
Spring Integration Reference Manual

5.0.3.RELEASE

Mark Fisher , Marius Bogoevici , Iwein Fuld , Jonas Partner , Oleg Zhurakousky , Gary
Russell , Dave Syer , Josh Long , David Turanski , Gunnar Hillert , Artem Bilan , Amol Nayak

Copyright © 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Pivotal Software, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration iii

Table of Contents

I. Preface ... 1
Requirements ... ii

1. Compatible Java Versions ... ii
2. Compatible Versions of the Spring Framework ... ii
3. Code Conventions .. ii

1. Conventions in this Book .. 3
II. What’s new? .. 4

2. What’s new in Spring Integration 5.0? ... 5
2.1. New Components .. 5

Java DSL ... 5
Testing Support .. 5
MongoDB Outbound Gateway ... 5
WebFlux Gateways and Channel Adapters .. 5
Content Type Conversion ... 5
ErrorMessagePublisher and ErrorMessageStrategy .. 5
JDBC Metadata Store .. 5

2.2. General Changes .. 6
Core Changes .. 6
Gateway Changes .. 7
Aggregator Performance Changes .. 7
Splitter Changes .. 7
JMS Changes .. 7
Mail Changes ... 7
Feed Changes ... 8
File Changes ... 8
(S)FTP Changes .. 8
Integration Properties ... 9
Stream Changes .. 9
Barrier Changes ... 9
AMQP Changes ... 9
HTTP Changes .. 10
MQTT Changes .. 10
STOMP Changes ... 10
Web Services Changes .. 10
Redis Changes .. 10
TCP Changes .. 11
Gemfire Changes ... 11
Jdbc Changes .. 11
Metrics Changes .. 11

III. Overview of Spring Integration Framework .. 12
3. Spring Integration Overview .. 13

3.1. Background ... 13
3.2. Goals and Principles .. 13
3.3. Main Components ... 14

Message .. 14
Message Channel .. 14
Message Endpoint .. 15

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration iv

3.4. Message Endpoints ... 15
Transformer ... 16
Filter .. 16
Router .. 16
Splitter ... 16
Aggregator ... 17
Service Activator .. 17
Channel Adapter .. 18

3.5. Configuration and @EnableIntegration .. 18
3.6. Programming Considerations .. 20
3.7. Considerations When using Packaged (e.g. Shaded) Jars 20
3.8. Programming Tips and Tricks ... 21

XML Schemas .. 21
Finding Class Names for Java and DSL Configuration .. 22

3.9. POJO Method invocation ... 24
IV. Core Messaging .. 26

4. Messaging Channels .. 27
4.1. Message Channels .. 27

The MessageChannel Interface ... 27
PollableChannel ... 27
SubscribableChannel .. 27

Message Channel Implementations ... 27
PublishSubscribeChannel .. 28
QueueChannel ... 28
PriorityChannel ... 28
RendezvousChannel ... 29
DirectChannel .. 29
ExecutorChannel .. 30
Scoped Channel ... 31

Channel Interceptors .. 31
MessagingTemplate .. 33
Configuring Message Channels ... 33

DirectChannel Configuration .. 34
Datatype Channel Configuration .. 34
QueueChannel Configuration .. 35
PublishSubscribeChannel Configuration ... 37
ExecutorChannel .. 38
PriorityChannel Configuration .. 38
RendezvousChannel Configuration .. 39
Scoped Channel Configuration .. 39
Channel Interceptor Configuration ... 39
Global Channel Interceptor Configuration ... 39
Wire Tap .. 40
Conditional Wire Taps .. 42
Global Wire Tap Configuration .. 42

Special Channels ... 43
4.2. Poller .. 43

Polling Consumer ... 43
Pollable Message Source ... 44
Deferred Acknowledgment Pollable Message Source ... 44

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration v

Conditional Pollers for Message Sources ... 46
Background .. 46
"Smart" Polling ... 46
SimpleActiveIdleMessageSourceAdvice ... 46
CompoundTriggerAdvice ... 47

4.3. Channel Adapter ... 47
Configuring An Inbound Channel Adapter .. 48
Configuring An Outbound Channel Adapter .. 49
Channel Adapter Expressions and Scripts ... 49

4.4. Messaging Bridge .. 50
Introduction .. 50
Configuring a Bridge with XML .. 50
Configuring a Bridge with Java Configuration ... 51
Configuring a Bridge with the Java DSL .. 52

5. Message Construction .. 53
5.1. Message ... 53

The Message Interface ... 53
Message Headers .. 53

MessageHeaderAccessor API ... 54
Message ID Generation .. 56
Read-only Headers ... 56
Header Propagation .. 57

Message Implementations ... 57
The MessageBuilder Helper Class .. 58

6. Message Routing ... 60
6.1. Routers ... 60

Overview .. 60
Common Router Parameters ... 62

Inside and Outside of a Chain ... 62
Top-Level (Outside of a Chain) ... 63

Router Implementations .. 64
PayloadTypeRouter .. 64
HeaderValueRouter .. 65
RecipientListRouter ... 66
RecipientListRouterManagement ... 68
XPath Router ... 68
Routing and Error handling ... 68

Configuring a Generic Router .. 69
Configuring a Content Based Router with XML ... 69
Configuring a Router with Annotations ... 71

Dynamic Routers .. 72
Manage Router Mappings using the Control Bus .. 75
Manage Router Mappings using JMX .. 75
Routing Slip ... 75
Process Manager Enterprise Integration Pattern ... 78

6.2. Filter ... 78
Introduction .. 78
Configuring Filter .. 79

Configuring a Filter with XML .. 79
Configuring a Filter with Annotations ... 81

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration vi

6.3. Splitter .. 81
Introduction .. 81
Programming model ... 81
Configuring Splitter ... 83

Configuring a Splitter using XML ... 83
Configuring a Splitter with Annotations ... 84

6.4. Aggregator .. 84
Introduction .. 84
Functionality ... 84
Programming model ... 85

AggregatingMessageHandler ... 85
ReleaseStrategy ... 87
Aggregating Large Groups .. 89
CorrelationStrategy ... 89
LockRegistry .. 90

Configuring an Aggregator .. 90
Configuring an Aggregator with XML ... 90
Configuring an Aggregator with Annotations ... 97

Managing State in an Aggregator: MessageGroupStore 98
6.5. Resequencer ... 100

Introduction .. 100
Functionality ... 100
Configuring a Resequencer ... 100

6.6. Message Handler Chain ... 102
Introduction .. 102
Configuring a Chain .. 103

6.7. Scatter-Gather ... 105
Introduction .. 105
Functionality ... 106
Configuring a Scatter-Gather Endpoint ... 106

6.8. Thread Barrier ... 108
7. Message Transformation ... 111

7.1. Transformer ... 111
Introduction .. 111
Configuring Transformer ... 111

Configuring Transformer with XML ... 111
Common Transformers ... 112
Configuring a Transformer with Annotations ... 117

Header Filter .. 118
Codec-Based Transformers ... 118

7.2. Content Enricher .. 118
Introduction .. 118
Header Enricher ... 118

Configuring a Header Enricher with Java Configuration 120
Configuring a Header Enricher with the Java DSL 120
Header Channel Registry .. 120

Payload Enricher .. 121
Configuration .. 122
Examples ... 124

7.3. Claim Check .. 125

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration vii

Introduction .. 125
Incoming Claim Check Transformer ... 125
Outgoing Claim Check Transformer ... 126
A word on Message Store .. 127

7.4. Codec ... 128
Introduction .. 128
EncodingPayloadTransformer .. 128
DecodingTransformer .. 128
CodecMessageConverter .. 128
Kryo ... 128

Customizing Kryo ... 128
8. Messaging Endpoints .. 131

8.1. Message Endpoints ... 131
Message Handler ... 131
Event Driven Consumer .. 131
Polling Consumer ... 132
Endpoint Namespace Support ... 133
Change Polling Rate at Runtime ... 137
Payload Type Conversion ... 138
Content Type Conversion ... 139
Asynchronous polling .. 140
Endpoint Inner Beans ... 141

8.2. Endpoint Roles .. 141
8.3. Leadership Event Handling ... 143
8.4. Messaging Gateways ... 143

Enter the GatewayProxyFactoryBean ... 143
Gateway XML Namespace Support ... 144
Setting the Default Reply Channel ... 144
Gateway Configuration with Annotations and/or XML .. 145
Mapping Method Arguments to a Message .. 146
@MessagingGateway Annotation .. 147
Invoking No-Argument Methods ... 148
Error Handling .. 149
Gateway Timeouts .. 151
Asynchronous Gateway .. 152

Introduction .. 152
ListenableFuture ... 152
AsyncTaskExecutor .. 153
CompletableFuture ... 154
Reactor Mono .. 155

Gateway behavior when no response arrives ... 155
8.5. Service Activator .. 157

Introduction .. 157
Configuring Service Activator .. 157
Asynchronous Service Activator .. 160

8.6. Delayer ... 160
Introduction .. 160
Configuring a Delayer ... 160
Delayer and a Message Store ... 163

8.7. Scripting support .. 164

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration viii

Script configuration ... 164
8.8. Groovy support .. 166

Groovy configuration ... 167
Control Bus .. 168

8.9. Adding Behavior to Endpoints .. 169
Introduction .. 169
Provided Advice Classes .. 170

Retry Advice .. 170
Circuit Breaker Advice .. 176
Expression Evaluating Advice .. 177

Custom Advice Classes .. 178
Other Advice Chain Elements ... 179
Handle Message Advice ... 180
Transaction Support ... 180
Advising Filters ... 182
Advising Endpoints Using Annotations ... 182
Ordering Advices within an Advice Chain ... 182
Advised Handler Properties ... 182
Idempotent Receiver Enterprise Integration Pattern .. 183

8.10. Logging Channel Adapter ... 185
Configuring with Java Configuration ... 185
Configuring with the Java DSL .. 186

9. Java DSL ... 187
9.1. Example Configurations ... 187
9.2. Introduction ... 187
9.3. DSL Basics ... 188
9.4. Message Channels .. 189
9.5. Pollers ... 190
9.6. DSL and Endpoint Configuration ... 191
9.7. Transformers ... 191
9.8. Inbound Channel Adapters ... 191
9.9. Message Routers ... 192
9.10. Splitters ... 193
9.11. Aggregators and Resequencers .. 193
9.12. ServiceActivators (.handle()) ... 194
9.13. Operator log() .. 195
9.14. MessageChannelSpec.wireTap() ... 195
9.15. Working With Message Flows ... 196
9.16. FunctionExpression .. 197
9.17. Sub Flows support ... 197
9.18. Using Protocol Adapters ... 198
9.19. IntegrationFlowAdapter ... 199
9.20. Dynamic and runtime Integration Flows ... 200
9.21. IntegrationFlow as Gateway ... 202

10. System Management .. 203
10.1. Metrics and Management ... 203

Configuring Metrics Capture .. 203
Micrometer Integration .. 204
MessageChannel Metric Features ... 205
MessageHandler Metric Features .. 206

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration ix

Time-Based Average Estimates ... 207
Metrics Factory ... 207

10.2. JMX Support ... 209
Notification Listening Channel Adapter ... 209
Notification Publishing Channel Adapter ... 210
Attribute Polling Channel Adapter .. 210
Tree Polling Channel Adapter ... 210
Operation Invoking Channel Adapter ... 211
Operation Invoking Outbound Gateway .. 211
MBean Exporter ... 212

MBean ObjectNames .. 212
JMX Improvements ... 214
Orderly Shutdown Managed Operation .. 216

10.3. Message History .. 216
Message History Configuration .. 216

10.4. Message Store .. 217
MessageGroupFactory .. 219
Persistence MessageGroupStore and Lazy-Load .. 220

10.5. Metadata Store .. 220
Idempotent Receiver and Metadata Store .. 221
MetadataStoreListener .. 221

10.6. Control Bus ... 222
10.7. Orderly Shutdown .. 223
10.8. Integration Graph ... 224

Graph Runtime Model ... 227
10.9. Integration Graph Controller ... 228

V. Integration Endpoints .. 230
11. Endpoint Quick Reference Table ... 231
12. AMQP Support ... 235

12.1. Introduction .. 235
12.2. Inbound Channel Adapter ... 235

Configuring with Java Configuration ... 238
Configuring with the Java DSL .. 239

12.3. Polled Inbound Channel Adapter ... 240
12.4. Inbound Gateway ... 240

Configuring with Java Configuration ... 241
Configuring with the Java DSL .. 242

12.5. Inbound Endpoint Acknowledge Mode ... 243
12.6. Outbound Channel Adapter .. 243

Configuring with Java Configuration ... 245
Configuring with the Java DSL .. 246

12.7. Outbound Gateway .. 247
Configuring with Java Configuration ... 249
Configuring with the Java DSL .. 250

12.8. Async Outbound Gateway .. 251
Configuring with Java Configuration ... 253
Configuring with the Java DSL .. 253

12.9. Outbound Message Conversion .. 254
12.10. Outbound User Id .. 255
12.11. Delayed Message Exchange ... 255

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration x

12.12. AMQP Backed Message Channels .. 256
Configuring with Java Configuration ... 257
Configuring with the Java DSL .. 257

12.13. AMQP Message Headers ... 258
12.14. AMQP Samples ... 260

13. Spring ApplicationEvent Support .. 262
13.1. Receiving Spring Application Events ... 262
13.2. Sending Spring Application Events .. 262

14. Feed Adapter ... 264
14.1. Introduction .. 264
14.2. Feed Inbound Channel Adapter .. 264
14.3. Java DSL and Annotation configuration ... 265

15. File Support ... 266
15.1. Introduction .. 266
15.2. Reading Files .. 266

Namespace Support ... 269
WatchServiceDirectoryScanner .. 271
Limiting Memory Consumption .. 272
Configuring with Java Configuration ... 272
Configuring with the Java DSL .. 272
'Tail’ing Files .. 273
Dealing With Incomplete Data ... 275

15.3. Writing files ... 275
Generating File Names ... 275
Specifying the Output Directory ... 276
Dealing with Existing Destination Files ... 277
Flushing Files When using APPEND_NO_FLUSH .. 278
File Timestamps ... 279
File Permissions ... 279
File Outbound Channel Adapter .. 279
Outbound Gateway ... 279
Configuring with Java Configuration ... 280
Configuring with the Java DSL .. 281

15.4. File Transformers ... 281
15.5. File Splitter .. 282

Configuring with Java Configuration ... 283
Configuring with the Java DSL .. 283

16. FTP/FTPS Adapters .. 285
16.1. Introduction .. 285
16.2. FTP Session Factory ... 285

Default Factories .. 285
FTPS and Shared SSLSession ... 287

16.3. Delegating Session Factory .. 288
16.4. FTP Inbound Channel Adapter ... 289

Recovering from Failures .. 292
Configuring with Java Configuration ... 293
Configuring with the Java DSL .. 294
Dealing With Incomplete Data ... 295

16.5. FTP Streaming Inbound Channel Adapter ... 295
Configuring with Java Configuration ... 296

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xi

16.6. Inbound Channel Adapters: Controlling Remote File Fetching 297
16.7. FTP Outbound Channel Adapter ... 298

Configuring with Java Configuration ... 299
Configuring with the Java DSL .. 300

16.8. FTP Outbound Gateway ... 301
Configuring with Java Configuration ... 306
Configuring with the Java DSL .. 307
Outbound Gateway Partial Success (mget and mput) 307

16.9. FTP Session Caching .. 308
16.10. RemoteFileTemplate .. 309
16.11. MessageSessionCallback ... 309

17. GemFire Support .. 311
17.1. Introduction .. 311
17.2. Inbound Channel Adapter ... 311
17.3. Continuous Query Inbound Channel Adapter ... 311
17.4. Outbound Channel Adapter .. 312
17.5. Gemfire Message Store ... 313
17.6. Gemfire Lock Registry .. 314
17.7. Gemfire Metadata Store ... 314

18. HTTP Support .. 316
18.1. Introduction .. 316
18.2. Http Inbound Components .. 316
18.3. Http Outbound Components ... 318

HttpRequestExecutingMessageHandler .. 318
18.4. HTTP Namespace Support ... 319

Introduction .. 319
Inbound .. 319
Request Mapping Support ... 320
Cross-Origin Resource Sharing (CORS) Support .. 321
Response StatusCode .. 322
URI Template Variables and Expressions .. 323
Outbound ... 323
Mapping URI Variables ... 325
Controlling URI Encoding .. 326

18.5. Configuring HTTP Endpoints with Java ... 327
18.6. Timeout Handling ... 328
18.7. HTTP Proxy configuration ... 330
18.8. HTTP Header Mappings ... 331
18.9. Integration Graph Controller ... 332
18.10. HTTP Samples .. 332

Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
(server) .. 332

19. JDBC Support .. 334
19.1. Inbound Channel Adapter ... 334

Polling and Transactions ... 336
Max-rows-per-poll versus Max-messages-per-poll ... 336

19.2. Outbound Channel Adapter .. 337
19.3. Outbound Gateway .. 338
19.4. JDBC Message Store ... 339

Initializing the Database .. 340

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xii

The Generic JDBC Message Store .. 340
Backing Message Channels .. 340
Partitioning a Message Store .. 343

19.5. Stored Procedures ... 343
Supported Databases ... 343
Configuration .. 344
Common Configuration Attributes .. 344
Common Configuration Sub-Elements ... 346
Defining Parameter Sources ... 347
Stored Procedure Inbound Channel Adapter .. 348
Stored Procedure Outbound Channel Adapter .. 349
Stored Procedure Outbound Gateway .. 349
Examples ... 350

19.6. JDBC Lock Registry ... 351
19.7. JDBC Metadata Store .. 351

20. JPA Support ... 353
20.1. Supported Persistence Providers .. 353
20.2. Java Implementation .. 354
20.3. Namespace Support ... 354

Common XML Namespace Configuration Attributes .. 354
Providing JPA Query Parameters .. 356
Transaction Handling .. 356

20.4. Inbound Channel Adapter ... 357
Configuration Parameter Reference ... 358
Configuring with Java Configuration ... 359
Configuring with the Java DSL .. 359

20.5. Outbound Channel Adapter .. 360
Using an Entity Class ... 360
Using JPA Query Language (JPA QL) ... 361
Using Native Queries .. 362
Using Named Queries .. 362
Configuration Parameter Reference ... 363
Configuring with Java Configuration ... 364
Configuring with the Java DSL .. 365

20.6. Outbound Gateways ... 366
Common Configuration Parameters ... 367
Updating Outbound Gateway .. 368
Configuring with Java Configuration ... 368
Configuring with the Java DSL .. 369
Retrieving Outbound Gateway ... 370
Configuring with Java Configuration ... 370
Configuring with the Java DSL .. 371
JPA Outbound Gateway Samples .. 372

21. JMS Support .. 374
21.1. Inbound Channel Adapter ... 374

Transactions ... 375
21.2. Message-Driven Channel Adapter ... 375

Inbound Conversion Errors ... 376
21.3. Outbound Channel Adapter .. 377

Transactions ... 377

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xiii

21.4. Inbound Gateway ... 377
21.5. Outbound Gateway .. 379

Gateway Reply Correlation ... 380
Async Gateway .. 382
Attribute Reference ... 383

21.6. Mapping Message Headers to/from JMS Message ... 385
21.7. Message Conversion, Marshalling and Unmarshalling 385
21.8. JMS Backed Message Channels ... 386
21.9. Using JMS Message Selectors ... 387
21.10. JMS Samples .. 388

22. Mail Support ... 389
22.1. Mail-Sending Channel Adapter ... 389
22.2. Mail-Receiving Channel Adapter ... 389
22.3. Inbound Mail Message Mapping ... 390
22.4. Mail Namespace Support ... 391
22.5. Marking IMAP Messages When \Recent is Not Supported 395
22.6. Email Message Filtering ... 395
22.7. Transaction Synchronization ... 396

23. MongoDb Support ... 398
23.1. Introduction .. 398
23.2. Connecting to MongoDb ... 398
23.3. MongoDB Message Store ... 399

MongoDB Channel Message Store .. 399
MongoDB Metadata Store ... 400

23.4. MongoDB Inbound Channel Adapter ... 401
23.5. MongoDB Outbound Channel Adapter ... 403
23.6. MongoDB Outbound Gateway .. 403

Configuring with Java Configuration ... 404
Configuring with the Java DSL .. 404

24. MQTT Support ... 406
24.1. Introduction .. 406
24.2. Inbound (message-driven) Channel Adapter .. 406

Adding/Removing Topics at Runtime ... 407
Configuring with Java Configuration ... 408

24.3. Outbound Channel Adapter .. 408
Configuring with Java Configuration ... 409

25. Redis Support .. 411
25.1. Introduction .. 411
25.2. Connecting to Redis ... 411
25.3. Messaging with Redis .. 412

Redis Publish/Subscribe channel ... 412
Redis Inbound Channel Adapter .. 412
Redis Outbound Channel Adapter ... 413
Redis Queue Inbound Channel Adapter ... 414
Redis Queue Outbound Channel Adapter .. 415
Redis Application Events .. 415

25.4. Redis Message Store ... 416
Redis Channel Message Stores .. 416

25.5. Redis Metadata Store .. 417
25.6. RedisStore Inbound Channel Adapter ... 418

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xiv

25.7. RedisStore Outbound Channel Adapter ... 420
25.8. Redis Outbound Command Gateway .. 421
25.9. Redis Queue Outbound Gateway .. 422
25.10. Redis Queue Inbound Gateway .. 422
25.11. Redis Lock Registry ... 423

26. Resource Support ... 425
26.1. Introduction .. 425
26.2. Resource Inbound Channel Adapter .. 425

27. RMI Support ... 427
27.1. Introduction .. 427
27.2. Outbound RMI ... 427
27.3. Inbound RMI .. 427
27.4. RMI namespace support .. 427
27.5. Configuring with Java Configuration .. 428

28. SFTP Adapters ... 429
28.1. Introduction .. 429
28.2. SFTP Session Factory ... 429

Configuration Properties .. 430
28.3. Proxy Factory Bean ... 432
28.4. Delegating Session Factory .. 432
28.5. SFTP Session Caching .. 433
28.6. RemoteFileTemplate .. 433
28.7. SFTP Inbound Channel Adapter ... 434

Recovering from Failures .. 436
Configuring with Java Configuration ... 437
Configuring with the Java DSL .. 438
Dealing With Incomplete Data ... 439

28.8. SFTP Streaming Inbound Channel Adapter ... 439
Configuring with Java Configuration ... 440

28.9. Inbound Channel Adapters: Controlling Remote File Fetching 441
28.10. SFTP Outbound Channel Adapter ... 442

Configuring with Java Configuration ... 443
Configuring with the Java DSL .. 444

28.11. SFTP Outbound Gateway ... 445
Configuring with Java Configuration ... 450
Configuring with the Java DSL .. 450
Outbound Gateway Partial Success (mget and mput) 451

28.12. SFTP/JSCH Logging .. 452
28.13. MessageSessionCallback ... 452

29. STOMP Support ... 453
29.1. Introduction .. 453
29.2. Overview ... 453
29.3. STOMP Inbound Channel Adapter .. 453
29.4. STOMP Outbound Channel Adapter ... 453
29.5. STOMP Headers Mapping .. 454
29.6. STOMP Integration Events ... 454
29.7. STOMP Adapters Java Configuration .. 455
29.8. STOMP Namespace Support .. 456

30. Stream Support .. 458
30.1. Introduction .. 458

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xv

30.2. Reading from streams .. 458
30.3. Writing to streams .. 459
30.4. Stream namespace support .. 459

31. Syslog Support ... 461
31.1. Introduction .. 461
31.2. Syslog <inbound-channel-adapter> ... 461

Example Configuration .. 461
32. TCP and UDP Support ... 464

32.1. Introduction .. 464
32.2. UDP Adapters ... 464

Outbound (XML Configuration) .. 464
Outbound (Java Configuration) .. 466
Outbound (Java DSL Configuration) .. 466
Inbound (XML Configuration) ... 466
Inbound (Java Configuration) .. 466
Inbound (Java DSL Configuration) ... 466
Server Listening Events .. 467
Advanced Outbound Configuration .. 467

32.3. TCP Connection Factories .. 467
TCP Caching Client Connection Factory .. 471
TCP Failover Client Connection Factory .. 472
TCP Thread Affinity Connection Factory .. 472

32.4. TCP Connection Interceptors .. 472
32.5. TCP Connection Events ... 473
32.6. TCP Adapters .. 474
32.7. TCP Gateways .. 476
32.8. TCP Message Correlation .. 477

Overview .. 477
Gateways ... 477
Collaborating Outbound and Inbound Channel Adapters 477
Transferring Headers .. 478

32.9. A Note About NIO .. 480
Thread Pool Task Executor with CALLER_RUNS Policy 480

32.10. SSL/TLS Support ... 482
Overview .. 482
Getting Started ... 482

32.11. Advanced Techniques .. 483
Strategy Interfaces ... 483
Example: Enabling SSL Client Authentication ... 485

32.12. IP Configuration Attributes .. 486
32.13. IP Message Headers .. 493
32.14. Annotation-Based Configuration .. 494

33. Twitter Support ... 497
33.1. Introduction .. 497
33.2. Twitter OAuth Configuration .. 497
33.3. Twitter Template .. 497
33.4. Twitter Inbound Adapters ... 498

Inbound Message Channel Adapter ... 499
Direct Inbound Message Channel Adapter ... 499
Mentions Inbound Message Channel Adapter .. 499

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xvi

Search Inbound Message Channel Adapter ... 499
33.5. Twitter Outbound Adapter ... 500

Twitter Outbound Update Channel Adapter .. 500
Twitter Outbound Direct Message Channel Adapter .. 501

33.6. Twitter Search Outbound Gateway .. 501
34. WebFlux Support .. 503

34.1. Introduction .. 503
34.2. WebFlux Inbound Components ... 503
34.3. WebFlux Outbound Components .. 504
34.4. WebFlux Namespace Support .. 505

Introduction .. 505
Inbound .. 505
Outbound ... 506

34.5. Configuring WebFlux Endpoints with Java ... 506
34.6. WebFlux Header Mappings .. 507

35. WebSockets Support .. 508
35.1. Introduction .. 508
35.2. Overview ... 508
35.3. WebSocket Inbound Channel Adapter ... 509
35.4. WebSocket Outbound Channel Adapter .. 510
35.5. WebSockets Namespace Support ... 511
35.6. ClientStompEncoder ... 514

36. Web Services Support .. 516
36.1. Outbound Web Service Gateways ... 516
36.2. Inbound Web Service Gateways ... 516
36.3. Web Service Namespace Support ... 517
36.4. Outbound URI Configuration ... 518
36.5. WS Message Headers ... 519
36.6. MTOM Support .. 520

37. XML Support - Dealing with XML Payloads .. 522
37.1. Introduction .. 522
37.2. Namespace Support ... 522

XPath Expressions ... 523
Providing Namespaces (Optional) to XPath Expressions 523
Using XPath Expressions with Default Namespaces 524

37.3. Transforming XML Payloads ... 525
Configuring Transformers as Beans ... 525

UnmarshallingTransformer .. 526
MarshallingTransformer ... 526
XsltPayloadTransformer .. 527
ResultTransformers ... 527

Namespace Support for XML Transformers .. 528
Namespace Configuration and ResultTransformers ... 529

37.4. Transforming XML Messages Using XPath .. 531
37.5. Splitting XML Messages ... 532
37.6. Routing XML Messages Using XPath .. 533

XML Payload Converter .. 535
37.7. XPath Header Enricher .. 535
37.8. Using the XPath Filter .. 536
37.9. #xpath SpEL Function .. 537

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xvii

37.10. XML Validating Filter .. 538
38. XMPP Support ... 539

38.1. Introduction .. 539
38.2. XMPP Connection .. 539
38.3. XMPP Messages ... 540

Inbound Message Channel Adapter ... 540
Outbound Message Channel Adapter .. 541

38.4. XMPP Presence .. 541
Inbound Presence Message Channel Adapter .. 541
Outbound Presence Message Channel Adapter ... 542

38.5. Advanced Configuration ... 542
38.6. XMPP Message Headers ... 543
38.7. XMPP Extensions .. 544

39. Zookeeper Support ... 546
39.1. Introduction .. 546
39.2. Zookeeper Metadata Store ... 546
39.3. Zookeeper Lock Registry .. 546
39.4. Zookeeper Leadership Event Handling .. 546

VI. Appendices ... 548
A. Spring Expression Language (SpEL) ... 549

A.1. Introduction ... 549
A.2. SpEL Evaluation Context Customization ... 549
A.3. SpEL Functions ... 550
A.4. PropertyAccessors ... 551

B. Message Publishing ... 553
B.1. Message Publishing Configuration .. 553

Annotation-driven approach via @Publisher annotation 553
XML-based approach via the <publishing-interceptor> element 555
Producing and publishing messages based on a scheduled trigger 557

C. Transaction Support ... 559
C.1. Understanding Transactions in Message flows .. 559

Poller Transaction Support .. 560
C.2. Transaction Boundaries ... 561
C.3. Transaction Synchronization .. 561
C.4. Pseudo Transactions ... 563

D. Security in Spring Integration .. 565
D.1. Introduction ... 565
D.2. Securing channels ... 565
D.3. SecurityContext Propagation .. 566

E. Configuration ... 569
E.1. Introduction ... 569
E.2. Namespace Support .. 569
E.3. Configuring the Task Scheduler ... 570
E.4. Error Handling ... 571
E.5. Global Properties ... 572
E.6. Annotation Support .. 573

Messaging Meta-Annotations .. 578
Annotations on @Beans ... 578
Creating a Bridge with Annotations .. 580
Advising Annotated Endpoints ... 581

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xviii

E.7. Message Mapping rules and conventions .. 581
Simple Scenarios .. 581
Complex Scenarios ... 583

F. Testing support .. 585
F.1. Introduction ... 585
F.2. Testing Utilities .. 586

TestUtils ... 586
SocketUtils ... 586
OnlyOnceTrigger .. 587
Support Components .. 587
Hamcrest and Mockito Matchers ... 587

F.3. Spring Integration and test context ... 588
F.4. Integration Mocks .. 589

MockIntegration .. 589
F.5. Other Resources ... 590

G. Spring Integration Samples .. 591
G.1. Introduction ... 591
G.2. Where to get Samples .. 591
G.3. Submitting Samples or Sample Requests ... 591
G.4. Samples Structure ... 592
G.5. Samples ... 593

Loan Broker ... 594
The Cafe Sample ... 598
The XML Messaging Sample .. 602

H. Additional Resources ... 603
H.1. Spring Integration Home .. 603

I. Change History ... 604
I.1. Changes between 4.2 and 4.3 ... 604
I.2. New Components ... 604

AMQP Async Outbound Gateway .. 604
MessageGroupFactory .. 604
PersistentMessageGroup .. 604
FTP/SFTP Streaming Inbound Channel Adapters ... 604
Stream Transformer .. 604
Integration Graph .. 604
JDBC Lock Registry ... 604
Leader Initiator for Lock Registry ... 605

I.3. General Changes ... 605
Core Changes .. 605

Outbound Gateway within Chain ... 605
Async Service Activator .. 605
Messaging Annotation Support changes .. 605

Mail Changes ... 605
Customizable User Flag .. 605
Mail Message Mapping ... 605

JMS Changes .. 605
Header Mapper .. 605
Async Gateway .. 605

Aggregator Changes ... 606
TCP/UDP Changes ... 606

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xix

Events ... 606
Stream Deserializers ... 606
TCP Message Mapper .. 606

File Changes .. 606
Destination Directory Creation ... 606
Buffer Size ... 606
Appending and Flushing ... 606
Preserving Timestamps ... 606
Splitter Changes ... 607
File Filters .. 607

AMQP Changes ... 607
Content Type Message Converter ... 607
Headers for Delayed Message Handling .. 607
AMQP-Backed Channels ... 607

Redis Changes ... 607
List Push/Pop Direction ... 607
Queue Inbound Gateway Default Serializer .. 607

HTTP Changes .. 607
SFTP Changes ... 608

Factory Bean .. 608
chmod .. 608

FTP Changes ... 608
Session Changes ... 608

Router Changes ... 608
Header Mapping ... 608

General .. 608
AMQP Header Mapping .. 608

Groovy Scripts .. 608
@InboundChannelAdapter .. 609
XMPP changes .. 609
WireTap Late Binding ... 609
ChannelMessageStoreQueryProvider ... 609
WebSocket Changes .. 609

I.4. Changes between 4.1 and 4.2 ... 609
I.5. New Components ... 609

Major Management/JMX Rework ... 609
MongoDB Metadata Store ... 609
SecuredChannel Annotation .. 610
SecurityContext Propagation ... 610
FileSplitter .. 610
Zookeeper Support ... 610
Thread Barrier .. 610
STOMP Support ... 610
Codec .. 610
Message PreparedStatement Setter .. 610

I.6. General Changes ... 611
Wire Tap .. 611
File Changes .. 611

Appending New Lines ... 611
Ignoring Hidden Files .. 611

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xx

Writing InputStream Payloads ... 611
HeadDirectoryScanner .. 611
Last Modified Filter ... 611
WatchService Directory Scanner ... 611
Persistent File List Filter Changes ... 611

Class Package Change .. 611
TCP Changes .. 612

TCP Serializers .. 612
Server Socket Exceptions ... 612
TCP Server Port ... 612
TCP Gateway Remote Timeout ... 612
TCP SSLSession Available for Header Mapping 612
TCP Events .. 612

@InboundChannelAdapter .. 612
API Changes .. 612
JMS Changes .. 613

Reply Listener Lazy Initialization .. 613
Conversion Errors in Message-Driven Endpoints 613
Default Acknowledge Mode ... 613
Shared Subscriptions .. 613

Conditional Pollers .. 613
AMQP Changes ... 613

Publisher Confirms ... 613
Correlation Data ... 614
The Inbound Gateway properties ... 614

XPath Splitter Improvements ... 614
HTTP Changes .. 614

CORS .. 614
Inbound Gateway Timeout .. 614
Form Data .. 614

Gateway Changes .. 614
Gateway Methods can Return CompletableFuture<?> 614
MessagingGateway Annotation .. 614

Aggregator Changes ... 615
Aggregator Performance ... 615
Output Message Group Processor ... 615

(S)FTP Changes .. 615
Inbound channel adapters ... 615
Gateway Partial Results .. 615
Delegating Session Factory ... 615
Default Sftp Session Factory ... 615
Message Session Callback ... 616

Websocket Changes ... 616
Application Event Adapters changes .. 616

I.7. Changes between 4.0 and 4.1 ... 616
New Components ... 616

Promise<?> Gateway ... 616
WebSocket support .. 616
Scatter-Gather EIP pattern .. 616
Routing Slip Pattern .. 616

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xxi

Idempotent Receiver Pattern ... 616
BoonJsonObjectMapper .. 617
Redis Queue Gateways .. 617
PollSkipAdvice .. 617

General Changes ... 617
AMQP Inbound Endpoints, Channel ... 617
AMQP Outbound Endpoints .. 617
SimpleMessageStore .. 617
Web Service Outbound Gateway: encode-uri ... 617
Http Inbound Channel Adapter and StatusCode .. 617
MQTT Adapter Changes ... 617
FTP/SFTP Adapter Changes ... 618
Splitter and Iterator ... 618
Aggregator ... 618
Content Enricher Improvements .. 618
Header Channel Registry .. 618
Orderly Shutdown ... 618
Management for RecipientListRouter ... 618
AbstractHeaderMapper: NON_STANDARD_HEADERS token 618
AMQP Channels: template-channel-transacted ... 619
Syslog Adapter ... 619
Async Gateway .. 619
Aggregator Advice Chain .. 619
Outbound Channel Adapter and Scripts ... 619
Resequencer Changes ... 619
Optional POJO method parameter ... 619
QueueChannel: backed Queue type .. 619
ChannelInterceptor Changes ... 619
IMAP PEEK ... 619

