | Sendi ngHandl er = new Mai | Sendi ngMessageHandl er (mai | Sender) ;

Mai | Sendi ngMessageHand! er has various mapping strategies that use Spring's Mai | Message
abstraction. If the received Message's payload is already a Mai | Message instance, it will be sent
directly. Therefore, it is generally recommended to precede this consumer with a Transformer for non-
trivial MailMessage construction requirements. However, a few simple Message mapping strategies
are supported out-of-the-box. For example, if the message payload is a byte array, then that will be
mapped to an attachment. For simple text-based emails, you can provide a String-based Message
payload. In that case, a MailMessage will be created with that String as the text content. If you are
working with a Message payload type whose toString() method returns appropriate mail text content,
then consider adding Spring Integration’'s ObjectToStringTransformer prior to the outbound Mail adapter
(see the example within the section called “Configuring Transformer with XML” for more detail).

The outbound MailMessage may also be configured with certain values from the MessageHeader s. If
available, values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and
BCC), the from/reply-to, and the subject. The header names are defined by the following constants:

Mai | Header s. SUBJECT
Mai | Headers. TO

Mai | Headers. CC

Mai | Header s. BCC

Mai | Header s. FROM

Mai | Header s. REPLY_TO

© Note

Mai | Header s also allows you to override corresponding Mai | Message values. For example: If
Mai | Message. t o is set to 'foo@bar.com' and Mai | Header s. TOMessage header is provided
it will take precedence and override the corresponding value in Mai | Message

20.2 Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the Mai | Recei vi ngMessageSour ce.
It delegates to a configured instance of Spring Integration's own Mai | Recei ver interface, and there are
two implementations: Pop3Mai | Recei ver and | mapMai | Recei ver. The easiest way to instantiate
either of these is by passing the 'uri’ for a Mail store to the receiver's constructor. For example:

Mai | Recei ver receiver = new Pop3Mai | Recei ver ("pop3://usr: pwd@ ocal host /| NBOX") ;

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you
are using). Spring Integration provides the | mapl dl eChannel Adapt er which is itself a Message-
producing endpoint. It delegates to an instance of the | mapMai | Recei ver but enables asynchronous
reception of Mail Messages. There are examples in the next section of configuring both types of inbound
Channel Adapter with Spring Integration's namespace support in the 'mail' schema.

Spring Integration
3.0.5.RELEASE Reference Manual 237

Spring Integration

20.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int-mail ="http://ww.springfranework. org/schema/integration/mail"
xsi:schemaLocati on="http://wwm. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i nt egrati on/ nai
http://ww. springfranework. org/ schema/integration/ mail/spring-integration-mail.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the MailSender:

<i nt - mai | : out bound- channel - adapt er channel =" out boundMai | "
nai | - sender =" mai | Sender"/ >

Alternatively, provide the host, username, and password:

<i nt - mai | : out bound- channel - adapt er channel =" out boundMi | "
host =" sonmehost" user name="soneuser" password="somepassword"/>

© Note

Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or
cron-trigger.

When using the hamespace support, a header-enricher Message Transformer is also available. This
simplifies the application of the headers mentioned above to any Message prior to sending to the Mail
Outbound Channel Adapter.

<int-nuil:header-enricher input-channel ="expressionslnput" default-overwite="false">
<int-mail:to expressi on="payl oad.to"/>

<int-mail:cc expression="payl oad. cc"/>

<int-nmail:bcc expressi on="payl oad. bcc"/ >

<int-nmail:from expressi on="payl oad. froni'/ >

<int-mail:reply-to expression="payl oad.repl yTo"/>

<int-nail:subject expression="payl oad. subject" overwite="true"/>
</int-mail:header-enricher>

This example assumes the payload is a JavaBean with appropriate getters for the specified properties,
but any SpEL expression can be used. Alternatively, use the val ue attribute to specify a literal. Notice
also that you can specify def aul t - overw i t e and individual overwri t e attributes to control the
behavior with existing headers.

To configure an Inbound Channel Adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP IDLE - if not, then polling is the only option). A polling Channel
Adapter simply requires the store URI and the channel to send inbound Messages to. The URI may
begin with "pop3" or "imap":

Spring Integration
3.0.5.RELEASE Reference Manual 238

Spring Integration

<int-mail:inbound-channel - adapter id="i mapAdapter"
store-uri="imaps://[usernane]: [password] @ map. gmai | . conl | NBOX"
java-nuil - properties="javaMail Properties"
channel ="r ecei veChannel "
shoul d- del et e- nessages="t r ue"
shoul d- mar k- mressages- as-read="true"
aut o-startup="true">
<int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-mail:inbound-channel - adapt er >

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter"
element instead. Since the "idle" command enables event-driven notifications, no poller is necessary
for this adapter. It will send a Message to the specified channel as soon as it receives the notification
that new mail is available:

<int-nmail:inmap-idl e-channel - adapt er id="cust omAdapt er"
store-uri="imaps://[usernane]:[password] @ map. gnai | . com | NBOX"
channel ="r ecei veChannel "
aut o-startup="true"
shoul d- del et e- messages="f al se"
shoul d- mar k- nressages- as-read="true"
java-nuil - properties="javaMail Properties"/>

where javaMailProperties could be provided by creating and populating a regular
java. utils. Properti es object. For example via util namespace provided by Spring.

© Important
If your username contains the ‘@' character use '%40' instead of ‘@' to avoid parsing errors from
the underlying JavaMail API.

<util:properties id="javaMail Properties">
<prop key="nmil.imap. socket Factory. cl ass">j avax. net . ssl . SSLSocket Fact ory</ pr op>
<prop key="nmmil.i map. socket Factory. fal | back">f al se</ prop>
<prop key="mail.store. protocol">i maps</prop>
<prop key="mail . debug">fal se</ prop>
</util:properties>

By default, the | mapMai | Recei ver will search for Messages based on the default Sear chTer mwhich
is All mails that are RECENT (if supported), that are NOT ANSWERED, that are NOT DELETED, that
are NOT SEEN and have not been processed by this mail receiver (enabled by the use of the custom
USER flag or simply NOT FLAGGED if not supported). Since version 2.2, the Sear chTer mused by
the | mapMai | Recei ver is fully configurable via the Sear chTer n5t r at egy which you can inject via
the search-term strat egy attribute. Sear chTer nStr at egy is a simple strategy interface with
a single method that allows you to create an instance of the Sear chTer mthat will be used by the
| mapMai | Recei ver.

public interface SearchTernStrategy {

Sear chTer m gener at eSear chTer n{ Fl ags support edFl ags, Fol der fol der);

For example:

Spring Integration
3.0.5.RELEASE Reference Manual 239

Spring Integration

<mai | : i map-idl e-channel - adapt er i d="cust omAdapt er"
store-uri="i map: f 00"

search-termstrategy="searchTernStrat egy"/>

<bean i d="searchTer nStrat egy"
class="o0.s.i.mil.config.| mpldl eChannel Adapt er Par ser Test s. Test Sear chTer nStr at egy"/ >

In the above example instead of relying on the default SearchTernttrategy the
Test Sear chTer n5t r at egy will be used instead

IMAP IDLE and lost connection

When using IMAP IDLE channel adapter there might be situations where connection to the server may
be lost (e.g., network failure) and since Java Mail documentation explicitly states that the actual IMAP
APl is EXPERIMENTAL it is important to understand the differences in the APl and how to deal with
them when configuring IMAP IDLE adapters. Currently Spring Integration Mail adapters was tested with
Java Mail 1.4.1 and Java Mail 1.4.3 and depending on which one is used special attention must be
payed to some of the java mail properties that needs to be set with regard to auto-reconnect.

The following behavior was observed with GMAIL but should provide you with some tips on how to solve
re-connect issue with other providers, however feedback is always welcome. Again, below notes are
based on GMAIL.

With Java Mail 1.4.1 if mai | . i maps. ti meout property is set for a relatively short period of time
(e.g., ~ 5 min) then | MAPFol der . i dl e() will throw Fol der Cl osedExcepti on after this timeout.
However if this property is not set (should be indefinite) the behavior that was observed is that
| MAPFol der . i dl e() method never returns nor it throws an exception. It will however reconnect
automatically if connection was lost for a short period of time (e.g., under 10 min), but if connection
was lost for a long period of time (e.g., over 10 min), then | MAPFol der . i dl e() will not throw
Fol der O osedExcept i on nor it will re-establish connection and will remain in the blocked state
indefinitely, thus leaving you no possibility to reconnect without restarting the adapter. So the only way
to make re-connect to work with Java Mail 1.4.1 is to set mai | . i maps. ti meout property explicitly
to some value, but it also means that such value shoudl be relatively short (under 10 min) and the
connection should be re-estabished relatively quickly. Again, it may be different with other providers.
With Java Mail 1.4.3 there was significant improvements to the API ensuring that there will always be
a condition which will force | MAPFol der . i dl e() method to return via St or eCl osedExcepti on or
Fol der O osedExcept i on or simply return, thus allowing us to proceed with auto-reconnect. Currently
auto-reconnect will run infinitely making attempts to reconnect every 10 sec.

© Important

In both configurations channel and shoul d- del et e- nessages are the REQUIRED
attributes. The important thing to understand is why shoul d- del et e- nessages is required.
The issue is with the POP3 protocol, which does NOT have any knowledge of messages that
were READ. It can only know what's been read within a single session. This means that
when your POP3 mail adapter is running, emails are successfully consumed as as they become
available during each poll and no single email message will be delivered more then once.
However, as soon as you restart your adapter and begin a new session all the email messages
that might have been retrieved in the previous session will be retrieved again. That is the nature
of POP3. Some might argue that shoul d- del et e- messages should be TRUE by default.
In other words, there are two valid and mutually exclusive use cases which make it very hard
to pick a single "best" default. You may want to configure your adapter as the only email receiver

Spring Integration
3.0.5.RELEASE Reference Manual 240

Spring Integration

in which case you want to be able to restart such adapter without fear that messages that
were delivered before will not be redelivered again. In this case setting shoul d- del et e-
nmessages to TRUE would make most sense. However, you may have another use case where

you may want to have multiple adapters that simply monitor email servers and their content. In
other words you just want to ‘peek but not touch’. Then setting shoul d- del et e- nessages
to FALSE would be much more appropriate. So since it is hard to choose what should be the
right default value for the shoul d- del et e- nessages attribute, we simply made it a required
attribute, to be set by the user. Leaving it up to the user also means, you will be less likely to
end up with unintended behavior.

© Note

When configuring a polling email adapter's should-mark-messages-as-read attribute, be aware
of the protocol you are configuring to retrieve messages. For example POP3 does not support
this flag which means setting it to either value will have no effect as messages will NOT be
marked as read.

© Important

It is important to understand that that these actions (marking messages read, and deleting
messages) are performed after the messages are received, but before they are processed. This
can cause messages to be lost.

You may wish to consider using transaction synchronization instead - see Section 20.5,
“Transaction Synchronization”

The <imap-idle-channel-adapter/> also accepts the 'error-channel’ attribute. If a downstream exception
is thrown and an 'error-channel' is specified, a MessagingException message containing the failed
message and original exception, will be sent to this channel. Otherwise, if the downstream channels are
synchronous, any such exception will simply be logged as a warning by the channel adapter.

© Note

Beginning with the 3.0 release, the IMAP idle adapter emits application events
(specifically 1 mapl dl eExcept i onEvent s) when exceptions occur. This allows applications
to detect and act on those exceptions. The events can be obtained using an <int-
event : i nbound- channel - adapt er > orany Appl i cati onLi st ener configured to receive
an | mapl dl eExcept i onEvent or one of its super classes.

20.4 Email Message Filtering

Very often you may encounter a requirement to filter incoming messages (e.g., You want to only read
emails that have 'Spring Integration' in the Subject line). This could be easily accomplished by connecting
Inbound Mail adapter with an expression-based Filter. Although it would work, there is a downside to
this approach. Since messages would be filtered after going through inbound mail adapter all such
messages would be marked as read (SEEN) or Un-read (depending on the value of shoul d- mar k-
nessages- as- r ead attribute). However in reality what would be more useful is to mark messages as
SEEN only if they passed the filtering criteria. This is very similar to looking at your email client while
scrolling through all the messages in the preview pane, but only flagging messages as SEEN that were
actually opened and read.

In Spring Integration 2.0.4 we've introduced mai |l -filter-expression attribute on i nbound-
channel - adapt er and i map-i dl e- channel - adapt er. This attribute allows you to provide an

Spring Integration
3.0.5.RELEASE Reference Manual 241

Spring Integration

expression which is a combination of SpEL and Regular Expression. For example if you would like
to read only emails that contain 'Spring Integration' in the Subject line, you would configure mai | -
filter-expressionattribute like thisthis:nai | -filter-expressi on="subj ect matches ' (?
i).*Spring Integration.*"

Sincej avax. mai | . i nt er net. M meMessage is the root context of SpEL Evaluation Context, you can
filter on any value available through MimeMessage including the actual body of the message. This one
is particularly important since reading the body of the message would typically result in such message
to be marked as SEEN by default, but since we now setting PEAK flag of every incomming message to
'true’, only messages that were explicitly marked as SEEN will be seen as read.

Sointhe below example only messages that match the filter expression will be output by this adapter and
only those messages will be marked as SEEN. In this case based onthemai | -filter-expression
only messages that contain 'Spring Integration' in the subject line will be produced by this adapter.

<int-numil:inmap-idl e-channel - adapt er id="cust omAdapter"
store-uri="imaps://sonme_googl e_addr ess: ${ passwor d} @ map. gnai | . com’ | NBOX"
channel ="recei veChannel "
shoul d- mar k- mressages- as-read="true"
java-nai |l - properties="javaMai | Properties"
mai | -filter-expression="subject matches '(?i).*Spring Integration.*""/>

Another reasonable question is what happens on the next poll, or idle event, or what happens when
such adapter is restarted. Will there be a potential duplication of massages to be filtered? In other words
if on the last retrieval where you had 5 new messages and only 1 passed the filter what would happen
with the other 4. Would they go through the filtering logic again on the next poll or idle? After all they
were not marked as SEEN. The actual answer is no. They would not be subject of duplicate processing
due to another flag (RECENT) that is set by the Email server and is used by Spring Integration mail
search filter. Folder implementations set this flag to indicate that this message is new to this folder, that
is, it has arrived since the last time this folder was opened. In other while our adapter may peek at the
emall it also lets the email server know that such email was touched and therefore will be marked as
RECENT by the email server.

20.5 Transaction Synchronization

Transaction synchronization for inbound adapters allows you to take different actions after a
transaction commits, or rolls back. Transaction synchronization is enabled by adding a <transactional/
> element to the poller for the polled <inbound-adapter/>, or to the <imap-idle-inbound-adapter/
>. Even if there is no 'real' transaction involved, you can still enable this feature by using
a PseudoTransacti onManager with the <transactional/> element. For more information, see
Section C.3, “Transaction Synchronization”.

Because of the many different mail servers, and specifically the limitations that some have, at this time
we only provide a strategy for these transaction synchronizations. You can send the messages to some
other Spring Integration components, or invoke a custom bean to perform some action. For example,
to move an IMAP message to a different folder after the transaction commits, you might use something
similar to the following:

Spring Integration
3.0.5.RELEASE Reference Manual 242

Spring Integration

<int-mail:inmap-idle-channel - adapt er id="customAdapter"
store-uri="imaps://foo.com password@ map. f 0o. coni | NBOX"
channel ="r ecei veChannel "
aut o-startup="true"
shoul d- del et e- ressages="f al se"
java-nuil - properties="javaMnil Properties">
<int:transactional synchronization-factory="syncFactory"/>
</int-mail:imap-idle-channel - adapt er>

<int:transaction-synchroni zati on-factory id="syncFactory">
<int:after-conmt expression="@yncProcessor. process(payl oad)"/>

</int:transaction-synchroni zation-factory>

<bean i d="syncProcessor" class="fo0o0. bar. Mover"/>

public class Mver {

public void process(M nmeMessage nessage) throws Exception{
Fol der fol der = message. get Fol der () ;
f ol der. open(Fol der. READ_WRI TE)
String messageld = nessage. get Messagel () ;
Message[] nessages = fol der. get Messages();
FetchProfile contentsProfile = new FetchProfile();
contentsProfil e.add(FetchProfile.|tem ENVELOPE)
contentsProfil e.add(FetchProfile.ltem CONTENT_I NFO) ;
contentsProfile.add(FetchProfile.ltem FLAGS);
fol der. fetch(nessages, contentsProfile);
/1 find this nessage and mark for deletion
for (int i =0; i < nessages.length; i++) {
if (((MnmeMessage) nessages[i]).get Messagel D(). equal s(nmessagel d)) {
messages[i]. set Fl ag(Fl ags. Fl ag. DELETED, true);
br eak;

Fol der fooFol der = store. getFol der("FOO"));

f ooFol der . appendMessages(new M nmeMessage[] { message});
f ol der. expunge();

fol der.close(true);

f ooFol der. cl ose(fal se);

© Important
For the message to be still available for manipulation after the transaction, should-delete-
messages must be set to 'false’.

Spring Integration
3.0.5.RELEASE Reference Manual 243

Spring Integration

21. MongoDb Support

As of version 2.1 Spring Integration introduces support for MongoDB: a "high-performance, open source,
document-oriented database". This support comes in the form of a MongoDB-based MessageStore.

21.1 Introduction

To download, install, and run MongoDB please refer to the MongoDB documentation.

21.2 Connecting to MongoDb

To begin interacting with MongoDB you first need to connect to it. Spring Integration builds on the
support provided by another Spring project, Spring Data MongoDB, which provides a factory class called
MongoDbFact or y that simplifies integration with the MongoDB Client API.

MongoDbFactory

To connect to MongoDB you can use an implementation of the MongoDbFact or y interface:

public interface MongoDbFactory {

/**

* Creates a default {@ink DB} instance.
*

* @eturn the DB instance

* @hrows DataAccessException

*/

DB get Db() throws DataAccessExcepti on;

/**
* Creates a {@ink DB} instance to access the database with the given nane.

*

* @aram dbNanme nmust not be {@iteral null} or empty.
*
* @eturn the DB instance
* @hrows DataAccessException
*/
DB get Db(String dbName) throws DataAccessException;
}

The example below shows Si npl eMbngoDbFact or y, the out-of-the-box implementation:

In Java:

MongoDbFact ory nobngoDbFactory = new Si npl eMongoDbFact ory(new Mongo(), "test");

Or in Spring's XML configuration:

<bean i d="nongoDbFactory" class="o0.s. dat a. mongodb. cor e. Si npl eMongoDbFact ory" >
<const ruct or - ar g>
<bean cl ass="com nongodb. Mbngo"/ >
</ constructor-ar g>
<constructor-arg val ue="test"/>
</ bean>

As you can see Si npl eMongoDbFact or y takes two arguments: 1) a Mongo instance and 2) a String
specifying the name of the database. If you need to configure properties such as host, port, etc,

Spring Integration
3.0.5.RELEASE Reference Manual 244

http://www.mongodb.org/
http://www.mongodb.org/downloads
http://www.springsource.org/spring-data/mongodb

Spring Integration

you can pass those using one of the constructors provided by the underlying Mongo class. For more
information on how to configure MongoDB, please refer to the Spring-Data-Document reference.

21.3 MongoDB Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful
when dealing with components that have a capability to buffer messages (QueueChannel, Aggregator,
Resequencer, etc.) if reliability is a concern. In Spring Integration, the MessageStore strategy also
provides the foundation for the ClaimCheck pattern, which is described in EIP as well.

Spring Integration's MongoDB module provides the MdongoDbMessageStore which is an
implementation of both the MessageSt ore strategy (mainly used by the QueueChannel and
ClaimCheck patterns) and the MessageG oupSt or e strategy (mainly used by the Aggregator and
Resequencer patterns).

<bean i d="nongoDbMessageSt ore" cl ass="o0.s.i.nongodb. store. MongoDbMessageSt ore" >
<constructor-arg ref="nmongoDbFactory"/>
</ bean>

<int:channel id="somePersistentQeueChannel ">
<i nt:queue nessage-store="nongoDbMessageSt ore"/ >
<i nt:channel >

<i nt:aggregator input-channel ="input Channel" out put-channel =" out put Channel "
message- st or e=" nongoDbMessageSt ore"/ >

Above is a sample MongoDbMessagesSt or e configuration that shows its usage by a QueueChannel
and an Aggregator. As you can see it is a simple bean configuration, and it expects a MongoDbFact or y
as a constructor argument.

© Important

The MongoDbMessageSt or e uses a custom Mappi ngMbngoConvert er implementation to
store Messages as MongoDB documents and there are some limitations for the properties
(payl oad and header values) of the Message. For example an Err or Message can't be
converted to the MongoDB document, because it has an Except i on property, where the cause
property is infintely recursed. Also, there is no ability to configure custom converters for complex
domain payl oads or header values. To achieve these capabilities, an alternative MongoDB
MessageSt or e implementation has been introduced; see next paragraph.

Spring Integration 3.0 introduced the Confi gur abl eMongoDbMessageSt ore - MessageStore
and MessageGr oupSt or e implementation. This class can receive, as a constructor argument,
a MongoTenpl at e, with which you can configure with a custom Wit eConcern, for example.
Another constructor requires a Mappi nghMbngoConverter, and a MongoDbFact ory, which
allows you to provide some custom conversions for Messages and their properties. Note, by
default, the Confi gurabl eMongoDbMessageSt or e uses standard Java serialization to write/
read Messages to/from MongoDB and relies on default values for other properties from
MongoTenpl at e, which is built from the provided MongoDbFact or y and Mappi nghMbngoConverter.
The default name for the collection stored by the Confi gur abl eMongoDbMessageSt ore is
confi gur abl eSt or eMessages. It is recommended to use this implementation for robust and flexible
solutions. The MongoDbMessagesSt or e remains for backward compatibility and may be removed in
future releases.

Spring Integration
3.0.5.RELEASE Reference Manual 245

http://static.springsource.org/spring-data/data-document/docs/current/reference/html/
http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration

21.4 MongoDB Inbound Channel Adapter

The MongoDb Inbound Channel Adapter is a polling consumer that reads data from MongoDb and
sends it as a Message payload.

<i nt - nongodb: i nbound- channel - adapt er i d="npngol nboundAdapt er"
channel ="r epl yChannel "
query="{'name' : 'Bob'}"
entity-class="java.l ang. Obj ect"
aut o-startup="fal se">
<int:poller fixed-rate="100"/>
</'i nt - nongodb: i nbound- channel - adapt er >

As you can see from the configuration above, you configure a MongoDb Inbound Channel Adapter using
the i nbound- channel - adapt er element, providing values for various attributes such as:

e query orquery-expressi on-aJSON query (see MongoDb Querying)

* entity-cl ass - the type of the payload object; if not supplied, a com nongodb. DBChj ect will
be returned.

e col l ection-nane or col | ecti on- nane-expressi on - Identifies the name of the MongoDb
collection to use.

» nongodb- f act ory - reference to an instance of 0. s. dat a. nrongodb. MongoDbFact ory

* nongo-t enpl at e - reference to an instance of 0. s. dat a. nongodb. cor e. MongoTenpl at e
and other attributes that are common across all other inbound adapters (e.g., 'channel’).

@ Note

You cannot set both nongo- t enpl at e and nongodb- f act ory.

The example above is relatively simple and static since it has a literal value for the quer y and uses the
default name for a col | ect i on. Sometimes you may need to change those values at runtime, based
on some condition. To do that, simply use their - expr essi on equivalents (quer y- expr essi on and
col | ecti on- nanme- expr essi on) where the provided expression can be any valid SpEL expression.

Also, you may wish to do some post-processing to the successfully processed data that was read from
the MongoDb. For example; you may want to move or remove a document after its been processed.
You can do this using Transaction Synchronization feature that was added with Spring Integration 2.2.

Spring Integration
3.0.5.RELEASE Reference Manual 246

http://www.mongodb.org/display/DOCS/Querying

Spring Integration

<i nt - nongodb: i nbound- channel - adapt er i d="nongol nboundAdapt er"
channel ="r epl yChannel "
query="{'nanme' : 'Bob'}"
entity-class="java.l ang. Obj ect"
aut o-startup="fal se">
<int:poller fixed-rate="200" max-nessages-per-poll="1">

<int:transactional synchronization-factory="syncFactory"/>

</int:poller>

</i nt - nongodb: i nbound- channel - adapt er >

<int:transaction-synchroni zati on-factory i d="syncFactory">
<int:after-conmt expression="@ocunment Cl eaner.renove(#nongoTenpl ate, payl oad,
header s. nrongo_col | ecti onNane) " channe="sonmeChannel "/ >
</int:transaction-synchroni zation-factory>

<bean i d="docunent Cl eaner" cl ass="fo0o0. bar. Docunent Cl eaner" />

<bean i d="transacti onManager" class="0.s.i.transaction.PseudoTransacti onManager"/>

public class Docunent C eaner {
public void renpve(MngoOperations nongoCperations, Object target, String
col I ecti onNane) {
if (target instanceof List<?>){
Li st <?> docunents = (List<?>) target;
for (Object document : docunents) ({
nmongoQper at i ons. renpve(new Basi cQuer y(JSON. seri al i ze(docunent)), collectionNane);
}
}
}

As you can see from the above, all you need to do is declare your poller to be transactional with
a transactional element. This element can reference a real transaction manager (for example
if some other part of your flow invokes JDBC). If you don't have a 'real' transaction, you can use
a org.springframework.integration.transaction. PseudoTransacti onManager which
is an implementation of Spring's Pl at f or nfTr ansact i onManager and enables the use of the
transaction synchronization features of the mongo adapter when there is no actual transaction.

© Important

This does NOT make MongoDB itself transactional, it simply allows the synchronization of actions
to be taken before/after success (commit) or after failure (rollback).

Once your poller is transactional all you need to do is set an instance of the
org.springframework.integration.transaction. Transacti onSynchroni zati onFactory
onthe transacti onal element. Transacti onSynchroni zati onFact ory will create an instance
of the Transact i oi nSynchr oni zati on. For your convenience, we've exposed a default SpEL-
based Tr ansacti onSynchroni zat i onFact ory which allows you to configure SpEL expressions,
with their execution being coordinated (synchronized) with a transaction. Expressions for before-commit,
after-commit, and after-rollback are supported, together with a channel for each where the evaluation
result (if any) will be sent. For each sub-element you can specify expr essi on and/or channel
attributes. If only the channel attribute is present the received Message will be sent there as part of
the particular synchronization scenario. If only the expr essi on attribute is present and the result of an
expression is a non-Null value, a Message with the result as the payload will be generated and sent to
a default channel (NullChannel) and will appear in the logs (DEBUG). If you want the evaluation result

Spring Integration
3.0.5.RELEASE Reference Manual 247

Spring Integration

to go to a specific channel add a channel attribute. If the result of an expression is null or void, no
Message will be generated.

For more information about transaction synchronization, see Section C.3, “Transaction
Synchronization”.

21.5 MongoDB Outbound Channel Adapter

The MongoDb Outbound Channel Adapter allows you to write the Message payload to a MongoDb
document store

<i nt - nongodb: out bound- channel - adapt er i d="ful | Confi gWthCol | ecti onExpressi on"
col I ecti on-name="nyCol | ecti on"
nongo- convert er ="nongoConverter"
nmongodb- f act or y="nongoDbFact ory" />

As you can see from the configuration above, you configure a MongoDb Outbound Channel Adapter
using the out bound- channel - adapt er element, providing values for various attributes such as:

e col l ection-nane or col | ecti on- nane-expressi on - Identifies the name of the MongoDb
collection to use.

* nbngo-converter - reference to an instance of
0. s. dat a. nongodb. cor e. convert. MongoConverter to assist with converting a raw java
object to a JISON document representation

» nongodb- f act ory - reference to an instance of 0. s. dat a. nrongodb. MongoDbFact ory

e nongo-tenpl ate - reference to an instance of o.s. dat a. nongodb. cor e. MongoTenpl at e
(NOTE: you can not have both mongo-template and mongodb-factory set)
and other attributes that are common across all other inbound adapters (e.g., 'channel).

The example above is relatively simple and static since it has a literal value for the col | ecti on-
nanme. Sometimes you may need to change this value at runtime based on some condition. To do that,
simply use col | ecti on- name- expr essi on where the provided expression can be any valid SpEL
expression.

Spring Integration
3.0.5.RELEASE Reference Manual 248

Spring Integration

22. Redis Support

Since version 2.1 Spring Integration introduces support for Redis: "an open source advanced key-value
store". This support comes in the form of a Redis-based MessageStore as well as Publish-Subscribe
Messaging adapters that are supported by Redis via its PUBLISH, SUBSCRIBE and UNSUBSCRIBE
commands.

22.1 Introduction

To download, install and run Redis please refer to the Redis documentation.

22.2 Connecting to Redis

To begin interacting with Redis you first need to connect to it. Spring Integration uses support
provided by another Spring project, Spring Data Redis, which provides typical Spring constructs:
Connect i onFact ory and Tenpl at e. Those abstractions simplify integration with several Redis-client
Java APIls. Currently Spring-Data-Redis supports jedis, jredis and rjc

RedisConnectionFactory

To connect to Redis you would use one of the implementations of the Redi sConnecti onFact ory
interface:

public interface Redi sConnectionFactory extends PersistenceExceptionTransl ator {

/**

* Provides a suitable connection for interacting with Redis
*

* @eturn connection for interacting with Redis

*/

Redi sConnecti on get Connection();

}

The example below shows how to create a Jedi sConnect i onFactory.

In Java.:

Jedi sConnecti onFactory jcf = new Jedi sConnecti onFactory();
jcf.afterPropertiesSet();

Or in Spring's XML configuration:

<bean i d="redi sConnecti onFact ory"
class="o0.s.data.redis.connection.jedis.Jedi sConnecti onFactory">
<property nanme="port" val ue="7379" />

</ bean>

The implementations of RedisConnectionFactory provide a set of properties such as port and host
that can be set if needed. Once an instance of RedisConnectionFactory is created, you can create an
instance of RedisTemplate and inject it with the RedisConnectionFactory.

RedisTemplate

Spring Integration
3.0.5.RELEASE Reference Manual 249

http://redis.io/
http://redis.io/topics/pubsub
http://redis.io/download
https://github.com/SpringSource/spring-data-redis
https://github.com/xetorthio/jedis
http://code.google.com/p/jredis/
https://github.com/e-mzungu/rjc

Spring Integration

As with other template classes in Spring (e.g., JdbcTenpl at e, JnsTenpl at €) Redi sTenpl ate isa
helper class that simplifies Redis data access code. For more information about Redi sTenpl at e and
its variations (e.g., St ri ngRedi sTenpl at e) please refer to the Spring-Data-Redis documentation

The code below shows how to create an instance of Redi sTenpl at e:

In Java:

Redi sTenpl ate rt = new Redi sTenpl ate<String, Object>();
rt.set Connecti onFact ory(redi sConnecti onFactory);

Or in Spring's XML configuration::

<bean i d="redi sTenpl ate" cl ass="org. spri ngfranmework. data.redi s. core. Redi sTenpl at e" >
<property nane="connectionFactory" ref="redi sConnecti onFactory"/>
</ bean>

22.3 Messaging with Redis

As mentioned in the introduction Redis provides support for Publish-Subscribe messaging via its
PUBLISH, SUBSCRIBE and UNSUBSCRIBE commands. As with IMS and AMQP, Spring Integration
provides Message Channels and adapters for sending and receiving messages via Redis.

Redis Publish/Subscribe channel

Similar to the JMS there are cases where both the producer and consumer are intended to be part of
the same application, running within the same process. This could be accomplished by using a pair of
inbound and outbound Channel Adapters, however just like with Spring Integration's JIMS support, there
is a simpler approach to address this use case.

<i nt-redis: publish-subscribe-channel id="redi sChannel" topic-name="si.test.topic"/>

The publish-subscribe-channel (above) will behave much like a normal <publ i sh-subscri be-
channel / > element from the main Spring Integration namespace. It can be referenced by both i nput -
channel and out put - channel attributes of any endpoint. The difference is that this channel is
backed by a Redis topic name - a String value specified by the t opi c- nane attribute. However unlike
JMS this topic doesn't have to be created in advance or even auto-created by Redis. In Redis topics
are simple String values that play the role of an address, and all the producer and consumer need
to do to communicate is use the same String value as their topic name. A simple subscription to
this channel means that asynchronous pub-sub messaging is possible between the producing and
consuming endpoints, but unlike the asynchronous Message Channels created by addinga <queue/ >
sub-element within a simple Spring Integration <channel / > element, the Messages are not just stored
in an in-memory queue. Instead those Messages are passed through Redis allowing you to rely on its
support for persistence and clustering as well as its interoperability with other non-java platforms.

Redis Inbound Channel Adapter
The Redis-based Inbound Channel Adapter adapts incoming Redis messages into Spring Integration

Messages in the same way as other inbound adapters. It receives platform-specific messages (Redis
in this case) and converts them to Spring Integration Messages using a MessageConvert er strategy.

Spring Integration
3.0.5.RELEASE Reference Manual 250

http://static.springsource.org/spring-data/data-redis/docs/current/reference/

Spring Integration

<i nt-redi s:inbound-channel - adapt er id="redi sAdapter"
t opi cs="f oo, bar"
channel ="recei veChannel "
error-channel ="t est Err or Channel "
message- converter="test Converter" />

<bean i d="redi sConnecti onFact ory"
cl ass="o0.s.data.redis.connection.jedis.Jedi sConnecti onFactory">
<property nanme="port" val ue="7379" />

</ bean>

<bean i d="testConverter" class="foo0.bar. Sanpl eMessageConverter" />

Above is a simple but complete configuration of a Redis Inbound Channel Adapter. Note that the above
configuration relies on the familiar Spring paradigm of auto-discovering certain beans. In this case the
redi sConnecti onFact ory isimplicitly injected into the adapter. You can of course specify it explicitly
using the connect i on-f act ory attribute instead.

Also, note that the above configuration injects the adapter with a custom MessageConverter. The
approach is similar to JIMS where MessageConvert er s are used to convert between Redis Messages
and the Spring Integration Message payloads. The default is a Si npl eMessageConverter.

Inbound adapters can subscribe to multiple topic names hence the comma-delimited set of values in
the t opi cs attribute.

Since Spring Integration 3.0, the Inbound Adapter, in addition to the existing t opi cs attribute, now has
the t opi c- pat t er ns attribute. This attribute contains a comma-delimited set of Redis topic patterns.
For more information regarding Redis publish/subscribe, see Redis Pub/Sub.

Inbound adapters can use a Redi sSeri al i zer to deserialize the body of Redis Messages. The
serial i zer attribute of the <i nt -redi s: i nbound- channel - adapt er > can be set to an empty
string, which results in a nul | value for the Redi sSeri al i zer property. In this case the raw byt e[]
bodies of Redis Messages are provided as the message payloads.

Redis Outbound Channel Adapter

The Redis-based Outbound Channel Adapter adapts outgoing Spring Integration messages into Redis
messages in the same way as other outbound adapters. It receives Spring Integration messages and
converts them to platform-specific messages (Redis in this case) using a MessageConver t er strategy.

<i nt-redi s: out bound- channel - adapt er i d="out boundAdapt er "
channel ="sendChannel "
topi c="f 00"
nmessage- converter="test Converter"/>

<bean i d="redi sConnecti onFact ory"
cl ass="o0.s.data.redis.connection.jedis.Jedi sConnecti onFactory">
<property nanme="port" val ue="7379"/>

</ bean>

<bean id="testConverter" class="foo. bar. Sanpl eMessageConverter" />

As you can see the configuration is similar to the Redis Inbound Channel Adapter. The
adapter is implicitly injected with a Redi sConnectionFactory which was defined with
'redi sConnecti onFact ory' as its bean name. This example also includes the optional, custom
MessageConvert er (the't est Convert er'bean).

Spring Integration
3.0.5.RELEASE Reference Manual 251

http://redis.io/topics/pubsub

Spring Integration

Since Spring Integration 3.0, the <i nt - r edi s: out bound- channel - adapt er >, as an alternative to
the t opi ¢ attribute, has the t opi c- expr essi on attribute to determine the Redis topic against the
Message at runtime. These attributes are mutually exclusive.

Redis Queue Inbound Channel Adapter

Since Spring Integration 3.0, a Queue Inbound Channel Adapter is available to 'right pop' messages from
a Redis List. The adapter is message-driven using an internal listener thread and does not use a poller.

<i nt-redi s: queue-i nbound- channel - adapter id="" 0O

channel ="" 0O
auto-startup="" 0O
phase="" [
connection-factory="" 0
queue="" [

serializer="" 0O

expect - nessage=""
t ask- executor=""/>

The component bean name. If the channel attribute isn't provided a Di r ect Channel is created
and registered with application context with this i d attribute as the bean name. In this case, the
endpoint itself is registered with the beannameid + '.adapter'.

The MessageChannel to which to send Messages from this Endpoint.

A Snart Li f ecycl e attribute to specify whether this Endpoint should start automatically after the
application context start or not. Defaultis t r ue.

A Smart Li f ecycl e attribute to specify the phase in which this Endpoint will be started. Default
is 0.

A reference to a Redi sConnect i onFact ory bean. Defaults to r edi sConnecti onFact ory.
The name of the Redis List on which the queue-based 'right pop' operation is performed to get
Redis messages.

The MessageChannel to which to send Er r or Messages with Except i ons from the listening
task of the Endpoint. By default the underlying MessagePubl i shi ngEr r or Handl er uses the
default er r or Channel from the application context.

The Redi sSeri al i zer bean reference. Can be an empty string, which means 'no serializer'. In
this case the raw byt e[] from the inbound Redis message is senttothe channel asthe Message
payload. By defaultitis a JdkSeri al i zat i onRedi sSeri al i zer.

The timeout in milliseconds for 'right pop' operation to wait for a Redis message from the queue.
Default is 1 second.

The time in milliseconds for which the listener task should sleep after exceptions on the 'right pop'
operation, before restarting the listener task.

Specify if this Endpoint expects data from the Redis queue to contain entire Messages. If this
attribute is set to t rue, the seri al i zer can't be an empty string because messages require
some form of deserialization (JDK serialization by default). Default is f al se.

A reference to a Spring TaskExecut or (or standard JDK 1.5+ Execut or) bean. Itis used for the
underlying listening task. By default a Si npl eAsyncTaskExecut or is used.

Spring Integration

3.0.5.RELEASE Reference Manual 252

Spring Integration

Redis Queue Outbound Channel Adapter

Since Spring Integration 3.0, a Queue Outbound Channel Adapter is available to 'left push' to a Redis
List from Spring Integration messages:

<i nt-redi s: queue- out bound- channel - adapter id="" 0O
channel ="" [
connection-factory="" 0
queue="" [
queue- expressi on="" [
serializer="" 0O
extract - payl oad="" />0

0 The component bean name. If the channel attribute isn't provided, a Di r ect Channel is created
and registered with the application context with this i d attribute as the bean name. In this case,
the endpoint is registered with the bean nameid + '.adapter'.

0 The MessageChannel from which this Endpoint receives Messages.

O Areference to a Redi sConnect i onFact ory bean. Defaults to r edi sConnecti onFact ory.

0 The name of the Redis List on which the queue-based 'left push' operation is performed to send
Redis messages. This attribute is mutually exclusive with queue- expr essi on.

0 A SpEL Expressi on to determine the name of the Redis List using the incoming Message at
runtime as the #r oot variable. This attribute is mutually exclusive with queue.

0 ARedisSerializer beanreference. By defaultitisaJdkSeri al i zati onRedi sSeri al i zer.
However, for St ri ng payloads,aStri ngRedi sSeri al i zer isused,ifaseri al i zer reference
isn't provided.

O Specify if this Endpoint should send just the payload to the Redis queue, or the entire Message.
Defaultistrue .

Redis Application Events

Since Spring Integration 3.0, the Redis module provides an implementation of
I nt egrati onEvent -which, inturn,isaorg. spri ngf ramewor k. cont ext . Appl i cati onEvent.
The Redi sExceptionEvent encapsulates an Exceptions from Redis operations
(with the Endpoint being the source of the event). For example, the
<i nt-redis: queue-inbound-channel -adapter/> emits those events after catching
Exceptions from the BoundLi st Operations.rightPop operation. The exception may
be any generic org.springfranmework. data.redis.Redi sSystenException or a
org. springframewor k. dat a. redi s. Redi sConnecti onFai | ur eExcepti on. Handling these
events using an <i nt - event : i nbound- channel - adapt er/ > can be useful to determine problems
with background Redis tasks and to take administrative actions.

22.4 Redis Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful
when dealing with components that have a capability to buffer messages (QueueChannel, Aggregator,
Resequencer, etc.) if reliability is a concern. In Spring Integration, the MessageStore strategy also
provides the foundation for the ClaimCheck pattern, which is described in EIP as well.

Spring Integration's Redis module provides the Redi sMessageSt or e which is an implementation of
both the the MessagesSt or e strategy (mainly used by the QueueChannel and ClaimCheck patterns)
and the MessageG oupSt or e strategy (mainly used by the Aggregator and Resequencer patterns).

