Spring Integration Reference Manual

5.0.3.RELEASE

Mark Fisher , Marius Bogoevici , Iwein Fuld , Jonas Partner , Oleg Zhurakousky , Gary
Russell , Dave Syer , Josh Long , David Turanski , Gunnar Hillert , Artem Bilan , Amol Nayak

Copyright © 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Pivotal Software, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Integration Reference Manual

Table of Contents

TR 1= = Lo 1
=0 [T =T0 0= o1 £ ii
1. Compatible JAVa VEISIONScuuuiiiiiiii et e a e e e ii

2. Compatible Versions of the Spring Frameworkcccoiiiiiiiiiniiiiiiiineiin e ii

3. COUE CONVENTIONS .ovvveiieeeee ettt ettt e ettt e e ettt e b e e e e e e e e b e e i

1. Conventions iN thiS BOOKc..iiiiiiiii e e e e e 3
LAY = LS 1= 4
2. What's new in Spring INtegration 5.07ooiiiiiiiiiiii e 5
2.1, NEW COMPONENTS ittt ettt et et e et et e e et e et e e e et e e et e ea e en e aenaaenaen 5
JAVA DS et e 5

IS o TS o] Lo o A 5
MoNgODB OUthOUNd GAEWAYceeuniiiiniiiiiieei et et ean e ees 5

WebFlux Gateways and Channel Adaptersoovviiiiiniiiiiiinieiieee e 5

Content TYPE CONVEISIONcvuuiiiieiiiieeii et e e e e e e e e e e e e e e et e et e e et e eanas 5
ErrorMessagePublisher and ErrorMessageStrategyccooveevieiiiiieiinieiiieeieennn. 5

JDBC Metadata STOIEccuuiiiiiiiieiiii e 5

2.2. GENETAl ChANGES ...iiiiiieii i e e e e e e e 6
(0] (=IO =T g To [T S PP 6

GateWaY ChANGES .. .ooviiiiiii e 7
Aggregator Performance Changesccoouiiiiiiiiii i e 7

SPIEr CRANGES ...eniiiiei et e et e e e ean s 7

IMS CRANGES . et 7

= VLI 1 = Vg o 1= 7

FEEA CRANQES . .oeeiiiii et 8

Fle ChANQES ... et et 8

S L I 1 4T VgV [P 8
INtEGration PrOPEITIES ... ccuuiiiieei et e e e ean s 9

SrEAM CRANGES ...uiiiiiii et e et e e 9

=TT =T S O g = U o =T 9

AMOP ChanQES ...ceniiiiieiii et e 9

HTTP ChaNGES ...ttt e e et e e erb e eee 10

(@ I 1 - T g To = 10

STOMP CRANQES ...ttt e e et e et e e eeanns 10

WeD ServiCeS ChaNQESoiiiiiiiiiiiii et e et e e e e e 10

=0 [SR O g T T T TSP 10

TCP CRANQGES ..ttt et e 11

GEMIire ChANGES .. oot e e 11

B [0 | o Yo @4 g T= T s To = 11

MELHCS CRANGES . .oeniiiiiii e e et et e e e e eeaaaees 11

[ll. Overview of Spring Integration FrameWOIKcovoiiiiiiiiiiiii e 12
3. Spring INtEgration OVEIVIEWcc.uiiiiieiiiie i e e e e e e e e e s e e e et e et e e aaneeeens 13
0 I = ol (o | 01U o o NPT PTPTP 13

3.2. G0oals and PriNCIPIESuuniiiiiiii e 13

TR T Y/ - 11 T @] a1 o To) 1=) 14

Y TS oT= T [PP P PP 14

MeSSage ChaNNEL ... e 14

MeSSage ENAPOINT ... coouiiiiiie e e 15

5.0.3.RELEASE Spring Integration iii

Spring Integration Reference Manual

3.4. MeSSage ENAPOINTSiiiiiiiiii it e e e 15
TIANSTOMME ...ttt e e et e e e een e ees 16
= 16
o 11 1= ST UPPTRPPT 16
S o110 TP PTR 16
P [| (=To =1 (o] PP PPR 17
SEIVICE ACHVALON ...iiiieitii ettt et e e e e et e e eaeen s 17
Channel AAPLETc.uiiii e e e 18

3.5. Configuration and @Enablelntegrationcoouiiiiiiiiniiii e 18

3.6. Programming ConsSiderationsccuuiviiioiiiieii e ee e e e e e e e e e e anaeeeen 20

3.7. Considerations When using Packaged (e.g. Shaded) Jarsccoooeeiiiiiiiiinnnennnn. 20

3.8. Programming TipsS and TTCKSciiuuunieiiiiiiei ettt 21
XML SCREIMAS ..ot et e e e s 21
Finding Class Names for Java and DSL Configurationccccoeoiiiiiiniiineennnn. 22

TS I =L@ N [@ 20 \Y/ =1 g ToTo [1Y/ Yo o] o NS 24

Y o] (T, LTS S7= o o 26
4. MeSSaging CRANNEIS i et e e e et e et e e e e eaaaas 27

4.1. MeSSAQE CRANNEIS ..ot 27

The MessageChannel INterfaceccovviiiiiiii i 27
PollableChannel ... 27
SubscribableChannel ... 27

Message Channel Implementationsccuoveiiiiiiii e 27
PublishSubscribeChannel ... 28
QUEUECINANNEL ... e 28
PriorityChannel ..o 28
ReNdezvousChannel ... 29
DIreCtCRANNEI ... oo 29
EXECULOrCRANNEL .. .o 30
Scoped ChannEl oo 31

Channel INTEICEPIOIS .. .oiiiiie i e 31

oYY o [T o [=T 0] 0] L 33

Configuring Message Channels ... e 33
DirectChannel Configurationcoeuuiieiiiinieiii e 34
Datatype Channel Configurationcc.oiiviiiiiiieii e e 34
QueueChannel Configurationooeuiiiiiiiiii e 35
PublishSubscribeChannel Configurationccoviiiiiiiiiiiei e 37
EXECULOrCRANNEL .. .o 38
PriorityChannel Configurationooouiiiiiiiiii e 38
RendezvousChannel Configurationccooveiiiiiiiiiiiinee e 39
Scoped Channel Configurationcccocvuieiiiiiii e 39
Channel Interceptor Configurationcooouuiiiiiiiiiiiiii e 39
Global Channel Interceptor Configurationcccooveiiiiniiiiiiniei e, 39
LAY (= =T o 40
ConditionNal WIre TaPS ..eeuniiii et e e 42
Global Wire Tap Configurationoocoiuiiiiiiiiin e 42

Special ChanNEIScoov i e 43

.2, POl e e 43
POING CONSUMET ..ottt ettt et e et e et et e eeenaa e eeees 43
Pollable MESSAJE SOUICEccuuuiiiiiieii e e et e e e e e e e eanaeees 44
Deferred Acknowledgment Pollable Message SOUrcecccoevveiieiiiiiiieeenns 44

5.0.3.RELEASE Spring Integration iv

Spring Integration Reference Manual

Conditional Pollers for MeSSage SOUICESoevvueiiinieiiieeiiiieeeiiee e e e e eanaeens 46
BaCKGIrOUNG ...t 46

"SMA" POIING ..o 46
SimpleActiveldleMessageSOoUrCEAAVICEvvvuieiiieiiiieie e 46
CompoundTHGGEIAAVICEiiii i a7

4.3, Channel AAPLEToouuiiiiiii e et e e et e et e e e aees 47
Configuring An Inbound Channel Adaptercoovuiiiiiiiiii e, 48
Configuring An Outbound Channel Adapterocoui i 49
Channel Adapter Expressions and SCrPLSovvveveiiiiiiiiiiiiiiieece e 49

4.4, MeSSaging Bridgecoouiiiiiiii e 50
INEFOAUCTION ..t et e e e e e e e e e eaees 50
Configuring a Bridge With XMLiiiiiiii e 50
Configuring a Bridge with Java Configurationc.ccceveiiiiiiiieii e, 51
Configuring a Bridge with the Java DSLcc.oiiiiiiiiiiiii e 52

5. MESSAGE CONSIIUCTIONuiiiiiii ettt ettt e e et e e et e e eba s 53
LNt O V1Y Vo 1 53
The Message INEITACEoiiiiiiii e 53
MESSAQGE HEAUEIS ...ttt et eaeas 53
MessageHeaderACCeSSOr APl ... 54

MesSsage ID GENETALIONcc.uiiiiiiiiiee et ean s 56
Read-0only HEAUEIScoouiiiiiiii e 56

Header Propagationco.uiiiiiieii e e e e e e e e 57

Message IMplementationsco.uiiiiiiiii e 57

The MessageBuilder Helper ClIasscc.uiiiiiiiiiiiiiii e 58

(ST, L=YT Y= Vo [I o U] o PP 60
6.1, ROULEIS .ottt et et et et et eans 60
L@ YT TS 60
CommOoN ROULET PAramMeterSieiiiiiiiieiii ettt et 62
Inside and Outside of @ Chainoooiiiiiiiii e 62

Top-Level (Outside of @ Chain)ooeiiiiiiiiiiii e 63

Router IMpIeMENLAtIONSciiiiiiii e e e e e e e 64
PayloadTyPEROULETiiiiii e e 64
HeaderValUBROULETo.uiiiiiei e e 65
RECIPIENTLISTROULET .. ceeiiii e 66
RecipientListRouterManagementoooeuiiiiiiiiiiei e 68

D= 11 T o 11 =] 68

Routing and Error handlingcc.uoeviiiiiiii e 68
Configuring @ GENErC ROULETcouiiiiiiiii e 69
Configuring a Content Based Router with XMLcccoovviiiiiiniiiiiiiieecies 69
Configuring a Router with ANNOtationsccocvviiviiiiiie e, 71

DYNAMIC ROULEIS ...ttt ettt e e e e e 72
Manage Router Mappings using the Control BuScccoeeviiiiiiiiiiieeinnnns 75

Manage Router Mappings using JMXcooiiiiiiiiiiiiieceeee e 75

ROULING SHP oot 75

Process Manager Enterprise Integration Patternccooeeeivviiiiiineennnn. 78

L2 1= PP 78
INEFOAUCTION ...ttt e e e et et e e e e e e aees 78
CoNfIGUIING FIIEET .o e 79
Configuring a Filter With XIMLcooviiiicei e e 79
Configuring a Filter with ANNOLAtiONScocuiiiiiiiiii e, 81

5.0.3.RELEASE Spring Integration v

Spring Integration Reference Manual

LT TS o111] 81
INEFOAUCTION ..t et e e e e e e e e e eaees 81
Programming MOEIiiiiiiiiiiii e e 81
L@70] a1{To 8 g1 aTe ST o] 11 €= S 83

Configuring a Splitter using XMLoiiuiiiiiie e 83
Configuring a Splitter with AnNNOtatioNScccoiiiiiiiiiiiii e 84

L o[| =T = (o 84
INEFOAUCTION ..t et e e e e e e e e e eaees 84
FUNCHONAIILY ...t e e e 84
Programming MOGEIcoouiiiiiii e 85

AggregatingMessageHandler ... 85
REICASESIIAEGY ...eevvuieiiiii ettt et et e 87
Aggregating Large GrOUPSuvveunieriieeeiieeeiieeiee et seeateeeaeeetaesanneeaneeennns 89
CorrelatioNSIrALEQY ...ceuieeneiiiee e 89
LOCKREGISIIY ..ottt et e et e e e e e 20
(©fe]aliTo [V TgTaTe = 1a IANe (o] {=To T- Lo] SR 90
Configuring an Aggregator With XMLcccoooiiiiiiiiii e 90
Configuring an Aggregator with ANNOtatIoNSooveveiiiiieiiiiiiecei e, 97
Managing State in an Aggregator: MessageGroupStorecccevevvevevvineeenneennnnn 98

6.5, RESEUUEINCETeeiiiiii ettt et e e e et e e enaaens 100
T 10T [T 1o) o [100
LT] od 1T g = 11 Y N 100
Configuring 8 RESEOUENCETc.uuiiiiieiii ettt e e e eeens 100

6.6. Message Handler Chainooooiiiiiiiii e 102
INEFOTUCTION .ot e e e et e et e e et e e e eatn e eaees 102
Configuring @ CRaIN ... e 103

IS Yo7 11 (=1 o 7= 11 =T 105
T o 11 Te1 1o o RSP PPPRTRN 105
FUNCHONAIILY ...eeeeee et e e e e 106
Configuring a Scatter-Gather Endpointccc.iviiiiiiiiiiiiiiecc e 106

6.8. TRread BarTIErcc.uuiiiiiii i e et et e et e e et e eeees 108

7. Message TransfOrMationo..iiui i 111

A% T I = 1S 0T 1 1= 111
T o 11 Te1 1o o RSP PPPRTRN 111
Configuring TranSTOMMETriiii e 111

Configuring Transformer wWith XMLcooiiiiiiiiiiiii e 111
Common TranSfOMMErSiiiii e 112
Configuring a Transformer with ANNOtationNscccoeviiiiiiiiiiiiiieeis 117
[(5= 10 1= S 1 = 118
Codec-Based TranSfOrMErS 118

7.2. CONENE ENFICNET «..eeiii et e e e e 118
T 10T [T 1o) o 1 P 118
Header ENFICRET ... 118

Configuring a Header Enricher with Java Configurationc....c........ 120
Configuring a Header Enricher with the Java DSLccccooviiiiiiniiiinnnnnen. 120

Header Channel REeJISIIYoiiviiiiii e 120

Payload ENFCNETot e 121
CONFIGUIALION .oeetiei e 122

EXAMPIES ..o 124

7.3, Claim CRECK ...t 125

5.0.3.RELEASE Spring Integration Vi

Spring Integration Reference Manual

INIFOAUCTION .. e e 125
Incoming Claim Check Transformer ..o 125
Outgoing Claim Check Transformerc.c.uoiiiiiiiiiieiii e 126

A WOrd 0N MESSAGE STOIE ...ivuiiiiiiieii e e e e e e e e e e e e et e aa e e 127

A S oo [T o TSP 128
T 10T [T 1o) o 1 P 128
EncodingPayloadTransSformerc..iiiiiiiii e 128
DecodingTranSfOrMEr oo e e 128
COdECMESSAGECONVEITETvuueiiiii ettt ettt ettt e e e e e e e eeeans 128
030 128
CUSTOMIZING KIYO oot e 128

8. MeSSaging ENAPOINTSiiiiiiiiiiiii et et 131
8.1. MeSSsage ENAPOINTSccuuiiiiiiiii e e e e e e 131
MeSSagE HAaNAIEKc.eeiiii e e 131
EVENt DIVEN CONSUMET ...o.uiiiiiiiei et e e e e e e e e e e et e e e e e eeeenas 131
(o] 11T gY@ 10 [141 132
Endpoint NameSpPace SUPPOITieuu it et e eeans 133
Change Polling Rate at RUNIIMEoooiiiiiiii e 137
Payload Type CONVEISIONc.uuiiiiiieii e e e e e e e e e et e e e e e eanees 138
Content TYPE CONVEISIONcuuniiiieiii ettt e e et e e e et e e e e eaaaees 139
ASYNCAIONOUS POIIING ...t 140
ENdPOoint INNEI BEANScvviiiii i et e e e e e e e e e e e e e aan s 141

8.2, ENAPOINt ROIES ...t et 141
8.3. Leadership Event Handlingcooouiiiiiiiiii e 143
8.4. MESSAQING GALEWAYS ...vvvuieinieiii ettt et eeet e eet e e et e e et eeat e eateaetn e e eanaeean e eaneeanns 143
Enter the GatewayProxyFactoryBeanccc.oviiuiiiiiiiiiiiiii e 143
Gateway XML Namespace SUPPOITcoevueiriieiiieieieeee e e e 144
Setting the Default Reply Channel ..o 144
Gateway Configuration with Annotations and/or XMLccooviiiiiiiiniiineeennnn. 145
Mapping Method Arguments t0 @ MESSAJEuvveiiiiiieiiiiiieeei e 146
@MessagingGateway ANNOLALIONc.uviiiiiiiierr e e 147
Invoking No-Argument Methods ..., 148
Error HandliNgoooeeni e 149
GateWay TIMEOULS ..ivuuiiiiiieii e e e e e e e e e e e et e e e et e e et e e eanaeeees 151
ASYNCHIONOUS GAEWAYueeeniiitieii et e et e et e et e et e et e e e et e e ea e e eanas 152

T 10T [0 1o 1o] o [P 152
LiStenabIERULUIEcooiiieiii e 152
ASYNCTASKEXECULOKcuiiiiieei et e e 153
CompletablEFULUIEuiiii e 154

REACION MONOiiiiiiiii 155

Gateway behavior when no reSpoNnse arrfivesoocoeveveieieiiiieiieeee e 155

8.5. SEIVICE ACHVALOK ...ieeiiiii ittt e e e e e e e e e e e aes 157
INIFOAUCTION ..t r e 157
Configuring ServiCe ACHVALOTccuuiiiiiiiii e 157
ASYNChroNOUS SEervice ACHIVALONccouuiiiiiiiiiieeiiii e 160

8.6, DBIAYET . .eviiiei i 160
INEFOTUCTION .ottt e e e e e e e e aees 160
Configuring & DEIAYETcoeuiiiiiii e 160
Delayer and a MESSAJE STOMEcc.uuieeiiiiiiiieiiiee i ee e e e e e e e e eeen 163

8.7. SCHIPLING SUPPOIT ...ttt ettt e et e e et e e e e et e e e eaaaaes 164

5.0.3.RELEASE Spring Integration Vii

Spring Integration Reference Manual

Script CONfIQUIALIONieeiii e e e 164

8.8. GIOOVY SUPPOIT ..ottt ettt ettt et ettt et e et et e et e ea e e e e eanees 166
Groovy CONFIQUIALIONu.iiiiii et eaeens 167

(0] 110 I = L= PP 168

8.9. Adding Behavior t0 ENAPOINTScuuiiiiiiiiiiaiiie e 169
T 10T [T 1o) o 1 P 169
Provided AdVICE CIaSSES ...cocuuuiiiiiiiieeeii et e et e e e e e eees 170
RELIY AGQVICE ..o et e 170

Circuit Breaker AGVICEuiiieeieiie et e e e e ean e 176
Expression Evaluating AdVICEccvuuiiiiieiii e e e e e 177

CUSLOM AQVICE CIASSES ...iiiiiiiiieii et eeens 178
Other Advice Chain EIEMENTScocuuiiiiiiiii e 179
Handle MeSSAage AQVICEiiiiiiiiii et e e e e e e eanaeee 180
TranSaACHON SUPPOITeeiiit ettt et e et e e et e et e et e e e e eeaaaes 180
AGVISING FIILEIS .eeiiiiii e e 182
Advising Endpoints Using ANNOLAtIONScccuiiiiiiiiii e e e e e 182
Ordering Advices within an Advice Chainccoooiiiiiiiiiii e 182
Advised Handler Propertiesoooeuuiiiiiiiiieeiii et 182
Idempotent Receiver Enterprise Integration Patternccocoevveviviiiiiiinieennnenn, 183
8.10. Logging Channel Aapler ... e e 185
Configuring with Java Configurationcooiiiiiiiiiii e 185
Configuring with the Java DSLcccouiiiiiiiii e 186