I.8. Changes between 3.0 and 4.0 ... 620
New Components ... 620

MQTT Channel Adapters .. 620
@EnableIntegration .. 620
@IntegrationComponentScan .. 620
@EnableMessageHistory .. 620
@MessagingGateway ... 620
Spring Boot @EnableAutoConfiguration ... 620
@GlobalChannelInterceptor ... 620
@IntegrationConverter .. 620
@EnablePublisher .. 621
Redis Channel Message Stores .. 621
MongodDB Channel Message Store .. 621
@EnableIntegrationMBeanExport .. 621
ChannelSecurityInterceptorFactoryBean ... 621
Redis Command Gateway .. 621
RedisLockRegistry and GemfireLockRegistry .. 621
@Poller .. 621
@InboundChannelAdapter and SmartLifecycle for Annotated Endpoints 622
Twitter Search Outbound Gateway .. 622
Gemfire Metadata Store .. 622

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xxii

@BridgeFrom and @BridgeTo Annotations .. 622
Meta Messaging Annotations .. 622

General Changes ... 622
Requires Spring Framework 4.0 .. 622
Header Type for XPath Header Enricher .. 622
Object To Json Transformer: Node Result ... 622
JMS Header Mapping ... 623
JMS Outbound Channel Adapter ... 623
JMS Inbound Channel Adapter .. 623
Datatype Channels ... 623
Simpler Retry Advice Configuration ... 623
Correlation Endpoint: Time-based Release Strategy 623
Redis Metadata Store ... 623
JdbcChannelMessageStore and PriorityChannel 623
AMQP Endpoints Delivery Mode ... 623
FTP Timeouts .. 624
Twitter: StatusUpdatingMessageHandler .. 624
JPA Retrieving Gateway: id-expression .. 624
TCP Deserialization Events ... 624
Messaging Annotations on @Bean Definitions .. 624

I.9. Changes Between 2.2 and 3.0 .. 624
New Components ... 624

HTTP Request Mapping .. 624
Spring Expression Language (SpEL) Configuration 625
SpEL Functions Support ... 625
SpEL PropertyAccessors Support .. 625
Redis: New Components .. 625
Header Channel Registry .. 625
MongoDB support: New ConfigurableMongoDbMessageStore 625
Syslog Support ... 625
Tail Support ... 625
JMX Support .. 626
TCP/IP Connection Events and Connection Management 626
Inbound Channel Adapter Script Support ... 626
Content Enricher: Headers Enrichment Support .. 626

General Changes ... 626
Message ID Generation .. 626
<gateway> Changes ... 627
HTTP Endpoint Changes .. 627
Jackson Support (JSON) .. 627
Chain Elements id Attribute ... 627
Aggregator empty-group-min-timeout property .. 628
Persistent File List Filters (file, (S)FTP) .. 628
Scripting Support: Variables Changes .. 628
Direct Channel Load Balancing configuration .. 628
PublishSubscribeChannel Behavior .. 628
FTP, SFTP and FTPS Changes .. 628
requires-reply Attribute for Outbound Gateways .. 629
AMQP Outbound Gateway Header Mapping .. 630
Stored Procedure Components Improvements .. 630

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xxiii

Web Service Outbound URI Configuration ... 630
Redis Adapter Changes .. 630
Advising Filters ... 631
Advising Endpoints using Annotations .. 631
ObjectToStringTransformer Improvements .. 631
JPA Support Changes .. 631
Delayer: delay expression ... 631
JDBC Message Store Improvements ... 632
IMAP Idle Connection Exceptions .. 632
Message Headers and TCP .. 632
JMS Message Driven Channel Adapter .. 632
RMI Inbound Gateway .. 632
XsltPayloadTransformer .. 632

I.10. Changes between 2.1 and 2.2 ... 632
New Components ... 632

RedisStore Inbound and Outbound Channel Adapters 632
MongoDB Inbound and Outbound Channel Adapters 632
JPA Endpoints .. 633

General Changes ... 633
Spring 3.1 Used by Default ... 633
Adding Behavior to Endpoints ... 633
Transaction Synchronization and Pseudo Transactions 633
File Adapter - Improved File Overwrite/Append Handling 633
Reply-Timeout added to more Outbound Gateways 634
Spring-AMQP 1.1 ... 634
JDBC Support - Stored Procedures Components 634
JDBC Support - Outbound Gateway .. 635
JDBC Support - Channel-specific Message Store Implementation 635
Orderly Shutdown ... 635
JMS Oubound Gateway Improvements .. 635
object-to-json-transformer .. 635
HTTP Support .. 635

I.11. Changes between 2.0 and 2.1 ... 635
New Components ... 635

JSR-223 Scripting Support .. 635
GemFire Support .. 636
AMQP Support ... 636
MongoDB Support .. 636
Redis Support .. 636
Support for Spring’s Resource abstraction ... 636
Stored Procedure Components .. 636
XPath and XML Validating Filter .. 637
Payload Enricher .. 637
FTP and SFTP Outbound Gateways .. 637
FTP Session Caching ... 637

Framework Refactoring ... 638
Standardizing Router Configuration .. 638
XML Schemas updated to 2.1 ... 638

Source Control Management and Build Infrastructure 639
Source Code now hosted on Github .. 639

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration xxiv

Improved Source Code Visibility with Sonar ... 639
New Samples ... 639

I.12. Changes between 1.0 and 2.0 ... 639
Spring 3 support ... 639

Support for the Spring Expression Language (SpEL) 640
ConversionService and Converter .. 640
TaskScheduler and Trigger ... 640
RestTemplate and HttpMessageConverter ... 640

Enterprise Integration Pattern Additions ... 640
Message History ... 640
Message Store ... 640
Claim Check .. 640
Control Bus .. 641

New Channel Adapters and Gateways ... 641
TCP/UDP Adapters ... 641
Twitter Adapters ... 641
XMPP Adapters .. 641
FTP/FTPS Adapters .. 641
SFTP Adapters ... 641
Feed Adapters .. 641

Other Additions .. 641
Groovy Support .. 641
Map Transformers .. 641
JSON Transformers .. 642
Serialization Transformers ... 642

Framework Refactoring ... 642
New Source Control Management and Build Infrastructure 642
New Spring Integration Samples ... 642
Spring Tool Suite Visual Editor for Spring Integration .. 642

Part I. Preface

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration ii

Requirements
This section details the compatible Java and Spring Framework versions.

1 Compatible Java Versions

For Spring Integration 5.0.x, the minimum compatible Java version is Java SE 8. Older versions of
Java are not supported.

2 Compatible Versions of the Spring Framework

Spring Integration 5.0.x requires Spring Framework 5.0 or later.

3 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context, and consequently Spring Integration provides broad namespace support. This
reference guide applies the following conventions for all code examples that use namespace support:

The int namespace prefix will be used for Spring Integration’s core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the following
convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, …

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-twitter="http://www.springframework.org/schema/integration/twitter"

 xmlns:int-stream="http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/twitter

 http://www.springframework.org/schema/integration/twitter/spring-integration-twitter.xsd

 http://www.springframework.org/schema/integration/stream

 http://www.springframework.org/schema/integration/stream/spring-integration-stream.xsd">

…

</beans>

For a detailed explanation regarding Spring Integration’s namespace support see Section E.2,
“Namespace Support”.

Note

Please note that the namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, apply the convention that suits your application needs best.
Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace conventions
for Spring Integration as used in this reference guide.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/spring-framework

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 3

1. Conventions in this Book

In some cases, to aid formatting, when specifying long fully-qualified class names, we shorten the
package org.springframework to o.s and org.springframework.integration to o.s.i,
such as with o.s.i.transaction.TransactionSynchronizationFactory.

Part II. What’s new?
For those who are already familiar with Spring Integration, this chapter provides a brief overview of the
new features of version 5.0. If you are interested in the changes and features, that were introduced in
earlier versions, please see chapter: Appendix I, Change History

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 5

2. What’s new in Spring Integration 5.0?
This chapter provides an overview of the new features and improvements that have been introduced
with Spring Integration 5.0. If you are interested in more details, please see the Issue Tracker tickets
that were resolved as part of the 5.0 development process.

2.1 New Components

Java DSL

The separate Spring Integration Java DSL project has now been merged into the core Spring Integration
project. The IntegrationComponentSpec implementations for channel adapters and gateways are
distributed to their specific modules. See Chapter 9, Java DSL for more information about Java DSL
support. Also see the 4.3 to 5.0 Migration Guide for the required steps to move to Spring Integration 5.0.

Testing Support

A new Spring Integration Test Framework has been created to assist with testing Spring
Integration applications. Now, with the @SpringIntegrationTest annotation on test class and
MockIntegration factory you can make your JUnit tests for integration flows somewhat easier.

See Appendix F, Testing support for more information.

MongoDB Outbound Gateway

The new MongoDbOutboundGateway allows you to make queries to the database on demand by
sending a message to its request channel.

See Section 23.6, “MongoDB Outbound Gateway” for more information.

WebFlux Gateways and Channel Adapters

The new WebFlux support module has been introduced for Spring WebFlux Framework gateways and
channel adapters.

See Chapter 34, WebFlux Support for more information.

Content Type Conversion

Now that we use the new InvocableHandlerMethod -based infrastructure for service method
invocations, we can perform contentType conversion from payload to target method argument.

See the section called “Content Type Conversion” for more information.

ErrorMessagePublisher and ErrorMessageStrategy

The ErrorMessagePublisher and the ErrorMessageStrategy are provided for creating
ErrorMessage instances.

See Section E.4, “Error Handling” for more information.

JDBC Metadata Store

A JDBC implementation of MetadataStore implementation is now provided. This is useful when it is
necessary to ensure transactional boundaries for metadata.

https://github.com/spring-projects/spring-integration-java-dsl
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.3-to-5.0-Migration-Guide#java-dsl

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 6

See Section 19.7, “JDBC Metadata Store” for more information.

2.2 General Changes

Spring Integration is now fully based on Spring Framework 5.0 and Project Reactor 3.1. Previous
Project Reactor versions are no longer supported.

Core Changes

The @Poller annotation now has the errorChannel attribute for easier configuration of the underlying
MessagePublishingErrorHandler.

See Section E.6, “Annotation Support” for more information.

All the request-reply endpoints (based on AbstractReplyProducingMessageHandler) can now
start transaction and, therefore, make the whole downstream flow transactional.

See the section called “Transaction Support” for more information.

The SmartLifecycleRoleController now provides methods to obtain status of endpoints in roles.

See Section 8.2, “Endpoint Roles” for more information.

POJO methods are now invoked using an InvocableHandlerMethod by default, but can be
configured to use SpEL as before.

See Section 3.9, “POJO Method invocation” for more information.

When targeting POJO methods as message handlers, one of the service methods can now be marked
with the @Default annotation to provide a fallback mechanism for non-matched conditions.

See the section called “Configuring Service Activator” for more information.

A simple PassThroughTransactionSynchronizationFactory is provided to always store a
polled message in the current transaction context. That message is used as a failedMessage property
of the MessagingException which wraps a raw exception thrown during transaction completion.

See Section C.3, “Transaction Synchronization” for more information.

The aggregator expression-based ReleaseStrategy now evaluates the expression against the
MessageGroup instead of just the collection of Message<?>.

See the section called “Aggregators and Spring Expression Language (SpEL)” for more information.

The ObjectToMapTransformer can now be supplied with a customised JsonObjectMapper.

See the section called “Aggregators and Spring Expression Language (SpEL)” for more information.

The @GlobalChannelInterceptor annotation and <int:channel-interceptor> now support
negative patterns (via ! prepending) for component names matching.

See the section called “Global Channel Interceptor Configuration” for more information.

A new OnFailedToAcquireMutexEvent is emitted now via DefaultLeaderEventPublisher by
the LockRegistryLeaderInitiator, when candidate is failed to acquire the lock.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 7

See Section 8.3, “Leadership Event Handling” for more information.

Gateway Changes

The gateway now correctly sets the errorChannel header when the gateway method has a void
return type and an error channel is provided. Previously, the header was not populated. This had the
effect that synchronous downstream flows (running on the calling thread) would send the exception to
the configured channel but an exception on an async downstream flow would be sent to the default
errorChannel instead.

The RequestReplyExchanger interface now has a throws MessagingException clause to meet
all the proposed messages exchange contract.

The request and reply timeouts can now be specified as SpEL expressions.

See Section 8.4, “Messaging Gateways” for more information.

Aggregator Performance Changes

Aggregators now use a SimpleSequenceSizeReleaseStrategy by default, which is more efficient,
especially with large groups. Empty groups are now scheduled for removal after empty-group-min-
timeout.

See Section 6.4, “Aggregator” for more information.

Splitter Changes

The Splitter component now can handle and split Java Stream and Reactive Streams
Publisher objects. If the output channel is a ReactiveStreamsSubscribableChannel, the
AbstractMessageSplitter builds a Flux for subsequent iteration instead of a regular Iterator
independent of object being split. In addition, AbstractMessageSplitter provides protected
obtainSizeIfPossible() methods to allow the determination of the size of the Iterable and
Iterator objects if that is possible.

See Section 6.3, “Splitter” for more information.

JMS Changes

Previously, Spring Integration JMS XML configuration used a default bean name connectionFactory
for the JMS Connection Factory, allowing the property to be omitted from component definitions. It has
now been renamed to jmsConnectionFactory, which is the bean name used by Spring Boot to auto-
configure the JMS Connection Factory bean.

If your application is relying on the previous behavior, rename your connectionFactory bean to
jmsConnectionFactory, or specifically configure your components to use your bean using its current
name.

See Chapter 21, JMS Support for more information.

Mail Changes

Some inconsistencies with rendering IMAP mail content have been resolved.

See the note in the Mail-Receiving Channel Adapter Section for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 8

Feed Changes

Instead of the com.rometools.fetcher.FeedFetcher, which is deprecated in ROME, a new
Resource property has been introduced to the FeedEntryMessageSource.

See Chapter 14, Feed Adapter for more information.

File Changes

The new FileHeaders.RELATIVE_PATH Message header has been introduced to represent relative
path in the FileReadingMessageSource.

The tail adapter now supports idleEventInterval to emit events when there is no data in the file
during that period.

The flush predicates for the FileWritingMessageHandler now have an additional parameter.

The file outbound channel adapter and gateway (FileWritingMessageHandler) now support the
REPLACE_IF_MODIFIED FileExistsMode.

They also now support setting file permissions on the newly written file.

A new FileSystemMarkerFilePresentFileListFilter is now available; see the section called
“Dealing With Incomplete Data” for more information.

The FileSplitter now provides a firstLineAsHeader option to carry the first line of content as
a header in the messages emitted for the remaining lines.

See Chapter 15, File Support for more information.

(S)FTP Changes

The Inbound Channel Adapters now have a property max-fetch-size which is used to limit the
number of files fetched during a poll when there are no files currently in the local directory. They also are
configured with a FileSystemPersistentAcceptOnceFileListFilter in the local-filter
by default.

You can also provide a custom DirectoryScanner implementation to Inbound Channel Adapters via
the newly introduced scanner attribute.

The regex and pattern filters can now be configured to always pass directories. This can be useful when
using recursion in the outbound gateways.

All the Inbound Channel Adapters (streaming and synchronization-based) now use an appropriate
AbstractPersistentAcceptOnceFileListFilter implementation by default to prevent remote
files duplicate downloads.

The FTP and SFTP outbound gateways now support the REPLACE_IF_MODIFIED FileExistsMode
when fetching remote files.

The (S)FTP streaming inbound channel adapters now add remote file information in a message header.

The FTP and SFTP outbound channel adapters, as well as PUT command of the outbound gateways,
now support InputStream as payload, too.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 9

The inbound channel adapters now can build file tree locally using a newly introduced
RecursiveDirectoryScanner. See scanner option for injection. Also these adapters can now be
switched to the WatchService instead.

The NLST command has been added to the AbstractRemoteFileOutboundGateway to perform
only list files names remote command.

The FtpOutboundGateway can now be supplied with workingDirExpression to change the FTP
client working directory for the current request message.

The RemoteFileTemplate is supplied now with the invoke(OperationsCallback<F, T>

action) to perform several RemoteFileOperations calls in the scope of the same, thread-bounded,
Session.

New filters for detecting incomplete remote files are now provided.

The FtpOutboundGateway and SftpOutboundGateway now support an option to remove the
remote file after a successful transfer using the GET or MGET commands.

See Chapter 16, FTP/FTPS Adapters and Chapter 28, SFTP Adapters for more information.

Integration Properties

Since version 4.3.2 a new spring.integration.readOnly.headers global property has been
added to customize the list of headers which should not be copied to a newly created Message by the
MessageBuilder.

See Section E.5, “Global Properties” for more information.

Stream Changes

There is a new option on the CharacterStreamReadingMessageSource to allow it to be used to
"pipe" stdin and publish an application event when the pipe is closed.

See Section 30.2, “Reading from streams” for more information.

Barrier Changes

The BarrierMessageHandler now supports a discard channel to which late-arriving trigger
messages are sent.

See Section 6.8, “Thread Barrier” for more information.

AMQP Changes

The AMQP outbound endpoints now support setting a delay expression for when using the RabbitMQ
Delayed Message Exchange plugin.

The inbound endpoints now support the Spring AMQP DirectMessageListenerContainer.

Pollable AMQP-backed channels now block the poller thread for the poller’s configured
receiveTimeout (default 1 second).

Headers, such as contentType that are added to message properties by the message converter are
now used in the final message; previously, it depended on the converter type as to which headers/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 10

message properties appeared in the final message. To override headers set by the converter, set the
headersMappedLast property to true.

See Chapter 12, AMQP Support for more information.

HTTP Changes

The DefaultHttpHeaderMapper.userDefinedHeaderPrefix property is now an empty string
by default instead of X-.

See Section 18.8, “HTTP Header Mappings” for more information.

MQTT Changes

Inbound messages are now mapped with headers RECEIVED_TOPIC, RECEIVED_QOS and
RECEIVED_RETAINED to avoid inadvertent propagation to outbound messages when an application is
relaying messages.

The outbound channel adapter now supports expressions for the topic, qos and retained properties; the
defaults remain the same.

See Chapter 24, MQTT Support for more information.

STOMP Changes

The STOMP module has been changed to use ReactorNettyTcpStompClient, based on the
Project Reactor 3.1 and reactor-netty extension. The Reactor2TcpStompSessionManager
has been renamed to the ReactorNettyTcpStompSessionManager according to the
ReactorNettyTcpStompClient foundation.

See Chapter 29, STOMP Support for more information.

Web Services Changes

• The WebServiceOutboundGateway s can now be supplied with an externally configured
WebServiceTemplate instances.

• The DefaultSoapHeaderMapper can now map a javax.xml.transform.Source user-defined
header to a SOAP header element.

• Simple WebService Inbound and Outbound gateways can now deal with the complete
WebServiceMessage as a payload, allowing the manipulation of MTOM attachments.

See Chapter 36, Web Services Support for more information.

Redis Changes

The RedisStoreWritingMessageHandler is supplied now with additional String-based setters for
SpEL expressions - for convenience with Java configuration. The zsetIncrementExpression can
now be configured on the RedisStoreWritingMessageHandler, as well. In addition this property
has been changed from true to false since INCR option on ZADD Redis command is optional.

The RedisInboundChannelAdapter can now be supplied with an Executor for
executing Redis listener invokers. In addition the received messages now contains a
RedisHeaders.MESSAGE_SOURCE header to indicate the source of the message - topic or pattern.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 11

See Chapter 25, Redis Support for more information.

TCP Changes

A new ThreadAffinityClientConnectionFactory is provided that binds TCP connections to
threads.

You can now configure the TCP connection factories to support PushbackInputStream s, allowing
deserializers to "unread" (push back) bytes after "reading ahead".

A ByteArrayElasticRawDeserializer has been added without maxMessageSize control and
buffer incoming data as needed.

See Chapter 32, TCP and UDP Support for more information.

Gemfire Changes

The GemfireMetadataStore now implements ListenableMetadataStore, allowing users to
listen to cache events by providing MetadataStoreListener instances to the store.

See Chapter 17, GemFire Support for more information.

Jdbc Changes

The JdbcMessageChannelStore now provides setter for the
ChannelMessageStorePreparedStatementSetter allowing users to customize a message
insertion in the store.

The ExpressionEvaluatingSqlParameterSourceFactory now provides setter for the
sqlParameterTypes allowing users to customize sql types of the parameters.

See Chapter 19, JDBC Support for more information.

Metrics Changes

Micrometer application monitoring is now supported (since version 5.0.2). See the section called
“Micrometer Integration” for more information.

Important

Changes were made to the Micrometer Meters in version 5.0.3 to make them more suitable for
use in dimensional systems.

http://micrometer.io/

Part III. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns. It enables lightweight messaging within Spring-based applications and
supports integration with external systems via declarative adapters. Those adapters provide a higher-
level of abstraction over Spring’s support for remoting, messaging, and scheduling. Spring Integration’s
primary goal is to provide a simple model for building enterprise integration solutions while maintaining
the separation of concerns that is essential for producing maintainable, testable code.

http://www.eaipatterns.com/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 13

3. Spring Integration Overview

3.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring’s simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring’s existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different data formats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by the
recognition of a strong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf
(Addison Wesley, 2004). Developers who have read that book should be immediately comfortable with
the Spring Integration concepts and terminology.

3.2 Goals and Principles

Spring Integration is motivated by the following goals:

• Provide a simple model for implementing complex enterprise integration solutions.

• Facilitate asynchronous, message-driven behavior within a Spring-based application.

• Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

• Components should be loosely coupled for modularity and testability.

• The framework should enforce separation of concerns between business logic and integration logic.

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 14

• Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

3.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for following
this best practice for the full-stack of an enterprise application. Message-driven architectures add a
horizontal perspective, yet these same goals are still relevant. Just as "layered architecture" is an
extremely generic and abstract paradigm, messaging systems typically follow the similarly abstract
"pipes-and-filters" model. The "filters" represent any component that is capable of producing and/or
consuming messages, and the "pipes" transport the messages between filters so that the components
themselves remain loosely-coupled. It is important to note that these two high-level paradigms are not
mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should still be
encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves
would typically be managed within a layer that is logically above the application’s service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be
of any type and the headers hold commonly required information such as id, timestamp, correlation id,
and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from a received File, the file name may be stored in a header to
be accessed by downstream components. Likewise, if a Message’s content is ultimately going to be
sent by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured
as Message header values by an upstream component. Developers can also store any arbitrary key-
value pairs in the headers.

Figure 3.1. Message

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages
to a channel, and consumers receive Messages from a channel. The Message Channel therefore
decouples the messaging components, and also provides a convenient point for interception and
monitoring of Messages.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 15

Figure 3.2. Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other
hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail in the section called
“Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations,
and then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters,
you will see how Spring Integration’s declarative configuration options provide a non-invasive way to
use each of these.

3.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint’s primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same
in both cases: isolate application code from the infrastructure. These concepts are discussed at length
along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we provide

http://www.eaipatterns.com

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 16

only a high-level description of the main endpoint types supported by Spring Integration and their roles.
The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message’s content or structure and returning
the modified Message. Probably the most common type of transformer is one that converts the payload
of the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message’s header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed
based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural pattern
with this specific endpoint type that selectively narrows down the Messages flowing between two
channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring Integration’s
Message Endpoint: any component that can be connected to Message Channel(s) in order to
send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message’s content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

Figure 3.3. Router

Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 17

This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often
downstream consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more
complex than a Splitter, because it is required to maintain state (the Messages to-be-aggregated), to
decide when the complete group of Messages is available, and to timeout if necessary. Furthermore, in
case of a timeout, the Aggregator needs to know whether to send the partial results or to discard them to
a separate channel. Spring Integration provides a CorrelationStrategy, a ReleaseStrategy and
configurable settings for: timeout, whether to send partial results upon timeout, and a discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note

The output channel is optional, since each Message may also provide its own Return Address
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message’s payload and converting if necessary (if the method does not expect
a Message-typed parameter). Whenever the service object’s method returns a value, that return value
will likewise be converted to a reply Message if necessary (if it’s not already a Message). That reply
Message is sent to the output channel. If no output channel has been configured, then the reply will be
sent to the channel specified in the Message’s "return address" if available.

A request-reply "Service Activator" endpoint connects a target object’s method to input and output
Message Channels.

Figure 3.4. Service Activator

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 18

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter
may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

Figure 3.5. An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

Note

Message sources can be Pollable (e.g. POP3) or Message-Driven (e.g. IMAP Idle); in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(message-driven).

Figure 3.6. An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

3.5 Configuration and @EnableIntegration

Throughout this document you will see references to XML namespace support for declaring elements
in a Spring Integration flow. This support is provided by a series of namespace parsers that generate
appropriate bean definitions to implement a particular component. For example, many endpoints consist
of a MessageHandler bean and a ConsumerEndpointFactoryBean into which the handler and an
input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework automatically
declares a number of beans that are used to support the runtime environment (task scheduler, implicit
channel creator, etc).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 19

Important

Starting with version 4.0, the @EnableIntegration annotation has been introduced, to allow
the registration of Spring Integration infrastructure beans (see JavaDocs). This annotation is
required when only Java & Annotation configuration is used, e.g. with Spring Boot and/or
Spring Integration Messaging Annotation support and Spring Integration Java DSL with no XML
integration configuration.

The @EnableIntegration annotation is also useful when you have a parent context with no Spring
Integration components and 2 or more child contexts that use Spring Integration. It enables these
common components to be declared once only, in the parent context.

The @EnableIntegration annotation registers many infrastructure components with the application
context:

• Registers some built-in beans, e.g. errorChannel and its LoggingHandler, taskScheduler for
pollers, jsonPath SpEL-function etc.;

• Adds several BeanFactoryPostProcessor s to enhance the BeanFactory for global and default
integration environment;

• Adds several BeanPostProcessor s to enhance and/or convert and wrap particular beans for
integration purposes;

• Adds annotations processors to parse Messaging Annotations and registers components for them
with the application context.

The @IntegrationComponentScan annotation has also been introduced to permit classpath
scanning. This annotation plays a similar role as the standard Spring Framework @ComponentScan
annotation, but it is restricted just to Spring Integration specific components and annotations, which
aren’t reachable by the standard Spring Framework component scan mechanism. For example the
section called “@MessagingGateway Annotation”.

The @EnablePublisher annotation has been introduced to register a
PublisherAnnotationBeanPostProcessor bean and configure the default-publisher-
channel for those @Publisher annotations which are provided without a channel attribute. If more
than one @EnablePublisher annotation is found, they must all have the same value for the default
channel. See the section called “Annotation-driven approach via @Publisher annotation” for more
information.

The @GlobalChannelInterceptor annotation has been introduced to mark
ChannelInterceptor beans for global channel interception. This annotation is an analogue of the
<int:channel-interceptor> xml element (see the section called “Global Channel Interceptor
Configuration”). @GlobalChannelInterceptor annotations can be placed at the class level (with a
@Component stereotype annotation), or on @Bean methods within @Configuration classes. In either
case, the bean must be a ChannelInterceptor.

The @IntegrationConverter annotation has been introduced to mark Converter,
GenericConverter or ConverterFactory beans as candidate converters for
integrationConversionService. This annotation is an analogue of the <int:converter> xml
element (see the section called “Payload Type Conversion”). @IntegrationConverter annotations
can be placed at the class level (with a @Component stereotype annotation), or on @Bean methods
within @Configuration classes.

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 20

Also see Section E.6, “Annotation Support” for more information about Messaging Annotations.

3.6 Programming Considerations

It is generally recommended that you use plain old java objects (POJOs) whenever possible and
only expose the framework in your code when absolutely necessary. See Section 3.9, “POJO Method
invocation” for more information.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup; some of these are listed here.

• If your component is ApplicationContextAware, you should generally not "use" the
ApplicationContext in the setApplicationContext() method; just store a reference and
defer such uses until later in the context lifecycle.

• If your component is an InitializingBean or uses @PostConstruct methods, do not send any
messages from these initialization methods - the application context is not yet initialized when these
methods are called, and sending such messages will likely fail. If you need to send a messages
during startup, implement ApplicationListener and wait for the ContextRefreshedEvent.
Alternatively, implement SmartLifecycle, put your bean in a late phase, and send the messages
from the start() method.

3.7 Considerations When using Packaged (e.g. Shaded) Jars

Spring Integration bootstraps certain features using Spring Framework’s SpringFactories
mechanism to load several IntegrationConfigurationInitializer classes. This includes the
-core jar as well as certain others such as -http, -jmx, etc. The information for this process is stored
in a file META-INF/spring.factories in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar using well-
known tools, such as the Apache Maven Shade Plugin.

By default, the shade plugin will not merge the spring.factories files when producing the shaded
jar.

In addition to spring.factories, there are other META-INF files (spring.handlers,
spring.schemas) used for XML configuration. These also need to be merged.

Important

Spring Boot’s executable jar mechanism takes a different approach in that it nests the jars, thus
retaining each spring.factories file on the class path. So, with a Spring Boot application,
nothing more is needed, if you use its default executable jar format.

Even if you are not using Spring Boot, you can still use tooling provided by Boot to enhance the shade
plugin by adding transformers for the above mentioned files.

The following is an example configuration for the plugin at the time of writing. You may wish to consult
the current spring-boot-starter-parent pom to see the current settings that boot uses.

pom.xml.

https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 21

...

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-shade-plugin</artifactId>

 <configuration>

 <keepDependenciesWithProvidedScope>true</keepDependenciesWithProvidedScope>

 <createDependencyReducedPom>true</createDependencyReducedPom>

 </configuration>

 <dependencies>

 <dependency> ❶

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <version>${spring.boot.version}</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>shade</goal>

 </goals>

 <configuration>

 <transformers> ❷

 <transformer

 implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">

 <resource>META-INF/spring.handlers</resource>

 </transformer>

 <transformer

 implementation="org.springframework.boot.maven.PropertiesMergingResourceTransformer">

 <resource>META-INF/spring.factories</resource>

 </transformer>

 <transformer

 implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">

 <resource>META-INF/spring.schemas</resource>

 </transformer>

 <transformer

 implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />

 </transformers>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

...

Specifically,

❶ add the spring-boot-maven-plugin as a dependency

❷ configure the transformers

Add a property for ${spring.boot.version} or use a version explicitly there.

3.8 Programming Tips and Tricks

XML Schemas

When using XML configuration, to avoid getting false schema validation errors, you should use a "Spring-
aware" IDE, such as the Spring Tool Suite (STS) (or eclipse with the Spring IDE plugins) or IntelliJ IDEA,
for example. These IDEs know how to resolve the correct XML schema from the classpath (using the

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 22

META-INF/spring.schemas file in the jar(s)). When using STS, or eclipse with the plugin, be sure
to enable Spring Project Nature on the project.

The schemas hosted on the internet for certain legacy modules (those that existed in version 1.0) are the
1.0 versions for compatibility reasons; if your IDE uses these schemas, you will likely see false errors.

Each of these online schemas has a warning similar to this:

Important

This schema is for the 1.0 version of Spring Integration Core. We cannot update it to the current
schema because that will break any applications using 1.0.3 or lower. For subsequent versions,
the unversioned schema is resolved from the classpath and obtained from the jar. Please refer
to github:

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/
main/resources/org/springframework/integration/config

The affected modules are

• core (spring-integration.xsd)

• file

• http

• jms

• mail

• rmi

• security

• stream

• ws

• xml

Finding Class Names for Java and DSL Configuration

With XML configuration and Spring Integration Namespace support, the XML Parsers hide how
target beans are declared and wired together. For Java & Annotation Configuration, it is important to
understand the Framework API for target end-user applications.

The first class citizens for EIP implementation are Message, Channel and Endpoint (see Section 3.3,
“Main Components” above). Their implementations (contracts) are:

• org.springframework.messaging.Message - see Section 5.1, “Message”;

• org.springframework.messaging.MessageChannel - see Section 4.1, “Message Channels”;

• org.springframework.integration.endpoint.AbstractEndpoint - see Section 4.2,
“Poller”.

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 23

The first two are simple enough to understand how to implement, configure and use, respectively; the
last one deserves more review.

The AbstractEndpoint is widely used throughout the Framework for different component
implementations; its main implementations are:

• EventDrivenConsumer, when we subscribe to a SubscribableChannel to listen for messages;

• PollingConsumer, when we poll for messages from a PollableChannel.

Using Messaging Annotations and/or Java DSL, you shouldn’t worry about these components, because
the Framework produces them automatically via appropriate annotations and BeanPostProcessor
s. When building components manually, the ConsumerEndpointFactoryBean should be used to
help to determine the target AbstractEndpoint consumer implementation to create, based on the
provided inputChannel property.

On the other hand, the ConsumerEndpointFactoryBean delegates to an another first
class citizen in the Framework - org.springframework.messaging.MessageHandler.
The goal of the implementation of this interface is to handle the message
consumed by the endpoint from the channel. All EIP components in Spring
Integration are MessageHandler implementations, e.g. AggregatingMessageHandler,
MessageTransformingHandler, AbstractMessageSplitter etc.; as well as the target
protocol outbound adapters are implementations too, e.g. FileWritingMessageHandler,
HttpRequestExecutingMessageHandler, AbstractMqttMessageHandler etc. When you
develop Spring Integration applications with Java & Annotation Configuration, you should take a look
into the Spring Integration module to find an appropriate MessageHandler implementation to be used
for the @ServiceActivator configuration. For example to send an XMPP message (see Chapter 38,
XMPP Support) we should configure something like this:

@Bean

@ServiceActivator(inputChannel = "input")

public MessageHandler sendChatMessageHandler(XMPPConnection xmppConnection) {

 ChatMessageSendingMessageHandler handler = new ChatMessageSendingMessageHandler(xmppConnection);

 DefaultXmppHeaderMapper xmppHeaderMapper = new DefaultXmppHeaderMapper();

 xmppHeaderMapper.setRequestHeaderNames("*");

 handler.setHeaderMapper(xmppHeaderMapper);

 return handler;

}

The MessageHandler implementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided to
polling and listening behaviors. The listening (message-driven) components are simple
and typically require only one target class implementation to be ready to produce
messages. Listening components can be one-way MessageProducerSupport implementations,
e.g. AbstractMqttMessageDrivenChannelAdapter and ImapIdleChannelAdapter; and
request-reply - MessagingGatewaySupport implementations, e.g. AmqpInboundGateway and
AbstractWebServiceInboundGateway.

Polling inbound endpoints are for those protocols which don’t provide a listener API or aren’t intended
for such a behavior. For example any File based protocol, as an FTP, any data bases (RDBMS or
NoSQL) etc.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 24

These inbound endpoints consist with two components: the poller configuration, to initiate the
polling task periodically, and message source class to read data from the target protocol and
produce a message for the downstream integration flow. The first class, for the poller configuration,
is a SourcePollingChannelAdapter. It is one more AbstractEndpoint implementation, but
especially for polling to initiate an integration flow. Typically, with the Messaging Annotations or Java
DSL, you shouldn’t worry about this class, the Framework produces a bean for it, based on the
@InboundChannelAdapter configuration or a Java DSL Builder spec.