Spring Integration
3.0.5.RELEASE Reference Manual 253

http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration

<bean id="redi sMessageStore" class="0.s.i.redis.store.Redi sMessageSt ore" >
<constructor-arg ref="redi sConnecti onFactory"/>
</ bean>

<i nt:channel id="somePersi stentQueueChannel ">
<i nt:queue nessage-store="redi sMessageStore"/>
<i nt:channel >

<i nt:aggregator input-channel ="i nput Channel " out put - channel =" out put Channel "
message- st ore="r edi sMessageSt ore"/ >

Above is a sample Redi sMessageSt or e configuration that shows its usage by a QueueChannel
and an Aggregator. As you can see it is a simple bean configuration, and it expects a
Redi sConnecti onFact ory as a constructor argument.

By default the Redi sMessageSt or e will use Java serialization to serialize the Message. However if
you want to use a different serialization technique (e.g., JSON), you can provide your own serializer via
the val ueSeri al i zer property of the Redi sMessageSt or e.

22.5 Redis Metadata Store

As of Spring Integration 3.0 a new Redis-based Met adat aSt or e (Section 8.4, “Metadata Store”)
implementation is available. The Redi sMet adat aSt ore can be used to maintain state of a
Met adat aSt or e across application restarts. This new Met adat aSt or e implementation can be used
with adapters such as:

» Section 29.4, “Twitter Inbound Adapters”

» Section 12.2, “Feed Inbound Channel Adapter”
» Section 13.2, “Reading Files”

» Section 14.3, “FTP Inbound Channel Adapter”
» Section 25.5, “SFTP Inbound Channel Adapter”

In order to instruct these adapters to use the new Redi sMet adat aSt or e simply declare a Spring bean
using the bean name metadataStore. The Twitter Inbound Channel Adapter and the Feed Inbound
Channel Adapter will both automatically pick up and use the declared Redi sMet adat aSt or e.

<bean nanme="netadataStore" class="0.s.i.redis.store.netadata. Redi sMet adat aSt ore" >
<constructor-arg nane="connectionFactory" ref="redi sConnecti onFactory"/>
</ bean>

The Redi sMet adataStore is backed by Redi sProperties and interaction with it uses
BoundHashQper at i ons, which, in turn, requires a key for the entire Pr operti es store. In the case
of the Met adat aSt or e, this key plays the role of a region, which is useful in distributed environment,
when several applications use the same Redis server. By default this key has the value Met aDat a.

22.6 RedisStore Inbound Channel Adapter

The RedisStore Inbound Channel Adapter is a polling consumer that reads data from a Redis collection
and sends it as a Message payload.

Spring Integration
3.0.5.RELEASE Reference Manual 254

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/metadata/MetadataStore.html
http://docs.spring.io/spring-data/data-redis/docs/current/api/org/springframework/data/redis/support/collections/RedisProperties.html
http://docs.spring.io/spring-data/data-redis/docs/current/api/org/springframework/data/redis/core/BoundHashOperations.html

Spring Integration

<int-redi s: store-inbound-channel -adapter id="1istAdapter"
connection-factory="redi sConnecti onFact ory"
key="nyCol | ecti on"
channel ="r edi sChannel "
col l ection-type="LIST" >
<int:poller fixed-rate="2000" nax-nmessages-per-poll="10"/>
</int-redis:store-inbound-channel - adapt er >

As you can see from the configuration above you configure a Redis Store Inbound Channel Adapter
using the st or e- i nbound- channel - adapt er element, providing values for various attributes such
as:

» key or key- expr essi on - The name of the key for the collection being used.

» col l ection-type - enumeration of the Collection types supported by this adapter. Supported
Collections are: LIST, SET, ZSET, PROPERTIES, MAP

e connection-factory - reference to an instance of
0. s.data.redis. connection. Redi sConnecti onFact ory

* redi s-tenpl at e - reference to an instance of 0. s. dat a. redi s. core. Redi sTenpl at e

and other attributes that are common across all other inbound adapters (e.g., ‘channel’).

© Note

You cannot set both r edi s-t enpl at e and connecti on-factory.

© Important
By default, the adapter usesa St r i ngRedi sTenpl at e; thisuses St ri ngRedi sSeri al i zers
for keys, values, hash keys and hash values. If your Redis store contains objects that are
serialized with other techniques, you must supply a Redi sTenpl at e configured with appropriate
serializers. For example, if the store is written to using a RedisStore Outbound Adapter that has
itsext ract - payl oad- el enent s setto false, you must provide a Redi sTenpl at e configured
thus:

<bean i d="redi sTenpl ate" cl ass="org. spri ngframework. data. redi s. core. Redi sTenpl ate">
<property nane="connectionFactory" ref="redi sConnecti onFactory"/>
<property name="keySerializer">

<bean cl ass="org. spri ngfranework. data.redi s.serializer.StringRedisSerializer"/>
</ property>
<property name="hashKeySeri al i zer">

<bean cl ass="org. springframework. data.redis.serializer.StringRedisSerializer"/>
</ property>
</ bean>

This uses String serializers for keys and hash keys and the default JDK Serialization serializers
for values and hash values.

The example above is relatively simple and static since it has a literal value for the key. Sometimes,
you may need to change the value of the key at runtime based on some condition. To do that, simply
use key- expr essi on instead, where the provided expression can be any valid SpEL expression.

Also, you may wish to perform some post-processing to the successfully processed data that was read
from the Redis collection. For example; you may want to move or remove the value after its been

Spring Integration
3.0.5.RELEASE Reference Manual 255

Spring Integration

processed. You can do this using the Transaction Synchronization feature that was added with Spring
Integration 2.2.

<int-redi s: store-inbound-channel - adapt er id="zset Adapt er Wt hSi ngl eScor eAndSynchr oni zati on"
connection-factory="redi sConnecti onFact ory"
key- expressi on="'presidents'"
channel =" ot her Redi sChannel "
aut o-startup="fal se"
col l ecti on-type="ZSET" >
<int:poller fixed-rate="1000" nax-messages-per-poll="2">
<int:transactional synchronization-factory="syncFactory"/>
</int:poller>
</int-redis:store-inbound-channel - adapt er >

<int:transaction-synchroni zation-factory id="syncFactory">
<int:after-conmt expression="payl oad.renmoveByScore(18, 18)"/>
</int:transaction-synchroni zation-factory>

<bean i d="transacti onManager" class="0.s.i.transaction.PseudoTransacti onManager"/>

As you can see from the above all, you need to do is declare your poller to be transactional with
a transactional element. This element can reference a real transaction manager (for example
if some other part of your flow invokes JDBC). If you don't have a 'real' transaction, you can use
a o.s.i.transaction. PseudoTransacti onManager which is an implementation of Spring's
Pl at f or nTr ansact i onManager and enables the use of the transaction synchronization features of
the redis adapter when there is no actual transaction.

© Important
This does NOT make the Redis activities themselves transactional, it simply allows the
synchronization of actions to be taken before/after success (commit) or after failure (rollback).

Once your poller is transactional all you need to do is set an instance of the
org.springframework.integration.transaction. Transacti onSynchroni zati onFactory
onthe transacti onal element. Transacti onSynchroni zati onFact ory will create an instance
of the Transacti onSynchr oni zat i on. For your convenience we've exposed a default SpEL-based
Transacti onSynchroni zat i onFact ory which allows you to configure SpEL expressions, with
their execution being coordinated (synchronized) with a transaction. Expressions for before-commit,
after-commit, and after-rollback are supported, together with a channel for each where the evaluation
result (if any) will be sent. For each sub-element you can specify expressi on and/or channel
attributes. If only the channel attribute is present the received Message will be sent there as part of
the particular synchronization scenario. If only the expr essi on attribute is present and the result of an
expression is a non-Null value, a Message with the result as the payload will be generated and sent to
a default channel (NullChannel) and will appear in the logs (DEBUG). If you want the evaluation result
to go to a specific channel add a channel attribute. If the result of an expression is null or void, no
Message will be generated.

For more information about transaction synchronization, see Section C.3, “Transaction
Synchronization”.

22.7 RedisStore Outbound Channel Adapter

The RedisStore Outbound Channel Adapter allows you to write a Message payload to a Redis collection

Spring Integration
3.0.5.RELEASE Reference Manual 256

Spring Integration

<i nt-redi s: st ore-out bound- channel - adapt er i d="redi sLi st Adapter"
col l ecti on-type="LI ST"
channel ="r equest Channel "
key="nyCol | ection" />

As you can see from the configuration above, you configure a Redis Store Outbound Channel Adapter
using the st or e- i nbound- channel - adapt er element, providing values for various attributes such
as:

» key or key- expr essi on - The name of the key for the collection being used.

e extract-payl oad- el enents - If settot r ue (Default) and the payload is an instance of a "multi-
value" object (i.e., Collection or Map) it will be stored using addAll/ putAll semantics. Otherwise, if set
to f al se the payload will be stored as a single entry regardless of its type. If the payload is not an
instance of a "multi-value" object, the value of this attribute is ignored and the payload will always
be stored as a single entry.

* col l ection-type - enumeration of the Collection types supported by this adapter. Supported
Collections are: LIST, SET, ZSET, PROPERTIES, MAP

» map- key- expr essi on - SpEL expression that returns the name of the key for entry being stored.
Only applies if the col | ecti on-type is MAP or PROPERTIES and 'extract-payload-elements' is
false.

* connection-factory - reference to an instance of
0. s.data.redis.connection. Redi sConnecti onFact ory

» redi s-tenpl at e - reference to an instance of 0. s. dat a. redi s. core. Redi sTenpl ate

and other attributes that are common across all other inbound adapters (e.g., 'channel’).

@ Note

You cannot set both r edi s-t enpl at e and connecti on-factory.

© Important

By default, the adapter usesa St r i ngRedi sTenpl at e;thisuses St ri ngRedi sSeri al i zers
for keys, values, hash keys and hash values. However, if ext r act - payl oad- el enent s is set
to false, a Redi sTenpl at e using Stri ngRedi sSeri al i zer s for keys and hash keys, and
JdkSeri al i zati onRedi sSeri al i zer s for values and hash values will be used. With the
JDK serializer, itis important to understand that java serialization is used for all values, regardless
of whether the value is actually a collection or not. If you need more control over the serialization
of values, you may want to consider providing your own Redi sTenpl at e rather than relying
upon these defaults.

The example above is relatively simple and static since it has a literal values for the key and other
attributes. Sometimes you may need to change the values dynamically at runtime based on some
condition. To do that simply use their - expr essi on equivalents (key-expr essi on, nmap- key-
expr essi on etc.) where the provided expression can be any valid SpEL expression.

Spring Integration
3.0.5.RELEASE Reference Manual 257

Spring Integration

23. Resource Support

23.1 Introduction

The Resource Inbound Channel Adapter builds upon Spring's Resour ce abstraction to support greater
flexibility across a variety of actual types of underlying resources, such as a file, a URL, or a class path
resource. Therefore, it's similar to but more generic than the File Inbound Channel Adapter.

23.2 Resource Inbound Channel Adapter

The Resource Inbound Channel Adapter is a polling adapter that creates a Message whose payload
is a collection of Resour ce objects.

Resour ce objects are resolved based on the pattern specified using the patt ern attribute. The
collection of resolved Resour ce objects is then sent as a payload within a Message to the adapter's
channel. That is one major difference between Resource Inbound Channel Adapter and File Inbound
Channel Adapter; the latter buffers File objects and sends a single Fi | e object per Message.

Below is an example of a very simple configuration which will find all files ending with the 'properties’
extension in the f 0o. bar package available on the classpath and will send them as the payload of a
Message to the channel named 'r esul t Channel "

<i nt:resource-inbound- channel - adapt er id="resour ceAdapter"
channel ="resul t Channel "
pattern="cl asspat h: f oo/ bar/*. properties">
<int:poller fixed-rate="1000"/>
</int:resource-inbound-channel - adapt er >

The Resource Inbound Channel Adapter relies on the
org. springframework. core.io.support. ResourcePatternResol ver strategy interface to
resolve the provided pattern. It defaults to an instance of the current Appli cati onCont ext.
However you may provide a reference to an instance of your own implementation of
Resour cePat t er nResol ver using the patt er n-resol ver attribute:

<i nt:resource-inbound- channel - adapt er id="resourceAdapter"
channel ="r esul t Channel "
pattern="cl asspat h: f oo/ bar/*. properties"
pattern-resol ver ="nyPat t er nResol ver" >
<int:poller fixed-rate="1000"/>
</int:resource-inbound-channel - adapt er >

<bean i d="nyPatternResol ver" cl ass="org. exanpl e. M/PatternResol ver"/>

You may have a use case where you need to further filter the collection of resources resolved
by the ResourcePatternResol ver. For example, you may want to prevent resources that
were resolved already from appearing in a collection of resolved resources ever again. On
the other hand your resources might be updated rather often and you do want them to be
picked up again. In other words there is a valid use case for defining an additional filter
as well as disabling filtering altogether. You can provide your own implementation of the
org.springframework.integration.util.CollectionFilter strategy interface:

Spring Integration
3.0.5.RELEASE Reference Manual 258

Spring Integration

public interface CollectionFilter<T> {

Col l ection<T> filter(Collection<T> unfilteredEl ements);

}

As you can see the Col | ecti onFi |l t er receives a collection of un-filtered elements (which would be
Resour ce objects in this case), and it returns a collection of filtered elements of that same type.

If you are defining the adapter via XML but you do not specify a Cfilter
reference, a default implementation of CollectionFilter wil be wused by the
Resource Inbound Channel Adapter. The implementation class of that default filter is
org.springframework.integration.util.AcceptOnceCollectionFilter. It remembers
the elements passed in the previous invocation in order to avoid returning those elements more than
once.

To inject your own implementation of Col | ecti onFi | t er instead, use the fil t er attribute.

<i nt:resource-inbound- channel - adapt er i d="resourceAdapter"
channel ="resul t Channel "
pattern="cl asspat h: foo/ bar/*. properties"
filter="nyFilter">
<int:poller fixed-rate="1000"/>
</int:resource-inbound-channel - adapt er >

<bean id="nyFilter" class="org.exanple. MyFilter"/>

If you don't need any filtering and want to disable even the default Col | ect i onFi | t er strategy, simply
provide an empty value for the filter attribute (e.g., filter="")

Spring Integration
3.0.5.RELEASE Reference Manual 259

Spring Integration

24. RMI Support

24.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple
JVMs. The first section will deal with sending messages over RMI. The second section shows how to
receive messages over RMI. The last section shows how to define rmi channel adapters through the
namespace support.

24.2 Outbound RMI

To send messages from a channel over RMI, simply define an Rm Qut boundGat eway. This gateway
will use Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that
to invoke a remote interface that doesn't use Spring Integration you should use a service activator in
combination with Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean i d="rm Qut Gat eway" class=org.spf.integration.rmn .Rm Qut boundGat eway>
<constructor-arg value="rm://host"/>
<property nanme="repl yChannel " val ue="replies"/>

</ bean>

24.3 Inbound RMI

To receive messages over RMI you need to use a Rm | nboundGat eway. This gateway can be
configured like this

<bean id="rm Qut Gat eway" cl ass=org.spf.integration.rmn .Rm |InboundGateway>
<property nane="request Channel " val ue="requests"/>
</ bean>

© Important
If you use an error Channel on an inbound gateway, it would be normal for the error flow to
return a result (or throw an exception). This is because it is likely that there is a corresponding
outbound gateway waiting for a response of some kind. Consuming a message on the error flow,
and not replying, will result in no reply at the inbound gateway. Exceptions (on the main flow
when there is no errorChannel, or on the error flow) will be propagated to the corresponding
inbound gateway.

24.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

Spring Integration
3.0.5.RELEASE Reference Manual 260

Spring Integration

<int-rm:inbound-gateway id="gatewayWthDefaults" request-channel ="t est Channel "/ >

expect-reply="fal se" request-timeout="123" reply-timeout="456"/>

<int-rm:inbound-gateway id="gatewayWthHost" request-channel ="t est Channel "
regi stry-host="1ocal host"/>

<int-rm:inbound-gateway id="gatewayWthPort" request-channel ="t est Channel "
regi stry-port="1234" error-channel ="rm Error Channel "/ >

<int-rm:inbound-gateway id="gatewayWthExecutorRef" request-channel ="t est Channel "
renot e-i nvocati on- execut or ="i nvocat i onExecut or"/ >

<int-rm:inbound-gateway id="gatewayWthCustonProperties" request-channel ="test Channel "

To configure the outbound gateway you can use the namespace support as well. The following code

shippet shows the different configuration for an outbound rmi gateway.

<int-rm:outbound-gateway id="gateway"
request - channel =" ocal Channel "
r enot e- channel ="t est Channel "
host ="1 ocal host"/ >

Spring Integration
3.0.5.RELEASE Reference Manual

261

Spring Integration

25. SFTP Adapters

Spring Integration provides support for file transfer operations via SFTP.

25.1 Introduction

The Secure File Transfer Protocol (SFTP) is a network protocol which allows you to transfer files
between two computers on the Internet over any reliable stream.

The SFTP protocol requires a secure channel, such as SSH, as well as visibility to a client's identity
throughout the SFTP session.

Spring Integration supports sending and receiving files over SFTP by providing three client side
endpoints: Inbound Channel Adapter, Outbound Channel Adapter, and Outbound Gateway It also
provides convenient namespace configuration to define these client components.

xm ns:int-sftp="http://ww.springframework. org/schema/integration/sftp"
xsi : schemalLocati on="http://ww. spri ngframewor k. org/ schena/ i ntegration/sftp
http://ww. springframework. org/ schema/i ntegration/sftp/spring-integration-sftp.xsd"

25.2 SFTP Session Factory

©® Important
Starting with version 3.0, sessions are no longer cached by default. See Section 25.3, “SFTP
Session Caching”.

Before configuring SFTP adapters, you must configure an SFTP Session Factory. You can configure
the SFTP Session Factory via a regular bean definition:

<beans: bean i d="sft pSessi onFact ory"
cl ass="org. springframework.integration.sftp.session. DefaultSftpSessi onFactory">
<beans: property nane="host" val ue="1ocal host"/>
<beans: property nane="privat eKey" val ue="cl asspat h: META- | NF/ keys/ sft pTest"/ >
<beans: property nane="privat eKeyPassphrase" val ue="springl ntegration"/>
<beans: property nane="port" val ue="22"/>
<beans: property name="user" val ue="kermt"/>

</ beans: bean>

Every time an adapter requests a session object from its Sessi onFact ory, a new SFTP session is
being created. Under the covers, the SFTP Session Factory relies on the JSch library to provide the
SFTP capabilities.

However, Spring Integration also supports the caching of SFTP sessions, please see Section 25.3,
“SFTP Session Caching” for more information.

© Important

JSch supports multiple channels (operations) over a connection to the server. By default, the
Spring Integration session factory uses a separate physical connection for each channel. Since
Spring Integration 3.0, you can configure the session factory (using a boolean constructor arg -
default f al se) to use a single connection to the server and create multiple JSch channels on
that single connection.

Spring Integration
3.0.5.RELEASE Reference Manual 262

http://www.jcraft.com/jsch/

Spring Integration

When using this feature, you must wrap the session factory in a caching session factory, as
described below, so that the connection is not physically closed when an operation completes.

If the cache is reset, the session is disconnected only when the last channel is closed.

The connection will be refreshed if it is found to be disconnected when a new operation obtains
a session.

© Note

If you experience connectivity problems and would like to trace Session creation as well as
see which Sessions are polled you may enable it by setting the logger to TRACE level (e.g.,
log4j.category.org.springframework.integration.file=TRACE). Please also see Section 25.8,
“SFTP/JSCH Logging”.

Now all you need to do is inject this SFTP Session Factory into your adapters.

@ Note

A more practical way to provide values for the SFTP Session Factory would be via Spring's
property placeholder support.

Configuration Properties

Below you will find all properties that are exposed by the Def aul t Sft pSessi onFact ory.

isSharedSession (constructor argument)
When true, a single connection will be used and JSch Channel s will be multiplexed. Defaults to false.
clientVersion

Allows you to set the client version property. It's default depends on the underlying JSch version but it
will look like: SSH-2.0-JSCH-0.1.45

enableDaemonThread

If t rue, all threads will be daemon threads. If set to f al se, normal non-daemon threads will be used
instead. This property will be set on the underlying JSch Sessi on. There, this property will default to
f al se, if not explicitly set.

host

The url of the host you want connect to. Mandatory.

hostKeyAlias

Sets the host key alias, used when comparing the host key to the known hosts list.
knownHosts

Specifies the filename that will be used to create a host key repository. The resulting file has the same
format as OpenSSH's known_hosts file.

password

Spring Integration
3.0.5.RELEASE Reference Manual 263

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring-integration/api/org/springframework/integration/sftp/session/DefaultSftpSessionFactory.html
http://www.jcraft.com/jsch/

Spring Integration

The password to authenticate against the remote host. If a password is not provided, then the privateKey
property is mandatory.

port

The port over which the SFTP connection shall be established. If not specified, this value defaults to
22. If specified, this properties must be a positive number.

privateKey

Allows you to set a Resour ce, which represents the location of the private key used for authenticating
against the remote host. If the privateKey is not provided, then the password property is mandatory.

privateKeyPassphrase
The password for the private key. Optional.

proxy

Allows for specifying a JSch-based Pr oxy. If set, then the proxy object is used to create the connection
to the remote host.

serverAliveCountMax

Specifies the number of server-alive messages, which will be sent without any reply from the server
before disconnecting. If not set, this property defaults to 1.

serverAlivelnterval

Sets the timeout interval (milliseconds) before a server alive message is sent, in case no message is
received from the server.

sessionConfig
Using Pr operti es, you can set additional configuration setting on the underlying JSch Session.
socketFactory

Allows you to passina Socket Fact or y. The socket factory is used to create a socket to the target host.
When a proxy is used, the socket factory is passed to the proxy. By default plain TCP sockets are used.

timeout

The timeout property is used as the socket timeout parameter, as well as the default connection timeout.
Defaults to 0, which means, that no timeout will occur.

user

The remote user to use. Mandatory.

25.3 SFTP Session Caching

© Important
Starting with Spring Integration version 3.0, sessions are no longer cached by default;
the cache-sessi ons attribute is no longer supported on endpoints. You must use a
Cachi ngSessi onFact ory (see below) if you wish to cache sessions.

Spring Integration
3.0.5.RELEASE Reference Manual 264

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
http://epaul.github.com/jsch-documentation/javadoc/com/jcraft/jsch/Proxy.html
http://epaul.github.com/jsch-documentation/javadoc/com/jcraft/jsch/SocketFactory.html

Spring Integration

In versions prior to 3.0, the sessions were cached automatically by default. A cache-sessi ons
attribute was available for disabling the auto caching, but that solution did not provide a way to
configure other session caching attributes. For example, you could not limit on the number of sessions
created. To support that requirement and other configuration options, a Cachi ngSessi onFact ory
was provided. It provides sessi onCacheSi ze and sessi onWi t Ti meout properties. As its name
suggests, the sessi onCacheSi ze property controls how many active sessions the factory will maintain
in its cache (the DEFAULT is unbounded). If the sessi onCacheSi ze threshold has been reached,
any attempt to acquire another session will block until either one of the cached sessions becomes
available or until the wait time for a Session expires (the DEFAULT wait time is Integer.MAX_VALUE).
The sessi onWi t Ti neout property enables configuration of that value.

If you want your Sessions to be cached, simply configure your default Session Factory as described
above and then wrap it in an instance of Cachi ngSessi onFact ory where you may provide those
additional properties.

<bean i d="sft pSessi onFactory"
cl ass="org. springframework.integration.sftp.session. DefaultSftpSessi onFactory">
<property nane="host" val ue="| ocal host"/>

</ bean>

<bean i d="cachi ngSessi onFact ory"
cl ass="org. springframework.integration.file.renpte.session. Cachi ngSessi onFactory">
<constructor-arg ref="sftpSessi onFactory"/>
<property nane="sessi onCacheSi ze" val ue="10"/>
<property nane="sessi onWitTi meout" val ue="1000"/>
</ bean>

In the above example you see a Cachi ngSessi onFact ory created with the sessi onCacheSi ze
set to 10 and the sessi onWai t Ti meout setto 1 second (its value is in millliseconds).

Starting with Spring Integration version 3.0, the Cachi ngConnecti onFactory provides a
reset Cache() method. When invoked, all idle sessions are immediately closed and in-use sessions
are closed when they are returned to the cache. When using i sShar edSessi on=t r ue, the channel
is closed, and the shared session is closed only when the last channel is closed. New requests for
sessions will establish new sessions as necessary.

25.4 RemoteFileTemplate

Starting with Spring Integration version 3.0 a new abstraction is provided over the Sf t pSessi on object.
The template provides methods to send, retrieve (as an | nput St r eam, remove, and rename files.
In addition an execut e method is provided allowing the caller to execute multiple operations on the
session. In all cases, the template takes care of reliably closing the session. For more information, refer
to the javadocs for Renot eFi | eTenpl at e.

25.5 SFTP Inbound Channel Adapter

The SFTP Inbound Channel Adapter is a special listener that will connect to the server and listen for
the remote directory events (e.g., new file created) at which point it will initiate a file transfer.

Spring Integration
3.0.5.RELEASE Reference Manual 265

Spring Integration

<i nt-sftp:inbound-channel - adapter id="sftpAdapterAut oCreat e"
sessi on-fact ory="sftpSessi onFact ory"
channel ="r equest Channel "
filenanme-pattern="*.txt"
renot e-di rect ory="/f oo/ bar"
preserve-tinestanp="true"
local -directory="file:target/foo"
aut o-create-|ocal -directory="true"
I ocal -fil enane- gener at or - expressi on="#t hi s. t oUpper Case() + '.a"'"
local -filter="nmyFilter"
del ete-renmote-fil es="fal se">
<int:poller fixed-rate="1000"/>
</int-sftp:inbound-channel - adapt er >

As you can see from the configuration above you can configure the SFTP Inbound Channel Adapter via
the i nbound- channel - adapt er element while also providing values for various attributes such as
| ocal - di rect ory - where files are going to be transferred TO and r enot e- di r ect or y - the remote
source directory where files are going to be transferred FROM - as well as other attributes including a
sessi on-f act ory reference to the bean we configured earlier.

By default the transferred file will carry the same name as the original file. If you want to override this
behavior you can set the | ocal - fi | enanme- gener at or - expr essi on attribute which allows you
to provide a SpEL Expression to generate the name of the local file. Unlike outbound gateways and
adapters where the root object of the SpEL Evaluation Context is a Message, this inbound adapter does
not yet have the Message at the time of evaluation since that's what it ultimately generates with the
transferred file as its payload. So, the root object of the SpEL Evaluation Context is the original name
of the remote file (String).

Starting with Spring Integration 3.0, you can specify the preserve-ti nest anp attribute (default
f al se); whentrue, the local file's modified timestamp will be set to the value retrieved from the server;
otherwise it will be set to the current time.

Sometimes file filtering based on the simple pattern specified via fi | enane- pattern attribute
might not be sufficient. If this is the case, you can use the fi | enane-regex attribute to specify
a Regular Expression (e.g. fi |l ename-regex=".*\.test$"). And of course if you need complete
control you can use the fil t er attribute to provide a reference to a custom implementation of the
org.springframework.integration.file.filters.FilelListFilter - a strategy interface
for filtering a list of files. This filter determines which remote files are retrieved. You can also combine a
pattern based filter with other filters, such as an Accept OnceFi | eLi st Fi | t er to avoid synchronizing
files that have previously been fetched, by using a Conposi teFil eLi stFilter.

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a system
restart, consider using the Sf t pPer si st ent Accept OnceFi | eLi st Fi | t er instead. This filter stores
the accepted file names in an instance of the Met adat aSt or e strategy (Section 8.4, “Metadata Store”).
This filter matches on the filename and the remote modified time.

© Note

Beginning with version 3.0, you can also specify a filter used to filter the files locally, once they
have been retrieved. The default filter is an Accept OnceFi | eLi st Fi | t er which prevents
processing files with the same name multiple times in the same JVM execution; this can now
be overridden (for example with an Accept Al | Fil eLi st Filter), usingthel ocal -filter
attribute. Previously, the default Accept OnceFi | eLi st Fi | t er could not be overridden.

Spring Integration
3.0.5.RELEASE Reference Manual 266

Spring Integration

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a
system restart, consider using the Fi | eSyst enPer si st ent Accept OnceFil eListFilter
as a local filter instead. This filter stores the accepted file names in an instance of the
Met adat aSt or e strategy (Section 8.4, “Metadata Store”).

© Important
This filter compares the filename and modified timestamp. If you wish to use this technique
to avoid a re-synchronized file from being processed, you should use the preserve-
ti mest anp attribute discussed above.

Please refer to the schema for more detail on these attributes.

It is also important to understand that SFTP Inbound Channel Adapter is a Polling Consumer and
therefore you must configure a poller (either a global default or a local sub-element). Once the file
has been transferred to a local directory, a Message with j ava. i 0. Fi | e as its payload type will be
generated and sent to the channel identified by the channel attribute.

More on File Filtering and Large Files

Sometimes a file that just appeared in the monitored (remote) directory is not complete. Typically such a
file will be written with some temporary extension (e.g., foo.txt.writing) and then renamed after the writing
process completes. As a user in most cases you are only interested in files that are complete and would
like to filter only those files. To handle these scenarios, use filtering support provided viathe f i | enanme-
pattern,fil ename-regex andfilter attributes. If you need a custom filter implementation simply
include a reference in your adapter viathe fi | t er attribute.

<i nt-sftp:inbound-channel - adapter id="sftplnbondAdapter"

channel ="r ecei veChannel "

sessi on-fact ory="sft pSessi onFact ory"

filter="custonFilter"

| ocal -directory="file:/local-test-dir"

renote-directory="/renmote-test-dir">

<int:poller fixed-rate="1000" nmax-nessages-per-poll="10" task-executor="executor"/>
</int-sftp:inbound-channel - adapt er >

<bean id="custonFilter" class="org.foo.CustonFilter"/>

25.6 SFTP Outbound Channel Adapter

The SFTP Outbound Channel Adapteris a special MessageHandl| er that will connect to the remote
directory and will initiate a file transfer for every file it will receive as the payload of an incoming Message.
It also supports several representations of the File so you are not limited to the File object. Similar to
the FTP outbound adapter, the SFTP Outbound Channel Adapter supports the following payloads: 1)
java.io.File - the actual file object; 2) byt e[] - byte array that represents the file contents; 3)
j ava. l ang. Stri ng - text that represents the file contents.

<i nt - sftp: out bound-channel - adapt er i d="sft pQut boundAdapt er"
sessi on-fact ory="sft pSessi onFact ory"
channel ="i nput Channel "
char set =" UTF- 8"
renot e- di rect ory="f oo/ bar"
renot e-fil ename- gener at or - expr essi on="payl oad. get Nane() + '-foo'"/>

Spring Integration
3.0.5.RELEASE Reference Manual 267

Spring Integration

As you can see from the configuration above you can configure the SFTP Outbound Channel Adapter
via the out bound- channel - adapt er element. Please refer to the schema for more detail on these
attributes.

SpEL and the SFTP Outbound Adapter

As with many other components in Spring Integration, you can benefit from the Spring Expression
Language (SpEL) support when configuring an SFTP Outbound Channel Adapter, by specifying two
attributes r enot e-di rect ory- expressi on and renot e-fil enane- gener at or - expr essi on
(see above). The expression evaluation context will have the Message as its root object, thus allowing
you to provide expressions which can dynamically compute the file name or the existing directory path
based on the data in the Message (either from 'payload' or 'headers'). In the example above we are
defining the r enot e- fi | enane- gener at or - expr essi on attribute with an expression value that
computes the file name based on its original name while also appending a suffix: '-foo'.

Avoiding Partially Written Files

One of the common problems, when dealing with file transfers, is the possibility of processing a partial
file - a file might appear in the file system before its transfer is actually complete.

To deal with this issue, Spring Integration SFTP adapters use a very common algorithm where files are
transferred under a temporary name and than renamed once they are fully transferred.

By default, every file that is in the process of being transferred will appear in the file system with an
additional suffix which, by default, is . wri ti ng; this can be changed using the t enporary-fil e-
suf fi x attribute.

However, there may be situations where you don't want to use this technique (for example, if the server
does not permit renaming files). For situations like this, you can disable this feature by setting use-
temporary-fil e-nane to f al se (default is t r ue). When this attribute is f al se, the file is written
with its final name and the consuming application will need some other mechanism to detect that the
file is completely uploaded before accessing it.

25.7 SFTP Outbound Gateway

The SFTP Outbound Gateway provides a limited set of commands to interact with a remote SFTP server.
Commands supported are:

¢ Is (list files)

» get (retrieve file)

* mget (retrieve file(s))

* rm (remove file(s))

* mv (move/rename file)

* put (send file)

* mput (send multiple files)

Spring Integration
3.0.5.RELEASE Reference Manual 268

Spring Integration

Is lists remote file(s) and supports the following options:

» -1 -just retrieve a list of filenames, default is to retrieve a list of Fi | el nf o objects.
e -a-include all files (including those starting with '.")

» -f-do not sort the list

 -dirs - include directories (excluded by default)

* -links - include symbolic links (excluded by default)

-R - list the remote directory recursively
In addition, filename filtering is provided, in the same manner as the i nbound- channel - adapt er.

The message payload resulting from an Is operation is a list of file names, or a list of Fi | el nf o objects.
These objects provide information such as modified time, permissions etc.

The remote directory that the Is command acted on is provided inthef i | e_r enot eDi r ect or y header.

When using the recursive option (- R), the f i | eNarnre includes any subdirectory elements, representing
a relative path to the file (relative to the remote directory). If the - di r s option is included, each recursive
directory is also returned as an element in the list. In this case, it is recommended that the - 1 is not
used because you would not be able to determine files Vs. directories, which is achievable using the
Fi | el nf o objects.

get

get retrieves a remote file and supports the following option:

» -P - preserve the timestamp of the remote file

The message payload resulting from a get operation is a Fi | e object representing the retrieved file.

The remote directory is provided inthe fi | e_r enot eDi r ect or y header, and the filename is provided
inthefil e_renoteFil e header.

mget

mget retrieves multiple remote files based on a pattern and supports the following option:
» -P - preserve the timestamps of the remote files

» -x - Throw an exception if no files match the pattern (otherwise an empty list is returned)

The message payload resulting from an mget operation is a Li st <Fi | e> object - a List of File objects,
each representing a retrieved file.

The remote directory is provided in the fil e_renot eDi rect ory header, and the pattern for the
filenames is provided inthe fi | e_r enot eFi | e header.

@ Notes for when using recursion (- R)

The pattern is ignored, and * is assumed. By default, the entire remote tree is retrieved.
However, files in the tree can be filtered, by providing a Fi | eLi st Fi | t er; directories in

Spring Integration
3.0.5.RELEASE Reference Manual 269

Spring Integration

the tree can also be filtered this way. A Fil eLi stFilter can be provided by reference
or by filenane-pattern or fil enane-regex attributes. For example, fil enamne-
regex="(subbDir|.*1. txt)" will retrieve all files ending with 1. t xt in the remote directory
and the subdirectory subDir. If a subdirectory is filtered, no additional traversal of that
subdirectory is performed.

The - di r s option is not allowed (the recursive mget uses the recursive | s to obtain the directory
tree and the directories themselves cannot be included in the list).

Typically, you would use the #renoteDirectory variable in the | ocal -directory-
expr essi on so that the remote directory structure is retained locally.

put

put sends a file to the remote server; the payload of the message canbe aj ava.io. Fil e,abyte[]
orasString. Arenote-fil enane-generator (or expression) is used to name the remote file.
Other available attributes include r enot e- di r ect ory, t enpor ar y- r enot e- di r ect ory (and their
*- expr essi on) equivalents, use-t enporary-fil e- name, and aut o- cr eat e- di r ect ory. Refer
to the schema documentation for more information.

The message payload resulting from a put operation is a St ri ng representing the full path of the file
on the server after transfer.

mput

mput sends multiple files to the server and supports the following option:

* -R - Recursive - send all files (possibly filtered) in the directory and subdirectories
The message payload must be aj ava. i 0. Fi | e representing a local directory.

The same attributes as the put command are supported. In addition, files in the local directory can be
filtered with one of nput - patt ern, nput - r egex or nput - fi | t er. The filter works with recursion,
as long as the subdirectories themselves pass the filter. Subdirectories that do not pass the filter are
not recursed.

The message payload resulting from an mget operation is a Li st <St ri ng> object - a List of remote
file paths resulting from the transfer.

rm
The rm command has no options.

The message payload resulting from an rm operation is Boolean. TRUE if the remove was successful,
Boolean.FALSE otherwise. The remote directory is provided inthe fi | e_r enot eDi r ect or y header,
and the filename is provided in the f i | e_r enot eFi | e header.

mv
The mv command has no options.

The expression attribute defines the "from" path and the rename-expression attribute defines the "to"
path. By default, the rename-expression is header s[' fi |l e_renanmeTo'] . This expression must not
evaluate to null, or an empty Stri ng. If necessary, any remote directories needed will be created.
The payload of the result message is Bool ean. TRUE. The original remote directory is provided in the

Spring Integration
3.0.5.RELEASE Reference Manual 270

Spring Integration

file_renoteDirectory header, and the filename is provided in the fi |l e_renot eFi | e header.
The new path isinthe fil e_r enaneTo header.

Additional Information

The get and mget commands support the local-filename-generator-expression attribute. It defines
a SpEL expression to generate the name of local file(s) during the transfer. The root object of
the evaluation context is the request Message but, in addition, the r enot eFi | eNane variable is
also available, which is particularly useful for mget, for example: | ocal - fi | enane- gener at or -
expr essi on="#r enot eFi | eNane. t oUpper Case() + headers. f 00"

The get and mget commands support the local-directory-expression attribute. It defines a SpEL
expression to generate the name of local directory(ies) during the transfer. The root object of the
evaluation context is the request Message but, in addition, the r enot eDi r ect ory variable is also
available, which is particularly useful for mget, for example: | ocal - di r ect ory- expr essi on=""/
tnp/local/' + #renmoteDirectory.toUpperCase() + headers.foo0". This attribute is
mutually exclusive with local-directory attribute.

For all commands, the PATH that the command acts on is provided by the 'expression’ property of
the gateway. For the mget command, the expression might evaluate to *', meaning retrieve all files,
or 'somedirectory/*' etc.

Here is an example of a gateway configured for an Is command...

<int-ftp: out bound-gat eway id="gat ewayl"
sessi on-factory="ft pSessi onFact ory"
request - channel ="i nbound1"
conmand="1s"
command- opt i ons="-1"
expr essi on="payl oad"
repl y-channel ="toSplitter"/>

The payload of the message sent to the toSplitter channel is a list of String objects containing the
filename of each file. If the command- opt i ons was omitted, it would be a list of Fi | el nf o objects.
Options are provided space-delimited, e.g. conmand-opti ons="-1 -dirs -1inks".

25.8 SFTP/JSCH Logging

Since we use JSch libraries (http://www.jcraft.com/jsch/) to provide SFTP support, at times you may
require more information from the JSch API itself, especially if something is not working properly (e.g.,
Authentication exceptions). Unfortunately JSch does not use commons-logging but instead relies on
custom implementations of theircom j craft . j sch. Logger interface. As of Spring Integration 2.0.1,
we have implemented this interface. So, now all you need to do to enable JSch logging is to configure
your logger the way you usually do. For example, here is valid configuration of a logger using Log4J.

| 0og4j . cat egory. com jcraft.jsch=DEBUG

Spring Integration
3.0.5.RELEASE Reference Manual 271

Spring Integration

26. Stream Support

26.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to
a Stream as a message payload to a consumer. Instead messages are created from data that is read
from an input stream and message payloads are written to an output stream one by one.

26.2 Reading from streams

Spring Integration provides two adapters for streams. Both Byt eSt r eanReadi ngMessageSour ce
and Char act er St r eanReadi ngMessageSour ce implement MessageSour ce. By configuring one
of these within a channel-adapter element, the polling period can be configured, and the Message
Bus can automatically detect and schedule them. The byte stream version requires an | nput St r eam
and the character stream version requires a Reader as the single constructor argument. The
Byt eSt r eanrReadi ngMessageSour ce also accepts the 'bytesPerMessage' property to determine
how many bytes it will attempt to read into each Message. The default value is 1024

<bean cl ass="org. spri ngfranework.integration.stream Byt eSt reanReadi ngMessageSour ce" >
<constructor-arg ref="sonel nput Streani/>
<property nane="byt esPer Message" val ue="2048"/>

</ bean>

<bean cl ass="org. springframework.integration.stream Charact er St reanReadi ngMessageSour ce" >
<constructor-arg ref="soneReader"/>
</ bean>

26.3 Writing to streams

For target streams, there are also two implementations: Byt eSt reamW i t i ngMessageHandl er
and Char acter StreanWiti ngMessageHandl| er. Each requires a single constructor argument -
Qut put St r eam for byte streams or Wi ter for character streams, and each provides a second
constructor that adds the optional 'bufferSize'. Since both of these ultimately implement the
MessageHandl er interface, they can be referenced from a channel-adapter configuration as described
in more detail in Section 3.3, “Channel Adapter”.

<bean cl ass="org. spri ngfranework.integration.stream ByteStreaniti ngMessageHandl| er" >
<constructor-arg ref="someQut put Streani/>
<constructor-arg val ue="1024"/>

</ bean>

<bean cl ass="org. springframework.integration.stream CharacterStreanm/itingMessageHandl er">
<constructor-arg ref="someWiter"/>
</ bean>

26.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined.
The following schema locations are needed to use it.