9. JAVA DSL ..ttt et e e e 187
9.1. Example ConfiQUratioNSooeeuuuiiiiiiiieiiii et eeeans 187
LS 2 | 1o Lo [F T o H PSP 187
0.3, DSL BASICS ..uuiiiiiiiiiieii et 188
9.4. MeSSage CNANNEIS ...ttt e 189
9.5, POIIBIS e 190
9.6. DSL and Endpoint Configurationcocuiiiii i 191
LS I I =T 0 S 0] 1 1= P 191
9.8. Inbound Channel AdApLerscc.uiiiiiiie e e e 191
9.9. MESSAGE ROULEISeiiiiiii i ettt e e e ea e 192
9.10. SPIIIEIS ettt 193
9.11. Aggregators and RESEQUENCENSccuuiiiinieeieeeeiee e e e e e e e e e et e e e eeanns 193
9.12. ServiceActivators ((handle())ooeeniiiiii e 194
9.13. OPEIALON 10G() eevvuneeentiietitt ettt ettt et 195
9.14. MessageChannelSPec.WIireTap() «.vvueeeeieeenieeii e e e e e e e e e e eaens 195
9.15. Working With Message FIOWSc.iiiiiiiiiiii e 196
9.16. FUNCLONEXPIESSIONeiiiiieeiiti ettt ettt e et e e e e e e 197
9.17. SUD FIOWS SUPPOIT ...eeiiiiiieiie e e e e e e e e e e e e e e et e e eanaeees 197
9.18. Using ProtoCol AAPLErSccuuiiiiiei e 198
9.19. INtegratioNFIOWATAPLETcouuiiiiii e 199
9.20. Dynamic and runtime Integration FIOWScccooiiiiiiiiiii e, 200
9.21. INtegratioNFIOW aS GAEWAYcuuieuuiiiiiieeii e e e e eens 202
10. System MaNAGEMENTceuiiiiiieit ettt et 203
10.1. Metrics and ManagemMENtoiveuiiiiiieiii e e e e e e e e e e e e eaes 203
Configuring MEtriCS CAPLUIEuiiiiiieiii e e e eaa e 203
Micrometer INTEGrationcoouuiiiiiiii e 204
MessageChannel Metric FEAtUIrESvivviiiiiiiei e e e 205
MessageHandler Metric FEAtUIEScc.uiiiuiiiiiii e 206

5.0.3.RELEASE Spring Integration viii

Spring Integration Reference Manual

Time-Based Average EStMALESvvivniiiiiiiii e e e 207
MELFICS FACIOMY ..ottt e et e e e e aeens 207
10.2. IMX SUPPOIT ettt ettt ettt et r et e et e e e e e eees 209
Notification Listening Channel Adapteroooveiiiiiiieiiii e 209
Notification Publishing Channel Adapter ..o, 210
Attribute Polling Channel AdapLeroocveuiiiiiiii e 210
Tree Polling Channel Adapterocveiiiiii e e 210
Operation Invoking Channel Adapter ..o 211
Operation Invoking Outbound GateWaYovvvieiiiieiieiiiieeeiiiee e 211

Y ST= =T I o o] g = 212
MBean ODJECINAMEScoouiiiiiiii e e 212

JMX IMPIOVEMENES ...oiieiiiii ettt e e e e 214

Orderly Shutdown Managed Operationccovevuiieiiiieriii e 216

10.3. MESSAGE HISLOMY ...ceniiii it 216
Message History Configurationcoiiiiiiiiiiiiiii e 216
O 1Y =TT o =] (] = 217
MeESSAgEGIOUPFACIONY ...cuiiiiitiei et e e eens 219
Persistence MessageGroupStore and Lazy-Loadccovvviiiiiiiniiiiieiiineeiis 220
10.5. Metadata SEOTEiiiiiii it e eaaas 220
Idempotent Receiver and Metadata StOreooooeviiiiiiiiiiiiiiiin e 221
MetadataStOrELISIENETiiie e 221
10.6. CONIOI BUS ..uiiiiiiiei ettt e a et e et e e e enees 222
10.7. Orderly SRULOWNiii et ees 223
10.8. INtegration Graph i 224
Graph RUNtME MOEIcoeeiiii e 227
10.9. Integration Graph Controller ... 228
V. INtegration ENAPOINTScoouuiiiiii ettt ettt e et et e e et e e e et e e eent e eeeees 230
11. Endpoint Quick Reference Tablecccuiiiiiiii e 231
12, AMQP SUPPOI ..ttt ettt et et e et et e e et et et e e e et e e ea e ea e 235
2 I 10 T [T o) o P 235
12.2. Inbound Channel AdapLeroovvuiiiiiie e e e e 235
Configuring with Java Configurationcoceuiiiiiiiiii e 238
Configuring with the Java DSLoiiiiiiiiiiii e 239
12.3. Polled Inbound Channel Adapterovveeieiiiieie e e 240
12.4. INDOUNT GAEWAYuietiiiii ettt e e et e e e e e e e e e e eeaens 240
Configuring with Java Configurationcooiiiiiiiii e 241
Configuring with the Java DSLcccouiiiiiiii e 242
12.5. Inbound Endpoint Acknowledge Modeoooouiiiiiiiiiiiii e 243
12.6. Outbound Channel Adaptercooouiiiiii e 243
Configuring with Java Configurationccceevuiiiiiiiiiii e 245
Configuring with the Java DSLcccoiiiiiiii e 246
12.7. OUIDOUNI GAIEWAYceeeiiieiiiii ettt ettt et e e 247
Configuring with Java Configurationccceevuiiiiiiiiiii e 249
Configuring with the Java DSLccciiiiiiii e 250
12.8. ASync OUtDOUNI GAEWAYccevturiiiiiiiieeieii et 251
Configuring with Java Configurationcccoevuiiiiiiiiiii e 253
Configuring with the Java DSLccciiiiiiii e 253
12.9. Outbound MeSSage CONVEISIONcceuturiiiiiiiieiiiie ettt e e eeaanns 254
12.10. OUDOUNA USEE 10 ...ciiiiiieeiii e e e e 255
12.11. Delayed Message EXChangecooouiiiiiiiiiii e 255
5.0.3.RELEASE Spring Integration ix

Spring Integration Reference Manual

12.12. AMQP Backed Message Channelsccoocvuiieiiiiiiiiiice e 256
Configuring with Java Configurationcoceuiiiiiiiiiii e 257
Configuring with the Java DSLoiiiiiiiiiii e 257

12.13. AMQP MeSSage HEAUEISuiveiiieii it e e e e e e eaes 258

12.14. AMQP SAMIPIES ...eniiiiiei e e 260

13. Spring ApplicatioNEVENT SUPPOITciieiiiiiii e 262
13.1. Receiving Spring Application EVENLSovviiiiiiiicii e 262
13.2. Sending Spring ApPlICatioN EVENLSoiiiiiiiii e 262

L4, FEEU AGAPIET ...ttt 264

I 0 T o To [N X o o PSPPI SSPPPRTTN 264

14.2. Feed Inbound Channel Adapter ... 264

14.3. Java DSL and Annotation configurationccoeiiiiiiiiiiniiiiiiec e 265

ST 1 L= U o o o] o 266

70 B [g1 oo [Tox 1T o PSP PP PPPPT 266

15.2. REAdING FlES ... e 266
NAMESPACE SUPPOIT ettt ettt et e e e e et e et e e e s e e e e enaeanaeaneen 269
WatChServiceDireCtOrYSCANNENcieuuiiiiiaeiee e e e e 271
Limiting Memory CONSUMPLIONuuiiiiiiiiiii et 272
Configuring with Java Configurationccoevuiiiiiiiiiice e 272
Configuring with the Java DSLccoiiiiiiiii e 272
TAI'ING FIES oo e 273
Dealing With Incomplete Datacccccuiiiiiiiiiiieiii e e 275

15.3. WIHEING ilES et ea e 275
Generating File NAMES ... 275
Specifying the OULPUL DIFECIOIYcuuiiiieii e e e e e 276
Dealing with Existing Destination Filescoooiiiiiiiiii e 277
Flushing Files When using APPEND_NO_FLUSHccoooiiiiiiiiiiii e, 278
[1L T =S =T] o1 279
File PermiSSIONSccoiiiiiiiiiii e 279
File Outbound Channel AdApLercooiiiiiiiiiiiii e 279
L@ 111 Lo 0T g To I €=\ =11 | 279
Configuring with Java Configurationcoceuiiiiiiiiii e 280
Configuring with the Java DSLoiiiiiiiiiiii e 281

15.4. File TransSfOrMErSouuiiiiie it e e e ennne 281

15.5. File SPHIET «..eneeeee e e et e eaes 282
Configuring with Java Configurationcooiiiiiiiii e 283
Configuring with the Java DSLcccouiiiiiiii e 283

16. FTP/FTPS AGAPLEIS .euiiieiiiiiiiitiie ettt ettt e e ettt e e e e e e e ee bbb e e e eeeaeene 285

G0 R 0T [T o) o P 285

16.2. FTP SESSION FACLOMY ..ovvvuiiiiiieiiieei ettt e e e e e e e e e e e e e e e e e ean e eeees 285
Default FACIOMESceveiieiiiiii et 285
FTPS and Shared SSLSESSIONccuuiiiiiiiiiiei e e e 287

16.3. Delegating SesSSioN FAaCIOIYcocuiiiiiii i 288

16.4. FTP Inbound Channel Adapter ... 289
Recovering from Failuresoouiiiiiiiii e 292
Configuring with Java Configurationcccoevuiiiiiiiiiii e 293
Configuring with the Java DSLccciiiiiiii e 294
Dealing With Incomplete Datacccouuiiiiiiiiiiiiiii e 295

16.5. FTP Streaming Inbound Channel Adaptercoooviviiiieiiiiic e, 295
Configuring with Java Configurationcocouiiiiiiiiiii e 296

5.0.3.RELEASE Spring Integration X

Spring Integration Reference Manual

16.6. Inbound Channel Adapters: Controlling Remote File Fetching 297
16.7. FTP Outbound Channel Adapter ... 298
Configuring with Java Configurationcooiiiiiiiiin e 299
Configuring with the Java DSLcccouiiiiiiiiii e 300
16.8. FTP OUtbOUNT GAEWAYuiietniitieeiii ettt e e e e e e eens 301
Configuring with Java Configurationcooiiiiiiiiin e 306
Configuring with the Java DSLcccouiiiiiiiiii e 307
Outbound Gateway Partial Success (mget and mMpPuUt)coooeevieiiiiiiinieeieeennne. 307
16.9. FTP SesSion CaChiNgccoouuiiiiiiiiiiiiii e 308
16.10. RemoteFileTemMPIAteccouiiiiiie e e 309
16.11. MessageSessionCallbDack ... 309
17. GEMEINE SUPPOIT oottt ettt ettt e et e e e e et e e e era e eeenans 311
L17.0. INFOAUCTION ..ot e e e e e e e e e e e e e eeene 311
17.2. Inbound Channel AdapLer e 311
17.3. Continuous Query Inbound Channel Adaptercovoiiiiiiinniiiiiecei e, 311
17.4. Outbound Channel AdAPLeriiiiiiiii e e e e 312
17.5. GeMIire MESSAQE SEOIE ..ottt 313
17.6. Gemfire LOCK REQISIIY ... coieiiiiiiiiii ettt e 314
17.7. Gemfire Metadata StOrecooevruriiiiieiiiiii e e 314
RS o I 1T o] o o] A PP UPTPPT 316
S 0 O 0 T [T o) o 316
18.2. Http INbound COMPONENLScvviiiii e e e e e e aens 316
18.3. Http Outbound COMPONENTSccuuiiiiiiiiiiei e eaa s 318
HttpRequestExecutingMessageHandlercoovviiiiiiiiiiiiii e 318
18.4. HTTP NameSPaCE SUPPOIT ...ueeeeiniineeieeieeeteeee e e eaeeaneetaeeaeeaneeaneeaneeaneennaenaaens 319
INEFOTUCTION .ottt et e e e e e e e e eeees 319
1] oo 18] o 319
Request Mapping SUPPOMvvi e e e e e e e e e e eaanas 320
Cross-Origin Resource Sharing (CORS) SUPPOItcceuneiiiiiiiiieiieeei e 321
RESPONSE SEAtUSCOUE ...covviiiiiiii e 322
URI Template Variables and EXPreSSiONScc.cvevuuieviinieeiiieeiieeeiieeeineeeaneeennns 323
OUIDOUND ..o e e e e e e 323
Mapping URI Variablescooouiiiiii e 325
Controlling URI ENCOING ..u.ivvniiiiieiie e e e e e e e e e et e e e e aaeees 326
18.5. Configuring HTTP Endpoints with Javacccoiiiiiiiiiii e 327
18.6. TIMEOUL HANAINGeiiiiiieiiii et e e e eees 328
18.7. HTTP Proxy CONfiQUIationcoovuuniiiiiiiiii e eee e e e e e e e e e e e eaeeees 330
18.8. HTTP Header MapPiNgScoeuuieeuueiiiiaiiiee e e e e e et e et eeaeeeens 331
18.9. Integration Graph Controlleroveiiiiiii i 332
18.10. HTTP SAMPIES ..eiiiiiiiiiieee et e e e et e et e e e eens 332
Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
1] AT o PP TPPPTTR 332
S N 13 = T @ U o o o] A 334
19.1. Inbound Channel AApLEroieu e 334
PolliNg and TranSACHONSuuiiiiiiiieieiii et e e e e e e eens 336
Max-rows-per-poll versus Max-messages-per-pollc.cccceviviiiiiiiiiiiineiineennnn, 336
19.2. Outbound Channel AdPLELiiiiiei e 337
19.3. OUDOUNI GAIEWAYceeeviieeiiiiee ettt ettt e et e e 338
19.4. IDBC MESSAQE STOME ...ivuiiiiiiieiii et ee e e et et e e e e e e e e e e e et e et e e e an e aneeanns 339
Initializing the Databaseccuuiiiiiiiiii e 340
5.0.3.RELEASE Spring Integration Xi

Spring Integration Reference Manual

The Generic JDBC MeSSAQE STOMEcvvvuiiiiieeiiieeeiieeeii e e e e e e e e e e e e 340
Backing Message Channelso 340
Partitioning @ MeSSAgE STOTEviiiiiiiiiii e 343
19.5. Stored PrOCEAUIESvviiiiie ittt e e e e e e e e e eennes 343
SUpported DatabaASESccuuiiiiiiiii e 343
CONFIGUIALION oottt 344
Common Configuration AttBULESceuiiiiiiii e 344
Common Configuration SUD-EIementsccoooiiiiiiii e 346
Defining Parameter SOUICESocoiiuiieiiiii e 347
Stored Procedure Inbound Channel Adapteroovvviviiiiiiiie e 348
Stored Procedure Outbound Channel Adapterccoooeuiviiiiiiiiiiiiiiiceeeeeeen 349
Stored Procedure Outbound Gatewaycooeeveiiiieiiiiinieiiiieece e 349
0= 0] o 1= 350
19.6. JDBC LOCK REGISIIY ...ttt e e et ea e eees 351
19.7. JDBC Metadata SOuivienieiiiiiii e e et e e e e e e e e e e eees 351
2O TR 1S T U o o oI 353
20.1. Supported Persistence Providers ..o 353
20.2. Java IMPIEMENTALIONiiiiii et e e e 354
20.3. NAMESPACE SUPPOM ..ereeineiieeteeie et et e e e e e et e e e et e e e et e enaranaraneeaeenneees 354
Common XML Namespace Configuration Attributescoooiiiiiiiinnnn, 354
Providing JPA QUErY Parametersc.uuieiiiiiieiiiiieeeii et eeni e 356
Transaction HandliNgc..oeviiiiiiiie e e e e 356
20.4. Inbound Channel AdAPLET i 357
Configuration Parameter REferenCeoooeiuiiiiiiiiiiiii e 358
Configuring with Java Configurationcccecvuiioiiiiiiii e 359
Configuring with the Java DSLcccoiiiiiiii e 359
20.5. Outbound Channel Aaptercooouuiiiiiiiie e 360
USING an ENtity ClIasS ...vuiiiiiiiiicii et e e e et e e e eans 360
Using JPA Query Language (JPA QL) ..o 361
USING NatiVE QUETIESuiiiiii ettt ettt ettt e et e e ra e e enens 362

L0 LS g o T A F= T a1 To @ T 1= = 362
Configuration Parameter ReferencCeco.oviiuiiiiiiiiiiii e 363
Configuring with Java Configurationcooiiiiiiiiinni e 364
Configuring with the Java DSLccccuiiiiiiiiii e e 365
20.6. OUDOUNT GAIEWAY'S .. .ceunieitiiii ettt e et e e aeees 366
Common Configuration Parameterscoviviiiiiiiiiiiiec e 367
Updating Outbound GatEWAYccuuieiiiiieiiieiiiieeie e e e e e e e e e e e e e e e eenaees 368
Configuring with Java Configurationcoceuiiiiiiiiiii e 368
Configuring with the Java DSLoiiiiiiiiiiii e 369
Retrieving Outbound GatEWAYcouuiiiiiiiiiiieii e e e e e e eeen 370
Configuring with Java Configurationcocouiiiiiiiiii e 370
Configuring with the Java DSLoiiiiiiiiiiii e 371

JPA Outbound Gateway Samplescccceuiiiiiiiiiiiiii e 372

20, IMS SUPPOIT ..ttt ettt e et et et et e e et et e et e ea et e et e et e e e a e en e en e aans 374
21.1. Inbound Channel AApLeroouuuiiiiii e 374
TPANSACHONSeeeieieeitee ettt e e et e et e e et e e ee s n e e e e e eeene 375
21.2. Message-Driven Channel Adapter ..o 375
INbouNd CONVEISION EFTOIS ...iiuiiiiiieiiiee et e e 376
21.3. Outbound Channel AApLercouuiiiiiii e e 377
TrANSACTIONS ..oevtieeiiii ettt et e et e et e e e e e e 377

5.0.3.RELEASE Spring Integration Xii

Spring Integration Reference Manual

22 [o] o Yo TU [g o I 7= 1 1=V 7 Y 377
21.5. OUDOUNT GAIEWAY ... ceeiiiiiieei ettt e eees 379
Gateway Reply Correlationoieieiiiiiiiiii e 380
ASYNC GAEWAY ..evuieniiiiii et ee et e e et e e e et e et e e e e e e et e ea e et e an e et e et e et e eneaenaeens 382
ALIDULE REFEIENCE ...e e 383
21.6. Mapping Message Headers to/from JMS MeSSaQgecceevevvinieiiininieiiiiinneeennnn 385
21.7. Message Conversion, Marshalling and Unmarshallingcccc.ccoiiviiiene. 385
21.8. JMS Backed Message Channels ... 386
21.9. Using JMS MeSSage SEIECIOISccovuniiiiiiii et 387
21.10. IMS SAMPIES ..o 388
22, MaIl SUPPOIT <.ttt et et et e et e e et e et e e e e e e aeen 389
22.1. Mail-Sending Channel Aaptercouuiiiiiiiii e 389
22.2. Mail-Receiving Channel Adaptercoveuiiiiiiieii e e 389
22.3. Inbound Mail Message MappinNgoceeuiieuiiiiieiie e 390
22.4. Mail NameSPaCe SUPPOITccuuuuiiiiiiee ettt et e e e e e 391
22.5. Marking IMAP Messages When \Recent is Not Supportedccooeevevevinnennnnn. 395
22.6. Email Message Filteringcc.uiiiiuiiiiii e 395
22.7. Transaction SYNCRrONIZAtIONccouuiiiiiiiiiie e 396
22 T Y/ o g o T] o RS U o] o o] o (P 398
23,1, INFOTUCTION ...eeiiieeeeet ettt et e e e et e e e e e e nn s 398
23.2. Connecting t0 MONGODDiiiiiiii e 398
23.3. MONQODB MESSAQE STOME ...ieuiiiiiiiieeie e ee et et e et e e e e e e e e e en e e aeanneen 399
MongoDB Channel MeSSage SEOIeocouuiiiiiiiiiiiiiie e e 399
MONQODB Metadata StOrecccouuieiiiiiiieiiiii e 400
23.4. MongoDB Inbound Channel Adapterovveuiiiiiieiie e 401
23.5. MongoDB Outbound Channel Adapter ..o 403
23.6. MoNgoDB Outbound GAtEWAYccuuiiiiiiiieiiiii et 403
Configuring with Java Configurationcccecvuiioiiiiiiii e 404
Configuring with the Java DSLcccoiiiiiiii e 404

24, MQTT SUPPOIT oottt ettt e ettt e e et e et et et et e e e e eena e 406
P22 N [o T [0 Tox o] TSP 406
24.2. Inbound (message-driven) Channel Adaptercoooeiiiiiiiiiiiiii e 406
Adding/Removing Topics at RUNLIMEooviiiiiiiiiii e 407
Configuring with Java Configurationccceevuiioriiiiiiie e 408
24.3. Outbound Channel AdApLercoeuiiiii e 408
Configuring with Java Configurationcooiiiiiiiii e 409