Message source components are more important for the target application development
and they all implement the MessageSource interface, e.g. MongoDbMessageSource and
AbstractTwitterMessageSource. With that in mind, our config for reading data from an RDBMS
table with JDBC may look like:

@Bean

@InboundChannelAdapter(value = "fooChannel", poller = @Poller(fixedDelay="5000"))

public MessageSource<?> storedProc(DataSource dataSource) {

 return new JdbcPollingChannelAdapter(dataSource, "SELECT * FROM foo where status = 0");

}

All the required inbound and outbound classes for the target protocols you can find in the
particular Spring Integration module, in most cases in the respective package. For example spring-
integration-websocket adapters are:

• o.s.i.websocket.inbound.WebSocketInboundChannelAdapter - implements
MessageProducerSupport implementation to listen frames on the socket and produce message
to the channel;

• o.s.i.websocket.outbound.WebSocketOutboundMessageHandler - the one-way
AbstractMessageHandler implementation to convert incoming messages to the appropriate
frame and send over websocket.

If you are familiar with Spring Integration XML configuration, starting with version 4.3, we provide
information in the XSD element definitions about which target classes are used to declare beans for
the adapter or gateway, for example:

<xsd:element name="outbound-async-gateway">

 <xsd:annotation>

 <xsd:documentation>

Configures a Consumer Endpoint for the 'o.s.i.amqp.outbound.AsyncAmqpOutboundGateway'

that will publish an AMQP Message to the provided Exchange and expect a reply Message.

The sending thread returns immediately; the reply is sent asynchronously; uses

 'AsyncRabbitTemplate.sendAndReceive()'.

 </xsd:documentation>

 </xsd:annotation>

3.9 POJO Method invocation

As discussed in Section 3.6, “Programming Considerations”, it is generally recommended to use a POJO
programming style. For example,

@ServiceActivator

public String myService(String payload) { ... }

In this case, the framework will extract a String payload, invoke your method, and wrap the result in
a message to send to the next component in the flow (the original headers will be copied to the new
message). In fact, if you are using XML configuration, you don’t even need the @ServiceActivator
annotation:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 25

<int:service-activator ... ref="myPojo" method="myService" />

public String myService(String payload) { ... }

You can omit the method attribute as long as there is no ambiguity in the public methods on the class.

Some further observations:

You can obtain header information in your POJO methods:

@ServiceActivator

public String myService(@Payload String payload, @Header("foo") String fooHeader) { ... }

You can dereference properties on the message:

@ServiceActivator

public String myService(@Payload("payload.foo") String foo, @Header("bar.baz") String barbaz) { ... }

Because many any varied POJO method invocations are available, versions prior to 5.0 used SpEL
to invoke the POJO methods. SpEL (even interpreted) is usually "fast enough" for these operations,
when compared to the actual work usually done in the methods. However, starting with version 5.0,
the org.springframework.messaging.handler.invocation.InvocableHandlerMethod is
used by default, when possible. This technique is usually faster to execute than interpreted SpEL and
is consistent with other Spring messaging projects. The InvocableHandlerMethod is similar to the
technique used to invoke controller methods in Spring MVC. There are certain methods that are still
always invoked using SpEL; examples include annotated parameters with dereferenced properties as
discussed above. This is because SpEL has the capability to navigate a property path.

There may be some other corner cases that we haven’t considered that also won’t work with
InvocableHandlerMethod s. For this reason, we automatically fall-back to using SpEL in those
cases.

If you wish, you can also set up your POJO method such that it always uses SpEL, with the
UseSpelInvoker annotation:

@UseSpelInvoker(compilerMode = "IMMEDIATE")

public void bar(String bar) { ... }

If the compilerMode property is omitted, the spring.expression.compiler.mode system
property will determine the compiler mode - see SpEL compilation for more information about compiled
SpEL.

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/expressions.html#expressions-spel-compilation

Part IV. Core Messaging
This section covers all aspects of the core messaging API in Spring Integration. Here you will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 27

4. Messaging Channels

4.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows.

public interface MessageChannel {

 boolean send(Message message);

 boolean send(Message message, long timeout);

}

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here is the definition of PollableChannel.

public interface PollableChannel extends MessageChannel {

 Message<?> receive();

 Message<?> receive(long timeout);

}

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHandler s. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface SubscribableChannel extends MessageChannel {

 boolean subscribe(MessageHandler handler);

 boolean unsubscribe(MessageHandler handler);

}

Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 28

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending Event Messages whose primary role
is notification as opposed to Document Messages which are generally intended to be processed
by a single handler. Note that the PublishSubscribeChannel is intended for sending only.
Since it broadcasts to its subscribers directly when its send(Message) method is invoked,
consumers cannot poll for Messages (it does not implement PollableChannel and therefore has no
receive() method). Instead, any subscriber must be a MessageHandler itself, and the subscriber’s
handleMessage(Message) method will be invoked in turn.

Prior to version 3.0, invoking the send method on a PublishSubscribeChannel that had
no subscribers returned false. When used in conjunction with a MessagingTemplate, a
MessageDeliveryException was thrown. Starting with version 3.0, the behavior has changed such
that a send is always considered successful if at least the minimum subscribers are present (and
successfully handle the message). This behavior can be modified by setting the minSubscribers
property, which defaults to 0.

Note

If a TaskExecutor is used, only the presence of the correct number of subscribers is used for
this determination, because the actual handling of the message is performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the PublishSubscribeChannel, the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default no-
argument constructor (providing an essentially unbounded capacity of Integer.MAX_VALUE) as well
as a constructor that accepts the queue capacity:

public QueueChannel(int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but
if the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note however, that calls to the no-arg versions of send() and receive()
will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the PriorityChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the priority header within each message. However,
for custom priority determination logic, a comparator of type Comparator<Message<?>> can be
provided to the PriorityChannel's constructor.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 29

RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until another
party invokes the channel’s receive() method or vice-versa. Internally, this implementation is
quite similar to the QueueChannel except that it uses a SynchronousQueue (a zero-capacity
implementation of BlockingQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel, the message would have been stored to
the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only by
default. When persistence is required, you can either provide a message-store attribute within
the queue element to reference a persistent MessageStore implementation, or you can replace
the local channel with one that is backed by a persistent broker, such as a JMS-backed channel
or Channel Adapter. The latter option allows you to take advantage of any JMS provider’s
implementation for message persistence, and it will be discussed in Chapter 21, JMS Support.
However, when buffering in a queue is not necessary, the simplest approach is to rely upon the
DirectChannel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as
the replyChannel header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for a reply
Message. This is very similar to the implementation used internally by many of Spring Integration’s
request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described
above. It implements the SubscribableChannel interface instead of the PollableChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however,
it differs from the PublishSubscribeChannel in that it will only send each Message to a single
subscribed MessageHandler.

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides" of the channel. For example,
if a handler is subscribed to a DirectChannel, then sending a Message to that channel will trigger
invocation of that handler’s handleMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler’s invocation (e.g. updating a database record) will play a role in determining the ultimate result
of that transaction (commit or rollback).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 30

Note

Since the DirectChannel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based PollableChannels. Likewise, if a channel needs to broadcast messages,
it should not be a DirectChannel but rather a PublishSubscribeChannel. Below you will
see how each of these can be configured.

The DirectChannel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy exposed via load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the Message
Dispatcher to help determine how Messages are distributed amongst Message Handlers in the case
that there are multiple Message Handlers subscribed to the same channel. As a convenience the
load-balancer attribute exposes enumeration of values pointing to pre-existing implementations of
LoadBalancingStrategy. The "round-robin" (load-balances across the handlers in rotation) and
"none" (for the cases where one wants to explicitely disable load balancing) are the only available values.
Other strategy implementations may be added in future versions. However, since version 3.0 you can
provide your own implementation of the LoadBalancingStrategy and inject it using load-balancer-
ref attribute which should point to a bean that implements LoadBalancingStrategy.

<int:channel id="lbRefChannel">

 <int:dispatcher load-balancer-ref="lb"/>

</int:channel>

<bean id="lb" class="foo.bar.SampleLoadBalancingStrategy"/>

Note that load-balancer or load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in combination with a boolean failover property. If the "failover" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback
in the same fixed order sequence every time an error occurs, no load-balancing strategy should be
provided. In other words, the dispatcher still supports the failover boolean property even when no load-
balancing is enabled. Without load-balancing, however, the invocation of handlers will always begin with
the first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The ExecutorChannel is a point-to-point channel that supports the same dispatcher configuration
as DirectChannel (load-balancing strategy and the failover boolean property). The key difference

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 31

between these two dispatching channel types is that the ExecutorChannel delegates to an instance
of TaskExecutor to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions spanning the sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
ThreadPoolExecutor.CallerRunsPolicy), the sender’s thread will execute the method
directly anytime the thread pool is at its maximum capacity and the executor’s work queue is full.
Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

Scoped Channel

Spring Integration 1.0 provided a ThreadLocalChannel implementation, but that has been removed
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here’s an example of a ThreadLocal-based
scope being applied to a channel, including the registration of the Scope itself.

<int:channel id="threadScopedChannel" scope="thread">

 <int:queue />

</int:channel>

<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">

 <property name="scopes">

 <map>

 <entry key="thread" value="org.springframework.context.support.SimpleThreadScope" />

 </map>

 </property>

</bean>

The channel above also delegates to a queue internally, but the channel is bound to the current thread,
so the contents of the queue are as well. That way the thread that sends to the channel will later be able to
receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where DirectChannels are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal" channel.
If that terminal channel is thread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopes in addition to Thread Local.

Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive way.
Since the Message s are being sent to and received from MessageChannels, those channels provide
an opportunity for intercepting the send and receive operations. The ChannelInterceptor strategy
interface provides methods for each of those operations:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 32

public interface ChannelInterceptor {

 Message<?> preSend(Message<?> message, MessageChannel channel);

 void postSend(Message<?> message, MessageChannel channel, boolean sent);

 void afterSendCompletion(Message<?> message, MessageChannel channel, boolean sent, Exception ex);

 boolean preReceive(MessageChannel channel);

 Message<?> postReceive(Message<?> message, MessageChannel channel);

 void afterReceiveCompletion(Message<?> message, MessageChannel channel, Exception ex);

}

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel.addInterceptor(someChannelInterceptor);

The methods that return a Message instance can be used for transforming the Message or can return
null to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the preReceive method can return false to prevent the receive operation from proceeding.

Note

Keep in mind that receive() calls are only relevant for PollableChannels. In fact the
SubscribableChannel interface does not even define a receive() method. The reason
for this is that when a Message is sent to a SubscribableChannel it will be sent directly to
one or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel
sends to all of its subscribers). Therefore, the preReceive(..), postReceive(..) and
afterReceiveCompletion(..) interceptor methods are only invoked when the interceptor is
applied to a PollableChannel.

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor
that sends the Message to another channel without otherwise altering the existing flow. It can be very
useful for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
ChannelInterceptorAdapter class is also available for sub-classing. It provides no-op methods
(the void method is empty, the Message returning methods return the Message as-is, and the boolean
method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannelInterceptor extends ChannelInterceptorAdapter {

 private final AtomicInteger sendCount = new AtomicInteger();

 @Override

 public Message<?> preSend(Message<?> message, MessageChannel channel) {

 sendCount.incrementAndGet();

 return message;

 }

}

Tip

The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted in

http://eaipatterns.com/WireTap.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 33

the first place. Additionally, the relationship between send and receive interception depends on
the timing of separate sender and receiver threads. For example, if a receiver is already blocked
while waiting for a message the order could be: preSend, preReceive, postReceive, postSend.
However, if a receiver polls after the sender has placed a message on the channel and already
returned, the order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive.
The time that elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen!). Obviously, the type of queue also plays a
role (e.g. rendezvous vs. priority). The bottom line is that you cannot rely on the order beyond the
fact that preSend will precede postSend and preReceive will precede postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the ChannelInterceptor provides
new methods - afterSendCompletion() and afterReceiveCompletion(). They are invoked
after send()/receive() calls, regardless of any exception that is raised, thus allowing for resource
cleanup. Note, the Channel invokes these methods on the ChannelInterceptor List in the reverse order
of the initial preSend()/preReceive() calls.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code from the messaging system. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides a MessagingTemplate that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

MessagingTemplate template = new MessagingTemplate();

Message reply = template.sendAndReceive(someChannel, new GenericMessage("test"));

In that example, a temporary anonymous channel would be created internally by the template. The
sendTimeout and receiveTimeout properties may also be set on the template, and other exchange types
are also supported.

public boolean send(final MessageChannel channel, final Message<?> message) { ...

}

public Message<?> sendAndReceive(final MessageChannel channel, final Message<?> request) { ..

}

public Message<?> receive(final PollableChannel<?> channel) { ...

}

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in the section called “Enter the
GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<int:channel id="exampleChannel"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 34

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publish-
subscribe-channel/> element:

<int:publish-subscribe-channel id="exampleChannel"/>

When using the <channel/> element without any sub-elements, it will create a DirectChannel
instance (a SubscribableChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the pollable
channel types (as described in the section called “Message Channel Implementations”). Examples of
each are shown below.

DirectChannel Configuration

As mentioned above, DirectChannel is the default type.

<int:channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <dispatcher/> sub-element and configure the attributes:

<int:channel id="failFastChannel">

 <int:dispatcher failover="false"/>

</channel>

<int:channel id="channelWithFixedOrderSequenceFailover">

 <int:dispatcher load-balancer="none"/>

</int:channel>

Datatype Channel Configuration

There are times when a consumer can only process a particular type of payload and you need to
therefore ensure the payload type of input Messages. Of course the first thing that comes to mind is
Message Filter. However all that Message Filter will do is filter out Messages that are not compliant with
the requirements of the consumer. Another way would be to use a Content Based Router and route
Messages with non-compliant data-types to specific Transformers to enforce transformation/conversion
to the required data-type. This of course would work, but a simpler way of accomplishing the same thing
is to apply the Datatype Channel pattern. You can use separate Datatype Channels for each specific
payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide
the fully-qualified class name in the channel element’s datatype attribute:

<int:channel id="numberChannel" datatype="java.lang.Number"/>

Note that the type check passes for any type that is assignable to the channel’s datatype. In other
words, the "numberChannel" above would accept messages whose payload is java.lang.Integer
or java.lang.Double. Multiple types can be provided as a comma-delimited list:

<int:channel id="stringOrNumberChannel" datatype="java.lang.String,java.lang.Number"/>

So the numberChannel above will only accept Messages with a data-type of java.lang.Number.
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named integrationConversionService that is an instance of Spring’s
Conversion Service. If not, then an Exception would be thrown immediately, but if you do have an

http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 35

"integrationConversionService" bean defined, it will be used in an attempt to convert the Message’s
payload to the acceptable type.

You can even register custom converters. For example, let’s say you are sending a Message with a
String payload to the numberChannel we configured above.

MessageChannel inChannel = context.getBean("numberChannel", MessageChannel.class);

inChannel.send(new GenericMessage<String>("5"));

Typically this would be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Exception in thread "main" org.springframework.integration.MessageDeliveryException:

Channel 'numberChannel'

expected one of the following datataypes [class java.lang.Number],

but received [class java.lang.String]

…

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do is implement a Converter.

public static class StringToIntegerConverter implements Converter<String, Integer> {

 public Integer convert(String source) {

 return Integer.parseInt(source);

 }

}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strToInt"/>

<bean id="strToInt" class="org.springframework.integration.util.Demo.StringToIntegerConverter"/>

When the converter element is parsed, it will create the "integrationConversionService" bean on-demand
if one is not already defined. With that Converter in place, the send operation would now be successful
since the Datatype Channel will use that Converter to convert the String payload to an Integer.

Note

For more information regarding Payload Type Conversion, please read the section called “Payload
Type Conversion”.

Beginning with version 4.0, the integrationConversionService is invoked by the
DefaultDatatypeChannelMessageConverter, which looks up the conversion service in the
application context. To use a different conversion technique, you can specify the message-converter
attribute on the channel. This must be a reference to a MessageConverter implementation. Only the
fromMessage method is used, which provides the converter with access to the message headers (for
example if the conversion might need information from the headers, such as content-type). The
method can return just the converted payload, or a full Message object. If the latter, the converter must
be careful to copy all the headers from the inbound message.

Alternatively, declare a <bean/> of type MessageConverter with an id
"datatypeChannelMessageConverter" and that converter will be used by all channels with a
datatype.

QueueChannel Configuration

To create a QueueChannel, use the <queue/> sub-element. You may specify the channel’s capacity:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 36

<int:channel id="queueChannel">

 <queue capacity="25"/>

</int:channel>

Note

If you do not provide a value for the capacity attribute on this <queue/> sub-element, the resulting
queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation
of the MessageGroupStore strategy interface. For more details on MessageGroupStore and
MessageStore see Section 10.4, “Message Store”.

Important

The capacity attribute is not allowed when the message-store attribute is used.

When a QueueChannel receives a Message, it will add it to the Message Store, and when a Message
is polled from a QueueChannel, it is removed from the Message Store.

By default, a QueueChannel stores its Messages in an in-memory Queue and can therefore lead to the
lost message scenario mentioned above. However Spring Integration provides persistent stores, such
as the JdbcChannelMessageStore.

You can configure a Message Store for any QueueChannel by adding the message-store attribute
as shown in the next example.

<int:channel id="dbBackedChannel">

 <int:queue message-store="channelStore"/>

</int:channel>

<bean id="channelStore" class="o.s.i.jdbc.store.JdbcChannelMessageStore">

 <property name="dataSource" ref="dataSource"/>

 <property name="channelMessageStoreQueryProvider" ref="queryProvider"/>

</bean>

The Spring Integration JDBC module also provides schema DDL for a number of popular databases.
These schemas are located in the org.springframework.integration.jdbc.store.channel package of that
module (spring-integration-jdbc).

Important

One important feature is that with any transactional persistent store (e.g.,
JdbcChannelMessageStore), as long as the poller has a transaction configured, a Message
removed from the store will only be permanently removed if the transaction completes
successfully, otherwise the transaction will roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 37

provide your own implementation of the MessageGroupStore interface if you cannot find one that meets
your particular needs.

Since version 4.0, it is recommended that QueueChannel s are configured to use a
ChannelMessageStore if possible. These are generally optimized for this use, when compared with
a general message store. If the ChannelMessageStore is a ChannelPriorityMessageStore the
messages will be received in FIFO within priority order. The notion of priority is determined by the
message store implementation. For example the Java Configuration for the the section called “MongoDB
Channel Message Store”:

@Bean

public BasicMessageGroupStore mongoDbChannelMessageStore(MongoDbFactory mongoDbFactory) {

 MongoDbChannelMessageStore store = new MongoDbChannelMessageStore(mongoDbFactory);

 store.setPriorityEnabled(true);

 return store;

}

@Bean

public PollableChannel priorityQueue(BasicMessageGroupStore mongoDbChannelMessageStore) {

 return new PriorityChannel(new MessageGroupQueue(mongoDbChannelMessageStore, "priorityQueue"));

}

Note

Pay attention to the MessageGroupQueue class. That is a BlockingQueue implementation to
utilize the MessageGroupStore operations.

The same with Java DSL may look like:

@Bean

public IntegrationFlow priorityFlow(PriorityCapableChannelMessageStore mongoDbChannelMessageStore) {

 return IntegrationFlows.from((Channels c) ->

 c.priority("priorityChannel", mongoDbChannelMessageStore, "priorityGroup"))

 .get();

}

Another option to customize the QueueChannel environment is provided by the ref attribute of
the <int:queue> sub-element or particular constructor. This attribute implies the reference to any
java.util.Queue implementation. For example Hazelcast distributed IQueue:

@Bean

public HazelcastInstance hazelcastInstance() {

 return Hazelcast.newHazelcastInstance(new Config()

 .setProperty("hazelcast.logging.type", "log4j"));

}

@Bean

public PollableChannel distributedQueue() {

 return new QueueChannel(hazelcastInstance()

 .getQueue("springIntegrationQueue"));

}

PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the <publish-subscribe-channel/> element. When
using this element, you can also specify the task-executor used for publishing Messages (if none
is specified it simply publishes in the sender’s thread):

<int:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

https://hazelcast.com/use-cases/imdg/imdg-messaging/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 38

If you are providing a Resequencer or Aggregator downstream from a PublishSubscribeChannel,
then you can set the apply-sequence property on the channel to true. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior
to passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be
set to 5, and the Messages would have sequence-number header values ranging from 1 to 5.

<int:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note

The apply-sequence value is false by default so that a Publish Subscribe Channel can
send the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

ExecutorChannel

To create an ExecutorChannel, add the <dispatcher> sub-element along with a task-executor
attribute. Its value can reference any TaskExecutor within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<int:channel id="executorChannel">

 <int:dispatcher task-executor="someExecutor"/>

</int:channel>

Note

The load-balancer and failover options are also both available on the <dispatcher/> sub-
element as described above in the section called “DirectChannel Configuration”. The same
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with failover
enabled unless explicit configuration is provided for one or both of those attributes.

<int:channel id="executorChannelWithoutFailover">

 <int:dispatcher task-executor="someExecutor" failover="false"/>

</int:channel>

PriorityChannel Configuration

To create a PriorityChannel, use the <priority-queue/> sub-element:

<int:channel id="priorityChannel">

 <int:priority-queue capacity="20"/>

</int:channel>

By default, the channel will consult the priority header of the message. However, a custom
Comparator reference may be provided instead. Also, note that the PriorityChannel (like the other
types) does support the datatype attribute. As with the QueueChannel, it also supports a capacity
attribute. The following example demonstrates all of these:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 39

<int:channel id="priorityChannel" datatype="example.Widget">

 <int:priority-queue comparator="widgetComparator"

 capacity="10"/>

</int:channel>

Since version 4.0, the priority-channel child element supports the message-store option
(comparator and capacity are not allowed in that case). The message store must
be a PriorityCapableChannelMessageStore and, in this case. Implementations of the
PriorityCapableChannelMessageStore are currently provided for Redis, JDBC and MongoDB.
See the section called “QueueChannel Configuration” and Section 10.4, “Message Store” for more
information. You can find sample configuration in the section called “Backing Message Channels”.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does
not provide any additional configuration options to those described above, and its queue does not accept
any capacity value since it is a 0-capacity direct handoff queue.

<int:channel id="rendezvousChannel"/>

 <int:rendezvous-queue/>

</int:channel>

Scoped Channel Configuration

Any channel can be configured with a "scope" attribute.

<int:channel id="threadLocalChannel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in the section called “Channel Interceptors”.
The <interceptors/> sub-element can be added within a <channel/> (or the more specific
element types). Provide the ref attribute to reference any Spring-managed object that implements the
ChannelInterceptor interface:

<int:channel id="exampleChannel">

 <int:interceptors>

 <ref bean="trafficMonitoringInterceptor"/>

 </int:interceptors>

</int:channel>

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel Interceptors provide a clean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration while
also enabling interceptors to apply to multiple channels, Spring Integration provides Global Interceptors.
Look at the example below:

<int:channel-interceptor pattern="input*, bar*, foo, !baz*" order="3">

 <bean class="foo.barSampleInterceptor"/>

</int:channel-interceptor>

or

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 40

<int:channel-interceptor ref="myInterceptor" pattern="input*, bar*, foo, !baz*" order="3"/>

<bean id="myInterceptor" class="foo.barSampleInterceptor"/>

Each <channel-interceptor/> element allows you to define a global interceptor which will be
applied on all channels that match any patterns defined via the pattern attribute. In the above case
the global interceptor will be applied on the foo channel and all other channels that begin with bar or
input and not to channel starting with baz (starting with version 5.0).

Warning

The addition of this syntax to the pattern causes one possible (although perhaps unlikely) problem.
If you have a bean "!foo"and you included a pattern "!foo" in your channel-interceptor’s
pattern patterns; it will no long match; the pattern will now match all beans not named foo.
In this case, you can escape the ! in the pattern with \. The pattern "\!foo" means match a
bean named "!foo".

The order attribute allows you to manage where this interceptor will be injected if there are multiple
interceptors on a given channel. For example, channel inputChannel could have individual interceptors
configured locally (see below):

<int:channel id="inputChannel">

 <int:interceptors>

 <int:wire-tap channel="logger"/>

 </int:interceptors>

</int:channel>

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides a
very simple mechanism for defining the order of interceptor execution. A positive number in the order
attribute will ensure interceptor injection after any existing interceptors and a negative number will ensure
that the interceptor is injected before existing interceptors. This means that in the above example, the
global interceptor will be injected AFTER (since its order is greater than 0) the wire-tap interceptor
configured locally. If there were another global interceptor with a matching pattern, its order would be
determined by comparing the values of the order attribute. To inject a global interceptor BEFORE the
existing interceptors, use a negative value for the order attribute.

Note

Note that both the order and pattern attributes are optional. The default value for order will
be 0 and for pattern, the default is * (to match all channels).

Starting with version 4.3.15, you can configure a property
spring.integration.postProcessDynamicBeans = true to apply any global interceptors
to dynamically created MessageChannel beans. See Section E.5, “Global Properties” for more
information.

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an <interceptors/> element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration’s logging Channel Adapter as follows:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 41

<int:channel id="in">

 <int:interceptors>

 <int:wire-tap channel="logger"/>

 </int:interceptors>

</int:channel>

<int:logging-channel-adapter id="logger" level="DEBUG"/>

Tip

The logging-channel-adapter also accepts an expression attribute so that you can evaluate a
SpEL expression against payload and/or headers variables. Alternatively, to simply log the full
Message toString() result, provide a value of "true" for the log-full-message attribute. That is
false by default so that only the payload is logged. Setting that to true enables logging of
all headers in addition to the payload. The expression option does provide the most flexibility,
however (e.g. expression="payload.user.name").

A little more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (Section B.1,
“Message Publishing Configuration”) is that they are automatically asynchronous in nature. Wire-tap as
a component is not invoked asynchronously be default. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the Message Channel. What makes certain
parts of the message flow sync or async is the type of Message Channel that has been configured within
that flow. That is one of the primary benefits of the Message Channel abstraction. From the inception
of the framework, we have always emphasized the need and the value of the Message Channel as
a first-class citizen of the framework. It is not just an internal, implicit realization of the EIP pattern, it
is fully exposed as a configurable component to the end user. So, the Wire-tap component is ONLY
responsible for performing the following 3 tasks:

• intercept a message flow by tapping into a channel (e.g., channelA)

• grab each message

• send the message to another channel (e.g., channelB)

It is essentially a variation of the Bridge, but it is encapsulated within a channel definition (and hence
easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically forks another
message flow. Is that flow synchronous or asynchronous? The answer simply depends on the type of
Message Channel that channelB is. And, now you know that we have: Direct Channel, Pollable Channel,
and Executor Channel as options. The last two do break the thread boundary making communication
via such channels asynchronous simply because the dispatching of the message from that channel
to its subscribed handlers happens on a different thread than the one used to send the message to
that channel. That is what is going to make your wire-tap flow sync or async. It is consistent with other
components within the framework (e.g., Message Publisher) and actually brings a level of consistency
and simplicity by sparing you from worrying in advance (other than writing thread safe code) whether
a particular piece of code should be implemented as sync or async. The actual wiring of two pieces of
code (component A and component B) via Message Channel is what makes their collaboration sync or
async. You may even want to change from sync to async in the future and Message Channel is what’s
going to allow you to do it swiftly without ever touching the code.

One final point regarding the Wire Tap is that, despite the rationale provided above for not being async
by default, one should keep in mind it is usually desirable to hand off the Message as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap’s outbound

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 42

channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break a transactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit Messages to be sent within the original transaction. As an example,
you might connect the wire-tap to a JMS outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of a JMS Message can occur within the transaction while 2) it is still a "fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

Important

Starting with version 4.0, it is important to avoid circular references when an interceptor (such
as WireTap) references a channel itself. You need to exclude such channels from those
being intercepted by the current interceptor. This can be done with appropriate patterns or
programmatically. If you have a custom ChannelInterceptor that references a channel,
consider implementing VetoCapableInterceptor. That way, the framework will ask the
interceptor if it’s OK to intercept each channel that is a candidate based on the pattern. You can
also add runtime protection in the interceptor methods that ensures that the channel is not one
that is referenced by the interceptor. The WireTap uses both of these techniques.

Starting with version 4.3, the WireTap has additional constructors that take a channelName instead
of a MessageChannel instance. This can be convenient for Java Configuration and when channel
auto-creation logic is being used. The target MessageChannel bean is resolved from the provided
channelName later, on the first interaction with the interceptor.

Important

Channel resolution requires a BeanFactory so the wire tap instance must be a Spring-managed
bean.

This late-binding approach also allows simplification of typical wire-tapping patterns with Java DSL
configuration:

@Bean

public PollableChannel myChannel() {

 return MessageChannels.queue()

 .wireTap("loggingFlow.input")

 .get();

}

@Bean

public IntegrationFlow loggingFlow() {

 return f -> f.log();

}

Conditional Wire Taps

Wire taps can be made conditional, using the selector or selector-expression attributes.
The selector references a MessageSelector bean, which can determine at runtime whether the
message should go to the tap channel. Similarly, the` selector-expression` is a boolean SpEL expression
that performs the same purpose - if the expression evaluates to true, the message will be sent to the
tap channel.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the the section called “Global Channel
Interceptor Configuration”. Simply configure a top level wire-tap element. Now, in addition to the

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 43

normal wire-tap namespace support, the pattern and order attributes are supported and work in
exactly the same way as with the channel-interceptor

<int:wire-tap pattern="input*, bar*, foo" order="3" channel="wiretapChannel"/>

Tip

A global wire tap provides a convenient way to configure a single channel wire tap externally
without modifying the existing channel configuration. Simply set the pattern attribute to the
target channel name. For example, This technique may be used to configure a test case to verify
messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: errorChannel and nullChannel. The nullChannel acts like /dev/null, simply logging
any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for a reply that you don’t care about, you can set the affected component’s output-
channel attribute to nullChannel (the name nullChannel is reserved within the application context).
The errorChannel is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Section E.4, “Error Handling”.

See also Section 9.4, “Message Channels” in Java DSL chapter for more information about message
channel and interceptors.

4.2 Poller

Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following 2 instances:

• PollingConsumer

• EventDrivenConsumer

The actual implementation depends on which type of channel these Endpoints are
connected to. A channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface will produce an instance of
EventDrivenConsumer. On the other hand, a channel adapter connected to a channel that
implements the org.springframework.messaging.PollableChannel interface (e.g. a QueueChannel) will
produce an instance of PollingConsumer.

Polling Consumers allow Spring Integration components to actively poll for Messages, rather than to
process Messages in an event-driven manner.

They represent a critical cross cutting concern in many messaging scenarios. In Spring Integration,
Polling Consumers are based on the pattern with the same name, which is described in the book
"Enterprise Integration Patterns" by Gregor Hohpe and Bobby Woolf. You can find a description of the
pattern on the book’s website at:

http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 44

Pollable Message Source

Furthermore, in Spring Integration a second variation of the Polling Consumer pattern exists.
When Inbound Channel Adapters are being used, these adapters are often wrapped by a
SourcePollingChannelAdapter. For example, when retrieving messages from a remote FTP
Server location, the adapter described in Section 16.4, “FTP Inbound Channel Adapter” is configured
with a poller to retrieve messages periodically. So, when components are configured with Pollers, the
resulting instances are of one of the following types:

• PollingConsumer

• SourcePollingChannelAdapter

This means, Pollers are used in both inbound and outbound messaging scenarios. Here are some use-
cases that illustrate the scenarios in which Pollers are used:

• Polling certain external systems such as FTP Servers, Databases, Web Services

• Polling internal (pollable) Message Channels

• Polling internal services (E.g. repeatedly execute methods on a Java class)

Note

AOP Advice classes can be applied to pollers, in an advice-chain. An example being
a transaction advice to start a transaction. Starting with version 4.1 a PollSkipAdvice is
provided. Pollers use triggers to determine the time of the next poll. The PollSkipAdvice
can be used to suppress (skip) a poll, perhaps because there is some downstream condition
that would prevent the message to be processed properly. To use this advice, you have to
provide it with an implementation of a PollSkipStrategy. Starting with version 4.2.5, a
SimplePollSkipStrategy is provided. Add an instance as a bean to the application context,
inject it into a PollSkipAdvice and add that to the poller’s advice chain. To skip polling, call
skipPolls(), to resume polling, call reset(). Version 4.2 added more flexibility in this area -
see the section called “Conditional Pollers for Message Sources”.

This chapter is meant to only give a high-level overview regarding Polling Consumers and how they
fit into the concept of message channels - Section 4.1, “Message Channels” and channel adapters
- Section 4.3, “Channel Adapter”. For more in-depth information regarding Messaging Endpoints in
general and Polling Consumers in particular, please see Section 8.1, “Message Endpoints”.

Deferred Acknowledgment Pollable Message Source

Starting with version 5.0.1, certain modules provide MessageSource implementations that support
deferring acknowledgment until the downstream flow completes (or hands off the message to another
thread). This is currently limited to the AmqpMessageSource and the KafkaMessageSource provided
by the spring-kafka-integration extension project, version 3.0.1 or higher.

With these message sources, the
IntegrationMessageHeaderAccessor.ACKNOWLEDGMENT_CALLBACK header (see the section
called “MessageHeaderAccessor API”) is added to the message. The value of the header is an instance
of AcknowledgmentCallback:

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html
https://github.com/spring-projects/spring-integration-kafka

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 45

@FunctionalInterface

public interface AcknowledgmentCallback {

 void acknlowledge(Status status);

 boolean isAcknowledged();

 void noAutoAck();

 default boolean isAutoAck();

 enum Status {

 /**

 * Mark the message as accepted.

 */

 ACCEPT,

 /**

 * Mark the message as rejected.

 */

 REJECT,

 /**

 * Reject the message and requeue so that it will be redelivered.

 */

 REQUEUE

 }

}

Not all message sources (e.g. Kafka) support the REJECT status; it is treated the same as ACCEPT.

Applications can acknowledge a message at any time:

Message<?> received = source.receive();

...

StaticMessageHeaderAccessor.getAcknowledgmentCallback(received)

 .acknowledge(Status.ACCEPT);

If the MessageSource is wired into a SourcePollingChannelAdapter, when the poller thread
returns to the adapter after the downstream flow completes, the adapter will check if the
acknowledgment has already been acknowledged and, if not, ACCEPT it (or REJECT it if the flow throws
an exception).

To perform ad-hoc polling of a MessageSource a MessageSourcePollingTemplate is provided;
this, too will take care of ACCEPT ing or REJECT ing the AcknowledgmentCallback when the
MessageHandler callback returns (or throws an exception).

MessageSourcePollingTemplate template =

 new MessageSourcePollingTemplate(this.source);

template.poll(h -> {

 ...

});

In both cases (SourcePollingChannelAdapter and MessageSourcePollingTemplate), you
can disable auto ack/nack by calling noAutoAck() on the callback. You might do this if you hand off
the message to another thread and wish to acknowledge later. Not all implementations support this (for
example Apache Kafka because the offset commit has to be performed on the same thread).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 46

Conditional Pollers for Message Sources

Background

Advice objects, in an advice-chain on a poller, advise the whole polling task (message retrieval
and processing). These "around advice" methods do not have access to any context for the poll, just
the poll itself. This is fine for requirements such as making a task transactional, or skipping a poll due
to some external condition as discussed above. What if we wish to take some action depending on the
result of the receive part of the poll, or if we want to adjust the poller depending on conditions?