Spring Integration
3.0.5.RELEASE Reference Manual 272

Spring Integration

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns:int-streans"http://ww. springfranework. org/schena/i ntegration/streant
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i nt egrati on/ stream
http://ww. spri ngfranewor k. or g/ schema/ i ntegrati on/streani spring-integration-

stream xsd" >

To configure the inbound channel adapter the following code snippet shows the different configuration
options that are supported.

<i nt-stream stdi n-channel - adapt er i d="adapter Wt hDef aul t Charset"/>

<i nt - stream st di n-channel - adapt er i d="adapterWthProvi dedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound channel adapters.

<i nt - st ream st dout - channel - adapt er i d="st dout Adapt er W t hDef aul t Char set "
channel ="t est Channel "/ >

<i nt - st ream st dout - channel - adapt er i d="st dout Adapt er Wt hProvi dedChar set" char set =" UTF- 8"
channel ="t est Channel "/ >

<i nt-stream stderr-channel - adapter id="stderrAdapter" channel ="t est Channel "/ >

<i nt-stream stdout-channel - adapter id="new i neAdapter" append-new i ne="true"
channel ="t est Channel "/ >

Spring Integration
3.0.5.RELEASE Reference Manual 273

Spring Integration

27. Syslog Support

27.1 Introduction

Spring Integration 2.2 introduced the Syslog transformer Sysl ogToMapTransforner. This
transformer, together with a UDP or TCP inbound adapter could be used to receive and analyze syslog
records from other hosts. The transformer creates a message payload containing a map of the elements
from the syslog message.

Spring Integration 3.0 introduced convenient namespace support for configuring a Syslog inbound
adapter in a single element.

27.2 Syslog <inbound-channel-adapter>

This element encompases a UDP or TCP inbound channel adapter and a MessageConverter to
convert the Syslog message to a Spring Integration message. The Def aul t MessageConvert er
delegates to the Sysl ogToMapTr ansf or ner, creating a message with its payload being the Map of
Syslog fields. In addition, all fields except the message are also made available as headers in the
message, prefixed with sysl og_.

Example Configuration

<i nt - sysl og: i nbound- channel - adapt er id="sysl ogl n" port="1514" />

A UDP adapter that sends messages to channel syslogln (the adapter bean name is
sysl ogl n. adapt er). The adapter listens on port 1514.

<i nt - sysl og: i nbound- channel - adapt er i d="sysl ogl n"
channel ="fronBysl og" port="1514" />

A UDP adapter that sends message to channel f r onBysl og (the adapter bean name is sysl ogl n).
The adapter listens on port 1514.

<i nt - sysl og: i nbound- channel - adapt er id="bar" protocol ="tcp" port="1514" />

A TCP adapter that sends messages to channel syslogln (the adapter bean name is
sysl ogl n. adapt er). The adapter listens on port 1514.

Note the addition of the pr ot ocol attribute. This attribute can contain udp or t cp; it defaults to udp.

<i nt - sysl og: i nbound- channel - adapt er i d="udpSysl| og"
channel ="f r onSysl| og"
aut o-startup="fal se"
phase="10000"
converter="converter"
send-ti meout =" 1000"
error-channel ="errors">
<int-syslog:udp-attributes port="1514" | ookup-host="fal se" />
</int-sysl og: i nbound- channel - adapt er >

A UDP adapter that sends messages to channel fronBSyslog. It also shows the
Smart Li fecyl e attributes auto-startup and phase. It has a reference to a custom
org. springfranmework. i ntegration. sysl og. MessageConvert er withid converter and an

Spring Integration
3.0.5.RELEASE Reference Manual 274

Spring Integration

error - channel . Also notice the udp- at t ri but es child element. You can set various UDP attributes
here, as defined in Table 28.2, “UDP Inbound Channel Adapter Attributes”.

© Note

When using the udp- attri but es element, the port attribute must be provided there rather
than on the i nbound- channel - adapt er element itself.

<i nt - sysl og: i nbound- channel - adapt er i d="TcpSysl og"
protocol ="t cp"

channel ="f r onSysl| og"

connection-factory="cf" />

<int-ip:tcp-connection-factory id="cf" type="server" port="1514" />

A TCP adapter that sends messages to channel f r onSysl og. It also shows how to reference an
externally defined connection factory, which can be used for advanced configuration (socket keep alive
etc). For more information, see Section 28.3, “TCP Connection Factories”.

@ Note

The externally configured connecti on-factory must be of type server and, the port is
defined there rather than on the i nbound- channel - adapt er element itself.

Spring Integration
3.0.5.RELEASE Reference Manual 275

Spring Integration

28. TCP and UDP Support

Spring Integration provides Channel Adapters for receiving and sending messages over internet
protocols. Both UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are
provided. Each adapter provides for one-way communication over the underlying protocol. In addition,
simple inbound and outbound tcp gateways are provided. These are used when two-way communication
is needed.

28.1 Introduction

Two flavors each of UDP inbound and outbound channel adapters are
provided Uni cast Sendi ngMessageHandl er sends a datagram packet to a single
destination. Uni cast Recei vi ngChannel Adapt er receives incoming datagram packets.
Mul ti cast Sendi ngMessageHand!| er sends (broadcasts) datagram packets to a multicast address.
Mul ti cast Recei vi ngChannel Adapt er receives incoming datagram packets by joining to a
multicast address.

TCP inbound and outbound channel adapters are provided TcpSendi ngMessageHandl| er sends
messages over TCP. TcpRecei vi ngChannel Adapt er receives messages over TCP.

An inbound TCP gateway is provided; this allows for simple request/response processing. While the
gateway can support any number of connections, each connection can only process serially. The thread
that reads from the socket waits for, and sends, the response before reading again. If the connection
factory is configured for single use connections, the connection is closed after the socket times out.

An outbound TCP gateway is provided; this allows for simple request/response processing. If the
associated connection factory is configured for single use connections, a new connection is immediately
created for each new request. Otherwise, if the connection is in use, the calling thread blocks on the
connection until either a response is received or a timeout or I/O error occurs.

The TCP and UDP inbound channel adapters, and the TCP inbound gateway, support the "error-
channel" attribute. This provides the same basic functionality as described in the section called “Enter
the GatewayProxyFactoryBean”.

28.2 UDP Adapters

<i nt-i p: udp- out bound- channel - adapt er i d="udpQut"
host =" sonehost "
port="11111"
mul ti cast="fal se"
channel =" exanpl eChannel "/ >

A simple UDP outbound channel adapter.

Q Tip

When setting multicast to true, provide the multicast address in the host attribute.

UDP is an efficient, but unreliable protocol. Two attributes are added to improve reliability. When check-
length is set to true, the adapter precedes the message data with a length field (4 bytes in network byte
order). This enables the receiving side to verify the length of the packet received. If a receiving system
uses a buffer that is too short the contain the packet, the packet can be truncated. The length header
provides a mechanism to detect this.

Spring Integration
3.0.5.RELEASE Reference Manual 276

Spring Integration

<i nt-i p: udp- out bound- channel - adapt er i d="udpQut"

host =" sonehost "
port="11111"

mul ti cast="fal se"
check-1 engt h="true"

channel =" exanpl eChannel "/ >

An outbound channel adapter that adds length checking to the datagram packets.

o

Tip
The recipient of the packet must also be configured to expect a length to precede the actual data.
For a Spring Integration UDP inbound channel adapter, set its check- | engt h attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used.
The receiver must send an acknowledgment to the sender within a specified time.

<i nt-i p: udp- out bound- channel - adapt er i d="udpQut "

host =" sonmehost "
port="11111"

mul ti cast="fal se"
check-1 engt h="true"

acknow edge="true"
ack-host ="t hi shost"

ack- port="22222"
ack-ti meout ="10000"

channel =" exanpl eChannel "/ >

An outbound channel adapter that adds length checking to the datagram packets and waits for an
acknowledgment.

o

o

Tip

Setting acknowledge to true implies the recipient of the packet can interpret the header added
to the packet containing acknowledgment data (host and port). Most likely, the recipient will be
a Spring Integration inbound channel adapter.

Tip
When multicast is true, an additional attribute min-acks-for-success specifies how many
acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

<i nt-i p: udp-i nbound- channel - adapt er i d="udpRecei ver"

channel =" udpQut Channel "
port="11111"

recei ve- buf f er - si ze="500"
mul ticast="fal se"

check-1 ength="true"/>

A basic unicast inbound udp channel adapter.

<i nt-i p: udp-i nbound- channel - adapt er i d="udpRecei ver"

channel =" udpQut Channel "
port="11111"

recei ve- buf f er - si ze="500"

mul ticast="true"

mul ticast-address="225.6.7.8"
check-1 ength="true"/>

Spring Integration

3.0.5.RELEASE Reference Manual 277

Spring Integration

A basic multicast inbound udp channel adapter.

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to hostnames
for use in message headers. In environments where DNS is not configured, this can cause delays. This
default behavior can be overridden by setting the | ookup- host attribute to "false".

28.3 TCP Connection Factories

For TCP, the configuration of the underlying connection is provided using a Connection Factory. Two
types of connection factory are provided; a client connection factory and a server connection factory.
Client connection factories are used to establish outgoing connections; Server connection factories
listen for incoming connections.

A client connection factory is used by an outbound channel adapter but a reference to a client connection
factory can also be provided to an inbound channel adapter and that adapter will receive any incoming
messages received on connections created by the outbound adapter.

A server connection factory is used by an inbound channel adapter or gateway (in fact the connection
factory will not function without one). A reference to a server connection factory can also be provided
to an outbound adapter; that adapter can then be used to send replies to incoming messages to the
same connection.

@ Tip

Reply messages will only be routed to the connection if the reply contains the header
ip_connection_id that was inserted into the original message by the connection factory.

@ Tip

This is the extent of message correlation performed when sharing connection factories between
inbound and outbound adapters. Such sharing allows for asynchronous two-way communication
over TCP. By default, only payload information is transferred using TCP; therefore any message
correlation must be performed by downstream components such as aggregators or other
endpoints. Support for transferring selected headers was introduced in version 3.0. For more
information refer to Section 28.8, “TCP Message Correlation”.

A maximum of one adapter of each type may be given a reference to a connection factory.

Connection factories using j ava. net. Socket and j ava. ni 0. channel . Socket Channel are
provided.

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"/>

A simple server connection factory that uses j ava. net . Socket connections.

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"
usi ng-ni o="true"/>

A simple server connection factory that uses j ava. ni 0. channel . Socket Channel connections.

Spring Integration
3.0.5.RELEASE Reference Manual 278

Spring Integration

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port="1234"
si ngl e-use="true"
so-ti meout ="10000"/ >

A client connection factory that uses j ava. net . Socket connections and creates a new connection
for each message.

<int-ip:tcp-connection-factory id="client"
type="client"
host ="| ocal host "
port="1234"
si ngl e-use="t rue"
so-ti meout ="10000"
usi ng- ni o=t rue/ >

A client connection factory that uses j ava. ni 0. channel . Socket connections and creates a new
connection for each message.

TCP is a streaming protocol; this means that some structure has to be provided to data transported
over TCP, so the receiver can demarcate the data into discrete messages. Connection factories are
configured to use (de)serializers to convert between the message payload and the bits that are sent
over TCP. This is accomplished by providing a deserializer and serializer for inbound and outbound
messages respectively. A number of standard (de)serializers are provided.

The ByteArrayCrl fSerializer, converts a byte array to a stream of bytes followed by carriage
return and linefeed characters (\r\n). This is the default (de)serializer and can be used with telnet as
a client, for example.

The Byt eAr raySi ngl eTer ni nat or Seri al i zer, converts a byte array to a stream of bytes followed
by a single termination character (default 0x00).

The Byt eArrayLf Seri al i zer, converts a byte array to a stream of bytes followed by a single linefeed
character (0x0a).

The Byt eArraySt xEt xSeri al i zer, converts a byte array to a stream of bytes preceded by an STX
(0x02) and followed by an ETX (0x03).

The Byt eArr ayLengt hHeader Seri al i zer, converts a byte array to a stream of bytes preceded by
a binary length in network byte order (big endian). This a very efficient deserializer because it does not
have to parse every byte looking for a termination character sequence. It can also be used for payloads
containing binary data; the above serializers only support text in the payload. The default size of the
length header is 4 bytes (Integer), allowing for messages up to 2**31-1 bytes. However, the length
header can be a single byte (unsigned) for messages up to 255 bytes, or an unsigned short (2 bytes) for
messages up to 2**16 bytes. If you need any other format for the header, you can subclass this class
and provide implementations for the readHeader and writeHeader methods. The absolute maximum
data size supported is 2**31-1 bytes.

The Byt eArrayRawSeri al i zer, converts a byte array to a stream of bytes and adds no additional
message demarcation data; with this (de)serializer, the end of a message is indicated by the client
closing the socket in an orderly fashion. When using this serializer, message reception will hang until the
client closes the socket, or atimeout occurs; a timeout will NOT result in a message. When this serializer
is being used, and the client is a Spring Integration application, the client must use a connection factory

Spring Integration
3.0.5.RELEASE Reference Manual 279

Spring Integration

that is configured with single-use=true - this causes the adapter to close the socket after sending the
message; the serializer will not, itself, close the connection. This serializer should only be used with
connection factories used by channel adapters (not gateways), and the connection factories should be
used by either an inbound or outbound adapter, and not both.

Each of these is a subclass of Abstract Byt eArraySerial i zer
which implements both org. springframework. core.serializer.Serializer and
org. springframework. core. serializer.Deserializer. For backwards compatibility,
connections using any subclass of Abst r act Byt eArraySeri al i zer for serialization will also accept
a String which will be converted to a byte array first. Each of these (de)serializers converts an input
stream containing the corresponding format to a byte array payload.

To avoid memory exhaustion due to a badly behaved client (one that does not adhere to the protocol of
the configured serializer), these serializers impose a maximum message size. If the size is exceeded
by an incoming message, an exception will be thrown. The default maximum message size is 2048
bytes, and can be increased by setting the maxMessageSi ze property. If you are using the default
(de)serializer and wish to increase the maximum message size, you must declare it as an explicit bean
with the property set and configure the connection factory to use that bean.

The MapJsonSeri al i zer uses a Jackson Obj ect Mapper to convert between a Map and JSON.
This can be used in conjunction with a MessageConverti ngTcpMessageMapper and a
MapMessageConvert er to transfer selected headers and the payload in a JSON format.

© Note

The Jackson Obj ect Mapper cannot demarcate messages in the stream. Therefore, the
MapJsonSeri al i zer needs to delegate to another (de)serializer to handle message
demarcation. By default, a Byt eArrayLf Seri al i zer is used, resulting in messages with the
format <j son><LF> on the wire, but you can configure it to use others instead.

The final standard serializer is or g. spri ngf ramewor k. core. seri al i zer. Def aul t Seri al i zer
which can be used to convert Serializable objects using java serialization.
org.springframework. core.serializer.Defaul tDeserializer is provided for inbound
deserialization of streams containing Serializable objects.

To implement a custom (de)serializer pair, implement the
org. springframework. core.serializer.Deserializer and
org. springframework. core.serializer.Serializer interfaces.

If you do not wish to use the default (de)serializer (Byt eArrayCr Lf Seri al i zer), you must supply
serializer anddeserial i zer attributes on the connection factory (example below).

<bean id="javaSerializer"

cl ass="org. springframework. core.serializer.DefaultSerializer" />
<bean id="j avaDeseri alizer"

cl ass="org. springframework. core. serializer.Defaul tDeserializer" />

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"
deserializer="javaDeserializer"
serializer="javaSerializer"/>

A server connection factory that uses j ava. net . Socket connections and uses Java serialization on
the wire.

Spring Integration
3.0.5.RELEASE Reference Manual 280

Spring Integration

For full details of the attributes available on connection factories, see the reference at the end of this
section.

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to hostnames
for use in message headers. In environments where DNS is not configured, this can cause connection
delays. This default behavior can be overridden by setting the | ookup- host attribute to "false".

© Note

It is possible to modify the creation of and/or attributes of sockets - see Section 28.10, “SSL/TLS
Support”. As is noted there, such modifications are possible whether or not SSL is being used.

TCP Caching Client Connection Factory

As noted above, TCP sockets cam be 'single-use’ (one request/response) or shared. Shared sockets do
not perform well with outbound gateways, in high-volume environments, because the socket can only
process one request/response at a time.

To improve performance, users could use collaborating channel adapters instead of gateways, but that
requires application-level message correlation. See Section 28.8, “TCP Message Correlation"for more
information.

Spring Integration 2.2 introduced a caching client connection factory, where a pool of shared sockets is
used, allowing a gateway to process multiple concurrent requests with a pool of shared connections.

TCP Failover Client Connection Factory

It is now possible to configure a TCP connection factory that supports failover to one or more other
servers. When sending a message, the factory will iterate over all its configured factories until either the
message can be sent, or no connection can be found. Initially, the first factory in the configured list is
used; if a connection subsequently fails the next factory will become the current factory.

<bean id="fail CF" class="0.s.i.ip.tcp.connection. FailoverC ientConnectionFactory">
<const ruct or - ar g>
<list>

<ref bean="clientFactoryl"/>
<ref bean="clientFactory2"/>

</list>
</ const ructor - ar g>
</ bean>
© Note

When using the failover connection factory, the singleUse property must be consistent between
the factory itself and the list of factories it is configured to use.

28.4 TCP Connection Interceptors

Connection factories can be configured with a reference to a
TcpConnecti onl nt er cept or Fact or yChai n. Interceptors can be used to add behavior to
connections, such as negotiation, security, and other setup. No interceptors are currently provided by
the framework but, for an example, see the | nt er cept edShar edConnect i onTest s in the source
repository.

The Hel | oWor | dI nt er cept or used in the test case works as follows:

Spring Integration
3.0.5.RELEASE Reference Manual 281

Spring Integration

When configured with a client connection factory, when the first message is sent over a connection that
is intercepted, the interceptor sends 'Hello' over the connection, and expects to receive 'world!". When
that occurs, the negotiation is complete and the original message is sent; further messages that use the
same connection are sent without any additional negotiation.

When configured with a server connection factory, the interceptor requires the first message to be 'Hello'
and, if it is, returns 'world!". Otherwise it throws an exception causing the connection to be closed.

All TcpConnecti on methods are intercepted. Interceptor instances are created for each
connection by an interceptor factory. If an interceptor is stateful, the factory should create a
new instance for each connection. Interceptor factories are added to the configuration of an
interceptor factory chain, which is provided to a connection factory using the i nterceptor-
factory attribute. Interceptors must implement the TcpConnecti onl nterceptor interface;
factories must implement the TcpConnect i onl nt er cept or Fact ory interface. A convenience class
Abst ract TcpConnecti onl nt er cept or is provided with passthrough methods; by extending this
class, you only need to implement those methods you wish to intercept.

<bean i d="hel | oWor | dl nt er cept or Fact ory"

class="o0.s.i.ip.tcp.connection. TcpConnecti onl nt er cept or Fact or yChai n">
<property nanme="interceptors">
<array>
<bean class="0.s.i.ip.tcp.connection.Hell oWrl dlnterceptorFactory"/>
</ array>
</ property>
</ bean>

<int-ip:tcp-connection-factory id="server"
type="server"
port="12345"
usi ng-ni o="true"
si ngl e-use="true"
i nterceptor-factory-chai n="hel | oWor| dl nt er cept or Factory"/ >

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host"
port="12345"
singl e-use="true"
so-ti meout =" 100000"
usi ng-ni o="true"
i nterceptor-factory-chai n="hel | oWor| dl nt er cept or Factory"/ >

Configuring a connection interceptor factory chain.

28.5 TCP Connection Events

Beginning with version 3.0, changes to TcpConnect i ons are reported by TcpConnect i onEvent s.
TcpConnecti onEvent is a subclass of Applicati onEvent and thus can be received by any
Appl i cati onLi st ener defined in the Appl i cati onCont ext .

For convenience, a <int-ip:tcp-connection-event-inbound-channel -adapter/> is
provided. This adapter will receive all TcpConnecti onEvents (by default), and send them
to its channel. The adapter accepts an event-type attribute, which is a list of class
names for events that should be sent. This can be used if an application subclasses
TcpConnecti onEvent for some reason, and wishes to only receive those events. Omitting
this attribute will mean that all TcpConnecti onEvents will be sent. You can also use this

Spring Integration
3.0.5.RELEASE Reference Manual 282

Spring Integration

to limit which TcpConnecti onEvents you are interested in (TcpConnecti onQpenEvent,
TcpConnect i onCl oseEvent, or TcpConnect i onExcept i onEvent).

TcpConnect i onEvent s have the following properties:

e connecti onl d - the connection identifier which can be used in a message header to send data to
the connection

e connecti onFact or yName - the bean nhame of the connection factory the connection belongs to
e t hrowabl e - the Thr owabl e (for TcpConnecti onExcepti onEvent events only)

» sour ce - the TcpConnect i on; this can be used, for example, to determine the remote IP Address
with get Host Addr ess() (cast required)

28.6 TCP Adapters

TCP inbound and outbound channel adapters that utilize the above connection factories are provided.
These adapters have attributes connect i on-f act ory and channel . The channel attribute specifies
the channel on which messages arrive at an outbound adapter and on which messages are placed
by an inbound adapter. The connection-factory attribute indicates which connection factory is to be
used to manage connections for the adapter. While both inbound and outbound adapters can share
a connection factory, server connection factories are always 'owned' by an inbound adapter; client
connection factories are always ‘owned' by an outbound adapter. One, and only one, adapter of each
type may get a reference to a connection factory.

Spring Integration
3.0.5.RELEASE Reference Manual 283

Spring Integration

<bean id="javaSerializer"

cl ass="org. springframework. core. serializer.Defaul tSerializer"/>
<bean id="javaDeseri alizer"

cl ass="org. springframework. core. serializer.Defaul tDeserializer"/>

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"
deserial i zer="j avaDeseri al i zer"
serializer="javaSerializer"
usi ng-ni o="true"
singl e-use="true"/>

<int-ip:tcp-connection-factory id="client"
type="client"
host ="| ocal host "
port="#{server.port}"
si ngl e-use="true"
so-ti meout ="10000"
deseri al i zer="j avaDeseri al i zer"
serializer="javaSerializer"/>

<i nt:channel id="input" />

<int:channel id="replies">
<i nt:queue/ >
</int:channel >

<i nt-ip:tcp-out bound- channel - adapt er i d="out boundd i ent "
channel ="i nput"
connection-factory="client"/>

<i nt-ip:tcp-inbound-channel - adapter id="i nboundd i ent"
channel ="repl i es"
connection-factory="client"/>

<int-ip:tcp-inbound-channel - adapter id="i nboundServer"
channel ="1 oop"
connection-factory="server"/>

<i nt-ip:tcp-out bound- channel - adapt er i d="out boundSer ver"
channel =" oop"

connection-factory="server"/>

<i nt:channel id="Ioop"/>

In this configuration, messages arriving in channel 'input' are serialized over connections created
by ‘client' received at the server and placed on channel 'loop'. Since 'loop' is the input channel for
'‘outboundServer' the message is simply looped back over the same connection and received by
'inboundClient’ and deposited in channel 'replies’. Java serialization is used on the wire.

Normally, inbound adapters use a type="server" connection factory, which listens for incoming
connection requests. In some cases, it is desireable to establish the connection in reverse, whereby the
inbound adapter connects to an external server and then waits for inbound messages on that connection.

This topology is supported by using client-mode="true" on the inbound adapter. In this case, the
connection factory must be of type ‘client’ and must have single-use set to false.

Two additional attributes are used to support this mechanism: retry-interval specifies (in milliseconds)
how often the framework will attempt to reconnect after a connection failure. scheduler is used to supply

Spring Integration
3.0.5.RELEASE Reference Manual 284

Spring Integration

a TaskSchedul er used to schedule the connection attempts, and to test that the connection is still
active.

For an outbound adapter, the connection is normally established when the first message is sent. client-
mode="true" on an outbound adapter will cause the connection to be established when the adapter
is started. Adapters are automatically started by default. Again, the connection factory must be of
type client and have single-use set to false and retry-interval and scheduler are also supported. If a
connection fails, it will be re-established either by the scheduler or when the next message is sent.

For both inbound and outbound, if the adapter is started, you may force the adapter to establish
a connection by sending a <control-bus /> command: @dapter_id.retryConnection() and
examine the current state with @dapt er _i d. i sConnect ed().

28.7 TCP Gateways

The inbound TCP gateway Tcpl nboundGateway and outbound TCP gateway
TcpQut boundGat eway use a server and client connection factory respectively. Each connection can
process a single request/response at a time.

The inbound gateway, after constructing a message with the incoming payload and sending it to the
requestChannel, waits for a response and sends the payload from the response message by writing
it to the connection.

© Note

For the inbound gateway, care must be taken to retain, or populate, the ip_connectionld header
because it is used to correlate the message to a connection. Messages that originate at the
gateway will automatically have the header set. If the reply is constructed as a new message,
you will need to set the header. The header value can be captured from the incoming message.

As with inbound adapters, inbound gateways normally use a type="server" connection factory, which
listens for incoming connection requests. In some cases, it is desireable to establish the connection in
reverse, whereby the inbound gateway connects to an external server and then waits for, and replies
to, inbound messages on that connection.

This topology is supported by using client-mode="true" on the inbound gateway. In this case, the
connection factory must be of type ‘client’ and must have single-use set to false.

Two additional attributes are used to support this mechanism: retry-interval specifies (in milliseconds)
how often the framework will attempt to reconnect after a connection failure. scheduler is used to supply
a TaskSchedul er used to schedule the connection attempts, and to test that the connection is still
active.

If the gateway is started, you may force the gateway to establish a connection by sending a
<control-bus /> command: @dapt er _i d. ret ryConnecti on() and examine the current state with
@dapter _i d.i sConnected().

The outbound gateway, after sending a message over the connection, waits for a response and
constructs a response message and puts in on the reply channel. Communications over the connections
are single-threaded. Users should be aware that only one message can be handled at a time and,
if another thread attempts to send a message before the current response has been received, it will
block until any previous requests are complete (or time out). If, however, the client connection factory

Spring Integration
3.0.5.RELEASE Reference Manual 285

Spring Integration

is configured for single-use connections each new request gets its own connection and is processed
immediately.

<int-ip:tcp-inbound-gateway id="inGateway"
request - channel ="t cpChannel "
repl y-channel ="r epl yChannel "
connection-factory="cf Server"
reply-ti meout ="10000"/ >

A simple inbound TCP gateway; if a connection factory configured with the default (de)serializer is used,
messages will be \r\n delimited data and the gateway can be used by a simple client such as telnet.

<i nt-ip:tcp-outbound-gateway i d="out Gat enway"
request - channel ="t cpChannel "
repl y-channel ="r epl yChannel "
connection-factory="cfdient"
request - ti neout =" 10000"
renot e-ti meout ="10000"/ >

A simple outbound TCP gateway.
28.8 TCP Message Correlation

Overview

One goal of the IP Endpoints is to provide communication with systems other than another Spring
Integration application. For this reason, only message payloads are sent and received, by default. Since
3.0, headers can be transferred, using JSON, Java serialization, or with custom Seri al i zer s and
Deseri al i zers; see the section called “Transferring Headers” for more information. No message
correlation is provided by the framework, except when using the gateways, or collaborating channel
adapters on the server side. In the paragraphs below we discuss the various correlation techniques
available to applications. In most cases, this requires specific application-level correlation of messages,
even when message payloads contain some natural correlation data (such as an order number).

Gateways

The gateways will automatically correlate messages. However, an outbound gateway should only be
used for relatively low-volume use. When the connection factory is configured for a single shared
connection to be used for all message pairs ('single-use="false™), only one message can be processed
at a time. A new message will have to wait until the reply to the previous message has been received.
When a connection factory is configured for each new message to use a new connection ('single-
use="true"), the above restriction does not apply. While this may give higher throughput than a shared
connection environment, it comes with the overhead of opening and closing a new connection for each
message pair.

Therefore, for high-volume messages, consider using a collaborating pair of channel adapters. However,
you will need to provide collaboration logic.

Another solution, introduced in Spring Integration 2.2, is to use a
Cachi ngd i ent Connect i onFact ory, which allows the use of a pool of shared connections.

Spring Integration
3.0.5.RELEASE Reference Manual 286

Spring Integration

Collaborating Outbound and Inbound Channel Adapters

To achieve high-volume throughput (avoiding the pitfalls of using gateways as mentioned above) you
may consider configuring a pair of collaborating outbound and inbound channel adapters. Collaborating
adapters can also be used (server-side or client-side) for totally asynchronous communication (rather
than with request/reply semantics). On the server side, message correlation is automatically handled by
the adapters because the inbound adapter adds a header allowing the outbound adapter to determine
which connection to use to send the reply message.

@ Note

On the server side, care must be taken to populate the ip_connectionld header because it is
used to correlate the message to a connection. Messages that originate at the inbound adapter
will automatically have the header set. If you wish to construct other messages to send, you will
need to set the header. The header value can be captured from an incoming message.

On the client side, the application will have to provide its own correlation logic, if needed. This can be
done in a number of ways.

If the message payload has some natural correlation data, such as a transaction id or an order number,
AND there is no need to retain any information (such as a reply channel header) from the original
outbound message, the correlation is simple and would done at the application level in any case.

If the message payload has some natural correlation data, such as a transaction id or an order number,
but there is a need to retain some information (such as a reply channel header) from the original
outbound message, you may need to retain a copy of the original outbound message (perhaps by using
a publish-subscribe channel) and use an aggregator to recombine the necessary data.

For either of the previous two paragraphs, if the payload has no natural correlation data, you may need
to provide a transformer upstream of the outbound channel adapter to enhance the payload with such
data. Such a transformer may transform the original payload to a new object containing both the original
payload and some subset of the message headers. Of course, live objects (such as reply channels)
from the headers can not be included in the transformed payload.

If such a strategy is chosen you will need to ensure the connection factory has an appropriate
serializer/deserializer pair to handle such a payload, such as the DefaultSerializer/
Deseri al i zer which use java serialization, or a custom serializer and deserializer. The
Byt eArray*Seri al i zer options mentioned in Section 28.3, “TCP Connection Factories”, including
the default Byt eArrayCr Lf Seri al i zer, do not support such payloads, unless the transformed
payloadisa Stringorbyte[],

© Note

Before the 2.2 release, when a client connection factory was used by collaborating channel
adapters, the so-timeout attribute defaulted to the default reply timeout (10 seconds). This meant
that if no data were received by the inbound adapter for this period of time, the socket was closed.

This default behavior was not appropriate in a truly asynchronous environment, so it now defaults
to an infinite timeout. You can reinstate the previous default behavior by setting the so-timeout
attribute on the client connection factory to 10000 milliseconds.

Spring Integration
3.0.5.RELEASE Reference Manual 287

Spring Integration

Transferring Headers

TCP is a streaming protocol; Seri al i zers and Deseri al i zer s are used to demarcate messages
within the stream. Prior to 3.0, only message payloads (String or byte[]) could be transferred over TCP.
Beginning with 3.0, you can now transfer selected headers as well as the payload. It is important to
understand, though, that "live" objects, such as the r epl yChannel header cannot be serialized.

Sending header information over TCP requires some additional configuration.

The first step is to provide the Connecti onFact ory with a
MessageConverti ngTcpMessageMapper using the mapper attribute. This mapper delegates to
any MessageConverter implementation to convert the message to/from some object that can be
(de)serialized by the configured seri al i zer and deseri al i zer.

A MapMessageConvert er is provided, which allows the specification of a list of headers that will be
added to a Map object, along with the payload. The generated Map has two entries: payl oad and
header s. The header s entry is itself a Map containing the selected headers.

The second step is to provide a (de)serializer that can convert between a Map and some wire format.
This can be a custom (de) Seri al i zer, which would typically be needed if the peer system is not a
Spring Integration application.

A MapJsonSeri al i zer is provided that will convert a Map to/from JSON. This uses a
Spring Integration JsonObj ect Mapper to perform this function. You can provide a custom
JsonObj ect Mapper if needed. By default, the serializer inserts a linefeed Ox0a character between
objects. See the JavaDocs for more information.

© Note

At the time of writing, the JsonObj ect Mapper uses whichever version of Jackson is on the
classpath.

You can also use standard Java serialization of the Map, using the Def aul t Seri al i zer and
Def aul t Deseri al i zer.

The following example shows the configuration of a connection factory that transfers the
correl ationl d, sequenceNunber, and sequenceSi ze headers using JSON.

Spring Integration
3.0.5.RELEASE Reference Manual 288

Spring Integration

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port="12345"
mapper =" mapper "
serializer="jsonSerializer"
deserializer="jsonSerializer"/>

<bean i d="mapper"
class="o.sf.integration.ip.tcp.connection. MessageConvertingTcpMessageMapper">
<constructor-arg name="nessageConverter">
<bean cl ass="o0.sf.integration.support.converter. MapMessageConverter">
<property nane="header Nanes" >
<list>
<val ue>correl ationl d</val ue>
<val ue>sequenceNunber </ val ue>
<val ue>sequenceSi ze</ val ue>
</list>
</ property>
</ bean>
</ constructor-arg>
</ bean>

<bean id="jsonSerializer" class="o0.sf.integration.ip.tcp.serializer.MapJsonSerializer" />

A message sent with the above configuration, with payload 'foo' would appear on the wire like so:

{"headers":{"correl ationld":"bar", "sequenceSi ze": 5, "sequenceNunber": 1}, "payl oad": "f 00"}

28.9 A Note About NIO

Using NIO (see usi ng- ni o in Section 28.11, “IP Configuration Attributes”) avoids dedicating a thread
to read from each socket. For a small number of sockets, you will likely find that not using NIO, together
with an async handoff (e.g. to a QueueChannel), will perform as well as, or better than, using NIO.

Consider using NIO when handling a large number of connections. However, the use of NIO has some
other ramifications. A pool of threads (in the task executor) is shared across all the sockets; each
incoming message is assembled and sent to the configured channel as a separate unit of work on
a thread selected from that pool. Two sequential messages arriving on the same socket might be
processed by different threads. This means that the order in which the messages are sent to the channel
is indeterminate; the strict ordering of the messages arriving on the socket is not maintained.

For some applications, this is not an issue; for others it is. If strict ordering is required, consider setting
usi ng- ni o to false and using async handoff.

Alternatively, you may choose to insert a resequencer downstream of the inbound endpoint to return
the messages to their proper sequence. Set apply-sequence to true on the connection factory, and
messages arriving on a TCP connection will have sequenceNumber and correlationld headers set. The
resequencer uses these headers to return the messages to their proper sequence.

Pool Size

The pool size attribute is no longer used; previously, it specified the size of the default thread pool when
a task-executor was not specified. It was also used to set the connection backlog on server sockets. The
first function is no longer needed (see below); the second function is replaced by the backlog attribute.

Spring Integration
3.0.5.RELEASE Reference Manual 289

Spring Integration

Previously, when using a fixed thread pool task executor (which was the default), with NIO, it was
possible to get a deadlock and processing would stop. The problem occurred when a buffer was
full, a thread reading from the socket was trying to add more data to the buffer, and there were no
threads available to make space in the buffer. This only occurred with a very small pool size, but it
could be possible under extreme conditions. Since 2.2, two changes have eliminated this problem.
First, the default task executor is a cached thread pool executor. Second, deadlock detection logic has
been added such that if thread starvation occurs, instead of deadlocking, an exception is thrown, thus
releasing the deadlocked resources.

© Important
Now that the default task executor is unbounded, it is possible that an out of memory condition
might occur with high rates of incoming messages, if message processing takes extended time.
If your application exhibits this type of behavior, you are advised to use a pooled task executor
with an appropriate pool size, but see the next section.

Thread Pool Task Executor with CALLER_RUNS Policy

There are some important considerations when using a fixed thread pool with the Cal | er RunsPol i cy
(CALLER_RUNS when using the <t ask/ > namespace) and the queue capacity is small.

The following does not apply if you are not using a fixed thread pool.

With NIO connections there are 3 distinct task types; the 10 Selector processing is performed on one
dedicated thread - detecting events, accepting new connections, and dispatching the 10 read operations
to other threads, using the task executor. When an 10 reader thread (to which the read operation
is dispatched) reads data, it hands off to another thread to assemble the incoming message; large
messages may take several reads to complete. These "assembler" threads can block waiting for data.
When a new read event occurs, the reader determines if this socket already has an assembler and runs
a new one if not. When the assembly process is complete, the assembler thread is returned to the pool.

This can cause a deadlock when the pool is exhausted and the CALLER_RUNS rejection policy is in
use, and the task queue is full. When the pool is empty and there is no room in the queue, the 10
selector thread receives an OP_READ event and dispatches the read using the executor; the queue is
full, so the selector thread itself starts the read process; now, it detects that there is not an assembler
for this socket and, before it does the read, fires off an assembler; again, the queue is full, and the
selector thread becomes the assembler. The assembler is now blocked awaiting the data to be read,
which will never happen. The connection factory is now deadlocked because the selector thread can't
handle new events.

We must avoid the selector (or reader) threads performing the assembly task to avoid this deadlock. It
is desirable to use seperate pools for the IO and assembly operations.

The framework providers a Conposi t eExecut or, which allows the configuration of two distinct
executors; one for performing 10 operations, and one for message assembly. In this environment, an
IO thread can never become an assembler thread, and the deadlock cannot occur.

In addition, the task executors should be configured to use a Abort Pol i cy (ABORT when using
<t ask>). When an IO cannot be completed, it is deferred for a short time and retried continually until
it can be completed and an assembler allocated.

Example configuration of the composite executor is shown below.

Spring Integration
3.0.5.RELEASE Reference Manual 290

Spring Integration

@ean
private ConpositeExecutor conpositeExecutor() {
Thr eadPool TaskExecut or i oExec = new Thr eadPool TaskExecut or () ;
oExec. set Cor ePool Si ze(4);
oExec. set MaxPool Si ze(10) ;
oExec. set QueueCapaci ty(0);
oExec. set ThreadNamePrefi x("io-");
oExec. set Rej ect edExecut i onHandl er (new Abort Policy());
oExec.initialize();
Thr eadPool TaskExecut or assenbl er Exec = new Thr eadPool TaskExecut or () ;
assenbl er Exec. set Cor ePool Si ze(4);
assenbl er Exec. set MaxPool Si ze(10) ;
assenbl er Exec. set QueueCapaci ty(0);
assenbl er Exec. set Thr eadNanePr ef i x("assenbl er-");
assenbl er Exec. set Rej ect edExecut i onHandl er (new Abort Policy());
assenbl erExec.initialize();
return new ConpositeExecutor (i oExec, assenbl er Exec)

<bean i d="nyTaskExecutor" class="org. springframework.integration.util.ConpositeExecutor">
<constructor-arg ref="io"/>
<constructor-arg ref="assenbl er"/>

</ bean>

<t ask: executor id="io0" pool-size="4-10" queue-capacity="0" rejection-policy="ABORT" />
<t ask: execut or id="assenbl er" pool -size="4-10" queue-capacity="0" rejection-policy="ABORT"
/>

<bean i d="nyTaskExecutor" class="org.springfranework.integration.util.ConpositeExecutor">
<const ruct or - ar g>
<bean cl ass="org. spri ngfranewor k. schedul i ng. concurrent. Thr eadPool TaskExecut or" >
<property nane="t hreadNanePrefix" val ue="io-" />
<property nane="corePool Si ze" val ue="4" />
<property nane="maxPool Si ze" val ue="8" />
<property nane="queueCapacity" val ue="0" />
<property nane="rej ect edExecuti onHandl er" >
<bean cl ass="java. util.concurrent. ThreadPool Execut or. Abort Pol i cy" />
</ property>
</ bean>
</ const ructor - ar g>
<const ruct or - ar g>
<bean cl ass="org. spri ngframewor k. schedul i ng. concurrent. Thr eadPool TaskExecut or ">
<property nane="t hr eadNanePrefi x" val ue="assenbler-" />
<property nane="corePool Si ze" val ue="4" />
<property nanme="maxPool Si ze" val ue="10" />
<property nane="queueCapacity" val ue="0" />
<property nane="rej ect edExecuti onHandl er" >
<bean class="java. util.concurrent. ThreadPool Execut or. Abort Pol i cy" />
</ property>
</ bean>
</ const ruct or - ar g>
</ bean>

28.10 SSL/TLS Support

Overview

Secure Sockets Layer/Transport Layer Security is supported. When using NIO, the JDK 5+ SSLENngi ne
feature is used to handle handshaking after the connection is established. When not using NIO, standard

Spring Integration
3.0.5.RELEASE Reference Manual 291

Spring Integration

SSLSocket Fact ory and SSLSer ver Socket Fact ory objects are used to create connections. A
number of strategy interfaces are provided to allow significant customization; default implementations
of these interfaces provide for the simplest way to get started with secure communications.

Getting Started

Regardless of whether NIO is being used, you need to configure the ssl - cont ext - support attribute
on the connection factory. This attribute references a <bean/> definition that describes the location and
passwords for the required key stores.

SSL/TLS peers require two keystores each; a keystore containing private/public key pairs identifying
the peer; a truststore, containing the public keys for peers that are trusted. See the documentation for
the keyt ool utility provided with the JDK. The essential steps are

1. Create a new key pair and store in a keystore.
2. Export the public key.
3. Import the public key into the peer's truststore.

Repeat for the other peer.