B T = L0 ST U] o] o A 411
25.1. INFOTUCTION ...eeiiieeeei ettt e e e et e e e e e e s 411
25.2. CoNNECHING 10 REAIS ...ciiiiiiiiiii e 411
25.3. Messaging With REAIScouuiiiiiiiii e e e 412
Redis Publish/Subscribe channel ..., 412
Redis Inbound Channel AJaptervi i 412
Redis Outbound Channel Adaptercovviiiiiiiii e 413
Redis Queue Inbound Channel Adaptercooieiiiiiiiiiii e 414
Redis Queue Outbound Channel Adapterccoooeiiiiiieiiiiinee e 415
Redis ApplICation EVENLSoiiiiiiiicei e e e e 415
25.4. RediS MESSAQE STOMEcceuiiiii ittt e e e aa s 416
Redis Channel MeSSage STOIESccuuiiiiiiiieiii et 416
25.5. Redis Metadata STOrEccourruiiiiieeiiieieie e e 417
25.6. RedisStore Inbound Channel Adaptercooouiiiiiiiiiii e 418

5.0.3.RELEASE Spring Integration Xiii

Spring Integration Reference Manual

25.7. RedisStore Outbound Channel Adaptercoovviiiiiiieiii e, 420
25.8. Redis Outbound Command GAatEWAYcoeuuieeiniiirnieeiieeiiieeeie e eanaees 421
25.9. Redis Queue Outbound GatEWAYviiiiiiiiiiiiiiiee e 422
25.10. Redis Queue INbouNd GAtEWAYvveinieiiiieiiiieeeii e e e e e et e aaaeees 422
25.11. Redis LOCK REQISIIY ... e e 423

26. RESOUICE SUPPOIT ...ttt ettt ettt e e et ettt e e e e e e e e e e e eenns 425
26.1. INTFOAUCTION ...ttt e e e e e e e e s 425
26.2. Resource Inbound Channel Adapterocouiiiiiiiiiiiie e 425

27, RMI SUPPOIT <.ttt ettt et et et r e e e et e e e e eees 427
P2 0 O [o T [0 Tox o o TP PUPPPTTR 427
27.2. 0UtboUNd RMI ... e e e e e e eanees 427
b T [o1 o Yo 11 o I =31, PP 427
27.4. RMI NAMESPACE SUPPOI ..uiveieieeieiieeeee e ee et e e e e e e et e et e et e e e e e e e e e eaneenaeens 427
27.5. Configuring with Java Configurationccociiiiiiiiiinii e 428

28. SFTP AJAPIEIS ...ttt ettt ettt et e e 429
28.1. INTFOAUCTION ...ttt e e e e e e e e e e nnneee s 429
28.2. SFTP SeSSION FACIOIYuuiiiiiiiiieei e e 429
Configuration PrOPErtiEScoouuiiiiiiiii et 430

28.3. Proxy FacCtOry BEaANccciiiiiiiiiii ettt 432
28.4. Delegating SeSSION FACIOIYccuuiiiiiiiie e e 432
28.5. SFTP Session CacChingcccuuiiiiiiiiiiiiii e 433
28.6. RemMOteFleTeMPIALE ...ccevi i 433
28.7. SFTP Inbound Channel Adaptero 434
Recovering from Failuresoouiiiiiiiiii e 436
Configuring with Java Configurationcccecvuiioiiiiiiii e 437
Configuring with the Java DSLcccoiiiiiiii e 438

Dealing With Incomplete Dataccouuiiiiiiiiiieiii e 439

28.8. SFTP Streaming Inbound Channel Adapterccooeeeeiiieiiiiieie e 439
Configuring with Java Configurationcoceuiiiiiiiiii e 440

28.9. Inbound Channel Adapters: Controlling Remote File Fetchingccco.ocee. 441
28.10. SFTP Outbound Channel Adaptercooveiiviiiiiie e 442
Configuring with Java Configurationcoceuiiiiiiiiii e 443
Configuring with the Java DSLoiiiiiiiiiiii e 444

28.11. SFTP OutboUNd GaEWAYcevveeiiiieiiiieiii e e e e e e e e e e e e eanas 445
Configuring with Java Configurationcoceuiiiiiiiiiii e 450
Configuring with the Java DSLoiiiiiiiiiieiii e 450

Outbound Gateway Partial Success (mget and mput)cooeeeveeiieeviineeeieeennnn. 451

28.12. SFTP/ISCH LOGGING +tuuuiieeiiiiiiiiiiaa e ee ettt e ettt e e e e et eeeb e e e e e eeennens 452
28.13. MessageSessionCallback ... 452

P24 TS T 1 11,1 T o] oL 453
29,1, INFOTUCTION ...ceeitiieeeet ettt et e e e e e e e e e e e s 453

BAS I © 1= 1 N 453
29.3. STOMP Inbound Channel Adapterccoieiiiiiiiiici e 453
29.4. STOMP Outbound Channel Adapterooiiuiiiiiii e 453
29.5. STOMP Headers MapPiNg .. .cccuuueeeiuieiiii ettt 454
29.6. STOMP INtegration EVENLScivuieii e e e e e e e e e 454
29.7. STOMP Adapters Java Configurationcoceeuiiieriiiiiiniiiee e 455
29.8. STOMP NameSPaCE SUPPOITuueirieirieieiieeie et ea et e e e e e eees 456

1T TS (== 1 4 IS T U o] oo o A 458
30,1, INFOTUCTION ...ceeiiiieeeit ettt et e e e e e e e e e e e ne s 458

5.0.3.RELEASE Spring Integration Xiv

Spring Integration Reference Manual

30.2. Reading from SIrEAIMSccuiiiiii i eiie e e e e e e e e e e e e eaes 458
30.3. WILING 1O SIrEAIMSietiiiit ettt et e et e et e e e e e eb e eanaas 459
30.4. Stream NAMESPACE SUPPOIT ...oevnieriieeti ettt eee ettt e e e e eenns 459
131 IS V751 (o o IS TUT o] o o] o A 461
3 I I 1o o U T 1 o] o PSPPSR 461
31.2. Syslog <inbound-channel-adapters>cooooiiiiiiiii 461
Example Configurationooiiiioiiiiiiii e e e 461

32. TCP and UDP SUPPOIT ..ttt ettt e e et e e e e e et e e ean e eanaaeees 464
2205 T [o1 o o (U] 1T o I PP 464
Gy U 1 = o F= 1) (= = 464
Outbound (XML CoNfIQUIAtiON)oieuiiiiiieiii e e e e 464
Outbound (Java Configuration)oveieiinieiiii e 466
Outbound (Java DSL Configuration)cc.oeeiuioviiiieiii e eea e 466
Inbound (XML ConfigUration)c..oeiuuiiiiiiie e e 466
Inbound (Java ConfIQUIAtiON)veiiiiiiiiiii e 466
Inbound (Java DSL Configuration)coeeeuiiiiiiiiiiieiie e 466
Server LIStening EVENTSiiiiiiiiii et 467
Advanced Outbound COoNfIgUIatioNcoouuiiiiiiiiiiiiii e 467
32.3. TCP CONNECHION FACIOMES ...vvuuiiiieiiiiieiiii et 467
TCP Caching Client Connection FACLOrYoovieuiiiiiiiiiiiiiieee e 471

TCP Failover Client Connection FaCIONYoviiiiiiiiiiiiiiiieeeiiie e 472

TCP Thread Affinity Connection Factoryc.cccoeieviiiiiiiiiiii e 472
32.4. TCP ConNection INtEIrCEPIOISiiuuiiii ettt e e eeens 472
32.5. TCP CONNECON EVENLS ...ccuiiiiiiiiiieeii et e e e 473
Gy T 1O AN = o] =1 £ 474
32.7. TCP GAEWAYS ...euituietneiteitaei ettt et et et et e e et e et et et e et e en e e e e e e e e eenaees 476
32.8. TCP Message CoOrrelationcoveieuiiiiiiiiiieiii et 477
OVEBIVIEW ..ttt ettt e e et e r e e e e et et e e r e e e e e e e nnnaes 477
GALBWALY'S ..etniteit ettt ettt ettt ettt e e e e e et e e ea e aaaas 477
Collaborating Outbound and Inbound Channel Adaptersocoeiiveiiiiinnenes 477
Transferring HEAUEISoveuii e e e 478
32.9. A NOte ADOUL NIO ..ot 480
Thread Pool Task Executor with CALLER_RUNS Policyccccooeveiiiiinieiinnnnnn. 480
32.10. SSLITLS SUPPOI ouuiiinieiiee it e et e e e e e e e e e e e e e e e e et e eanaeeanas 482
OVEBIVIEW ..ttt ettt ettt ettt et e e et et e et et e e e e n et e e e e ntreeeentneeees 482
GetliNG STAMEAiiiiiii et 482
32.11. Advanced TECHNIQUESciiuuieiiii et e e e et e e e eanas 483
Strategy INTEITACES .. .cvuiiii e 483
Example: Enabling SSL Client Authenticationcccooeviiiiiiiiiiiin e 485
32.12. IP Configuration AtHDULESieviniiiiei e e e e 486
32.13. IP MeSSage HEAUEISiiiiiiiieei et e 493
32.14. Annotation-Based Configurationcooviiiiiiiiiiiiie e 494
1G0T U o] o o] o 497
I3 0 I 11 o o U T 1 oo PSPPSR 497
33.2. Twitter OAUth ConfIQUIAtiONcoouiiiiiiii e 497
G TR T LY (= G =10] o] = = P 497
33.4. Twitter INboUNd AAPLEIS ... e 498
Inbound Message Channel Adaptervv i 499
Direct Inbound Message Channel Adaptercoovvviiiiiiiiiiiiieec e 499
Mentions Inbound Message Channel Adaptercoooveiiiiiiiiiiiineee 499

5.0.3.RELEASE Spring Integration XV

Spring Integration Reference Manual

Search Inbound Message Channel Adaptercouvvviiniiiiieiieeee e 499
33.5. Twitter OUtbOUNd AJAPLEL i 500
Twitter Outbound Update Channel Adapterccoiiiiiiiiiiiiii e 500
Twitter Outbound Direct Message Channel Adapterccoovveveviiviviineeeneeennn. 501
33.6. Twitter Search Outbound GAatEWAYocieuiiiiiiiiieii e 501
34, WEDFIUX SUPPOIT ..ttt ettt ettt ettt ettt e e et e b e e e ebtr e e e etbaeeeenbnaeeeens 503
7 I 1 o o U T 1 o] o PRSP 503
34.2. WebFlux Inbound COMPONENTSuiiiiiiiiiiieie e e e 503
34.3. WebFlux Outbound COMPONENESuuiiiiiiieieii e 504
34.4. WebFIux NameSpace SUPPOIvieeniiiiierieeeie e et seeee e et se et e e e eetseeanaeeanees 505
INEFOAUCTION ..t ettt e e e e et e et eean s 505

1] oo 18] o 505
OUDOUND ..o e e e e e 506
34.5. Configuring WebFlux Endpoints with Javac.cooooiiiiiiii s 506
34.6. WebFlux Header MappinNgscuuueeeiiiiieii ettt 507
35. WEDSOCKELS SUPPOIT .. ceeiiii et s e e e e e e e et e aan e eees 508
T I [o1 o o [FTod 1o o PP UP PP UUPTRUPTRN 508
BT © 1= V1 S 508
35.3. WebSocket Inbound Channel Adaptercc.oevviiiiiiiiii e, 509
35.4. WebSocket Outbound Channel Adaptercocouuiiiiiiiiiiiiiiee e 510
35.5. WebSockets Namespace SUPPOIToeveeuiiiiiii et eni e 511
35.6. ClieNtStOMPENCOUETccviiiiiiieii e e e e e e e e et eeaneeees 514
36. WED SEIrVICES SUPPOIT ...ttt ettt e et e e e e eaaas 516
36.1. Outbound Web Service GateWaysoveieeuiiieiiiiiieiiii e 516
36.2. Inbound Web Service GatEWaYScccuiiiiiiieiiiieiiieeii e e e e e e e e aanaees 516
36.3. Web Service NamesSpace SUPPOITc..uiveeniiii it e e e e 517
36.4. Outbound URI ConfigUIationccouuuiiiiiiiiiieiiieeeei e 518
36.5. WS MeSSAgE HEAUEBISuuiiiiiiii et e e e e e e e e aaeees 519
36.6. MTOM SUPPOIT ettt ettt e e ettt e e e e e e e e e bbb e e e e e e eeenenaenns 520
37. XML Support - Dealing with XML Payloadscccuuiiiiiiiiiiiiiiiiee e 522
G A I 1o o [T 1 o] o PRSP 522
37.2. NAMESPACE SUPPONT ...eeeetieiieete et e ettt et e et et et e et e et e e e e e e eaeeneens 522
XPath EXPreSSIONSciiiiiiiiiiii e 523
Providing Namespaces (Optional) to XPath EXpressionscccceeeennn. 523

Using XPath Expressions with Default Namespacesc.c.cccevevevieiinnnnens 524

37.3. Transforming XML Payloadsccouuiiiiiiiiiiiiiiiiecci e 525
Configuring Transformers as BEANScocvvuiiiiiiiiiiiieeieee e 525
UnmarshallingTransformer ... 526
MarshallingTranSfOrMErov i e 526
XsltPayloadTransSformercovueiiiii i e 527
ReSUITIANSTOMMEIS ... e 527
Namespace Support for XML Transformersccoiviiiiiiiiiieiiiineeci e 528
Namespace Configuration and ResultTransformersccooveviiiiiiiiieceeen, 529
37.4. Transforming XML Messages Using XPath ..o, 531
37.5. SPIitting XML MESSAGESunciiiiiieeiiiii ettt e e 532
37.6. Routing XML Messages Using XPathccccouiiiiiiiiiiiiiiiii e eis 533
XML Payload CONVEITETc.uuiiiiiiiiiie et ea e ees 535
37.7. XPath Header ENFCRETooueiiii e 535
37.8. Using the XPath FIlErcocu i e e 536
37.9. #xpath SPEL FUNCLION ...t 537
5.0.3.RELEASE Spring Integration XVi

Spring Integration Reference Manual

37.10. XML Validating Filtercouuiiiiii e e e e e eaaes 538

38. XIMPP SUPPOIT ...ttt et et e e e et e et e et e e e e e e e e aees 539
1S 0 T [1o o (1] 1T o I PP 539
38.2. XMPP CONNECHION ..coviiiiiiiiiieeiei et e b 539
38.3. XIMPP IMESSAGES ...euieuieniiieii ettt ettt e et e e e e e 540
Inbound Message Channel Adapter ..o 540

Outbound Message Channel Adapterovvvviiiiiiiiiiie e 541

38.4. XIMPP PIESEINCE ...ttt ettt et et e e e e e e e aens 541
Inbound Presence Message Channel Adapterccooovvveiiiiiiiiiiiniiiiin i, 541

Outbound Presence Message Channel Adaptercccoveviiiiiiiiiiicciineceeeen, 542

38.5. Advanced ConfIQUIratiONcouuiiieiiiieei e 542
38.6. XMPP MeSSage HEAUERISccouiiiiiiiiie ettt 543
38.7. XMPP EXIENSIONS ...uieiiiiiiieeiii ettt e et e e et e e e et eeeeaanaeeees 544

39. ZOOKEEPEI SUPPOIT ...ttt ettt ettt ettt ettt e e et e et e e et et e e e e e et e aeaneaeens 546
1T I [o1 o o (U] 1T o IR 546
39.2. Zookeeper Metadata StOrecccuuieiriieii e 546
39.3. Zookeeper LOCK REQISIIYc.uuiiiiiiii et 546
39.4. Zookeeper Leadership Event Handlingccoooveiiiiiiiiiiiineeceecen 546

RV TR Y o] o 1= Lo [T = 548
A. Spring Expression Language (SPEL)coeuniiiiiiiiii e 549
N I [11 o T [T o o PP 549

A.2. SpEL Evaluation Context CustOmMizationcocveviveiiiiiiiiierin e 549

A.3. SPEL FUNCLIONS ...ceei e e 550

A4, PrOPEITYACCESSOIS ...cviiieieeiiee ettt ettt et et e e et et e e e eeaneenes 551

B. Message PUDBIISNING ... 553
B.1. Message Publishing Configurationcocouiiiiiiiiiiiiii e 553
Annotation-driven approach via @Publisher annotationccccceiviiiiinnenes 553
XML-based approach via the <publishing-interceptor> elementccccecee.... 555

Producing and publishing messages based on a scheduled trigger 557

C. TranSaCON SUPPOMTuuiiiit ettt e e ettt e et e e e et e e e et e e e eraa s 559
C.1. Understanding Transactions in Message flowsccccocciiiviiiiiin i, 559
Poller Transaction SUPPOITiii e 560

C.2. Transaction BOUNGANEScoeuniiiiiieiie et e e e e e 561

C.3. Transaction SynChronizationccceuiiiiiiiiiii e e e e e 561

C.4. PSEUAO TraNSACLIONScetuiiiiieiiii ettt e et e e e e et e et e e e eeaens 563

D. Security in SPring INtEGratioNuuiiiiiiiieiiii et eeaens 565
[200 O [1 o Yo [Tox 1T I PSPPI 565

D.2. SecUring ChaNNEISoouii e 565

D.3. SecurityContext Propagationoiiiieuiiiiiiieeeie e 566

S @] 1T 8= 4o o 569
L I [oo [F o1 1o o PP 569

E.2. NamMESPACE SUPPOIT ...ttt ettt e s 569

E.3. Configuring the Task Schedulerccooviiiiiii e, 570

E.4. Error HANAINGcouiii et e e e e e 571

E.5. GlODal PrOPEITIES .. eeeiiiiieiii et 572

G A g o] 7= L1 o] TS U o] o Yo 1 573
Messaging Meta-ANNOLAtIONSco.uiiiiiiiii e 578
ANNOLAtIONS ON @BEANSoviiiiiiiiii et e e e e e e aaanas 578

Creating a Bridge with ANNOtatioNSovviiiiiiii i 580

Advising Annotated ENAPOINTSoiiuiiiiiieiie e 581

5.0.3.RELEASE Spring Integration XVii

Spring Integration Reference Manual

E.7. Message Mapping rules and CONVENLIONScoevvieiiiieeiiieeiiieeeie e eeeeeenaeeee 581
SIMPIE SCENATOS ...ttt e e e e e 581
COMPIEX SCENANIOS ...ttt e 583

T I =TS 1 o = 0 o 0T | 585

S O 1 (o To [¥ (o 1 o] o KOO PP UPPRPPPR 585

F.2. TeStiNg ULIILIESooieieieei e 586
TESTULIIS et 586
SOCKEIULIIS ...ttt e e e 586
O 1011Y /@ oot I o o = PSPPSR PP PPPPTNN 587
ST U] o] o o) Ao 4] oo 1= | £ 587
Hamcrest and Mockito MatChers 587

F.3. Spring Integration and teSt CONTEXLoviieieiiiiiiiie e 588

[A g (=T [= LT T \Y (o Tod 589
Y [oTed 11 (=T | £= 11 [o H PP UPTRUPTRIN 589

T @ 11 1= gl (=TS o] o P 590

G. Spring INtegration SAMPIESiiiiiiii e 591

LC 70 I [(o To [8 o 1 o] o KU PSPPI 591

G.2. Where t0 get SAmMPIES ... e 591

G.3. Submitting Samples or Sample REQUESESc..veiiiiiiiiiieiii e ee e 591

G.4. SAMPIES STTUCLUIE ...t et e e et e e e e e eees 592

BB, SaAMPIES ot 593
o= 1 I =10 (= SR SPR 594
The Cafe SAMPIE ... e 598
The XML MesSSaging SampPleoviiiiiiiiiiiie e 602