"Smart" Polling

Version 4.2 introduced the AbstractMessageSourceAdvice. Any Advice objects in the advice-
chain that subclass this class, are applied to just the receive operation. Such classes implement the
following methods:

beforeReceive(MessageSource<?> source)

This method is called before the MessageSource.receive() method. It enables you to examine
and or reconfigure the source at this time. Returning false cancels this poll (similar to the
PollSkipAdvice mentioned above).

Message<?> afterReceive(Message<?> result, MessageSource<?> source)

This method is called after the receive() method; again, you can reconfigure the source, or take any
action perhaps depending on the result (which can be null if there was no message created by the
source). You can even return a different message!

Advice Chain Ordering

It is important to understand how the advice chain is processed during initialization. Advice
objects that do not extend AbstractMessageSourceAdvice are applied to the whole poll
process and are all invoked first, in order, before any AbstractMessageSourceAdvice; then
AbstractMessageSourceAdvice objects are invoked in order around the MessageSource
receive() method. If you have, say Advice objects a, b, c, d, where b and d are
AbstractMessageSourceAdvice, they will be applied in the order a, c, b, d. Also, if a
MessageSource is already a Proxy, the AbstractMessageSourceAdvice will be invoked
after any existing Advice objects. If you wish to change the order, you should wire up the proxy
yourself.

SimpleActiveIdleMessageSourceAdvice

This advice is a simple implementation of AbstractMessageSourceAdvice, when used in
conjunction with a DynamicPeriodicTrigger, it adjusts the polling frequency depending on whether
or not the previous poll resulted in a message or not. The poller must also have a reference to the same
DynamicPeriodicTrigger.

Important: Async Handoff

This advice modifies the trigger based on the receive() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a task-executor. To use this
advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an ExecutorChannel.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 47

CompoundTriggerAdvice

This advice allows the selection of one of two triggers based on whether a poll returns a message or
not. Consider a poller that uses a CronTrigger; CronTrigger s are immutable so cannot be altered
once constructed. Consider a use case where we want to use a cron expression to trigger a poll once
each hour but, if no message is received, poll once per minute and, when a message is retrieved, revert
to using the cron expression.

The advice (and poller) use a CompoundTrigger for this purpose. The trigger’s primary trigger can be
a CronTrigger. When the advice detects that no message is received, it adds the secondary trigger to
the CompoundTrigger. When the CompoundTrigger 's nextExecutionTime method is invoked,
it will delegate to the secondary trigger, if present; otherwise the primary trigger.

The poller must also have a reference to the same CompoundTrigger.

The following shows the configuration for the hourly cron expression with fall-back to every minute…

<int:inbound-channel-adapter channel="nullChannel" auto-startup="false">

 <bean class="org.springframework.integration.endpoint.PollerAdviceTests.Source" />

 <int:poller trigger="compoundTrigger">

 <int:advice-chain>

 <bean class="org.springframework.integration.aop.CompoundTriggerAdvice">

 <constructor-arg ref="compoundTrigger"/>

 <constructor-arg ref="secondary"/>

 </bean>

 </int:advice-chain>

 </int:poller>

</int:inbound-channel-adapter>

<bean id="compoundTrigger" class="org.springframework.integration.util.CompoundTrigger">

 <constructor-arg ref="primary" />

</bean>

<bean id="primary" class="org.springframework.scheduling.support.CronTrigger">

 <constructor-arg value="0 0 * * * *" /> <!-- top of every hour -->

</bean>

<bean id="secondary" class="org.springframework.scheduling.support.PeriodicTrigger">

 <constructor-arg value="60000" />

</bean>

Important: Async Handoff

This advice modifies the trigger based on the receive() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a task-executor. To use this
advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an ExecutorChannel.

4.3 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as JMS, File, HTTP, Web Services, Mail, and more. Those will be discussed
in upcoming chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 48

Configuring An Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
a non-null return value to a MessageChannel after converting it to a Message. When the adapter’s
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskScheduler according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a poller element with one of the
scheduling attributes, such as fixed-rate or cron.

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">

 <int:poller fixed-rate="5000"/>

</int:inbound-channel-adapter>

<int:inbound-channel-adapter ref="source2" method="method2" channel="channel2">

 <int:poller cron="30 * 9-17 * * MON-FRI"/>

</int:channel-adapter>

Also see the section called “Channel Adapter Expressions and Scripts”.

Note

If no poller is provided, then a single default poller must be registered within the context. See the
section called “Endpoint Namespace Support” for more detail.

Important: Poller Configuration

Some inbound-channel-adapter types are backed by a
SourcePollingChannelAdapter which means they contain Poller configuration which will
poll the MessageSource (invoke a custom method which produces the value that becomes a
Message payload) based on the configuration specified in the Poller.

For example:

<int:poller max-messages-per-poll="1" fixed-rate="1000"/>

<int:poller max-messages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such task
(poll) the method (which results in the production of the Message) will be invoked once based on
the max-messages-per-poll attribute value. In the second configuration the polling task will
be invoked 10 times per poll or until it returns null thus possibly producing 10 Messages per poll
while each poll happens at 1 second intervals. However what if the configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max-messages-per-poll specified. As you’ll learn later the identical poller
configuration in the PollingConsumer (e.g., service-activator, filter, router etc.) would have a
default value of -1 for max-messages-per-poll which means "execute poling task non-stop
unless polling method returns null (e.g., no more Messages in the QueueChannel)" and then sleep
for 1 second.

However in the SourcePollingChannelAdapter it is a bit different. The default value for max-
messages-per-poll will be set to 1 by default unless you explicitly set it to a negative value
(e.g., -1). It is done so to make sure that poller can react to a LifeCycle events (e.g., start/stop) and
prevent it from potentially spinning in the infinite loop if the implementation of the custom method
of the MessageSource has a potential to never return null and happened to be non-interruptible.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 49

However if you are sure that your method can return null and you need the behavior where you
want to poll for as many sources as available per each poll, then you should explicitly set max-
messages-per-poll to a negative value.

<int:poller max-messages-per-poll="-1" fixed-rate="1000"/>

Configuring An Outbound Channel Adapter

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<int:outbound-channel-adapter channel="channel1" ref="target" method="handle"/>

<beans:bean id="target" class="org.Foo"/>

If the channel being adapted is a PollableChannel, provide a poller sub-element:

<int:outbound-channel-adapter channel="channel2" ref="target" method="handle">

 <int:poller fixed-rate="3000" />

</int:outbound-channel-adapter>

<beans:bean id="target" class="org.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <outbound-channel-adapter> definitions. However if the consumer implementation is only
referenced by a single definition of the <outbound-channel-adapter>, you can define it as inner
bean:

<int:outbound-channel-adapter channel="channel" method="handle">

 <beans:bean class="org.Foo"/>

</int:outbound-channel-adapter>

Note

Using both the "ref" attribute and an inner handler definition in the same <outbound-channel-
adapter> configuration is not allowed as it creates an ambiguous condition. Such a configuration
will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of DirectChannel. The created channel’s name will match the "id" attribute of
the <inbound-channel-adapter> or <outbound-channel-adapter> element. Therefore, if the
"channel" is not provided, the "id" is required.

Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <inbound-channel-adapter> and
<outbound-channel-adapter> also provide support for SpEL expression evaluation. To use SpEL,
provide the expression string via the expression attribute instead of providing the ref and method
attributes that are used for method-invocation on a bean. When an Expression is evaluated, it follows
the same contract as method-invocation where: the expression for an <inbound-channel-adapter>
will generate a message anytime the evaluation result is a non-null value, while the expression for an
<outbound-channel-adapter> must be the equivalent of a void returning method invocation.

Starting with Spring Integration 3.0, an <int:inbound-channel-adapter/> can also be configured
with a SpEL <expression/> (or even with <script/>) sub-element, for when more sophistication is

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 50

required than can be achieved with the simple expression attribute. If you provide a script as a Resource
using the location attribute, you can also set the refresh-check-delay allowing the resource to be
refreshed periodically. If you want the script to be checked on each poll, you would need to coordinate
this setting with the poller’s trigger:

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">

 <int:poller max-messages-per-poll="1" fixed-delay="5000"/>

 <script:script lang="ruby" location="Foo.rb" refresh-check-delay="5000"/>

</int:inbound-channel-adapter>

Also see the cacheSeconds property on the ReloadableResourceBundleExpressionSource
when using the <expression/> sub-element. For more information regarding expressions see
Appendix A, Spring Expression Language (SpEL), and for scripts - Section 8.8, “Groovy support” and
Section 8.7, “Scripting support”.

Important

The <int:inbound-channel-adapter/> is an endpoint that starts a message flow via
periodic triggering to poll some underlying MessageSource. Since, at the time of polling, there
is not yet a message object, expressions and scripts don’t have access to a root Message, so
there are no payload or headers properties that are available in most other messaging SpEL
expressions. Of course, the script can generate and return a complete Message object with
headers and payload, or just a payload, which will be added to a message with basic headers.

4.4 Messaging Bridge

Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels
or Channel Adapters. For example, you may want to connect a PollableChannel to a
SubscribableChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller’s trigger will determine the rate at which messages arrive on the second
channel, and the poller’s "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration’s role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the input-channel
and output-channel of a Transformer endpoint. If data format translation is not required, the Messaging
Bridge may indeed be sufficient.

Configuring a Bridge with XML

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<int:bridge input-channel="input" output-channel="output"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a PollableChannel
to a SubscribableChannel, and when performing this role, the Messaging Bridge may also serve
as a throttler:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 51

<int:bridge input-channel="pollable" output-channel="subscribable">

 <int:poller max-messages-per-poll="10" fixed-rate="5000"/>

 </int:bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration’s "stream" namespace.

<int-stream:stdin-channel-adapter id="stdin"/>

 <int-stream:stdout-channel-adapter id="stdout"/>

 <int:bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,
such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming
chapters.

Note

If no output-channel is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be thrown.

Configuring a Bridge with Java Configuration

@Bean

public PollableChannel polled() {

 return new QueueChannel();

}

@Bean

@BridgeFrom(value = "polled", poller = @Poller(fixedDelay = "5000", maxMessagesPerPoll = "10"))

public SubscribableChannel direct() {

 return new DirectChannel();

}

or

@Bean

@BridgeTo(value = "direct", poller = @Poller(fixedDelay = "5000", maxMessagesPerPoll = "10"))

public PollableChannel polled() {

 return new QueueChannel();

}

@Bean

public SubscribableChannel direct() {

 return new DirectChannel();

}

Or, using a BridgeHandler:

@Bean

@ServiceActivator(inputChannel = "polled",

 poller = @Poller(fixedRate = "5000", maxMessagesPerPoll = "10"))

public BridgeHandler bridge() {

 BridgeHandler bridge = new BridgeHandler();

 bridge.setOutputChannelName("direct");

 return bridge;

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 52

Configuring a Bridge with the Java DSL

@Bean

public IntegrationFlow bridgeFlow() {

 return IntegrationFlows.from("polled")

 .bridge(e -> e.poller(Pollers.fixedDelay(5000).maxMessagesPerPoll(10)))

 .channel("direct")

 .get();

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 53

5. Message Construction

5.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {

 T getPayload();

 MessageHeaders getHeaders();

}

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data’s type. As an
application evolves to support new types, or when the types themselves are modified and/or extended,
the messaging system will not be affected by such changes. On the other hand, when some component
in the messaging system does require access to information about the Message, such metadata can
typically be stored to and retrieved from the metadata in the Message Headers.

Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports
any Object types as header values. In fact, the MessageHeaders class implements the java.util.Map
interface:

public final class MessageHeaders implements Map<String, Object>, Serializable {

 ...

}

Note

Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an UnsupportedOperationException. The
same applies for remove and clear. Since Messages may be passed to multiple consumers, the
structure of the Map cannot be modified. Likewise, the Message’s payload Object can not be set
after the initial creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get(..) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 54

 Object someValue = message.getHeaders().get("someKey");

 CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

 Long timestamp = message.getHeaders().getTimestamp();

The following Message headers are pre-defined:

Table 5.1. Pre-defined Message Headers

Header Name Header Type Usage

MessageHeaders.ID java.util.UUID An identifier for this message instance. Changes each
time a message is mutated.

MessageHeaders.

 TIMESTAMP

java.lang.Long The time the message was created. Changes each
time a message is mutated.

MessageHeaders.

 REPLY_CHANNEL

java.lang.Object

(String or

 MessageChannel)

A channel to which a reply (if any) will be sent
when no explicit output channel is configured and
there is no ROUTING_SLIP or the ROUTING_SLIP
is exhausted. If the value is a String it must
represent a bean name, or have been generated by a
ChannelRegistry.

MessageHeaders.

 ERROR_CHANNEL

java.lang.Object

(String or

 MessageChannel)

A channel to which errors will be sent. If the value is a
String it must represent a bean name, or have been
generated by a ChannelRegistry.

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can also be configured. Constants for these headers can be found
in those modules where such headers exist, for example AmqpHeaders, JmsHeaders etc.

MessageHeaderAccessor API

Starting with Spring Framework 4.0 and Spring Integration 4.0, the core Messaging abstraction
has been moved to the spring-messaging module and the new MessageHeaderAccessor
API has been introduced to provide additional abstraction over Messaging implementations.
All (core) Spring Integration specific Message Headers constants are now declared in the
IntegrationMessageHeaderAccessor class:

Table 5.2. Pre-defined Message Headers

Header Name Header Type Usage

IntegrationMessageHeaderAccessor.

 CORRELATION_ID

java.lang.Object Used to correlate two or more
messages.

IntegrationMessageHeaderAccessor.

 SEQUENCE_NUMBER

java.lang.Integer Usually a sequence number
with a group of messages with a
SEQUENCE_SIZE but can also be
used in a <resequencer/> to
resequence an unbounded group of
messages.

IntegrationMessageHeaderAccessor.

 SEQUENCE_SIZE

java.lang.Integer The number of messages within a
group of correlated messages.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 55

Header Name Header Type Usage

IntegrationMessageHeaderAccessor.

 EXPIRATION_DATE

java.lang.Long Indicates when a message is
expired. Not used by the framework
directly but can be set with a
header enricher and used in a
<filter/> configured with an
UnexpiredMessageSelector.

IntegrationMessageHeaderAccessor.

 PRIORITY

java.lang.Integer Message priority; for example within
a PriorityChannel

IntegrationMessageHeaderAccessor.

 DUPLICATE_MESSAGE

java.lang.Boolean True if a message was detected as a
duplicate by an idempotent receiver
interceptor. See the section called
“Idempotent Receiver Enterprise
Integration Pattern”.

IntegrationMessageHeaderAccessor.

 CLOSEABLE_RESOURCE

java.io.Closeable This header is present if the
message is associated with a
Closeable which should be
closed when message processing
is complete. An example is the
Session associated with a
streamed file transfer using FTP,
SFTP, etc.

IntegrationMessageHeaderAccessor.

 DELIVERY_ATTEMPT

java.lang.

AtomicInteger

If a message-driven channel adapter
supports the configuration of a
RetryTemplate this header
contains the current delivery attempt.

IntegrationMessageHeaderAccessor.

 ACKNOWLEDGMENT_CALLBACK

o.s.i.support.

Acknowledgment

Callback

If a message source supports it,
a call back to accept, reject, or
requeue a message - see the section
called “Deferred Acknowledgment
Pollable Message Source”.

Convenient typed getters for some of these headers are provided on the
IntegrationMessageHeaderAccessor class:

IntegrationMessageHeaderAccessor accessor = new IntegrationMessageHeaderAccessor(message);

int sequenceNumber = accessor.getSequenceNumber();

Object correlationId = accessor.getCorrelationId();

...

The following headers also appear in the IntegrationMessageHeaderAccessor but are generally
not used by user code; their inclusion here is for completeness:

Table 5.3. Pre-defined Message Headers

Header Name Header Type Usage

IntegrationMessageHeaderAccessor.

 SEQUENCE_DETAILS

java.util.List<

List<Object>>

A stack of correlation data used
when nested correlation is

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 56

Header Name Header Type Usage

needed (e.g. splitter->...-
>splitter->...->aggregator-

>...->aggregator).

IntegrationMessageHeaderAccessor.

 ROUTING_SLIP

java.util.Map<

List<Object>,

 Integer>

See the section called “Routing Slip”.

Message ID Generation

When a message transitions through an application, each time it is mutated (e.g. by a transformer) a new
message id is assigned. The message id is a UUID. Beginning with Spring Integration 3.0, the default
strategy used for id generation is more efficient than the previous java.util.UUID.randomUUID()
implementation. It uses simple random numbers based on a secure random seed, instead of creating
a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements
org.springframework.util.IdGenerator in the application context.

Important

Only one UUID generation strategy can be used in a classloader. This means that if two or more
application contexts are running in the same classloader, they will share the same strategy. If one
of the contexts changes the strategy, it will be used by all contexts. If two or more contexts in the
same classloader declare a bean of type org.springframework.util.IdGenerator, they
must all be an instance of the same class, otherwise the context attempting to replace a custom
strategy will fail to initialize. If the strategy is the same, but parameterized, the strategy in the first
context to initialize will be used.

In addition to the default strategy, two additional IdGenerators are provided;
org.springframework.util.JdkIdGenerator uses the previous UUID.randomUUID()

mechanism; o.s.i.support.IdGenerators.SimpleIncrementingIdGenerator can be used
in cases where a UUID is not really needed and a simple incrementing value is sufficient.

Read-only Headers

The MessageHeaders.ID and MessageHeaders.TIMESTAMP are read-only headers and they
cannot be overridden.

Since version 4.3.2, the MessageBuilder provides the readOnlyHeaders(String...

readOnlyHeaders) API to customize a list of headers which should not be copied from an
upstream Message. Just the MessageHeaders.ID and MessageHeaders.TIMESTAMP are read
only by default. The global spring.integration.readOnly.headers property (see Section E.5,
“Global Properties”) is provided to customize DefaultMessageBuilderFactory for Framework
components. This can be useful when you would like do not populate some out-of-the-box headers, like
contentType by the ObjectToJsonTransformer (see the section called “JSON Transformers”).

When you try to build a new message using MessageBuilder, this kind of headers are ignored and
particular INFO message is emitted to logs.

Starting with version 5.0, Messaging Gateway, Header Enricher, Content Enricher and
Header Filter don’t allow to configure MessageHeaders.ID and MessageHeaders.TIMESTAMP

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 57

header names when DefaultMessageBuilderFactory is used and they throw
BeanInitializationException.

Header Propagation

When messages are processed (and modified) by message-producing endpoints (such as a service
activator), in general, inbound headers are propagated to the outbound message. One exception to this
is a transformer, when a complete message is returned to the framework; in that case, the user code is
responsible for the entire outbound message. When a transformer just returns the payload; the inbound
headers are propagated. Also, a header is only propagated if it does not already exist in the outbound
message, allowing user code to change header values as needed.

Starting with version 4.3.10, you can configure message handlers (that modify messages and produce
output) to suppress the propagation of specific headers. Call the setNotPropagatedHeaders()
or addNotPropagatedHeaders() methods on the MessageProducingMessageHandler abstract
class, to configure the header(s) you don’t want to be copied.

You can also globally suppress propagation of specific message headers by setting the
readOnlyHeaders property in META-INF/spring.integration.properties to a comma-
delimited list of headers.

Starting with version 5.0, the setNotPropagatedHeaders() implementation on the
AbstractMessageProducingHandler applies the simple patterns (xxx*, *xxx, *xxx* or
xxx*yyy) to allow filtering headers with a common suffix or prefix. See PatternMatchUtils
JavaDocs for more information. When one of the patterns is * (asterisk), no headers are propagated; all
other patterns are ignored. In this case the Service Activator behaves the same way as Transformer and
any required headers must be supplied in the Message returned from the service method. The option
notPropagatedHeaders() is available in the ConsumerEndpointSpec for Java DSL, as well as
for XML configuration of the <service-activator> component as a not-propagated-headers
attribute.

Important

Header propagation suppression does not apply to those endpoints that don’t modify the message,
e.g. bridges and routers.

Message Implementations

The base implementation of the Message interface is GenericMessage<T>, and it provides two
constructors:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map
of headers will copy the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions. This
implementation takes Throwable object as its payload:

ErrorMessage message = new ErrorMessage(someThrowable);

Throwable t = message.getPayload();

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 58

Notice that this implementation takes advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
no setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore,
when a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if
one of those consumers needs to send a reply with a different payload type, it will need to create a new
Message. As a result, the other consumers are not affected by those changes. Keep in mind, that multiple
consumers may access the same payload instance or header value, and whether such an instance is
itself immutable is a decision left to the developer. In other words, the contract for Messages is similar to
that of an unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though
the MessageHeaders class implements java.util.Map, any attempt to invoke a put operation (or
remove or clear) on the MessageHeaders will result in an UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBuilder.
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload
of that Message will be copied to the new Message:

Message<String> message1 = MessageBuilder.withPayload("test")

 .setHeader("foo", "bar")

 .build();

Message<String> message2 = MessageBuilder.fromMessage(message1).build();

assertEquals("test", message2.getPayload());

assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the copy methods.

Message<String> message3 = MessageBuilder.withPayload("test3")

 .copyHeaders(message1.getHeaders())

 .build();

Message<String> message4 = MessageBuilder.withPayload("test4")

 .setHeader("foo", 123)

 .copyHeadersIfAbsent(message1.getHeaders())

 .build();

assertEquals("bar", message3.getHeaders().get("foo"));

assertEquals(123, message4.getHeaders().get("foo"));

Notice that the copyHeadersIfAbsent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with setHeader. Finally, there are
set methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 59

Message<Integer> importantMessage = MessageBuilder.withPayload(99)

 .setPriority(5)

 .build();

assertEquals(5, importantMessage.getHeaders().getPriority());

Message<Integer> lessImportantMessage = MessageBuilder.fromMessage(importantMessage)

 .setHeaderIfAbsent(IntegrationMessageHeaderAccessor.PRIORITY, 2)

 .build();

assertEquals(2, lessImportantMessage.getHeaders().getPriority());

The priority header is only considered when using a PriorityChannel (as described in the next
chapter). It is defined as java.lang.Integer.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 60

6. Message Routing

6.1 Routers

Overview

Routers are a crucial element in many messaging architectures. They consume Messages from a
Message Channel and forward each consumed message to one or more different Message Channel
depending on a set of conditions.

Spring Integration provides the following routers out-of-the-box:

• Payload Type Router

• Header Value Router

• Recipient List Router

• XPath Router (Part of the XML Module)

• Error Message Exception Type Router

• (Generic) Router

Router implementations share many configuration parameters. Yet, certain differences exist between
routers. Furthermore, the availability of configuration parameters depends on whether Routers are used
inside or outside of a chain. In order to provide a quick overview, all available attributes are listed in
the 2 tables below.

Table 6.1. Routers Outside of a Chain

Attribute router header
value
router

xpath
router

payload
type
router

recipient
list router

exception
type
router

apply-sequence

default-output-channel

resolution-required

ignore-send-failures

timeout

id

auto-startup

input-channel

order

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 61

Attribute router header
value
router

xpath
router

payload
type
router

recipient
list router

exception
type
router

method

ref

expression

header-name

evaluate-as-string

xpath-expression-ref

converter

Table 6.2. Routers Inside of a Chain

Attribute router header
value
router

xpath
router

payload
type
router

recipient
list router

exception
type
router

apply-sequence

default-output-channel

resolution-required

ignore-send-failures

timeout

id

auto-startup

input-channel

order

method

ref

expression

header-name

evaluate-as-string

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 62

Attribute router header
value
router

xpath
router

payload
type
router

recipient
list router

exception
type
router

xpath-expression-ref

converter

Important

Router parameters have been more standardized across all router implementations with Spring
Integration 2.1. Consequently, there are a few minor changes that leave the possibility of breaking
older Spring Integration based applications.

Since Spring Integration 2.1 the ignore-channel-name-resolution-failures attribute is
removed in favor of consolidating its behavior with the resolution-required attribute. Also,
the resolution-required attribute now defaults to true.

Prior to these changes, the resolution-required attribute defaulted to false causing
messages to be silently dropped when no channel was resolved and no default-output-
channel was set. The new behavior will require at least one resolved channel and by default will
throw an MessageDeliveryException if no channel was determined (or an attempt to send
was not successful).

If you do desire to drop messages silently simply set default-output-

channel="nullChannel".

Common Router Parameters

Inside and Outside of a Chain

The following parameters are valid for all routers inside and outside of chains.

apply-sequence
This attribute specifies whether sequence number and size headers should be added to each
Message. This optional attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel, where Messages should be sent, if channel
resolution fails to return any channels. If no default output channel is provided, the router will throw
an Exception. If you would like to silently drop those messages instead, add the nullChannel as
the default output channel attribute value.

Note

A Message will only be sent to the default-output-channel if resolution-required is
false and the channel is not resolved.

resolution-required
If true this attribute specifies that channel names must always be successfully resolved to channel
instances that exist. If set to true, a MessagingException will be raised, in case the channel

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 63

cannot be resolved. Setting this attribute to false, will cause any unresovable channels to be ignored.
This optional attribute will, if not explicitly set, default to true.

Note

A Message will only be sent to the default-output-channel, if specified, when
resolution-required is false and the channel is not resolved.

ignore-send-failures
If set to true, failures to send to a message channel will be ignored. If set to false, a
MessageDeliveryException will be thrown instead, and if the router resolves more than one
channel, any subsequent channels will not receive the message.

The exact behavior of this attribute depends on the type of the Channel messages are sent to. For
example, when using direct channels (single threaded), send-failures can be caused by exceptions
thrown by components much further down-stream. However, when sending messages to a simple queue
channel (asynchronous) the likelihood of an exception to be thrown is rather remote.

Note

While most routers will route to a single channel, they are allowed to return more than one channel
name. The recipient-list-router, for instance, does exactly that. If you set this attribute to
true on a router that only routes to a single channel, any caused exception is simply swallowed,
which usually makes little sense to do. In that case it would be better to catch the exception in
an error flow at the flow entry point. Therefore, setting the ignore-send-failures attribute to
true usually makes more sense when the router implementation returns more than one channel
name, because the other channel(s) following the one that fails would still receive the Message.

This attribute defaults to false.

timeout
The timeout attribute specifies the maximum amount of time in milliseconds to wait, when sending
Messages to the target Message Channels. By default the send operation will block indefinitely.

Top-Level (Outside of a Chain)

The following parameters are valid only across all top-level routers that are ourside of chains.

id
Identifies the underlying Spring bean definition which in case of Routers is an instance of
EventDrivenConsumer or PollingConsumer depending on whether the Router’s input-channel is a
SubscribableChannel or PollableChannel, respectively. This is an optional attribute.

auto-startup
This Lifecycle attribute signaled if this component should be started during startup of the
Application Context. This optional attribute defaults to true.

input-channel
The receiving Message channel of this endpoint.

order
This attribute defines the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching strategy. It
has no effect when this endpoint itself is a Polling Consumer for a channel with a queue.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 64

Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require
Spring Integration’s options for delegating to POJOs using the XML namespace support and/or
Annotations. Both of these are discussed below, but first we present a couple implementations that are
available out-of-the-box since they fulfill common requirements.

PayloadTypeRouter

A PayloadTypeRouter will send Messages to the channel as defined by payload-type mappings.

<bean id="payloadTypeRouter"

 class="org.springframework.integration.router.PayloadTypeRouter">

 <property name="channelMapping">

 <map>

 <entry key="java.lang.String" value-ref="stringChannel"/>

 <entry key="java.lang.Integer" value-ref="integerChannel"/>

 </map>

 </property>

</bean>

Configuration of the PayloadTypeRouter is also supported via the namespace provided by Spring
Integration (see Section E.2, “Namespace Support”), which essentially simplifies configuration by
combining the <router/> configuration and its corresponding implementation defined using a <bean/
> element into a single and more concise configuration element. The example below demonstrates
a PayloadTypeRouter configuration which is equivalent to the one above using the namespace
support:

<int:payload-type-router input-channel="routingChannel">

 <int:mapping type="java.lang.String" channel="stringChannel" />

 <int:mapping type="java.lang.Integer" channel="integerChannel" />

</int:payload-type-router>

The equivalent router, using Java configuration:

@ServiceActivator(inputChannel = "routingChannel")

@Bean

public PayloadTypeRouter router() {

 PayloadTypeRouter router = new PayloadTypeRouter();

 router.setChannelMapping(String.class.getName(), "stringChannel");

 router.setChannelMapping(Integer.class.getName(), "integerChannel");

 return router;

}

When using the Java DSL, there are two options; 1) define the router object as above…

@Bean

public IntegrationFlow routerFlow1() {

 return IntegrationFlows.from("routingChannel")

 .route(router())

 .get();

}

public PayloadTypeRouter router() {

 PayloadTypeRouter router = new PayloadTypeRouter();

 router.setChannelMapping(String.class.getName(), "stringChannel");

 router.setChannelMapping(Integer.class.getName(), "integerChannel");

 return router;

}

Note that the router can be, but doesn’t have to be, a @Bean - the flow will register it if it is not.

2) define the routing function within the DSL flow itself…

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 65

@Bean

public IntegrationFlow routerFlow2() {

 return IntegrationFlows.from("routingChannel")

 .<Object, Class<?>>route(Object::getClass, m -> m

 .channelMapping(String.class, "stringChannel")

 .channelMapping(Integer.class, "integerChannel"))

 .get();

}

HeaderValueRouter

A HeaderValueRouter will send Messages to the channel based on the individual header value
mappings. When a HeaderValueRouter is created it is initialized with the name of the header to be
evaluated. The value of the header could be one of two things:

1. Arbitrary value

2. Channel name

If arbitrary then additional mappings for these header values to channel names is required, otherwise
no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
HeaderValueRouter. The example below demonstrates two types of namespace-based configuration
for the HeaderValueRouter.

1. Configuration where mapping of header values to channels is required

<int:header-value-router input-channel="routingChannel" header-name="testHeader">

 <int:mapping value="someHeaderValue" channel="channelA" />

 <int:mapping value="someOtherHeaderValue" channel="channelB" />

</int:header-value-router>

During the resolution process this router may encounter channel resolution failures, causing an
exception. If you want to suppress such exceptions and send unresolved messages to the default output
channel (identified with the default-output-channel attribute) set resolution-required to
false.

Normally, messages for which the header value is not explicitly mapped to a channel will be sent to
the default-output-channel. However, in cases where the header value is mapped to a channel
name but the channel cannot be resolved, setting the resolution-required attribute to false will
result in routing such messages to the default-output-channel.

Important

With Spring Integration 2.1 the attribute was changed from ignore-channel-name-
resolution-failures to resolution-required. Attribute resolution-required will
default to true.

The equivalent router, using Java configuration:

@ServiceActivator(inputChannel = "routingChannel")

@Bean

public HeaderValueRouter router() {

 HeaderValueRouter router = new HeaderValueRouter("testHeader");

 router.setChannelMapping("someHeaderValue", "channelA");

 router.setChannelMapping("someOtherHeaderValue", "channelB");

 return router;

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 66

When using the Java DSL, there are two options; 1) define the router object as above…

@Bean

public IntegrationFlow routerFlow1() {

 return IntegrationFlows.from("routingChannel")

 .route(router())

 .get();

}

public HeaderValueRouter router() {

 HeaderValueRouter router = new HeaderValueRouter("testHeader");

 router.setChannelMapping("someHeaderValue", "channelA");

 router.setChannelMapping("someOtherHeaderValue", "channelB");

 return router;

}

Note that the router can be, but doesn’t have to be, a @Bean - the flow will register it if it is not.

2) define the routing function within the DSL flow itself…

@Bean

public IntegrationFlow routerFlow2() {

 return IntegrationFlows.from("routingChannel")

 .<Message<?>, String>route(m -> m.getHeaders().get("testHeader", String.class), m -> m

 .channelMapping("someHeaderValue", "channelA")

 .channelMapping("someOtherHeaderValue", "channelB"),

 e -> e.id("headerValueRouter"))

 .get();

}

2. Configuration where mapping of header values to channel names is not required since header values
themselves represent channel names

<int:header-value-router input-channel="routingChannel" header-name="testHeader"/>

Note

Since Spring Integration 2.1 the behavior of resolving channels is more explicit. For example,
if you ommit the default-output-channel attribute and the Router was unable to resolve
at least one valid channel, and any channel name resolution failures were ignored by setting
resolution-required to false, then a MessageDeliveryException is thrown.

Basically, by default the Router must be able to route messages successfully to at least one
channel. If you really want to drop messages, you must also have default-output-channel
set to nullChannel.

RecipientListRouter

A RecipientListRouter will send each received Message to a statically defined list of Message
Channels:

<bean id="recipientListRouter"

 class="org.springframework.integration.router.RecipientListRouter">

 <property name="channels">

 <list>

 <ref bean="channel1"/>

 <ref bean="channel2"/>

 <ref bean="channel3"/>

 </list>

 </property>

</bean>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 67

Spring Integration also provides namespace support for the RecipientListRouter configuration
(see Section E.2, “Namespace Support”) as the example below demonstrates.

<int:recipient-list-router id="customRouter" input-channel="routingChannel"

 timeout="1234"

 ignore-send-failures="true"

 apply-sequence="true">

 <int:recipient channel="channel1"/>

 <int:recipient channel="channel2"/>

</int:recipient-list-router>

The equivalent router, using Java configuration:

@ServiceActivator(inputChannel = "routingChannel")

@Bean

public RecipientListRouter router() {

 RecipientListRouter router = new RecipientListRouter();

 router.setSendTimeout(1_234L);

 router.setIgnoreSendFailures(true);

 router.setApplySequence(true);

 router.addRecipient("channel1");

 router.addRecipient("channel2");

 router.addRecipient("channel3");

 return router;

}

The equivalent router, using the Java DSL:

@Bean

public IntegrationFlow routerFlow() {

 return IntegrationFlows.from("routingChannel")

 .routeToRecipients(r -> r

 .applySequence(true)

 .ignoreSendFailures(true)

 .recipient("channel1")

 .recipient("channel2")

 .recipient("channel3")

 .sendTimeout(1_234L))

 .get();

}

Note

The apply-sequence flag here has the same effect as it does for a publish-subscribe-channel, and
like a publish-subscribe-channel, it is disabled by default on the recipient-list-router. Refer to the
section called “PublishSubscribeChannel Configuration” for more information.

Another convenient option when configuring a RecipientListRouter is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. This is similar to using a Filter at
the beginning of chain to act as a "Selective Consumer". However, in this case, it’s all combined rather
concisely into the router’s configuration.

<int:recipient-list-router id="customRouter" input-channel="routingChannel">

 <int:recipient channel="channel1" selector-expression="payload.equals('foo')"/>

 <int:recipient channel="channel2" selector-expression="headers.containsKey('bar')"/>

</int:recipient-list-router>

In the above configuration a SpEL expression identified by the selector-expression attribute will be
evaluated to determine if this recipient should be included in the recipient list for a given input Message.
The evaluation result of the expression must be a boolean. If this attribute is not defined, the channel
will always be among the list of recipients.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 68

RecipientListRouterManagement

Starting with version 4.1, the RecipientListRouter provides several operation to manipulate
with recipients dynamically at runtime. These management operations are presented by
RecipientListRouterManagement @ManagedResource. They are available using Section 10.6,
“Control Bus” as well as via JMX:

<control-bus input-channel="controlBus"/>

<recipient-list-router id="simpleRouter" input-channel="routingChannelA">

 <recipient channel="channel1"/>

</recipient-list-router>

<channel id="channel2"/>

messagingTemplate.convertAndSend(controlBus, "@'simpleRouter.handler'.addRecipient('channel2')");

From the application start up the simpleRouter will have only one channel1 recipient. But after the
addRecipient command above the new channel2 recipient will be added. It is a "registering an
interest in something that is part of the Message" use case, when we may be interested in messages
from the router at some time period, so we are subscribing to the the recipient-list-router and
in some point decide to unsubscribe our interest.