© Note

It is common in test cases to use the same key stores on both peers, but this should be avoided
for production.

After establishing the key stores, the next step is to indicate their locations to the
TcpSSLCont ext Support bean, and provide a reference to that bean to the connection factory.

<bean i d="ssl| Cont ext Support "
class="o.sf.integration.ip.tcp.connection.support.DefaultTcpSSLCont ext Support">
<constructor-arg val ue="client.ks"/>
<constructor-arg val ue="client.truststore. ks"/>
<constructor-arg val ue="secret"/>
<constructor-arg val ue="secret"/>

</ bean>

<i p:tcp-connection-factory id="clientFactory"
type="client"
host ="1 ocal host "
port="1234"
ssl - cont ext - support =" ssl Cont ext Support"

The Def aul TcpSSLCont ext Support class also has an optional 'protocol' property, which can be
'SSL' or 'TLS' (default).

The keystore file nhames (first two constructor arguments) use the Spring Resour ce abstraction; by
default the files will be located on the classpath, but this can be overridden by using the fi | e: prefix,
to find the files on the filesystem instead.

Advanced Techniques

In many cases, the configuration described above is all that is needed to enable secure communication
over TCP/IP. However, a number of strategy interfaces are provided to allow customization and
modification of socket factories and sockets.

Spring Integration
3.0.5.RELEASE Reference Manual 292

Spring Integration

e TcpSSLCont ext Suppor t
» TcpSocket Fact or ySuppor t

» TcpSocket Support

public interface TcpSSLCont ext Support {

SSLCont ext get SSLContext () throws Exception;

Implementations of this interface are responsible for creating an SSLContext. The sole implementation
provided by the framework is the Def aul t TcpSSLCont ext Support described above. If you require
different behavior, implement this interface and provide the connection factory with a reference to a
bean of your class' implementation.

public interface TcpSocket FactorySupport {
Server Socket Fact ory get Server Socket Factory();

Socket Fact ory get Socket Factory();

Implementations of this interface are responsible for obtaining references to
Server Socket Fact ory and Socket Factory. Two implementations are provided; the first is
Def aul t TcpNet Socket Fact or ySupport for non-SSL sockets (when no 'ssl-context-support'
attribute is defined); this simply uses the JDK's default factories. The second implementation is
Def aul t TcpNet SSLSocket Fact or ySuppor t ; this is used, by default, when an 'ssl-context-support'
attribute is defined,; it uses the SSLCont ext created by that bean to create the socket factories.

© Note

This interface only applies if usi ng- ni o is "false"; socket factories are not used by NIO.

public interface TcpSocket Support {
voi d post ProcessServer Socket (Server Socket server Socket);

voi d post ProcessSocket (Socket socket);

Implementations of this interface can modify sockets after they are created, and after all configured
attributes have been applied, but before the sockets are used. This applies whether or not NIO is being
used. For example, you could use an implementation of this interface to modify the supported cipher
suites on an SSL socket, or you could add a listener that gets notified after SSL handshaking is complete.
The sole implementation provided by the framework is the Def aul t TcpSocket Support which does
not modify the sockets in any way

To supply your own implementation of TcpSocket Fact or ySupport or TcpSocket Support, provide
the connection factory with references to beans of your custom type using the socket - f act ory-
support and socket - support attributes, respectively.

Spring Integration
3.0.5.RELEASE Reference Manual 293

Spring Integration

28.11 IP Configuration Attributes

Table 28.1. Connection Factory Attributes

Attribute Name

Y Y

type

host

Client? Server? Allowed Values

client, server

Attribute Description

Determines whether the connection
factory is a client or server.

The host name or ip address of the
destination.

port

The port.

serializer

An implementation of Seri al i zer used
to serialize the payload. Defaults to
Byt eArrayCrLf Seri alizer

deserializer

using-nio tru

2

using-direct-buffers tru

e, false

e, false

An implementation of Deseriali zer
used to deserialize the payload. Defaults
to Byt eArrayCr Lf Seri al i zer

Whether or not connection uses NIO.
Refer to the java.nio package for more
information. See Section 28.9, “A Note
About NIO”. Default false.

When using NIO, whether or not
the connection uses direct buffers.
Refer to java.nio.ByteBuffer
documentation for more information.
Must be false if using-nio is false.

apply-sequence tru

e, false

When using NIO, it may be necessary
to resequence messages. When this
attribute is set to true, correlationld and
sequenceNumber headers will be added
to received messages. See Section 28.9,
“A Note About NIO”. Default false.

so-timeout

Defaults to 0 (infinity), except for
server connection factories with single-

use="true". In that case, it defaults to the
default reply timeout (10 seconds).

so-send-buffer-size

so-receive-buffer-
size

See j ava. net . Socket .
set SendBuf fer Si ze().

See j ava. net . Socket .
set Recei veBuffer Si ze().

so-keep-alive tru

e, false

See j ava. net . Socket .
set KeepAlive().

3.0.5.RELEASE

Spring Integration
Reference Manual

294

Spring Integration

Attribute Name

Client? Server? Allowed Values

Attribute Description

so-linger

Y

Y

Sets linger to
value. See
set SoLi nger ().

true with supplied
j ava. net . Socket .

so-tcp-no-delay

so-traffic-class

local-address

task-executor

true, false

See j ava. net . Socket .
set TcpNoDel ay() .

See j ava. net . Socket .
setTrafficd ass().

On a multi-homed system, specifies an
IP address for the interface to which the
socket will be bound.

Specifies a specific Executor to be used
for socket handling. If not supplied, an
internal cached thread executor will be
used. Needed on some platforms that
require the use of specific task executors
such as a WorkManagerTaskExecutor.

single-use

pool-size

backlog

true, false

Specifies whether a connection can be
used for multiple messages. If true, a
new connection will be used for each
message.

This attribute is no longer used. For
backward compatibility, it sets the
backlog but users should use backlog to
specify the connection backlog in server
factories

Sets the connection backlog for server
factories.

lookup-host

interceptor-factory-
chain

true, false

Specifies whether reverse lookups are
done on IP addresses to convert to host
names for use in message headers. If
false, the IP address is used instead.
Defaults to true.

See Section 28.4, “TCP Connection

Interceptors”

ssl-context-support

See Section 28.10, “SSL/TLS Support”

socket-factory-
support

socket-support

See Section 28.10, “SSL/TLS Support”

See Section 28.10, “SSL/TLS Support”

3.0.5.RELEASE

Spring Integration

Reference Manual

295

Spring Integration

Table 28.2. UDP Inbound Channel Adapter Attributes

Attribute Name

port

Allowed Values

Attribute Description

The port on which the adapter listens.

multicast true, false

Whether or not the udp adapter uses multicast.

multicast-address

pool-size

task-executor

When multicast is true, the multicast address to
which the adapter joins.

Specifies the concurrency. Specifies how many
packets can be handled concurrently. It only
applies if task-executor is not configured. Defaults
to 5.

Specifies a specific Executor to be used for
socket handling. If not supplied, an internal pooled
executor will be used. Needed on some platforms
that require the use of specific task executors such
as a WorkManagerTaskExecutor. See pool-size
for thread requirements.

receive-buffer-size

check-length true, false

so-timeout

so-send-buffer-size

The size of the buffer used to receive
DatagramPackets. Usually set to the MTU size. If
a smaller buffer is used than the size of the sent
packet, truncation can occur. This can be detected
by means of the check-length attribute..

Whether or not a udp adapter expects a data
length field in the packet received. Used to detect
packet truncation.

See j ava. net . Dat agr anSocket
setSoTimeout() methods for more information.

Used for udp acknowledgment
packets. See java.net. DatagranSocket
setSendBufferSize() methods for more
information.

so-receive-buffer- size

local-address

error-channel

lookup-host true, false

See j ava. net . Dat agr anSocket
setReceiveBufferSize() for more information.

On a multi-homed system, specifies an IP address
for the interface to which the socket will be bound.

If an Exception is thrown by a downstream
component, the MessagingException message
containing the exception and failed message is
sent to this channel.

Specifies whether reverse lookups are done on
IP addresses to convert to host names for use in

3.0.5.RELEASE

Spring Integration
Reference Manual 296

Spring Integration

Attribute Name Allowed Values

Attribute Description

message headers. If false, the IP address is used
instead. Defaults to true.

Table 28.3. UDP Outbound Channel Adapter Attributes

Attribute Name Allowed Values

Attribute Description

host

port
multicast true, false

acknowledge true, false

ack-host

ack-port

ack-timeout

The host name or ip address of the destination.
For multicast udp adapters, the multicast address.

The port on the destination.
Whether or not the udp adapter uses multicast.

Whether or not a udp adapter requires an
acknowledgment from the destination. when
enabled, requires setting the following 4 attributes.

When acknowledge is true, indicates the host or
ip address to which the acknowledgment should
be sent. Usually the current host, but may be
different, for example when Network Address
Transaction (NAT) is being used.

When acknowledge is true, indicates the port to
which the acknowledgment should be sent. The
adapter listens on this port for acknowledgments.

When acknowledge is true, indicates the time
in milliseconds that the adapter will wait for
an acknowledgment. If an acknowledgment is
not received in time, the adapter will throw an
exception.

min-acks-for- success

check-length true, false

Defaults to 1. For multicast adapters, you can set
this to a larger value, requiring acknowledgments
from multiple destinations.

Whether or not a udp adapter includes a data
length field in the packet sent to the destination.

time-to-live

For multicast adapters, specifies the time to live
attribute for the Mul t i cast Socket ; controls the
scope of the multicasts. Refer to the Java API
documentation for more information.

so-timeout

so-send-buffer-size

See j ava. net . Dat agr anSocket
setSoTimeout() methods for more information.

See j ava. net . Dat agr anSocket
setSendBufferSize() methods for more
information.

Spring Integration
3.0.5.RELEASE Reference Manual 297

Spring Integration

Attribute Name Allowed Values Attribute Description

so-receive-buffer- size

Used for udp acknowledgment
packets. See java.net. DatagranSocket
setReceiveBufferSize() methods for more
information.

local-address

On a multi-homed system, for the UDP adapter,
specifies an IP address for the interface to which
the socket will be bound for reply messages. For
a multicast adapter it is also used to determine
which interface the multicast packets will be sent
over.

task-executor

Specifies a specific Executor to be used for
acknowledgment handling. If not supplied, an
internal single threaded executor will be used.
Needed on some platforms that require the
use of specific task executors such as a
WorkManagerTaskExecutor. One thread will be
dedicated to handling acknowledgments (if the
acknowledge option is true).

Table 28.4. TCP Inbound Channel Adapter Attributes

Attribute Name Allowed Values

channel

connection-factory

Attribute Description
The channel to which inbound messages will be sent.

If the connection factory has a type 'server’, the factory is
‘owned' by this adapter. If it has a type ‘client’, it is ‘'owned' by
an outbound channel adapter and this adapter will receive
any incoming messages on the connection created by the
outbound adapter.

error-channel

client-mode true, false

If an Exception is thrown by a downstream component, the
MessagingException message containing the exception and
failed message is sent to this channel.

When true, the inbound adapter will act as a client, with
respect to establishing the connection and then receive
incoming messages on that connection. Default = false.
Also see retry-interval and scheduler. The connection factory
must be of type ‘client’ and have single-use set to false.

retry-interval

When in client-mode, specifies the number of milliseconds
to wait between connection attempts, or after a connection
failure. Default 60,000 (60 seconds).

scheduler true, false

Specifies a TaskSchedul er to use for managing
the client-mode connection. Defaults to a
Thr eadPool TaskSchedul er with a pool size of ".

3.0.5.RELEASE

Spring Integration
Reference Manual 298

Spring Integration

Table 28.5. TCP Outbound Channel Adapter Attributes

Attribute Name Allowed Values

channel

Attribute Description

The channel on which outbound messages arrive.

connection-factory

client-mode true, false

If the connection factory has a type '‘client’, the factory is
‘owned' by this adapter. If it has a type 'server', it is 'owned'
by an inbound channel adapter and this adapter will attempt
to correlate messages to the connection on which an original
inbound message was received.

When true, the outbound adapter will attempt to establish
the connection as soon as it is started. When false, the
connection is established when the first message is sent.
Default = false. Also see retry-interval and scheduler. The
connection factory must be of type 'client' and have single-
use set to false.

retry-interval

scheduler true, false

When in client-mode, specifies the number of milliseconds
to wait between connection attempts, or after a connection
failure. Default 60,000 (60 seconds).

Specifies a TaskSchedul er to use for managing
the client-mode connection. Defaults to a
Thr eadPool TaskSchedul er with a pool size of ".

Table 28.6. TCP Inbound Gateway Attributes

Attribute Name Allowed Values

connection-factory
request-channel

reply-channel

reply-timeout

Attribute Description
The connection factory must be of type server.
The channel to which incoming messages will be sent.

The channel on which reply messages may arrive. Usually
replies will arrive on a temporary reply channel added to the
inbound message header

The time in milliseconds for which the gateway will wait for
a reply. Default 1000 (1 second).

error-channel

If an Exception is thrown by a downstream component, the
MessagingException message containing the exception and
failed message is sent to this channel; any reply from that
flow will then be returned as a response by the gateway.

client-mode true, false

When true, the inbound gateway will act as a client, with
respect to establishing the connection and then receive (and
reply to) incoming messages on that connection. Default =
false. Also see retry-interval and scheduler. The connection
factory must be of type ‘client' and have single-use set to
false.

3.0.5.RELEASE

Spring Integration
Reference Manual 299

Spring Integration

Attribute Name Allowed Values

Attribute Description

retry-interval

When in client-mode, specifies the number of milliseconds
to wait between connection attempts, or after a connection
failure. Default 60,000 (60 seconds).

scheduler true, false

Specifies a TaskSchedul er to use for managing
the client-mode connection. Defaults to a
Thr eadPool TaskSchedul er with a pool size of ".

Table 28.7. TCP Outbound Gateway Attributes

Attribute Name Allowed Values
connection-factory
request-channel

reply-channel

Attribute Description
The connection factory must be of type client.
The channel on which outgoing messages will arrive.

Optional. The channel to which reply messages may be sent
if the original outbound message did not contain a reply
channel header.

remote-timeout

The time in milliseconds for which the gateway will wait for a
reply from the remote system. Default: Same value as reply-
timeout, if specified, or 10000 (10 seconds) otherwise.

request-timeout

reply-timeout

If a single-use connection factory is not being used, The time
in milliseconds for which the gateway will wait to get access
to the shared connection.

The time in milliseconds for which the gateway will wait
when sending the reply to the reply-channel. Only applies
if the reply-channel might block, such as a bounded
QueueChannel that is currently full.

28.12 IP Message Headers

The following MessageHeader s are used by this module:

Table 28.8.
Header Name IpHeaders Constant Description
ip_hostname HOSTNAME The host name from which a

TCP message or UDP packet
was received. If | ookupHost is
fal se, this will contain the ip
address.

ip_address IP_ADDRESS The ip address from which a

TCP message or UDP packet
was received.

ip_port PORT

The remote port for a UDP
packet.

3.0.5.RELEASE

Spring Integration
Reference Manual 300

Spring Integration

Header Name

IpHeaders Constant

Description

ip_ackTo

ip_ackld

ACKADDRESS

ACK_ID

The remote ip address to which
UDP application-level acks will
be sent. The framework includes
acknowledgment information in
the data packet.

A correlation id for
UDP application-level acks.
The framework includes

acknowledgment information in
the data packet.

ip_tcp_remotePort

ip_connectionld

ip_actualConnectionld

REMOTE_PORT

CONNECTION_ID

ACTUAL_CONNECTION_ID

The remote port for a UDP
packet.

A unique identifier for a
TCP connection; set by
the framework for inbound
messages; when sending to
a server-side inbound channel
adapter, or replying to an
inbound gateway, this header is
required so the endpoint can
determine which connection to
send the message to.

For information only - when
using a cached or failover client
connection factory, contains the
actual underlying connection id.

3.0.5.RELEASE

Spring Integration
Reference Manual

301

Spring Integration

29. Twitter Adapter

Spring Integration provides support for interacting with Twitter. With the Twitter adapters you can both
receive and send Twitter messages. You can also perform a Twitter search based on a schedule and
publish the search results within Messages.

29.1 Introduction

Twitter is a social networking and micro-blogging service that enables its users to send and read
messages known as tweets. Tweets are text-based posts of up to 140 characters displayed on the
author's profile page and delivered to the author's subscribers who are known as followers.

© Important
Versions of Spring Integration prior to 2.1 were dependent upon the Twitter4J API, but with the
release of Spring Social 1.0 GA, Spring Integration, as of version 2.1, now builds directly upon
Spring Social's Twitter support, instead of Twitter4J.

Spring Integration provides a convenient namespace configuration to define Twitter artifacts. You can
enable it by adding the following within your XML header.

xmns:int-twitter="http://ww.springframework. org/schema/integration/twtter"
xsi : schemalLocati on="http://wwm. spri ngframework. org/ schema/integration/tw tter
http://ww. springframework. org/ schema/integration/twitter/spring-integration-twi tter.xsd"

29.2 Twitter OAuth Configuration

The Twitter API allows for both authenticated and anonymous operations. For authenticated operations
Twitter uses OAuth - an authentication protocol that allows users to approve an application to act on
their behalf without sharing their password. More information can be found at http://oauth.net or in this
article http://hueniverse.com/oauth from Hueniverse. Please also see OAuth FAQ for more information
about OAuth and Twitter.

In order to use OAuth authentication/authorization with Twitter you must create a new Application on the
Twitter Developers site. Follow the directions below to create a new application and obtain consumer
keys and an access token:

» Go to http://dev.twitter.com

* Click on the Regi ster an app link and fill out all required fields on the form provided; set
Application Type to dient and depending on the nature of your application select Def aul t
Access Type as Read & Write or Read-only and Submit the form. If everything is successful you'll
be presented with the Consuner Key and Consuner Secr et . Copy both values in a safe place.

» On the same page you should see a My Access Token button on the side bar (right). Click on it
and you'll be presented with two more values: Access Token and Access Token Secr et . Copy
these values in a safe place as well.

29.3 Twitter Template

As mentioned above, Spring Integration relies upon Spring Social, and that library provides an
implementation of the template pattern, 0. s. social .twitter.api.inpl.Twi tter Tenpl ate to
interact with Twitter. For anonymous operations (e.g., search), you don't have to define an instance of

Spring Integration
3.0.5.RELEASE Reference Manual 302

http://twitter4j.org
http://projects.spring.io/spring-social
http://oauth.net
http://hueniverse.com/oauth
http://dev.twitter.com/pages/oauth_faq
http://dev.twitter.com

Spring Integration

Twi tt er Tenpl at e explicitly, since a default instance will be created and injected into the endpoint.
However, for authenticated operations (update status, send direct message, etc.), you must configure
aTwi tterTenpl at e as a bean and inject it explicitly into the endpoint, because the authentication
configuration is required. Below is a sample configuration of TwitterTemplate:

<bean id="twi tterTenpl ate" class="o0.s.social.twitter.api.inpl.Tw tterTenplate">
<constructor-arg val ue="4XzBPacJQxyBzzzH'/ >
<constructor-arg val ue="AbRxUAvyCt qQt vXxFK8w5ZM M 20KFhB60" / >
<constructor-arg val ue="21691649-4YZY5i JECF z2A9qCFd9Sj BRGb3HLM nmdHNE" / >
<constructor-arg val ue=" AbRxUAvyNCt qQ xFK8wW5ZM M 20KFhB60" / >

</ bean>

© Note

The values above are not real.

As you can see from the configuration above, all we need to do is to provide OAuth attri butes
as constructor arguments. The values would be those you obtained in the previous step. The order
of constructor arguments is: 1) consuner Key, 2) consuner Secr et, 3) accessToken, and 4)
accessTokenSecret.

A more practical way to manage OAuth connection attributes would be via Spring's property placeholder
support by simply creating a property file (e.g., oauth.properties):

twitter.oauth. consuner Key=4XzBPacJxyBzzzH

twi tter.oauth. consuner Secr et =AbRxUAvy Ct qQt vXFK8wSZM M 20KFhB60

tw tter.oauth.accessToken=21691649- 4YZY5i JECf z2A9qCFd9S] BRGh3HLmM miHNE
twitter.oauth. accessTokenSecr et =AbRxUAvYyNCt qQt xFK8w5ZM M 20KFhB60

Then, you can configure a pr oper t y- pl acehol der to point to the above property file:

<cont ext : property-pl acehol der | ocation="cl asspat h: oaut h. properties"/>

<bean id="twi tterTenpl ate" class="o0.s.social.twitter.api.inpl.Tw tterTenplate">
<constructor-arg value="${twi tter.oauth. consunerKey}"/>
<constructor-arg val ue="${twi tter.oauth.consunmerSecret}"/>
<constructor-arg value="${twi tter.oauth. accessToken}"/>
<constructor-arg value="${twi tter.oauth. accessTokenSecret}"/>
</ bean>

29.4 Twitter Inbound Adapters

Twitter inbound adapters allow you to receive Twitter Messages. There are several types of twitter
messages, or tweets

Spring Integration version 2.0 and above provides support for receiving tweets as Timeline Updates,
Direct Messages, Mention Messages as well as Search Results.

© Important

Every Inbound Twitter Channel Adapter is a Polling Consumer which means you have to provide
a poller configuration. Twitter defines a concept of Rate Limiting. You can read more about it
here: Rate Limiting. In a nutshell, Rate Limiting is a mechanism that Twitter uses to manage
how often an application can poll for updates. You should consider this when setting your poller
intervals so that the adapter polls in compliance with the Twitter policies.

Spring Integration
3.0.5.RELEASE Reference Manual 303

http://support.twitter.com/articles/119138-types-of-tweets-and-where-they-appear
http://support.twitter.com/articles/119138-types-of-tweets-and-where-they-appear
https://dev.twitter.com/docs/rate-limiting/1.1

Spring Integration

With Spring Integration prior to version 3.0, a hard-coded limit within the adapters was used to
ensure the polling interval could not be less than 15 seconds. This is no longer the case and the
poller configuration is applied directly.

Another issue that we need to worry about is handling duplicate Tweets. The same adapter (e.g.,
Search or Timeline Update) while polling on Twitter may receive the same values more than once.
For example if you keep searching on Twitter with the same search criteria you'll end up with the
same set of tweets unless some other new tweet that matches your search criteria was posted
in between your searches. In that situation you'll get all the tweets you had before plus the new
one. But what you really want is only the new tweet(s). Spring Integration provides an elegant
mechanism for handling these situations. The latest Tweet id will be stored in an instance of the
org. springframework. i ntegration. met adat a. Met adat aSt or e strategy (e.g. last retrieved
tweet in this case). For more information see Section 8.4, “Metadata Store”.

© Note

The key used to persist the latest twitter id is the value of the (required) i d attribute of the Twitter
Inbound Channel Adapter component plus the pr of i | el d of the Twitter user.

Inbound Message Channel Adapter

This adapter allows you to receive updates from everyone you follow. It's essentially the "Timeline
Update" adapter.

<int-twi tter:inbound-channel - adapt er

twitter-tenplate="tw tterTenpl ate"

channel ="i nChannel " >

<int:poller fixed-rate="5000" nmax-nessages-per-poll="3"/>
</int-tw tter:inbound-channel - adapt er>

Direct Inbound Message Channel Adapter

This adapter allows you to receive Direct Messages that were sent to you from other Twitter users.

<int-twi tter:dminbound-channel - adapt er

twitter-tenpl ate="tw ter Tenpl at e"

channel ="i nboundDnChannel " >

<int-poller fixed-rate="5000" max-nmessages-per-poll="3"/>
</int-tw tter:dminbound-channel - adapt er >

Mentions Inbound Message Channel Adapter

This adapter allows you to receive Twitter Messages that Mention you via @user syntax.

<int-twi tter: mentions-inbound-channel - adapt er
twitter-tenpl ate="tw ter Tenpl ate"
channel ="i nboundMent i onsChannel " >
<int:poller fixed-rate="5000" nax-nmessages-per-poll="3"/>
</int-tw tter: nmentions-inbound-channel - adapter>

Search Inbound Message Channel Adapter

This adapter allows you to perform searches. As you can see it is not necessary to define twitter-template
since a search can be performed anonymously, however you must define a search query.

Spring Integration
3.0.5.RELEASE Reference Manual 304

Spring Integration

<int-twi tter:search-inbound-channel - adapt er
quer y="#spri ngi ntegration"
channel ="i nboundMent i onsChannel " >
<int:poller fixed-rate="5000" nax-nmessages-per-poll="3"/>
</int-tw tter:search-inbound-channel - adapt er >

Refer to https://dev.twitter.com/docs/using-search to learn more about Twitter queries.

As you can see the configuration of all of these adapters is very similar to other inbound
adapters with one exception. Some may need to be injected with the twi tter-tenpl ate. Once
received each Twitter Message would be encapsulated in a Spring Integration Message and sent
to the channel specified by the channel attribute. Currently the Payload type of any Message is
org.springframework.integration.twitter.core. Tweet which is very similar to the object
with the same name in Spring Social. As we migrate to Spring Social we'll be depending on their API
and some of the artifacts that are currently in use will be obsolete, however we've already made sure
that the impact of such migration is minimal by aligning our API with the current state (at the time of
writing) of Spring Social.

To get the text from the or g. spri ngf ramewor k. soci al . twi tter. api. Tweet simply invoke the
get Text () method.

29.5 Twitter Outbound Adapter

Twitter outbound channel adapters allow you to send Twitter Messages, or tweets.

Spring Integration version 2.0 and above supports sending Status Update Messages and Direct
Messages. Twitter outbound channel adapters will take the Message payload and send it as a Twitter
message. Currently the only supported payload type is St r i ng, so consider adding a transformer if the
payload of the incoming message is not a String.

Twitter Outbound Update Channel Adapter

This adapter allows you to send regular status updates by simply sending a Message to the channel
identified by the channel attribute.

<int-tw tter:outbound-channel - adapt er
twitter-tenplate="twitterTenpl ate"
channel ="tw tter Channel "/ >

The only extra configuration that is required for this adapter isthe t wi t t er - t enpl at e reference.
Twitter Outbound Direct Message Channel Adapter

This adapter allows you to send Direct Twitter Messages (i.e., @user) by simply sending a Message to
the channel identified by the channel attribute.

<int-tw tter:dm out bound-channel - adapt er
twitter-tenplate="twi tterTenpl ate"
channel ="t wi tt er Channel "/ >

The only extra configuration that is required for this adapter isthe t wi tt er - t enpl at e reference.
When it comes to Twitter Direct Messages, you must specify who you are sending the message to -

the target userid. The Twitter Outbound Direct Message Channel Adapter will look for a target userid
in the Message headers under the name t wi tt er _dnirar get User | d which is also identified by the

Spring Integration
3.0.5.RELEASE Reference Manual 305

https://dev.twitter.com/docs/using-search

Spring Integration

following constant: Twi t t er Header s. DM TARGET _USER | D. So when creating a Message all you
need to do is add a value for that header.

Message nmessage = MessageBuil der. w t hPayl oad("hel | 0")
. set Header (Twi t t er Header s. DM TARGET_USER I D, "z_ol eg"). bui I d();

The above approach works well if you are creating the Message programmatically. However it's more
common to provide the header value within a messaging flow. The value can be provided by an upstream
<header-enricher>.

<i nt: header-enricher input-channel="in" output-channel ="out">
<i nt:header name="twi tter_dniTarget Userld" val ue="z_ol eg"/>
</int: header-enricher>

It's quite common that the value must be determined dynamically. For those cases you can take
advantage of SpEL support within the <header-enricher>.

<i nt: header-enricher input-channel="in" output-channel ="out">
<int:header name="twi tter_dnilarget User|d"
expression="@w tterldService.| ookup(headers. usernane)"/ >
</int:header-enricher>

© Important
Twitter does not allow you to post duplicate Messages. This is a common problem during testing
when the same code works the first time but does not work the second time. So, make sure
to change the content of the Message each time. Another thing that works well for testing is to
append a timestamp to the end of each message.

Spring Integration
3.0.5.RELEASE Reference Manual 306

Spring Integration

30. Web Services Support

30.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both
of which build upon the Spring Web Services project: Si npl eWebSer vi ceQut boundGat eway
and Mar shal | i ngWebSer vi ceQut boundGat eway. The former will accept either a String or
javax. xm . transform Source as the message payload. The latter provides support for any
implementation of the Marshal | er and Unmar shal | er interfaces. Both require a Spring Web
Services Dest i nati onProvi der for determining the URI of the Web Service to be called.

si npl eGat eway = new Si npl eWebSer vi ceQut boundGat eway(desti nati onProvi der) ;

mar shal | i ngGat eway = new Marshal | i ngWebSer vi ceCQut boundGat eway(dest i nati onProvi der,
mar shal | er);

© Note

When using the namespace support described below, you will only need to set a URI. Internally,
the parser will configure a fixed URI DestinationProvider implementation. If you do need dynamic
resolution of the URI at runtime, however, then the DestinationProvider can provide such
behavior as looking up the URI from a registry. See the Spring Web Services DestinationProvider
JavaDoc for more information about this strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering
client access as well as the chapter covering Object/XML mapping.

30.2 Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options
again: Si npl eWebSer vi cel nboundGat eway and Mar shal | i ngWebSer vi cel nboundGat eway.
The former will extract a j avax. xmi . t r ansf or m Sour ce from the WebSer vi ceMessage and set
it as the message payload. The latter provides support for implementation of the Mar shal | er and
Unmar shal | er interfaces. If the incoming web service message is a SOAP message the SOAP Action
header will be added to the headers of the Message that is forwarded onto the request channel.

si npl eGat eway = new Si npl eWebSer vi cel nboundGat eway() ;
si npl eGat eway. set Request Channel (f or war dOnt oThi sChannel) ;
si npl eGat eway. set Repl yChannel (| i st enFor ResponseHere); //Optional

mar shal | i ngGat eway = new Marshal | i ngWebSer vi cel nboundGat eway(mar shal | er);
/'l set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoi nt interface, so they can be
configured with a MessageDi spat cher Ser vl et as per standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's
chapter covering creating a Web Service. The chapter covering Object/XML mapping is also applicable
again.

Spring Integration
3.0.5.RELEASE Reference Manual 307

http://static.springsource.org/spring-ws/site/
http://static.springsource.org/spring-ws/site/apidocs/org/springframework/ws/client/support/destination/DestinationProvider.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

30.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws"
namespace:

<i nt - ws: out bound- gat eway i d="si npl eGat eway"

r equest - channel ="i nput Channel "
uri="http://exanple.org"/>

o

Note

Notice that this example does not provide a 'reply-channel'. If the Web Service were to return a
non-empty response, the Message containing that response would be sent to the reply channel
provided in the request Message's REPLY_ CHANNEL header, and if that were not available a
channel resolution Exception would be thrown. If you want to send the reply to another channel
instead, then provide a 'reply-channel’ attribute on the 'outbound-gateway' element.

Tip

When invoking a Web Service that returns an empty response after using a String payload for
the request Message, no reply Message will be sent by default. Therefore you don't need to set
a 'reply-channel’ or have a REPLY_CHANNEL header in the request Message. If for any reason
you actually do want to receive the empty response as a Message, then provide the ‘ignore-
empty-responses' attribute with a value of false (this only applies for Strings, because using a
Source or Document object simply leads to a NULL response and will therefore never generate
a reply Message).

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<i nt-ws: i nbound- gat eway i d="si npl eGat eway"

request - channel ="i nput Channel "/ >

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<i nt - ws: out bound- gat eway i d="marshal | i ngGat eway"

request - channel ="r equest Channel "
uri="http://exanple.org"

mar shal | er =" soneMar shal | er"

unmar shal | er =" sonmeUnmar shal | er"/ >

And for inbound:

<i nt-ws: i nbound- gat eway i d="nmarshal | i ngGat eway"

request - channel ="r equest Channel "
mar shal | er =" soneMar shal | er"
unmar shal | er ="someUnmar shal l er"/ >

Note

Most Marshal | er implementations also implement the Unmar shal | er interface. When
using such a Mar shal | er, only the "marshaller" attribute is necessary. Even when using a
Mar shal | er, you may also provide a reference for the "request-callback” on the outbound
gateways.

For either outbound gateway type, a "destination-provider” attribute can be specified instead of
the "uri" (exactly one of them is required). You can then reference any Spring Web Services
DestinationProvider implementation (e.g. to lookup the URI at runtime from a registry).

Spring Integration

3.0.5.RELEASE Reference Manual 308

Spring Integration

For either outbound gateway type, the "message-factory" attribute can also be configured with a
reference to any Spring Web Services WebSer vi ceMessageFact or y implementation.

For the simple inbound gateway type, the "extract-payload" attribute can be set to false to forward the
entire WebSer vi ceMessage instead of just its payload as a Message to the request channel. This
might be useful, for example, when a custom Transformer works against the WebSer vi ceMessage
directly.

30.4 Outbound URI Configuration

For all URI-schemes supported by Spring Web Services (URIs and Transports) <uri - vari abl e/ >
substitution is provided:

<ws: out bound- gat eway i d="gat eway" request-channel ="i nput"
uri="http://springsource.org/{foo}-{bar}">
<ws: uri-variabl e nanme="fo0" expression="payl oad. substring(1,7)"/>
<Ws: uri-variabl e name="bar" expressi on="headers. x"/>
</ ws: out bound- gat eway>

<ws: out bound- gat eway request - channel ="i nput Jns"
uri ="jnms:{destination}?deliveryMdde={deliveryMde}&np;priority={priority}"
message- sender ="j nsMessageSender " >
<ws: uri-variabl e name="destination" expression="headers.jnsQueue"/>
<ws: uri-variabl e nane="del i ver yMbde" expressi on="headers. del i veryMdde"/>
<ws: uri-variable name="priority" expression="headers.jnms_priority"/>
</ ws: out bound- gat eway>

IfaDesti nati onProvi der is supplied, variable substitution is not supported and a configuration error
will result if variables are provided.

Spring Integration
3.0.5.RELEASE Reference Manual 309

http://static.springsource.org/spring-ws/site/reference/html/client.html#client-transports

Spring Integration

31. XML Support - Dealing with XML Payloads

31.1 Introduction

Spring Integration's XML support extends the core of Spring Integration with the following components:

¢ Marshalling Transformer

¢ Unmarshalling Transformer

» Xslt Transformer

» XPath Transformer

» XPath Splitter

» XPath Router

» XPath Header Enricher

» XPath Filter

o f#xpath SpEL Function

 Validating Filter

These components are designed to make working with XML messages in Spring Integration
simple. The provided messaging components are designed to work with XML represented in
a range of formats including instances of j ava.lang. String, org. w3c. dom Docunent and
javax. xm . transform Sour ce. It should be noted however that where a DOM representation is
required, for example in order to evaluate an XPath expression, the St ri ng payload will be converted
into the required type and then converted back again to St r i ng. Components that require an instance of
Docurrent Bui | der will create a namespace-aware instance if one is not provided. In cases where you
require greater control over document creation, you can provide an appropriately configured instance
of Docunent Bui | der .

31.2 Namespace Support

All components within the Spring Integration XML module provide namespace support. In order to enable
namespace support, you need to import the respective schema for the Spring Integration XML Module.
A typical setup is shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://ww. springframework. org/schema/integration"
xm ns:int-xm ="http://ww.springframework. org/schema/integration/xm"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. springfranmework. org/ schema/ i ntegration/xmn
http://ww. springfranmework. org/ schema/integration/xm /spring-integration-xm .xsd">
</ beans>

Spring Integration
3.0.5.RELEASE Reference Manual 310

Spring Integration

XPath Expressions

Many of the components within the Spring Integration XML module work with XPath Expressions. Each
of those components will either reference an XPath Expression that has been defined as top-level
element or via a nested <xpat h- expr essi on/ > element.

All forms of XPath expressions result in the creation of an XPat hExpressi on using the
Spring or g. spri ngf ramewor k. xmi . xpat h. XPat hExpr essi onFact ory. When creating XPath
expressions, the best XPath implementation that is available on the classpath is being used, either JAXP
1.3+ or Jaxen, whereby JAXP is preferred.

© Note

Spring Integration under the covers uses the XPath functionality as provided by the Spring
Web Services project (http://www.springsource.org/spring-web-services). Specifically, Spring
Web Services' XML module (spring-xml-x.x.x.jar) is being used. Therefore, for a deeper
understanding, please refer to the respective documentation as well at:

» http://static.springsource.org/spring-ws/sites/2.0/reference/html/common.html#xpath

Here is an overview of all available configuration parameters of the xpat h- expr essi on element:

<i nt-xnl : xpat h- expr essi on expr essi on=""1
id="" 0
namespace- map="" 0O
ns-prefix="" O
ns-uri=""> O
<map></ map> O
</int-xm :xpath-expressi on>

O Defines an XPath xpression. Required.

O The |Identifier of the wunderlying bean definition. Wil be an instance of
org. spri ngframewor k. xm . xpat h. XPat hExpr essi on Optional.

O Reference to a map containing namespaces. The key of the map defines the namespace prefix
and the value of the map sets the namespace URI. It is not valid to specify both this attribute and
the map sub element, or setting the ns- prefi x and ns- uri attribute. Optional.

O Allows you to set the namspace prefix directly as and attribute on the XPath expression element.
If you set ns- pr ef i X, you must also set the ns- uri attribute. Optional.

O Allows you to set the namspace URI directly as an attribute on the XPath expression element. If
you set ns- uri , you must also set the ns- pr ef i x attribute. Optional.

O Defines a map containing namespaces. Only one map child element is allowed. The key of the
map defines the namespace prefix and the value of the map sets the namespace URI.

It is not valid to specify both this sub-element and the map attribute, or setting the ns- pr ef i x and
ns-uri attributes. Optional.

Providing Namespaces (Optional) to XPath Expressions

For the XPath Expression Element, namespace information can be optionally provided as configuration
parameters. As such, namespaces can be defined using one of the following 3 choices:

» Reference a map using the nanespace- nap attribute

» Provide a map of namespaces using the map sub-element

Spring Integration
3.0.5.RELEASE Reference Manual 311

http://static.springsource.org/spring-ws/sites/2.0/reference/html/common.html#xpath

Spring Integration

» Specifying the ns- pr ef i x and the ns-uri attribute
All three options are mutially exlusive. Only one option can be set.

Below, please find several different usage examples on how to use XPath expressions using the XML
namespace support including the various option for setting the XML namespaces as discussed above.

<int-xm :xpath-filter id="filterReferenci ngXPat hExpressi on"
xpat h- expr essi on-r ef ="r ef ToXpat hExpr essi on"/ >

<i nt-xnl : xpat h- expressi on i d="r ef ToXpat hExpr essi on" expressi on="/name"/ >

<int-xm:xpath-filter id="filterWthout Namespace" >
<i nt-xnl : xpat h- expr essi on expressi on="/name"/ >
</int-xm:xpath-filter>

<int-xm:xpath-filter id="filterWthOneNanespace" >
<i nt-xn : xpat h- expr essi on expressi on="/ns1: nane"
ns-prefix="nsl" ns-uri="ww. exanpl e.org"/>
</int-xm:xpath-filter>

<int-xm:xpath-filter id="filter WthTwoNanmespaces" >
<i nt-xnl : xpat h- expressi on expressi on="/ns1l: name/ ns2: t ype" >
<n’ap>
<entry key="ns1l" val ue="ww\. exanpl e. or g/ one"/ >
<entry key="ns2" val ue="ww. exanpl e. org/two"/ >
</ map>
</int-xm : xpat h- expr essi on>
</int-xm:xpath-filter>

<int-xm:xpath-filter id="filterWthNanespaceMapRef erence">
<i nt-xnl : xpat h- expr essi on expr essi on="/ns1: nane/ ns2: t ype"
nanmespace- map="def aul t Nanespaces"/ >
</int-xm:xpath-filter>

<util:map id="defaul t Nanespaces" >
<util:entry key="nsl1l" val ue="ww. exanpl e. org/ one"/>
<util:entry key="ns2" val ue="ww. exanpl e. org/two"/ >
</util:map>

Using XPath Expressions with Default Namespaces

When working with default nanmespaces, you may run into situations that behave differently than
originally expected. Let's assume we have the following XML document:

<?xm version="1.0" encodi ng="UTF-8"?>
<or der >
<orderltenr
<i sbhn>0321200683</ i shn>
<quantity>2</quantity>
</orderlten>
<orderltenr
<i sbhn>1590596439</ i shn>
<quantity>1</quantity>
</orderlten>
</ or der >

This document is not declaring any namespace. Therefore, applying the following XPath Expression
will work as expected:

Spring Integration
3.0.5.RELEASE Reference Manual 312

Spring Integration

<i nt-xnl : xpat h- expressi on expressi on="/order/orderltem />

You might expect that the same expression will also work for the following XML file. It looks exactly the
same as the previous example but in addition it also declares a default namespace:

http://www.example.org/orders

<?xm version="1.0" encodi ng="UTF- 8" ?>
<order xm ns="http://ww. exanpl e. org/ orders">
<orderltenr
<i shn>0321200683</ i shn>
<quantity>2</quantity>
</orderlten>
<orderlten>
<i sbhn>1590596439</ i sbn>
<quantity>1</quantity>
</ orderlten>
</ order >

However, the XPath Expression used previously will fail in this case.

In order to solve this issue, you must provide a namespace prefix and a namespace URI using either
the ns-prefix and ns-uri attibute or by providing a namespace-map attribute instead. The namespace
URI must match the namespace declared in your XML document, which in this example is http://
www.example.org/orders.