H. AJItIoNal RESOUICESciiiiiieiiiii ettt e e et e e et e e e et aeeeeatnaeeaes 603

H.1. Spring INtegration HOMEoiiiiiii e 603

[. ChaNGE HISTOMY ...uueiiiiii e et e e e et e e et e e e e e e eees 604

[.1. Changes between 4.2 and 4.3 ... 604

[.2. NEW COMPONENLEScuiieiiieiii ettt ettt et et e et e e e e ea e e e en e e e eaneennns 604
AMQP Async Outbound GatEWAYiieiiiiiiieiiiiiieiiii e 604
MESSAGEGIOUPFACIONY ...ivuiiieiie ettt e e e e e e e e e e eenns 604
PersiSteNtMESSAGEGIOUD . .cuuiirniiie ettt e et e e e e e e e e e eees 604
FTP/SFTP Streaming Inbound Channel Adaptersccooviiieiiiiinieiiiiineeciin, 604
Stream TranSTOINMEN ... oo e 604
INtEGratioN Graphc.. e 604
JIDBC LOCK REQISIIY ...eeiiiiiieeiiiti ettt ettt 604
Leader Initiator for LOCK REQISIIY ...c.vuiiiiiiiii i ea e 605

[.3. General CRANQESooiiiiiii ettt e e e 605
COrE CRANGES ...uiiiiiiii ettt et et 605

Outbound Gateway within Chaincccoiiiiiiiiii e 605
ASYNC SEIVICE ACHVALOLceviiiiiieii e 605
Messaging Annotation SUppOort ChanNgesc.uvveviiiiiieieiiinieee e 605
Y= T o =Yg T = PPN 605
Customizable USer FIag ..o 605
Mail MeSSage MaAPPING ...coeerineiiiii ettt 605
B 1Y S T F= 1 o = 605
HeEAAEI MAPPET .. 605
ASYNC GALEWAY ...evviieeieieiieet et ettt et 605
P Yo [o [(=To = (o] A O g =T g Vo 1T 606
TCP/UDP CRANQES ...ceiiiiieeii ettt e et e et e e e e e 606

5.0.3.RELEASE Spring Integration Xviii

Spring Integration Reference Manual

BV NS ot 606
Stream DeSErAliZEISiiiii e 606
TCP MeSSAgE MAPPET ...ttt e 606

L1 L= O 5 = T T =T 606
Destination DireCtory Creationc..oceeueiiioiiieeii e e e e 606
BUFfEE SIZE et 606
Appending and FIUShINGcoouirii e 606
Preserving TIMESIAMPSc.uiiii it e e 606
SPHEEr CRANGES ...etiiiieii e et eens 607

FIlE FILEIS oot 607
AMOP ChanQESeuiiiiiii e 607
Content Type Message CONVEITETcceuuiiiiiiiiiiieiiee e 607
Headers for Delayed Message Handlingcccooevveviiiiiiin i, 607
AMQP-Backed Channelsooouiiiiiii e 607
REAIS CRANGES ...eeiiiiiii ettt 607
List PUSh/POP DIrCHONccvviiiiiieei e e e e 607
Queue Inbound Gateway Default Serializerccooviviiiiiiiiiiiiiiii 607
HTTP ChaNGES ..ot 607
Y N = O 4 - g T [608
FaCIOry BEAN ... e 608

o3] /0o o 608

L I 1 - T o 1= PP 608
SESSION ChANQES ...t e e 608
ROULEN ChANGES ...t 608
[(5= (o 1= g V= o o1 Vo [608
GENEIAL e 608
AMQP Header MappiNguoeeeiiieeiii ettt 608

LT (0T01Y YA T 1] o] £ P 608
@INbouNdChanNElAAPLETo 609
XMPP CRANGES ..ottt et e e e e e eaaans 609
WireTap Late BiNdiNgccoouiiiiiiiiiicie e e e e e e e e e e e eens 609
ChannelMessageStoreQUErYPIOVIAEYcc.uviiuiiiiiiiiiii e 609
WEDSOCKEE ChANGES ..ot 609
[.4. Changes between 4.1 and 4.2cc.iiiiiiiiii e 609
[.5. NEeW COMPONENLSunieiiiiiii ettt e e e e e et e e a e e e en e e e e eanns 609
Major Management/IMX REWOIKcooiiiiiiiiiiii e 609
MoNQODB Metadata StOrecccuiiiiiiiiiiiee e 609
SecuredChannel ANNOLALIONoiiuiiiii e 610
SecurityContext Propagationocceeeuuiieeiiiineeiiine et e e e e 610
L1 =3 o 11T S 610
P oTo] =TT o1 g U] o] o o] o AP PTUPTRPPTRN 610
LI L= o == 4 1 610
S 1O 1Y 0 T] Lo 610
(7o [T o PP PPTUPPIN 610
Message PreparedStatement SEteruii i 610
[.6. GeNEral CRANGES . ..uuiiiiiii e e et e e e e e e e e e e e e e anaees 611
VTSI -1 o TP 611
File ChanQES ... e 611
ApPeNdiNG NEW LINESuiiiiiii e e e 611
Ignoring Hidden Fles ... 611

5.0.3.RELEASE Spring Integration XiX

Spring Integration Reference Manual

Writing InputStream Payloadscocoeiiiiiiiiiiiciecec e 611
HeadDireCtOrYSCANNETc.uuiiii ettt e e e e e e eaaeees 611

Last Modified Filteroiiiiiii e 611
WatchService Dir€Ctory SCaNNEIccvuuieiiieiiieeiie e e e e e 611
Persistent File List Filter Changesooooiiiiiiii e 611
Class Package Changecoooeeuiiiiiiii e 611
LI s F= 1 o = 612
TCP SEHAlIZEIS ... e 612
Server SOCKEet EXCEPLIONS ...couuuiiiiiiieiiiii et 612

TCP SEIVEI POIT ..t 612

TCP Gateway Remote TiMEOULcieuuiiiiiiiiieei e 612

TCP SSLSession Available for Header Mappingccooevveviieiiiiinneeiinnnnn. 612

TCP EVENTS oottt 612
@INbouNdChanNElAAPLETeeee e 612
APL CRANGES ..ottt et 612
B 1Y S T = 1 o = 613
Reply Listener Lazy Initializationcooooiiiiiiiniii e 613
Conversion Errors in Message-Driven Endpointscccooveveiiinieiiiinnenenns 613
Default Acknowledge MOOEoovviiiiiici e 613
Shared SUDSCHPLONSoouiiiiei e 613

100] oo 11 o] F= 1IN =0 | 1= 613
F Y[] = @1 o= o = 613
Publisher Confirms ... oo 613
COorrelation DAtAcceuiiieieiie e e 614

The Inbound Gateway Properti€Scccuuveeeieiiiieeeieee e e e eaens 614
XPath Splitter IMProVemMENTSoiiuiiiiiiei e e 614
HTTP ChaNQgES ..ot 614
O R S it 614
Inbound Gateway TIMEOULvieuniiiiiiiei e 614
FOIM DATA ..ceneeiiiie e e e 614
Gateway ChanQESoiiiiiiii e 614
Gateway Methods can Return CompletableFuture<?>cc.ocooiiiene. 614
MessagingGateway ANNOLALIONvveiiiiiieeiiiee e 614

P Yo [| (=To =1 (o] A O g =T gV 1T 615
Aggregator PerformManCeoooeuuiiiiiiiiiiei e 615
Output Message Group PrOoCESSONiuuiiiniiieeiiaii e eanns 615

(S Ll I 1 1T VT 1= 615
Inbound channel adapters ... 615
Gateway Partial RESUILScoouiiiiiiiii e 615
Delegating SeSSION FACLOMYocvvuiiiiiiieii e e e e e e e e e e 615
Default Sftp SeSSIoN FaCOrYcc.uiiiiiiiiii e 615
Message Session CallDackoocvieuiiiiiiiiicii e 616
WeEDSOCKEt ChanQESiieiieii e e e 616
Application Event Adapters Changesoviiiiiiiiiiii e 616
[.7. Changes between 4.0 and 4.1 ... 616
LSV @0 o o Lo g =] o1 £ 616
PromiSe<?> GAEWAYcievuiiiniiiii et e ettt et e e e e e eaa e 616
WEDSOCKET SUPPOIT ... 616
Scatter-Gather EIP patternoovviiiiiiiiici e 616
ROULING SHP PAteIN ...ceeiie e e 616

5.0.3.RELEASE Spring Integration XX

Spring Integration Reference Manual

Idempotent Receiver Patternooiviiiiiiiiiii e 616
B0ONJSONODJECIMAPPET ...eeiiee e 617
Redis QUEUE GAEWAYScccuuuiiiiiiiieieiii ettt e ettt e e e et eeeat e eeai e eens 617
[0S 1] oYX 1V T P 617
General ChanQES et 617
AMQP Inbound Endpoints, Channelcccooviiiiiiiiii e 617
AMQP Outbound ENAPOINtSc.uuiviiiiiiiicie e 617
SIMPIEMESSAGESIONEiiiiiiii e 617
Web Service Outbound Gateway: enCOe-Urcceuuuveveiiiieiiiiineeennnnn. 617
Http Inbound Channel Adapter and StatusCodeccocevvvviiieiiiieeinnennnn, 617
MQTT Adapter Changescoeuiiiiiii e 617
FTP/SFTP Adapter Changesoveiiiiiiiiiiiiii e 618
Spltter and HEIAtOrovii e e e 618
F o [o | £=To I 1 (o] S TP TPTTPTTPPUPT 618
Content Enricher IMprovementsovviiiiiiiiiiiiiineece e 618
Header Channel REJISIIYociviiiiii e 618
Orderly SNULAOWNooii e 618
Management for RecipientLiStROULETooviiiiiiiiiini e, 618
AbstractHeaderMapper: NON_STANDARD_HEADERS token 618
AMQP Channels: template-channel-transactedc.c.occoiviiiiiiiiiniennnnn. 619
SYSIOG AGAPLET ...t 619
ASYNC GAEWAY ...ivuiieieieeitiee e e e et e e et et e e e e e e e e e ea s eanreenaeaneeaneeanaes 619
Aggregator AdvICe Chainc.viiiiiiiii e 619
Outbound Channel Adapter and SCriPtSocoeuuiiiiiiiiiiiei e, 619
ResequenCer ChanQEescovvuiiiiiieiee e e e e 619
Optional POJO method parametero 619
QueueChannel: backed QUEUE tYPEuviiiiiiiiiiiii e 619
Channellnterceptor Changescoovvuiiiiiiiiii e e e 619
IMAP PEEK ..ottt e et e et 619
[.8. Changes between 3.0 @nd 4.0o.uuiiiiiiiiiiei e 620
NEW COMPONENTS ...ovuiiieiiiei e e e e e e e e et e r e e et e e e e e e eenaeens 620
MQTT Channel AdApLerScoouuiiiiii e 620
@ENADBIEINtErationiiiiiiiie e 620
@IntegratioNCOMPONENISCANcvvvuiiiii e e e e e e e e e e 620
@ENAbIeMESSAgEHISIONYcoeiiiii e 620
@MESSAGINGGALEWAYcevviieiiiii ettt e e 620
Spring Boot @EnableAutoConfigurationcccoeeviiiiiiiieie e, 620
@GIlobalChannellNterCeptorc..vieu i 620
@l alt=To] =1 iTo] g 1@] 0 1Y/ T o (= 620
@ENADIEPUDIISNEriiiii 621
Redis Channel MesSage StOrESooouuiiiiiiiiiiieiee e 621
MongodDB Channel MesSsage STOreovviiuuiieiiiiiiieeeiiieeeeeiie e 621
@EnablelntegrationMBeanEXPOrtccocviiiiiiiiiiiceie e 621
ChannelSecuritylnterceptorFactoryBeanooeieiiiiiiiiiiiniiiiieieeees 621
Redis Command GAatEWAYccceuuieiiiiiieiiiiiiee ettt eei e 621
RedisLockRegistry and GemfireLOCKREgIStIYovvvvviviiiiiiiiiiiiiecieeeen, 621
@ POIIET e 621
@InboundChannelAdapter and SmartLifecycle for Annotated Endpoints..... 622
Twitter Search Outbound Gatewaycoovvviiiiiiieiii i 622
Gemfire Metadata StOrecccuiiiiiiiiii e 622

5.0.3.RELEASE

Spring Integration XXi

Spring Integration Reference Manual

@BridgeFrom and @BridgeTo ANNOtationscccevvviiveviieeiii e, 622
Meta Messaging ANNOLALIONScouuuiiiuniiiiieii e 622
GeNEral ChANGES ...oeiiiiiiiii et 622
Requires Spring Framework 4.0cooeiiiiiiiiie e 622
Header Type for XPath Header Enrichercooooiiiiii, 622
Object To Json Transformer: Node Resultccooeiiiiiiiiiniieeee, 622
LY SR 1= = o LT gl 1Y =T o] o] o 623
JMS Outbound Channel Adapter ..o 623
JMS Inbound Channel Adaptercooeuiiiiiiiiiie e 623
Datatype Channelscoouiiiiiiii e e e e 623
Simpler Retry Advice Configurationcocoivieiiiiiiiiiiie e 623
Correlation Endpoint: Time-based Release Strategyc.ccoeeevvviieeiennnnnn. 623
Redis Metadata STOreoviiieiiiiiiiie e 623
JdbcChannelMessageStore and PriorityChannelccoooiiiiiinnnn, 623
AMQP Endpoints Delivery Modeccoiiiiiiiiiieicee e 623
FTP TIMEOULS ..ttt 624
Twitter: StatusUpdatingMessageHandlerccooviiiiiiiiiiie, 624
JPA Retrieving Gateway: id-eXPreSSiONc.uuvveiiiiiiieiiiiieeeeiiieeeeeineeeenns 624
TCP Deserialization EVENLSccovviiiiiiieeiiiiiiii e 624
Messaging Annotations on @Bean Definitionscccoooviiiiiiiiiiiiinneen, 624
[.9. Changes Between 2.2 and 3.0uiiiiiiiiiiii e 624
NEW COMPONENTS ...ouuiitieiiei e e e e e e e e et e e e e e e e e e e e eaaeenaeens 624
HTTP Request Mappingoccuuieiieiaieee e e ea e 624
Spring Expression Language (SpEL) Configurationccccooevvvineeiinnnnnn. 625
SPEL FUNCHONS SUPPOI .veiiiiiieie e e e e e e eens 625
SPEL PropertyACCESSOrs SUPPOITveuieiiiiieieei e e e 625
Redis: NeW COMPONENEScooutiiiiiiiieeiiii et 625
Header Channel ReQISIIYocvvniiiiiici e e 625
MongoDB support: New ConfigurableMongoDbMessageStore 625
SYSIOG SUPPOIT ...ttt e 625
LI LIS 10 o 0T i 625
JMX SUPPOIT e ettt e e e ees 626
TCP/IP Connection Events and Connection Managementc........ 626
Inbound Channel Adapter Script SUPPOITuviiiieiiiieiie e 626
Content Enricher: Headers Enrichment Supportccoocoiieiiiiiiniiineennn. 626
GeNEral ChANGESoiiiiiiiiii e 626
Message ID GENEIALIONccuueiiiieiiii e e e e e e eens 626
<gateway> Changesoocuuiiiiiiii e 627
HTTP ENdpPoint ChaNGESccouuuiiiiiiiieiiii e 627
Jackson SUPPOrt (JSON) ..oevuiii e e e 627
Chain Elements id AttrbUtecooviiiiii e 627
Aggregator empty-group-min-timeout Propertyccceeveveeeiineeeeiinneeennnnn. 628
Persistent File List Filters (file, (S)FTP) ...ovviiiiiieeie e, 628
Scripting Support: Variables Changes ..o, 628
Direct Channel Load Balancing configurationccccceeviviiinneiiiiinnenenn. 628
PublishSubscribeChannel BEhaviorc.oooooviiiiiiin e 628
FTP, SFTP and FTPS Changesccoeuiiiiiiiiiiee e 628
requires-reply Attribute for Outbound Gatewayscoovveeieviiiiiiiineeinnnnns 629
AMQP Outbound Gateway Header Mappingcccoeeveveieiieeinieciiieeiineennn. 630
Stored Procedure Components IMprovementsocoeuvveeeeieiieeiineennneenns 630

5.0.3.RELEASE Spring Integration XXii

Spring Integration Reference Manual

Web Service Outbound URI Configurationcccoovviiiiviiiiiiniciieeeieeens 630
Redis Adapter Changescoou e 630
AVISING FIILEIS .oeniii e 631
Advising Endpoints using ANNOLAtioNScccuieviieiiiieiiii e 631
ObjectToStringTransformer IMpProvementscooeeiviiiiiiiiiniiiiieceeeies 631

JPA SUPPOIT ChANGES ...evuiiiiiiiee ettt e e 631
Delayer: delay eXPreSSIONco.uiieeiiiii e e 631
JDBC Message Store IMprovemMENtSceuveiiiiiiiieiieeieeee e e e e 632
IMAP Idle Connection EXCEPLIONSccviiiiiiiiiiiii e 632
Message Headers and TCPccooiiiiiii i 632

JMS Message Driven Channel Adapter ..o, 632

RMI INDOUND GAIEWAYoeiiiiiieeiiiii ettt 632
XsltPayloadTransSfOrmeroooeuiiiii i e 632

[.10. Changes between 2.1 and 2.2 ... 632
NEW COMPONENTS ...ttt e e e e eenas 632
RedisStore Inbound and Outbound Channel Adaptersc.cccoevvveneennn. 632
MongoDB Inbound and Outbound Channel Adaptersccccocveievineennnn. 632

JPA ENAPOINES ...iiiiiiieii ettt ettt e 633

1= =T | IO o= T o = 633
Spring 3.1 Used by Defaultc..ooiiiiiii e 633
Adding Behavior to ENAPOINtSccoeuviiiiiiiiiiiiiieecei e 633
Transaction Synchronization and Pseudo Transactionscccccccvuuenn. 633

File Adapter - Improved File Overwrite/Append Handlingccoeeeeee. 633
Reply-Timeout added to more Outbound Gatewayscccccevvevevvnnnerennn. 634
SPriNG-AMOP L.l oo 634
JDBC Support - Stored Procedures COMPONENESccuuveevuiiiiiniiineaeinnnes 634
JDBC Support - Outbound GateWaYoveeeuuiiieiiiiiiieieiiie e 635
JDBC Support - Channel-specific Message Store Implementation 635
Orderly SNULAOWNooiii e 635

JMS Oubound Gateway IMProvemMeNtSvveiiiiiiieiiiiieeeeiire e 635
0bjeCt-to-jSON-traNSIOrMErcccviiii i 635
HTTP SUPPOIT ..ttt e e e e 635

[.11. Changes between 2.0 and 2.1 ... 635
NEW COMPONENTS ...ovuiiieiiiei e e e e e e e e et e r e e et e e e e e e eenaeens 635
JSR-223 SCripting SUPPOIT «.c.eniiieeitiee et 635
GEMFIIE SUPPOIT ..ot 636

F LY (@ T ¥ o o e] P 636
MONQODB SUPPOIT ...eeieeeeeeiee ettt e e e e e eaaas 636
REAIS SUPPOI ...t 636
Support for Spring’s Resource abstractionc..ccoeveviiiiiivin e, 636
Stored Procedure COMPONENTSco.uuiiiiniiiiieeiie e e e e 636
XPath and XML Validating Filter ..o 637
Payload ENFMCREToeeiiii e 637

FTP and SFTP Outbound GateWayscccuviiiiieiiiiiiiiieieiieeeeeeie e 637

FTP Session CacChingoviiiiiiiiiiiiiie e 637
Framework Refactoringoovvuiiiiiiiii e e 638
Standardizing Router Configurationcooiiiiiiiiiiii e, 638
XML Schemas updated 10 2.1cooiuiiiiiiiiiiiecii e 638
Source Control Management and Build Infrastructureccoooviiiiiineinnen, 639
Source Code now hosted on Github ..o 639

5.0.3.RELEASE Spring Integration XXiii

Spring Integration Reference Manual

Improved Source Code Visibility with Sonarccoooeviiiiviicin e, 639

NEW SAMPIES ..ttt et e e e e een s 639
[.12. Changes between 1.0 and 2.0ccoouuiiiiiiiiiiii e 639
Y 1T RS T W]] o o] o (TS 639
Support for the Spring Expression Language (SPEL)cccouviiiiiiiiiiniinnnnns 640
ConversionService and CONVEIMETovvuiiiiiiieiiieee e 640
TaskScheduler and TrQOercvvv v e 640
RestTemplate and HttpMessageCONVEIErc..ovveuiiiiiieiiieiiieeeieeeis 640
Enterprise Integration Pattern Additionscooviiiiiiiiiiiii e 640
MESSAGE HISIOIY .vniiiiiiii e 640
MESSAGE SEOIE ...iiiiiiii e 640

101 =] o ¢ O =T o] P 640
(00] 1110] I = L= PP 641
New Channel Adapters and GateWaysoceeuieiiiiieiiieieiieeee e 641
TCP/UDP AGAPLEIS ...ttt e et e e aees 641
LI G AN = T o) (= = 641
XIMPP AGAPIEIS ..ot et e e 641
FTP/FTPS AJAPLEIS ...ttt 641
] I SN F=) (= = P 641
FEEA ATAPLEIS ...t 641
(@1 1= Ao [1110 o 1PN 641
L] o0 1YY ST o] oL o N 641

Map TranSTOIMEISeii e 641
JSON TranSfOMMEISuiii e e eeas 642
Serialization TransfOrMEersoi i 642
Framework RefaCtoriNgoooeuiiiiiiii e 642
New Source Control Management and Build Infrastructureccoooeveeeennnn. 642
New Spring Integration SAMPIESoiviiiiii e 642
Spring Tool Suite Visual Editor for Spring Integrationcccocooieiiiiiiiiiieenneens 642

5.0.3.RELEASE

Spring Integration XXiv

Part |. Preface

Spring Integration Reference Manual

Requirements

This section details the compatible Java and Spring Framework versions.