Having the runtime management operation for the <recipient-list-router>, it can be configured
without any <recipient> from the start. In this case the behaviour of RecipientListRouter is
the same, when there is no one matching recipient for the message: if defaultOutputChannel is
configured, the message will be sent there, otherwise the MessageDeliveryException is thrown.

XPath Router

The XPath Router is part of the XML Module. See Section 37.6, “Routing XML Messages Using XPath”.

Routing and Error handling

Spring Integration also provides a special type-based router called
ErrorMessageExceptionTypeRouter for routing Error Messages (Messages whose payload
is a Throwable instance). ErrorMessageExceptionTypeRouter is very similar to the
PayloadTypeRouter. In fact they are almost identical. The only difference is that
while PayloadTypeRouter navigates the instance hierarchy of a payload instance (e.g.,
payload.getClass().getSuperclass()) to find the most specific type/channel mappings,
the ErrorMessageExceptionTypeRouter navigates the hierarchy of exception causes (e.g.,
payload.getCause()) to find the most specific Throwable type/channel mappings and uses
mappingClass.isInstance(cause) to match the cause to the class or any super class.

Note

Since version 4.3 the ErrorMessageExceptionTypeRouter loads all mapping classes during
the initialization phase to fail-fast for a ClassNotFoundException.

Below is a sample configuration for ErrorMessageExceptionTypeRouter.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 69

<int:exception-type-router input-channel="inputChannel"

 default-output-channel="defaultChannel">

 <int:mapping exception-type="java.lang.IllegalArgumentException"

 channel="illegalChannel"/>

 <int:mapping exception-type="java.lang.NullPointerException"

 channel="npeChannel"/>

</int:exception-type-router>

<int:channel id="illegalChannel" />

<int:channel id="npeChannel" />

Configuring a Generic Router

Configuring a Content Based Router with XML

The "router" element provides a simple way to connect a router to an input channel and also accepts
the optional default-output-channel attribute. The ref attribute references the bean name of a
custom Router implementation (extending AbstractMessageRouter):

<int:router ref="payloadTypeRouter" input-channel="input1"

 default-output-channel="defaultOutput1"/>

<int:router ref="recipientListRouter" input-channel="input2"

 default-output-channel="defaultOutput2"/>

<int:router ref="customRouter" input-channel="input3"

 default-output-channel="defaultOutput3"/>

<beans:bean id="customRouterBean" class="org.foo.MyCustomRouter"/>

Alternatively, ref may point to a simple POJO that contains the @Router annotation (see below), or the
ref may be combined with an explicit method name. Specifying a method applies the same behavior
described in the @Router annotation section below.

<int:router input-channel="input" ref="somePojo" method="someMethod"/>

Using a ref attribute is generally recommended if the custom router implementation is referenced in
other <router> definitions. However if the custom router implementation should be scoped to a single
definition of the <router>, you may provide an inner bean definition:

<int:router method="someMethod" input-channel="input3"

 default-output-channel="defaultOutput3">

 <beans:bean class="org.foo.MyCustomRouter"/>

</int:router>

Note

Using both the ref attribute and an inner handler definition in the same <router> configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Important

If the "ref" attribute references a bean that extends AbstractMessageProducingHandler
(such as routers provided by the framework itself), the configuration is optimized referencing the
router directly. In this case, each "ref" must be to a separate bean instance (or a prototype-
scoped bean), or use the inner <bean/> configuration type. However, this optimization only
applies if you don’t provide any router-specific attributes in the router XML definition. If
you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 70

The equivalent router, using Java Configuration:

@Bean

@Router(inputChannel = "routingChannel")

public AbstractMessageRouter myCustomRouter() {

 return new AbstractMessageRouter() {

 @Override

 protected Collection<MessageChannel> determineTargetChannels(Message<?> message) {

 return // determine channel(s) for message

 }

 };

}

The equivalent router, using the Java DSL:

@Bean

public IntegrationFlow routerFlow() {

 return IntegrationFlows.from("routingChannel")

 .route(myCustomRouter())

 .get();

}

public AbstractMessageRouter myCustomRouter() {

 return new AbstractMessageRouter() {

 @Override

 protected Collection<MessageChannel> determineTargetChannels(Message<?> message) {

 return // determine channel(s) for message

 }

 };

}

or, if you can route on just some message payload data:

@Bean

public IntegrationFlow routerFlow() {

 return IntegrationFlows.from("routingChannel")

 .route(String.class, p -> p.contains("foo") ? "fooChannel" : "barChannel")

 .get();

}

Routers and the Spring Expression Language (SpEL)

Sometimes the routing logic may be simple and writing a separate class for it and configuring it as a
bean may seem like overkill. As of Spring Integration 2.0 we offer an alternative where you can now use
SpEL to implement simple computations that previously required a custom POJO router.

Note

For more information about the Spring Expression Language, please refer to the respective
chapter in the Spring Framework Reference Documentation at:

Generally a SpEL expression is evaluated and the result is mapped to a channel:

<int:router input-channel="inChannel" expression="payload.paymentType">

 <int:mapping value="CASH" channel="cashPaymentChannel"/>

 <int:mapping value="CREDIT" channel="authorizePaymentChannel"/>

 <int:mapping value="DEBIT" channel="authorizePaymentChannel"/>

</int:router>

The equivalent router, using Java Configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 71

@Router(inputChannel = "routingChannel")

@Bean

public ExpressionEvaluatingRouter router() {

 ExpressionEvaluatingRouter router = new ExpressionEvaluatingRouter("payload.paymentType");

 router.setChannelMapping("CASH", "cashPaymentChannel");

 router.setChannelMapping("CREDIT", "authorizePaymentChannel");

 router.setChannelMapping("DEBIT", "authorizePaymentChannel");

 return router;

}

The equivalent router, using the Java DSL:

@Bean

public IntegrationFlow routerFlow() {

 return IntegrationFlows.from("routingChannel")

 .route("payload.paymentType", r -> r

 .channelMapping("CASH", "cashPaymentChannel")

 .channelMapping("CREDIT", "authorizePaymentChannel")

 .channelMapping("DEBIT", "authorizePaymentChannel"))

 .get();

}

To simplify things even more, the SpEL expression may evaluate to a channel name:

<int:router input-channel="inChannel" expression="payload + 'Channel'"/>

In the above configuration the result channel will be computed by the SpEL expression which simply
concatenates the value of the payload with the literal String Channel.

Another value of SpEL for configuring routers is that an expression can actually return a Collection,
effectively making every <router> a Recipient List Router. Whenever the expression returns multiple
channel values the Message will be forwarded to each channel.

<int:router input-channel="inChannel" expression="headers.channels"/>

In the above configuration, if the Message includes a header with the name channels the value of which
is a List of channel names then the Message will be sent to each channel in the list. You may also
find Collection Projection and Collection Selection expressions useful to select multiple channels. For
further information, please see:

• Collection Projection

• Collection Selection

Configuring a Router with Annotations

When using @Router to annotate a method, the method may return either a MessageChannel or
String type. In the latter case, the endpoint will resolve the channel name as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-selection

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 72

@Router

public MessageChannel route(Message message) {...}

@Router

public List<MessageChannel> route(Message message) {...}

@Router

public String route(Foo payload) {...}

@Router

public List<String> route(Foo payload) {...}

In addition to payload-based routing, a Message may be routed based on metadata available within the
message header as either a property or attribute. In this case, a method annotated with @Router may
include a parameter annotated with @Header which is mapped to a header value as illustrated below
and documented in Section E.6, “Annotation Support”.

@Router

public List<String> route(@Header("orderStatus") OrderStatus status)

Note

For routing of XML-based Messages, including XPath support, see Chapter 37, XML Support -
Dealing with XML Payloads.

Also see Section 9.9, “Message Routers” in Java DSL chapter for more information about routers
configuration.

Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for common
content-based routing use cases as well as the option of implementing custom routers as POJOs. For
example PayloadTypeRouter provides a simple way to configure a router which computes channels
based on the payload type of the incoming Message while HeaderValueRouter provides the same
convenience in configuring a router which computes channels by evaluating the value of a particular
Message Header. There are also expression-based (SpEL) routers where the channel is determined
based on evaluating an expression. Thus, these type of routers exhibit some dynamic characteristics.

However these routers all require static configuration. Even in the case of expression-based routers, the
expression itself is defined as part of the router configuration which means that_the same expression
operating on the same value will always result in the computation of the same channel_. This is
acceptable in most cases since such routes are well defined and therefore predictable. But there are
times when we need to change router configurations dynamically so message flows may be routed to
a different channel.

Example:

You might want to bring down some part of your system for maintenance and temporarily re-reroute
messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of java.lang.Number (in the case of
PayloadTypeRouter).

Unfortunately with static router configuration to accomplish this, you would have to bring down your
entire application, change the configuration of the router (change routes) and bring it back up. This is
obviously not the solution.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 73

The Dynamic Router pattern describes the mechanisms by which one can change/configure routers
dynamically without bringing down the system or individual routers.

Before we get into the specifics of how this is accomplished in Spring Integration, let’s quickly summarize
the typical flow of the router, which consists of 3 simple steps:

• Step 1 - Compute channel identifier which is a value calculated by the router once it receives
the Message. Typically it is a String or and instance of the actual MessageChannel.

• Step 2 - Resolve channel identifier to channel name. We’ll describe specifics of this process
in a moment.

• Step 3 - Resolve channel name to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual instance
of the MessageChannel, simply because the MessageChannel is the final product of any router’s job.
However, if Step 1 results in a channel identifier that is not an instance of MessageChannel,
then there are quite a few possibilities to influence the process of deriving the Message Channel. Lets
look at couple of the examples in the context of the 3 steps mentioned above:

Payload Type Router

<int:payload-type-router input-channel="routingChannel">

 <int:mapping type="java.lang.String" channel="channel1" />

 <int:mapping type="java.lang.Integer" channel="channel2" />

</int:payload-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

• Step 1 - Compute channel identifier which is the fully qualified name of the payload type (e.g.,
java.lang.String).

• Step 2 - Resolve channel identifier to channel name where the result of the previous step is
used to select the appropriate value from the payload type mapping defined via mapping element.

• Step 3 - Resolve channel name to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

In other words, each step feeds the next step until the process completes.

Header Value Router

<int:header-value-router input-channel="inputChannel" header-name="testHeader">

 <int:mapping value="foo" channel="fooChannel" />

 <int:mapping value="bar" channel="barChannel" />

</int:header-value-router>

Similar to the PayloadTypeRouter:

• Step 1 - Compute channel identifier which is the value of the header identified by the header-
name attribute.

• Step 2 - Resolve channel identifier to channel name where the result of the previous step is
used to select the appropriate value from the general mapping defined via mapping element.

http://www.eaipatterns.com/DynamicRouter.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 74

• Step 3 - Resolve channel name to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

The above two configurations of two different router types look almost identical. However if we look at
the alternate configuration of the HeaderValueRouter we clearly see that there is no mapping sub
element:

<int:header-value-router input-channel="inputChannel" header-name="testHeader">

But the configuration is still perfectly valid. So the natural question is what about the mapping in the
Step 2?

What this means is that Step 2 is now an optional step. If mapping is not defined then the channel
identifier value computed in Step 1 will automatically be treated as the channel name, which will
now be resolved to the actual MessageChannel as in Step 3. What it also means is that Step 2 is one
of the key steps to provide dynamic characteristics to the routers, since it introduces a process which
allows you to change the way channel identifier resolves to 'channel name', thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For Example:

In the above configuration let’s assume that the testHeader value is kermit which is now a channel
identifier (Step 1). Since there is no mapping in this router, resolving this channel identifier
to a channel name (Step 2) is impossible and this channel identifier is now treated as channel
name. However what if there was a mapping but for a different value? The end result would still be the
same and that is: if a new value cannot be determined through the process of resolving the channel
identifier to a channel name, such channel identifier becomes channel name.

So all that is left is for Step 3 to resolve the channel name (kermit) to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the name provided.
So now all messages which contain the header/value pair as testHeader=kermit are going to be
routed to a MessageChannel whose bean name (id) is kermit.

But what if you want to route these messages to the simpson channel? Obviously changing a static
configuration will work, but will also require bringing your system down. However if you had access to
the channel identifier map, then you could just introduce a new mapping where the header/value
pair is now kermit=simpson, thus allowing Step 2 to treat kermit as a channel identifier while
resolving it to simpson as the channel name .

The same obviously applies for PayloadTypeRouter, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-based
routers, since their computed values will now have a chance to go through Step 2 to be additionally
resolved to the actual channel name.

Any router that is a subclass of the AbstractMappingMessageRouter (which includes most
framework defined routers) is a Dynamic Router simply because the channelMapping is defined at the
AbstractMappingMessageRouter level. That map’s setter method is exposed as a public method
along with setChannelMapping and removeChannelMapping methods. These allow you to change/add/
remove router mappings at runtime as long as you have a reference to the router itself. It also means
that you could expose these same configuration options via JMX (see Section 10.2, “JMX Support”) or
the Spring Integration ControlBus (see Section 10.6, “Control Bus”) functionality.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 75

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the Control Bus pattern which exposes a Control
Channel where you can send control messages to manage and monitor Spring Integration components,
including routers.

Note

For more information about the Control Bus, please see chapter Section 10.6, “Control Bus”.

Typically you would send a control message asking to invoke a particular operation on a particular
managed component (e.g. router). Two managed operations (methods) that are specific to changing
the router resolution process are:

• public void setChannelMapping(String key, String channelName) - will allow you to
add a new or modify an existing mapping between channel identifier and channel name

• public void removeChannelMapping(String key) - will allow you to remove a particular
channel mapping, thus disconnecting the relationship between channel identifier and channel
name

Note that these methods can be used for simple changes (updating a single route or adding/removing
a route). However, if you want to remove one route and add another, the updates are not atomic. This
means the routing table may be in an indeterminate state between the updates. Starting with version
4.0, you can now use the control bus to update the entire routing table atomically.

• public Map<String, String>getChannelMappings() returns the current mappings.

• public void replaceChannelMappings(Properties channelMappings) updates the
mappings. Notice that the parameter is a properties object; this allows the use of the inbuilt
StringToPropertiesConverter by a control bus command, for example:

"@'router.handler'.replaceChannelMappings('foo=qux \n baz=bar')"

• note that each mapping is separated by a newline character (\n). For programmatic changes to the
map, it is recommended that the setChannelMappings method is used instead, for type-safety.
Any non-String keys or values passed into replaceChannelMappings are ignored.

Manage Router Mappings using JMX

You can also expose a router instance with Spring’s JMX support, and then use your favorite JMX client
(e.g., JConsole) to manage those operations (methods) for changing the router’s configuration.

Note

For more information about Spring Integration’s JMX support, please see chapter Section 10.2,
“JMX Support”.

Routing Slip

Starting with version 4.1, Spring Integration provides an implementation of the Routing Slip Enterprise
Integration Pattern. It is implemented as a routingSlip message header which is used to determine
the next channel in AbstractMessageProducingHandler s, when an outputChannel isn’t

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/RoutingTable.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 76

specified for the endpoint. This pattern is useful in complex, dynamic, cases when it can become difficult
to configure multiple routers to determine message flow. When a message arrives at an endpoint that
has no output-channel, the routingSlip is consulted to determine the next channel to which the
message will be sent. When the routing slip is exhausted, normal replyChannel processing resumes.

Configuration for the Routing Slip is presented as a HeaderEnricher option - a semicolon-separated
Routing Slip path entries:

<util:properties id="properties">

 <beans:prop key="myRoutePath1">channel1</beans:prop>

 <beans:prop key="myRoutePath2">request.headers[myRoutingSlipChannel]</beans:prop>

</util:properties>

<context:property-placeholder properties-ref="properties"/>

<header-enricher input-channel="input" output-channel="process">

 <routing-slip

 value="${myRoutePath1}; @routingSlipRoutingPojo.get(request, reply);

 routingSlipRoutingStrategy; ${myRoutePath2}; finishChannel"/>

</header-enricher>

In this sample we have:

• A <context:property-placeholder> configuration to demonstrate that the entries in the
Routing Slip path can be specified as resolvable keys.

• The <header-enricher> <routing-slip> sub-element is used to populate the
RoutingSlipHeaderValueMessageProcessor to the HeaderEnricher handler.

• The RoutingSlipHeaderValueMessageProcessor accepts a String array of resolved Routing
Slip path entries and returns (from processMessage()) a singletonMap with the path as key
and 0 as initial routingSlipIndex.

Routing Slip path entries can contain MessageChannel bean names,
RoutingSlipRouteStrategy bean names and also Spring expressions (SpEL). The
RoutingSlipHeaderValueMessageProcessor checks each Routing Slip path entry against the
BeanFactory on the first processMessage invocation. It converts entries, which aren’t bean names
in the application context, to ExpressionEvaluatingRoutingSlipRouteStrategy instances.
RoutingSlipRouteStrategy entries are invoked multiple times, until they return null, or an empty
String.

Since the Routing Slip is involved in the getOutputChannel process we have a request-
reply context. The RoutingSlipRouteStrategy has been introduced to determine the next
outputChannel using the requestMessage, as well as the reply object. An implementation
of this strategy should be registered as a bean in the application context and its bean name
is used in the Routing Slip path. The ExpressionEvaluatingRoutingSlipRouteStrategy
implementation is provided. It accepts a SpEL expression, and an internal
ExpressionEvaluatingRoutingSlipRouteStrategy.RequestAndReply object is used as the
root object of the evaluation context. This is to avoid the overhead of EvaluationContext
creation for each ExpressionEvaluatingRoutingSlipRouteStrategy.getNextPath()

invocation. It is a simple Java Bean with two properties - Message<?> request

and Object reply. With this expression implementation, we can specify
Routing Slip path entries using SpEL (@routingSlipRoutingPojo.get(request,
reply), request.headers[myRoutingSlipChannel]) avoiding a bean definition for the
RoutingSlipRouteStrategy.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 77

Note

The requestMessage argument is always a Message<?>; depending on context, the reply
object may be a Message<?>, an AbstractIntegrationMessageBuilder or an arbitrary
application domain object (if, for example, it is returned by a POJO method invoked by a service
activator). In the first two cases, the usual "message" properties are available (payload and
headers) when using SpEL (or a Java implementation). When an arbitrary domain object,
these properties are, obviously, not available. Care should be taken when using routing slips in
conjunction with POJO methods if the result is used to determine the next path.

Important

If a Routing Slip is involved in a distributed environment - cross-JVM application, request-
reply through a Message Broker (e.g. Chapter 12, AMQP Support, Chapter 21, JMS
Support), or persistence MessageStore (Section 10.4, “Message Store”) is used in the
integration flow, etc., - it is recommended to not use inline expressions for the Routing
Slip path. The framework (RoutingSlipHeaderValueMessageProcessor) converts them
to ExpressionEvaluatingRoutingSlipRouteStrategy objects and they are used in
the routingSlip message header. Since this class isn’t Serializable (and it can’t be,
because it depends on the BeanFactory) the entire Message becomes non-serializable and
in any distributed operation we end up with NotSerializableException. To overcome this
limitation, register an ExpressionEvaluatingRoutingSlipRouteStrategy bean with the
desired SpEL and use its bean name in the Routing Slip path configuration.

For Java configuration, simply add a RoutingSlipHeaderValueMessageProcessor instance to
the HeaderEnricher bean definition:

@Bean

@Transformer(inputChannel = "routingSlipHeaderChannel")

public HeaderEnricher headerEnricher() {

 return new HeaderEnricher(Collections.singletonMap(IntegrationMessageHeaderAccessor.ROUTING_SLIP,

 new RoutingSlipHeaderValueMessageProcessor("myRoutePath1",

 "@routingSlipRoutingPojo.get(request, reply)",

 "routingSlipRoutingStrategy",

 "request.headers[myRoutingSlipChannel]",

 "finishChannel")));

}

The Routing Slip algorithm works as follows when an endpoint produces a reply and there is no
outputChannel defined:

• The routingSlipIndex is used to get a value from the Routing Slip path list.

• If the value by routingSlipIndex is String, it is used to get a bean from BeanFactory.

• If a returned bean is an instance of MessageChannel, it is used as the next outputChannel and
the routingSlipIndex is incremented in the reply message header (the Routing Slip path entries
remain unchanged).

• If a returned bean is an instance of RoutingSlipRouteStrategy and its getNextPath doesn’t
return an empty String, that result is used a bean name for the next outputChannel. The
routingSlipIndex remains unchanged.

• If RoutingSlipRouteStrategy.getNextPath returns an empty String, the
routingSlipIndex is incremented and the getOutputChannelFromRoutingSlip is invoked
recursively for the next Routing Slip path item;

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 78

• If the next Routing Slip path entry isn’t a String it must be an instance of
RoutingSlipRouteStrategy;

• When the routingSlipIndex exceeds the size of the Routing Slip path list, the algorithm moves
to the default behavior for the standard replyChannel header.

Process Manager Enterprise Integration Pattern

The EIP also defines the Process Manager pattern. This pattern can now easily be implemented
using custom Process Manager logic encapsulated in a RoutingSlipRouteStrategy within
the routing slip. In addition to a bean name, the RoutingSlipRouteStrategy can return any
MessageChannel object; and there is no requirement that this MessageChannel instance is a
bean in the application context. This way, we can provide powerful dynamic routing logic, when
there is no prediction which channel should be used; a MessageChannel can be created within
the RoutingSlipRouteStrategy and returned. A FixedSubscriberChannel with an associated
MessageHandler implementation is good combination for such cases. For example we can route to
a Reactor Stream:

@Bean

public PollableChannel resultsChannel() {

 return new QueueChannel();

}

@Bean

public RoutingSlipRouteStrategy routeStrategy() {

 return (requestMessage, reply) -> requestMessage.getPayload() instanceof String

 ? new FixedSubscriberChannel(m ->

 Mono.just((String) m.getPayload())

 .map(String::toUpperCase)

 .subscribe(v -> messagingTemplate().convertAndSend(resultsChannel(), v)))

 : new FixedSubscriberChannel(m ->

 Mono.just((Integer) m.getPayload())

 .map(v -> v * 2)

 .subscribe(v -> messagingTemplate().convertAndSend(resultsChannel(), v)));

}

6.2 Filter

Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on
some criteria such as a Message Header value or Message content itself. Therefore, a Message Filter
is similar to a router, except that for each Message received from the filter’s input channel, that same
Message may or may not be sent to the filter’s output channel. Unlike the router, it makes no decision
regarding which Message Channel to send the Message to but only decides whether to send.

Note

As you will see momentarily, the Filter also supports a discard channel, so in certain cases it can
play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to an
implementation of the MessageSelector interface. That interface is itself quite simple:

public interface MessageSelector {

 boolean accept(Message<?> message);

}

http://www.eaipatterns.com/ProcessManager.html
https://github.com/reactor/reactor/wiki/Streams

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 79

The MessageFilter constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(someSelector);

In combination with the namespace and SpEL, very powerful filters can be configured with very little
java code.

Configuring Filter

Configuring a Filter with XML

The <filter> element is used to create a Message-selecting endpoint. In addition to input-channel
and output-channel attributes, it requires a ref. The ref may point to a MessageSelector
implementation:

<int:filter input-channel="input" ref="selector" output-channel="output"/>

<bean id="selector" class="example.MessageSelectorImpl"/>

Alternatively, the method attribute can be added at which point the ref may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages.
The method must return a boolean value. If the method returns true, the Message will be sent to the
output-channel.

<int:filter input-channel="input" output-channel="output"

 ref="exampleObject" method="someBooleanReturningMethod"/>

<bean id="exampleObject" class="example.SomeObject"/>

If the selector or adapted POJO method returns false, there are a few settings that control the handling
of the rejected Message. By default (if configured like the example above), rejected Messages will be
silently dropped. If rejection should instead result in an error condition, then set the throw-exception-
on-rejection attribute to true:

<int:filter input-channel="input" ref="selector"

 output-channel="output" throw-exception-on-rejection="true"/>

If you want rejected messages to be routed to a specific channel, provide that reference as the
discard-channel:

<int:filter input-channel="input" ref="selector"

 output-channel="output" discard-channel="rejectedMessages"/>

Also see the section called “Advising Filters”.

Note

Message Filters are commonly used in conjunction with a Publish Subscribe Channel. Many filter
endpoints may be subscribed to the same channel, and they decide whether or not to pass the
Message to the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router
with a single Point-to-Point input channel and multiple output channels.

Using a ref attribute is generally recommended if the custom filter implementation is referenced in other
<filter> definitions. However if the custom filter implementation is scoped to a single <filter>
element, provide an inner bean definition:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 80

<int:filter method="someMethod" input-channel="inChannel" output-channel="outChannel">

 <beans:bean class="org.foo.MyCustomFilter"/>

</filter>

Note

Using both the ref attribute and an inner handler definition in the same <filter> configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Important

If the "ref" attribute references a bean that extends MessageFilter (such as filters provided
by the framework itself), the configuration is optimized by injecting the output channel into
the filter bean directly. In this case, each "ref" must be to a separate bean instance (or
a prototype-scoped bean), or use the inner <bean/> configuration type. However, this
optimization only applies if you don’t provide any filter-specific attributes in the filter XML definition.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

With the introduction of SpEL support, Spring Integration added the expression attribute to the filter
element. It can be used to avoid Java entirely for simple filters.

<int:filter input-channel="input" expression="payload.equals('nonsense')"/>

The string passed as the expression attribute will be evaluated as a SpEL expression with the Message
available in the evaluation context. If it is necessary to include the result of an expression in the scope
of the application context you can use the #{} notation as defined in the SpEL reference documentation.

<int:filter input-channel="input"

 expression="payload.matches(#{filterPatterns.nonsensePattern})"/>

If the Expression itself needs to be dynamic, then an expression sub-element may be used. That
provides a level of indirection for resolving the Expression by its key from an ExpressionSource. That
is a strategy interface that you can implement directly, or you can rely upon a version available in
Spring Integration that loads Expressions from a "resource bundle" and can check for modifications
after a given number of seconds. All of this is demonstrated in the following configuration sample where
the Expression could be reloaded within one minute if the underlying file had been modified. If the
ExpressionSource bean is named "expressionSource", then it is not necessary to provide the` source`
attribute on the <expression> element, but in this case it’s shown for completeness.

<int:filter input-channel="input" output-channel="output">

 <int:expression key="filterPatterns.example" source="myExpressions"/>

</int:filter>

<beans:bean id="myExpressions" id="myExpressions"

 class="o.s.i.expression.ReloadableResourceBundleExpressionSource">

 <beans:property name="basename" value="config/integration/expressions"/>

 <beans:property name="cacheSeconds" value="60"/>

</beans:bean>

Then, the config/integration/expressions.properties file (or any more specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) would contain a key/value
pair:

filterPatterns.example=payload > 100

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 81

Note

All of these examples that use expression as an attribute or sub-element can also be applied
within transformer, router, splitter, service-activator, and header-enricher elements. Of course,
the semantics/role of the given component type would affect the interpretation of the evaluation
result in the same way that the return value of a method-invocation would be interpreted. For
example, an expression can return Strings that are to be treated as Message Channel names by
a router component. However, the underlying functionality of evaluating the expression against
the Message as the root object, and resolving bean names if prefixed with @ is consistent across
all of the core EIP components within Spring Integration.

Configuring a Filter with Annotations

A filter configured using annotations would look like this.

public class PetFilter {

 ...

 @Filter ❶

 public boolean dogsOnly(String input) {

 ...

 }

}

❶ An annotation indicating that this method shall be used as a filter. Must be specified if this class
will be used as a filter.

All of the configuration options provided by the xml element are also available for the @Filter
annotation.

The filter can be either referenced explicitly from XML or, if the @MessageEndpoint annotation is
defined on the class, detected automatically through classpath scanning.

Also see the section called “Advising Endpoints Using Annotations”.

6.3 Splitter

Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

Programming model

The API for performing splitting consists of one base class, AbstractMessageSplitter, which is a
MessageHandler implementation, encapsulating features which are common to splitters, such as filling
in the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER
on the messages that are produced. This enables tracking down the messages and the results of their
processing (in a typical scenario, these headers would be copied over to the messages that are produced
by the various transforming endpoints), and use them, for example, in a Composed Message Processor
scenario.

An excerpt from AbstractMessageSplitter can be seen below:

http://www.eaipatterns.com/DistributionAggregate.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 82

public abstract class AbstractMessageSplitter

 extends AbstractReplyProducingMessageConsumer {

 ...

 protected abstract Object splitMessage(Message<?> message);

}

To implement a specific Splitter in an application, extend AbstractMessageSplitter and implement
the splitMessage method, which contains logic for splitting the messages. The return value may be
one of the following:

• A Collection or an array of Messages, or an Iterable (or Iterator) that iterates over Messages
- in this case the messages will be sent as such (after the CORRELATION_ID, SEQUENCE_SIZE and
SEQUENCE_NUMBER are populated). Using this approach gives more control to the developer, for
example for populating custom message headers as part of the splitting process.

• A Collection or an array of non-Message objects, or an Iterable (or Iterator) that iterates
over non-Message objects - works like the prior case, except that each collection element will be used
as a Message payload. Using this approach allows developers to focus on the domain objects without
having to consider the Messaging system and produces code that is easier to test.

• a Message or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except a single message will be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will
be interpreted as described above. The input argument might either be a Message or a simple POJO.
In the latter case, the splitter will receive the payload of the incoming message. Since this decouples the
code from the Spring Integration API and will typically be easier to test, it is the recommended approach.

Iterators

Starting with version 4.1, the AbstractMessageSplitter supports the Iterator type for the
value to split. Note, in the case of an Iterator (or Iterable), we don’t have access to the
number of underlying items and the SEQUENCE_SIZE header is set to 0. This means that the
default SequenceSizeReleaseStrategy of an <aggregator> won’t work and the group for the
CORRELATION_ID from the splitter won’t be released; it will remain as incomplete. In this case
you should use an appropriate custom ReleaseStrategy or rely on send-partial-result-on-
expiry together with group-timeout or a MessageGroupStoreReaper.

Starting with version 5.0, the AbstractMessageSplitter provides protected

obtainSizeIfPossible() methods to allow the determination of the size of the Iterable and
Iterator objects if that is possible. For example XPathMessageSplitter can determine the size
of the underlying NodeList object.

An Iterator object is useful to avoid the need for building an entire collection in the memory before
splitting. For example, when underlying items are populated from some external system (e.g. DataBase
or FTP MGET) using iterations or streams.

Stream and Flux

Starting with version 5.0, the AbstractMessageSplitter supports the Java Stream and Reactive
Streams Publisher types for the value to split. In this case the target Iterator is built on their
iteration functionality.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 83

In addition, if Splitter’s output channel is an instance of a ReactiveStreamsSubscribableChannel,
the AbstractMessageSplitter produces a Flux result instead of an Iterator and the output
channel is subscribed to this Flux for back-pressure based splitting on downstream flow demand.

Configuring Splitter

Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<int:channel id="inputChannel"/>

<int:splitter id="splitter" ❶

 ref="splitterBean" ❷

 method="split" ❸

 input-channel="inputChannel" ❹

 output-channel="outputChannel" /> ❺

<int:channel id="outputChannel"/>

<beans:bean id="splitterBean" class="sample.PojoSplitter"/>

❶ The id of the splitter is optional.

❷ A reference to a bean defined in the application context. The bean must implement the splitting logic
as described in the section above .Optional. If reference to a bean is not provided, then it is assumed
that the payload of the Message that arrived on the input-channel is an implementation
of java.util.Collection and the default splitting logic will be applied to the Collection,
incorporating each individual element into a Message and sending it to the output-channel.

❸ The method (defined on the bean specified above) that implements the splitting logic.Optional.

❹ The input channel of the splitter. Required.

❺ The channel to which the splitter will send the results of splitting the incoming message. Optional
(because incoming messages can specify a reply channel themselves).

Using a ref attribute is generally recommended if the custom splitter implementation may be referenced
in other <splitter> definitions. However if the custom splitter handler implementation should be
scoped to a single definition of the <splitter>, configure an inner bean definition:

<int:splitter id="testSplitter" input-channel="inChannel" method="split"

 output-channel="outChannel">

 <beans:bean class="org.foo.TestSplitter"/>

</int:splitter>

Note

Using both a ref attribute and an inner handler definition in the same <int:splitter>
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Important

If the "ref" attribute references a bean that extends AbstractMessageProducingHandler
(such as splitters provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref" must be to a separate bean
instance (or a prototype-scoped bean), or use the inner <bean/> configuration type. However,
this optimization only applies if you don’t provide any splitter-specific attributes in the splitter XML

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 84

definition. If you inadvertently reference the same message handler from multiple beans, you will
get a configuration exception.

Configuring a Splitter with Annotations

The @Splitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a Collection of any type. If
the returned values are not actual Message objects, then each item will be wrapped in a Message as
its payload. Each message will be sent to the designated output channel for the endpoint on which the
@Splitter is defined.

@Splitter

List<LineItem> extractItems(Order order) {

 return order.getItems()

}

Also see the section called “Advising Endpoints Using Annotations”.

Also see Section 9.10, “Splitters” in Java DSL chapter.

6.4 Aggregator

Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, an Aggregator is often a
downstream consumer in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is stateful as it must hold the
Messages to be aggregated and determine when the complete group of Messages is ready to be
aggregated. In order to do this it requires a MessageStore.

Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group
is deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the aggregated message as output.

Implementing an Aggregator requires providing the logic to perform the aggregation (i.e., the creation
of a single message from many). Two related concepts are correlation and release.

Correlation determines how messages are grouped for aggregation. In Spring Integration correlation is
done by default based on the IntegrationMessageHeaderAccessor.CORRELATION_ID message
header. Messages with the same IntegrationMessageHeaderAccessor.CORRELATION_ID will
be grouped together. However, the correlation strategy may be customized to allow other ways of
specifying how the messages should be grouped together by implementing a CorrelationStrategy
(see below).

To determine the point at which a group of messages is ready to be processed,
a ReleaseStrategy is consulted. The default release strategy for the Aggregator will
release a group when all messages included in a sequence are present, based on the
IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header. This default strategy may be
overridden by providing a reference to a custom ReleaseStrategy implementation.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 85

Programming model

The Aggregation API consists of a number of classes:

• The interface MessageGroupProcessor, and its subclasses:
MethodInvokingAggregatingMessageGroupProcessor and
ExpressionEvaluatingMessageGroupProcessor

• The ReleaseStrategy interface and its default implementation
SimpleSequenceSizeReleaseStrategy

• The CorrelationStrategy interface and its default implementation
HeaderAttributeCorrelationStrategy

AggregatingMessageHandler

The AggregatingMessageHandler (subclass of AbstractCorrelatingMessageHandler) is a
MessageHandler implementation, encapsulating the common functionalities of an Aggregator (and
other correlating use cases), which are:

• correlating messages into a group to be aggregated

• maintaining those messages in a MessageStore until the group can be released

• deciding when the group can be released

• aggregating the released group into a single message

• recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
CorrelationStrategy instance. The responsibility of deciding whether the message group can be
released is delegated to a ReleaseStrategy instance.