The namespace prefix, however, can be arbitrarily chosen. In fact, just providing an empty String will
actually work (Null is not allowed). In the case of a namespace prefix consisting of an empty String,
your Xpath Expression will use a colon (":") to indicate the default namespace. If you leave the colon
off, the XPath expression will not match. The following XPath Expression will match agains the XML
document above:

<si -xm : xpat h- expr essi on expressi on="/:order/:orderltent
ns-prefix="" ns-uri="http://ww. exanpl e. org/ prodcuts"/>

Of course you can also provide any other arbitrarily chosen namespace prefix. The following XPath
expression using the myorder namespace prefix will match also:

<si -xm : xpat h- expressi on expressi on="/nyorder: order/ myorder: orderltent
ns-prefix="nyorder" ns-uri="http://ww. exanpl e. org/ prodcuts"/>

It is important to remember that the namespace URI is the really important piece of information to
declare, not the prefix itself. The Jaxen FAQ summarizes the point very well:

“In XPath 1.0, all unprefixed names are unqualified. There is no requirement that the prefixes used
in the XPath expression are the same as the prefixes used in the document being queried. Only the
namespace URIs need to match, not the prefixes. ”

31.3 Transforming XML Payloads

Configuring Transformers as Beans
This section will explain the workings of the following transformers and how to configure them as beans:

e Unnmar shal | i ngTr ansf or ner

Spring Integration
3.0.5.RELEASE Reference Manual 313

http://jaxen.codehaus.org/faq.html

Spring Integration

» Marshal | i ngTr ansf or ner

e Xs| t Payl oadTr ansf or ner

All of the provided XML transformers extend Abst ract Tr ansf or ner or
Abst r act Payl oadTr ansf or mer and therefore implement Tr ansf or ner . When configuring XML
transformers as beans in Spring Integration, you would normally configure the Transformer in
conjunction with a MessageTr ansf or mi ngHandl er . This allows the transformer to be used as an
Endpoint. Finally, the namespace support will be discussed, which allows for the simple configuration
of the transformers as elements in XML.

UnmarshallingTransformer

An Unmar shal | i ngTr ansf or mer allows an XML Sour ce to be unmarshalled using implementations
of the Spring OXM Unmarshal | er. Spring's Object/XML Mapping support provides several
implementations supporting marshalling and unmarshalling using JAXB, Castor and JiBX amongst
others. The unmarshaller requires an instance of Sour ce. If the message payload is not an instance
of Sour ce, conversion will be attempted. Currently String, Fil e and or g. w3c. dom Docunent
payloads are supported. Custom conversion to a Source is also supported by injecting an
implementation of a Sour ceFact ory.

© Note

If a Sour ceFact ory is not set explicitly, the property on the Unmar shal | i ngTr ansf or ner
will by default be set to a DonSour ceFact ory.

<bean i d="unmarshal | i ngTransforner" class="0.s.i.xm .transfornmer. Unmarshal | i ngTransforner">
<const ruct or - ar g>
<bean cl ass="org. spri ngframewor k. oxm j axb. Jaxb2Mar shal | er" >
<property nane="cont ext Pat h" val ue="org. exanpl e" />
</ bean>
</ construct or - ar g>
</ bean>

MarshallingTransformer

The Marshal li ngTransforner allows an object graph to be converted into XML using a
Spring OXM Mar shal | er. By default the Mar shal | i ngTr ansf or mer will return a DonResul t .
However, the type of result can be controlled by configuring an alternative Resul t Fact ory such as
StringResul t Fact ory. In many cases it will be more convenient to transform the payload into an
alternative XML format. To achieve this, configure a Resul t Tr ansf or mer . Two implementations are
provided, one which converts to St ri ng and another which converts to Docunent .

<bean i d="marshal | i ngTransforner" class="o0.s.i.xnl.transforner. MarshallingTransformer">
<const ruct or - ar g>
<bean cl ass="org. spri ngfranewor k. oxm j axb. Jaxb2Mar shal | er" >
<property nane="context Pat h" val ue="org. exanpl e"/ >
</ bean>
</ constructor-ar g>
<const ruct or - ar g>
<bean cl ass="o0.s.i.xn .transforner. Resul t ToDocunent Tr ansf or mer"/ >
</ const ructor-ar g>
</ bean>

By default, the Mar shal | i ngTr ansf or mer will pass the payload Object to the Mar shal | er, but if
its boolean ext r act Payl oad property is set to f al se, the entire Message instance will be passed to

Spring Integration
3.0.5.RELEASE Reference Manual 314

http://static.springsource.org/spring-integration/api/org/springframework/integration/transformer/AbstractTransformer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/transformer/AbstractPayloadTransformer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/transformer/Transformer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/transformer/MessageTransformingHandler.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/UnmarshallingTransformer.html
http://static.springsource.org/spring-ws/site/reference/html/oxm.html
http://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
http://www.castor.org/
http://jibx.sourceforge.net/
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/MarshallingTransformer.html

Spring Integration

the Mar shal | er instead. That may be useful for certain custom implementations of the Mar shal | er
interface, but typically the payload is the appropriate source Object for marshalling when delegating to
any of the various out-of-the-box Mar shal | er implementations.

XsltPayload Transformer

Xsl t Payl oadTr ansf or mer transforms XML payloads using Extensible Stylesheet Language
Transformations (XSLT). The transformer's constructor requires an instance of either Resour ce or
Tenpl at es to be passed in. Passing in a Tenpl at es instance allows for greater configuration of the
Tr ansf or mer Fact or y used to create the template instance.

As with the Unmar shal | i ngTr ansf or ner , the Xsl t Payl oadTr ansf or ner will do the actual XSLT
transformation using instances of Sour ce. Therefore, if the message payload is not an instance of
Sour ce, conversion will be attempted. St ri ng and Docunent payloads are supported directly.

Custom conversion to a Sour ce is also supported by injecting an implementation of a Sour ceFact or y.

@ Note

If a Sour ceFact ory is not set explicitly, the property on the Xsl t Payl oadTr ansf or nmer will
by default be set to a DonSour ceFact ory.

By default, the Xslt Payl oadTransformer will create a message with a Result payload,
similar to the Xm Payl oadMar shal | i ngTr ansf or mer. This can be customised by providing a
Resul t Fact ory and/or a Resul t Tr ansf or er .

<bean id="xsltPayl oadTransformer" class="0.s.i.xm.transforner.XsltPayl oadTr ansf or ner" >
<constructor-arg val ue="cl asspat h: or g/ exanpl e/ xsl /transform xsl "/ >
<const ruct or - ar g>
<bean cl ass="0.s.i.xmn .transforner. Resul t ToDocunent Tr ansf or mer"/ >
</ constructor - ar g>
</ bean>

Starting with Spring Integration 3.0, you can now specify the transformer factory class name using a
constructor argument. This is configured using the transf or nmer - f act ory- cl ass attribute when
using the namespace.

ResultTransformers

Both the Mar shal | i ngTr ansf or mer and the Xsl t Payl oadTr ansf or ner allow you to specify a
Resul t Tr ansf or mer . Thus, if the Marshalling or XSLT transformation returns a Resul t , than you
have the option to also use a Resul t Tr ansf or ner to transform the Resul t into another format.
Spring Integration provides 2 concrete Resul t Tr ansf or ner implementations:

» ResultToDocumentTransformer

* ResultToStringTransformer

Using ResultTransformers with the MarshallingTransformer

By default, the MarshallingTransformer will always return a Result. By specifying a
Resul t Tr ansf or mer, you can customize the type of payload returned.

Using ResultTransformers with the XsltPayloadTransformer

Spring Integration
3.0.5.RELEASE Reference Manual 315

http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
http://en.wikipedia.org/wiki/XSL_Transformations
http://en.wikipedia.org/wiki/XSL_Transformations
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Templates.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/result/ResultFactory.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/ResultTransformer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/ResultTransformer.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/ResultToDocumentTransformer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/ResultToStringTransformer.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html

Spring Integration

The behavior is slighly more complex for the XsltPayloadTransformer. By default, if the input payload is
an instance of St ri ng or Docunent the resultTransformer property is ignored.

However, if the input payload is a Sour ce or any other type, then the resultTransformer property is
applied. Additionally, you can set the property alwaysUseResultFactory to t r ue, which will also cause
the specified resultTransformer to being used.

For more information and examples, please see the section called “Namespace Configuration and
ResultTransformers”

Namespace Support for XML Transformers

Namespace support for all XML transformers is provided in the Spring Integration XML namespace, a
template for which can be seen below. The namespace support for transformers creates an instance
of either Event Dri venConsuner or Pol | i ngConsuner according to the type of the provided input
channel. The namespace support is designed to reduce the amount of XML configuration by allowing
the creation of an endpoint and transformer using one element.

UnmarshallingTransformer

The namespace support for the Unmmar shal | i ngTr ansf or mer is shown below. Since the namespace
is now creating an endpoint instance rather than a transformer, a poller can also be nested within the
element to control the polling of the input channel.

<int-xm :unmarshal | i ng-transforner id="defaultUnmarshaller"
i nput - channel ="i nput" out put - channel =" out put "
unnar shal | er="unmar shal l er"/ >

<int-xm :unnarshal |'i ng-transforner id="unmarshal |l erWthPoller"
i nput - channel ="i nput" out put - channel =" out put "
unmar shal | er ="unmar shal | er" >
<int:poller fixed-rate="2000"/>
<int-xm:unnmarshal i ng-transforner/>

MarshallingTransformer

The namespace support for the marshalling transformer requires an i nput - channel , out put -
channel and a reference to a mar shal | er. The optional resul t -t ype attribute can be used to
control the type of result created. Valid values are St ri ngResul t or DonResul t (the default).

<int-xm : marshal | i ng-transformer
i nput - channel =" mar shal | i ngTr ansf or ner St ri ngResul t Fact or y"
out put - channel =" out put "
mar shal | er="marshal | er"
result-type="StringResult" />

<int-xm : marshal | i ng-transformer
i nput - channel =" mar shal | i ngTr ansf or ner Wt hResul t Tr ansf or ner "
out put - channel =" out put "
mar shal | er="marshal | er"
result-transfornmer="resultTransformer" />

<bean id="resultTransforner" class="0.s.i.xmn .transforner.ResultToStringTransforner"/>

Where the provided result types are not sufficient, a reference to a custom implementation of
Resul t Fact ory can be provided as an alternative to setting the r esul t - t ype attribute, using the
resul t - fact ory attribute. The attributes result-type and result-factory are mutually exclusive.

Spring Integration
3.0.5.RELEASE Reference Manual 316

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Source.html

Spring Integration

© Note

Internally, the result types StringResult and DonmResult are represented by the
Resul t Fact orys Stri ngResul t Fact ory and DonResul t Fact or y respectively.

XsltPayloadTransformer

Namespace support for the Xsl t Payl oadTr ansf or ner allows you to either pass in a Resour ce, in
order to create the Tenpl at es instance, or alternatively, you can pass in a precreated Tenpl at es
instance as a reference. In common with the marshalling transformer, the type of the result output
can be controlled by specifying either the resul t-factory orresul t -t ype attribute. Aresul t -
t ransf oner attribute can also be used to reference an implementation of Resul t Tr ansf oner where
conversion of the result is required before sending.

© Important
If you specify the result-factory or the result-type attribute, then the
al waysUseResul t Fact ory property on the underlying Xsl t Payl oadTr ansf or mer will be
setto t r ue by the Xsl t Payl oadTr ansf or mer Par ser .

<int-xm:xslt-transforner id="xsltTransforner WthResource"
i nput - channel ="wi t hResour cel n" out put - channel =" out put "
xsl -resource="org/ springframework/integration/xm/config/test.xsl"/>

<int-xm:xslt-transforner id="xsltTransfornerWthTenpl at esAndResul t Tr ansf or ner "
i nput - channel ="w t hTenpl at esAndResul t Tr ansf or mer I n* out put - channel =" out put "
xsl -tenpl at es="t enpl at es”
result-transforner="resultTransformer"/>

Often you may need to have access to Message data, such as the Message Headers, in order to assist
with transformation. For example, you may need to get access to certain Message Headers and pass
them on as parameters to a transformer (e.g., transformer.setParameter(..)). Spring Integration provides
two convenient ways to accomplish this, as illustrated in following example:

<int-xm:xslt-transformer id="paranHeadersConbo"
i nput - channel =" par anHeader sConboChannel " out put - channel =" out put "
xsl -resource="cl asspat h: transforner. xslt"
xsl t - param headers="test P*, *foo, bar, baz">

<int-xm:xslt-param name="hel | oParaneter" val ue="hell 0"/>
<int-xm:xslt-param name="first Name" expressi on="headers. f nane"/>
</int-xm:xslt-transforner>

If message header names match 1:1 to parameter names, you can simply use xslt-param
header s attribute. There you can also use wildcards for simple pattern matching, which supports the
following simple pattern styles: "xxx*", "*xxx", "*xxx*" and "Xxx*yyy".

You can also configure individual Xslt parameters via the <xslt-param/> sub element. There you can
use either the expr essi on or val ue attribute. The expr essi on attribute should be any valid SpEL
expression with Message being the root object of the expression evaluation context. The val ue
attribute, just like any val ue in Spring beans, allows you to specify simple scalar values. You can also
use property placeholders (e.g., ${some.value}). So as you can see, with the expr essi on and val ue
attribute, Xslt parameters could now be mapped to any accessible part of the Message as well as any
literal value.

Starting with Spring Integration 3.0, you can now specify the transformer factory class name using the
transformer-factory-cl ass attribute.

Spring Integration
3.0.5.RELEASE Reference Manual 317

http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/result/StringResultFactory.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/result/DomResultFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Templates.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/config/XsltPayloadTransformerParser.html

Spring Integration

Namespace Configuration and ResultTransformers

The usage of ResultTransformers was previously introduced in the section -called
“ResultTransformers”. The following example illustrates several special use-cases using XML
namespace configuration. First, we define the Resul t Tr ansf or ner :

<beans: bean id="resul t ToDoc" class="o0.s.i.xm .transforner.ResultToDocunent Tr ansf ormer"/>

This Resul t Tr ansf or mer will accept eithera St ri ngResul t ora DOVResul t as input and converts
the input into a Docunent .

Now, let's declare the transformer:

<int-xm:xslt-transformer input-channel ="in" output-channel ="fahrenheit Channel "
xsl -resource="cl asspat h: noop. xslt" resul t-transfornmer="resul t ToDoc"/>

If the incoming message's payload is of type Sour ce, then as first step the Resul t is determined using
the Resul t Fact ory. As we did not specify a Resul t Fact ory, the default DonResul t Fact ory is
used, meaning that the transformation will yield a DonResul t .

However, as we specified a ResultTransformer, it will be used and the resulting Message payload will
be of type Docunent .

© Important

If the incoming message's payload is of type St ri ng, the payload after the Xslt transformation
will be a String. Similarly, if the incoming message's payload is of type Docunent , the payload
after the Xslt transformation will be a Docunent . The specified ResultTransformer will be ignored
with St ri ng or Docunent payloads.

If the message payload is neither a Sour ce, St ri ng or Docunent , as a fallback option, it is attempted
to create a Sour ce using the default Sour ceFact ory. As we did not specify a Sour ceFact ory
explicitly using the source-factory attribute, the default DonfSour ceFact or y is used. If successful, the
XSLT transformation is executed as if the payload was of type Sour ce, which we described in the
previous paragraphs.

© Note

The DonSour ceFact or y supports the creation of a DOMSour ce from a either Docunent ,Fi | e
or St ri ng payloads.

The next transformer declaration adds a result-type attribute using St ri ngResul t as its value. First,
the result-type is internally represented by the St ri ngResul t Fact ory. Thus, you could have also
added a reference to a St ri ngResul t Fact ory, using the result-factory attribute, which would haven
been the same.

<int-xnl:xslt-transforner input-channel="in" output-channel ="fahrenhei t Channel "
xsl -resour ce="cl asspat h: noop. xslt" result-transformer="resultToDoc"
result-type="StringResult"/>

Because we are using a ResultFactory, the alwaysUseResultFactory property of the
Xsl t Payl oadTr ansf or ner class will be implicitly set to true. Consequently, the referenced
Resul t ToDocunent Tr ansf or ner will be used.

Therefore, if you transform a payload of type St ri ng, the resulting payload will be of type Docunent .

Spring Integration
3.0.5.RELEASE Reference Manual 318

http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

Spring Integration

XsltPayloadTransformer and <xsl:output method="text"/>

<xsl:out put nethod="text"/> tells the XSLT template to only produce text content from the
input source. In this particuliar case there is no reason to have a DonResul t. Therefore, the
Xsl t Payl oadTr ansf or mer defaults to St ringResul t if the output property called met hod of
the underlying j avax. xm . t ransf or m Tr ansf or ner returns "t ext " . This coercion is performed
independent from the inbound payload type. Keep in mind that this “smart” behavior is only available, if
theresul t-typeorresult-factory attributes aren't provided for the respective <i nt - xr : xsl t -
t ransf or mer > component.

31.4 Transforming XML Messages Using XPath

When it comes to message transformation XPath is a great way to transform Messages that have XML
payloads by defining XPath transformers via <xpath-transformer/> element.

Simple XPath transformation
Let's look at the following transformer configuration:

<int-xnl:xpath-transfornmer input-channel ="i nput Channel " out put - channel =" out put Channel "
xpat h- expr essi on="/ per son/ @ane" />

... and Message

Message<?> nessage =
MessageBui | der . wi t hPayl oad(" <per son nane=' John Doe' age='42'" nmarried="true'/>").build();
After sending this message to the 'inputChannel' the XPath transformer configured above will transform
this XML Message to a simple Message with payload of 'John Doe' all based on the simple XPath
Expression specified in the xpat h- expr essi on attribute.

XPath also has the capability to perform simple conversion of extracted elements to a desired type.
Valid return types are defined in j avax. xmi . xpat h. XPat hConst ant s and follows the conversion
rules specified by the j avax. xm . xpat h. XPat h interface.

The following constants are defined by the XPathConstants class: BOOLEAN,
DOM_OBJECT_MODEL, NODE, NODESET, NUMBER, STRING

You can configure the desired type by simply using the eval uat i on-t ype attribute of the <xpat h-
t ransf or mer/ > element.

<i nt-xnl : xpat h-transforner input-channel ="nunber| nput" xpat h-expressi on="/per son/ @Gge"
eval uati on-type="NUMBER RESULT" out put - channel =" out put"/>

<i nt-xm : xpat h-transforner i nput-channel ="bool eanl nput "
xpat h- expressi on="/person/ @arried = "true'"
eval uati on-type="BOOLEAN_RESULT" out put - channel =" out put"/>

Node Mappers

If you need to provide custom mapping for the node extracted by the XPath expression simply provide
a reference to the implementation of the or g. spri ngf ranmewor k. xnl . xpat h. NodeMapper - an
interface used by XPat hOper at i ons implementations for mapping Node objects on a per-node basis.
To provide a reference to a NodeMapper simply use node- napper attribute:

Spring Integration
3.0.5.RELEASE Reference Manual 319

http://static.springsource.org/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
http://docs.oracle.com/javase/7/docs/api/javax/xml/transform/Transformer.html#getOutputProperties()

Spring Integration

<int-xm : xpat h-transfornmer input-channel ="nodeMapper | nput" xpat h-expressi on="/ person/ @ge"
node- mapper ="t est NodeMapper" out put - channel =" out put "/ >

.. and Sample NodeMapper implementation:

cl ass Test NodeMapper inpl ements NodeMapper {
public Object mapNode(Node node, int nodeNum) throws DOVException {
return node. get Text Content () + "-mapped"”;
}
}

XML Payload Converter

You can also use an implementation of the
org. springframework.integration.xm . Xm Payl oadConverter to provide more granular
transformation:

<i nt-xm : xpat h-transforner input-channel ="custonConverter | nput"
out put - channel =" out put" xpat h- expressi on="/test/ @ype"
converter="test Xnm Payl oadConverter" />

.. and Sample XmlPayloadConverter implementation:

cl ass Test Xm Payl oadConverter inplenments Xm Payl oadConverter {
publ i c Source convert ToSource(Cbj ect object) {
t hrow new Unsupport edOper ati onException();

}
I
publ i c Node convert ToNode(Obj ect object) {
try {
return Docunent Bui | der Fact ory. newl nst ance() . newbDocunent Bui | der () . par se(
new | nput Sour ce(new Stri ngReader ("<test type='custonmi/>")));
}
catch (Exception e) {
throw new I || egal St at eException(e);
}
}
I/

publ i c Docunent convert ToDocument (CObj ect object) {
t hrow new Unsupport edOper ati onException();
}
}

The DefaultXmlPayloadConverter is used if this reference is not provided, and it should be sufficient in
most cases since it can convert from Node, Document, Source, File, and String typed payloads. If you
need to extend beyond the capabilities of that default implementation, then an upstream Transformer is
probably a better option than providing a reference to a custom implementation of this strategy here.

31.5 Splitting XML Messages

XPat hMessageSpl i tt er supports messages with either St ri ng or Docunent payloads. The splitter
uses the provided XPath expression to split the payload into a number of nodes. By default this will
result in each Node instance becoming the payload of a new message. Where it is preferred that each
message be a Document the cr eat eDocunent s flag can be set. Where a St ri ng payload is passed
in the payload will be converted then split before being converted back to a number of String messages.

Spring Integration
3.0.5.RELEASE Reference Manual 320

Spring Integration

The XPath splitter implements MessageHandl| er and should therefore be configured in conjunction
with an appropriate endpoint (see the namespace support below for a simpler configuration alternative).

<bean id="splittingEndpoint"
cl ass="org. spri ngfranmework. i nt egrati on. endpoi nt. Event Dri venConsuner " >
<constructor-arg ref="orderChannel" />
<const ruct or - ar g>
<bean cl ass="org. spri ngfranework.integration.xmn .splitter.XPathMessageSplitter">
<constructor-arg value="/order/items" />
<property nane="docunent Bui | der" ref="custoni sedDocunent Bui | der" />
<property nane="out put Channel " ref="orderltensChannel" />
</ bean>
</ const ruct or - ar g>
</ bean>

XPath splitter namespace support allows the creation of a Message Endpoint with an input channel and
output channel.

<l-- Split the order into items creating a new nessage for each item node -->
<int-xm:xpath-splitter id="orderltentSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t emsChannel " >
<i nt-xml : xpat h- expressi on expressi on="/order/itenms"/>
</int-xm:xpath-splitter>

<l-- Split the order into items creating a new docunent for each item->
<int-xm :xpath-splitter id="orderltenDocunentSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t emsChannel "
creat e-docunment s="true">
<i nt-xm : xpat h- expressi on expressi on="/order/itemnms"/>
<int:poller fixed-rate="2000"/>
</int-xm:xpath-splitter>

31.6 Routing XML Messages Using XPath

Similar to SpEL-based routers, Spring Integration provides support for routing messages based on
XPath expressions, allowing you to create a Message Endpoint with an input channel but no output
channel. Instead, one or more output channels are determined dynamically.

<int-xm:xpath-router id="orderTypeRouter" input-channel ="order Channel ">
<si -xm : xpat h- expr essi on expr essi on="/order/type"/>
</int-xm:xpath-router>

© Note

For an overview of attributes that are common among Routers, please see chapter: Common
Router Parameters

Internally XPath expressions will be evaluated as NODESET type and converted to a Li st <Stri ng>
representing channel names. Typically such a list will contain a single channel name. However, based on
the results of an XPath Expression, the XPath router can also take on the characteristics of a Recipient
List Router if the XPath Expression returns more then one value. In that case, the Li st <St ri ng> will
contain more then one channel name and consequently Messages will be sent to all channels in the list.

Thus, assuming that the XML file passed to the router configured below contains many r esponder
sub-elements representing channel names, the message will be sent to all of those channels.

Spring Integration
3.0.5.RELEASE Reference Manual 321

Spring Integration

<l-- route the order to all responders-->

<int-xnm :xpat h-router id="responderRouter" input-channel="order Channel ">
<i nt-xn : xpat h- expressi on expressi on="/request/responders"/>

</int-xm:xpat h-router>

If the returned values do not represent the channel names directly, additional mapping parameters
can be specified, in order to map those returned values to actual channel names. For example if the
/ request/ responders expression results in two values r esponder A and r esponder B but you
don't want to couple the responder names to channel names, you may provide additional mapping
configuration such as the following:

<I-- route the order to all responders-->
<int-xnl :xpath-router id="responderRouter" input-channel="orderChannel ">
<i nt-xml : xpat h- expressi on expressi on="/request/responders"/>
<i nt-xnl : mappi ng val ue="responder A" channel ="channel A"/ >
<i nt-xnl : mappi ng val ue="r esponder B" channel ="channel B"/ >
</int-xm:xpat h-router>

As already mentioned, the default evaluation type for XPath expressions is NODESET, which is
converted to a Li st <St ri ng> of channel names, therefore handling single channel scenarios as well
as multiple ones.

Nonetheless, certain XPath expressions may evaluate as String type from the very beginning. Take for
example the following XPath Expression:

nane(./ node())

This expression will return the name of the root node. It will resulting in an exception, if the default
evaluation type NODESET is being used.

For these scenarious, you may use the eval uat e- as- st ri ng attribute, which will allow you to
manage the evaluation type. It is FALSE by default, however if set to TRUE, the String evaluation type
will be used.

© Note

To provide some background information; XPath 1.0 specifies 4 data types:
* Node-sets

» Strings

* Number

* Boolean

When the XPath Router evaluates expressions using the optional eval uat e-as-string
attribute, the return value is determined per the string() function as defined in the XPath
specification. This means that if the expression selects multiple nodes, it will return the string
value of the first node.

For further information, please see:
» Specification: XML Path Language (XPath) Version 1.0: http://www.w3.0rg/TR/xpath/

» XPath specification - string() function: http://www.w3.org/TR/xpath/#function-string

Spring Integration
3.0.5.RELEASE Reference Manual 322

Spring Integration

For example if we want to route based on the name of the root node, we can use the following
configuration:

<int-xm:xpath-router id="xpathRouterAsString"
i nput - channel =" xpat hSt ri ngChannel "
eval uat e-as-string="true">
<i nt-xnl : xpat h- expressi on expressi on="nane(./node())"/>
</int-xm :xpat h-router>

XML Payload Converter

For XPath Routers, you can also specify the Converter to use when converting payloads
prior to XPath evaluation. As such, the XPath Router supports custom implementations of the
Xm Payl oadConvert er strategy, and when configuring an xpat h-rout er element in XML, a
reference to such an implementation may be provided via the convert er attribute.

If this reference is not explicitly provided, the Def aul t Xm Payl oadConvert er is used. It should be
sufficient in most cases, since it can convert from Node, Document, Source, File, and String typed
payloads. If you need to extend beyond the capabilities of that default implementation, then an upstream
Transformer is generally a better option in most cases, rather than providing a reference to a custom
implementation of this strategy here.

31.7 XPath Header Enricher

The XPath Header Enricher defines a Header Enricher Message Transformer that evaluates XPath
expressions against the message payload and inserts the result of the evaluation into a messsage
header.

Please see below for an overview of all available configuration parameters:

<i nt-xml : xpat h- header - enri cher default-overwite="true" O
id="" O
i nput - channel ="" O
out put - channel ="" O
shoul d- ski p-nul | s="true"> 0O

<int:poller></int:poller>
<int-xnl:header nane=""
eval uati on-type="STRI NG_RESULT"
overwite="true"
xpat h- expr essi on=""
xpat h- expression-ref=""/>
</int-xm :xpat h- header-enri cher>

EI:II:II:II:ID

O Specify the default boolean value for whether to overwrite existing header values. This will only take
effect for sub-elements that do not provide their own 'overwrite' attribute. If the 'default- overwrite'
attribute is not provided, then the specified header values will NOT overwrite any existing ones
with the same header names. Optional.

O Id for the underlying bean definition. Optional.

The receiving Message channel of this endpoint. Optional.

O Channel to which enriched messages shall be send to. Optional.

O

Spring Integration
3.0.5.RELEASE Reference Manual 323

Spring Integration

O Specify whether null values, such as might be returned from an expression evaluation, should be
skipped. The default value is true. Set this to false if a null value should trigger removal of the
corresponding header instead. Optional.

O Optional.

The name of the header to be enriched. Mandatory.

O The result type expected from the XPath evaluation. This will be the type of the
header value. The following values are allowed: BOOLEAN_RESULT, STRING_RESULT,
NUMBER_RESULT, NODE_RESULT and NODE_LIST RESULT. Defaults internally to
XPat hEval uati onType. STRI NG_RESULT if not set. Optional.

O Boolean value to indicate whether this header value should overwrite an existing header value for
the same name if already present on the input Message.

0 The XPath Expression as a String. Either this attribute or xpat h- expr essi on-ref must be
provided, but not both.

The XPath Expression reference. Either this attribute or xpat h- expr essi on must be provided,
but not both.

O

31.8 Using the XPath Filter

This component defines an XPath-based Message Filter. Under the covers this components uses a
MessageFi | t er that wraps an instance of Abst r act XPat hMessageSel ect or.

© Note

Please also refer to the chapter on _Message Filters for further details.

In order to use the XPath Filter you must as a minimum provide an XPath Expression either by
declaring the xpat h- expr essi on sub-element or by referencing an XPath Expression using the
xpat h- expr essi on-r ef attribute.

If the provided XPath expression will evaluate to a bool ean value, no further configuration parameters
are necessary. However, if the XPath expression will evaluate to a String, the mat ch- val ue attribute
should be specified against which the evaluation result will be matched.

There are three options for the mat ch- t ype:

e exact - correspond to equal s on java.l ang. Stri ng. The underlying implementation uses a
Stri ngVal ueTest XPat hMessageSel ect or

» case-insensitive - correspond to equal s-i gnor e- case onj ava. | ang. Stri ng. The underlying
implementation uses a St ri ngVal ueTest XPat hMessageSel ect or

* regex - matches operations one j ava. | ang. String. The underlying implementation uses a
RegexTest XPat hMessageSel ect or

When providing a 'match-type' value of 'regex’, the value provided with thos mat ch- val ue attribute
must be a valid Regular Expression.

Spring Integration
3.0.5.RELEASE Reference Manual 324

Spring Integration

<int-xm:xpath-filter discard-channel =
id=""
i nput - channel =""
mat ch-type="exact"

mat ch- val ue=
out put - channel =""

t hr ow excepti on-on-rej ecti on="fal se"
xpat h- expressi on-ref="">

<int-xm:xpath-expression ... />

OO0 ooooooOoogoao

<int:poller ... />
</int-xm:xpath-filter>

Message Channel where you want rejected messages to be sent. Optional.

Id for the underlying bean definition. Optional.

The receiving Message channel of this endpoint. Optional.

Type of match to apply between the XPath evaluation result and the match-value. Default is exact.

Optional.

0 String value to be matched against the XPath evaluation result. If this attribute is not provided, then
the XPath evaluation MUST produce a boolean result directly. Optional.

O The channel to which Messages that matched the filter criterias shall be dispatched to. Optional.

0 By default, this property is set to false and rejected Messages (Messages that did not match the
filter criteria) will be silently dropped. However, if set to true message rejection will result in an error
condition and the exception will be propagated upstream to the caller. Optional.

0 Reference to an XPath expression instance to evaluate.

O This sub-element sets the XPath expression to be evaluated. If this is not defined you MUST define
the xpat h- expressi on-r ef attribute. Also, only one xpat h- expr essi on element can be set.

O Optional.

O o0Oood

31.9 #xpath SpEL Function

Spring Integration, since version 3.0, provides the #xpath built-in SpEL function, which
invokes the static method XPathUtils.evaluate(...). This method delegates to an
org. springframewor k. ximl . xpat h. XPat hExpr essi on. The following shows some usage
examples:

<transformer expression="#xpath(payl oad, '/name')"/>

<filter expression="#xpath(payl oad, headers.xpath, 'boolean')"/>
<splitter expression="#xpath(payload, '//book', 'docunent list')"/>
<router expression="#xpat h(payl oad, '/person/ @ge', 'nunber')">
<mappi ng channel ="out put 1" val ue="16"/>

<mappi ng channel ="out put 2" val ue="45"/>
</router>

#xpat h also supports a third optional parameter for converting the result of the xpath evaluation. It
can be one of the String constants ' stri ng', ' bool ean',' nunber',' node',' node_list' and
"docunent _|ist' oranorg.springframework.xm . xpat h. NodeMapper instance. By default
the #xpat h SpEL function returns a String representation of the xpath evaluation.

Spring Integration
3.0.5.RELEASE Reference Manual 325

Spring Integration

© Note

To enable the #xpat h SpEL function, simply add the spri ng-i nt egrati on-xmni . j ar tothe
CLASSPATH; there is no need to declare any component(s) from the Spring Integration Xmi
Namespace.

For more information see Appendix A, Spring Expression Language (SpEL).

31.10 XML Validating Filter

The XML Validating Filter allows you to validate incoming messages against provided schema instances.
The following schema types are supported:

« xml-schema (http://www.w3.0rg/2001/XMLSchema)
« relax-ng (http://relaxng.org/ns/structure/1.0)

Messages that fail validation can either be silently dropped or they can be forwarded to a definable
di scar d- channel . Furthermore you can configure this filter to throw an Except i on in case validation
fails.

Please see below for an overview of all available configuration parameters:
<int-xm:validating-filter discard-channel=""

id=""

i nput - channel =""

out put - channel =""

schema-| ocati on=""

schema-t ype="xm - schema"

t hrow excepti on-on-rejecti on="fal se"
xm -val i dat or ="">

OO0o0oooood

<int:poller .../[>
</int-xm:validating-filter>

Message Channel where you want rejected messages to be sent. Optional.

Id for the underlying bean definition. Optional.

The receiving Message channel of this endpoint. Optional.

Message Channel where you want accepted messages to be sent. Optional.

Sets the location of the schema to validate the Message's payload against. Internally uses the

org. springframewor k. core. i o. Resour ce interface. You can set this attribute or the xni -

val i dat or attribute but not both. Optional.

0 Sets the schema type. Can be either xnl-schema or relax-ng. Optional
If not set it defaults to xm-schema which internally translates to
org. spri ngframewor k. xm . val i dati on. Xm Val i dat or Fact or y#SCHEMA VWBC_ XM

O |If true a MessageRej ect edExcepti on is thrown in case validation fails for the provided
Message's payload. Optional. Defaults to f al se if not set.

O Referencetoacustomsorg. springfranmewor k. xm . validation. Xm Val i dat or strategy.
You can set this attribute or the schema- | ocat i on attribute but not both. Optional.

O Optional.

O oOoood

Spring Integration
3.0.5.RELEASE Reference Manual 326

Spring Integration

32. XMPP Support

Spring Integration provides Channel Adapters for XMPP.

32.1 Introduction

XMPP describes a way for multiple agents to communicate with each other in a distributed system.
The canonical use case is to send and receive chat messages, though XMPP can be, and is, used for
far more applications. XMPP is used to describe a network of actors. Within that network, actors may
address each other directly, as well as broadcast status changes (e.g. "presence").

XMPP provides the messaging fabric that underlies some of the biggest Instant Messaging networks
in the world, including Google Talk (GTalk) - which is also available from within GMail - and Facebook
Chat. There are many good open-source XMPP servers available. Two popular implementations are
Openfire and ejabberd

Spring integration provides support for XMPP via XMPP adapters which support sending and receiving
both XMPP chat messages and presence changes from other entries in your roster. As with other
adapters, the XMPP adapters come with support for a convenient namespace-based configuration.
To configure the XMPP namespace, include the following elements in the headers of your XML
configuration file:

xm ns:int-xmpp="http://ww.springfranework. org/schenma/i nt egrati on/ xnpp"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ i nt egrati on/ xmpp
http://ww. springframework. org/ schema/ i nt egrati on/ xnpp/ spri ng-integration-xnpp. xsd"

32.2 XMPP Connection

Before using inbound or outbound XMPP adapters to participate in the XMPP network, an actor must
establish its XMPP connection. This connection object could be shared by all XMPP adapters connected
to a particular account. Typically this requires - at a minimum - user , passwor d, and host . To create
a basic XMPP connection, you can utilize the convenience of the namespace.

<i nt - Xnpp: Xnpp- connecti on
i d="nyConnecti on"
user ="user"
passwor d=" passwor d"
host =" host "
port="port"
resour ce="t heNameCOf TheResour ce"
subscri pti on-node="accept_al | "/ >

© Note

For added convenience you can rely on the default naming convention and omit the i d attribute.
The default name xmppConnection will be used for this connection bean.

If the XMPP Connection goes stale, reconnection attempts will be made with an automatic
login as long as the previous connection state was logged (authenticated). We also register a
Connect i onLi st ener which will log connection events if the DEBUG logging level is enabled.

Spring Integration
3.0.5.RELEASE Reference Manual 327

http://www.xmpp.org
http://www.igniterealtime.org/projects/openfire/
http://www.ejabberd.im

Spring Integration

32.3 XMPP Messages

Inbound Message Channel Adapter

The Spring Integration adapters support receiving chat messages from other users in the system.
To do this, the Inbound Message Channel Adapter "logs in" as a user on your behalf and
receives the messages sent to that user. Those messages are then forwarded to your Spring
Integration client. The payload of the inbound Spring Integration message may be of the raw type
org.jivesoftware. smack. packet. Message, or of the type j ava. | ang. Stri ng if you set the
ext ract - payl oad attribute's value to 'true' when configuring an adapter. Configuration support for the
XMPP Inbound Message Channel Adapter is provided via the i nbound- channel - adapt er element.

<i nt - xnpp: i nbound- channel - adapt er i d="xnmppl nboundAdapt er"

channel =" xnppl nbound"

Xnmpp- connect i on="t est Connecti on"

extract - payl oad="f al se"

aut o-startup="true"/>
As you can see amongst the usual attributes this adapter also requires a reference to an XMPP
Connection.

It is also important to mention that the XMPP inbound adapter is an event driven adapter and a
Li f ecycl e implementation. When started it will register a Packet Li st ener that will listen for
incoming XMPP Chat Messages. It forwards any received messages to the underlying adapter which will
convert them to Spring Integration Messages and send them to the specified channel . It will unregister
the Packet Li st ener when it is stopped.

Outbound Message Channel Adapter

You may also send chat messages to other users on XMPP using the Outbound Message Channel
Adapter. Configuration support for the XMPP Outbound Message Channel Adapter is provided via the
out bound- channel - adapt er element.

<i nt - xnpp: out bound- channel - adapt er i d="out boundEvent Adapt er"
channel =" out boundEvent Channel "
Xnmpp- connecti on="t est Connecti on"/ >

The adapter expects as its input - at a minimum - a payload of type j ava. | ang. St ri ng, and a header
value for XmppHeader s. CHAT TOthat specifies to which user the Message should be sent. To create
a message you might use the following Java code:

Message<Stri ng> xnppQut boundMsg = MessageBui | der. wi t hPayl oad(" Hel | o, XWPP!")
. set Header (XnppHeader s. CHAT_TO, "user handl e")
Cbuild();

Another mechanism of setting the header is by using the XMPP header-enricher support. Here is an
example.

<i nt - xnpp: header - enri cher i nput-channel ="i nput" out put-channel ="out put">
<i nt-xnpp: chat-to val ue="t est 1@xanpl e. org"/ >
</i nt-xnmpp: header - enri cher >

32.4 XMPP Presence

XMPP also supports broadcasting state. You can use this capability to let people who have you on their
roster see your state changes. This happens all the time with your IM clients; you change your away

Spring Integration
3.0.5.RELEASE Reference Manual 328

Spring Integration

status, and then set an away message, and everybody who has you on their roster sees your icon or
username change to reflect this new state, and additionally might see your new "away" message. If you
would like to receive notification, or notify others, of state changes, you can use Spring Integration's
"presence" adapters.

Inbound Presence Message Channel Adapter

Spring Integration provides an Inbound Presence Message Channel Adapter which supports receiving
Presence events from other users in the system who happen to be on your Roster. To do this, the adapter
"logsin"as a user on your behalf, registers a Rost er Li st ener and forwards received Presence update
events as Messages to the channel identified by the channel attribute. The payload of the Message
willbe a org. ji vesoftware. smack. packet . Presence object (see http://www.igniterealtime.org/
builds/smack/docs/3.1.0/javadoc/org/jivesoftware/smack/packet/Presence.html).

Configuration support for the XMPP Inbound Presence Message Channel Adapter is provided via the
pr esence-i nbound- channel - adapt er element.

<i nt - xnpp: pr esence- i nbound- channel - adapt er channel =" out Channel "
Xnmpp- connecti on="t est Connecti on" auto-startup="fal se"/>
As you can see amongst the usual attributes this adapter also requires a reference to an XMPP
Connection. It is also important to mention that this adapter is an event driven adapter and a
Li f ecycl e implementation. It will register a Rost er Li st ener when started and will unregister that
Rost er Li st ener when stopped.

Outbound Presence Message Channel Adapter

Spring Integration also supports sending Presence events to be seen by other users in
the network who happen to have you on their Roster. When you send a Message to the
Outbound Presence Message Channel Adapter it extracts the payload, which is expected to be
of type org.jivesoftware. smack. packet. Presence (see http://www.igniterealtime.org/builds/
smack/docs/3.1.0/javadoc/org/jivesoftware/smack/packet/Presence.html) and sends it to the XMPP
Connection, thus advertising your presence events to the rest of the network.