1 Compatible Java Versions

For Spring Integration 5.0.x, the minimum compatible Java version is Java SE 8. Older versions of
Java are not supported.

2 Compatible Versions of the Spring Framework

Spring Integration 5.0.x requires Spring Framework 5.0 or later.

3 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context, and consequently Spring Integration provides broad namespace support. This
reference guide applies the following conventions for all code examples that use namespace support:

The int namespace prefix will be used for Spring Integration’s core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the following
convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, ...

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://ww.springfranmework. org/ schenma/ i ntegration"”
xmns:int-twitter="http://ww:.springfranmework. org/schema/integration/twtter"
xm ns:int-streanF"http://ww. springfranmework. org/ schema/ i ntegration/streant
xsi : schenmaLocat i on="
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans
http://ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ i nt egrati on
http://ww. springfranmewor k. or g/ schema/ i ntegration/spring-integration. xsd
http://ww. springframework. org/ schema/integration/tw tter
http://ww. spri ngframewor k. org/ schema/integration/tw tter/spring-integration-twtter.xsd
http: // ww. spri ngfranmewor k. or g/ schema/ i nt egrati on/ stream
http://ww. springfranmework. org/ schema/ i ntegrati on/ stream spring-integration-stream xsd">

</ beans>

For a detailed explanation regarding Spring Integration’s namespace support see Section E.2,
“Namespace Support”.

Note

Please note that the namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, apply the convention that suits your application needs best.
Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace conventions
for Spring Integration as used in this reference guide.

5.0.3.RELEASE Spring Integration ii

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/spring-framework

Spring Integration Reference Manual

1. Conventions in this Book

In some cases, to aid formatting, when specifying long fully-qualified class names, we shorten the
package or g. spri ngfranework to 0. s and org. spri ngframework.integrationtoo.s.i,
such as with 0. s.i.transaction. Transacti onSynchroni zati onFact ory.

5.0.3.RELEASE Spring Integration 3

Part Il. What’s new?

For those who are already familiar with Spring Integration, this chapter provides a brief overview of the
new features of version 5.0. If you are interested in the changes and features, that were introduced in
earlier versions, please see chapter: Appendix I, Change History

Spring Integration Reference Manual

2. What’'s new in Spring Integration 5.07?

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Integration 5.0. If you are interested in more details, please see the Issue Tracker tickets
that were resolved as part of the 5.0 development process.

2.1 New Components

Java DSL

The separate Spring Integration Java DSL project has now been merged into the core Spring Integration
project. The | nt egr at i onConponent Spec implementations for channel adapters and gateways are
distributed to their specific modules. See Chapter 9, Java DSL for more information about Java DSL
support. Also see the 4.3 to 5.0 Migration Guide for the required steps to move to Spring Integration 5.0.

Testing Support

A new Spring Integration Test Framework has been created to assist with testing Spring
Integration applications. Now, with the @Bpri ngl nt egrati onTest annotation on test class and
Mockl nt egr at i on factory you can make your JUnit tests for integration flows somewhat easier.

See Appendix F, Testing support for more information.
MongoDB Outbound Gateway

The new MongoDbQut boundGat eway allows you to make queries to the database on demand by
sending a message to its request channel.

See Section 23.6, “MongoDB Outbound Gateway” for more information.
WebFlux Gateways and Channel Adapters

The new WebFlux support module has been introduced for Spring WebFlux Framework gateways and
channel adapters.

See Chapter 34, WebFlux Support for more information.
Content Type Conversion

Now that we use the new | nvocabl eHandl er Met hod -based infrastructure for service method
invocations, we can perform cont ent Type conversion from payload to target method argument.

See the section called “Content Type Conversion” for more information.
ErrorMessagePublisher and ErrorMessageStrategy

The ErrorMessagePublisher and the ErrorMessageStrategy are provided for creating
Er r or Message instances.

See Section E.4, “Error Handling” for more information.
JDBC Metadata Store

A JDBC implementation of Met adat aSt or e implementation is now provided. This is useful when it is
necessary to ensure transactional boundaries for metadata.

5.0.3.RELEASE Spring Integration 5

https://github.com/spring-projects/spring-integration-java-dsl
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.3-to-5.0-Migration-Guide#java-dsl

Spring Integration Reference Manual

See Section 19.7, “JDBC Metadata Store” for more information.

2.2 General Changes

Spring Integration is now fully based on Spring Framework 5. 0 and Project Reactor 3. 1. Previous
Project Reactor versions are no longer supported.

Core Changes

The @0l | er annotation now hasthe er r or Channel attribute for easier configuration of the underlying
MessagePubl i shi ngErr or Handl er.

See Section E.6, “Annotation Support” for more information.

All the request-reply endpoints (based on Abst r act Repl yPr oduci ngMessageHandl| er) can now
start transaction and, therefore, make the whole downstream flow transactional.

See the section called “Transaction Support” for more information.
The Smart Li f ecycl eRol eCont r ol | er now provides methods to obtain status of endpoints in roles.
See Section 8.2, “Endpoint Roles” for more information.

POJO methods are now invoked using an | nvocabl eHandl er Met hod by default, but can be
configured to use SpEL as before.

See Section 3.9, “POJO Method invocation” for more information.

When targeting POJO methods as message handlers, one of the service methods can now be marked
with the @ef aul t annotation to provide a fallback mechanism for non-matched conditions.

See the section called “Configuring Service Activator” for more information.

A simple PassThr oughTr ansacti onSynchroni zati onFact ory is provided to always store a
polled message in the current transaction context. That message isused as af ai | edMessage property
of the Messagi ngExcept i on which wraps a raw exception thrown during transaction completion.

See Section C.3, “Transaction Synchronization” for more information.

The aggregator expression-based Rel easeStrat egy now evaluates the expression against the
MessageG oup instead of just the collection of Message<?>.

See the section called “Aggregators and Spring Expression Language (SpEL)” for more information.
The Obj ect ToMapTr ansf or mer can now be supplied with a customised JsonObj ect Mapper .
See the section called “Aggregators and Spring Expression Language (SpEL)” for more information.

The @ obal Channel | nt er cept or annotation and <i nt : channel -i nt er cept or > now support
negative patterns (via! prepending) for component names matching.

See the section called “Global Channel Interceptor Configuration” for more information.

A new OnFai | edToAcqui r eMut exEvent is emitted now via Def aul t Leader Event Publ i sher by
the LockRegi stryLeader | ni ti at or, when candidate is failed to acquire the lock.

5.0.3.RELEASE Spring Integration 6

Spring Integration Reference Manual

See Section 8.3, “Leadership Event Handling” for more information.
Gateway Changes

The gateway now correctly sets the er r or Channel header when the gateway method has a voi d
return type and an error channel is provided. Previously, the header was not populated. This had the
effect that synchronous downstream flows (running on the calling thread) would send the exception to
the configured channel but an exception on an async downstream flow would be sent to the default
err or Channel instead.

The Request Repl yExchanger interface now has at hr ows Messagi ngExcept i on clause to meet
all the proposed messages exchange contract.

The request and reply timeouts can now be specified as SpEL expressions.

See Section 8.4, “Messaging Gateways” for more information.
Aggregator Performance Changes

Aggregators now use a Si npl eSequenceSi zeRel easeSt r at egy by default, which is more efficient,
especially with large groups. Empty groups are now scheduled for removal after enpt y- gr oup- ni n-
ti meout .

See Section 6.4, “Aggregator” for more information.
Splitter Changes

The Splitter component now can handle and split Java Stream and Reactive Streams
Publ i sher objects. If the output channel is a Reacti veStreansSubscri babl eChannel , the
Abst ract MessageSpl i tter builds a Fl ux for subsequent iteration instead of a regular | t er at or
independent of object being split. In addition, Abstract MessageSplitter provides protected
obt ai nSi zel f Possi bl e() methods to allow the determination of the size of the |1t er abl e and
| t er at or objects if that is possible.

See Section 6.3, “Splitter” for more information.

JMS Changes

Previously, Spring Integration JMS XML configuration used a default bean name connect i onFact ory
for the JMS Connection Factory, allowing the property to be omitted from component definitions. It has
now been renamed to j nsConnect i onFact or y, which is the bean name used by Spring Boot to auto-
configure the JMS Connection Factory bean.

If your application is relying on the previous behavior, rename your connecti onFact ory bean to
j msConnect i onFact ory, or specifically configure your components to use your bean using its current
name.

See Chapter 21, JMS Support for more information.
Mail Changes
Some inconsistencies with rendering IMAP mail content have been resolved.

See the note in the Mail-Receiving Channel Adapter Section for more information.

5.0.3.RELEASE Spring Integration 7

Spring Integration Reference Manual

Feed Changes

Instead of the com romet ool s. f et cher. FeedFet cher, which is deprecated in ROME, a new
Resour ce property has been introduced to the FeedEnt r yMessageSour ce.

See Chapter 14, Feed Adapter for more information.

File Changes

The new Fi | eHeader s. RELATI VE_PATH Message header has been introduced to represent relative
path in the Fi | eReadi ngMessageSour ce.

The tail adapter now supports i dl eEvent | nt er val to emit events when there is no data in the file
during that period.

The flush predicates for the Fi | eW i t i ngMessageHandl er now have an additional parameter.

The file outbound channel adapter and gateway (Fi | eWi ti ngMessageHand!| er) now support the
REPLACE_| F_MODI FI EDFi | eExi st sMode.

They also now support setting file permissions on the newly written file.

Anew Fi | eSyst emVar ker Fi | ePresent Fi | eLi st Fi | t er is now available; see the section called
“Dealing With Incomplete Data” for more information.

The Fi | eSplitter now provides afirstLi neAsHeader option to carry the first line of content as
a header in the messages emitted for the remaining lines.

See Chapter 15, File Support for more information.

(S)FTP Changes

The Inbound Channel Adapters now have a property max- f et ch-si ze which is used to limit the
number of files fetched during a poll when there are no files currently in the local directory. They also are
configured with a Fi | eSyst enPer si st ent Accept OnceFileListFilter inthelocal -filter
by default.

You can also provide a custom Di r ect or yScanner implementation to Inbound Channel Adapters via
the newly introduced scanner attribute.

The regex and pattern filters can now be configured to always pass directories. This can be useful when
using recursion in the outbound gateways.

All the Inbound Channel Adapters (streaming and synchronization-based) now use an appropriate
Abst ract Per si st ent Accept OnceFi | eLi st Fi | t er implementation by default to prevent remote
files duplicate downloads.

The FTP and SFTP outbound gateways now support the REPLACE | F_MODI FI EDFi | eExi st sMbde
when fetching remote files.

The (S)FTP streaming inbound channel adapters now add remote file information in a message header.

The FTP and SFTP outbound channel adapters, as well as PUT command of the outbound gateways,
now support | nput St r eamas pay! oad, too.

5.0.3.RELEASE Spring Integration 8

Spring Integration Reference Manual

The inbound channel adapters now can build file tree locally using a newly introduced
Recur si veDi r ect or yScanner . See scanner option for injection. Also these adapters can now be
switched to the WAt chSer vi ce instead.

The NLST command has been added to the Abstract Renot eFi | eCut boundGat eway to perform
only list files names remote command.

The Ft pOQut boundGat eway can now be supplied with wor ki ngDi r Expr essi on to change the FTP
client working directory for the current request message.

The Renot eFi | eTenpl at e is supplied now with the i nvoke(Operati onsCal | back<F, T>
act i on) to perform several Renot eFi | eOper at i ons calls in the scope of the same, thread-bounded,
Sessi on.

New filters for detecting incomplete remote files are now provided.

The Ft pQut boundGat eway and Sft pQut boundGat eway now support an option to remove the
remote file after a successful transfer using the GET or MGET commands.

See Chapter 16, FTP/FTPS Adapters and Chapter 28, SFTP Adapters for more information.
Integration Properties

Since version 4.3.2 a new spring. i ntegration.readOnly. headers global property has been
added to customize the list of headers which should not be copied to a newly created Message by the
MessageBui | der.

See Section E.5, “Global Properties” for more information.
Stream Changes

There is a new option on the Char act er St r eanReadi ngMessageSour ce to allow it to be used to
"pipe" stdin and publish an application event when the pipe is closed.

See Section 30.2, “Reading from streams” for more information.
Barrier Changes

The Barri er MessageHandl er now supports a discard channel to which late-arriving trigger
messages are sent.

See Section 6.8, “Thread Barrier” for more information.
AMQP Changes

The AMQP outbound endpoints now support setting a delay expression for when using the RabbitMQ
Delayed Message Exchange plugin.

The inbound endpoints now support the Spring AMQP Di r ect MessagelLi st ener Cont ai ner.

Pollable AMQP-backed channels now block the poller thread for the poller's configured
recei veTi meout (default 1 second).

Headers, such as cont ent Type that are added to message properties by the message converter are
now used in the final message; previously, it depended on the converter type as to which headers/

5.0.3.RELEASE Spring Integration 9

Spring Integration Reference Manual

message properties appeared in the final message. To override headers set by the converter, set the
header sMappedLast propertytotrue.

See Chapter 12, AMQP Support for more information.

HTTP Changes

The Def aul t Ht t pHeader Mapper . user Def i nedHeader Pr ef i x property is now an empty string
by default instead of X- .

See Section 18.8, “HTTP Header Mappings” for more information.
MQTT Changes

Inbound messages are now mapped with headers RECEI VED TOPI C, RECEI VED QOS and
RECEI VED_RETAI NED to avoid inadvertent propagation to outbound messages when an application is
relaying messages.

The outbound channel adapter now supports expressions for the topic, qos and retained properties; the
defaults remain the same.

See Chapter 24, MQTT Support for more information.
STOMP Changes

The STOMP module has been changed to use React or NettyTcpSt onpd i ent, based on the
Project Reactor 3. 1 and r eact or-netty extension. The React or 2TcpSt onpSessi onManager
has been renamed to the ReactorNettyTcpStonpSessi onManager according to the
React or Nett yTcpSt onpd i ent foundation.

See Chapter 29, STOMP Support for more information.
Web Services Changes

 The WebServi ceQut boundGat eway s can now be supplied with an externally configured
WebSer vi ceTenpl at e instances.

* The Def aul t SoapHeader Mapper cannow map aj avax. xmi . t r ansf or m Sour ce user-defined
header to a SOAP header element.

» Simple WebService Inbound and Outbound gateways can now deal with the complete
WebSer vi ceMessage as a payl oad, allowing the manipulation of MTOM attachments.

See Chapter 36, Web Services Support for more information.
Redis Changes

The Redi sSt oreW i ti ngMessageHandl er is supplied now with additional String-based setters for
SpEL expressions - for convenience with Java configuration. The zset | ncr emrent Expr essi on can
now be configured on the Redi sSt or eW i ti ngMessageHandl er, as well. In addition this property
has been changed from t r ue to f al se since | NCR option on ZADD Redis command is optional.

The Redi sl nboundChannel Adapter can now be supplied with an Executor for
executing Redis listener invokers. In addition the received messages now contains a
Redi sHeader s. MESSAGE_SOURCE header to indicate the source of the message - topic or pattern.

5.0.3.RELEASE Spring Integration 10

Spring Integration Reference Manual

See Chapter 25, Redis Support for more information.
TCP Changes

A new ThreadAffinityd i ent Connecti onFactory is provided that binds TCP connections to
threads.

You can now configure the TCP connection factories to support Pushbackl nput St r eams, allowing
deserializers to "unread" (push back) bytes after "reading ahead".

A Byt eArrayEl asti cRawDeseri al i zer has been added without maxMessageSi ze control and
buffer incoming data as needed.

See Chapter 32, TCP and UDP Support for more information.
Gemfire Changes

The GenfireMet adat aSt or e now implements Li st enabl eMet adat aSt or e, allowing users to
listen to cache events by providing Met adat aSt or eLi st ener instances to the store.

See Chapter 17, GemFire Support for more information.

Jdbc Changes

The JdbcMessageChannel Store now provides setter for the
Channel MessageSt or ePr epar edSt at emrent Sett er allowing users to customize a message
insertion in the store.

The Expressi onEval uati ngSql Par amet er Sour ceFactory now provides setter for the
sqglParameterTypes allowing users to customize sql types of the parameters.

See Chapter 19, JDBC Support for more information.
Metrics Changes

Micrometer application monitoring is now supported (since version 5.0.2). See the section called
“Micrometer Integration” for more information.

Important

Changes were made to the Micrometer Met er s in version 5.0.3 to make them more suitable for
use in dimensional systems.

5.0.3.RELEASE Spring Integration 11

http://micrometer.io/

Part Ill. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns. It enables lightweight messaging within Spring-based applications and
supports integration with external systems via declarative adapters. Those adapters provide a higher-
level of abstraction over Spring’s support for remoting, messaging, and scheduling. Spring Integration’s
primary goal is to provide a simple model for building enterprise integration solutions while maintaining
the separation of concerns that is essential for producing maintainable, testable code.

http://www.eaipatterns.com/

Spring Integration Reference Manual

3. Spring Integration Overview

3.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring’s simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring’s existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different data formats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean”
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by the
recognition of a strong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf
(Addison Wesley, 2004). Developers who have read that book should be immediately comfortable with
the Spring Integration concepts and terminology.

3.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide a simple model for implementing complex enterprise integration solutions.
 Facilitate asynchronous, message-driven behavior within a Spring-based application.
* Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

5.0.3.RELEASE Spring Integration 13

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration Reference Manual

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

3.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for following
this best practice for the full-stack of an enterprise application. Message-driven architectures add a
horizontal perspective, yet these same goals are still relevant. Just as "layered architecture" is an
extremely generic and abstract paradigm, messaging systems typically follow the similarly abstract
"pipes-and-filters" model. The "filters" represent any component that is capable of producing and/or
consuming messages, and the "pipes" transport the messages between filters so that the components
themselves remain loosely-coupled. It is important to note that these two high-level paradigms are not
mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should still be
encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves
would typically be managed within a layer that is logically above the application’s service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be
of any type and the headers hold commonly required information such as id, timestamp, correlation id,
and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from a received File, the file name may be stored in a header to
be accessed by downstream components. Likewise, if a Message'’s content is ultimately going to be
sent by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured
as Message header values by an upstream component. Developers can also store any arbitrary key-
value pairs in the headers.

Message

Header

Payload

Figure 3.1. Message
Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages
to a channel, and consumers receive Messages from a channel. The Message Channel therefore
decouples the messaging components, and also provides a convenient point for interception and
monitoring of Messages.