Here is a brief highlight of the base AbstractAggregatingMessageGroupProcessor (the
responsibility of implementing the aggregatePayloads method is left to the developer):

public abstract class AbstractAggregatingMessageGroupProcessor

 implements MessageGroupProcessor {

 protected Map<String, Object> aggregateHeaders(MessageGroup group) {

 // default implementation exists

 }

 protected abstract Object aggregatePayloads(MessageGroup group, Map<String, Object> defaultHeaders);

}

The CorrelationStrategy is owned by the AbstractCorrelatingMessageHandler and it has
a default value based on the IntegrationMessageHeaderAccessor.CORRELATION_ID message
header:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 86

public AbstractCorrelatingMessageHandler(MessageGroupProcessor processor, MessageGroupStore store,

 CorrelationStrategy correlationStrategy, ReleaseStrategy releaseStrategy) {

 ...

 this.correlationStrategy = correlationStrategy == null ?

 new HeaderAttributeCorrelationStrategy(IntegrationMessageHeaderAccessor.CORRELATION_ID) :

 correlationStrategy;

 this.releaseStrategy = releaseStrategy == null ? new SimpleSequenceSizeReleaseStrategy() :

 releaseStrategy;

 ...

}

As for actual processing of the message group, the default implementation is the
DefaultAggregatingMessageGroupProcessor. It creates a single Message whose payload
is a List of the payloads received for a given group. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario, be sure
to enable the flag to apply-sequence. That will add the necessary headers (CORRELATION_ID,
SEQUENCE_NUMBER and SEQUENCE_SIZE). That behavior is enabled by default for Splitters in
Spring Integration, but it is not enabled for the Publish Subscribe Channel or Recipient List Router
because those components may be used in a variety of contexts in which these headers are not
necessary.

When implementing a specific aggregator strategy for an application, a developer can extend
AbstractAggregatingMessageGroupProcessor and implement the aggregatePayloads
method. However, there are better solutions, less coupled to the API, for implementing the aggregation
logic which can be configured easily either through XML or through annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts a
single java.util.List as an argument (parameterized lists are supported as well). This method will
be invoked for aggregating messages as follows:

• if the argument is a java.util.Collection<T>, and the parameter type T is assignable to
Message, then the whole list of messages accumulated for aggregation will be sent to the aggregator

• if the argument is a non-parameterized java.util.Collection or the parameter type is not
assignable to Message, then the method will receive the payloads of the accumulated messages

• if the return type is not assignable to Message, then it will be treated as the payload for a Message
that will be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for configuring it in the application.

Important

The SimpleMessageGroup.getMessages() method returns an
unmodifiableCollection, therefore, if your aggregating POJO method has a
Collection<Message> parameter, the argument passed in will be exactly that

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 87

Collection instance and, when a SimpleMessageStore is used for the Aggregator,
that original Collection<Message> will be cleared after releasing the group. Hence the
Collection<Message> variable in the POJO will be cleared too, if passed out of the aggregator.
If you wish to simply release that collection as-is for further processing, it is required that you build
a new Collection (e.g. new ArrayList<Message>(messages)) Starting with _version 4.3,
the Framework no longer copies the messages to a new collection, to avoid undesired extra object
creation.

If the MessageGroupProcessor 's processMessageGroup method returns a collection, it must be
a collection of Message<?> s. In this case, the messages are released individually. Prior to version
4.2, it was not possible to provide a MessageGroupProcessor using XML configuration, only POJO
methods could be used for aggregation. Now, if the framework detects that the referenced (or inner)
bean implements MessageProcessor, it is used as the aggregator’s output processor.

If you wish to release a collection of objects from a custom MessageGroupProcessor as the payload
of a message, your class should extend AbstractAggregatingMessageGroupProcessor and
implement aggregatePayloads().

Also, since version 4.2, a SimpleMessageGroupProcessor is provided; which simply returns the
collection of messages from the group, which, as indicated above, causes the released messages to
be sent individually.

This allows the aggregator to work as a message barrier where arriving messages are held until the
release strategy fires, and the group is released, as a sequence of individual messages.

ReleaseStrategy

The ReleaseStrategy interface is defined as follows:

public interface ReleaseStrategy {

 boolean canRelease(MessageGroup group);

}

In general, any POJO can implement the completion decision logic if it provides a method that accepts
a single java.util.List as an argument (parameterized lists are supported as well), and returns a
boolean value. This method will be invoked after the arrival of each new message, to decide whether
the group is complete or not, as follows:

• if the argument is a java.util.List<T>, and the parameter type T is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

• the method must return true if the message group is ready for aggregation, and false otherwise.

For example:

public class MyReleaseStrategy {

 @ReleaseStrategy

 public boolean canMessagesBeReleased(List<Message<?>>) {...}

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 88

public class MyReleaseStrategy {

 @ReleaseStrategy

 public boolean canMessagesBeReleased(List<String>) {...}

}

As you can see based on the above signatures, the POJO-based Release Strategy will be passed
a Collection of not-yet-released Messages (if you need access to the whole Message) or a
Collection of payload objects (if the type parameter is anything other than Message). Typically
this would satisfy the majority of use cases. However if, for some reason, you need to access the full
MessageGroup then you should simply provide an implementation of the ReleaseStrategy interface.

Warning

When handling potentially large groups, it is important to understand how these methods are
invoked because the release strategy may be invoked multiple times before the group is released.
The most efficient is an implementation of ReleaseStrategy because the aggregator can
invoke it directly. The second most efficient is a POJO method with a Collection<Message<?
>> parameter type. The least efficient is a POJO method with a Collection<Foo> type - the
framework has to copy the payloads from the messages in the group into a new collection (and
possibly attempt conversion on the payloads to Foo) every time the release strategy is called.
Collection<?> avoids the conversion but still requires creating the new Collection.

For these reasons, for large groups, it is recommended that you implement
ReleaseStrategy.

When the group is released for aggregation, all its not-yet-released messages are processed and
removed from the group. If the group is also complete (i.e. if all messages from a sequence have
arrived or if there is no sequence defined), then the group is marked as complete. Any new messages
for this group will be sent to the discard channel (if defined). Setting expire-groups-upon-
completion to true (default is false) removes the entire group and any new messages, with the
same correlation id as the removed group, will form a new group. Partial sequences can be released
by using a MessageGroupStoreReaper together with send-partial-result-on-expiry being
set to true.

Important

To facilitate discarding of late-arriving messages, the aggregator must maintain state about the
group after it has been released. This can eventually cause out of memory conditions. To avoid
such situations, you should consider configuring a MessageGroupStoreReaper to remove the
group metadata; the expiry parameters should be set to expire groups after it is not expected
that late messages will arrive. For information about configuring a reaper, see the section called
“Managing State in an Aggregator: MessageGroupStore”.

Spring Integration provides an out-of-the box implementation for ReleaseStrategy, the
SimpleSequenceSizeReleaseStrategy. This implementation consults the SEQUENCE_NUMBER
and SEQUENCE_SIZE headers of each arriving message to decide when a message group is complete
and ready to be aggregated. As shown above, it is also the default strategy.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 89

Note

Before version 5.0, the default release strategy was SequenceSizeReleaseStrategy which
does not perform well with large groups. With that strategy, duplicate sequence numbers are
detected and rejected; this operation can be expensive.

If you are aggregating large groups, you don’t need to release partial groups, and you don’t need
to detect/reject duplicate sequences, consider using the SimpleSequenceSizeReleaseStrategy
instead - it is much more efficient for these use cases, and is the default since version 5.0 when partial
group release is not specified.

Aggregating Large Groups

The 4.3 release changed the default Collection for messages in a SimpleMessageGroup to
HashSet (it was previously a BlockingQueue). This was expensive when removing individual
messages from large groups (an O(n) linear scan was required). Although the hash set is generally
much faster for removing, it can be expensive for large messages because the hash has to be
calculated (on both inserts and removes). If you have messages that are expensive to hash,
consider using some other collection type. As discussed in the section called “MessageGroupFactory”,
a SimpleMessageGroupFactory is provided so you can select the Collection that best
suits your needs. You can also provide your own factory implementation to create some other
Collection<Message<?>>.

Here is an example of how to configure an aggregator with the previous implementation and a
SimpleSequenceSizeReleaseStrategy.

<int:aggregator input-channel="aggregate"

 output-channel="out" message-store="store" release-strategy="releaser" />

<bean id="store" class="org.springframework.integration.store.SimpleMessageStore">

 <property name="messageGroupFactory">

 <bean class="org.springframework.integration.store.SimpleMessageGroupFactory">

 <constructor-arg value="BLOCKING_QUEUE"/>

 </bean>

 </property>

</bean>

<bean id="releaser" class="SimpleSequenceSizeReleaseStrategy" />

CorrelationStrategy

The CorrelationStrategy interface is defined as follows:

public interface CorrelationStrategy {

 Object getCorrelationKey(Message<?> message);

}

The method returns an Object which represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equals() and hashCode().

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method’s argument (or arguments) are the same as for a ServiceActivator (including support for
@Header annotations). The method must return a value, and the value must not be null.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 90

Spring Integration provides an out-of-the box implementation for CorrelationStrategy, the
HeaderAttributeCorrelationStrategy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By
default, the correlation strategy is a HeaderAttributeCorrelationStrategy returning the value
of the CORRELATION_ID header attribute. If you have a custom header name you would like to use for
correlation, then simply configure that on an instance of HeaderAttributeCorrelationStrategy
and provide that as a reference for the Aggregator’s correlation-strategy.

LockRegistry

Changes to groups are thread safe; a LockRegistry is used to obtain a lock for the resolved
correlation id. A DefaultLockRegistry is used by default (in-memory). For synchronizing updates
across servers, where a shared MessageGroupStore is being used, a shared lock registry must be
configured. See the section called “Configuring an Aggregator” below for more information.

Configuring an Aggregator

See Section 9.11, “Aggregators and Resequencers” for configuring an Aggregator in Java DSL.

Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/>
element. Below you can see an example of an aggregator.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 91

<channel id="inputChannel"/>

<int:aggregator id="myAggregator" ❶

 auto-startup="true" ❷

 input-channel="inputChannel" ❸

 output-channel="outputChannel" ❹

 discard-channel="throwAwayChannel" ❺

 message-store="persistentMessageStore" ❻

 order="1" ❼

 send-partial-result-on-expiry="false" ❽

 send-timeout="1000" ❾

 correlation-strategy="correlationStrategyBean" ❿

 correlation-strategy-method="correlate" 11

 correlation-strategy-expression="headers['foo']" 12

 ref="aggregatorBean" 13

 method="aggregate" 14

 release-strategy="releaseStrategyBean" 15

 release-strategy-method="release" 16

 release-strategy-expression="size() == 5" 17

 expire-groups-upon-completion="false" 18

 empty-group-min-timeout="60000" 19

 lock-registry="lockRegistry" 20

 group-timeout="60000" 21

 group-timeout-expression="size() ge 2 ? 100 : -1" 22

 expire-groups-upon-timeout="true" 23

 scheduler="taskScheduler" > 24

 <expire-transactional/> 25

 <expire-advice-chain/> 26

</aggregator>

<int:channel id="outputChannel"/>

<int:channel id="throwAwayChannel"/>

<bean id="persistentMessageStore" class="org.springframework.integration.jdbc.store.JdbcMessageStore">

 <constructor-arg ref="dataSource"/>

</bean>

<bean id="aggregatorBean" class="sample.PojoAggregator"/>

<bean id="releaseStrategyBean" class="sample.PojoReleaseStrategy"/>

<bean id="correlationStrategyBean" class="sample.PojoCorrelationStrategy"/>

❶ The id of the aggregator is Optional.

❷ Lifecycle attribute signaling if aggregator should be started during Application Context startup.
Optional (default is true).

❸ The channel from which where aggregator will receive messages. Required.

❹ The channel to which the aggregator will send the aggregation results. Optional (because incoming
messages can specify a reply channel themselves via replyChannel Message Header).

❺ The channel to which the aggregator will send the messages that timed out (if send-partial-
result-on-expiry is false). Optional.

❻ A reference to a MessageGroupStore used to store groups of messages under their correlation
key until they are complete. Optional, by default a volatile in-memory store.

❼ Order of this aggregator when more than one handle is subscribed to the same DirectChannel (use
for load balancing purposes). Optional.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 92

❽ Indicates that expired messages should be aggregated and sent to the output-
channel or replyChannel once their containing MessageGroup is expired (see
MessageGroupStore.expireMessageGroups(long)). One way of expiring MessageGroup
s is by configuring a MessageGroupStoreReaper. However MessageGroup s can alternatively
be expired by simply calling MessageGroupStore.expireMessageGroups(timeout). That
could be accomplished via a Control Bus operation or by simply invoking that method if you have a
reference to the MessageGroupStore instance. Otherwise by itself this attribute has no behavior.
It only serves as an indicator of what to do (discard or send to the output/reply channel) with
Messages that are still in the MessageGroup that is about to be expired. Optional. Default - false.
NOTE: This attribute is more properly send-partial-result-on-timeout because the group
may not actually expire if expire-groups-upon-timeout is set to false.

❾ The timeout interval to wait when sending a reply Message to the output-channel
or discard-channel. Defaults to -1 - blocking indefinitely. It is applied only if the
output channel has some sending limitations, e.g. QueueChannel with a fixed capacity.
In this case a MessageDeliveryException is thrown. The send-timeout is ignored in
case of AbstractSubscribableChannel implementations. In case of group-timeout(-
expression) the MessageDeliveryException from the scheduled expire task leads this task
to be rescheduled. Optional.

❿ A reference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the CorrelationStrategy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the IntegrationMessageHeaderAccessor.CORRELATION_ID header).

11 A method defined on the bean referenced by correlation-strategy, that implements the
correlation decision algorithm. Optional, with restrictions (requires correlation-strategy to
be present).

12 A SpEL expression representing the correlation strategy. Example: "headers['foo']". Only
one of correlation-strategy or correlation-strategy-expression is allowed.

13 A reference to a bean defined in the application context. The bean must implement the aggregation
logic as described above. Optional (by default the list of aggregated Messages will become a
payload of the output message).

14 A method defined on the bean referenced by ref, that implements the message aggregation
algorithm. Optional, depends on ref attribute being defined.

15 A reference to a bean that implements the release strategy. The bean can be an implementation
of the ReleaseStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header attribute).

16 A method defined on the bean referenced by release-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires release-strategy to be
present).

17 A SpEL expression representing the release strategy; the root object for the expression is a
MessageGroup. Example: "size() == 5". Only one of release-strategy or release-
strategy-expression is allowed.

18 When set to true (default false), completed groups are removed from the message store, allowing
subsequent messages with the same correlation to form a new group. The default behavior is to
send messages with the same correlation as a completed group to the discard-channel.

19 Only applies if a MessageGroupStoreReaper is configured for the <aggregator>'s
MessageStore. By default, when a MessageGroupStoreReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 93

not be removed from the MessageStore until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper’s timeout property and it could be as much as this value plus the timeout.

20 A reference to a org.springframework.integration.util.LockRegistry bean; used to
obtain a Lock based on the groupId for concurrent operations on the MessageGroup. By default,
an internal DefaultLockRegistry is used. Use of a distributed LockRegistry, such as the
ZookeeperLockRegistry, ensures only one instance of the aggregator will operate on a group
concurrently. See Section 25.11, “Redis Lock Registry”, Section 17.6, “Gemfire Lock Registry”,
Section 39.3, “Zookeeper Lock Registry” for more information.

21 A timeout in milliseconds to force the MessageGroup complete, when the ReleaseStrategy
doesn’t release the group when the current Message arrives. This attribute provides a built-in
Time-base Release Strategy for the aggregator, when there is a need to emit a partial result (or
discard the group), if a new Message does not arrive for the MessageGroup within the timeout.
When a new Message arrives at the aggregator, any existing ScheduledFuture<?> for its
MessageGroup is canceled. If the ReleaseStrategy returns false (don’t release) and the
groupTimeout > 0 a new task will be scheduled to expire the group. Setting this attribute
to zero is not advised because it will effectively disable the aggregator because every message
group will be immediately completed. It is possible, however to conditionally set it to zero using
an expression; see group-timeout-expression for information. The action taken during the
completion depends on the ReleaseStrategy and the send-partial-group-on-expiry
attribute. See the section called “Aggregator and Group Timeout” for more information. Mutually
exclusive with group-timeout-expression attribute.

22 The SpEL expression that evaluates to a groupTimeout with the MessageGroup as the #root
evaluation context object. Used for scheduling the MessageGroup to be forced complete. If the
expression evaluates to null or < 0, the completion is not scheduled. If it evaluates to zero, the
group is completed immediately on the current thread. In effect, this provides a dynamic group-
timeout property. See group-timeout for more information. Mutually exclusive with group-
timeout attribute.

23 When a group is completed due to a timeout (or by a MessageGroupStoreReaper), the group
is expired (completely removed) by default. Late arriving messages will start a new group. Set this
to false to complete the group but have its metadata remain so that late arriving messages will
be discarded. Empty groups can be expired later using a MessageGroupStoreReaper together
with the empty-group-min-timeout attribute. Default: true.

24 A TaskScheduler bean reference to schedule the MessageGroup to be forced complete
if no new message arrives for the MessageGroup within the groupTimeout. If not
provided, the default scheduler taskScheduler, registered in the ApplicationContext
(ThreadPoolTaskScheduler) will be used. This attribute does not apply if group-timeout or
group-timeout-expression is not specified.

25 Since version 4.1. Allows a transaction to be started for the forceComplete operation. It is
initiated from a group-timeout(-expression) or by a MessageGroupStoreReaper and
is not applied to the normal add/release/discard operations. Only this sub-element or
<expire-advice-chain/> is allowed.

26 Since version 4.1. Allows the configuration of any Advice for the forceComplete operation.
It is initiated from a group-timeout(-expression) or by a MessageGroupStoreReaper
and is not applied to the normal add/release/discard operations. Only this sub-element or
<expire-transactional/> is allowed. A transaction Advice can also be configured here
using the Spring tx namespace.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 94

Expiring Groups

There are two attributes related to expiring (completely removing) groups. When a group is
expired, there is no record of it and if a new message arrives with the same correlation, a
new group is started. When a group is completed (without expiry), the empty group remains
and late arriving messages are discarded. Empty groups can be removed later using a
MessageGroupStoreReaper in combination with the empty-group-min-timeout attribute.

expire-groups-upon-completion relates to "normal" completion - when the
ReleaseStrategy releases the group. This defaults to false.

If a group is not completed normally, but is released or discarded because of a timeout, the group
is normally expired. Since version 4.1, you can now control this behavior using expire-groups-
upon-timeout; this defaults to true for backwards compatibility.

Note

When a group is timed out, the ReleaseStrategy is given one more opportunity to release
the group; if it does so, and expire-groups-upon-timeout is false, then expiration is
controlled by expire-groups-upon-completion. If the group is not released by the
release strategy during timeout, then the expiration is controlled by the expire-groups-
upon-timeout. Timed-out groups are either discarded, or a partial release occurs (based
on send-partial-result-on-expiry).

Starting with version 5.0 empty groups are also scheduled for removal after
empty-group-min-timeout. If expireGroupsUponCompletion == false and
minimumTimeoutForEmptyGroups > 0, the task to remove the group is scheduled, when
normal or partial sequences release happens.

Using a ref attribute is generally recommended if a custom aggregator handler implementation may be
referenced in other <aggregator> definitions. However if a custom aggregator implementation is only
being used by a single definition of the <aggregator>, you can use an inner bean definition (starting
with version 1.0.3) to configure the aggregation POJO within the <aggregator> element:

<aggregator input-channel="input" method="sum" output-channel="output">

 <beans:bean class="org.foo.PojoAggregator"/>

</aggregator>

Note

Using both a ref attribute and an inner bean definition in the same <aggregator> configuration
is not allowed, as it creates an ambiguous condition. In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public class PojoAggregator {

 public Long add(List<Long> results) {

 long total = 0l;

 for (long partialResult: results) {

 total += partialResult;

 }

 return total;

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 95

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoReleaseStrategy {

...

 public boolean canRelease(List<Long> numbers) {

 int sum = 0;

 for (long number: numbers) {

 sum += number;

 }

 return sum >= maxValue;

 }

}

Note

Wherever it makes sense, the release strategy method and the aggregator method can be
combined in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrelationStrategy {

...

 public Long groupNumbersByLastDigit(Long number) {

 return number % 10;

 }

}

For example, this aggregator would group numbers by some criterion (in our case the remainder after
dividing by 10) and will hold the group until the sum of the numbers provided by the payloads exceeds
a certain value.

Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in a single bean (all of them or any two).

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, the various strategies (correlation, release, and aggregation) may be
handled with SpEL which is recommended if the logic behind such release strategy is relatively simple.
Let’s say you have a legacy component that was designed to receive an array of objects. We know that
the default release strategy will assemble all aggregated messages in the List. So now we have two
problems. First we need to extract individual messages from the list, and then we need to extract the
payload of each message and assemble the array of objects (see code below).

public String[] processRelease(List<Message<String>> messages){

 List<String> stringList = new ArrayList<String>();

 for (Message<String> message : messages) {

 stringList.add(message.getPayload());

 }

 return stringList.toArray(new String[]{});

}

However, with SpEL such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean.

<int:aggregator input-channel="aggChannel"

 output-channel="replyChannel"

 expression="#this.![payload].toArray()"/>

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 96

In the above configuration we are using a Collection Projection expression to assemble a new collection
from the payloads of all messages in the list and then transforming it to an Array, thus achieving the
same result as the java code above.

The same expression-based approach can be applied when dealing with custom Release and
Correlation strategies.

Instead of defining a bean for a custom CorrelationStrategy via the correlation-strategy
attribute, you can implement your simple correlation logic via a SpEL expression and configure it via
the correlation-strategy-expression attribute.

For example:

correlation-strategy-expression="payload.person.id"

In the above example it is assumed that the payload has an attribute person with an id which is going
to be used to correlate messages.

Likewise, for the ReleaseStrategy you can implement your release logic as a SpEL expression and
configure it via the release-strategy-expression attribute. The root object for evaluation context
is the MessageGroup itself. The List of messages can be referenced using the message property of
the group within the expression.

Note

In releases prior to version 5.0, the root object was the collection of Message<?>.

For example:

release-strategy-expression="!messages.?[payload==5].empty"

In this example the root object of the SpEL Evaluation Context is the MessageGroup itself, and you are
simply stating that as soon as there are a message with payload as 5 in this group, it should be released.

Aggregator and Group Timeout

Starting with version 4.0, two new mutually exclusive attributes have been introduced: group-timeout
and group-timeout-expression (see the description above). There are some cases where it is
needed to emit the aggregator result (or discard the group) after a timeout if the ReleaseStrategy
doesn’t release when the current Message arrives. For this purpose the groupTimeout option allows
scheduling the MessageGroup to be forced complete:

<aggregator input-channel="input" output-channel="output"

 send-partial-result-on-expiry="true"

 group-timeout-expression="size() ge 2 ? 10000 : -1"

 release-strategy-expression="messages[0].headers.sequenceNumber ==

 messages[0].headers.sequenceSize"/>

With this example, the normal release will be possible if the aggregator receives the last message in
sequence as defined by the release-strategy-expression. If that specific message does not
arrive, the groupTimeout will force the group complete after 10 seconds as long as the group contains
at least 2 Messages.

The results of forcing the group complete depends on the ReleaseStrategy and the send-partial-
result-on-expiry. First, the release strategy is again consulted to see if a normal release is to be

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 97

made - while the group won’t have changed, the ReleaseStrategy can decide to release the group
at this time. If the release strategy still does not release the group, it will be expired. If send-partial-
result-on-expiry is true, existing messages in the (partial) MessageGroup will be released as a
normal aggregator reply Message to the output-channel, otherwise it will be discarded.

There is a difference between groupTimeout behavior and MessageGroupStoreReaper (see
the section called “Configuring an Aggregator”). The reaper initiates forced completion for all
MessageGroup s in the MessageGroupStore periodically. The groupTimeout does it for each
MessageGroup individually, if a new Message doesn’t arrive during the groupTimeout. Also, the
reaper can be used to remove empty groups (empty groups are retained in order to discard late
messages, if expire-groups-upon-completion is false).

Configuring an Aggregator with Annotations

An aggregator configured using annotations would look like this.

public class Waiter {

 ...

 @Aggregator ❶

 public Delivery aggregatingMethod(List<OrderItem> items) {

 ...

 }

 @ReleaseStrategy ❷

 public boolean releaseChecker(List<Message<?>> messages) {

 ...

 }

 @CorrelationStrategy ❸

 public String correlateBy(OrderItem item) {

 ...

 }

}

❶ An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

❷ An annotation indicating that this method shall be used as the release strategy
of an aggregator. If not present on any method, the aggregator will use the
SimpleSequenceSizeReleaseStrategy.

❸ An annotation indicating that this method shall be used as the correlation strategy
of an aggregator. If no correlation strategy is indicated, the aggregator will use the
HeaderAttributeCorrelationStrategy based on CORRELATION_ID.

All of the configuration options provided by the xml element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined
on the class, detected automatically through classpath scanning.

Annotation configuration (@Aggregator and others) for the Aggregator component covers only simple
use cases, where most default options are sufficient. If you need more control over those options using
Annotation configuration, consider using a @Bean definition for the AggregatingMessageHandler
and mark its @Bean method with @ServiceActivator:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 98

@ServiceActivator(inputChannel = "aggregatorChannel")

@Bean

public MessageHandler aggregator(MessageGroupStore jdbcMessageGroupStore) {

 AggregatingMessageHandler aggregator =

 new AggregatingMessageHandler(new DefaultAggregatingMessageGroupProcessor(),

 jdbcMessageGroupStore);

 aggregator.setOutputChannel(resultsChannel());

 aggregator.setGroupTimeoutExpression(new ValueExpression<>(500L));

 aggregator.setTaskScheduler(this.taskScheduler);

 return aggregator;

}

See the section called “Programming model” and the section called “Annotations on @Beans” for more
information.

Note

Starting with the version 4.2 the AggregatorFactoryBean is available, to simplify Java
configuration for the AggregatingMessageHandler.

Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions
to be made based on a group of messages that have arrived over a period of time, all with the same
correlation key. The design of the interfaces in the stateful patterns (e.g. ReleaseStrategy) is driven
by the principle that the components (whether defined by the framework or a user) should be able to
remain stateless. All state is carried by the MessageGroup and its management is delegated to the
MessageGroupStore.

public interface MessageGroupStore {

 int getMessageCountForAllMessageGroups();

 int getMarkedMessageCountForAllMessageGroups();

 int getMessageGroupCount();

 MessageGroup getMessageGroup(Object groupId);

 MessageGroup addMessageToGroup(Object groupId, Message<?> message);

 MessageGroup markMessageGroup(MessageGroup group);

 MessageGroup removeMessageFromGroup(Object key, Message<?> messageToRemove);

 MessageGroup markMessageFromGroup(Object key, Message<?> messageToMark);

 void removeMessageGroup(Object groupId);

 void registerMessageGroupExpiryCallback(MessageGroupCallback callback);

 int expireMessageGroups(long timeout);

}

For more information please refer to the JavaDoc.

The MessageGroupStore accumulates state information in MessageGroups while waiting for a
release strategy to be triggered, and that event might not ever happen. So to prevent stale messages
from lingering, and for volatile stores to provide a hook for cleaning up when the application shuts down,
the MessageGroupStore allows the user to register callbacks to apply to its MessageGroups when
they expire. The interface is very straightforward:

http://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 99

public interface MessageGroupCallback {

 void execute(MessageGroupStore messageGroupStore, MessageGroup group);

}

The callback has direct access to the store and the message group so it can manage the persistent
state (e.g. by removing the group from the store entirely).

The MessageGroupStore maintains a list of these callbacks which it applies, on demand,
to all messages whose timestamp is earlier than a time supplied as a parameter (see
the registerMessageGroupExpiryCallback(..) and expireMessageGroups(..) methods
above).

The expireMessageGroups method can be called with a timeout value. Any message older than the
current time minus this value will be expired, and have the callbacks applied. Thus it is the user of the
store that defines what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form
of a MessageGroupStoreReaper:

<bean id="reaper" class="org...MessageGroupStoreReaper">

 <property name="messageGroupStore" ref="messageStore"/>

 <property name="timeout" value="30000"/>

</bean>

<task:scheduled-tasks scheduler="scheduler">

 <task:scheduled ref="reaper" method="run" fixed-rate="10000"/>

</task:scheduled-tasks>

The reaper is a Runnable, and all that is happening in the example above is that the message group
store’s expire method is being called once every 10 seconds. The timeout itself is 30 seconds.

Note

It is important to understand that the timeout property of the MessageGroupStoreReaper is
an approximate value and is impacted by the the rate of the task scheduler since this property
will only be checked on the next scheduled execution of the MessageGroupStoreReaper
task. For example if the timeout is set for 10 min, but the MessageGroupStoreReaper task is
scheduled to run every 60 min and the last execution of the MessageGroupStoreReaper task
happened 1 min before the timeout, the MessageGroup will not expire for the next 59 min. So it
is recommended to set the rate at least equal to the value of the timeout or shorter.

In addition to the reaper, the expiry callbacks are invoked when the application shuts down via a lifecycle
callback in the AbstractCorrelatingMessageHandler.

The AbstractCorrelatingMessageHandler registers its own expiry callback, and this is the link
with the boolean flag send-partial-result-on-expiry in the XML configuration of the aggregator.
If the flag is set to true, then when the expiry callback is invoked, any unmarked messages in groups
that are not yet released can be sent on to the output channel.

Important

When a shared MessageStore is used for different correlation endpoints, it is necessary to
configure a proper CorrelationStrategy to ensure uniqueness for group ids. Otherwise

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 100

unexpected behavior may happen when one correlation endpoint may release or expire messages
from others - messages with the same correlation key are stored in the same message group.

Some MessageStore implementations allow using the same physical resources, by
partitioning the data; for example, the JdbcMessageStore has a region property; the
MongoDbMessageStore has a collectionName property.

For more information about MessageStore interface and its implementations, please read
Section 10.4, “Message Store”.

6.5 Resequencer

Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that the Resequencer does not
process the messages in any way. It simply releases them in the order of their SEQUENCE_NUMBER
header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.

Important

The resequencer is intended to resequence relatively short sequences of messages with small
gaps. If you have a large number of disjoint sequences with many gaps, you may experience
performance issues.

Configuring a Resequencer

See Section 9.11, “Aggregators and Resequencers” for configuring a Resequencer in Java DSL.

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 101

<int:channel id="inputChannel"/>

<int:channel id="outputChannel"/>

<int:resequencer id="completelyDefinedResequencer" ❶

 input-channel="inputChannel" ❷

 output-channel="outputChannel" ❸

 discard-channel="discardChannel" ❹

 release-partial-sequences="true" ❺

 message-store="messageStore" ❻

 send-partial-result-on-expiry="true" ❼

 send-timeout="86420000" ❽

 correlation-strategy="correlationStrategyBean" ❾

 correlation-strategy-method="correlate" ❿

 correlation-strategy-expression="headers['foo']" 11

 release-strategy="releaseStrategyBean" 12

 release-strategy-method="release" 13

 release-strategy-expression="size() == 10" 14

 empty-group-min-timeout="60000" 15

 lock-registry="lockRegistry" 16

 group-timeout="60000" 17

 group-timeout-expression="size() ge 2 ? 100 : -1" 18

 scheduler="taskScheduler" /> 19

 expire-group-upon-timeout="false" /> 20

❶ The id of the resequencer is optional.

❷ The input channel of the resequencer. Required.

❸ The channel to which the resequencer will send the reordered messages. Optional.

❹ The channel to which the resequencer will send the messages that timed out (if send-partial-
result-on-timeout is false). Optional.

❺ Whether to send out ordered sequences as soon as they are available, or only after the whole
message group arrives. Optional (false by default).

❻ A reference to a MessageGroupStore that can be used to store groups of messages under their
correlation key until they are complete. Optional with default a volatile in-memory store.

❼ Whether, upon the expiration of the group, the ordered group should be sent out (even if some of
the messages are missing). Optional (false by default). See the section called “Managing State in
an Aggregator: MessageGroupStore”.

❽ The timeout interval to wait when sending a reply Message to the output-channel
or discard-channel. Defaults to -1 - blocking indefinitely. It is applied only if the
output channel has some sending limitations, e.g. QueueChannel with a fixed capacity.
In this case a MessageDeliveryException is thrown. The send-timeout is ignored in
case of AbstractSubscribableChannel implementations. In case of group-timeout(-
expression) the MessageDeliveryException from the scheduled expire task leads this task
to be rescheduled. Optional.

❾ A reference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the CorrelationStrategy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the IntegrationMessageHeaderAccessor.CORRELATION_ID header).

❿ A method defined on the bean referenced by correlation-strategy, that implements the
correlation decision algorithm. Optional, with restrictions (requires correlation-strategy to
be present).

11 A SpEL expression representing the correlation strategy. Example: "headers['foo']". Only
one of correlation-strategy or correlation-strategy-expression is allowed.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 102

12 A reference to a bean that implements the release strategy. The bean can be an implementation
of the ReleaseStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header attribute).

13 A method defined on the bean referenced by release-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires release-strategy to be
present).

14 A SpEL expression representing the release strategy; the root object for the expression is a
MessageGroup. Example: "size() == 5". Only one of release-strategy or release-
strategy-expression is allowed.

15 Only applies if a MessageGroupStoreReaper is configured for the <resequencer>
MessageStore. By default, when a MessageGroupStoreReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then
not be removed from the MessageStore until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper’s timeout property and it could be as much as this value plus the timeout.

16 See the section called “Configuring an Aggregator with XML”.
17 See the section called “Configuring an Aggregator with XML”.
18 See the section called “Configuring an Aggregator with XML”.
19 See the section called “Configuring an Aggregator with XML”.
20 When a group is completed due to a timeout (or by a MessageGroupStoreReaper), the empty

group’s metadata is retained by default. Late arriving messages will be immediately discarded.
Set this to true to remove the group completely; then, late arriving messages will start a new
group and won’t be discarded until the group again times out. The new group will never be
released normally because of the "hole" in the sequence range that caused the timeout. Empty
groups can be expired (completely removed) later using a MessageGroupStoreReaper together
with the empty-group-min-timeout attribute. Starting with version 5.0 empty groups are also
scheduled for removal after empty-group-min-timeout. Default: false.

Note

Since there is no custom behavior to be implemented in Java classes for resequencers, there is
no annotation support for it.

6.6 Message Handler Chain

Introduction

The MessageHandlerChain is an implementation of MessageHandler that can be configured as
a single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires
a single input-channel and a single output-channel eliminating the need to define channels for
each individual component.

http://www.eaipatterns.com/MessageSelector.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 103

Tip

Spring Integration’s Filter provides a boolean property throwExceptionOnRejection.
When providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to true (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on to
other subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if
the Message had been passed on successfully even though the Filter had dropped the Message
to prevent further processing. If you do indeed want to "drop" the Messages, then the Filter’s
discard-channel might be useful since it does give you a chance to perform some operation with
the dropped message (e.g. send to a JMS queue or simply write to a log).

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it is trivial to modify the configuration if at some point a non-linear
arrangement is required.

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by anonymous
channels. The reply channel header will not be taken into account within the chain: only after the last
handler is invoked will the resulting message be forwarded on to the reply channel or the chain’s output
channel. Because of this setup all handlers except the last required to implement the MessageProducer
interface (which provides a setOutputChannel() method). The last handler only needs an output channel
if the outputChannel on the MessageHandlerChain is set.