Configuration support for the XMPP Outbound Presence Message Channel Adapter is provided via the
pr esence- out bound- channel - adapt er element.

<i nt - xnpp: pr esence- out bound- channel - adapt er i d="event Qut boundPr esenceChannel "
Xnmpp- connecti on="t est Connecti on"/ >

It can also be a Polling Consumer (if it receives Messages from a Pollable Channel) in which case you
would need to register a Poller.

<i nt - xnpp: pr esence- out bound- channel - adapt er i d="pol | i ngQut boundPr esenceAdapt er "
Xnmpp- connect i on="t est Connecti on"
channel =" pol | i ngChannel ">

</i nt - xnpp: pr esence- out bound- channel - adapt er >

Like its inbound counterpart, it requires a reference to an XMPP Connection.

© Note

If you are relying on the default naming convention for an XMPP Connection bean (described
earlier), and you have only one XMPP Connection bean configured in your Application
Context, you may omit the xnmpp- connect i on attribute. In that case, the bean with the name
xmppConnection will be located and injected into the adapter.

Spring Integration
3.0.5.RELEASE Reference Manual 329

Spring Integration

32.5 Advanced Configuration

Since Spring Integration XMPP support is based on the Smack 3.1 API (http://www.igniterealtime.org/
downloads/index.jsp), it is important to know a few details related to more complex configuration of the
XMPP Connection object.

As stated earlier the xnpp-connecti on namespace support is designed to simplify basic
connection configuration and only supports a few common configuration attributes. However, the
org.jivesoftware. smack. Connecti onConfi gur ati on object defines about 20 attributes, and
there is no real value of adding namespace support for all of them. So, for more complex connection
configurations, simply configure an instance of our XnppConnect i onFact or yBean as a regular bean,
and injecta org. j i vesof t war e. smack. Connecti onConfi gurati on as a constructor argument
to that FactoryBean. Every property you need, can be specified directly on that ConnectionConfiguration
instance (a bean definition with the 'p' namespace would work well). This way SSL, or any other
attributes, could be set directly. Here's an example:

<bean i d="xnppConnection" class="0.s.i.xnmpp. XnppConnect i onFact or yBean" >
<const ruct or - ar g>
<bean cl ass="org.jivesoftware.smack. Connecti onConfi guration">
<constructor-arg val ue="nyServi ceName"/ >

<property nane="truststorePath" value="..."/>
<property nane="socket Factory" ref="..."/>
</ bean>
</ constructor-ar g>

</ bean>
<int:channel id="outboundEvent Channel"/>

<i nt - xnpp: out bound- channel - adapt er i d="out boundEvent Adapt er"
channel =" out boundEvent Channel "
Xmpp- connect i on="xnmppConnecti on"/ >

Another important aspect of the Smack APl is static initializers. For more complex cases (e.g., registering
a SASL Mechanism), you may need to execute certain static initializers. One of those static initializers
is SASLAut hent i cat i on, which allows you to register supported SASL mechanisms. For that level
of complexity, we would recommend Spring JavaConfig-style of the XMPP Connection configuration.
Then, you can configure the entire component through Java code and execute all other necessary Java
code including static initializers at the appropriate time.

@confi guration
public class CustonConnecti onConfiguration {
@ean
publ i ¢ XMPPConnecti on xnppConnection() {
SASLAut henti cati on. support SASLMechani sn("EXTERNAL", 0); // static initializer

ConnectionConfiguration config = new Connecti onConfiguration("l ocal host", 5223);
config.setTrustorePath("path_to truststore.jks");
confi g. set SecurityEnabl ed(true);
confi g. set Socket Fact or y(SSLSocket Fact ory. get Defaul t());
return new XMPPConnection(config);
}
}

For more information on the JavaConfig style of Application Context configuration, refer to the
following section in the Spring Reference Manual: http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/beans.html#beans-java

Spring Integration
3.0.5.RELEASE Reference Manual 330

Part V. Appendices

Advanced Topics and Additional Resources

Spring Integration

Appendix A. Spring Expression
Language (SpEL)

A.1l Introduction

Many Spring Integration components can be configured using expressions. These expressions are
written in the Spring Expression Language.

In most cases, the #root object is the Message which, of course, has two properties - header s and
payl oad - allowing such expressions as payl oad, payl oad. f 0o, header s[' nmy. header'] etc.

In some cases, additional variables are provided, for example the <i nt - ht t p: i nbound- gat eway/ >
provides #r equest Par ans (parameters from the HTTP request) and #pat hVari abl es (values from
path placeholders in the URI).

For all SpEL expressions, a BeanResol ver is available, enabling references to any bean in the
application context. For example @ryBean. f oo(payl oad) . In addition, two Pr opert yAccessors
are available; a MapAccessor enables accessing values in a Map using a key, and a
Ref | ecti vePr opert yAccessor which allows access to fields and or JavaBean compliant properties
(using getters and setters). This is how the Message headers and payload properties are accessible.

A.2 SpEL Evaluation Context Customization

Starting with Spring Integration 3.0, it is possible to add additional Pr opert yAccessor s to the SpEL
evaluation contexts used by the framework. The framework provides the JsonPr opert yAccessor
which can be used (read-only) to access fields from a JsonNode, or JSON in a Stri ng. Or you can
create your own Pr opert yAccessor if you have specific needs.

In addition, custom functions can be added. Custom functions are st at i ¢ methods declared on a class.
Functions and property accessors are available in any SpEL expression used throughout the framework.

The following configuration shows how to directly configure the
I nt egrati onEval uati onCont ext Fact or yBean with custom property accessors and functions.
However, for convenience, namespace support is provided for both, as described in the following
sections, and the framework will automatically configure the factory bean on your behalf.

<bean i d="integrationEval uati onCont ext"
cl ass="org. springframework.integration.config.|ntegrationEval uati onCont ext Fact or yBean" >
<property name="propertyAccessors">
<util:map>
<entry key="foo0">
<bean cl ass="f o00. MyCust onPr opertyAccessor"/>
</entry>
</util:map>
</ property>
<property nane="functions">
<map>
<entry key="barcal c" val ue="#{T(foo. M/Functions).get Method('calc', T(foo.MWBar))}"/>
</ map>
</ property>
</ bean>

Spring Integration
3.0.5.RELEASE Reference Manual 332

http://static.springsource.org/spring-framework/docs/current/spring-framework-reference/html/expressions.html

Spring Integration

This factory bean definition will override the default i nt egrati onEval uati onCont ext bean
definition, adding the custom accessor to the list (which also includes the standard accessors mentioned
above), and one custom function.

Note that custom functions are static methods. In the above example, the custom function is a static
method cal ¢ on class MyFunct i ons and takes a single parameter of type MyBar .

Say you have a Message with a payload that has a type MyFoo on which you need to perform some
action to create a MyBar object from it, and you then want to invoke a custom function cal ¢ on that
object.

The standard property accessors wouldn't know how to get a MyBar from a MyFoo so you could
write and configure a custom property accessor to do so. So, your final expression might be
"#bar cal c(payl oad. nyBar)".

The factory bean has another property t ypeLocat or which allows you to customize the TypeLocat or
used during SpEL evaluation. This might be necessary when running in some environments that use
a non-standard Cl assLoader . In the following example, SpEL expressions will always use the bean
factory's class loader:

<bean i d="integrationEval uati onCont ext "
cl ass="org. springframework.integration.config.|ntegrationEval uati onCont ext Fact or yBean" >
<property nane="typelLocator">
<bean cl ass="org. spri ngframewor k. expressi on. spel . support. St andar dTypeLocat or ">
<constructor-arg val ue="#{beanFact ory. beand assLoader}"/>
</ bean>
</ property>
</ bean>

A.3 SpEL Functions

Namespace support is provided for easy addition of SpEL custom functions. You can specify
<spel - functi on/ > components to provide custom SpEL functions to the Eval uati onCont ext
used throughout the framework. Instead of configuring the factory bean above, simply add one
or more of these components and the framework will automatically add them to the default
integrationEvaluationContext factory bean.

For example, assuming we have a useful static method to evaluate XPath:

<i nt:spel -function id="xpath"
class="com foo.test. XPathUtils" nmethod="eval uate(java.lang. String, java.lang. Oject)"/>

<int:transforner input-channel="in" out put-channel =" out"
expressi on="#xpath('//fool @ar', payload)" />

With this sample:

e The default I nt egr ati onEval uati onCont ext Fact or yBean bean with id
integrationEvaluationContext is registered with the application context.

e The <spel-function/> is parsed and added to the functions Map of
integrationEvaluationContext as map entry with i d as the key and the static Met hod as the value.

Spring Integration
3.0.5.RELEASE Reference Manual 333

http://static.springsource.org/spring-framework/docs/current/spring-framework-reference/html/expressions.html#expressions-ref-functions

Spring Integration

e The integrationEvaluationContext factory bean creates a new St andar dEval uati onCont ext
instance, and it is configured with the default Pr opert yAccessor s, BeanResol ver and the custom
functions.

e That Eval uati onCont ext instance is injected into the Expr essi onEval uat i ngTr ansf or mer
bean.

© Note

SpEL functions declared in a parent context are also made available in any child context(s).
Each context has its own instance of the integrationEvaluationContext factory bean because
each needs a different BeanResol ver, but the function declarations are inherited and can be
overridden if needed by declaring a SpEL function with the same name.

Built-in SpEL Functions

Spring Integration provides some standard functions, which are registered with the application context
automatically on start up:

» #jsonPath - to evaluate a ‘jsonPath’ on some provided object. This function invokes
JsonPat hUti | s. eval uat e(...). This static method delegates to the Jayway JsonPath library.
The following shows some usage examples:

<transforner expressi on="#j sonPath(payl oad, '$.store.book[O].author')"/>
<filter expression="#j sonPath(payl oad,"'$..book[2].isbn') matches '\d-\d{3}-\d{5}-\d""/>
<splitter expression="#jsonPath(payl oad, '$.store.book")"/>

<rout er expression="#j sonPat h(payl oad, headers.jsonPath)">
<mappi ng channel =" out put 1" val ue="ref erence"/ >

<mappi ng channel ="out put 2" val ue="fiction"/>

</router>

#jsonPath also supports the third optional parameter - an array of com j ayway. j sonpat h. Fil ter,
which could be provided by a reference to a bean or bean method, for example.

© Note

Using this function requires the Jayway JsonPath library (json-path.jar) to be on the classpath;
otherwise the #jsonPath SpEL function won't be registered.

For more information regarding JSON see 'JSON Transformers' in Section 6.1, “Transformer”.

» #xpath - to evaluate an 'xpath' on some provided object. For more information regarding xml and
xpath see Chapter 31, XML Support - Dealing with XML Payloads.

A.4 PropertyAccessors

Namespace support is provided for the easy addition of SpEL custom PropertyAccessor
implementations. You can specify the <spel - pr opert y- accessor s/ > component to provide a list of
custom Pr opert yAccessor s to the Eval uat i onCont ext used throughout the framework. Instead
of configuring the factory bean above, simply add one or more of these components, and the framework
will automatically add the accessors to the default integrationEvaluationContext factory bean:

Spring Integration
3.0.5.RELEASE Reference Manual 334

http://code.google.com/p/json-path
https://github.com/jayway/JsonPath/blob/master/json-path/src/main/java/com/jayway/jsonpath/Filter.java
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/expression/PropertyAccessor.html

Spring Integration

<i nt:spel - property-accessors>
<bean id="jsonPA" cl ass="org.springfranework.integration.json.JsonPropertyAccessor"/>
<ref bean="fooPropertyAccessor"/>

</int:spel -property-accessors>

With this sample, two custom Pr opert yAccessor s will be injected to the Eval uat i onCont ext in
the order that they are declared.

© Note

Custom PropertyAccessors declared in a parent context are also made available
in any child context(s). They are placed at the end of result Ilist (but
before the default org. spri ngfranework. cont ext. expressi on. MapAccessor and
org. spri ngfranmewor k. expr essi on. spel . support. Refl ecti vePropertyAccessor).
If a PropertyAccessor with the same bean id is declared in a child context(s), it will override
the parent accessor. Beans declared within a <spel - pr opert y- accessor s/ > must have an
'id" attribute. The final order of usage is: the accessors in the current context, in the order in which
they are declared, followed by any from parent contexts, in order, followed by the MapAccessor
and finally the Ref | ect i vePr opertyAccessor.

Spring Integration
3.0.5.RELEASE Reference Manual 335

Spring Integration

Appendix B. Message Publishing

The AOP Message Publishing feature allows you to construct and send a message as a by-product
of a method invocation. For example, imagine you have a component and every time the state of
this component changes you would like to be notified via a Message. The easiest way to send such
notifications would be to send a message to a dedicated channel, but how would you connect the method
invocation that changes the state of the object to a message sending process, and how should the
notification Message be structured? The AOP Message Publishing feature handles these responsibilities
with a configuration-driven approach.

B.1 Message Publishing Configuration

Spring Integration provides two approaches: XML and Annotation-driven.

Annotation-driven approach via @Publisher annotation

The annotation-driven approach allows you to annotate any method with the @ubl i sher annotation,
specifying a ‘channel' attribute. The Message will be constructed from the return value of the method
invocation and sent to a channel specified by the 'channel' attribute. To further manage message
structure, you can also use a combination of both @ay| oad and @Header annotations.

Internally this message publishing feature of Spring Integration uses both Spring AOP by defining
Publ i sher Annot at i onAdvi sor and Spring 3.0's Expression Language (SpEL) support, giving you
considerable flexibility and control over the structure of the Message it will publish.

The Publ i sher Annot at i onAdvi sor defines and binds the following variables:

* #return - will bind to a return value allowing you to reference it or its attributes (e.g., #return.foo where
'foo' is an attribute of the object bound to #return)

» #exception - will bind to an exception if one is thrown by the method invocation.

 #args - will bind to method arguments, so individual arguments could be extracted by name (e.g.,
#args.fname as in the above method)

Let's look at a couple of examples:

@ubl i sher
public String defaultPayload(String fname, String | nanme) {
return fname + " " + | naneg;

}

In the above example the Message will be constructed with the following structure:
» Message payload - will be the return type and value of the method. This is the default.

* A newly constructed message will be sent to a default publisher channel configured with an annotation
post processor (see the end of this section).

@Publ i sher (channel ="t est Channel ")
public String defaultPayload(String fnane, @iader("last") String | nane) {
return fname + " " + | nane;

}

Spring Integration
3.0.5.RELEASE Reference Manual 336

Spring Integration

In this example everything is the same as above, except that we are not using a default publishing
channel. Instead we are specifying the publishing channel via the ‘channel’ attribute of the @Publisher
annotation. We are also adding a @Header annotation which results in the Message header named
'last' having the same value as the 'Iname' method parameter. That header will be added to the newly
constructed Message.

@Publ i sher (channel ="t est Channel ")

@ray| oad

public String defaultPayl oadBut ExplicitAnnotation(String fname, @deader String | nanme) {
return fname + " " + | nane;

}

The above example is almost identical to the previous one. The only difference here is that we are using
a @Payload annotation on the method, thus explicitly specifying that the return value of the method
should be used as the payload of the Message.

@,ubl i sher (channel ="t est Channel ")

@Payl oad("#return + #args. | nanme")

public String setNane(String fname, String | name, @deader("x") int num {
return fname + " " + | nane;

}

Here we are expanding on the previous configuration by using the Spring Expression Language in the
@Payload annotation to further instruct the framework how the message should be constructed. In this
particular case the message will be a concatenation of the return value of the method invocation and
the 'Iname’ input argument. The Message header named 'x' will have its value determined by the 'num'
input argument. That header will be added to the newly constructed Message.

@Publ i sher (channel ="t est Channel ")
public String argunent AsPayl oad(@ayl oad String fnane, @ieader String |nanme) {
return fname + " " + | name;

}

In the above example you see another usage of the @Payload annotation. Here we are annotating a
method argument which will become the payload of the newly constructed message.

As with most other annotation-driven features in Spring, you will need to register a post-processor
(Publ i sher Annot at i onBeanPost Pr ocessor).

<bean cl ass="org. springframework.integration.aop. Publ i sherAnnot ati onBeanPost Processor"/ >

You can instead use hamespace support for a more concise configuration:

<i nt:annotati on-confi g default-publisher-channel ="def aul t Channel "/ >

Similar to other Spring annotations (@Component, @Scheduled, etc.), @Publ i sher can also be used
as a meta-annotation. That means you can define your own annotations that will be treated in the same
way as the @Publ i sher itself.

@rar get ({ El enent Type. METHOD, El enent Type. TYPE})
@Ret enti on(Ret enti onPol i cy. RUNTI VE)

@,ubl i sher (channel =" audi t Channel ")

public @nterface Audit {

}

Spring Integration
3.0.5.RELEASE Reference Manual 337

Spring Integration

Here we defined the @wudi t annotation which itself is annotated with @ubl i sher. Also note that
you can define a channel attribute on the meta-annotation thus encapsulating the behavior of where
messages will be sent inside of this annotation. Now you can annotate any method:

@\udi t
public String test() {
return "foo";

}
In the above example every invocation of the t est () method will result in a Message with a payload
created from its return value. Each Message will be sent to the channel named auditChannel. One of
the benefits of this technique is that you can avoid the duplication of the same channel name across
multiple annotations. You also can provide a level of indirection between your own, potentially domain-
specific annotations and those provided by the framework.

You can also annotate the class which would mean that the properties of this annotation will be applied
on every public method of that class.

@udi t
static class Banki ngOperationslnpl inplenments Banki ngOperations {

public String debit(String anount) {
}

public String credit(String amount) {

}
}

XML-based approach via the <publishing-interceptor> element

The XML-based approach allows you to configure the same AOP-based Message Publishing
functionality with simple namespace-based configuration of a MessagePubl i shi ngl nt er cept or . It
certainly has some benefits over the annotation-driven approach since it allows you to use AOP pointcut
expressions, thus possibly intercepting multiple methods at once or intercepting and publishing methods
to which you don't have the source code.

To configure Message Publishing via XML, you only need to do the following two things:

» Provide configuration for MessagePubli shinglnterceptor via the <publi shing-
i nt er cept or > XML element.

» Provide AOP configuration to apply the MessagePubl i shi ngl nt er cept or to managed objects.

<aop: confi g>
<aop: advi sor advi ce-ref="interceptor" pointcut="bean(testBean)" />
</ aop: confi g>
<publ i shi ng-interceptor id="interceptor" default-channel ="defaultChannel">

<met hod pattern="echo" payl oad="'Echoing: ' + #return" channel ="echoChannel ">
<header nane="foo" val ue="bar"/>

</ met hod>

<met hod pattern="repl*" payl oad=""'Echoi ng: ' + #return" channel ="echoChannel ">
<header nanme="fo00" expression="'bar'.toUpperCase()"/>

</ met hod>

<met hod pattern="echoDef*" payl oad="#return"/>
</ publ i shi ng-i nt ercept or >

Spring Integration
3.0.5.RELEASE Reference Manual 338

Spring Integration

As you can see the <publ i shi ng-i nt er cept or > configuration looks rather similar to the Annotation-
based approach, and it also utilizes the power of the Spring 3.0 Expression Language.

In the above example the execution of the echo method of a t est Bean will render a Message with
the following structure:

e The Message payload will be of type String with the content "Echoing: [value]" where val ue is the
value returned by an executed method.

» The Message will have a header with the name "foo" and value "bar".
* The Message will be sent to echoChannel .

The second method is very similar to the first. Here every method that begins with 'repl' will render a
Message with the following structure:

» The Message payload will be the same as in the above sample

» The Message will have a header named "foo" whose value is the result of the SpEL expression
"bar' .toUpperCase() .

» The Message will be sent to echoChannel .

The second method, mapping the execution of any method that begins with echoDef of t est Bean,
will produce a Message with the following structure.

* The Message payload will be the value returned by an executed method.

e Since the channel attribute is not provided explicitly, the Message will be sent to the
def aul t Channel defined by the publisher.

For simple mapping rules you can rely on the publisher defaults. For example:

<publ i shi ng-i nterceptor id="anotherlnterceptor"/>

This will map the return value of every method that matches the pointcut expression to a payload and
will be sent to a default-channel. If the defaultChannelis not specified (as above) the messages will be
sent to the global nullChannel.

Async Publishing

One important thing to understand is that publishing occurs in the same thread as your component's
execution. So by default in is synchronous. This means that the entire message flow would have to wait
until the publisher's flow completes. However, quite often you want the complete opposite and that is to
use this Message publishing feature to initiate asynchronous sub-flows. For example, you might host a
service (HTTP, WS etc.) which receives a remote request.You may want to send this request internally
into a process that might take a while. However you may also want to reply to the user right away. So,
instead of sending inbound requests for processing via the output channel (the conventional way), you
can simply use 'output-channel' or a 'replyChannel' header to send a simple acknowledgment-like reply
back to the caller while using the Message publisher feature to initiate a complex flow.

EXAMPLE: Here is the simple service that receives a complex payload, which needs to be sent further
for processing, but it also needs to reply to the caller with a simple acknowledgment.

Spring Integration
3.0.5.RELEASE Reference Manual 339

Spring Integration

public String echo(Object conpl exPayl oad) {
return "ACK";

}
So instead of hooking up the complex flow to the output channel we use the Message publishing feature
instead. We configure it to create a new Message using the input argument of the service method
(above) and send that to the 'localProcessChannel’. And to make sure this sub-flow is asynchronous all
we need to do is send it to any type of asynchronous channel (ExecutorChannel in this example).

<int:service-activator input-channel="inputChannel" out put-
channel =" out put Channel " ref ="sanpl eservi ce"/>

<bean i d="sanpl eservi ce" class="test. Sanpl eService"/>

<aop: confi g>
<aop: advi sor advi ce-ref="interceptor" pointcut="bean(sanpl eservice)" />
</ aop: confi g>

<i nt:publishing-interceptor id="interceptor" >
<int:nethod pattern="echo" payl oad="#args[0]" channel ="| ocal ProcessChannel ">
<i nt: header nane="sanpl e_header" expressi on="'sone sanple value'"/>
</int: nmet hod>
</int:publishing-interceptor>

<i nt:channel id="Iocal ProcessChannel ">
<i nt:di spat cher task-executor="executor"/>

</int:channel >

<t ask: execut or id="executor" pool -size="5"/>

Another way of handling this type of scenario is with a wire-tap.
Producing and publishing messages based on a scheduled trigger

Inthe above sections we looked at the Message publishing feature of Spring Integration which constructs
and publishes messages as by-products of Method invocations. However in those cases, you are
still responsible for invoking the method. In Spring Integration 2.0 we've added another related useful
feature: support for scheduled Message producers/publishers via the new "expression" attribute on the
'inbound-channel-adapter' element. Scheduling could be based on several triggers, any one of which
may be configured on the 'poller' sub-element. Currently we support cron, fi xed-rate, fixed-
del ay as well as any custom trigger implemented by you and referenced by the 'trigger' attribute value.

As mentioned above, support for scheduled producers/publishers is provided via the <inbound-channel-
adapter> xml element. Let's look at couple of examples:

<i nt:inbound-channel - adapt er id="fi xedDel ayProducer"
expression=""'fixedDel ayTest"'"
channel ="fi xedDel ayChannel ">
<int:poller fixed-delay="1000"/>
</int:inbound- channel - adapt er >

In the above example an inbound Channel Adapter will be created which will construct a Message with
its payload being the result of the expression defined in the expr essi on attribute. Such messages
will be created and sent every time the delay specified by the f i xed- del ay attribute occurs.

Spring Integration
3.0.5.RELEASE Reference Manual 340

Spring Integration

<i nt:inbound-channel - adapt er id="fi xedRat eProducer"
expression=""'fixedRateTest"'"
channel ="fi xedRat eChannel ">
<int:poller fixed-rate="1000"/>
</int:inbound- channel - adapt er >

This example is very similar to the previous one, except that we are using the f i xed- r at e attribute
which will allow us to send messages at a fixed rate (measuring from the start time of each task).

<i nt:inbound-channel - adapt er i d="cronProducer"
expressi on=""'cronTest"' "
channel =" cronChannel ">
<int:poller cron="7 6 54 3 ?"/>
</int:inbound- channel - adapt er >

This example demonstrates how you can apply a Cron trigger with a value specified in the cr on attribute.

<i nt:i nbound- channel - adapt er i d="header Expr essi onsPr oducer "
expressi on=""' header Expr essi onsTest "' "
channel =" header Expr essi onsChannel "
aut o-startup="fal se">
<int:poller fixed-delay="5000"/>
<i nt: header nanme="foo" expression="6 * 7"/>
<i nt: header nane="bar" val ue="x"/>
</int:inbound-channel - adapt er >

Here you can see that in a way very similar to the Message publishing feature we are enriching a
newly constructed Message with extra Message headers which can take scalar values or the results
of evaluating Spring expressions.

If you need to implement your own custom trigger you can use the trigger
attribute to provide a reference to any spring configured bean which implements the
org. spri ngframewor k. schedul i ng. Tri gger interface.

<i nt:i nbound- channel - adapt er id="tri gger Ref Producer"
expressi on=""triggerRef Test'" channel ="tri gger Ref Channel ">
<int:poller trigger="custonlrigger"/>
</int:inbound-channel - adapt er >

<beans: bean i d="custonlrigger" class="0.s.scheduling.support.PeriodicTrigger">
<beans: constructor-arg val ue="9999"/>
</ beans: bean>

Spring Integration
3.0.5.RELEASE Reference Manual 341

Spring Integration

Appendix C. Transaction Support

C.1 Understanding Transactions in Message flows

Spring Integration exposes several hooks to address transactional needs of you message flows. But to
better understand these hooks and how you can benefit from them we must first revisit the 6 mechanisms
that could be used to initiate Message flows and see how transactional needs of these flows could be
addressed within each of these mechanisms.

Here are the 6 mechanisms to initiate a Message flow and their short summary (details for each are
provided throughout this manual):

» Gateway Proxy - Your basic Messaging Gateway
» MessageChannel - Direct interactions with MessageChannel methods (e.g., channel.send(message))

» Message Publisher - the way to initiate message flow as the by-product of method invocations on
Spring beans

e Inbound Channel Adapters/Gateways - the way to initiate message flow based on connecting
third-party system with Spring Integration messaging system(e.g., [JmsMessage] -> Jms Inbound
Adapter[SI Message] -> S| Channel)

» Scheduler - the way to initiate message flow based on scheduling events distributed by a pre-
configured Scheduler

» Poller - similar to the Scheduler and is the way to initiate message flow based on scheduling or interval-
based events distributed by a pre-configured Poller

These 6 could be split in 2 general categories:

» Message flows initiated by a USER process - Example scenarios in this category would be invoking
a Gateway method or explicitly sending a Message to a MessageChannel. In other words, these
message flows depend on a third party process (e.g., some code that we wrote) to be initiated.

» Message flows initiated by a DAEMON process - Example scenarios in this category would be a Poller
polling a Message queue to initiate a new Message flow with the polled Message or a Scheduler
scheduling the process by creating a new Message and initiating a message flow at a predefined time.

Clearly the Gateway Proxy, MessageChannel.send(..) and MessagePublisher all belong to the 1st
category and Inbound Adapters/Gateways, Scheduler and Poller belong to the 2nd.

So, how do we address transactional needs in various scenarios within each category and is there a
need for Spring Integration to provide something explicitly with regard to transactions for a particular
scenario? Or, can Spring's Transaction Support be leveraged instead?.

The first and most obvious goal is NOT to re-invent something that has already been invented unless
you can provide a better solution. In our case Spring itself provides first class support for transaction
management. So our goal here is not to provide something new but rather delegate/use Spring to benefit
from the existing support for transactions. In other words as a framework we must expose hooks to the
Transaction management functionality provided by Spring. But since Spring Integration configuration is

Spring Integration
3.0.5.RELEASE Reference Manual 342

Spring Integration

based on Spring Configuration it is not always necessary to expose these hooks as they are already
exposed via Spring natively. Remember every Spring Integration component is a Spring Bean after all.

With this goal in mind let's look at the two scenarios.

If you think about it, Message flows that are initiated by the USER process (Category 1) and obviously
configured in a Spring Application Context, are subject to transactional configuration of such processes
and therefore don't need to be explicitly configured by Spring Integration to support transactions. The
transaction could and should be initiated through standard Transaction support provided by Spring. The
Spring Integration message flow will honor the transactional semantics of the components naturally
because it is Spring configured. For example, a Gateway or ServiceActivator method could be annotated
with @r ansacti onal or Transacti onl nt er cept or could be defined in an XML configuration with
a point-cut expression pointing to specific methods that should be transactional. The bottom line is that
you have full control over transaction configuration and boundaries in these scenarios.

However, things are a bit different when it comes to Message flows initiated by the DAEMON process
(Category 2). Although configured by the developer these flows do not directly involve a human or
some other process to be initiated. These are trigger-based flows that are initiated by a trigger process
(DAEMON process) based on the configuration of such process. For example, we could have a
Scheduler initiating a message flow every Friday night of every week. We can also configure a trigger
that initiates a Message flow every second, etc. So, we obviously need a way to let these trigger-based
processes know of our intention to make the resulting Message flows transactional so that a Transaction
context could be created whenever a new Message flow is initiated. In other words we need to expose
some Transaction configuration, but ONLY enough to delegate to Transaction support already provided
by Spring (as we do in other scenarios).

Spring Integration provides transactional support for Pollers. Pollers are a special type of component
because we can call receive() within that poller task against a resource that is itself transactional thus
including receive() call in the the boundaries of the Transaction allowing it to be rolled back in case of
a task failure. If we were to add the same support for channels, the added transactions would affect
all downstream components starting with that send() call. That is providing a rather wide scope for
transaction demarcation without any strong reason especially when Spring already provides several
ways to address the transactional needs of any component downstream. However the receive() method
being included in a transaction boundary is the "strong reason" for pollers.

Poller Transaction Support

Any time you configure a Poller you can provide transactional configuration via the transactional sub-
element and its attributes:

<int:poller max-nessages-per-poll="1" fixed-rate="1000">
<transactional transaction-manager="txManager"
i sol ati on="DEFAULT"
pr opagat i on=" REQUI RED"
read-onl y="true"
ti meout ="1000"/ >
</ pol | er>

As you can see this configuration looks very similar to native Spring transaction configuration. You must
still provide a reference to a Transaction manager and specify transaction attributes or rely on defaults
(e.g., if the 'transaction-manager" attribute is not specified, it will default to the bean with the name
'transactionManager’). Internally the process would be wrapped in Spring's native Transaction where
Transacti onl nt er cept or is responsible for handling transactions. For more information on how to

Spring Integration
3.0.5.RELEASE Reference Manual 343

Spring Integration

configure a Transaction Manager, the types of Transaction Managers (e.g., JTA, Datasource etc.) and
other details related to transaction configuration please refer to Spring's Reference manual (Chapter
10 - Transaction Management).

With the above configuration all Message flows initiated by this poller will be transactional. For more
information and details on a Poller's transactional configuration please refer to section - 21.1.1. Polling
and Transactions.

Along with transactions, several more cross cutting concerns might need to be addressed when running
a Poller. To help with that, the Poller element accepts an <advice-chain> sub-element which allows
you to define a custom chain of Advice instances to be applied on the Poller. (see section 4.4 for more
details) In Spring Integration 2.0, the Poller went through the a refactoring effort and is now using a
proxy mechanism to address transactional concerns as well as other cross cutting concerns. One of
the significant changes evolving from this effort is that we made <transactional> and <advice-chain>
elements mutually exclusive. The rationale behind this is that if you need more than one advice, and
one of them is Transaction advice, then you can simply include it in the <advice-chain> with the same
convenience as before but with much more control since you now have an option to position any advice
in the desired order.

<int:poller max-nmessages-per-poll="1" fixed-rate="10000">
<advi ce- chai n>
<ref bean="t xAdvi ce"/>
<ref bean="someAot her Advi ceBean" />
<beans: bean cl ass="f 0o0. bar. Sanpl eAdvi ce"/ >
</ advi ce- chai n>
</ pol | er>

<t x:advi ce id="txAdvi ce" transaction-nanager="t xManager" >
<tx:attributes>
<t x: net hod nane="get*" read-only="true"/>
<t x: net hod name="*"/>
</tx:attributes>
</t x:advi ce>

As you can see from the example above, we have provided a very basic XML-based configuration of
Spring Transaction advice - "txAdvice" and included it within the <advice-chain> defined by the Poller. If
you only need to address transactional concerns of the Poller, then you can still use the <transactional>
element as a convinience.

C.2 Transaction Boundaries

Another important factor is the boundaries of Transactions within a Message flow. When a transaction is
started, the transaction context is bound to the current thread. So regardless of how many endpoints and
channels you have in your Message flow your transaction context will be preserved as long as you are
ensuring that the flow continues on the same thread. As soon as you break it by introducing a Pollable
Channel or Executor Channel or initiate a new thread manually in some service, the Transactional
boundary will be broken as well. Essentially the Transaction will END right there, and if a successful
handoff has transpired between the threads, the flow would be considered a success and a COMMIT
signal would be sent even though the flow will continue and might still result in an Exception somewhere
downstream. If such a flow were synchronous, that Exception could be thrown back to the initiator of the
Message flow who is also the initiator of the transactional context and the transaction would result in a
ROLLBACK. The middle ground is to use transactional channels at any point where a thread boundary
is being broken. For example, you can use a Queue-backed Channel that delegates to a transactional
MessageStore strategy, or you could use a JMS-backed channel.

Spring Integration
3.0.5.RELEASE Reference Manual 344

Spring Integration

C.3 Transaction Synchronization

In some environments, it is advantageous to synchronize operations with a transaction that
encompasses the entire flow. For example, consider a <file:inbound-channel-adapter/> at the start of a
flow, that performs a number of database updates. If the transaction commits, we might want to move
the file to a success directory, while we might want to move it to a failures directory if the transaction
rolls back.

Spring Integration 2.2 introduces the capability of synchronizing these operations with a transaction.
In addition, you can configure a PseudoTr ansact i onManager if you don't have a 'real’ transaction,
but still want to perform different actions on success, or failure. For more information, see Section C.4,
“Pseudo Transactions”.

Key strategy interfaces for this feature are

public interface TransactionSynchroni zationFactory {

Transacti onSynchroni zati on create(Object key);

}

public interface TransactionSynchronizati onProcessor {
voi d processBeforeConmit (I ntegrationResourceHol der hol der);
voi d processAfterCommit (| ntegrationResourceHol der hol der);

voi d processAfterRol | back(Il nt egrati onResour ceHol der hol der);

}

The factory is responsible for creating a TransactionSynchronization object. You can implement your
own, or use the one provided by the framework: Def aul t Tr ansact i onSynchr oni zat i onFact ory.
This implementation returns a Transacti onSynchroni zati on that delegates

to a default implementaton of TransactionSynchroni zati onProcessor, the
Expr essi onEval uati ngTransacti onSynchroni zat i onProcessor. This processor supports
three SpEL expressions, beforeCommitExpression, afterCommitExpression, and

afterRollbackExpression.

These actions should be self-explanatory to those familiar with transactions. In each case, the #root
variable is the original Message; in some cases, other SpEL variables are made available, depending
on the MessageSour ce being polled by the poller. For example, the MongoDbMessageSour ce
provides the #mongoTemplate variable which references the message source's MongoTenpl at e; the
Redi sSt or eMessageSour ce provides the #store variable which references the Redi sSt or e created
by the poll.

To enable the feature for a particular poller, you provide a reference to the
Transacti onSynchroni zati onFactory on the poller's <transactional/> element using the
synchronization-factory attribute.

To simplify configuration of these components, namespace support for the default factory has been
provided. Configuration is best described using an example:

Spring Integration
3.0.5.RELEASE Reference Manual 345

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/transaction/support/TransactionSynchronization.html

Spring Integration

<int-file:inbound-channel -adapter id="inputDirPoller"

channel =" someChannel "

directory="/foo/ bar"

filter="filter"

conpar at or ="t est Conpar at or " >

<int:poller fixed-rate="5000">

<int:transactional transaction-nmanager="transacti onManager" synchroni zati on-

factory="syncFactory" />

</int:poller>
</int-file:inbound-channel -adapter>

<int:transaction-synchroni zati on-factory id="syncFactory">
<int:after-conmt expression="payl oad.renameTo('/success/' +
payl oad. nane)" channel ="conmi tt edChannel " />
<int:after-rollback expressi on="payl oad. renanmeTo('/failed/' +
payl oad. nane)" channel ="rol | edBackChannel " />
</int:transaction-synchroni zation-factory>

The result of the SpEL evaluation is sent as the payload to either the committedChannel or
rolledBackChannel (in this case, this would be Bool ean. TRUE or Bool ean. FALSE - the result of the
java.io. File.renameTo() method call).

If you wish to send the entire payload for further Spring Integration processing, simply use the expression
'‘payload'.

© Important

It is important to understand that this is simply synchronizing the actions with a transaction, it
does not make a resource that is not inherently transactional actually transactional. Instead, the
transaction (be it JDBC or otherwise) is started before the poll, and committed/rolled back when
the flow completes, followed by the synchronized action.

It is also important to understand that if you provide a custom
Transacti onSynchroni zati onFactory, it is responsible for creating a resource
synchronization that will cause the bound resource to be unbound automatically, when
the transaction completes. The default Transacti onSynchroni zati onFactory does
this by returning a subclass of Resour ceHol der Synchroni zati on, with the default
shouldUnbindAtCompletion() returning t r ue.

In addition to the after-commit and after-rollback expressions, before-commit is also supported. In that
case, if the evaluation (or downstream processing) throws an exception, the transaction will be rolled
back instead of being committed.

C.4 Pseudo Transactions

Referring to the above section, you may be thinking it would be useful to take these 'success' or
'failure’ actions when a flow completes, even if there is no 'real transactional resources (such as JDBC)
downstream of the poller. For example, consider a <file:inbound-channel-adapter/> followed by an
<ftp:outbout-channel-adapter/>. Neither of these components is transactional but we might want to move
the input file to different directories, based on the success or failure of the ftp transfer.

To provide this functionality, the framework provides a PseudoTr ansact i onManager , enabling the
above configuration even when there is no real transactional resource involved. If the flow completes
normally, the beforeCommit and afterCommit synchronizations will be called, on failure the afterRollback

Spring Integration
3.0.5.RELEASE Reference Manual 346

Spring Integration

will be called. Of course, because it is not a real transaction there will be no actual commit or rollback.
The pseudo transaction is simply a vehicle used to enable the synchronization features.

To use a PseudoTr ansact i onManager , simply define it as a <bean/>, in the same way you would
configure a real transaction manager:

<bean i d="transacti onManager" class="0.s.i.transaction.PseudoTransacti onManager" />

Spring Integration
3.0.5.RELEASE Reference Manual 347

Spring Integration

Appendix D. Security in Spring
Integration

D.1 Introduction

Spring Integration builds upon the Spring Security project to enable role based security checks to be
applied to channel send and receive invocations.

D.2 Securing channels

Spring Integration provides the interceptor Channel Securityl nterceptor, which extends
Abst ract Securityl nterceptor and intercepts send and receive calls on the channel. Access
decisions are then made with reference to a Channel Secur i t yMet adat aSour ce which provides the
metadata describing the send and receive access policies for certain channels. The interceptor requires
that a valid Securi t yCont ext has been established by authenticating with Spring Security. See the
Spring Security reference documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists
of the secured channels tag which allows definition of one or more channel name patterns in
conjunction with a definition of the security configuration for send and receive. The pattern is a
java. util.regexp. Pattern.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns:int="http://ww.springfranework. org/schena/integration"
xm ns:int-security="http://ww.springfranework. org/schema/integration/security"
xm ns: beans="htt p: //wwm. spri ngfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: security="http://ww. springframework. org/ schema/ security"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ security
http://ww. spri ngfranewor k. or g/ schema/ security/spring-security.xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http: //ww. spri ngfranewor k. or g/ schenma/ i ntegration/security
http://ww. springfranmewor k. org/ schema/ i ntegration/security/spring-integration-
security.xsd">

<int-security:secured-channel s>
<int-security:access-policy pattern="admin.*" send-access="ROLE_ADM N'/ >
<int-security:access-policy pattern="user.*" receive-access="ROLE_USER'/>
</int-security: secured-channel s>

By default the secured-channels namespace element expects a bean named authenticationManager
which implements Aut henti cati onManager and a bean named accessDecisionManager which
implements AccessDeci si onManager . Where this is not the case references to the appropriate beans
can be configured as attributes of the secured-channels element as below.

Spring Integration
3.0.5.RELEASE Reference Manual 348

http://static.springframework.org/spring-security/site/

Spring Integration

<i nt-security: secured-channel s access-deci si on- manager =" cust omAccessDeci si onManager "
aut henti cati on- manager =" cust omAut hent i cati onManager " >
<int-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/ >
<int-security:access-policy pattern="user.*" receive-access="ROLE USER'/ >
</int-security:secured-channel s>

Spring Integration
3.0.5.RELEASE Reference Manual 349

Spring Integration

Appendix E. Spring Integration
Samples

E.1 Introduction

As of Spring Integration 2.0, the samples are no longer included with the Spring Integration distribution.
Instead we have switched to a much simpler collaborative model that should promote better community
participation and, ideally, more contributions. Samples now have a dedicated Git repository and a
dedicated JIRA Issue Tracking system. Sample development will also have its own lifecycle which is not
dependent on the lifecycle of the framework releases, although the repository will still be tagged with
each major release for compatibility reasons.