5.0.3.RELEASE Spring Integration 14

Spring Integration Reference Manual

send{Message) receive()
Producer L Consumer

Message Channel
Figure 3.2. Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other
hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail in the section called
“Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations,
and then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters,
you will see how Spring Integration’s declarative configuration options provide a non-invasive way to
use each of these.

3.4 Message Endpoints

A Message Endpoint represents the “filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint’s primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same
in both cases: isolate application code from the infrastructure. These concepts are discussed at length
along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we provide

5.0.3.RELEASE Spring Integration 15

http://www.eaipatterns.com

Spring Integration Reference Manual

only a high-level description of the main endpoint types supported by Spring Integration and their roles.
The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message’s content or structure and returning
the modified Message. Probably the most common type of transformer is one that converts the payload
of the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message’s header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed
based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural pattern
with this specific endpoint type that selectively narrows down the Messages flowing between two
channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring Integration’s
Message Endpoint: any component that can be connected to Message Channel(s) in order to
send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message’s content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

. Message Channel A
e Router
Channel B

Figure 3.3. Router
Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.

5.0.3.RELEASE Spring Integration 16

Spring Integration Reference Manual

This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often
downstream consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more
complex than a Splitter, because it is required to maintain state (the Messages to-be-aggregated), to
decide when the complete group of Messages is available, and to timeout if necessary. Furthermore, in
case of a timeout, the Aggregator needs to know whether to send the partial results or to discard them to
a separate channel. Spring Integration providesa Corr el ati onSt r at egy, aRel easeSt r at egy and
configurable settings for: timeout, whether to send partial results upon timeout, and a discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note

The output channel is optional, since each Message may also provide its own Return Address
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message’s payload and converting if necessary (if the method does not expect
a Message-typed parameter). Whenever the service object’s method returns a value, that return value
will likewise be converted to a reply Message if necessary (if it's not already a Message). That reply
Message is sent to the output channel. If no output channel has been configured, then the reply will be
sent to the channel specified in the Message’s "return address" if available.

A request-reply "Service Activator" endpoint connects a target object's method to input and output
Message Channels.

Input E

Message

- = === ——————— — T — -
Qutput

Message

handle(Message)

Service
Activator

Message
Handler

Input
Channel

Output
Channel

Figure 3.4. Service Activator

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

5.0.3.RELEASE Spring Integration 17

Spring Integration Reference Manual

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter
may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

e E Channel
i Adapter

Figure 3.5. An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

[
Message | (D

Message
Channel

Note

Message sources can be Pollable (e.g. POP3) or Message-Driven (e.g. IMAP Idle); in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow

(message-driven).
rh Channel
- ---1 Message ’-— Adapter
Message

Channel

Figure 3.6. An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

3.5 Configuration and @Enablelntegration

Throughout this document you will see references to XML namespace support for declaring elements
in a Spring Integration flow. This support is provided by a series of namespace parsers that generate
appropriate bean definitions to implement a particular component. For example, many endpoints consist
of a MessageHandl| er bean and a Consuner Endpoi nt Fact or yBean into which the handler and an
input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework automatically
declares a number of beans that are used to support the runtime environment (task scheduler, implicit
channel creator, etc).

5.0.3.RELEASE Spring Integration 18

Spring Integration Reference Manual

Important

Starting with version 4.0, the @nabl el nt egr at i on annotation has been introduced, to allow
the registration of Spring Integration infrastructure beans (see JavaDocs). This annotation is
required when only Java & Annotation configuration is used, e.g. with Spring Boot and/or
Spring Integration Messaging Annotation support and Spring Integration Java DSL with no XML
integration configuration.

The @nabl el nt egr at i on annotation is also useful when you have a parent context with no Spring
Integration components and 2 or more child contexts that use Spring Integration. It enables these
common components to be declared once only, in the parent context.

The @nabl el nt egr at i on annotation registers many infrastructure components with the application
context:

» Registers some built-in beans, e.g. er r or Channel and its Loggi ngHandl er,t askSchedul er for
pollers, j sonPat h SpEL-function etc.;

» Adds several BeanFact or yPost Processor sto enhance the BeanFact ory for global and default
integration environment;

» Adds several BeanPost Processor s to enhance and/or convert and wrap particular beans for
integration purposes;

» Adds annotations processors to parse Messaging Annotations and registers components for them
with the application context.

The @ nt egrati onConponent Scan annotation has also been introduced to permit classpath
scanning. This annotation plays a similar role as the standard Spring Framework @onponent Scan
annotation, but it is restricted just to Spring Integration specific components and annotations, which
aren’t reachable by the standard Spring Framework component scan mechanism. For example the
section called “@MessagingGateway Annotation”.

The @nabl ePubl i sher annotation has been introduced to register a
Publ i sher Annot at i onBeanPost Processor bean and configure the defaul t - publi sher-
channel for those @ubl i sher annotations which are provided without a channel attribute. If more
than one @nabl ePubl i sher annotation is found, they must all have the same value for the default
channel. See the section called “Annotation-driven approach via @Publisher annotation” for more
information.

The @i obal Channel I nt er cept or annotation has been introduced to mark
Channel | nt er cept or beans for global channel interception. This annotation is an analogue of the
<i nt: channel -i nt er cept or > xml element (see the section called “Global Channel Interceptor
Configuration”). @3 obal Channel | nt er cept or annotations can be placed at the class level (with a
@Conponent stereotype annotation), or on @ean methods within @Conf i gur at i on classes. In either
case, the bean must be a Channel | nt er cept or.

The @ntegrationConverter annotation has been introduced to mark Converter,
CGeneri cConverter or ConverterFactory beans as candidate converters for
i nt egrati onConver si onSer vi ce. This annotation is an analogue of the <i nt: convert er > xml
element (see the section called “Payload Type Conversion”). @ nt egr at i onConvert er annotations
can be placed at the class level (with a @onponent stereotype annotation), or on @ean methods
within @onf i gur at i on classes.

5.0.3.RELEASE Spring Integration 19

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html

Spring Integration Reference Manual

Also see Section E.6, “Annotation Support” for more information about Messaging Annotations.

3.6 Programming Considerations

It is generally recommended that you use plain old java objects (POJOs) whenever possible and
only expose the framework in your code when absolutely necessary. See Section 3.9, “POJO Method
invocation” for more information.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup; some of these are listed here.

* If your component is ApplicationCont ext Aware, you should generally not "use" the
Appl i cati onCont ext in the set Appl i cati onCont ext () method; just store a reference and
defer such uses until later in the context lifecycle.

 If your componentisan | nitial i zi ngBean or uses @ost Const r uct methods, do not send any
messages from these initialization methods - the application context is not yet initialized when these
methods are called, and sending such messages will likely fail. If you need to send a messages
during startup, implement Appl i cati onLi st ener and wait for the Cont ext Ref r eshedEvent .
Alternatively, implement Smar t Li f ecycl e, put your bean in a late phase, and send the messages
from the st art () method.

3.7 Considerations When using Packaged (e.g. Shaded) Jars

Spring Integration bootstraps certain features using Spring Framework’s SpringFactories
mechanism to load several | nt egrati onConfi gurationlnitializer classes. This includes the
- cor e jar as well as certain others such as - ht t p, - j nx, etc. The information for this process is stored
in a file META- | NF/ spri ng. factori es in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar using well-
known tools, such as the Apache Maven Shade Plugin.

By default, the shade plugin will not merge the spri ng. f act ori es files when producing the shaded
jar.

In addition to spring.factories, there are other META-INF files (spring. handlers,
spri ng. schemas) used for XML configuration. These also need to be merged.

Important

Spring Boot's executable jar mechanism takes a different approach in that it nests the jars, thus
retaining each spri ng. fact ori es file on the class path. So, with a Spring Boot application,
nothing more is needed, if you use its default executable jar format.

Even if you are not using Spring Boot, you can still use tooling provided by Boot to enhance the shade
plugin by adding transformers for the above mentioned files.

The following is an example configuration for the plugin at the time of writing. You may wish to consult
the current spring-boot-starter-parent pom to see the current settings that boot uses.

pom.xml.

5.0.3.RELEASE Spring Integration 20

https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Spring Integration Reference Manual

<pl ugi ns>
<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact!|d>maven-shade-plugin</artifact|d>
<confi guration>
<keepDependenci esWt hPr ovi dedScope>t r ue</ keepDependenci esW t hPr ovi dedScope>
<cr eat eDependencyReducedPon®t r ue</ cr eat eDependencyReducedPon>
</ configuration>
<dependenci es>
<dependency> 0O
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<versi on>${spring. boot . versi on} </ versi on>
</ dependency>
</ dependenci es>
<executions>
<execution>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
<confi gurati on>
<transfornmers> O
<t r ansf or ner

i npl enent at i on="or g. apache. maven. pl ugi ns. shade. r esour ce. Appendi ngTr ansf or ner " >
<resour ce>META- | NF/ spri ng. handl er s</ resour ce>
</ transf or mer >
<t r ansf or ner

i npl enent ati on="or g. spri ngfranmewor k. boot . maven. Properti esMer gi ngResour ceTr ansf or mer" >
<resour ce>META- | NF/ spring. factories</resource>
</ transf or mer>
<transf or mer

i npl ement ati on="or g. apache. maven. pl ugi ns. shade. r esour ce. Appendi ngTr ansf or ner " >
<resour ce>META- | NF/ spri ng. schemas</ resour ce>
</ transformer>
<t ransf or mer

i npl enent ati on="or g. apache. maven. pl ugi ns. shade. r esour ce. Ser vi cesResour ceTransforner" />
</ transf or mer s>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>

Specifically,

0 addthe spring-boot - maven- pl ugi n as a dependency
O configure the transformers

Add a property for ${ spri ng. boot . ver si on} or use a version explicitly there.
3.8 Programming Tips and Tricks

XML Schemas

When using XML configuration, to avoid getting false schema validation errors, you should use a "Spring-
aware" IDE, such as the Spring Tool Suite (STS) (or eclipse with the Spring IDE plugins) or IntelliJ IDEA,
for example. These IDEs know how to resolve the correct XML schema from the classpath (using the

5.0.3.RELEASE Spring Integration 21

Spring Integration Reference Manual

META- | NF/ spri ng. schenas file in the jar(s)). When using STS, or eclipse with the plugin, be sure
to enable Spri ng Project Nature onthe project.

The schemas hosted on the internet for certain legacy modules (those that existed in version 1.0) are the
1.0 versions for compatibility reasons; if your IDE uses these schemas, you will likely see false errors.

Each of these online schemas has a warning similar to this:

Important

This schema is for the 1.0 version of Spring Integration Core. We cannot update it to the current
schema because that will break any applications using 1.0.3 or lower. For subsequent versions,
the unversioned schema is resolved from the classpath and obtained from the jar. Please refer
to github:

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/
main/resources/org/springframework/integration/config

The affected modules are

e core (spring-integration.xsd)
. file

* http

e jms

* mail

* rmi

* security

+ stream

* WS

o« xml

Finding Class Names for Java and DSL Configuration

With XML configuration and Spring Integration Namespace support, the XML Parsers hide how
target beans are declared and wired together. For Java & Annotation Configuration, it is important to
understand the Framework API for target end-user applications.

The first class citizens for EIP implementation are Message, Channel and Endpoi nt (see Section 3.3,
“Main Components” above). Their implementations (contracts) are:

» org.springfranmewor k. messagi ng. Message - see Section 5.1, “Message”;
» org.springfranmewor k. messagi ng. MessageChannel - see Section 4.1, “Message Channels”;

e org.springframework.integration.endpoint. Abstract Endpoi nt - see Section 4.2,
“Poller”.

5.0.3.RELEASE Spring Integration 22

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

Spring Integration Reference Manual

The first two are simple enough to understand how to implement, configure and use, respectively; the
last one deserves more review.

The Abstract Endpoi nt is widely used throughout the Framework for different component
implementations; its main implementations are:

e Event Dri venConsuner , when we subscribe to a Subscri babl eChannel to listen for messages;
» Pol I i ngConsurmer , when we poll for messages from a Pol | abl eChannel .

Using Messaging Annotations and/or Java DSL, you shouldn’t worry about these components, because
the Framework produces them automatically via appropriate annotations and BeanPost Pr ocessor
s. When building components manually, the Consumer Endpoi nt Fact or yBean should be used to
help to determine the target Abst r act Endpoi nt consumer implementation to create, based on the
provided i nput Channel property.

On the other hand, the Consumer Endpoi nt Fact oryBean delegates to an another first
class citizen in the Framework - org.springframework. messagi ng. MessageHandl er.
The goal of the implementation of this interface is to handle the message
consumed by the endpoint from the channel. AIl EIP components in Spring
Integration are MessageHandl er implementations, e.g. Aggregati ngMessageHand! er,
MessageTr ansf or mi ngHandl er, Abstract MessageSplitter etc.; as well as the target
protocol outbound adapters are implementations too, e.g. Fil eWitingMessageHandl er,
Ht t pRequest Execut i ngMessageHand| er, Abstract Mytt MessageHandl er etc. When you
develop Spring Integration applications with Java & Annotation Configuration, you should take a look
into the Spring Integration module to find an appropriate MessageHand| er implementation to be used
for the @Ber vi ceAct i vat or configuration. For example to send an XMPP message (see Chapter 38,
XMPP Support) we should configure something like this:

@Bean
@er vi ceAct i vat or (i nput Channel = "input")
publ i c MessageHandl er sendChat MessageHandl er (XMPPConnect i on xnppConnection) {
Chat MessageSendi ngMessageHandl er handl er = new Chat MessageSendi ngMessageHandl er (xnmppConnecti on) ;

Def aul t XmppHeader Mapper xnppHeader Mapper = new Def aul t XnppHeader Mapper () ;
xnppHeader Mapper . set Request Header Nanes("*");
handl er. set Header Mapper (xnppHeader Mapper) ;

return handl er;

The MessageHandl er implementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided to
polling and listening behaviors. The listening (message-driven) components are simple
and typically require only one target class implementation to be ready to produce
messages. Listening components can be one-way MessagePr oducer Support implementations,
e.g. Abstract Mgtt MessageDri venChannel Adapter and | mapl dl eChannel Adapter; and
request-reply - Messagi ngGat ewaySupport implementations, e.g. Angpl nboundGat eway and
Abst ract WebSer vi cel nboundGat eway.

Polling inbound endpoints are for those protocols which don’t provide a listener API or aren’t intended
for such a behavior. For example any File based protocol, as an FTP, any data bases (RDBMS or
NoSQL) etc.

5.0.3.RELEASE Spring Integration 23

Spring Integration Reference Manual

These inbound endpoints consist with two components: the poller configuration, to initiate the
polling task periodically, and message source class to read data from the target protocol and
produce a message for the downstream integration flow. The first class, for the poller configuration,
is a Sour cePol | i ngChannel Adapt er. It is one more Abstract Endpoi nt implementation, but
especially for polling to initiate an integration flow. Typically, with the Messaging Annotations or Java
DSL, you shouldn’t worry about this class, the Framework produces a bean for it, based on the
@ nboundChannel Adapt er configuration or a Java DSL Builder spec.

Message source components are more important for the target application development
and they all implement the MessageSource interface, e.g. MongoDbMessageSource and
Abstract Twi tt er MessageSour ce. With that in mind, our config for reading data from an RDBMS
table with JDBC may look like:

@Bean
@ nboundChannel Adapt er (val ue = "fooChannel ", poller = @ol |l er(fixedDel ay="5000"))
publ i c MessageSour ce<?> st or edProc(Dat aSour ce dat aSource) {
return new JdbcPol | i ngChannel Adapt er (dat aSour ce, "SELECT * FROM foo where status = 0");

}

All the required inbound and outbound classes for the target protocols you can find in the
particular Spring Integration module, in most cases in the respective package. For example spri ng-
i nt egration-websocket adapters are:

* 0.s.i.websocket. i nbound. WebSocket | nboundChannel Adapt er - implements
MessagePr oducer Support implementation to listen frames on the socket and produce message
to the channel;

* 0.S.i.websocket. out bound. WebSocket Qut boundMessageHandl er - the one-way
Abst r act MessageHandl er implementation to convert incoming messages to the appropriate
frame and send over websocket.

If you are familiar with Spring Integration XML configuration, starting with version 4.3, we provide
information in the XSD element definitions about which target classes are used to declare beans for
the adapter or gateway, for example:

<xsd: el enent nanme="out bound- async- gat enay" >
<xsd: annot ati on>
<xsd: docunent ati on>

Configures a Consunmer Endpoint for the 'o.s.i.angp. outbound. AsyncAngpQut boundGat eway'
that will publish an AMQP Message to the provided Exchange and expect a reply Message.
The sending thread returns immediately; the reply is sent asynchronously; uses

' AsyncRabbi t Tenpl at e. sendAndRecei ve() " .

</ xsd: docunent ati on>
</ xsd: annot ati on>

3.9 POJO Method invocation

As discussed in Section 3.6, “Programming Considerations”, it is generally recommended to use a POJO
programming style. For example,

@er vi ceAct i vat or
public String nyService(String payload) { ... }

In this case, the framework will extract a String payload, invoke your method, and wrap the result in
a message to send to the next component in the flow (the original headers will be copied to the new
message). In fact, if you are using XML configuration, you don’t even need the @er vi ceActi vat or
annotation:

5.0.3.RELEASE Spring Integration 24

Spring Integration Reference Manual

<int:service-activator ... ref="myPoj 0" method="myService" />

public String nyService(String payload) { ... }

You can omit the et hod attribute as long as there is no ambiguity in the public methods on the class.
Some further observations:

You can obtain header information in your POJO methods:

@er vi ceAct i vat or
public String nyService(@ayload String payl oad, @dader("foo") String fooHeader) { ... }

You can dereference properties on the message:

@er vi ceAct i vat or
public String nyService(@ayl oad("payl oad. foo") String foo, @ieader("bar.baz") String barbaz) { ... }

Because many any varied POJO method invocations are available, versions prior to 5.0 used SpEL
to invoke the POJO methods. SpEL (even interpreted) is usually "fast enough" for these operations,
when compared to the actual work usually done in the methods. However, starting with version 5.0,
the or g. spri ngframewor k. nessagi ng. handl er. i nvocati on. | nvocabl eHandl er Met hod is
used by default, when possible. This technique is usually faster to execute than interpreted SpEL and
is consistent with other Spring messaging projects. The | nvocabl eHandl er Met hod is similar to the
technique used to invoke controller methods in Spring MVC. There are certain methods that are still
always invoked using SpEL; examples include annotated parameters with dereferenced properties as
discussed above. This is because SpEL has the capability to navigate a property path.

There may be some other corner cases that we haven't considered that also won't work with
I nvocabl eHandl er Met hod s. For this reason, we automatically fall-back to using SpEL in those
cases.

If you wish, you can also set up your POJO method such that it always uses SpEL, with the
UseSpel | nvoker annotation:

@JseSpel | nvoker (conpi | er Mode = "I MVEDI ATE")
public void bar(String bar) { ... }

If the conpi |l er Mode property is omitted, the spring. expressi on. conpil er. node system
property will determine the compiler mode - see SpEL compilation for more information about compiled
SpEL.

5.0.3.RELEASE Spring Integration 25

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/expressions.html#expressions-spel-compilation

Part IV. Core Messaging

This section covers all aspects of the core messaging APl in Spring Integration. Here you will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration Reference Manual

4. Messaging Channels

4.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows.
public interface MessageChannel {
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here is the definition of Pol | abl eChannel .

public interface Poll abl eChannel extends MessageChannel {
Message<?> receive();

Message<?> recei ve(long tineout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHandl er s. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

5.0.3.RELEASE Spring Integration 27

Spring Integration Reference Manual

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending Event Messages whose primary role
is notification as opposed to Document Messages which are generally intended to be processed
by a single handler. Note that the Publ i shSubscri beChannel is intended for sending only.
Since it broadcasts to its subscribers directly when its send(Message) method is invoked,
consumers cannot poll for Messages (it does not implement Pol | abl eChannel and therefore has no
recei ve() method). Instead, any subscriber must be a MessageHandl er itself, and the subscriber’s
handl eMessage(Message) method will be invoked in turn.