Note

As with other endpoints, the output-channel is optional. If there is a reply Message at the
end of the chain, the output-channel takes precedence, but if not available, the chain handler will
check for a reply channel header on the inbound Message as a fallback.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators
and Transformers, are suitable for use within a MessageHandlerChain.

Configuring a Chain

The <chain> element provides an input-channel attribute, and if the last element in the chain is
capable of producing reply messages (optional), it also supports an output-channel attribute. The
sub-elements are then filters, transformers, splitters, and service-activators. The last element may also
be a router or an outbound-channel-adapter.

<int:chain input-channel="input" output-channel="output">

 <int:filter ref="someSelector" throw-exception-on-rejection="true"/>

 <int:header-enricher>

 <int:header name="foo" value="bar"/>

 </int:header-enricher>

 <int:service-activator ref="someService" method="someMethod"/>

</int:chain>

The <header-enricher> element used in the above example will set a message header named "foo" with
a value of "bar" on the message. A header enricher is a specialization of Transformer that touches
only header values. You could obtain the same result by implementing a MessageHandler that did the
header modifications and wiring that as a bean, but the header-enricher is obviously a simpler option.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 104

The <chain> can be configured as the last black-box consumer of the message flow. For this solution it
is enough to put at the end of the <chain> some <outbound-channel-adapter>:

<int:chain input-channel="input">

 <int-xml:marshalling-transformer marshaller="marshaller" result-type="StringResult" />

 <int:service-activator ref="someService" method="someMethod"/>

 <int:header-enricher>

 <int:header name="foo" value="bar"/>

 </int:header-enricher>

 <int:logging-channel-adapter level="INFO" log-full-message="true"/>

</int:chain>

Disallowed Attributes and Elements

It is important to note that certain attributes, such as order and input-channel are not allowed to be
specified on components used within a chain. The same is true for the poller sub-element.

Important

For the Spring Integration core components, the XML Schema itself will enforce some of
these constraints. However, for non-core components or your own custom components, these
constraints are enforced by the XML namespace parser, not by the XML Schema.

These XML namespace parser constraints were added with Spring Integration 2.2. The XML
namespace parser will throw an BeanDefinitionParsingException if you try to use
disallowed attributes and elements.

'id' Attribute

Beginning with Spring Integration 3.0, if a chain element is given an id, the bean name for the element is
a combination of the chain’s id and the id of the element itself. Elements without an id are not registered
as beans, but they are given componentName s that include the chain id. For example:

<int:chain id="fooChain" input-channel="input">

 <int:service-activator id="fooService" ref="someService" method="someMethod"/>

 <int:object-to-json-transformer/>

</int:chain>

• The <chain> root element has an id fooChain. So, the AbstractEndpoint implementation
(PollingConsumer or EventDrivenConsumer, depending on the input-channel type) bean takes
this value as it’s bean name.

• The MessageHandlerChain bean acquires a bean alias fooChain.handler, which allows direct
access to this bean from the BeanFactory.

• The <service-activator> is not a fully-fledged Messaging Endpoint (PollingConsumer or
EventDrivenConsumer) - it is simply a MessageHandler within the <chain>. In this case, the
bean name registered with the BeanFactory is fooChain$child.fooService.handler.

• The componentName of this ServiceActivatingHandler takes the same value, but without the
.handler suffix - fooChain$child.fooService.

• The last <chain> sub-component, <object-to-json-transformer>, doesn’t have an id
attribute. Its componentName is based on its position in the <chain>. In this case, it is fooChain
$child#1. (The final element of the name is the order within the chain, beginning with #0). Note, this
transformer isn’t registered as a bean within the application context, so, it doesn’t get a beanName,
however its componentName has a value which is useful for logging etc.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 105

The id attribute for <chain> elements allows them to be eligible for JMX export and they are trackable
via Message History. They can also be accessed from the BeanFactory using the appropriate bean
name as discussed above.

Tip

It is useful to provide an explicit id attribute on <chain> s to simplify the identification of sub-
components in logs, and to provide access to them from the BeanFactory etc.

Calling a Chain from within a Chain

Sometimes you need to make a nested call to another chain from within a chain and then come back and
continue execution within the original chain. To accomplish this you can utilize a Messaging Gateway
by including a <gateway> element. For example:

<int:chain id="main-chain" input-channel="in" output-channel="out">

 <int:header-enricher>

 <int:header name="name" value="Many" />

 </int:header-enricher>

 <int:service-activator>

 <bean class="org.foo.SampleService" />

 </int:service-activator>

 <int:gateway request-channel="inputA"/>

</int:chain>

<int:chain id="nested-chain-a" input-channel="inputA">

 <int:header-enricher>

 <int:header name="name" value="Moe" />

 </int:header-enricher>

 <int:gateway request-channel="inputB"/>

 <int:service-activator>

 <bean class="org.foo.SampleService" />

 </int:service-activator>

</int:chain>

<int:chain id="nested-chain-b" input-channel="inputB">

 <int:header-enricher>

 <int:header name="name" value="Jack" />

 </int:header-enricher>

 <int:service-activator>

 <bean class="org.foo.SampleService" />

 </int:service-activator>

</int:chain>

In the above example the nested-chain-a will be called at the end of main-chain processing by the
gateway element configured there. While in nested-chain-a a call to a nested-chain-b will be made after
header enrichment and then it will come back to finish execution in nested-chain-b. Finally the flow
returns to the main-chain. When the nested version of a <gateway> element is defined in the chain, it
does not require the service-interface attribute. Instead, it simple takes the message in its current
state and places it on the channel defined via the request-channel attribute. When the downstream
flow initiated by that gateway completes, a Message will be returned to the gateway and continue its
journey within the current chain.

6.7 Scatter-Gather

Introduction

Starting with version 4.1, Spring Integration provides an implementation of the Scatter-Gather Enterprise
Integration Pattern. It is a compound endpoint, where the goal is to send a message to the recipients

http://www.eaipatterns.com/BroadcastAggregate.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 106

and aggregate the results. Quoting the EIP Book, it is a component for scenarios like best quote, when
we need to request information from several suppliers and decide which one provides us with the best
term for the requested item.

Previously, the pattern could be configured using discrete components, this enhancement brings more
convenient configuration.

The ScatterGatherHandler is a request-reply endpoint that combines
a PublishSubscribeChannel (or RecipientListRouter) and an
AggregatingMessageHandler. The request message is sent to the scatter channel and the
ScatterGatherHandler waits for the reply from the aggregator to sends to the outputChannel.

Functionality

The Scatter-Gather pattern suggests two scenarios - Auction and Distribution. In both
cases, the aggregation function is the same and provides all options available for
the AggregatingMessageHandler. Actually the ScatterGatherHandler just requires an
AggregatingMessageHandler as a constructor argument. See Section 6.4, “Aggregator” for more
information.

Auction

The Auction Scatter-Gather variant uses publish-subscribe logic for the request message,
where the scatter channel is a PublishSubscribeChannel with apply-sequence="true".
However, this channel can be any MessageChannel implementation as is the case with the request-
channel in the ContentEnricher (see Section 7.2, “Content Enricher”) but, in this case, the end-
user should support his own custom correlationStrategy for the aggregation function.

Distribution

The Distribution Scatter-Gather variant is based on the RecipientListRouter (see the
section called “RecipientListRouter”) with all available options for the RecipientListRouter. This
is the second ScatterGatherHandler constructor argument. If you want to rely just on the
default correlationStrategy for the recipient-list-router and the aggregator, you
should specify apply-sequence="true". Otherwise, a custom correlationStrategy should be
supplied for the aggregator. Unlike the PublishSubscribeChannel (Auction) variant, having a
recipient-list-router selector option, we can filter target suppliers based on the message.
With apply-sequence="true" the default sequenceSize will be supplied and the aggregator
will be able to release the group correctly. The Distribution option is mutually exclusive with the Auction
option.

In both cases, the request (scatter) message is enriched with the gatherResultChannel
QueueChannel header, to wait for a reply message from the aggregator.

By default, all suppliers should send their result to the replyChannel header (usually by omitting the
output-channel from the ultimate endpoint). However, the gatherChannel option is also provided,
allowing suppliers to send their reply to that channel for the aggregation.

Configuring a Scatter-Gather Endpoint

For Java and Annotation configuration, the bean definition for the Scatter-Gather is:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 107

@Bean

public MessageHandler distributor() {

 RecipientListRouter router = new RecipientListRouter();

 router.setApplySequence(true);

 router.setChannels(Arrays.asList(distributionChannel1(), distributionChannel2(),

 distributionChannel3()));

 return router;

}

@Bean

public MessageHandler gatherer() {

 return new AggregatingMessageHandler(

 new ExpressionEvaluatingMessageGroupProcessor("^[payload gt 5] ?: -1D"),

 new SimpleMessageStore(),

 new HeaderAttributeCorrelationStrategy(

 IntegrationMessageHeaderAccessor.CORRELATION_ID),

 new ExpressionEvaluatingReleaseStrategy("size() == 2"));

}

@Bean

@ServiceActivator(inputChannel = "distributionChannel")

public MessageHandler scatterGatherDistribution() {

 ScatterGatherHandler handler = new ScatterGatherHandler(distributor(), gatherer());

 handler.setOutputChannel(output());

 return handler;

}

Here, we configure the RecipientListRouter distributor bean, with applySequence="true"
and the list of recipient channels. The next bean is for an AggregatingMessageHandler. Finally,
we inject both those beans into the ScatterGatherHandler bean definition and mark it as a
@ServiceActivator to wire the Scatter-Gather component into the integration flow.

Configuring the <scatter-gather> endpoint using the XML namespace:

<scatter-gather

 id="" ❶

 auto-startup="" ❷

 input-channel="" ❸

 output-channel="" ❹

 scatter-channel="" ❺

 gather-channel="" ❻

 order="" ❼

 phase="" ❽

 send-timeout="" ❾

 gather-timeout="" ❿

 requires-reply="" > 11

 <scatterer/> 12

 <gatherer/> 13

</scatter-gather>

❶ The id of the Endpoint. The ScatterGatherHandler bean is registered with id +

'.handler' alias. The RecipientListRouter - with id + '.scatterer'. And the
AggregatingMessageHandler with id + '.gatherer'. Optional (a default id is generated
value by BeanFactory).

❷ Lifecycle attribute signaling if the Endpoint should be started during Application Context
initialization. In addition, the ScatterGatherHandler also implements Lifecycle and starts/
stops the gatherEndpoint, which is created internally if a gather-channel is provided.
Optional (default is true).

❸ The channel to receive request messages to handle them in the ScatterGatherHandler.
Required.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 108

❹ The channel to which the Scatter-Gather will send the aggregation results. Optional (because
incoming messages can specify a reply channel themselves via replyChannel Message
Header).

❺ The channel to send the scatter message for the Auction scenario. Optional. Mutually exclusive
with <scatterer> sub-element.

❻ The channel to receive replies from each supplier for the aggregation. is used
as the replyChannel header in the scatter message. Optional. By default the
FixedSubscriberChannel is created.

❼ Order of this component when more than one handler is subscribed to the same DirectChannel
(use for load balancing purposes). Optional.

❽ Specify the phase in which the endpoint should be started and stopped. The startup order proceeds
from lowest to highest, and the shutdown order is the reverse of that. By default this value is
Integer.MAX_VALUE meaning that this container starts as late as possible and stops as soon as
possible. Optional.

❾ The timeout interval to wait when sending a reply Message to the output-channel.
By default the send will block for one second. It applies only if the output channel
has some sending limitations, e.g. a QueueChannel with a fixed capacity and is full. In
this case, a MessageDeliveryException is thrown. The send-timeout is ignored in
case of AbstractSubscribableChannel implementations. In case of group-timeout(-
expression) the MessageDeliveryException from the scheduled expire task leads this task
to be rescheduled. Optional.

❿ Allows you to specify how long the Scatter-Gather will wait for the reply message before returning.
By default it will wait indefinitely. null is returned if the reply times out. Optional. Defaults to -1 -
indefinitely.

11 Specify whether the Scatter-Gather must return a non-null value. This value is true by default,
hence a ReplyRequiredException will be thrown when the underlying aggregator returns a
null value after gather-timeout. Note, if null is a possibility, the gather-timeout should be
specified to avoid an indefinite wait.

12 The <recipient-list-router> options. Optional. Mutually exclusive with scatter-
channel attribute.

13 The <aggregator> options. Required.

6.8 Thread Barrier

Sometimes, we need to suspend a message flow thread until some other asynchronous event occurs.
For example, consider an HTTP request that publishes a message to RabbitMQ. We might wish to
not reply to the user until the RabbitMQ broker has issued an acknowledgment that the message was
received.

Spring Integration version 4.2 introduced the <barrier/> component for this purpose. The
underlying MessageHandler is the BarrierMessageHandler; this class also implements
MessageTriggerAction where a message passed to the trigger() method releases a
corresponding thread in the handleRequestMessage() method (if present).

The suspended thread and trigger thread are correlated by invoking a CorrelationStrategy
on the messages. When a message is sent to the input-channel, the thread is suspended for
up to timeout milliseconds, waiting for a corresponding trigger message. The default correlation
strategy uses the IntegrationMessageHeaderAccessor.CORRELATION_ID header. When a
trigger message arrives with the same correlation, the thread is released. The message sent to
the output-channel after release is constructed using a MessageGroupProcessor. By default,

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 109

the message is a Collection<?> of the two payloads and the headers are merged, using a
DefaultAggregatingMessageGroupProcessor.

Caution

If the trigger() method is invoked first (or after the main thread times out), it will be suspended
for up to timeout waiting for the suspending message to arrive. If you do not want to suspend the
trigger thread, consider handing off to a TaskExecutor instead so its thread will be suspended
instead.

The requires-reply property determines the action if the suspended thread times out before the
trigger message arrives. By default, it is false which means the endpoint simply returns null, the flow
ends and the thread returns to the caller. When true, a ReplyRequiredException is thrown.

You can call the trigger() method programmatically (obtain the bean reference using the name
barrier.handler - where barrier is the bean name of the barrier endpoint) or you can configure an
<outbound-channel-adapter/> to trigger the release.

Important

Only one thread can be suspended with the same correlation; the same correlation can be used
multiple times but only once concurrently. An exception is thrown if a second thread arrives with
the same correlation.

<int:barrier id="barrier1" input-channel="in" output-channel="out"

 correlation-strategy-expression="headers['myHeader']"

 output-processor="myOutputProcessor"

 discard-channel="lateTriggerChannel"

 timeout="10000">

</int:barrier>

<int:outbound-channel-adapter channel="release" ref="barrier1.handler" method="trigger" />

In this example, a custom header is used for correlation. Either the thread sending a message to in
or the one sending a message to release will wait for up to 10 seconds until the other arrives. When
the message is released, the out channel will be sent a message combining the result of invoking the
custom MessageGroupProcessor bean myOutputProcessor. If the main thread times out and a
trigger arrives later, you can configure a discard channel to which the late trigger will be sent. Java
configuration is shown below.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 110

@Configuration

@EnableIntegration

public class Config {

 @ServiceActivator(inputChannel="in")

 @Bean

 public BarrierMessageHandler barrier() {

 BarrierMessageHandler barrier = new BarrierMessageHandler(10000);

 barrier.setOutputChannel(out());

 barrier.setDiscardChannel(lateTriggers());

 return barrier;

 }

 @ServiceActivator (inputChannel="release")

 @Bean

 public MessageHandler releaser() {

 return new MessageHandler() {

 @Override

 public void handleMessage(Message<?> message) throws MessagingException {

 barrier().trigger(message);

 }

 };

 }

}

See the barrier sample application for an example of this component.

https://github.com/spring-projects/spring-integration-samples/tree/master/basic/barrier

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 111

7. Message Transformation

7.1 Transformer

Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what
type is expected by the next consumer, Transformers can be added between those components.
Generic transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration’s general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role
of Message Transformers. These configuration options will be described below.

Note

For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see Chapter 37, XML Support - Dealing with XML Payloads.

Configuring Transformer

Configuring Transformer with XML

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-
channel" and "output-channel" attributes, it requires a "ref". The "ref" may either point to an Object that
contains the @Transformer annotation on a single method (see below) or it may be combined with an
explicit method name value provided via the "method" attribute.

<int:transformer id="testTransformer" ref="testTransformerBean" input-channel="inChannel"

 method="transform" output-channel="outChannel"/>

<beans:bean id="testTransformerBean" class="org.foo.TestTransformer" />

Using a ref attribute is generally recommended if the custom transformer handler implementation
can be reused in other <transformer> definitions. However if the custom transformer handler
implementation should be scoped to a single definition of the <transformer>, you can define an inner
bean definition:

<int:transformer id="testTransformer" input-channel="inChannel" method="transform"

 output-channel="outChannel">

 <beans:bean class="org.foo.TestTransformer"/>

</transformer>

Note

Using both the "ref" attribute and an inner handler definition in the same <transformer>
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 112

Important

If the "ref" attribute references a bean that extends AbstractMessageProducingHandler
(such as transformers provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref" must be to a separate
bean instance (or a prototype-scoped bean), or use the inner <bean/> configuration type.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

When using a POJO, the method that is used for transformation may expect either the Message type
or the payload type of inbound Messages. It may also accept Message header values either individually
or as a full map by using the @Header and @Headers parameter annotations respectively. The return
value of the method can be any type. If the return value is itself a Message, that will be passed along
to the transformer’s output channel.

As of Spring Integration 2.0, a Message Transformer’s transformation method can no longer return
null. Returning null will result in an exception since a Message Transformer should always be
expected to transform each source Message into a valid target Message. In other words, a Message
Transformer should not be used as a Message Filter since there is a dedicated <filter> option for
that. However, if you do need this type of behavior (where a component might return NULL and that
should not be considered an error), a service-activator could be used. Its requires-reply value is
FALSE by default, but that can be set to TRUE in order to have Exceptions thrown for NULL return
values as with the transformer.

Transformers and Spring Expression Language (SpEL)

Just like Routers, Aggregators and other components, as of Spring Integration 2.0 Transformers can
also benefit from SpEL support (http://docs.spring.io/spring/docs/current/spring-framework-reference/
html/expressions.html) whenever transformation logic is relatively simple.

<int:transformer input-channel="inChannel"

 output-channel="outChannel"

 expression="payload.toUpperCase() + '- [' + T(java.lang.System).currentTimeMillis() + ']'"/>

In the above configuration we are achieving a simple transformation of the payload with a simple SpEL
expression and without writing a custom transformer. Our payload (assuming String) will be upper-cased
and concatenated with the current timestamp with some simple formatting.

Common Transformers

There are also a few Transformer implementations available out of the box.

Object-to-String Transformer

Because, it is fairly common to use the toString() representation of an Object, Spring Integration
provides an ObjectToStringTransformer whose output is a Message with a String payload. That
String is the result of invoking the toString() operation on the inbound Message’s payload.

<int:object-to-string-transformer input-channel="in" output-channel="out"/>

A potential example for this would be sending some arbitrary object to the outbound-channel-adapter in
the file namespace. Whereas that Channel Adapter only supports String, byte-array, or java.io.File
payloads by default, adding this transformer immediately before the adapter will handle the necessary
conversion. Of course, that works fine as long as the result of the toString() call is what you want

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 113

to be written to the File. Otherwise, you can just provide a custom POJO-based Transformer via the
generic transformer element shown previously.

Tip

When debugging, this transformer is not typically necessary since the logging-channel-adapter is
capable of logging the Message payload. Refer to the section called “Wire Tap” for more detail.

Note

The object-to-string-transformer is very simple; it invokes toString() on the inbound payload.
There are two exceptions to this (since 3.0): if the payload is a char[], it invokes new
String(payload); if the payload is a byte[], it invokes new String(payload, charset),
where charset is "UTF-8" by default. The charset can be modified by supplying the charset
attribute on the transformer.

For more sophistication (such as selection of the charset dynamically, at runtime), you can use a
SpEL expression-based transformer instead; for example:

<int:transformer input-channel="in" output-channel="out"

 expression="new java.lang.String(payload, headers['myCharset']" />

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers. These will use standard Java serialization
by default, but you can provide an implementation of Spring 3.0’s Serializer or Deserializer strategies
via the serializer and deserializer attributes, respectively.

<int:payload-serializing-transformer input-channel="objectsIn" output-channel="bytesOut"/>

<int:payload-deserializing-transformer input-channel="bytesIn" output-channel="objectsOut"

 white-list="com.mycom.*,com.yourcom.*"/>

Important

When deserializing data from untrusted sources, you should consider adding a white-list of
package/class patterns. By default, all classes will be deserialized.

Object-to-Map and Map-to-Object Transformers

Spring Integration also provides Object-to-Map and Map-to-Object transformers which utilize the JSON
to serialize and de-serialize the object graphs. The object hierarchy is introspected to the most primitive
types (String, int, etc.). The path to this type is described via SpEL, which becomes the key in the
transformed Map. The primitive type becomes the value.

For example:

public class Parent{

 private Child child;

 private String name;

 // setters and getters are omitted

}

public class Child{

 private String name;

 private List<String> nickNames;

 // setters and getters are omitted

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 114

...will be transformed to a Map which looks like this: {person.name=George,

person.child.name=Jenna, person.child.nickNames[0]=Bimbo ... etc}

The JSON-based Map allows you to describe the object structure without sharing the actual types
allowing you to restore/rebuild the object graph into a differently typed Object graph as long as you
maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via the
Map-to-Object transformer:

public class Father {

 private Kid child;

 private String name;

 // setters and getters are omitted

}

public class Kid {

 private String name;

 private List<String> nickNames;

 // setters and getters are omitted

}

If you need to create a "structured" map, you can provide the flatten attribute. The default value for this
attribute is true meaning the default behavior; if you provide a false value, then the structure will be a
map of maps.

For example:

public class Parent {

 private Child child;

 private String name;

 // setters and getters are omitted

}

public class Child {

 private String name;

 private List<String> nickNames;

 // setters and getters are omitted

}

...will be transformed to a Map which looks like this: {name=George, child={name=Jenna,

nickNames=[Bimbo, ...]}}

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<int:object-to-map-transformer input-channel="directInput" output-channel="output"/>

or

<int:object-to-map-transformer input-channel="directInput" output-channel="output" flatten="false"/>

Map-to-Object

<int:map-to-object-transformer input-channel="input"

 output-channel="output"

 type="org.foo.Person"/>

or

<int:map-to-object-transformer input-channel="inputA"

 output-channel="outputA"

 ref="person"/>

<bean id="person" class="org.foo.Person" scope="prototype"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 115

Note

NOTE: ref and type attributes are mutually exclusive. You can only use one. Also, if using the ref
attribute, you must point to a prototype scoped bean, otherwise a BeanCreationException
will be thrown.

Starting with version 5.0, the ObjectToMapTransformer can be supplied with the customized
JsonObjectMapper, for example in use-cases when we need special formats for dates or nulls
for empty collections. See the section called “JSON Transformers” for more information about
JsonObjectMapper implementations.

Stream Transformer

The StreamTransformer transforms InputStream payloads to a byte[] or a String if a charset
is provided.

<int:stream-transformer input-channel="directInput" output-channel="output"/> <!-- byte[] -->

<int:stream-transformer id="withCharset" charset="UTF-8"

 input-channel="charsetChannel" output-channel="output"/> <!-- String -->

@Bean

@Transformer(inputChannel = "stream", outputChannel = "data")

public StreamTransformer streamToBytes() {

 return new StreamTransformer(); // transforms to byte[]

}

@Bean

@Transformer(inputChannel = "stream", outputChannel = "data")

public StreamTransformer streamToString() {

 return new StreamTransformer("UTF-8"); // transforms to String

}

JSON Transformers

Object to JSON and JSON to Object transformers are provided.

<int:object-to-json-transformer input-channel="objectMapperInput"/>

<int:json-to-object-transformer input-channel="objectMapperInput"

 type="foo.MyDomainObject"/>

These use a vanilla JsonObjectMapper by default based on implementation from classpath. You can
provide your own custom JsonObjectMapper implementation with appropriate options or based on
required library (e.g. GSON).

<int:json-to-object-transformer input-channel="objectMapperInput"

 type="foo.MyDomainObject" object-mapper="customObjectMapper"/>

Note

Beginning with version 3.0, the object-mapper attribute references an instance of a new
strategy interface JsonObjectMapper. This abstraction allows multiple implementations of json
mappers to be used. Implementations that wraphttps://github.com/RichardHightower/boon[Boon]
and Jackson 2 are provided, with the version being detected on the classpath. These classes are
BoonJsonObjectMapper and Jackson2JsonObjectMapper.

Note, BoonJsonObjectMapper is provided since version 4.1.

https://github.com/FasterXML

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 116

Important

If there are requirements to use both Jackson libraries and/or Boon in the same application, keep
in mind that before version 3.0, the JSON transformers used only Jackson 1.x. From 4.1 on, the
framework will select Jackson 2 by default ahead of the Boon implementation if both are on the
classpath. Jackson 1.x is no longer supported by the framework internally but, of course, you
can still use it within your code. To avoid unexpected issues with JSON mapping features, when
using annotations, there may be a need to apply annotations from both Jacksons and/or Boon
on domain classes:

@org.codehaus.jackson.annotate.JsonIgnoreProperties(ignoreUnknown=true)

@com.fasterxml.jackson.annotation.JsonIgnoreProperties(ignoreUnknown=true)

@org.boon.json.annotations.JsonIgnoreProperties("foo")

public class Foo {

 @org.codehaus.jackson.annotate.JsonProperty("fooBar")

 @com.fasterxml.jackson.annotation.JsonProperty("fooBar")

 @org.boon.json.annotations.JsonProperty("fooBar")

 public Object bar;

}

You may wish to consider using a FactoryBean or simple factory method to create the
JsonObjectMapper with the required characteristics.

public class ObjectMapperFactory {

 public static Jackson2JsonObjectMapper getMapper() {

 ObjectMapper mapper = new ObjectMapper();

 mapper.configure(JsonParser.Feature.ALLOW_COMMENTS, true);

 return new Jackson2JsonObjectMapper(mapper);

 }

}

<bean id="customObjectMapper" class="foo.ObjectMapperFactory"

 factory-method="getMapper"/>

Important

Beginning with version 2.2, the object-to-json-transformer sets the content-type header
to application/json, by default, if the input message does not already have that header
present.

It you wish to set the content type header to some other value, or explicitly overwrite any existing
header with some value (including application/json), use the content-type attribute. If
you wish to suppress the setting of the header, set the content-type attribute to an empty
string (""). This will result in a message with no content-type header, unless such a header
was present on the input message.

Beginning with version 3.0, the ObjectToJsonTransformer adds headers, reflecting the source
type, to the message. Similarly, the JsonToObjectTransformer can use those type headers when
converting the JSON to an object. These headers are mapped in the AMQP adapters so that they are
entirely compatible with the Spring-AMQP JsonMessageConverter.

This enables the following flows to work without any special configuration…

...->amqp-outbound-adapter---->

http://docs.spring.io/spring-amqp/api/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 117

---->amqp-inbound-adapter->json-to-object-transformer->...

Where the outbound adapter is configured with a JsonMessageConverter and the inbound adapter
uses the default SimpleMessageConverter.

...->object-to-json-transformer->amqp-outbound-adapter---->

---->amqp-inbound-adapter->...

Where the outbound adapter is configured with a SimpleMessageConverter and the inbound adapter
uses the default JsonMessageConverter.

...->object-to-json-transformer->amqp-outbound-adapter---->

---->amqp-inbound-adapter->json-to-object-transformer->

Where both adapters are configured with a SimpleMessageConverter.

Note

When using the headers to determine the type, you should not provide a class attribute, because
it takes precedence over the headers.

In addition to JSON Transformers, Spring Integration provides a built-in #jsonPath SpEL function for
use in expressions. For more information see Appendix A, Spring Expression Language (SpEL).

#xpath SpEL Function

Since version 3.0, Spring Integration also provides a built-in #xpath SpEL function for use in expressions.
For more information see Section 37.9, “#xpath SpEL Function”.

Beginning with version 4.0, the ObjectToJsonTransformer supports the resultType property,
to specify the node JSON representation. The result node tree representation depends on the
implementation of the provided JsonObjectMapper. By default, the ObjectToJsonTransformer
uses a Jackson2JsonObjectMapper and delegates the conversion of the object to the node tree
to the ObjectMapper#valueToTree method. The node JSON representation provides efficiency for
using the JsonPropertyAccessor, when the downstream message flow uses SpEL expressions with
access to the properties of the JSON data. See Section A.4, “PropertyAccessors”. When using Boon,
the NODE representation is a Map<String, Object>

Configuring a Transformer with Annotations

The @Transformer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above
in the section describing the <transformer> element.

@Transformer

Order generateOrder(String productId) {

 return new Order(productId);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented
in Section E.6, “Annotation Support”

@Transformer

Order generateOrder(String productId, @Header("customerName") String customer) {

 return new Order(productId, customer);

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 118

Also see the section called “Advising Endpoints Using Annotations”.

Header Filter

Some times your transformation use case might be as simple as removing a few headers. For such a
use case, Spring Integration provides a Header Filter which allows you to specify certain header names
that should be removed from the output Message (e.g. for security reasons or a value that was only
needed temporarily). Basically, the Header Filter is the opposite of the Header Enricher. The latter is
discussed in the section called “Header Enricher”.

<int:header-filter input-channel="inputChannel"

 output-channel="outputChannel" header-names="lastName, state"/>

As you can see, configuration of a Header Filter is quite simple. It is a typical endpoint with input/output
channels and a header-names attribute. That attribute accepts the names of the header(s) (delimited
by commas if there are multiple) that need to be removed. So, in the above example the headers named
lastName and state will not be present on the outbound Message.

Codec-Based Transformers

See Section 7.4, “Codec”.

7.2 Content Enricher

Introduction

At times you may have a requirement to enhance a request with more information than was provided by
the target system. The Content Enricher pattern describes various scenarios as well as the component
(Enricher), which allows you to address such requirements.

The Spring Integration Core module includes 2 enrichers:

• Header Enricher

• Payload Enricher

Furthermore, several Adapter specific Header Enrichers are included as well:

• XPath Header Enricher (XML Module)

• Mail Header Enricher (Mail Module)

• XMPP Header Enricher (XMPP Module)

Please go to the adapter specific sections of this reference manual to learn more about those adapters.

For more information regarding expressions support, please see Appendix A, Spring Expression
Language (SpEL).

Header Enricher

If you only need to add headers to a Message, and they are not dynamically determined by the Message
content, then referencing a custom implementation of a Transformer may be overkill. For that reason,
Spring Integration provides support for the Header Enricher pattern. It is exposed via the <header-
enricher> element.

http://www.eaipatterns.com/DataEnricher.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 119

<int:header-enricher input-channel="in" output-channel="out">

 <int:header name="foo" value="123"/>

 <int:header name="bar" ref="someBean"/>

</int:header-enricher>

The Header Enricher also provides helpful sub-elements to set well-known header names.

<int:header-enricher input-channel="in" output-channel="out">

 <int:error-channel ref="applicationErrorChannel"/>

 <int:reply-channel ref="quoteReplyChannel"/>

 <int:correlation-id value="123"/>

 <int:priority value="HIGHEST"/>

 <routing-slip value="channel1; routingSlipRoutingStrategy; request.headers[myRoutingSlipChannel]"/>

 <int:header name="bar" ref="someBean"/>

</int:header-enricher>

In the above configuration you can clearly see that for well-known headers such as errorChannel,
correlationId, priority, replyChannel, routing-slip etc., instead of using generic
<header> sub-elements where you would have to provide both header name and value, you can use
convenient sub-elements to set those values directly.

Starting with version 4.1 the Header Enricher provides routing-slip sub-element. See the section
called “Routing Slip” for more information.

POJO Support

Often a header value cannot be defined statically and has to be determined dynamically based on some
content in the Message. That is why Header Enricher allows you to also specify a bean reference using
the ref and method attribute. The specified method will calculate the header value. Let’s look at the
following configuration:

<int:header-enricher input-channel="in" output-channel="out">

 <int:header name="foo" method="computeValue" ref="myBean"/>

</int:header-enricher>

<bean id="myBean" class="foo.bar.MyBean"/>

public class MyBean {

 public String computeValue(String payload){

 return payload.toUpperCase() + "_US";

 }

}

You can also configure your POJO as inner bean:

<int:header-enricher input-channel="inputChannel" output-channel="outputChannel">

 <int:header name="some_header">

 <bean class="org.MyEnricher"/>

 </int:header>

</int:header-enricher>

as well as point to a Groovy script:

<int:header-enricher input-channel="inputChannel" output-channel="outputChannel">

 <int:header name="some_header">

 <int-groovy:script location="org/SampleGroovyHeaderEnricher.groovy"/>

 </int:header>

</int:header-enricher>

SpEL Support

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 120

In Spring Integration 2.0 we have introduced the convenience of the Spring Expression Language
(SpEL) to help configure many different components. The Header Enricher is one of them. Looking
again at the POJO example above, you can see that the computation logic to determine the header
value is actually pretty simple. A natural question would be: "is there a simpler way to accomplish this?".
That is where SpEL shows its true power.

<int:header-enricher input-channel="in" output-channel="out">

 <int:header name="foo" expression="payload.toUpperCase() + '_US'"/>

</int:header-enricher>

As you can see, by using SpEL for such simple cases, we no longer have to provide a separate class
and configure it in the application context. All we need is the expression attribute configured with a valid
SpEL expression. The payload and headers variables are bound to the SpEL Evaluation Context, giving
you full access to the incoming Message.

Configuring a Header Enricher with Java Configuration

The following are some examples of Java Configuration for header enrichers:

@Bean

@Transformer(inputChannel = "enrichHeadersChannel", outputChannel = "emailChannel")

public HeaderEnricher enrichHeaders() {

 Map<String, ? extends HeaderValueMessageProcessor<?>> headersToAdd =

 Collections.singletonMap("emailUrl",

 new StaticHeaderValueMessageProcessor<>(this.imapUrl));

 HeaderEnricher enricher = new HeaderEnricher(headersToAdd);

 return enricher;

}

@Bean

@Transformer(inputChannel="enrichHeadersChannel", outputChannel="emailChannel")

public HeaderEnricher enrichHeaders() {

 Map<String, HeaderValueMessageProcessor<?>> headersToAdd = new HashMap<>();

 headersToAdd.put("emailUrl", new StaticHeaderValueMessageProcessor<String>(this.imapUrl));

 Expression expression = new SpelExpressionParser().parseExpression("payload.from[0].toString()");

 headersToAdd.put("from",

 new ExpressionEvaluatingHeaderValueMessageProcessor<>(expression, String.class));

 HeaderEnricher enricher = new HeaderEnricher(headersToAdd);

 return enricher;

}

The first adds a single literal header. The second adds two headers - a literal header and one based
on a SpEL expression.

Configuring a Header Enricher with the Java DSL

The following is an example of Java DSL Configuration for a header enricher:

@Bean

public IntegrationFlow enrichHeadersInFlow() {

 return f -> f

 ...

 .enrichHeaders(h -> h.header("emailUrl", this.emailUrl)

 .headerExpression("from", "payload.from[0].toString()"))

 .handle(...);

}

Header Channel Registry

Starting with Spring Integration 3.0, a new sub-element <int:header-channels-to-string/> is
available; it has no attributes. This converts existing replyChannel and errorChannel headers
(when they are a MessageChannel) to a String and stores the channel(s) in a registry for later resolution

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 121

when it is time to send a reply, or handle an error. This is useful for cases where the headers might be
lost; for example when serializing a message into a message store or when transporting the message
over JMS. If the header does not already exist, or it is not a MessageChannel, no changes are made.