The great benefit to the community is that we can now add more samples and make them available to
you right away without waiting for the next release. Having its own JIRA that is not tied to the the actual
framework is also a great benefit. You now have a dedicated place to suggest samples as well as report
issues with existing samples. Or, you may want to submit a sample to us as an attachment through the
JIRA or, better, through the collaborative model that Git promotes. If we believe your sample adds value,
we would be more then glad to add it to the 'samples' repository, properly crediting you as the author.

E.2 Where to get Samples

The Spring Integration Samples project is hosted on GitHub. You can find the repository at:

https://github.com/SpringSource/spring-integration-samples

In order to check out or clone (Git parlance) the samples, please make sure you have a Git client
installed on your system. There are several GUI-based products available for many platforms, e.g. EGit
for the Eclipse IDE. A simple Google search will help you find them. Of course you can also just use
the command line interface for Git.

@ Note

If you need more information on how to install and/or use Git, please visit: http://git-scm.com!/.

In order to checkout (clone in Git terms) the Spring Integration samples repository using the Git
command line tool, issue the following commands:

$ git clone https://github. com SpringSource/spring-integration-sanples.git

That is all you need to do in order to clone the entire samples repository into a directory named spring-
integration-samples within the working directory where you issued that git command. Since the samples
repository is a live repository, you might want to perform periodic pulls (updates) to get new samples,
as well as updates to the existing samples. In order to do so issue the following git PULL command:

‘SB git pull

E.3 Submitting Samples or Sample Requests

How can | contribute my own Samples?

Spring Integration
3.0.5.RELEASE Reference Manual 350

https://github.com/SpringSource/spring-integration-samples/
https://github.com/SpringSource/spring-integration-samples
http://eclipse.org/egit/
http://git-scm.com/

Spring Integration

Github is for social coding: if you want to submit your own code examples to the Spring Integration
Samples project, we encourage contributions through pull requests from forks of this repository. If you
want to contribute code this way, please reference, if possible, a JIRA Ticket that provides some details
regarding the provided sample.

© Sign the contributor license agreement

Very important: before we can accept your Spring Integration sample, we will need you to sign
the SpringSource contributor license agreement (CLA). Signing the contributor's agreement does
not grant anyone commit rights to the main repository, but it does mean that we can accept your
contributions, and you will get an author credit if we do. In order to read and sign the CLA, please
go to:

https://support.springsource.com/spring_committer_signup

As Project, please select Spring Integration. The Project Lead is Mark Fisher.
Code Contribution Process

For the actual code contribution process, please read the the Contributor Guidelines for Spring
Integration, they apply for this project as well:

https://github.com/SpringSource/spring-integration/wiki/Contributor-Guidelines

This process ensures that every commit gets peer-reviewed. As a matter of fact, the core committers
follow the exact same rules. We are gratefully looking forward to your Spring Integration Samples!

Sample Requests

As mentioned earlier, the Spring Integration Samples project has a dedicated JIRA Issue tracking
system. To submit new sample requests, please visit our JIRA Issue Tracking system:

https://jira.springframework.org/browse/INTSAMPLES.

E.4 Samples Structure

Starting with Spring Integration 2.0, the structure of the samples changed as well. With plans for more
samples we realized that some samples have different goals than others. While they all share the
common goal of showing you how to apply and work with the Spring Integration framework, they also
differ in areas where some samples are meant to concentrate on a technical use case while others focus
on a business use case, and some samples are all about showcasing various techniques that could be
applied to address certain scenarios (both technical and business). The new categorization of samples
will allow us to better organize them based on the problem each sample addresses while giving you a
simpler way of finding the right sample for your needs.

Currently there are 4 categories. Within the samples repository each category has its own directory
which is named after the category name:

BASIC (samples/basic)

This is a good place to get started. The samples here are technically motivated and demonstrate the
bare minimum with regard to configuration and code. These should help you to get started quickly by
introducing you to the basic concepts, APl and configuration of Spring Integration as well as Enterprise

Spring Integration
3.0.5.RELEASE Reference Manual 351

http://help.github.com/send-pull-requests/
http://help.github.com/fork-a-repo/
https://jira.springframework.org/browse/INTSAMPLES
https://support.springsource.com/spring_committer_signup
https://github.com/SpringSource/spring-integration/wiki/Contributor-Guidelines
https://jira.springframework.org/browse/INTSAMPLES

Spring Integration

Integration Patterns (EIP). For example, if you are looking for an answer on how to implement and wire
a Service Activator to a Message Channel or how to use a Messaging Gateway as a facade to your
message exchange, or how to get started with using MAIL or TCP/UDP modules etc., this would be the
right place to find a good sample. The bottom line is this is a good place to get started.

INTERMEDIATE (samples/intermediate)

This category targets developers who are already familiar with the Spring Integration framework (past
getting started), but need some more guidance while resolving the more advanced technical problems
one might deal with after switching to a Messaging architecture. For example, if you are looking for an
answer on how to handle errors in various message exchange scenarios or how to properly configure
the Aggregator for the situations where some messages might not ever arrive for aggregation, or any
other issue that goes beyond a basic implementation and configuration of a particular component and
addresses what else types of problems, this would be the right place to find these type of samples.

ADVANCED (samples/advanced)

This category targets developers who are very familiar with the Spring Integration framework but
are looking to extend it to address a specific custom need by using Spring Integration's public API.
For example, if you are looking for samples showing you how to implement a custom Channel or
Consumer (event-based or polling-based), or you are trying to figure out what is the most appropriate
way to implement a custom Bean parser on top of the Spring Integration Bean parser hierarchy when
implementing your own namespace and schema for a custom component, this would be the right place
to look. Here you can also find samples that will help you with Adapter development. Spring Integration
comes with an extensive library of adapters to allow you to connect remote systems with the Spring
Integration messaging framework. However you might have a need to integrate with a system for which
the core framework does not provide an adapter. So, you may decide to implement your own (and
potentially contribute it). This category would include samples showing you how.

APPLICATIONS (samples/applications)

This category targets developers and architects who have a good understanding of Message-driven
architecture and EIP, and an above average understanding of Spring and Spring Integration who are
looking for samples that address a particular business problem. In other words the emphasis of samples
in this category is business use cases and how they can be solved with a Message-Driven Architecture
and Spring Integration in particular. For example, if you are interested to see how a Loan Broker or
Travel Agent process could be implemented and automated via Spring Integration, this would be the
right place to find these types of samples.

© Important
Remember: Spring Integration is a community driven framework, therefore community
participation is IMPORTANT. That includes Samples; so, if you can't find what you are looking
for, let us know!

E.5 Samples

Currently Spring Integration comes with quite a few samples and you can only expect more. To help
you better navigate through them, each sample comes with its own r eadne. t xt file which covers
several details about the sample (e.g., what EIP patterns it addresses, what problem it is trying to solve,
how to run sample etc.). However, certain samples require a more detailed and sometimes graphical
explanation. In this section you'll find details on samples that we believe require special attention.

Spring Integration
3.0.5.RELEASE Reference Manual 352

Spring Integration

Loan Broker

In this section, we will review the Loan Broker sample application that is included in the Spring
Integration samples. This sample is inspired by one of the samples featured in Gregor Hohpe and Bobby
Woolf's book, Enterprise Integration Patterns.

The diagram below represents the entire process

preProcessChain

«1 »
L S | FaveY . o—[]|.. =
| . vl = — | ._
3 3 L] 3
g T — ¢
loanBrokerGat... loanBrokerPre.. preProcessCh... creditScoreser.. J bankRoute
‘.. /preProcessChain
’ S Bank Channels »
I I"—| |
auto-reply channel
|I
—
|) | —
[% i
QUOIESAGTred... quotesAggreg... |

Now lets look at this process in more detail

At the core of an EIP architecture are the very simple yet powerful concepts of Pipes and Filters, and
of course: Messages. Endpoints (Filters) are connected with one another via Channels (Pipes). The
producing endpoint sends Message to the Channel, and the Message is retrieved by the Consuming
endpoint. This architecture is meant to define various mechanisms that describe HOW information
is exchanged between the endpoints, without any awareness of WHAT those endpoints are or what
information they are exchanging. Thus, it provides for a very loosely coupled and flexible collaboration
model while also decoupling Integration concerns from Business concerns. EIP extends this architecture
by further defining:

e The types of pipes (Point-to-Point Channel, Publish-Subscribe Channel, Channel Adapter, etc.)

» The core filters and patterns around how filters collaborate with pipes (Message Router, Splitters and
Aggregators, various Message Transformation patterns, etc.)

The details and variations of this use case are very nicely described in Chapter 9 of the EIP Book, but
here is the brief summary; A Consumer while shopping for the best Loan Quote(s) subscribes to the
services of a Loan Broker, which handles details such as:

» Consumer pre-screening (e.g., obtain and review the consumer's Credit history)
» Determine the most appropriate Banks (e.g., based on consumer's credit history/score)

e Send a Loan quote request to each selected Bank

Spring Integration
3.0.5.RELEASE Reference Manual 353

http://www.eaipatterns.com

Spring Integration

» Collect responses from each Bank
* Filter responses and determine the best quote(s), based on consumer's requirements.
» Pass the Loan quote(s) back to the consumer.

Obviously the real process of obtaining a loan quote is a bit more complex, but since our goal here is to
demonstrate how Enterprise Integration Patterns are realized and implemented within Sl, the use case
has been simplified to concentrate only on the Integration aspects of the process. It is not an attempt
to give you an advice in consumer finances.

As you can see, by hiring a Loan Broker, the consumer is isolated from the details of the Loan Broker's
operations, and each Loan Broker's operations may defer from one another to maintain competitive
advantage, so whatever we assemble/implement must be flexible so any changes could be introduced
quickly and painlessly. Speaking of change, the Loan Broker sample does not actually talk to any
'imaginary’ Banks or Credit bureaus. Those services are stubbed out. Our goal here is to assembile,
orchestrate and test the integration aspect of the process as a whole. Only then can we start thinking
about wiring such process to the real services. At that time the assembled process and its configuration
will not change regardless of the number of Banks a particular Loan Broker is dealing with, or the type
of communication media (or protocols) used (JMS, WS, TCP, etc.) to communicate with these Banks.

DESIGN

As you analyze the 6 requirements above you'll quickly see that they all fall into the category of
Integration concerns. For example, in the consumer pre-screening step we need to gather additional
information about the consumer and the consumer's desires and enrich the loan request with additional
meta information. We then have to filter such information to select the most appropriate list of Banks,
and so on. Enrich, filter, select — these are all integration concerns for which EIP defines a solution in
the form of patterns. Sl provides an implementation of these patterns.

Messaging Gateway

The Messaging Gateway pattern provides a simple mechanism to access messaging systems, including
our Loan Broker. In Sl you define the Gateway as a Plain Old Java Interface (no need to provide
an implementation), configure it via the XML <gateway> element or via annotation and use it as any
other Spring bean. Sl will take care of delegating and mapping method invocations to the Messaging
infrastructure by generating a Message (payload is mapped to an input parameter of the method) and
sending it to the designated channel.

<int:gateway id="|oanBroker Gat eway"
def aul t - request - channel ="| oanBr oker Pr ePr ocessi ngChannel "
servi ce-
i nterface="org.springfranework.integration.sanples.|oanbroker.LoanBr oker Gat eway" >
<i nt: net hod nane="get Best LoanQuot e" >
<i nt:header nanme="RESPONSE TYPE" val ue="BEST"/>
</int: et hod>
</int:gat eway>

Spring Integration
3.0.5.RELEASE Reference Manual 354

Spring Integration

Our current Gateway provides two methods that could be invoked. One that will return the best single
guote and another one that will return all quotes. Somehow downstream we need to know what type
of reply the caller is looking for. The best way to achieve this in Messaging architecture is to enrich
the content of the message with some meta-data describing your intentions. Content Enricher is one of
the patterns that addresses this and although Spring Integration does provide a separate configuration
element to enrich Message Headers with arbitrary data (we'll see it later), as a convenience, since
Gateway element is responsible to construct the initial Message it provides embedded capability to
enrich the newly created Message with arbitrary Message Headers. In our example we are adding
header RESPONSE_TYPE with value 'BEST" whenever the getBestQuote() method is invoked. For
other method we are not adding any header. Now we can check downstream for an existence of this
header and based on its presence and its value we can determine what type of reply the caller is looking
for.

Based on the use case we also know there are some pre-screening steps that needs to be performed
such as getting and evaluating the consumer's credit score, simply because some premiere Banks will
only typically accept quote requests from consumers that meet a minimum credit score requirement. So
it would be nice if the Message would be enriched with such information before it is forwarded to the
Banks. It would also be nice if when several processes needs to be completed to provide such meta-
information, those processes could be grouped in a single unit. In our use case we need to determine
credit score and based on the credit score and some rule select a list of Message Channels (Bank
Channels) we will sent quote request to.

Composed Message Processor

The Composed Message Processor pattern describes rules around building endpoints that maintain
control over message flow which consists of multiple message processors. In Spring Integration
Composed Message Processor pattern is implemented via <chain> element.

preProcessChain

)

@]

preProcessCh creditScoreSer... hankBouter

e

fpreProcessChain

As you can see from the above configuration we have a chain with inner header-enricher element which
will further enrich the content of the Message with the header CREDIT_SCORE and value that will be
determined by the call to a credit service (simple POJO spring bean identified by ‘creditBureau’ name)
and then it will delegate to the Message Router

Message Router

Spring Integration
3.0.5.RELEASE Reference Manual 355

Spring Integration

o ?

bamkRouter

There are several implementations of the Message Routing pattern available in Spring Integration. Here
we are using a router that will determine a list of channels based on evaluating an expression (Spring
Expression Language) which will look at the credit score that was determined is the previous step and
will select the list of channels from the Map bean with id 'banks' whose values are 'premier’ or 'secondary’
based o the value of credit score. Once the list of Channels is selected, the Message will be routed
to those Channels.

Now, one last thing the Loan Broker needs to to is to receive the loan quotes form the banks, aggregate
them by consumer (we don't want to show quotes from one consumer to another), assemble the
response based on the consumer's selection criteria (single best quote or all quotes) and reply back
to the consumer.

Message Aggregator

[]
[=—p[]

L] 9

guotesAggreg...

An Aggregator pattern describes an endpoint which groups related Messages into a single Message.
Criteria and rules can be provided to determine an aggregation and correlation strategy. Sl provides
several implementations of the Aggregator pattern as well as a convenient name-space based
configuration.

<i nt:aggregator id="quotesAggregator"
i nput - channel =" quot esAggr egat i onChannel "
met hod="aggr egat eQuot es" >
<beans: bean cl ass="org. spri ngfranework.integration.sanpl es. | oanbroker.LoanQuot eAggr egat or"/
>

</i nt:aggregat or >

Our Loan Broker defines a 'quotesAggregator' bean via the <aggregator> element which provides a
default aggregation and correlation strategy. The default correlation strategy correlates messages based
on the correl ati onl d header (see Correlation Identifier pattern). What's interesting is that we never
provided the value for this header. It was set earlier by the router automatically, when it generated a
separate Message for each Bank channel.

Once the Messages are correlated they are released to the actual Aggregator implementation. Although
default Aggregator is provided by SlI, its strategy (gather the list of payloads from all Messages and
construct a new Message with this List as payload) does not satisfy our requirement. The reason is that

Spring Integration
3.0.5.RELEASE Reference Manual 356

Spring Integration

our consumer might require a single best quote or all quotes. To communicate the consumer's intention,
earlier in the process we set the RESPONSE_TYPE header. Now we have to evaluate this header and
return either all the quotes (the default aggregation strategy would work) or the best quote (the default
aggregation strategy will not work because we have to determine which loan quote is the best).

Obviously selecting the best quote could be based on complex criteria and would influence the
complexity of the aggregator implementation and configuration, but for now we are making it simple. If
consumer wants the best quote we will select a quote with the lowest interest rate. To accomplish that
the LoanQuoteAggregator.java will sort all the quotes and return the first one. The LoanQuot e. j ava
implements Conpar abl e which compares quotes based on the rate attribute. Once the response
Message is created it is sent to the default-reply-channel of the Messaging Gateway (thus the consumer)
which started the process. Our consumer got the Loan Quote!

Conclusion

As you can see a rather complex process was assembled based on POJO (read existing, legacy), light
weight, embeddable messaging framework (Spring Integration) with a loosely coupled programming
model intended to simplify integration of heterogeneous systems without requiring a heavy-weight ESB-
like engine or proprietary development and deployment environment, because as a developer you
should not be porting your Swing or console-based application to an ESB-like server or implementing
proprietary interfaces just because you have an integration concern.

This and other samples in this section are built on top of Enterprise Integration Patterns and can
be considered "building blocks" for YOUR solution; they are not intended to be complete solutions.
Integration concerns exist in all types of application (whether server based or not). It should not require
change in design, testing and deployment strategy if such applications need to be integrated.

The Cafe Sample

In this section, we will review a Cafe sample application that is included in the Spring Integration
samples. This sample is inspired by another sample featured in Gregor Hohpe's Ramblings.

The domain is that of a Cafe, and the basic flow is depicted in the following diagram:

r

¢ L] [
> - -] —0 ||
| N —| = A -
3 5 &] @
cafe | orders orderSplitter | drinks

‘ L 4 SR
T ,-/ C i _)"_} n
S — — . \
\
3 ® |\
./. coldDrinks coldDrinksSer... "l.
o /)\ | —— : i o |
" ;) —3L] q.—'_’ 1l
o 1| G |— |
@ . k. .
drinksRouter Pi L ;
f preparedDrinks orderAggregat.. deliveries
N —_— . . .
. = ._)’_)_1 "
h @ @
4
hotDrinks hotDrinksServi...

Spring Integration
3.0.5.RELEASE Reference Manual 357

http://www.eaipatterns.com/ramblings.html

Spring Integration

The Or der object may contain multiple Or der | t ens. Once the order is placed, a Splitter will break the
composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the Or der | t emobject's ‘islced' property). The
Bar i st a prepares each drink, but hot and cold drink preparation are handled by two distinct methods:
‘prepareHotDrink’ and 'prepareColdDrink’. The prepared drinks are then sent to the Waiter where they
are aggregated into a Del i ver y object.

Here is the XML configuration:

<i
<i

<i
<i

<i
<i

<i
<i

<i
<i

http://ww. springframework.
<int:
nt:

nt:

nt:
nt:

nt:
nt:

nt:
nt:

nt:
nt:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns:int="http://ww. springfranework. org/schema/integration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p://ww. spri ngf ramewor k. or g/ schena/ beans"
xm ns:int-streans"http://ww. springframework. org/ schema/ i ntegration/streant
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. springfranework. org/ schenma/ i ntegration/spring-integration.xsd
http://ww. springframework. org/ schema/ i ntegration/stream
org/ schenma/integration/stream spring-integration-stream xsd'

gateway id="cafe" service-interface="o0.s.i.sanples.cafe.Cafe"/>

channel id="orders"/>
splitter input-channel ="orders" ref="orderSplitter"
met hod="split" output-channel ="drinks"/>

channel id="drinks"/>
router input-channel ="drinks"
ref ="dri nkRouter" nethod="resol veOr der|tenChannel "/ >

channel id="col dDri nks"><int: queue capacity="10"/></int:channel >
servi ce-activator input-channel ="col dDrinks" ref="barista"
met hod=" pr epar eCol dDr i nk" out put - channel =" pr epar edDr i nks"/ >

channel id="hotDrinks"><int:queue capacity="10"/></int:channel >
servi ce-activator input-channel ="hotDrinks" ref="barista"
met hod=" pr epar eHot Dr i nk" out put - channel =" pr epar edDr i nks"/ >

channel id="preparedDrinks"/>
aggregat or input-channel =" preparedDrinks" ref="waiter"
met hod="pr epar eDel i very" out put -channel ="del i veri es"/ >

<i nt-stream stdout-channel -adapter id="deliveries"/>

<beans: bean id="orderSplitter"

cl ass="org. springframework.integration.sanpl es.cafe.xm .OderSplitter"/>

<beans: bean i d="dri nkRout er"

cl ass="org. springframework.integration. sanpl es. cafe. xm . Dri nkRouter"/>

<beans: bean i d="barista" class="0.s.i.sanples.cafe.xm .Barista"/>
<beans: bean id="waiter" class="0.s.i.sanples.cafe.xm.Witer"/>

<int:poller id="poller" default="true" fixed-rate="1000"/>

</ beans: beans>

'>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint
will manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent

Spring Integration

3.0.5.RELEASE Reference Manual

358

Spring Integration

that add the "auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are
simple POJOs with strongly typed method arguments. For example, here is the Splitter:

public class OrderSplitter {
public List<Orderltenr split(Oder order) {
return order.getltens();

}

In the case of the Router, the return value does not have to be a MessageChannel instance (although
it can be). As you see in this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {
public String resol veOrderltenChannel (Orderltemorderltem {
return (orderltemislced()) ? "coldDrinks" : "hotDrinks";

}

Now turning back to the XML, you see that there are two <service-activator> elements. Each
of these is delegating to the same Bari st a instance but different methods: 'prepareHotDrink' or
'‘prepareColdDrink' corresponding to the two channels where order items have been routed.

Spring Integration
3.0.5.RELEASE Reference Manual 359

Spring Integration

public class Barista {

private |ong hotDrinkDel ay = 5000;
private | ong col dDri nkDel ay = 1000;

private Atom clnteger hotDrinkCounter = new Atoni clnteger();
private Atom cl nteger col dDri nkCounter = new Atomi clnteger();

public void setHotDrinkDel ay(l ong hot Dri nkDel ay) {
thi s. hot Dri nkDel ay = hot Dri nkDel ay;

}

public void set Col dDri nkDel ay(l ong col dDri nkDel ay) {
this.col dDri nkDel ay = col dDri nkDel ay;
}

public Drink prepareHotDrink(Orderltemorderltem {
try {
Thr ead. sl eep(t hi s. hot Dri nkDel ay) ;
System out. printl n(Thread. current Thread(). get Name()
+ " prepared hot drink #" + hotDrinkCounter.incrementAndGCet ()
+ " for order #" + orderltem getOrder().getNurber ()
+ ": " + orderltem;
return new Drink(orderltem getOrder().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());
}
catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

}

public Drink prepareCol dDrink(Orderltemorderltem {
try {
Thread. sl eep(t his. col dDri nkDel ay) ;
System out . println(Thread. current Thread() . get Nane()
+ " prepared cold drink #" + col dDrinkCounter.increment AndGet ()
+ " for order #" + orderltem getOrder().getNunber() + "
+ orderltem;
return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());
}
catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks
take 5 times as long to prepare). This simulates work being completed at different rates. When the
Caf eDenp 'main' method runs, it will loop 100 times sending a single hot drink and a single cold drink
each time. It actually sends the messages by invoking the 'placeOrder' method on the Cafe interface.
Above, you will see that the <gateway> element is specified in the configuration file. This triggers the
creation of a proxy that implements the given 'service-interface' and connects it to a channel. The
channel name is provided on the @Gateway annotation of the Caf e interface.

Spring Integration
3.0.5.RELEASE Reference Manual 360

Spring Integration

public interface Cafe {

@zat eway (r equest Channel =" or ders")
voi d pl aceOrder (Order order);

Finally, have a look at the mai n() method of the Caf eDenn itself.

public static void main(String[] args) {
Abstract Appl i cati onCont ext context = null;
if (args.length > 0) {
context = new Fil eSyst enXm Appl i cati onCont ext (args);

}
el se {
context = new C assPat hXm Appl i cati onCont ext (" caf eDeno. xm ", Caf eDenp. cl ass);
}
Cafe cafe = context.getBean("cafe", Cafe.class);
for (int i =1; i <= 100; i++) {
Order order = new Order(i);
order. addl tenm(Dri nkType. LATTE, 2, fal se);
order. addl tem(Dri nkType. MOCHA, 3, true);
caf e. pl aceOrder (order);
}

@ Tip
To run this sample as well as 8 others, refer to the READVE. t xt within the "samples" directory
of the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds.
However, by configuring a poller with a concurrent task executor, you can dramatically change the
results. For example, you could use a thread pool executor with 5 workers for the hot drink barista while
keeping the cold drink barista as it is:

<i nt:service-activator input-channel ="hotDri nks"
ref ="barista"
met hod=" pr epar eHot Dr i nk"
out put - channel =" pr epar edDr i nks"/ >

<int:service-activator input-channel ="hotDri nks"
ref="barista"
met hod=" pr epar eHot Dr i nk"
out put - channel =" pr epar edDr i nks" >
<int:poller task-executor="pool" fixed-rate="1000"/>

</int:service-activator>

<t ask: executor id="pool" pool-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. You will see that the hot
drinks are prepared by the task-executor threads. If you provide a much shorter poller interval (such as
100 milliseconds), then you will notice that occasionally it throttles the input by forcing the task-scheduler
(the caller) to invoke the operation.

Spring Integration
3.0.5.RELEASE Reference Manual 361

Spring Integration

© Note

In addition to experimenting with the poller's concurrency settings, you can also add the
'transactional' sub-element and then refer to any PlatformTransactionManager instance within
the context.

The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how to use
some of the provided components which deal with xml payloads. The sample uses the idea of processing
an order for books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the
XPath splitter component.

<int-xnl:xpath-splitter id="orderltenfSplitter" input-channel="ordersChannel "
out put - channel =" st ockChecker Channel " creat e-docunent s="true">
<i nt-xm : xpat h- expressi on expressi on="/order Ns: order/ order Ns: order|tent
nanespace- nap="or der NanespaceMap" />
</int-xm:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item
document is enriched with information from the stock checker about order item stock level. This enriched
order item message is then used to route the message. In the case where the order item is in stock the
message is routed to the warehouse.

<si-xnl : xpat h-router id="instockRouter" input-channel ="orderRouti ngChannel" resol ution-
required="true">

<si -xm : xpat h- expr essi on expressi on="/order Ns: orderltem @ n-stock" nanespace-
map="or der NanespaceMap" />

<si -xnml : mappi ng val ue="true" channel ="war ehouseDi spat chChannel "/ >

<si-xm : mappi ng val ue="fal se" channel =" out O St ockChannel "/ >
</ si-xm : xpat h-rout er>

Where the order item is not in stock the message is transformed using xslt into a format suitable for
sending to the supplier.

<int-xm:xslt-transformer input-channel ="out O St ockChannel "

out put - channel ="r esuppl yOr der Channel "

xsl -resource="cl asspat h: or g/ spri ngf ramewor k/ i nt egrati on/ sanpl es/ xm /
bi gBooksSuppl i er Tr ansf or ner. xsl "/ >

Spring Integration
3.0.5.RELEASE Reference Manual 362

Spring Integration

Appendix F. Configuration

F.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon
your particular needs and at what level you prefer to work. As with the Spring framework in general, it
is also possible to mix and match the various techniques according to the particular problem at hand.
For example, you may choose the XSD-based namespace for the majority of configuration combined
with a handful of objects that are configured with annotations. As much as possible, the two provide
consistent naming. XML elements defined by the XSD schema will match the names of annotations,
and the attributes of those XML elements will match the names of annotation properties. Direct usage
of the APl is of course always an option, but we expect that most users will choose one of the higher-
level options, or a combination of the namespace-based and annotation-driven configuration.

F.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the terminology
and concepts of enterprise integration. In many cases, the element names match those of the Enterprise
Integration Patterns.

To enable Spring Integration's core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://ww.springframework. org/schema/integration”
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframewor k. org/ schema/ i ntegration
http://ww. springfranmework. org/ schema/ i ntegration/spring-integration.xsd">

You can choose any name after "xmins:"; int is used here for clarity, but you might prefer a shorter
abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of auto-
completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring Integration schema as the primary namespace:

<beans: beans xm ns="http://wm springfranmewor k. org/ schema/ i nt egration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schenma/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. spri ngfranmewor k. org/ schema/ i ntegration/spring-integration. xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other
hand, if you want to define a generic Spring "bean" within the same configuration file, then a prefix would
be required for the bean element (<beans:bean ... />). Since it is generally a good idea to modularize
the configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration” namespace is primary.

Spring Integration
3.0.5.RELEASE Reference Manual 363

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter
type (JMS, File, etc.) that provides namespace support defines its elements within a separate schema.
In order to use these elements, simply add the necessary hamespaces with an "xmins" entry and the
corresponding "schemalocation" mapping. For example, the following root element shows several of
these namespace declarations:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns:int="http://ww.springframework. org/schena/integration"

xmns:int-file="http://wwm. springfranmework. org/schema/integration/file"

xm ns:int-jms="http://ww.springfranework. org/schema/integration/jns"

xm ns:int-mail="http://ww.springframework. org/schema/integration/mail"

xm ns:int-rm ="http://ww. springfranmework. org/ schema/integration/rm"

xm ns:int-ws="http://ww.springfranmework. org/schema/integration/ws"

xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. spri ngfranewor k. org/ schema/integration/file
http://ww. springfranework. org/ schenma/integration/file/spring-integration-file.xsd
http://ww. springframework. org/ schema/ i ntegration/jns
http://ww. spri ngfranewor k. org/ schena/ i ntegration/jns/spring-integration-jns.xsd
http://ww. springframework. org/ schema/i ntegration/ nail
http://ww. springframework. org/ schema/integration/ mail/spring-integration-nmail.xsd
http://ww. spri ngfranewor k. org/ schena/ i ntegration/rm
http://ww. springfranework. org/schenma/integration/rmi/spring-integration-rm.xsd
http://ww. springframework. org/ schema/ i ntegration/ ws
http: // wwv. spri ngfranewor k. or g/ schenma/ i nt egrati on/ws/spring-integration-ws. xsd">

</ beans>

The reference manual provides specific examples of the various elements in their corresponding
chapters. Here, the main thing to recognize is the consistency of the naming for each namespace URI
and schema location.

F.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only
a couple configuration options to consider. First, you may want to control the central TaskScheduler
instance. You can do so by providing a single bean with the name "taskScheduler". This is also defined
as a constant:

I ntegrationCont extUtils. TASK SCHEDULER BEAN NAVE

By default Spring Integration relies on an instance of ThreadPoolTaskScheduler as described in
the Task Execution and Scheduling section of the Spring Framework reference manual. That
default TaskScheduler will startup automatically with a pool of 10 threads. If you provide your own
TaskScheduler instance instead, you can set the 'autoStartup' property to false, and/or you can provide
your own pool size value.

When Polling Consumers provide an explicit task-executor reference in their configuration, the
invocation of the handler methods will happen within that executor's thread pool and not the main
scheduler pool. However, when no task-executor is provided for an endpoint's poller, it will be invoked
by one of the main scheduler's threads.

Spring Integration
3.0.5.RELEASE Reference Manual 364

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html

Spring Integration

© Note

An endpoint is a Polling Consumer if its input channel is one of the queue-based (i.e. pollable)
channels. On the other hand, Event Driven Consumers are those whose input channels have
dispatchers instead of queues (i.e. they are subscribable). Such endpoints have no poller
configuration since their handlers will be invoked directly.

©® Important
When running in a JEE container, you may need to use Spring's
Ti mer Manager TaskSchedul er as described here, instead of the default taskScheduler. To
do that, simply define a bean with the appropriate JNDI name for your environment, for example:

<bean i d="taskSchedul er" class="0.s.schedul i ng. conmonj . Ti ner Manager TaskSchedul er ">
<property nane="ti nmer Manager Nane" val ue="t nml MyTi mer Manager" />
<property nanme="resourceRef" val ue="true" />

</ bean>

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

F.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components.
The Message Channel plays an important role in that producers and consumers do not have to know
about each other. However, the advantages also have some drawbacks. Some things become more
complicated in a very loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or may
not be operating within the same thread as the sender. If using a simple default DirectChannel (with the
<channel> element that has no <queue> sub-element and no 'task-executor' attribute), the Message-
handling will occur in the same thread as the Message-sending. In that case, if an Exception is thrown, it
can be caught by the sender (or it may propagate past the sender if it is an uncaught RuntimeException).
So far, everything is fine. This is the same behavior as an Exception-throwing operation in a normal call
stack. However, when adding the asynchronous aspect, things become much more complicated. For
instance, if the 'channel' element does provide a 'queue’ sub-element, then the component that handles
the Message will be operating in a different thread than the sender. The sender may have dropped the
Message into the channel and moved on to other things. There is no way for the Exception to be thrown
directly back to that sender using standard Exception throwing techniques. Instead, to handle errors for
asynchronous processes requires an asynchronous error-handling mechanism as well.

Spring Integration supports error handling for its components by publishing errors to a Message
Channel. Specifically, the Exception will become the payload of a Spring Integration Message.
That Message will then be sent to a Message Channel that is resolved in a way that is similar
to the 'replyChannel' resolution. First, if the request Message being handled at the time the
Exception occurred contains an 'errorChannel' header (the header name is defined in the constant:
MessageHeaders.ERROR_CHANNEL), the ErrorMessage will be sent to that channel. Otherwise, the
error handler will send to a "global" channel whose bean name is "errorChannel” (this is also defined as
a constant: IntegrationContextUtils. ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel" bean will
be created behind the scenes. However, you can just as easily define your own if you want to control
the settings.

Spring Integration
3.0.5.RELEASE Reference Manual 365

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-scheduler-implementations

Spring Integration

<i nt:channel id="errorChannel ">
<i nt:queue capacity="500"/>
</int:channel >

@ Note

The default "errorChannel" is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply
to Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This
does not apply to Exceptions thrown by a handler that is operating within the same thread as the sender
(e.g. through a DirectChannel as described above).

@ Note

When Exceptions occur in a scheduled poller task's execution, those exceptions will be wrapped
in Er r or Messages and sent to the 'errorChannel’ as well.

To enable global error handling, simply register a handler on that channel. For example, you can
configure Spring Integration's Er r or MessageExcept i onTypeRout er as the handler of an endpoint
that is subscribed to the ‘errorChannel'. That router can then spread the error messages across multiple
channels based on Except i on type.

F.5 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to
use annotations. First, Spring Integration provides the class-level @/ essageEndpoi nt as a stereotype
annotation, meaning that it is itself annotated with Spring's @onponent annotation and is therefore
recognized automatically as a bean definition when using Spring component-scanning.

Even more important are the various method-level annotations that indicate the annotated method is
capable of handling a message. The following example demonstrates both:

@kessageEndpoi nt
public class FooService {

@ser vi ceAct i vat or
public void processMessage(Message nmessage) {

}

Exactly what it means for the method to "handle" the Message depends on the particular annotation.
Annotations available in Spring Integration include:

* @Aggregator
* @Filter

* @Router

@ServiceActivator

@Splitter

* @Transformer

Spring Integration
3.0.5.RELEASE Reference Manual 366

Spring Integration

The behavior of each is described in its own chapter or section within this reference.

© Note

If you are using XML configuration in combination with annotations, the @wessageEndpoi nt
annotation is not required. If you want to configure a POJO reference from the "ref" attribute
of a <service-activator/> element, it is sufficient to provide the method-level annotations. In that
case, the annotation prevents ambiguity even when no "method" attribute exists on the <service-
activator/> element.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

public class FooService {

@er vi ceAct i vat or
public void bar(Foo foo) {

}

When the method parameter should be mapped from a value in the MessageHeader s, another option
is to use the parameter-level @Header annotation. In general, methods annotated with the Spring
Integration annotations can either accept the Message itself, the message payload, or a header value
(with @Header) as the parameter. In fact, the method can accept a combination, such as:

public class FooService {

@er vi ceAct i vat or
public void bar(String payl oad, @leader("x") int valueX, @eader("y") int valueY) {

}

}
There is also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

@er vi ceActi vat or
public void bar(String payl oad, @eaders Map<String, bject> headerMap) {

}

© Note

The value of the annotation can also be a SpEL expression (e.g., 'payload.getCustomerld()")
which is quite useful when the name of the header has to be dynamically computed. It also
provides an optional 'required' property which specifies whether the attribute value must be
available within the header. The default value for 'required’ is t r ue.

For several of these annotations, when a Message-handling method returns a non-null value, the
endpoint will attempt to send a reply. This is consistent across both configuration options (namespace
and annotations) in that such an endpoint's output channel will be used if available, and the
REPLY_CHANNEL message header value will be used as a fallback.

Spring Integration
3.0.5.RELEASE Reference Manual 367

Spring Integration

@ Tip
The combination of output channels on endpoints and the reply channel message header enables
a pipeline approach where multiple components have an output channel, and the final component
simply allows the reply message to be forwarded to the reply channel as specified in the original
request message. In other words, the final component depends on the information provided by
the original sender and can dynamically support any number of clients as a result. This is an
example of Return Address.

In addition to the examples shown here, these annotations also support inputChannel and
outputChannel properties.

public class FooService {

@ber vi ceActi vat or (i nput Channel ="i nput”, out put Channel =" out put")
public void bar(String payl oad, @deaders Map<String, bject> headerMap) {

}

}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generally
recommended to use XML for the endpoints, since it is easier to keep track of the overall configuration in
a single, external location (and besides the namespace-based XML configuration is not very verbose). If
you do prefer to provide channels with the annotations however, you just need to enable a S| Annotations
BeanPostProcessor. The following element should be added:

<i nt:annotation-config/>

© Note

When configuring the "inputChannel" and "outputChannel” with annotations, the "inputChannel”
must be a reference to a Subscri babl eChannel instance. Otherwise, it would be necessary
to also provide the full poller configuration via annotations, and those settings (e.g. the trigger
for scheduling the poller) should be externalized rather than hard-coded within an annotation.
If the input channel that you want to receive Messages from is indeed a Pol | abl eChannel
instance, one option to consider is the Messaging Bridge. Spring Integration's "bridge" element
can be used to connect a PollableChannel directly to a SubscribableChannel. Then, the polling
metadata is externally configured, but the annotation option is still available. For more detail see
Section 3.4, “Messaging Bridge”.

Also see the section called “Advising Endpoints Using Annotations”.

F.6 Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments
without providing extra configuration by relying on some default rules as well as defining certain
conventions.

Simple Scenarios

Single un-annotated parameter (object or primitive) which is not a Map/Properties with non-void return
type;

public String foo(Object 0);

Spring Integration
3.0.5.RELEASE Reference Manual 368

http://eaipatterns.com/ReturnAddress.html

Spring Integration

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value
will be incorporated as a Payload of the returned Message

Single un-annotated parameter (object or primitive) which is not a Map/Properties with Message return
type;

public Message foo(Object 0);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value is
a newly constructed Message that will be sent to the next destination.

Single parameter which is a Message or its subclass with arbitrary object/primitive return type;

public int foo(Message nsg);

Details:

Input parameter is Message itself. The return value will become a payload of the Message that will be
sent to the next destination.

Single parameter which is a Message or its subclass with Message or its subclass as a return type;

public Message foo(Message nsgQ);

Details:

Input parameter is Message itself. The return value is a newly constructed Message that will be sent
to the next destination.

Single parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map m;

Details:

This one is a bit interesting. Although at first it might seem like an easy mapping straight to Message
Headers, the preference is always given to a Message Payload. This means that if Message Payload
is of type Map, this input argument will represent Message Payload. However if Message Payload is
not of type Map, then no conversion via Conversion Service will be attempted and the input argument
will be mapped to Message Headers.

Two parameters where one of them is arbitrary non-Map/Properties type object/primitive and another
is Map/Properties type object (regardless of the return)

public Message foo(Map h, <T> t);

Details:

This combination contains two input parameters where one of them is of type Map. Naturally the non-
Map parameters (regardless of the order) will be mapped to a Message Payload and the Map/Properties

Spring Integration
3.0.5.RELEASE Reference Manual 369

Spring Integration

(regardless of the order) will be mapped to Message Headers giving you a nice POJO way of interacting
with Message structure.

No parameters (regardless of the return)

public String foo();

Details:

This Message Handler method will be invoked based on the Message sent to the input channel this
handler is hooked up to, however no Message data will be mapped, thus making Message act as event/
trigger to invoke such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Detalils:
Same as above, but no output
Annotation based mappings

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods.
There wil be many pointers to annotation based mapping throughout this manual, however here are
couple of examples:

public String foo(@ayl oad String s, @eader("foo") String b)

Very simple and explicit way of mapping Messages to method. As you'll see later on, without an
annotation this signature would result in an ambiguous condition. However by explicitly mapping the
first argument to a Message Payload and the second argument to a value of the 'foo’ Message Header,
we have avoided any ambiguity.

public String foo(@ayl oad String s, @RequestParan("foo") String b)

Looks almost identical to the previous example, however @RequestMapping or any other non-Spring
Integration mapping annotation is irrelevant and therefore will be ignored leaving the second parameter
unmapped. Although the second parameter could easily be mapped to a Payload, there can only be
one Payload. Therefore this method mapping is ambiguous.

‘public String foo(String s, @ieader("foo") String b)

The same as above. The only difference is that the first argument will be mapped to the Message
Payload implicitly.

‘public String foo(@leaders Map m @Header ("foo")Map f, @deader("bar”) String bar)

Yet another signature that would definitely be treated as ambiguous without annotations because it has
more than 2 arguments. Furthermore, two of them are Maps. However, with annotation-based mapping,
the ambiguity is easily avoided. In this example the first argument is mapped to all the Message Headers,
while the second and third argument map to the values of Message Headers 'foo' and 'bar'. The payload
is not being mapped to any argument.