Prior to version 3.0, invoking the send method on a Publi shSubscri beChannel that had
no subscribers returned fal se. When used in conjunction with a Messagi ngTenpl ate, a
MessageDel i ver yExcept i on was thrown. Starting with version 3.0, the behavior has changed such
that a send is always considered successful if at least the minimum subscribers are present (and
successfully handle the message). This behavior can be modified by setting the m nSubscri bers
property, which defaults to 0.

Note

If a TaskExecut or is used, only the presence of the correct number of subscribers is used for
this determination, because the actual handling of the message is performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default no-
argument constructor (providing an essentially unbounded capacity of | nt eger . MAX_VALUE) as well
as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but
if the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note however, that calls to the no-arg versions of send() andr ecei ve()
will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-inffirst-out (FIFO) ordering, the Pri orit yChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the pri ori t y header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pri ori t yChannel 's constructor.

5.0.3.RELEASE Spring Integration 28

Spring Integration Reference Manual

RendezvousChannel

The RendezvousChannel enables a "direct-handoff* scenario where a sender will block until another
party invokes the channel’'s recei ve() method or vice-versa. Internally, this implementation is
quite similar to the QueueChannel except that it uses a Synchr onousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel , the message would have been stored to
the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only by
default. When persistence is required, you can either provide a message-store attribute within
the queue element to reference a persistent MessageStore implementation, or you can replace
the local channel with one that is backed by a persistent broker, such as a JMS-backed channel
or Channel Adapter. The latter option allows you to take advantage of any JMS provider's
implementation for message persistence, and it will be discussed in Chapter 21, JMS Support.
However, when buffering in a queue is not necessary, the simplest approach is to rely upon the
Di r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as
the replyChannel header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for a reply
Message. This is very similar to the implementation used internally by many of Spring Integration’s
request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described
above. It implements the Subscri babl eChannel interface instead of the Pol | abl eChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however,
it differs from the Publ i shSubscri beChannel in that it will only send each Message to a single
subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides" of the channel. For example,
if a handler is subscribed to a Di r ect Channel , then sending a Message to that channel will trigger
invocation of that handler's handl eMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler’s invocation (e.g. updating a database record) will play a role in determining the ultimate result
of that transaction (commit or rollback).

5.0.3.RELEASE Spring Integration 29

Spring Integration Reference Manual

Note

Since the Di r ect Channel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages,
it should not be a Di r ect Channel but rather a Publ i shSubscri beChannel . Below you will
see how each of these can be configured.

The Di r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy exposed via load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the Message
Dispatcher to help determine how Messages are distributed amongst Message Handlers in the case
that there are multiple Message Handlers subscribed to the same channel. As a convenience the
load-balancer attribute exposes enumeration of values pointing to pre-existing implementations of
LoadBal anci ngSt r at egy. The "round-robin" (load-balances across the handlers in rotation) and
"none" (for the cases where one wants to explicitely disable load balancing) are the only available values.
Other strategy implementations may be added in future versions. However, since version 3.0 you can
provide your own implementation of the LoadBal anci ngSt r at egy and inject it using load-balancer-
ref attribute which should point to a bean that implements LoadBal anci ngSt r at egy.

<i nt:channel id="|bRef Channel ">
<int:dispatcher | oad-bal ancer-ref="1b"/>
</int:channel >

<bean id="1b" class="fo0o0. bar. Sanpl eLoadBal anci ngStr at egy"/ >

Note that load-balancer or load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in combination with a boolean failover property. If the "failover" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback
in the same fixed order sequence every time an error occurs, no load-balancing strategy should be
provided. In other words, the dispatcher still supports the failover boolean property even when no load-
balancing is enabled. Without load-balancing, however, the invocation of handlers will always begin with
the first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The Execut or Channel is a point-to-point channel that supports the same dispatcher configuration
as Di r ect Channel (load-balancing strategy and the failover boolean property). The key difference

5.0.3.RELEASE Spring Integration 30

Spring Integration Reference Manual

between these two dispatching channel types is that the Execut or Channel delegates to an instance
of TaskExecut or to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions spanning the sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender’s thread will execute the method
directly anytime the thread pool is at its maximum capacity and the executor’s work queue is full.
Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

Scoped Channel

Spring Integration 1.0 provided a Thr eadLocal Channel implementation, but that has been removed
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here’'s an example of a ThreadLocal-based
scope being applied to a channel, including the registration of the Scope itself.

<int:channel id="threadScopedChannel" scope="thread">
<int:queue />
</i nt: channel >

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread" val ue="org. springfranmework. context.support.Sinpl eThreadScope" />
</ map>
</ property>
</ bean>

The channel above also delegates to a queue internally, but the channel is bound to the current thread,
so the contents of the queue are as well. That way the thread that sends to the channel will later be able to
receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where Di r ect Channel s are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal" channel.
If that terminal channel is thread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopes in addition to Thread Local.
Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive way.
Since the Message s are being sent to and received from MessageChannel s, those channels provide
an opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

5.0.3.RELEASE Spring Integration 31

Spring Integration Reference Manual

public interface Channel I nterceptor {

Message<?> preSend(Message<?> nessage, MessageChannel channel);

voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);

voi d afterSendConpl eti on(Message<?> nessage, MessageChannel channel, bool ean sent, Exception ex);

bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

voi d afterRecei veConpl eti on(Message<?> nessage, MessageChannel channel, Exception ex);

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel . addl nt er cept or (sonmeChannel | nt ercept or) ;

The methods that return a Message instance can be used for transforming the Message or can return
null to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the pr eRecei ve method can return f al se to prevent the receive operation from proceeding.

Note

Keep in mind that recei ve() calls are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface does not even define a recei ve() method. The reason
for this is that when a Message is sent to a Subscri babl eChannel it will be sent directly to
one or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel
sends to all of its subscribers). Therefore, the preRecei ve(..), post Receive(..) and
af t er Recei veConpl eti on(..) interceptor methods are only invoked when the interceptor is
applied to a Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor
that sends the Message to another channel without otherwise altering the existing flow. It can be very
useful for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
Channel | nt er cept or Adapt er class is also available for sub-classing. It provides no-op methods
(the voi d method is empty, the Message returning methods return the Message as-is, and the bool ean
method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nterceptorAdapter {
private final Atom clnteger sendCount = new Atonmi clnteger();

@verride

publi c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncrenent AndCet () ;
return message;

Tip

The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted in

5.0.3.RELEASE Spring Integration 32

http://eaipatterns.com/WireTap.html

Spring Integration Reference Manual

the first place. Additionally, the relationship between send and receive interception depends on
the timing of separate sender and receiver threads. For example, if a receiver is already blocked
while waiting for a message the order could be: preSend, preReceive, postReceive, postSend.
However, if a receiver polls after the sender has placed a message on the channel and already
returned, the order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive.
The time that elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen!). Obviously, the type of queue also plays a
role (e.g. rendezvous vs. priority). The bottom line is that you cannot rely on the order beyond the
fact that preSend will precede postSend and preReceive will precede postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the Channel | nt er cept or provides
new methods - af t er SendConpl eti on() and aft er Recei veConpl eti on(). They are invoked
after send()/ recei ve() calls, regardless of any exception that is raised, thus allowing for resource
cleanup. Note, the Channel invokes these methods on the Channellnterceptor List in the reverse order
of the initial pr eSend() / pr eRecei ve() calls.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code from the messaging system. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides a Messagi ngTenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl ate();

Message reply = tenpl at e. sendAndRecei ve(soneChannel , new Generi cMessage("test"));

In that example, a temporary anonymous channel would be created internally by the template. The
sendTimeout and receiveTimeout properties may also be set on the template, and other exchange types
are also supported.

public bool ean send(final MessageChannel channel, final Message<?> nessage) { ...

}

publ i c Message<?> sendAndRecei ve(final MessageChannel channel, final Message<?> request) { ..

}

public Message<?> receive(final Pollabl eChannel <?> channel) { ...

}

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in the section called “Enter the
GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<i nt:channel id="exanpl eChannel"/>

5.0.3.RELEASE Spring Integration 33

Spring Integration Reference Manual

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publ i sh-
subscri be- channel / > element:

<i nt:publish-subscribe-channel id="exanpl eChannel"/>

When using the <channel / > element without any sub-elements, it will create a Di r ect Channel
instance (a Subscri babl eChannel).

However, you can alternatively provide a variety of <queue/ > sub-elements to create any of the pollable
channel types (as described in the section called “Message Channel Implementations”). Examples of
each are shown below.

DirectChannel Configuration

As mentioned above, Di r ect Channel is the default type.

<int:channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <di spat cher/ > sub-element and configure the attributes:

<int:channel id="fail FastChannel ">
<int:dispatcher failover="false"/>
</ channel >

<int:channel id="channel WthFi xedOr der SequenceFai | over ">
<int:di spatcher | oad-bal ancer="none"/>
</int:channel >

Datatype Channel Configuration

There are times when a consumer can only process a particular type of payload and you need to
therefore ensure the payload type of input Messages. Of course the first thing that comes to mind is
Message Filter. However all that Message Filter will do is filter out Messages that are not compliant with
the requirements of the consumer. Another way would be to use a Content Based Router and route
Messages with non-compliant data-types to specific Transformers to enforce transformation/conversion
to the required data-type. This of course would work, but a simpler way of accomplishing the same thing
is to apply the Datatype Channel pattern. You can use separate Datatype Channels for each specific
payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide
the fully-qualified class name in the channel element’s dat at ype attribute:

<int:channel id="nunberChannel" datatype="java.l ang. Number"/>

Note that the type check passes for any type that is assignable to the channel’'s datatype. In other
words, the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger
orj ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<int:channel id="stringO NunberChannel" datatype="java.lang. String,java.lang. Nunber"/>

So the numberChannel above will only accept Messages with a data-type of j ava. | ang. Nunber.
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named i nt egr at i onConver si onSer vi ce that is an instance of Spring’s
Conversion Service. If not, then an Exception would be thrown immediately, but if you do have an

5.0.3.RELEASE Spring Integration 34

http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration Reference Manual

"integrationConversionService" bean defined, it will be used in an attempt to convert the Message’s
payload to the acceptable type.

You can even register custom converters. For example, let's say you are sending a Message with a
String payload to the numberChannel we configured above.

MessageChannel inChannel = context.get Bean("nunber Channel ", MessageChannel . cl ass);
i nChannel . send(new Generi cMessage<String>("5"));

Typically this would be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Exception in thread "main" org.springfranework.integration. MessageDel i ver yExcepti on:
Channel ' number Channel*

expect ed one of the follow ng datataypes [class java.lang. Nunber],

but received [class java.lang. String]

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do is implement a Converter.

public static class StringTolntegerConverter inplenents Converter<String, |nteger> {
public Integer convert(String source) {
return | nteger.parselnt(source);
}
}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strTolnt"/>

<bean id="strTolnt" class="org.springframework.integration.util.Denp.StringTol ntegerConverter"/>

When the converter element is parsed, it will create the "integrationConversionService" bean on-demand
if one is not already defined. With that Converter in place, the send operation would now be successful
since the Datatype Channel will use that Converter to convert the String payload to an Integer.

Note

For more information regarding Payload Type Conversion, please read the section called “Payload
Type Conversion”.

Beginning with version 4.0, the integrationConversionService is invoked by the
Def aul t Dat at ypeChannel MessageConvert er, which looks up the conversion service in the
application context. To use a different conversion technique, you can specify the nessage- convert er
attribute on the channel. This must be a reference to a MessageConver t er implementation. Only the
f r omvessage method is used, which provides the converter with access to the message headers (for
example if the conversion might need information from the headers, such as cont ent -t ype). The
method can return just the converted payload, or a full Message object. If the latter, the converter must
be careful to copy all the headers from the inbound message.

Alternatively, declare a <bean/> of type MessageConverter with an id
"dat at ypeChannel MessageConverter" and that converter will be used by all channels with a
dat at ype.

QueueChannel Configuration

To create a QueueChannel , use the <queue/ > sub-element. You may specify the channel’'s capacity:

5.0.3.RELEASE Spring Integration 35

Spring Integration Reference Manual

<i nt:channel id="queueChannel">
<queue capacity="25"/>
</int:channel >

Note

If you do not provide a value for the capacity attribute on this <queue/ > sub-element, the resulting
gueue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation
of the MessageG oupSt or e strategy interface. For more details on MessageG oupSt or e and
MessagesSt or e see Section 10.4, “Message Store”.

Important

The capaci t y attribute is not allowed when the nessage- st or e attribute is used.

When a QueueChannel receives a Message, it will add it to the Message Store, and when a Message
is polled from a QueueChannel , it is removed from the Message Store.

By default, a QueueChannel stores its Messages in an in-memory Queue and can therefore lead to the
lost message scenario mentioned above. However Spring Integration provides persistent stores, such
as the JdbcChannel MessageSt or e.

You can configure a Message Store for any QueueChannel by adding the nessage- st or e attribute
as shown in the next example.

<i nt:channel id="dbBackedChannel ">
<i nt:queue nmessage-store="channel Store"/>
</int:channel >

<bean id="channel Store" class="o0.s.i.jdbc.store.JdbcChannel MessageSt ore" >
<property name="dat aSource" ref="dataSource"/>
<property name="channel MessageSt or eQueryProvi der" ref="queryProvider"/>
</ bean>

The Spring Integration JDBC module also provides schema DDL for a number of popular databases.
These schemas are located in the org.springframework.integration.jdbc.store.channel package of that
module (spring-integration-jdbc).

Important

One important feature is that with any transactional persistent store (e.g.,
JdbcChannel MessageSt or e), as long as the poller has a transaction configured, a Message
removed from the store will only be permanently removed if the transaction completes
successfully, otherwise the transaction will roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always

5.0.3.RELEASE Spring Integration 36

Spring Integration Reference Manual

provide your own implementation of the MessageGroupStore interface if you cannot find one that meets
your particular needs.

Since version 4.0, it is recommended that QueueChannel s are configured to use a
Channel MessageSt or e if possible. These are generally optimized for this use, when compared with
a general message store. If the Channel MessageSt or e isa Channel Pri orit yMessageSt or e the
messages will be received in FIFO within priority order. The notion of priority is determined by the
message store implementation. For example the Java Configuration for the the section called “MongoDB
Channel Message Store”:

@Bean

publ i ¢ Basi cMessageG oupSt or e nongoDbChannel MessageSt or e(MongoDbFact ory nongoDbFactory) {
MongoDbChannel MessageSt ore store = new MongoDbChannel MessageSt or e(nbngoDbFact ory) ;
store.setPriorityEnabl ed(true);
return store;

}

@Bean
publ i c Pol | abl eChannel priorityQueue(Basi cMessageG oupSt ore nongoDbChannel MessageStore) {
return new PriorityChannel (new MessageG oupQueue(nongoDbChannel MessageStore, "priorityQueue"));

}

Note

Pay attention to the MessageG oupQueue class. That is a Bl ocki ngQueue implementation to
utilize the MessageG oupSt or e operations.

The same with Java DSL may look like:

@Bean
public IntegrationFlow priorityFl owPriorityCapabl eChannel MessageSt ore nongoDbChannel MessageSt ore) {
return IntegrationFl ows. fron((Channels c) ->
c.priority("priorityChannel", nongoDbChannel MessageStore, "priorityG oup"))

.get();

Another option to customize the QueueChannel environment is provided by the r ef attribute of
the <i nt: queue> sub-element or particular constructor. This attribute implies the reference to any
java. util . Queue implementation. For example Hazelcast distributed | Queue:

@Bean
publ i c Hazel cast|nstance hazel castlnstance() {
return Hazel cast. newHazel cast | nstance(new Config()
.set Property("hazel cast.|ogging.type", "log4j"));
}

@Bean
publ i c Pol | abl eChannel di stributedQueue() {
return new QueueChannel (hazel cast ! nstance()
. get Queue("springl ntegrationQueue"));

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the <publish-subscribe-channel/> element. When
using this element, you can also specify the t ask- execut or used for publishing Messages (if none
is specified it simply publishes in the sender’s thread):

<i nt:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

5.0.3.RELEASE Spring Integration 37

https://hazelcast.com/use-cases/imdg/imdg-messaging/

Spring Integration Reference Manual

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel ,
then you can set the apply-sequence property on the channeltot r ue. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior
to passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be
set to 5, and the Messages would have sequence-number header values ranging from 1 to 5.

<i nt:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note

The appl y- sequence value is f al se by default so that a Publish Subscribe Channel can
send the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a t ask- execut or
attribute. Its value can reference any TaskExecut or within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<i nt:channel id="executorChannel">
<i nt:di spatcher task-executor="someExecutor"/>
</int:channel >

Note

The | oad- bal ancer and f ai | over options are also both available on the <dispatcher/> sub-
element as described above in the section called “DirectChannel Configuration”. The same
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with failover
enabled unless explicit configuration is provided for one or both of those attributes.

<int:channel id="executorChannel Wthout Fail over">
<i nt:di spat cher task-executor="someExecutor" fail over="fal se"/>
</int: channel >

PriorityChannel Configuration

To create a Pri ori t yChannel , use the <pri ori ty- queue/ > sub-element:

<int:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel >

By default, the channel will consult the priority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the other
types) does support the dat at ype attribute. As with the QueueChannel, it also supports a capaci ty
attribute. The following example demonstrates all of these:

5.0.3.RELEASE Spring Integration 38

Spring Integration Reference Manual

<int:channel id="priorityChannel" datatype="exanple. Wdget">
<int:priority-gqueue conparator="w dget Conpar at or"
capaci ty="10"/>
</int:channel >

Since version 4.0, the priority-channel child element supports the nessage- st ore option
(comparator and capacity are not allowed in that case). The message store must
be a PriorityCapabl eChannel MessageSt ore and, in this case. Implementations of the
PriorityCapabl eChannel MessageSt or e are currently provided for Redi s, JDBC and MongoDB.
See the section called “QueueChannel Configuration” and Section 10.4, “Message Store” for more
information. You can find sample configuration in the section called “Backing Message Channels”.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <r endezvous- queue>. It does
not provide any additional configuration options to those described above, and its queue does not accept
any capacity value since it is a 0-capacity direct handoff queue.

<i nt:channel id="rendezvousChannel"/>
<int:rendezvous- queue/ >
</int:channel >

Scoped Channel Configuration

Any channel can be configured with a "scope" attribute.

<int:channel id="threadLocal Channel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in the section called “Channel Interceptors”.
The <i nt er cept ors/ > sub-element can be added within a <channel / > (or the more specific
element types). Provide the r ef attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<i nt:channel id="exanpl eChannel ">
<int:interceptors>
<ref bean="trafficMnitoringlnterceptor"/>
</int:interceptors>
</int:channel >

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel Interceptors provide a clean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration while
also enabling interceptors to apply to multiple channels, Spring Integration provides Global Interceptors.
Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo, !baz*" order="3">
<bean cl ass="f o0o. bar Sanpl el nterceptor"/>
</int:channel -interceptor>

or

5.0.3.RELEASE Spring Integration 39

Spring Integration Reference Manual

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo, !baz*" order="3"/>

<bean id="nylnterceptor" class="foo.barSanpl el nterceptor"/>

Each <channel -i nt er cept or/ > element allows you to define a global interceptor which will be
applied on all channels that match any patterns defined via the pat t er n attribute. In the above case
the global interceptor will be applied on the foo channel and all other channels that begin with bar or
input and not to channel starting with baz (starting with version 5.0).

Warning

The addition of this syntax to the pattern causes one possible (although perhaps unlikely) problem.
If you have a bean "! f 00" and you included a pattern "! f 00" in your channel-interceptor’s
pat t er n patterns; it will no long match; the pattern will now match all beans not named f oo.
In this case, you can escape the ! in the pattern with \ . The pattern "\! f 00" means match a
bean named " ! f 00" .

The order attribute allows you to manage where this interceptor will be injected if there are multiple
interceptors on a given channel. For example, channel inputChannel could have individual interceptors
configured locally (see below):

<i nt:channel id="inputChannel">
<int:interceptors>
<int:w re-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides a
very simple mechanism for defining the order of interceptor execution. A positive number in the or der
attribute will ensure interceptor injection after any existing interceptors and a negative number will ensure
that the interceptor is injected before existing interceptors. This means that in the above example, the
global interceptor will be injected AFTER (since its order is greater than 0) the wire-tap interceptor
configured locally. If there were another global interceptor with a matching pat t er n, its order would be
determined by comparing the values of the or der attribute. To inject a global interceptor BEFORE the
existing interceptors, use a negative value for the or der attribute.

Note

Note that both the or der and patt er n attributes are optional. The default value for or der will
be 0 and for pat t er n, the default is * (to match all channels).

Starting with version 4.3.15, you can configure a property
spring.integration. post ProcessDynani cBeans = true to apply any global interceptors
to dynamically created MessageChannel beans. See Section E.5, “Global Properties” for more
information.

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an <i nt er cept or s/ > element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration’s logging Channel Adapter as follows:

5.0.3.RELEASE Spring Integration 40

Spring Integration Reference Manual

<int:channel id="in">
<int:interceptors>
<int:wre-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

<i nt:| oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/ >

Tip

The logging-channel-adapter also accepts an expression attribute so that you can evaluate a
SpEL expression against payload and/or headers variables. Alternatively, to simply log the full
Message toString() result, provide a value of "true" for the log-full-message attribute. That is
f al se by default so that only the payload is logged. Setting that to t r ue enables logging of
all headers in addition to the payload. The expression option does provide the most flexibility,
however (e.g. expression="payload.user.name").

A little more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (Section B.1,
“Message Publishing Configuration”) is that they are automatically asynchronous in nature. Wire-tap as
a component is not invoked asynchronously be default. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the Message Channel. What makes certain
parts of the message flow sync or async is the type of Message Channel that has been configured within
that flow. That is one of the primary benefits of the Message Channel abstraction. From the inception
of the framework, we have always emphasized the need and the value of the Message Channel as
a first-class citizen of the framework. It is not just an internal, implicit realization of the EIP pattern, it
is fully exposed as a configurable component to the end user. So, the Wire-tap component is ONLY
responsible for performing the following 3 tasks:

* intercept a message flow by tapping into a channel (e.g., channelA)
e grab each message
» send the message to another channel (e.g., channelB)

It is essentially a variation of the Bridge, but it is encapsulated within a channel definition (and hence
easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically forks another
message flow. Is that flow synchronous or asynchronous? The answer simply depends on the type of
Message Channel that channelB is. And, now you know that we have: Direct Channel, Pollable Channel,
and Executor Channel as options. The last two do break the thread boundary making communication
via such channels asynchronous simply because the dispatching of the message from that channel
to its subscribed handlers happens on a different thread than the one used to send the message to
that channel. That is what is going to make your wire-tap flow sync or async. It is consistent with other
components within the framework (e.g., Message Publisher) and actually brings a level of consistency
and simplicity by sparing you from worrying in advance (other than writing thread safe code) whether
a particular piece of code should be implemented as sync or async. The actual wiring of two pieces of
code (component A and component B) via Message Channel is what makes their collaboration sync or
async. You may even want to change from sync to async in the future and Message Channel is what's
going to allow you to do it swiftly without ever touching the code.

One final point regarding the Wire Tap is that, despite the rationale provided above for not being async
by default, one should keep in mind it is usually desirable to hand off the Message as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap’s outbound

5.0.3.RELEASE Spring Integration 41

Spring Integration Reference Manual

channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break a transactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit Messages to be sent within the original transaction. As an example,
you might connect the wire-tap to a JMS outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of a JIMS Message can occur within the transaction while 2) it is still a "fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

Important

Starting with version 4.0, it is important to avoid circular references when an interceptor (such
as WreTap) references a channel itself. You need to exclude such channels from those
being intercepted by the current interceptor. This can be done with appropriate patt er ns or
programmatically. If you have a custom Channel | nt er cept or that references a channel ,
consider implementing Vet oCapabl el nt er cept or. That way, the framework will ask the
interceptor if it's OK to intercept each channel that is a candidate based on the pattern. You can
also add runtime protection in the interceptor methods that ensures that the channel is not one
that is referenced by the interceptor. The W r eTap uses both of these techniques.

Starting with version 4.3, the W r eTap has additional constructors that take a channel Nane instead
of a MessageChannel instance. This can be convenient for Java Configuration and when channel
auto-creation logic is being used. The target MessageChannel bean is resolved from the provided
channel Nane later, on the first interaction with the interceptor.

Important

Channel resolution requires a BeanFact or y so the wire tap instance must be a Spring-managed
bean.

This late-binding approach also allows simplification of typical wire-tapping patterns with Java DSL
configuration:

@Bean
publ i c Pol | abl eChannel nyChannel () {
return MessageChannel s. queue()
. Wi reTap("| oggi ngFl ow. i nput ")
.get();
}

@Bean
public IntegrationFl ow | oggi ngFl ow() {
return f -> f.log();

}

Conditional Wire Taps

Wire taps can be made conditional, using the sel ect or or sel ect or - expr essi on attributes.
The sel ect or references a MessageSel ect or bean, which can determine at runtime whether the
message should go to the tap channel. Similarly, the™ selector-expression’ is a boolean SpEL expression
that performs the same purpose - if the expression evaluates to true, the message will be sent to the
tap channel.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the the section called “Global Channel
Interceptor Configuration”. Simply configure a top level wi r e-t ap element. Now, in addition to the

5.0.3.RELEASE Spring Integration 42

Spring Integration Reference Manual

normal wi r e- t ap namespace support, the pat t er n and or der attributes are supported and work in
exactly the same way as with the channel -i nt er cept or

<int:wre-tap pattern="input*, bar*, foo" order="3" channel ="w retapChannel "/ >

Tip

A global wire tap provides a convenient way to configure a single channel wire tap externally
without modifying the existing channel configuration. Simply set the pat t er n attribute to the
target channel name. For example, This technique may be used to configure a test case to verify
messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: er r or Channel and nul | Channel . The nullChannel acts like / dev/ nul | , simply logging
any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for a reply that you don’t care about, you can set the affected component’s out put -
channel attribute to nullChannel (the name nullChannel is reserved within the application context).
The errorChannel is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Section E.4, “Error Handling”.

See also Section 9.4, “Message Channels” in Java DSL chapter for more information about message
channel and interceptors.

4.2 Poller

Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following 2 instances:

» PollingConsumer

» EventDrivenConsumer

The actual implementation depends on which type of channel these Endpoints are
connected to. A channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface will produce an instance of
Event Dri venConsuner. On the other hand, a channel adapter connected to a channel that
implements the org.springframework.messaging.PollableChannel interface (e.g. a QueueChannel) will
produce an instance of Pol | i ngConsuner .

Polling Consumers allow Spring Integration components to actively poll for Messages, rather than to
process Messages in an event-driven manner.

They represent a critical cross cutting concern in many messaging scenarios. In Spring Integration,
Polling Consumers are based on the pattern with the same name, which is described in the book
"Enterprise Integration Patterns" by Gregor Hohpe and Bobby Woolf. You can find a description of the
pattern on the book’s website at:

http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

5.0.3.RELEASE Spring Integration 43

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Spring Integration Reference Manual

Pollable Message Source

Furthermore, in Spring Integration a second variation of the Polling Consumer pattern exists.
When Inbound Channel Adapters are being used, these adapters are often wrapped by a
Sour cePol | i ngChannel Adapt er. For example, when retrieving messages from a remote FTP
Server location, the adapter described in Section 16.4, “FTP Inbound Channel Adapter” is configured
with a poller to retrieve messages periodically. So, when components are configured with Pollers, the
resulting instances are of one of the following types:

* PollingConsumer

» SourcePollingChannelAdapter

This means, Pollers are used in both inbound and outbound messaging scenarios. Here are some use-
cases that illustrate the scenarios in which Pollers are used:

» Polling certain external systems such as FTP Servers, Databases, Web Services
» Polling internal (pollable) Message Channels

» Polling internal services (E.g. repeatedly execute methods on a Java class)

Note

AOP Advice classes can be applied to pollers, in an advi ce-chai n. An example being
a transaction advice to start a transaction. Starting with version 4.1 a Pol | Ski pAdvi ce is
provided. Pollers use triggers to determine the time of the next poll. The Pol | Ski pAdvi ce
can be used to suppress (skip) a poll, perhaps because there is some downstream condition
that would prevent the message to be processed properly. To use this advice, you have to
provide it with an implementation of a Pol | Ski pSt r at egy. Starting with version 4.2.5, a
Si npl ePol | Ski pSt r at egy is provided. Add an instance as a bean to the application context,
inject it into a Pol | Ski pAdvi ce and add that to the poller's advice chain. To skip polling, call
ski pPol I s(), to resume polling, call r eset () . Version 4.2 added more flexibility in this area -
see the section called “Conditional Pollers for Message Sources”.

This chapter is meant to only give a high-level overview regarding Polling Consumers and how they
fit into the concept of message channels - Section 4.1, “Message Channels” and channel adapters
- Section 4.3, “Channel Adapter”. For more in-depth information regarding Messaging Endpoints in
general and Polling Consumers in particular, please see Section 8.1, “Message Endpoints”.

Deferred Acknowledgment Pollable Message Source

Starting with version 5.0.1, certain modules provide MessageSour ce implementations that support
deferring acknowledgment until the downstream flow completes (or hands off the message to another
thread). This is currently limited to the AngpMessageSour ce and the Kaf kaMessageSour ce provided
by the spring-kafka-integration extension project, version 3.0.1 or higher.

With these message sources, the
I nt egr ati onMessageHeader Accessor . ACKNOALEDGVENT _CALLBACK header (see the section
called “MessageHeaderAccessor API") is added to the message. The value of the header is an instance
of Acknowl edgnent Cal | back:

5.0.3.RELEASE Spring Integration 44

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html
https://github.com/spring-projects/spring-integration-kafka

Spring Integration Reference Manual

@unctional I nterface
public interface Acknow edgnent Cal | back {

voi d acknl owl edge(Status status);
bool ean i sAcknow edged();

voi d noAut oAck();

defaul t bool ean i sAut oAck();

enum Status {

/**

* Mark the nmessage as accepted.
*/

ACCEPT,

/**

* Mark the nmessage as rejected.
*/

REJECT,

/**

* Rej ect the message and requeue so that it will be redelivered.
*/

REQUEUE

Not all message sources (e.g. Kafka) support the REJECT status; it is treated the same as ACCEPT.

Applications can acknowledge a message at any time:

Message<?> recei ved = source.receive();

St ati cMessageHeader Accessor . get Acknow edgnent Cal | back(recei ved)
. acknow edge(St at us. ACCEPT) ;

If the MessageSour ce is wired into a Sour cePol | i ngChannel Adapt er, when the poller thread
returns to the adapter after the downstream flow completes, the adapter will check if the
acknowledgment has already been acknowledged and, if not, ACCEPT it (or REJECT it if the flow throws
an exception).

To perform ad-hoc polling of a MessageSour ce a MessageSour cePol | i ngTenpl at e is provided;
this, too will take care of ACCEPT ing or REJECT ing the Acknowl edgnent Cal | back when the
MessageHandl| er callback returns (or throws an exception).

MessageSour cePol | i ngTenpl ate tenplate =
new MessageSour cePol | i ngTenpl at e(t hi s. source);
tenplate.poll (h -> {

1)

In both cases (Sour cePol | i ngChannel Adapt er and MessageSour cePol | i ngTenpl at e), you
can disable auto ack/nack by calling noAut oAck() on the callback. You might do this if you hand off
the message to another thread and wish to acknowledge later. Not all implementations support this (for
example Apache Kafka because the offset commit has to be performed on the same thread).

5.0.3.RELEASE Spring Integration 45

Spring Integration Reference Manual

Conditional Pollers for Message Sources
Background

Advi ce objects, in an advi ce- chai n on a poller, advise the whole polling task (message retrieval
and processing). These "around advice" methods do not have access to any context for the poll, just
the poll itself. This is fine for requirements such as making a task transactional, or skipping a poll due
to some external condition as discussed above. What if we wish to take some action depending on the
result of the r ecei ve part of the poll, or if we want to adjust the poller depending on conditions?

"Smart" Polling

Version 4.2 introduced the Abst r act MessageSour ceAdvi ce. Any Advi ce objects in the advi ce-
chai n that subclass this class, are applied to just the receive operation. Such classes implement the
following methods:

bef or eRecei ve(MessageSour ce<?> source)

This method is called before the MessageSour ce. recei ve() method. It enables you to examine
and or reconfigure the source at this time. Returning fal se cancels this poll (similar to the
Pol | Ski pAdvi ce mentioned above).

Message<?> after Recei ve(Message<?> result, MessageSource<?> source)

This method is called after the r ecei ve() method; again, you can reconfigure the source, or take any
action perhaps depending on the result (which can be nul | if there was no message created by the
source). You can even return a different message!

Advice Chain Ordering

It is important to understand how the advice chain is processed during initialization. Advi ce
objects that do not extend Abst r act MessageSour ceAdvi ce are applied to the whole poll
process and are all invoked first, in order, before any Abst r act MessageSour ceAdvi ce; then
Abst ract MessageSour ceAdvi ce objects are invoked in order around the MessageSour ce
recei ve() method. If you have, say Advi ce objects a, b, ¢, d, where b and d are
Abst r act MessageSour ceAdvi ce, they will be applied in the order a, ¢, b, d. Also, if a
MessageSour ce is already a Pr oxy, the Abstract MessageSour ceAdvi ce will be invoked
after any existing Advi ce objects. If you wish to change the order, you should wire up the proxy
yourself.

SimpleActiveldleMessageSourceAdvice

This advice is a simple implementation of Abstract MessageSour ceAdvi ce, when used in
conjunction with a Dynami cPer i odi cTri gger, it adjusts the polling frequency depending on whether
or not the previous poll resulted in a message or not. The poller must also have a reference to the same
Dynam cPeri odi cTri gger.

Important: Async Handoff

This advice modifies the trigger based on the r ecei ve() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a t ask- execut or. To use this
advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an Execut or Channel .

5.0.3.RELEASE Spring Integration 46

Spring Integration Reference Manual

CompoundTriggerAdvice

This advice allows the selection of one of two triggers based on whether a poll returns a message or
not. Consider a poller that uses a Cr onTr i gger ; CronTri gger s are immutable so cannot be altered
once constructed. Consider a use case where we want to use a cron expression to trigger a poll once
each hour but, if no message is received, poll once per minute and, when a message is retrieved, revert
to using the cron expression.

The advice (and poller) use a ConpoundTr i gger for this purpose. The trigger’s pr i mar y trigger can be
aCronTri gger . When the advice detects that no message is received, it adds the secondary trigger to
the ConmpoundTr i gger . When the ConrpoundTr i gger 's next Execut i onTi me method is invoked,
it will delegate to the secondary trigger, if present; otherwise the primary trigger.

The poller must also have a reference to the same ConpoundTr i gger .

The following shows the configuration for the hourly cron expression with fall-back to every minute...

<i nt:inbound-channel -adapter channel ="nul | Channel " aut o-startup="fal se">
<bean cl ass="org. spri ngfranmework. integration. endpoi nt. Pol | er Advi ceTests. Source" />
<int:poller trigger="conmpoundTrigger">
<i nt:advi ce- chai n>
<bean cl ass="org. springframework.integrati on.aop. ConpoundTri gger Advi ce" >
<constructor-arg ref="conmpoundTrigger"/>
<constructor-arg ref="secondary"/>
</ bean>
</int:advi ce-chai n>
</int:poller>
</int:inbound-channel - adapt er >

<bean id="conmpoundTrigger" class="org.springframework.integration.util.ConpoundTrigger">
<constructor-arg ref="primry" />
</ bean>

<bean id="primary" class="org.springfranmework.schedul i ng. support.CronTrigger">
<constructor-arg value="0 0 * * * *" /> <I-- top of every hour -->
</ bean>

<bean id="secondary" class="org. springframework.schedul i ng. support. Periodi cTri gger">
<constructor-arg val ue="60000" />
</ bean>

Important: Async Handoff

This advice modifies the trigger based on the r ecei ve() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a t ask- execut or. To use this
advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an Execut or Channel .

4.3 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as JMS, File, HTTP, Web Services, Mail, and more. Those will be discussed
in upcoming chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

5.0.3.RELEASE Spring Integration 47

Spring Integration Reference Manual

Configuring An Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
a non-null return value to a MessageChannel after converting it to a Message. When the adapter’s
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskSchedul er according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a poller element with one of the

scheduling attributes, such as fixed-rate or cron.

<i nt:inbound-channel - adapt er ref="sourcel"” nmethod="nmet hodl" channel ="channel 1">
<int:poller fixed-rate="5000"/>
</int:inbound-channel - adapt er >

<i nt:inbound-channel - adapt er ref="source2" method="nmethod2" channel ="channel 2" >
<int:poller cron="30 * 9-17 * * MON-FRI "/ >
</int: channel - adapt er >

Also see the section called “Channel Adapter Expressions and Scripts”.

Note

If no poller is provided, then a single default poller must be registered within the context. See the
section called “Endpoint Namespace Support” for more detail.

Important: Poller Configuration

Some i nbound- channel - adapt er types are backed by a
Sour cePol | i ngChannel Adapt er which means they contain Poller configuration which will
poll the MessageSour ce (invoke a custom method which produces the value that becomes a
Message payload) based on the configuration specified in the Poller.

For example:
<int:poller max-nmessages-per-poll="1" fixed-rate="1000"/>
<int:poller max-nmessages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such task
(poll) the method (which results in the production of the Message) will be invoked once based on
the max- nessages- per - pol | attribute value. In the second configuration the polling task will
be invoked 10 times per poll or until it returns null thus possibly producing 10 Messages per poll
while each poll happens at 1 second intervals. However what if the configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max- nessages- per - pol | specified. As you'll learn later the identical poller
configuration in the Pol | i ngConsumer (e.g., service-activator, filter, router etc.) would have a
default value of -1 for max- messages- per - pol I which means "execute poling task non-stop
unless polling method returns null (e.g., no more Messages in the QueueChannel)" and then sleep
for 1 second.

However in the SourcePollingChannelAdapter it is a bit different. The default value for max-
nmessages- per - pol | will be set to 1 by default unless you explicitly set it to a negative value
(e.g., -1). Itis done so to make sure that poller can react to a LifeCycle events (e.qg., start/stop) and
prevent it from potentially spinning in the infinite loop if the implementation of the custom method
of the MessageSour ce has a potential to never return null and happened to be non-interruptible.

5.0.3.RELEASE Spring Integration

48

Spring Integration Reference Manual

However if you are sure that your method can return null and you need the behavior where you
want to poll for as many sources as available per each poll, then you should explicitly set nax-
nessages- per - pol | to a negative value.

<int:poller max-nmessages-per-poll="-1" fixed-rate="1000"/>

Configuring An Outbound Channel Adapter

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<i nt: out bound- channel - adapt er channel ="channel 1" ref="target" method="handl e"/>

<beans: bean id="target" class="org.Foo"/>

If the channel being adapted is a Pol | abl eChannel , provide a poller sub-element:

<i nt: out bound- channel - adapt er channel ="channel 2" ref="target" method="handl e">
<int:poller fixed-rate="3000" />
</i nt: out bound- channel - adapt er >

<beans: bean id="target" class="org.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <out bound- channel - adapt er > definitions. However if the consumer implementation is only
referenced by a single definition of the <out bound- channel - adapt er >, you can define it as inner
bean:

<i nt: out bound- channel - adapt er channel ="channel " net hod="handl e" >
<beans: bean cl ass="org. Foo"/>
</i nt: out bound- channel - adapt er >

Note

Using both the "ref" attribute and an inner handler definition in the same <out bound- channel -
adapt er > configuration is not allowed as it creates an ambiguous condition. Such a configuration
will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of Di r ect Channel . The created channel's name will match the "id" attribute of
the <i nbound- channel - adapt er > or <out bound- channel - adapt er > element. Therefore, if the
"channel" is not provided, the "id" is required.

Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <i nbound-channel -adapter> and
<out bound- channel - adapt er > also provide support for SpEL expression evaluation. To use SpEL,
provide the expression