Spring Integration
3.0.5.RELEASE Reference Manual 370

Spring Integration

Complex Scenarios
Multiple parameters:

Multiple parameters could create a lot of ambiguity with regards to determining the appropriate
mappings. The general advice is to annotate your method parameters with @Payload and/or @Header/
@Headers Below are some of the examples of ambiguous conditions which result in an Exception being
raised.

‘public String foo(String s, int i)

- the two parameters are equal in weight, therefore there is no way to determine which one is a payload.

‘public String foo(String s, Map m String b)

- almost the same as above. Although the Map could be easily mapped to Message Headers, there is
no way to determine what to do with the two Strings.

‘public String foo(Map m Map f)

- although one might argue that one Map could be mapped to Message Payload and another one to
Message Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second Headers)

o Tip
Basically any method signature with more than one method argument which is not (Map, <T>),

and those parameters are not annotated, will result in an ambiguous condition thus triggering
an Exception.

Multiple methods:

Message Handlers with multiple methods are mapped based on the same rules that are described
above, however some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo {
public String foo(String str, Map m;

public String foo(Map m;
}

As you can see, the Message could be mapped to either method. The first method would be invoked
where Message Payload could be mapped to 'str' and Message Headers could be mapped to 'm'.
The second method could easily also be a candidate where only Message Headers are mapped to 'm'.
To make meters worse both methods have the same name which at first might look very ambiguous
considering the following configuration:

<int:service-activator input-channel="input" output-channel ="output" nethod="fo0">
<bean cl ass="org. bar. Foo"/ >
</int:service-activator>

At this point it would be important to understand Spring Integration mapping Conventions where at the
very core, mappings are based on Payload first and everything else next. In other words the method
whose argument could be mapped to a Payload will take precedence over all other methods.

Spring Integration
3.0.5.RELEASE Reference Manual 371

Spring Integration

On the other hand let's look at slightly different example:

public class Foo {
public String foo(String str, Map m;

public String foo(String str);
}

If you look at it you can probably see a truly ambiguous condition. In this example since both methods
have signatures that could be mapped to a Message Payload. They also have the same name. Such
handler methods will trigger an Exception. However if the method names were different you could
influence the mapping with a 'method' attribute (see below):

public class Foo {
public String foo(String str, Map m;

public String bar(String str);
}

<int:service-activator input-channel="input" output-channel ="output" nethod="bar">
<bean cl ass="org. bar. Foo"/>
</int:service-activator>

Now there is no ambiguity since the configuration explicitly maps to the 'bar' method which has no name
conflicts.

Spring Integration
3.0.5.RELEASE Reference Manual 372

Spring Integration

Appendix G. Additional Resources

G.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at http://
www.springsource.org. That site serves as a hub of information and is the best place to find up-to-date
announcements about the project as well as links to articles, blogs, and new sample applications.

Spring Integration
3.0.5.RELEASE Reference Manual 373

http://www.springsource.org/spring-integration
http://www.springsource.org
http://www.springsource.org

Spring Integration

Appendix H. Change History

H.1 Changes between 1.0 and 2.0

For a detailed migration guide in regards to upgrading an existing application that uses Spring Integration
older than version 2.0, please see:

http://www.springsource.org/node/2976

Spring 3 support
Spring Integration 2.0 is built on top of Spring 3.0.5 and makes many of its features available to our users.
Support for the Spring Expression Language (SpEL)

You can now use SpEL expressions within the transformer, router, filter, splitter, aggregator, service-
activator, header-enricher, and many more elements of the Spring Integration core namespace as well
as various adapters. There are many samples provided throughout this manual.

ConversionService and Converter

You can now benefit from Conversion Service support provided with Spring while configuring many
Spring Integration components such as Datatype Channel. See the section called “Message Channel
Implementations” as well the section called “Introduction”. Also, the SpEL support mentioned in the
previous point also relies upon the ConversionService. Therefore, you can register Converters once,
and take advantage of them anywhere you are using SpEL expressions.

TaskScheduler and Trigger

Spring 3.0 defines two new strategies related to scheduling: TaskScheduler and Trigger Spring
Integration (which uses a lot of scheduling) now builds upon these. In fact, Spring Integration 1.0 had
originally defined some of the components (e.g. CronTrigger) that have now been migrated into Spring
3.0's core API. Now, you can benefit from reusing the same components within the entire Application
Context (not just Spring Integration configuration). Configuration of Spring Integration Pollers has been
greatly simplified as well by providing attributes for directly configuring rates, delays, cron expressions,
and trigger references. See Section 3.3, “Channel Adapter” for sample configurations.

RestTemplate and HttpMessageConverter

Our outbound HTTP adapters now delegate to Spring's RestTemplate for executing the HTTP request
and handling its response. This also means that you can reuse any custom HttpMessageConverter
implementations. See Section 16.3, “Http Outbound Gateway” for more details.

Enterprise Integration Pattern Additions

Also in 2.0 we have added support for even more of the patterns described in Hohpe and Woolf's
Enterprise Integration Patterns book.

Message History

We now provide support for the Message History pattern allowing you to keep track of all traversed
components, including the name of each channel and endpoint as well as the timestamp of that traversal.
See Section 8.2, “Message History” for more details.

Spring Integration
3.0.5.RELEASE Reference Manual 374

http://www.springsource.org/node/2976
http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/
http://www.eaipatterns.com/MessageHistory.html

Spring Integration

Message Store

We now provide support for the Message Store pattern. The Message Store provides a strategy for
persisting messages on behalf of any process whose scope extends beyond a single transaction, such
as the Aggregator and Resequencer. Many sections of this document provide samples on how to use
a Message Store as it affects several areas of Spring Integration. See Section 8.3, “Message Store”,
Section 6.3, “Claim Check”, Section 3.1, “Message Channels”, Section 5.4, “Aggregator”, Chapter 17,
JDBC Support, and Section 5.5, “Resequencer” for more details

Claim Check

We have added an implementation of the Claim Check pattern. The idea behind the Claim Check pattern
is that you can exchange a Message payload for a "claim ticket" and vice-versa. This allows you to
reduce bandwidth and/or avoid potential security issues when sending Messages across channels. See
Section 6.3, “Claim Check” for more details.

Control Bus

We have provided implementations of the Control Bus pattern which allows you to use messaging
to manage and monitor endpoints and channels. The implementations include both a SpEL-based
approach and one that executes Groovy scripts. See Section 8.5, “Control Bus” and the section called
“Control Bus” for more details.

New Channel Adapters and Gateways
We have added several new Channel Adapters and Messaging Gateways in Spring Integration 2.0.
TCP/UDP Adapters

We have added Channel Adapters for receiving and sending messages over the TCP and UDP internet
protocols. See Chapter 28, TCP and UDP Support for more details. Also, you can checkout the following
blog: TCP/UDP support

Twitter Adapters

Twitter adapters provides support for sending and receiving Twitter Status updates as well as Direct
Messages. You can also perform Twitter Searches with an inbound Channel Adapter. See Chapter 29,
Twitter Adapter for more details.

XMPP Adapters

The new XMPP adapters support both Chat Messages and Presence events. See Chapter 32, XMPP
Support for more details.

FTP/FTPS Adapters

Inbound and outbound File transfer support over FTP/FTPS is now available. See Chapter 14, FTP/
FTPS Adapters for more details.

SFTP Adapters

Inbound and outbound File transfer support over SFTP is now available. See Chapter 25, SFTP
Adapters for more detalils.

Spring Integration
3.0.5.RELEASE Reference Manual 375

http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/ControlBus.html
http://blog.springsource.com/2010/03/29/using-udp-and-tcp-adapters-in-spring-integration-2-0-m3/

Spring Integration

Feed Adapters

We have also added Channel Adapters for receiving news feeds (ATOM/RSS). See Chapter 12, Feed
Adapter for more details.

Other Additions

Groovy Support

With Spring Integration 2.0 we've added Groovy support allowing you to use Groovy scripting language
to provide integration and/or business logic. See Section 7.6, “Groovy support” for more details.

Map Transformers

These symmetrical transformers convert payload objects to and from a Map. See Section 6.1,
“Transformer” for more details.

JSON Transformers

These symmetrical transformers convert payload objects to and from JSON. See Section 6.1,
“Transformer” for more details.

Serialization Transformers

These symmetrical transformers convert payload objects to and from byte arrays. They also support the
Serializer and Deserializer strategy interfaces that have been added as of Spring 3.0.5. See Section 6.1,
“Transformer” for more details.

Framework Refactoring

The core API went through some significant refactoring to make it simpler and more usable. Although
we anticipate that the impact to the end user should be minimal, please read through this document to
find what was changed. Especially, visit the section called “Dynamic Routers” , Section 7.2, “Messaging
Gateways”, Section 16.3, “Http Outbound Gateway”, Section 4.1, “Message”, and Section 5.4,
“Aggregator” for more details. If you are depending directly on some of the core components (Message,
MessageHeaders, MessageChannel, MessageBuilder, etc.), you will notice that you need to update any
import statements. We restructured some packaging to provide the flexibility we needed for extending
the domain model while avoiding any cyclical dependencies (it is a policy of the framework to avoid
such "tangles").

New Source Control Management and Build Infrastructure

With Spring Integration 2.0 we have switched our build environment to use Git for source control. To
access our repository simply follow this URL: http://git.springsource.org/spring-integration. We have also
switched our build system to Gradle.

New Spring Integration Samples

With Spring Integration 2.0 we have decoupled the samples from our main release distribution. Please
read this blog to get more info New Spring Integration Samples We have also created many new
samples, including samples for every new Adapter.

SpringSource Tool Suite Visual Editor for Spring Integration

There is an amazing new visual editor for Spring Integration included within the latest version of
SpringSource Tool Suite. If you are not already using STS, please download it here:

Spring Integration
3.0.5.RELEASE Reference Manual 376

http://git.springsource.org/spring-integration
http://gradle.org/
http://blog.springsource.com/2010/09/29/new-spring-integration-samples/

Spring Integration

http://www.springsource.com/landing/best-development-tool-enterprise-java

H.2 Changes between 2.0 and 2.1

New Components
JSR-223 Scripting Support

In Spring Integration 2.0, support for Groovy was added. With Spring Integration 2.1 we expanded
support for additional languages substantially by implementing support for JSR-223 (Scripting for the
Java™ Platform). Now you have the ability to use any scripting language that supports JSR-223
including:

» Javascript

* Ruby/JRuby

» Python/Jython

» Groovy

For further details please see Section 7.5, “Scripting support”.
GemFire Support

Spring Integration provides support for GemFire by providing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and _MessageSt ore
and MessageG oupSt or e implementations. Spring integration leverages the Spring Gemfire project,
providing a thin wrapper over its components.

For further details please see Chapter 15, GemFire Support.
AMQP Support

Spring Integration 2.1 adds several Channel Adapters for receiving and sending messages using the
Advanced Message Queuing Protocol (AMQP). Furthermore, Spring Integration also provides a point-
to-point Message Channel, as well as a publish/subscribe Message Channel that are backed by AMQP
Exchanges and Queues.

For further details please see Chapter 10, AMQP Support.
MongoDB Support

As of version 2.1 Spring Integration provides support for MongoDB by providing a MongoDB-based
MessageStore.

For further details please see Chapter 21, MongoDb Support.
Redis Support

As of version 2.1 Spring Integration supports Redis, an advanced key-value store, by providing a Redis-
based MessageStore as well as Publish-Subscribe Messaging adapters.

For further details please see Chapter 22, Redis Support.

Spring Integration
3.0.5.RELEASE Reference Manual 377

http://www.springsource.com/landing/best-development-tool-enterprise-java
http://groovy.codehaus.org/
http://www.jcp.org/en/jsr/detail?id=223
http://www.vmware.com/products/application-platform/vfabric-gemfire/overview.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageStore.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html
http://www.springsource.org/spring-gemfire
http://www.amqp.org/
http://www.mongodb.org/
http://redis.io/

Spring Integration

Support for Spring's Resource abstraction

As of version 2.1, we've introduced a new Resource Inbound Channel Adapter that builds upon
Spring's Resource abstraction to support greater flexibility across a variety of actual types of underlying
resources, such as a file, a URL, or a class path resource. Therefore, it's similar to but more generic
than the File Inbound Channel Adapter.

For further details please see Section 23.2, “Resource Inbound Channel Adapter”.
Stored Procedure Components

With Spring Integration 2.1, the JDBC Module also provides Stored Procedure support by adding
several new components, including inbound/outbound channel adapters and an Outbound Gateway.
The Stored Procedure support leverages Spring's Si npl eJdbcCal | class and consequently supports
stored procedures for:

» Apache Derby

 DB2

« MySQL

» Microsoft SQL Server

* Oracle

» PostgreSQL

» Sybase

The Stored Procedure components also support Sqgl Functions for the following databases:

« MySQL

Microsoft SQL Server

* Oracle

PostgreSQL
For further details please see Section 17.5, “Stored Procedures”.
XPath and XML Validating Filter

Spring Integration 2.1 provides a new XPath-based Message Filter, that is part of the XML module.
The XPath Filter allows you to filter messages using provided XPath Expressions. Furthermore,
documentation was added for the XML Validating Filter.

For more details please see Section 31.8, “Using the XPath Filter” and Section 31.10, “XML Validating
Filter”.

Payload Enricher

Since Spring Integration 2.1, the Payload Enricher is provided. A Payload Enricher defines an endpoint
that typically passes a Message to the exposed request channel and then expects a reply message. The
reply message then becomes the root object for evaluation of expressions to enrich the target payload.

For further details please see the section called “Payload Enricher”.

Spring Integration
3.0.5.RELEASE Reference Manual 378

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/Message.html

Spring Integration

FTP and SFTP Outbound Gateways

Spring Integration 2.1 provides two new Outbound Gateways in order to interact with remote File
Transfer Protocol (FTP) or Secure File Transfer Protocol (SFT) servers. These two gateways allow you
to directly execute a limited set of remote commands.

For instance, you can use these Outbound Gateways to list, retrieve and delete remote files and have
the Spring Integration message flow continue with the remote server's response.

For further details please see Section 14.5, “FTP Outbound Gateway” and Section 25.7, “SFTP
Outbound Gateway”.

FTP Session Caching

As of version 2.1, we have exposed more flexibility with regards to session management for remote file
adapters (e.g., FTP, SFTP etc).

Specifically, the cache- sessi ons attribute, which is available via the XML namespace support, is now
deprecated. Alternatively, we added the sessi onCacheSi ze and sessi onWi t Ti meout attributes
on the Cachi ngSessi onFact ory.

For further details please see Section 14.6, “FTP Session Caching” and Section 25.3, “SFTP Session
Caching”.

Framework Refactoring

Standardizing Router Configuration

Router parameters have been standardized across all router implementations with Spring Integration
2.1 providing a more consistent user experience.

With Spring Integration 2.1 the i gnor e- channel - nanme-r esol uti on-f ai | ur es attribute has been
removed in favor of consolidating its behavior with the r esol uti on-requi r ed attribute. Also, the
resol uti on-requi r ed attribute now defaults to t r ue.

Starting with Spring Integration 2.1, routers will no longer silently drop any messages, if no default output
channel was defined. This means, that by default routers now require at least one resolved channel (if
no def aul t - out put - channel was set) and by default will throw a MessageDel i ver yExcepti on
if no channel was determined (or an attempt to send was not successful).

If, however, you do desire to drop messages silently, simply set default-output-
channel =" nul | Channel ".

© Important

With the standardization of Router parameters and the consolidation of the parameters described
above, there is the possibility of breaking older Spring Integration based applications.

For further details please see Section 5.1, “Routers”
XML Schemas updated to 2.1

Spring Integration 2.1 ships with an updated XML Schema (version 2.1), providing many improvements,
e.g. the Router standardizations discussed above.

From now on, users must always declare the latest XML schema (currently version 2.1). Alternatively,
they can use the version-less schema. Generally, the best option is to use version-less namespaces,
as these will automatically use the latest available version of Spring Integration.

Spring Integration
3.0.5.RELEASE Reference Manual 379

Spring Integration

Declaring a version-less Spring Integration namespace:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww. springfranmework. org/ schema/integration"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. springfranewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

</ beans>

Declaring a Spring Integration namespace using an explicit version:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww.springframework. org/schema/integration”
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ i nt egrati on
http://ww. springfranmework. org/ schema/integration/spring-integration-2.2.xsd
http://ww. springframework. or g/ schema/ beans
http: //ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

</ beans>

The old 1.0 and 2.0 schemas are still there, but if an Application Context still references one of those
deprecated schemas, the validator will fail on initialization.

Source Control Management and Build Infrastructure
Source Code now hosted on Github

Since version 2.0, the Spring Integration project uses Git for version control. In order to increase
community visibility even further, the project was moved from SpringSource hosted Git repositories
to Github. The Spring Integration Git repository is located at: https://github.com/SpringSource/spring-

integration/

For the project we also improved the process of providing code contributions and we ensure that every
commit is peer-reviewed. In fact, core committers now follow the same process as contributors. For
more details please see:

https://github.com/SpringSource/spring-integration/wiki/Contributor-Guidelines

Improved Source Code Visibility with Sonar

In an effort to provide better source code visibility and consequently to monitor the quality of Spring
Integration's source code, an instance of Sonar was setup and metrics are gathered nightly and made
avaiblable at:

https://sonar.springsource.org/

New Samples

For the 2.1 release of Spring Integration we also expanded the Spring Integration Samples project and
added many new samples, e.g. samples covering AMQP support, the new payload enricher, a sample

Spring Integration
3.0.5.RELEASE Reference Manual 380

http://git-scm.com/
http://www.github.com/
https://github.com/SpringSource/spring-integration/
https://github.com/SpringSource/spring-integration/
https://github.com/SpringSource/spring-integration/wiki/Contributor-Guidelines
http://www.sonarsource.org/
https://sonar.springsource.org/

Spring Integration

illustrating techniques for testing Spring Integration flow fragments, as well as an example for executing
Stored Procedures against Oracle. For details please visit:

https://github.com/SpringSource/spring-integration-samples

H.3 Changes between 2.1 and 2.2

New Components

RedisStore Inbound and Outbound Channel Adapters

Spring Integration now has RedisStore Inbound and Outbound Channel Adapters allowing you to write
and read Message payloads to/from Redis collection(s). For more information please see Section 22.7,
“RedisStore Outbound Channel Adapter” and Section 22.6, “RedisStore Inbound Channel Adapter”.

MongoDB Inbound and Outbound Channel Adapters

Spring Integration now has MongoDB Inbound and Outbound Channel Adapters allowing you to write
and read Message payloads to/from a MongoDB document store. For more information please see
Section 21.5, “MongoDB Outbound Channel Adapter” and Section 21.4, “MongoDB Inbound Channel
Adapter”.

JPA Endpoints

Spring Integration now includes components for the Java Persistence APl (JPA) for retrieving and
persisting JPA entity objects. The JPA Adapter includes the following components:

» Inbound Channel Adapter

e Outbound Channel Adapter

e Updating Outbound Gateway

» Retrieving Outbound Gateway

For more information please see Chapter 18, JPA Support
General Changes

Spring 3.1 Used by Default

Spring Integration now uses Spring 3.1.

Adding Behavior to Endpoints

The ability to add an <advice-chain/> to a poller has been available for some time. However, the behavior
added by this affects the entire integration flow. It did not address the ability to add, say, retry, to an
individual endpoint. The 2.2. release introduces the <request-handler-advice-chain/>to many endpoints.

In addition, 3 standard Advice classes have been provided for this purpose:
» MessageHandlerRetryAdvice
* MessageHandlerCircuitBreakerAdvice

» ExpressionEvaluatingMessageHandlerAdvice

Spring Integration
3.0.5.RELEASE Reference Manual 381

https://github.com/SpringSource/spring-integration-samples

Spring Integration

For more information, see Section 7.7, “Adding Behavior to Endpoints”.
Transaction Synchronization and Pseudo Transactions

Pollers can now participate in Spring's Transaction Synchronization feature. This allows for
synchronizing such operations as renaming files by an inbound channel adapter depending on whether
the transaction commits, or rolls back.

In addition, these features can be enabled when there is not a 'real' transaction present, by means of
a PseudoTr ansact i onManager.

For more information see Section C.3, “Transaction Synchronization”.
File Adapter - Improved File Overwrite/Append Handling

When using the File Oubound Channel Adapter or the File Outbound Gateway, a new mode property
was added. Prior to Spring Integration 2.2, target files were replaced when they existed. Now you can
specify the following options:

REPLACE (Default)

» APPEND

FAIL

* IGNORE

For more information please see the section called “Dealing with Existing Destination Files”.
Reply-Timeout added to more Outbound Gateways

The XML Namespace support adds the reply-timeout attribute to the following Outbound Gateways:

* Amgp Outbound Gateway

File Outbound Gateway

» Ftp Outbound Gateway

Sftp Outbound Gateway
e WSs Outbound Gateway
Spring-AMQP 1.1

Spring Integration now uses Spring AMQP 1.1. This enables several features to be used within a Spring
Integration application, including...

» A fixed reply queue for the outbound gateway

» HA (mirrored) queues

Publisher Confirms

Returned Messages

» Support for Dead Letter Exchanges/Dead Letter Queues

Spring Integration
3.0.5.RELEASE Reference Manual 382

Spring Integration

JDBC Support - Stored Procedures Components
SpEL Support

When using the Stored Procedure components of the Spring Integration JDBC Adapter, you can
now provide Stored Procedure Names or Stored Function Names using Spring Expression Language
(SpEL).

This allows you to specify the Stored Procedures to be invoked at runtime. For example, you can provide
Stored Procedure names that you would like to execute via Message Headers. For more information
please see Section 17.5, “Stored Procedures”.

JMX Support

The Stored Procedure components now provide basic JMX support, exposing some of their properties
as MBeans:

+ Stored Procedure Name

» Stored Procedure Name Expression
» JdbcCallOperations Cache Statistics
JDBC Support - Outbound Gateway

When using the JDBC Outbound Gateway, the update query is no longer mandatory. You can now
provide solely a select query using the request message as a source of parameters.

JDBC Support - Channel-specific Message Store Implementation

A new Message Channel-specific Message Store Implementation has been added, providing a more
scalable solution using database-specific SQL queries. For more information please see: the section
called “Backing Message Channels”.

Orderly Shutdown

A method st opAct i veConponent s() has been added to the IntegrationMBeanExporter. This allows
a Spring Integration application to be shut down in an orderly manner, disallowing new inbound
messages to certain adapters and waiting for some time to allow in-flight messages to complete.

JMS Oubound Gateway Improvements

The JMS Outbound Gateway can now be configured to use a Messageli st ener container to receive
replies. This can improve performance of the gateway.

object-to-json-transformer

The Obj ect ToJsonTr ansf or mer now sets the content-type header to application/json by default. For
more information see Section 6.1, “Transformer”.

HTTP Support

Java serialization over HTTP is no longer enabled by default. Previously, when setting a expect ed-
response-type to a Seri al i zabl e object, the Accept header was not properly set up. The
SerializingHtt pMessageConverter has now been updated to set the Accept header to
application/x-java-serialized-object. However, because this could cause incompatibility

Spring Integration
3.0.5.RELEASE Reference Manual 383

Spring Integration

with existing applications, it was decided to no longer automatically add this converter to the HTTP
endpoints.

If you wish to use Java serialization, you will need to add the Ser i al i zi ngHt t pMessageConvert er
to the appropriate endpoints, using the nessage-converters attribute, when using XML
configuration, or using the set MessageConvert er s() method.

Alternatively, you may wish to consider using JSON instead which is enabled by simply having Jackson
on the classpath.

Spring Integration
3.0.5.RELEASE Reference Manual 384

	Spring Integration Reference Manual
	Table of Contents
	Preface
	1 Requirements
	Compatible Java Versions
	Compatible Versions of the Spring Framework

	2 Code Conventions

	Part I. What's new?
	1. What's new in Spring Integration 3.0?
	1.1 New Components
	HTTP Request Mapping
	Spring Expression Language (SpEL) Configuration
	SpEL Functions Support
	SpEL PropertyAccessors Support
	Redis: New Components
	Header Channel Registry
	MongoDB support: New ConfigurableMongoDbMessageStore
	Syslog Support
	'Tail' Support
	JMX Support
	TCP/IP Connection Events and Connection Management
	Inbound Channel Adapter Script Support
	Content Enricher: Headers Enrichment Support

	1.2 General Changes
	Message ID Generation
	<gateway> Changes
	HTTP Endpoint Changes
	Jackson Support (JSON)
	Chain Elements 'id' Attribute
	Aggregator 'empty-group-min-timeout' property
	Persistent File List Filters (file, (S)FTP)
	Scripting Support: Variables Changes
	Direct Channel Load Balancing configuration
	PublishSubscribeChannel Behavior
	FTP, SFTP and FTPS Changes
	'requires-reply' Attribute for Outbound Gateways
	AMQP Outbound Gateway Header Mapping
	Stored Procedure Components Improvements
	Web Service Outbound URI Configuration
	Redis Adapter Changes
	Advising Filters
	Advising Endpoints using Annotations
	ObjectToStringTransformer Improvements
	JPA Support Changes
	Delayer: delay expression
	JDBC Message Store Improvements
	IMAP Idle Connection Exceptions
	Message Headers and TCP
	JMS Message Driven Channel Adapter
	RMI Inbound Gateway
	XsltPayloadTransformer

	Part II. Overview of Spring Integration Framework
	2. Spring Integration Overview
	2.1 Background
	2.2 Goals and Principles
	2.3 Main Components
	Message
	Message Channel
	Message Endpoint

	2.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	Part III. Core Messaging
	3. Messaging Channels
	3.1 Message Channels
	The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ExecutorChannel
	Scoped Channel

	Channel Interceptors
	MessagingTemplate
	Configuring Message Channels
	DirectChannel Configuration
	Datatype Channel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	ExecutorChannel
	PriorityChannel Configuration
	RendezvousChannel Configuration
	Scoped Channel Configuration
	Channel Interceptor Configuration
	Global Channel Interceptor Configuration
	Wire Tap
	Global Wire Tap Configuration

	Special Channels

	3.2 Poller (Polling Consumer)
	3.3 Channel Adapter
	Configuring An Inbound Channel Adapter
	Configuring An Outbound Channel Adapter
	Channel Adapter Expressions and Scripts

	3.4 Messaging Bridge
	Introduction
	Configuring Bridge

	4. Message Construction
	4.1 Message
	The Message Interface
	Message Headers
	Message ID Generation

	Message Implementations
	The MessageBuilder Helper Class

	5. Message Routing
	5.1 Routers
	Overview
	Common Router Parameters
	Inside and Outside of a Chain
	Top-Level (Outside of a Chain)

	Router Implementations
	PayloadTypeRouter
	HeaderValueRouter
	RecipientListRouter
	XPath Router
	Routing and Error handling

	Configuring (Generic) Router
	Configuring a Content Based Router with XML
	Configuring a Router with Annotations

	Dynamic Routers
	Manage Router Mappings using the Control Bus
	Manage Router Mappings using JMX

	5.2 Filter
	Introduction
	Configuring Filter
	Configuring a Filter with XML
	Configuring a Filter with Annotations

	5.3 Splitter
	Introduction
	Programming model
	Configuring Splitter
	Configuring a Splitter using XML
	Configuring a Splitter with Annotations

	5.4 Aggregator
	Introduction
	Functionality
	Programming model
	AggregatingMessageHandler
	ReleaseStrategy
	CorrelationStrategy

	Configuring an Aggregator
	Configuring an Aggregator with XML
	Configuring an Aggregator with Annotations

	Managing State in an Aggregator: MessageGroupStore

	5.5 Resequencer
	Introduction
	Functionality
	Configuring a Resequencer

	5.6 Message Handler Chain
	Introduction
	Configuring a Chain

	6. Message Transformation
	6.1 Transformer
	Introduction
	Configuring Transformer
	Configuring Transformer with XML
	Configuring a Transformer with Annotations

	Header Filter

	6.2 Content Enricher
	Introduction
	Header Enricher
	Payload Enricher
	Configuration
	Examples

	6.3 Claim Check
	Introduction
	Incoming Claim Check Transformer
	Outgoing Claim Check Transformer
	A word on Message Store

	7. Messaging Endpoints
	7.1 Message Endpoints
	Message Handler
	Event Driven Consumer
	Polling Consumer
	Namespace Support
	Change Polling Rate at Runtime
	Payload Type Conversion
	Asynchronous polling
	Endpoint Inner Beans

	7.2 Messaging Gateways
	Enter the GatewayProxyFactoryBean
	Gateway XML Namespace Support
	Setting the Default Reply Channel
	Gateway Configuration with Annotations and/or XML
	Mapping Method Arguments to a Message
	Invoking No-Argument Methods
	Error Handling
	Asynchronous Gateway
	Gateway behavior when no response arrives

	7.3 Service Activator
	Introduction
	Configuring Service Activator

	7.4 Delayer
	Introduction
	Configuring Delayer
	Delayer and Message Store

	7.5 Scripting support
	Script configuration

	7.6 Groovy support
	Groovy configuration
	Control Bus

	7.7 Adding Behavior to Endpoints
	Provided Advice Classes
	Retry Advice
	Configuring the Retry Advice

	Circuit Breaker Advice
	Expression Evaluating Advice

	Custom Advice Classes
	Other Advice Chain Elements
	Advising Filters
	Advising Endpoints Using Annotations
	Ordering Advices within an Advice Chain

	7.8 Logging Channel Adapter

	8. System Management
	8.1 JMX Support
	Notification Listening Channel Adapter
	Notification Publishing Channel Adapter
	Attribute Polling Channel Adapter
	Tree Polling Channel Adapter
	Operation Invoking Channel Adapter
	Operation Invoking Outbound Gateway
	MBean Exporter
	MBean ObjectNames
	MessageChannel MBean Features
	Orderly Shutdown Managed Operation

	8.2 Message History
	Message History Configuration

	8.3 Message Store
	8.4 Metadata Store
	Idempotent Receiver

	8.5 Control Bus
	8.6 Orderly Shutdown

	Part IV. Integration Endpoints
	9. Endpoint Quick Reference Table
	10. AMQP Support
	10.1 Introduction
	10.2 Inbound Channel Adapter
	10.3 Outbound Channel Adapter
	10.4 Inbound Gateway
	10.5 Outbound Gateway
	10.6 AMQP Backed Message Channels
	10.7 AMQP Message Headers
	10.8 AMQP Samples

	11. Spring ApplicationEvent Support
	11.1 Receiving Spring ApplicationEvents
	11.2 Sending Spring ApplicationEvents

	12. Feed Adapter
	12.1 Introduction
	12.2 Feed Inbound Channel Adapter

	13. File Support
	13.1 Introduction
	13.2 Reading Files
	'Tail'ing Files

	13.3 Writing files
	Generating Filenames
	Specifying the Output Directory
	Dealing with Existing Destination Files
	File Outbound Channel Adapter
	Outbound Gateway

	13.4 File Transformers

	14. FTP/FTPS Adapters
	14.1 Introduction
	14.2 FTP Session Factory
	14.3 FTP Inbound Channel Adapter
	14.4 FTP Outbound Channel Adapter
	14.5 FTP Outbound Gateway
	14.6 FTP Session Caching
	14.7 RemoteFileTemplate

	15. GemFire Support
	15.1 Introduction
	15.2 Inbound Channel Adapter
	15.3 Continuous Query Inbound Channel Adapter
	15.4 Outbound Channel Adapter
	15.5 Gemfire Message Store

	16. HTTP Support
	16.1 Introduction
	16.2 Http Inbound Gateway
	16.3 Http Outbound Gateway
	16.4 HTTP Namespace Support
	16.5 Timeout Handling
	16.6 HTTP Proxy configuration
	16.7 HTTP Header Mappings
	16.8 HTTP Samples
	Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway (server)

	17. JDBC Support
	17.1 Inbound Channel Adapter
	Polling and Transactions
	Max-rows-per-poll versus Max-messages-per-poll

	17.2 Outbound Channel Adapter
	17.3 Outbound Gateway
	17.4 JDBC Message Store
	The Generic JDBC Message Store
	Backing Message Channels
	Initializing the Database
	Partitioning a Message Store

	17.5 Stored Procedures
	Supported Databases
	Configuration
	Common Configuration Attributes
	Common Configuration Sub-Elements
	Defining Parameter Sources
	Stored Procedure Inbound Channel Adapter
	Stored Procedure Outbound Channel Adapter
	Stored Procedure Outbound Gateway
	Examples

	18. JPA Support
	18.1 Supported Persistence Providers
	18.2 Java Implementation
	18.3 Namespace Support
	Common XML Namespace Configuration Attributes
	Providing JPA Query Parameters
	Transaction Handling

	18.4 Inbound Channel Adapter
	Configuration Parameter Reference

	18.5 Outbound Channel Adapter
	Using an Entity Class
	Using JPA Query Language (JPA QL)
	Using Native Queries
	Using Named Queries
	Configuration Parameter Reference

	18.6 Outbound Gateways
	Common Configuration Parameters
	Updating Outbound Gateway
	Retrieving Outbound Gateway
	JPA Outbound Gateway Samples

	19. JMS Support
	19.1 Inbound Channel Adapter
	19.2 Message-Driven Channel Adapter
	19.3 Outbound Channel Adapter
	19.4 Inbound Gateway
	19.5 Outbound Gateway
	Attribute Reference

	19.6 Mapping Message Headers to/from JMS Message
	19.7 Message Conversion, Marshalling and Unmarshalling
	19.8 JMS Backed Message Channels
	19.9 Using JMS Message Selectors
	19.10 JMS Samples

	20. Mail Support
	20.1 Mail-Sending Channel Adapter
	20.2 Mail-Receiving Channel Adapter
	20.3 Mail Namespace Support
	20.4 Email Message Filtering
	20.5 Transaction Synchronization

	21. MongoDb Support
	21.1 Introduction
	21.2 Connecting to MongoDb
	21.3 MongoDB Message Store
	21.4 MongoDB Inbound Channel Adapter
	21.5 MongoDB Outbound Channel Adapter

	22. Redis Support
	22.1 Introduction
	22.2 Connecting to Redis
	22.3 Messaging with Redis
	Redis Publish/Subscribe channel
	Redis Inbound Channel Adapter
	Redis Outbound Channel Adapter
	Redis Queue Inbound Channel Adapter
	Redis Queue Outbound Channel Adapter
	Redis Application Events

	22.4 Redis Message Store
	22.5 Redis Metadata Store
	22.6 RedisStore Inbound Channel Adapter
	22.7 RedisStore Outbound Channel Adapter

	23. Resource Support
	23.1 Introduction
	23.2 Resource Inbound Channel Adapter

	24. RMI Support
	24.1 Introduction
	24.2 Outbound RMI
	24.3 Inbound RMI
	24.4 RMI namespace support

	25. SFTP Adapters
	25.1 Introduction
	25.2 SFTP Session Factory
	Configuration Properties

	25.3 SFTP Session Caching
	25.4 RemoteFileTemplate
	25.5 SFTP Inbound Channel Adapter
	25.6 SFTP Outbound Channel Adapter
	25.7 SFTP Outbound Gateway
	25.8 SFTP/JSCH Logging

	26. Stream Support
	26.1 Introduction
	26.2 Reading from streams
	26.3 Writing to streams
	26.4 Stream namespace support

	27. Syslog Support
	27.1 Introduction
	27.2 Syslog <inbound-channel-adapter>
	Example Configuration

	28. TCP and UDP Support
	28.1 Introduction
	28.2 UDP Adapters
	28.3 TCP Connection Factories
	TCP Caching Client Connection Factory
	TCP Failover Client Connection Factory

	28.4 TCP Connection Interceptors
	28.5 TCP Connection Events
	28.6 TCP Adapters
	28.7 TCP Gateways
	28.8 TCP Message Correlation
	Overview
	Gateways
	Collaborating Outbound and Inbound Channel Adapters
	Transferring Headers

	28.9 A Note About NIO
	Thread Pool Task Executor with CALLER_RUNS Policy

	28.10 SSL/TLS Support
	Overview
	Getting Started
	Advanced Techniques

	28.11 IP Configuration Attributes
	28.12 IP Message Headers

	29. Twitter Adapter
	29.1 Introduction
	29.2 Twitter OAuth Configuration
	29.3 Twitter Template
	29.4 Twitter Inbound Adapters
	Inbound Message Channel Adapter
	Direct Inbound Message Channel Adapter
	Mentions Inbound Message Channel Adapter
	Search Inbound Message Channel Adapter

	29.5 Twitter Outbound Adapter
	Twitter Outbound Update Channel Adapter
	Twitter Outbound Direct Message Channel Adapter

	30. Web Services Support
	30.1 Outbound Web Service Gateways
	30.2 Inbound Web Service Gateways
	30.3 Web Service Namespace Support
	30.4 Outbound URI Configuration

	31. XML Support - Dealing with XML Payloads
	31.1 Introduction
	31.2 Namespace Support
	XPath Expressions
	Providing Namespaces (Optional) to XPath Expressions
	Using XPath Expressions with Default Namespaces

	31.3 Transforming XML Payloads
	Configuring Transformers as Beans
	UnmarshallingTransformer
	MarshallingTransformer
	XsltPayloadTransformer
	ResultTransformers

	Namespace Support for XML Transformers
	Namespace Configuration and ResultTransformers

	31.4 Transforming XML Messages Using XPath
	31.5 Splitting XML Messages
	31.6 Routing XML Messages Using XPath
	XML Payload Converter

	31.7 XPath Header Enricher
	31.8 Using the XPath Filter
	31.9 #xpath SpEL Function
	31.10 XML Validating Filter

	32. XMPP Support
	32.1 Introduction
	32.2 XMPP Connection
	32.3 XMPP Messages
	Inbound Message Channel Adapter
	Outbound Message Channel Adapter

	32.4 XMPP Presence
	Inbound Presence Message Channel Adapter
	Outbound Presence Message Channel Adapter

	32.5 Advanced Configuration

	Part V. Appendices
	Appendix A. Spring Expression Language (SpEL)
	A.1 Introduction
	A.2 SpEL Evaluation Context Customization
	A.3 SpEL Functions
	A.4 PropertyAccessors

	Appendix B. Message Publishing
	B.1 Message Publishing Configuration
	Annotation-driven approach via @Publisher annotation
	XML-based approach via the <publishing-interceptor> element
	Producing and publishing messages based on a scheduled trigger

	Appendix C. Transaction Support
	C.1 Understanding Transactions in Message flows
	Poller Transaction Support

	C.2 Transaction Boundaries
	C.3 Transaction Synchronization
	C.4 Pseudo Transactions

	Appendix D. Security in Spring Integration
	D.1 Introduction
	D.2 Securing channels

	Appendix E. Spring Integration Samples
	E.1 Introduction
	E.2 Where to get Samples
	E.3 Submitting Samples or Sample Requests
	E.4 Samples Structure
	E.5 Samples
	Loan Broker
	The Cafe Sample
	The XML Messaging Sample

	Appendix F. Configuration
	F.1 Introduction
	F.2 Namespace Support
	F.3 Configuring the Task Scheduler
	F.4 Error Handling
	F.5 Annotation Support
	F.6 Message Mapping rules and conventions
	Simple Scenarios
	Complex Scenarios

	Appendix G. Additional Resources
	G.1 Spring Integration Home

	Appendix H. Change History
	H.1 Changes between 1.0 and 2.0
	Spring 3 support
	Support for the Spring Expression Language (SpEL)
	ConversionService and Converter
	TaskScheduler and Trigger
	RestTemplate and HttpMessageConverter

	Enterprise Integration Pattern Additions
	Message History
	Message Store
	Claim Check
	Control Bus

	New Channel Adapters and Gateways
	TCP/UDP Adapters
	Twitter Adapters
	XMPP Adapters
	FTP/FTPS Adapters
	SFTP Adapters
	Feed Adapters

	Other Additions
	Groovy Support
	Map Transformers
	JSON Transformers
	Serialization Transformers

	Framework Refactoring
	New Source Control Management and Build Infrastructure
	New Spring Integration Samples
	SpringSource Tool Suite Visual Editor for Spring Integration

	H.2 Changes between 2.0 and 2.1
	New Components
	JSR-223 Scripting Support
	GemFire Support
	AMQP Support
	MongoDB Support
	Redis Support
	Support for Spring's Resource abstraction
	Stored Procedure Components
	XPath and XML Validating Filter
	Payload Enricher
	FTP and SFTP Outbound Gateways
	FTP Session Caching

	Framework Refactoring
	Standardizing Router Configuration
	XML Schemas updated to 2.1

	Source Control Management and Build Infrastructure
	Source Code now hosted on Github
	Improved Source Code Visibility with Sonar

	New Samples

	H.3 Changes between 2.1 and 2.2
	New Components
	RedisStore Inbound and Outbound Channel Adapters
	MongoDB Inbound and Outbound Channel Adapters
	JPA Endpoints

	General Changes
	Spring 3.1 Used by Default
	Adding Behavior to Endpoints
	Transaction Synchronization and Pseudo Transactions
	File Adapter - Improved File Overwrite/Append Handling
	Reply-Timeout added to more Outbound Gateways
	Spring-AMQP 1.1
	JDBC Support - Stored Procedures Components
	JDBC Support - Outbound Gateway
	JDBC Support - Channel-specific Message Store Implementation
	Orderly Shutdown
	JMS Oubound Gateway Improvements
	object-to-json-transformer
	HTTP Support