Use of this functionality requires the presence of a HeaderChannelRegistry bean. By default,
the framework creates a DefaultHeaderChannelRegistry with the default expiry (60 seconds).
Channels are removed from the registry after this time. To change this, simply define a bean with id
integrationHeaderChannelRegistry and configure the required default delay using a constructor
argument (milliseconds).

Since version 4.1, you can set a property removeOnGet to true on the <bean/> definition, and
the mapping entry will be removed immediately on first use. This might be useful in a high-volume
environment and when the channel is only used once, rather than waiting for the reaper to remove it.

The HeaderChannelRegistry has a size() method to determine the current size of the registry.
The runReaper() method cancels the current scheduled task and runs the reaper immediately; the
task is then scheduled to run again based on the current delay. These methods can be invoked directly
by getting a reference to the registry, or you can send a message with, for example, the following content
to a control bus:

"@integrationHeaderChannelRegistry.runReaper()"

This sub-element is a convenience only, and is the equivalent of specifying:

<int:reply-channel

 expression="@integrationHeaderChannelRegistry.channelToChannelName(headers.replyChannel)"

 overwrite="true" />

<int:error-channel

 expression="@integrationHeaderChannelRegistry.channelToChannelName(headers.errorChannel)"

 overwrite="true" />

Starting with version 4.1, you can now override the registry’s configured reaper delay, so the the channel
mapping is retained for at least the specified time, regardless of the reaper delay:

<int:header-enricher input-channel="inputTtl" output-channel="next">

 <int:header-channels-to-string time-to-live-expression="120000" />

</int:header-enricher>

<int:header-enricher input-channel="inputCustomTtl" output-channel="next">

 <int:header-channels-to-string

 time-to-live-expression="headers['channelTTL'] ?: 120000" />

</int:header-enricher>

In the first case, the time to live for every header channel mapping will be 2 minutes; in the second
case, the time to live is specified in the message header and uses an elvis operator to use 2 minutes
if there is no header.

Payload Enricher

In certain situations the Header Enricher, as discussed above, may not be sufficient and payloads
themselves may have to be enriched with additional information. For example, order messages that
enter the Spring Integration messaging system have to look up the order’s customer based on the
provided customer number and then enrich the original payload with that information.

Since Spring Integration 2.1, the Payload Enricher is provided. A Payload Enricher defines an endpoint
that passes a Message to the exposed request channel and then expects a reply message. The reply
message then becomes the root object for evaluation of expressions to enrich the target payload.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 122

The Payload Enricher provides full XML namespace support via the enricher element. In order to
send request messages, the payload enricher has a request-channel attribute that allows you to
dispatch messages to a request channel.

Basically by defining the request channel, the Payload Enricher acts as a Gateway, waiting for the
message that were sent to the request channel to return, and the Enricher then augments the message’s
payload with the data provided by the reply message.

When sending messages to the request channel you also have the option to only send a subset of the
original payload using the request-payload-expression attribute.

The enriching of payloads is configured through SpEL expressions, providing users with a maximum
degree of flexibility. Therefore, users are not only able to enrich payloads with direct values from the
reply channel’s Message, but they can use SpEL expressions to extract a subset from that Message,
only, or to apply addtional inline transformations, allowing them to further manipulate the data.

If you only need to enrich payloads with static values, you don’t have to provide the request-channel
attribute.

Note

Enrichers are a variant of Transformers and in many cases you could use a Payload Enricher
or a generic Transformer implementation to add additional data to your messages payloads.
Thus, familiarize yourself with all transformation-capable components that are provided by Spring
Integration and carefully select the implementation that semantically fits your business case best.

Configuration

Below, please find an overview of all available configuration options that are available for the payload
enricher:

<int:enricher request-channel="" ❶

 auto-startup="true" ❷

 id="" ❸

 order="" ❹

 output-channel="" ❺

 request-payload-expression="" ❻

 reply-channel="" ❼

 error-channel="" ❽

 send-timeout="" ❾

 should-clone-payload="false"> ❿

 <int:poller></int:poller> 11

 <int:property name="" expression="" null-result-expression="'Could not determine the name'"/> 12

 <int:property name="" value="23" type="java.lang.Integer" null-result-expression="'0'"/>

 <int:header name="" expression="" null-result-expression=""/> 13

 <int:header name="" value="" overwrite="" type="" null-result-expression=""/>

</int:enricher>

❶ Channel to which a Message will be sent to get the data to use for enrichment. Optional.

❷ Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true.Optional.

❸ Id of the underlying bean definition, which is either an EventDrivenConsumer or a
PollingConsumer. Optional.

❹ Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a "failover" dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Optional.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 123

❺ Identifies the Message channel where a Message will be sent after it is being processed by this
endpoint.Optional.

❻ By default the original message’s payload will be used as payload that will be send to the
request-channel. By specifying a SpEL expression as value for the request-payload-
expression attribute, a subset of the original payload, a header value or any other resolvable
SpEL expression can be used as the basis for the payload, that will be sent to the request-channel.
For the Expression evaluation the full message is available as the root object. For instance the
following SpEL expressions (among others) are possible: payload.foo, headers.foobar, new
java.util.Date(), 'foo' + 'bar'.

❼ Channel where a reply Message is expected. This is optional; typically the auto-generated
temporary reply channel is sufficient. Optional.

❽ Channel to which an ErrorMessage will be sent if an Exception occurs downstream of the
request-channel. This enables you to return an alternative object to use for enrichment. This
is optional; if it is not set then Exception is thrown to the caller. Optional.

❾ Maximum amount of time in milliseconds to wait when sending a message to the channel,
if such channel may block. For example, a Queue Channel can block until space is
available, if its maximum capacity has been reached. Internally the send timeout is set on
the MessagingTemplate and ultimately applied when invoking the send operation on the
MessageChannel. By default the send timeout is set to -1, which may cause the send operation
on the MessageChannel, depending on the implementation, to block indefinitely. Optional.

❿ Boolean value indicating whether any payload that implements Cloneable should be cloned prior
to sending the Message to the request chanenl for acquiring the enriching data. The cloned version
would be used as the target payload for the ultimate reply. Default is false. Optional.

11 Allows you to configure a Message Poller if this endpoint is a Polling Consumer. Optional.
12 Each property sub-element provides the name of a property (via the mandatory name attribute).

That property should be settable on the target payload instance. Exactly one of the value or
expression attributes must be provided as well. The former for a literal value to set, and the
latter for a SpEL expression to be evaluated. The root object of the evaluation context is the
Message that was returned from the flow initiated by this enricher, the input Message if there is
no request channel, or the application context (using the @<beanName>.<beanProperty> SpEL
syntax). Starting with 4.0, when specifying a value attribute, you can also specify an optional
type attribute. When the destination is a typed setter method, the framework will coerce the value
appropriately (as long as a PropertyEditor) exists to handle the conversion. If however, the
target payload is a Map the entry will be populated with the value without conversion. The type
attribute allows you to, say, convert a String containing a number to an Integer value in the
target payload. Starting with 4.1, you can also specify an optional null-result-expression
attribute. When the enricher returns null, it will be evaluated and the output of the evaluation
will be returned instead.

13 Each header sub-element provides the name of a Message header (via the mandatory name
attribute). Exactly one of the value or expression attributes must be provided as well. The
former for a literal value to set, and the latter for a SpEL expression to be evaluated. The root
object of the evaluation context is the Message that was returned from the flow initiated by this
enricher, the input Message if there is no request channel, or the application context (using the
@<beanName>.<beanProperty> SpEL syntax). Note, similar to the <header-enricher>, the
<enricher>'s header element has type and overwrite attributes. However, a difference is
that, with the <enricher>, the overwrite attribute is true by default, to be consistent with
<enricher>'s <property> sub-element. Starting with 4.1, you can also specify an optional
null-result-expression attribute. When the enricher returns null, it will be evaluated and
the output of the evaluation will be returned instead.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 124

Examples

Below, please find several examples of using a Payload Enricher in various situations.

In the following example, a User object is passed as the payload of the Message. The User has several
properties but only the username is set initially. The Enricher’s request-channel attribute below is
configured to pass the User on to the findUserServiceChannel.

Through the implicitly set reply-channel a User object is returned and using the property sub-
element, properties from the reply are extracted and used to enrich the original payload.

<int:enricher id="findUserEnricher"

 input-channel="findUserEnricherChannel"

 request-channel="findUserServiceChannel">

 <int:property name="email" expression="payload.email"/>

 <int:property name="password" expression="payload.password"/>

</int:enricher>

Note

The code samples shown here, are part of the Spring Integration Samples project. Please feel
free to check it out in the Appendix G, Spring Integration Samples.

How do I pass only a subset of data to the request channel?

Using a request-payload-expression attribute a single property of the payload can be passed on
to the request channel instead of the full message. In the example below on the username property is
passed on to the request channel. Keep in mind, that although only the username is passed on, the
resulting message send to the request channel will contain the full set of MessageHeaders.

<int:enricher id="findUserByUsernameEnricher"

 input-channel="findUserByUsernameEnricherChannel"

 request-channel="findUserByUsernameServiceChannel"

 request-payload-expression="payload.username">

 <int:property name="email" expression="payload.email"/>

 <int:property name="password" expression="payload.password"/>

</int:enricher>

How can I enrich payloads that consist of Collection data?

In the following example, instead of a User object, a Map is passed in. The Map contains the username
under the map key username. Only the username is passed on to the request channel. The reply
contains a full User object, which is ultimately added to the Map under the user key.

<int:enricher id="findUserWithMapEnricher"

 input-channel="findUserWithMapEnricherChannel"

 request-channel="findUserByUsernameServiceChannel"

 request-payload-expression="payload.username">

 <int:property name="user" expression="payload"/>

</int:enricher>

How can I enrich payloads with static information without using a request channel?

Here is an example that does not use a request channel at all, but solely enriches the message’s payload
with static values. But please be aware that the word static is used loosely here. You can still use SpEL
expressions for setting those values.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 125

<int:enricher id="userEnricher"

 input-channel="input">

 <int:property name="user.updateDate" expression="new java.util.Date()"/>

 <int:property name="user.firstName" value="foo"/>

 <int:property name="user.lastName" value="bar"/>

 <int:property name="user.age" value="42"/>

</int:enricher>

7.3 Claim Check

Introduction

In the earlier sections we’ve covered several Content Enricher type components that help you deal with
situations where a message is missing a piece of data. We also discussed Content Filtering which lets
you remove data items from a message. However there are times when we want to hide data temporarily.
For example, in a distributed system we may receive a Message with a very large payload. Some
intermittent message processing steps may not need access to this payload and some may only need
to access certain headers, so carrying the large Message payload through each processing step may
cause performance degradation, may produce a security risk, and may make debugging more difficult.

The Claim Check pattern describes a mechanism that allows you to store data in a well known place
while only maintaining a pointer (Claim Check) to where that data is located. You can pass that pointer
around as a payload of a new Message thereby allowing any component within the message flow to get
the actual data as soon as it needs it. This approach is very similar to the Certified Mail process where
you’ll get a Claim Check in your mailbox and would have to go to the Post Office to claim your actual
package. Of course it’s also the same idea as baggage-claim on a flight or in a hotel.

Spring Integration provides two types of Claim Check transformers:

• Incoming Claim Check Transformer

• Outgoing Claim Check Transformer

Convenient namespace-based mechanisms are available to configure them.

Incoming Claim Check Transformer

An Incoming Claim Check Transformer will transform an incoming Message by storing it in the Message
Store identified by its message-store attribute.

<int:claim-check-in id="checkin"

 input-channel="checkinChannel"

 message-store="testMessageStore"

 output-channel="output"/>

In the above configuration the Message that is received on the input-channel will be persisted to
the Message Store identified with the message-store attribute and indexed with generated ID. That
ID is the Claim Check for that Message. The Claim Check will also become the payload of the new
(transformed) Message that will be sent to the output-channel.

Now, lets assume that at some point you do need access to the actual Message. You can of course
access the Message Store manually and get the contents of the Message, or you can use the same
approach as before except now you will be transforming the Claim Check to the actual Message by
using an Outgoing Claim Check Transformer.

Here is an overview of all available parameters of an Incoming Claim Check Transformer:

http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 126

<int:claim-check-in auto-startup="true" ❶

 id="" ❷

 input-channel="" ❸

 message-store="messageStore" ❹

 order="" ❺

 output-channel="" ❻

 send-timeout=""> ❼

 <int:poller></int:poller> ❽

</int:claim-check-in>

❶ Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chain element. Optional.

❷ Id identifying the underlying bean definition (MessageTransformingHandler). Attribute is not
available inside a Chain element. Optional.

❸ The receiving Message channel of this endpoint. Attribute is not available inside a Chain element.
Optional.

❹ Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

❺ Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chain element. Optional.

❻ Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chain element. Optional.

❼ Specify the maximum amount of time in milliseconds to wait when sending a reply Message to
the output channel. Defaults to -1 - blocking indefinitely. Attribute is not available inside a Chain
element. Optional.

❽ Defines a poller. Element is not available inside a Chain element. Optional.

Outgoing Claim Check Transformer

An Outgoing Claim Check Transformer allows you to transform a Message with a Claim Check payload
into a Message with the original content as its payload.

<int:claim-check-out id="checkout"

 input-channel="checkoutChannel"

 message-store="testMessageStore"

 output-channel="output"/>

In the above configuration, the Message that is received on the input-channel should have a Claim
Check as its payload and the Outgoing Claim Check Transformer will transform it into a Message with
the original payload by simply querying the Message store for a Message identified by the provided
Claim Check. It then sends the newly checked-out Message to the output-channel.

Here is an overview of all available parameters of an Outgoing Claim Check Transformer:

<int:claim-check-out auto-startup="true" ❶

 id="" ❷

 input-channel="" ❸

 message-store="messageStore" ❹

 order="" ❺

 output-channel="" ❻

 remove-message="false" ❼

 send-timeout=""> ❽

 <int:poller></int:poller> ❾

</int:claim-check-out>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 127

❶ Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chain element. Optional.

❷ Id identifying the underlying bean definition (MessageTransformingHandler). Attribute is not
available inside a Chain element. Optional.

❸ The receiving Message channel of this endpoint. Attribute is not available inside a Chain element.
Optional.

❹ Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

❺ Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chain element. Optional.

❻ Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chain element. Optional.

❼ If set to true the Message will be removed from the MessageStore by this transformer. Useful
when Message can be "claimed" only once. Defaults to false. Optional.

❽ Specify the maximum amount of time in milliseconds to wait when sending a reply Message to
the output channel. Defaults to -1 - blocking indefinitely. Attribute is not available inside a Chain
element. Optional.

❾ Defines a poller. Element is not available inside a Chain element. Optional.

Claim Once

There are scenarios when a particular message must be claimed only once. As an analogy, consider the
airplane luggage check-in/out process. Checking-in your luggage on departure and and then claiming
it on arrival is a classic example of such a scenario. Once the luggage has been claimed, it can not be
claimed again without first checking it back in. To accommodate such cases, we introduced a remove-
message boolean attribute on the claim-check-out transformer. This attribute is set to false by
default. However, if set to true, the claimed Message will be removed from the MessageStore, so that
it can no longer be claimed again.

This is also something to consider in terms of storage space, especially in the case of the in-memory
Map-based SimpleMessageStore, where failing to remove the Messages could ultimately lead to an
OutOfMemoryException. Therefore, if you don’t expect multiple claims to be made, it’s recommended
that you set the remove-message attribute’s value to true.

<int:claim-check-out id="checkout"

 input-channel="checkoutChannel"

 message-store="testMessageStore"

 output-channel="output"

 remove-message="true"/>

A word on Message Store

Although we rarely care about the details of the claim checks as long as they work, it is still worth
knowing that the current implementation of the actual Claim Check (the pointer) in Spring Integration
is a UUID to ensure uniqueness.

org.springframework.integration.store.MessageStore is a strategy interface for storing
and retrieving messages. Spring Integration provides two convenient implementations of it.
SimpleMessageStore: an in-memory, Map-based implementation (the default, good for testing) and
JdbcMessageStore: an implementation that uses a relational database via JDBC.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 128

7.4 Codec

Introduction

Spring Integration version 4.2 introduces the Codec abstraction. Codecs are used to encode/decode
objects to/from byte[]. They are an alternative to Java Serialization. One advantage is, typically,
objects do not have to implement Serializable. One implementation, using Kryo for serialization, is
provided but you can provide your own implementation for use in any of these components:

• EncodingPayloadTransformer

• DecodingTransformer

• CodecMessageConverter

See their JavaDocs for more information.

EncodingPayloadTransformer

This transformer encodes the payload to a byte[] using the codec. It does not affect message headers.

DecodingTransformer

This transformer decodes a byte[] using the codec; it needs to be configured with the Class to which
the object should be decoded (or an expression that resolves to a Class). If the resulting object is a
Message<?>, inbound headers will not be retained.

CodecMessageConverter

Certain endpoints (e.g. TCP, Redis) have no concept of message headers; they support the use of a
MessageConverter and the CodecMessageConverter can be used to convert a message to/from
a byte[] for transmission.

Kryo

Currently, this is the only implementation of Codec. There are two Codec s - PojoCodec which can be
used in the transformers and MessageCodec which can be used in the CodecMessageConverter.

Several custom serializers are provided by the framework:

• FileSerializer

• MessageHeadersSerializer

• MutableMessageHeadersSerializer

The first can be used with the PojoCodec, by initializing it with the FileKryoRegistrar. The second
and third are used with the MessageCodec, which is initialized with the MessageKryoRegistrar.

Customizing Kryo

By default, Kryo delegates unknown Java types to its FieldSerializer. Kryo also registers
default serializers for each primitive type along with String, Collection and Map serializers.

https://github.com/EsotericSoftware/kryo

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 129

FieldSerializer uses reflection to navigate the object graph. A more efficient approach is to
implement a custom serializer that is aware of the object’s structure and can directly serialize selected
primitive fields:

public class AddressSerializer extends Serializer<Address> {

 @Override

 public void write(Kryo kryo, Output output, Address address) {

 output.writeString(address.getStreet());

 output.writeString(address.getCity());

 output.writeString(address.getCountry());

 }

 @Override

 public Address read(Kryo kryo, Input input, Class<Address> type) {

 return new Address(input.readString(), input.readString(), input.readString());

 }

}

The Serializer interface exposes Kryo, Input, and Output which provide complete control over
which fields are included and other internal settings as described in the documentation.

Note

When registering your custom serializer, you need a registration ID. The registration IDs are
arbitrary but in our case must be explicitly defined because each Kryo instance across the
distributed application must use the same IDs. Kryo recommends small positive integers, and
reserves a few ids (value < 10). Spring Integration currently defaults to using 40, 41 and 42 (for
the file and message header serializers mentioned above); we recommend you start at, say 60, to
allow for expansion in the framework. These framework defaults can be overridden by configuring
the registrars mentioned above.

Using a Custom Kryo Serializer

If custom serialization is indicated, please consult the Kryo documentation since you will be using the
native API. For an example, see the MessageCodec.

Implementing KryoSerializable

If you have write access to the domain object source code it may implement KryoSerializable
as described here. In this case the class provides the serialization methods itself and no further
configuration is required. This has the advantage of being much simpler to use with XD, however
benchmarks have shown this is not quite as efficient as registering a custom serializer explicitly:

public class Address implements KryoSerializable {

 ...

 @Override

 public void write(Kryo kryo, Output output) {

 output.writeString(this.street);

 output.writeString(this.city);

 output.writeString(this.country);

 }

 @Override

 public void read(Kryo kryo, Input input) {

 this.street = input.readString();

 this.city = input.readString();

 this.country = input.readString();

 }

}

https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo#kryoserializable

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 130

Note that this technique can also be used to wrap a serialization library other than Kryo.

Using DefaultSerializer Annotation

Kryo also provides an annotation as described here.

@DefaultSerializer(SomeClassSerializer.class)

public class SomeClass {

 // ...

}

If you have write access to the domain object this may be a simpler alternative to specify a custom
serializer. Note this does not register the class with an ID, so your mileage may vary.

https://github.com/EsotericSoftware/kryo#default-serializers

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 131

8. Messaging Endpoints

8.1 Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying
API that drives Spring Integration’s various messaging components. This information can be helpful if
you want to really understand what’s going on behind the scenes. However, if you want to get up and
running with the simplified namespace-based configuration of the various elements, feel free to skip
ahead to the section called “Endpoint Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, you will see a number of different
components that consume Messages. Some of these are also capable of sending reply Messages.
Sending Messages is quite straightforward. As shown above in Section 4.1, “Message Channels”, it’s
easy to send a Message to a Message Channel. However, receiving is a bit more complicated. The main
reason is that there are two types of consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration’s subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a container for the consumer instance. The
benefit is similar to that of using a container for hosting Message Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring’s own MessageListener containers.

Message Handler

Spring Integration’s MessageHandler interface is implemented by many of the components within
the framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandler directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandler {

 void handleMessage(Message<?> message);

}

Despite its simplicity, this provides the foundation for most of the components that will be covered
in the following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc).
Those components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and event-
driven behavior is also the same. Spring Integration provides two endpoint implementations that host
these callback-based handlers and allow them to be connected to Message Channels.

Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first.
You may recall that the SubscribableChannel interface provides a subscribe() method

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 132

and that the method accepts a MessageHandler parameter (as shown in the section called
“SubscribableChannel”):

subscribableChannel.subscribe(messageHandler);

Since a handler that is subscribed to a channel does not have to actively poll that channel, this
is an Event Driven Consumer, and the implementation provided by Spring Integration accepts a a
SubscribableChannel and a MessageHandler:

SubscribableChannel channel = context.getBean("subscribableChannel", SubscribableChannel.class);

EventDrivenConsumer consumer = new EventDrivenConsumer(channel, exampleHandler);

Polling Consumer

Spring Integration also provides a PollingConsumer, and it can be instantiated in the same way
except that the channel must implement PollableChannel:

PollableChannel channel = context.getBean("pollableChannel", PollableChannel.class);

PollingConsumer consumer = new PollingConsumer(channel, exampleHandler);

Note

For more information regarding Polling Consumers, please also read Section 4.2, “Poller” as well
as Section 4.3, “Channel Adapter”.

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setTrigger(new IntervalTrigger(30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface:
IntervalTrigger and CronTrigger. The IntervalTrigger is typically defined with a simple
interval (in milliseconds), but also supports an initialDelay property and a boolean fixedRate property
(the default is false, i.e. fixed delay):

IntervalTrigger trigger = new IntervalTrigger(1000);

trigger.setInitialDelay(5000);

trigger.setFixedRate(true);

The CronTrigger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setMaxMessagesPerPoll(10);

consumer.setReceiveTimeout(5000);

The maxMessagesPerPoll property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller will continue calling receive() without waiting until either
null is returned or that max is reached. For example, if a poller has a 10 second interval trigger and

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 133

a maxMessagesPerPoll setting of 25, and it is polling a channel that has 100 messages in its queue,
all 100 messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next
25, and so on.

The receiveTimeout property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem similar on
the surface but are actually quite different: the first has an interval trigger of 5 seconds and a receive
timeout of 50 milliseconds while the second has an interval trigger of 50 milliseconds and a receive
timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds later than it arrived
on the channel (if that message arrived immediately after one of its poll calls returned). On the other
hand, the second configuration will never miss a message by more than 50 milliseconds. The difference
is that the second option requires a thread to wait, but as a result it is able to respond much more
quickly to arriving messages. This technique, known as long polling, can be used to emulate event-
driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecutor, as illustrated in the following
example:

PollingConsumer consumer = new PollingConsumer(channel, handler);

TaskExecutor taskExecutor = context.getBean("exampleExecutor", TaskExecutor.class);

consumer.setTaskExecutor(taskExecutor);

Furthermore, a PollingConsumer has a property called adviceChain. This property allows you to
specify a List of AOP Advices for handling additional cross cutting concerns including transactions.
These advices are applied around the doPoll() method. For more in-depth information, please see the
sections AOP Advice chains and Transaction Support under the section called “Endpoint Namespace
Support”.

The examples above show dependency lookups, but keep in mind that these consumers will most often
be configured as Spring bean definitions. In fact, Spring Integration also provides a FactoryBean called
ConsumerEndpointFactoryBean that creates the appropriate consumer type based on the type of
channel, and there is full XML namespace support to even further hide those details. The namespace-
based configuration will be featured as each component type is introduced.

Note

Many of the MessageHandler implementations are also capable of generating reply Messages.
As mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless,when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as
a downstream consumer for a Splitter which may generate multiple replies for each Message
it handles. When using the namespace configuration, you do not strictly need to know all
of the details, but it still might be worth knowing that several of these components share a
common base class, the AbstractReplyProducingMessageHandler, and it provides a
setOutputChannel(..) method.

Endpoint Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an input-channel
attribute and many will support an output-channel attribute. After being parsed, these endpoint elements

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 134

produce an instance of either the PollingConsumer or the EventDrivenConsumer depending
on the type of the input-channel that is referenced: PollableChannel or SubscribableChannel
respectively. When the channel is pollable, then the polling behavior is determined based on the
endpoint element’s poller sub-element and its attributes.

In the configuration below you find a poller with all available configuration options:

<int:poller cron="" ❶

 default="false" ❷

 error-channel="" ❸

 fixed-delay="" ❹

 fixed-rate="" ❺

 id="" ❻

 max-messages-per-poll="" ❼

 receive-timeout="" ❽

 ref="" ❾

 task-executor="" ❿

 time-unit="MILLISECONDS" 11

 trigger=""> 12

 <int:advice-chain /> 13

 <int:transactional /> 14

</int:poller>

❶ Provides the ability to configure Pollers using Cron expressions. The underlying implementation
uses an org.springframework.scheduling.support.CronTrigger. If this attribute is set,
none of the following attributes must be specified: fixed-delay, trigger, fixed-rate, ref.

❷ By setting this attribute to true, it is possible to define exactly one (1) global default
poller. An exception is raised if more than one default poller is defined in the
application context. Any endpoints connected to a PollableChannel (PollingConsumer) or any
SourcePollingChannelAdapter that does not have any explicitly configured poller will then use the
global default Poller. Optional. Defaults to false.

❸ Identifies the channel which error messages will be sent to if a failure occurs in this poller’s
invocation. To completely suppress Exceptions, provide a reference to the nullChannel.
Optional.

❹ The fixed delay trigger uses a PeriodicTrigger under the covers. If the time-unit attribute
is not used, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: fixed-rate, trigger, cron, ref.

❺ The fixed rate trigger uses a PeriodicTrigger under the covers. If the time-unit attribute
is not used the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: fixed-delay, trigger, cron, ref.

❻ The Id referring to the Poller’s underlying bean-definition, which is of type
org.springframework.integration.scheduling.PollerMetadata. The id attribute is
required for a top-level poller element unless it is the default poller (default="true").

❼ Please see the section called “Configuring An Inbound Channel Adapter” for more information.
Optional. If not specified the default values used depends on the context. If a PollingConsumer
is used, this atribute will default to -1. However, if a SourcePollingChannelAdapter is used,
then the max-messages-per-poll attribute defaults to 1.

❽ Value is set on the underlying class PollerMetadata. Optional. If not specified it defaults to 1000
(milliseconds).

❾ Bean reference to another top-level poller. The ref attribute must not be present on the top-level
poller element. However, if this attribute is set, none of the following attributes must be specified:
fixed-rate, trigger, cron, fixed-delay.

❿ Provides the ability to reference a custom task executor. Please see the section below titled
TaskExecutor Support for further information. Optional.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 135

11 This attribute specifies the java.util.concurrent.TimeUnit enum value on the
underlying org.springframework.scheduling.support.PeriodicTrigger. Therefore,
this attribute can ONLY be used in combination with the fixed-delay or fixed-rate attributes.
If combined with either cron or a trigger reference attribute, it will cause a failure. The minimal
supported granularity for a PeriodicTrigger is MILLISECONDS. Therefore, the only available
options are MILLISECONDS and SECONDS. If this value is not provided, then any fixed-delay
or fixed-rate value will be interpreted as MILLISECONDS by default. Basically this enum
provides a convenience for SECONDS-based interval trigger values. For hourly, daily, and monthly
settings, consider using a cron trigger instead.

12 Reference to any spring configured bean which implements the
org.springframework.scheduling.Trigger interface. Optional. However, if this attribute
is set, none of the following attributes must be specified: fixed-delay, fixed-rate, cron, ref.

13 Allows to specify extra AOP Advices to handle additional cross cutting concerns. Please see the
section below titled Transaction Support for further information. Optional.

14 Pollers can be made transactional. Please see the section below titled AOP Advice chains for
further information. Optional.

Examples

For example, a simple interval-based poller with a 1-second interval would be configured like this:

<int:transformer input-channel="pollable"

 ref="transformer"

 output-channel="output">

 <int:poller fixed-rate="1000"/>

</int:transformer>

As an alternative to fixed-rate you can also use the fixed-delay attribute.

For a poller based on a Cron expression, use the cron attribute instead:

<int:transformer input-channel="pollable"

 ref="transformer"

 output-channel="output">

 <int:poller cron="*/10 * * * * MON-FRI"/>

</int:transformer>

If the input channel is a PollableChannel, then the poller configuration is required. Specifically, as
mentioned above, the trigger is a required property of the PollingConsumer class. Therefore, if you omit
the poller sub-element for a Polling Consumer endpoint’s configuration, an Exception may be thrown.
The exception will also be thrown if you attempt to configure a poller on the element that is connected
to a non-pollable channel.

It is also possible to create top-level pollers in which case only a ref is required:

<int:poller id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

<int:transformer input-channel="pollable"

 ref="transformer"

 output-channel="output">

 <int:poller ref="weekdayPoller"/>

</int:transformer>

Note

The ref attribute is only allowed on the inner-poller definitions. Defining this attribute on a top-level
poller will result in a configuration exception thrown during initialization of the Application Context.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 136

Global Default Pollers

In fact, to simplify the configuration even further, you can define a global default poller. A single top-level
poller within an ApplicationContext may have the default attribute with a value of true. In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured poller sub-element will use that default.

<int:poller id="defaultPoller" default="true" max-messages-per-poll="5" fixed-rate="3000"/>

<!-- No <poller/> sub-element is necessary since there is a default -->

<int:transformer input-channel="pollable"

 ref="transformer"

 output-channel="output"/>

Transaction Support

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the_<transactional/>_ sub-element. The attributes for this element should be familiar to anyone who
has experience with Spring’s Transaction management:

<int:poller fixed-delay="1000">

 <int:transactional transaction-manager="txManager"

 propagation="REQUIRED"

 isolation="REPEATABLE_READ"

 timeout="10000"

 read-only="false"/>

</int:poller>

For more information please refer to the section called “Poller Transaction Support”.

AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with TransactionInterceptor
(AOP Advice) handling transactional behavior of the message flow initiated by the poller, some times
there is a need to provide extra Advice(s) to handle other cross cutting behavior associated with the
poller. For that poller defines an advice-chain element allowing you to add more advices - class that
 implements MethodInterceptor interface…

<int:service-activator id="advicedSa" input-channel="goodInputWithAdvice" ref="testBean"

 method="good" output-channel="output">

 <int:poller max-messages-per-poll="1" fixed-rate="10000">

 <int:advice-chain>

 <ref bean="adviceA" />

 <beans:bean class="org.bar.SampleAdvice" />

 <ref bean="txAdvice" />

 </int:advice-chain>

 </int:poller>

</int:service-activator>

For more information on how to implement MethodInterceptor please refer to AOP sections of Spring
reference manual (section 8 and 9). Advice chain can also be applied on the poller that does not have
any transaction configuration essentially allowing you to enhance the behavior of the message flow
initiated by the poller.

Important

When using an advice chain, the <transactional/> child element cannot be specified; instead,
declare a <tx:advice/> bean and add it to the <advice-chain/>. See the section called
“Poller Transaction Support” for complete configuration.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 137

TaskExecutor Support

The polling threads may be executed by any instance of Spring’s TaskExecutor abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a task namespace
in the core Spring Framework, and its <executor/> element supports the creation of a simple thread
pool executor. That element accepts attributes for common concurrency settings such as pool-size and
queue-capacity. Configuring a thread-pooling executor can make a substantial difference in how the
endpoint performs under load. These settings are available per-endpoint since the performance of an
endpoint is one of the major factors to consider (the other major factor being the expected volume
on the channel to which the endpoint subscribes). To enable concurrency for a polling endpoint that
is configured with the XML namespace support, provide the task-executor reference on its <poller/>
element and then provide one or more of the properties shown below:

<int:poller task-executor="pool" fixed-rate="1000"/>

<task:executor id="pool"

 pool-size="5-25"

 queue-capacity="20"

 keep-alive="120"/>

If no task-executor is provided, the consumer’s handler will be invoked in the caller’s thread. Note that
the caller is usually the default TaskScheduler (see Section E.3, “Configuring the Task Scheduler”).
Also, keep in mind that the task-executor attribute can provide a reference to any implementation of
Spring’s TaskExecutor interface by specifying the bean name. The executor element above is simply
provided for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message
source. Note that this will only apply to sources that have a blocking wait call with a timeout. For example,
the File poller does not block, each receive() call returns immediately and either contains new files or
not. Therefore, even if a poller contains a long receive-timeout, that value would never be usable in such
a scenario. On the other hand when using Spring Integration’s own queue-based channels, the timeout
value does have a chance to participate. The following example demonstrates how a Polling Consumer
will receive Messages nearly instantaneously.

<int:service-activator input-channel="someQueueChannel"

 output-channel="output">

 <int:poller receive-timeout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait
thread which does not require nearly as much CPU resource usage as a thrashing, infinite while loop
for example.

Change Polling Rate at Runtime

When configuring Pollers with a fixed-delay or fixed-rate attribute, the default implementation
will use a PeriodicTrigger instance. The PeriodicTrigger is part of the Core Spring Framework
and it accepts the interval as a constructor argument, only. Therefore it cannot be changed at runtime.

However, you can define your own implementation of the
org.springframework.scheduling.Trigger interface. You could even use the PeriodicTrigger
as a starting point. Then, you can add a setter for the interval (period), or you could even embed your
own throttling logic within the trigger itself if desired. The period property will be used with each call to

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 138

nextExecutionTime to schedule the next poll. To use this custom trigger within pollers, declare the bean
definition of the custom Trigger in your application context and inject the dependency into your Poller
configuration using the trigger attribute, which references the custom Trigger bean instance. You can
now obtain a reference to the Trigger bean and the polling interval can be changed between polls.

For an example, please see the Spring Integration Samples project. It contains a sample called dynamic-
poller, which uses a custom Trigger and demonstrates the ability to change the polling interval at runtime.

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate

The sample provides a custom Trigger which implements the org.springframework.scheduling.Trigger
interface. The sample’s Trigger is based on Spring’s PeriodicTrigger implementation. However, the
fields of the custom trigger are not final and the properties have explicit getters and setters, allowing to
dynamically change the polling period at runtime.

Note

It is important to note, though, that because the Trigger method is nextExecutionTime(), any
changes to a dynamic trigger will not take effect until the next poll, based on the existing
configuration. It is not possible to force a trigger to fire before it’s currently configured next
execution time.

Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples
of various endpoints which can accept a Message or any arbitrary Object as an input parameter.
In the case of an Object, such a parameter will be mapped to a Message payload or part of the
payload or header (when using the Spring Expression Language). However there are times when the
type of input parameter of the endpoint method does not match the type of the payload or its part.
In this scenario we need to perform type conversion. Spring Integration provides a convenient way
for registering type converters (using the Spring ConversionService) within its own instance of a
conversion service bean named integrationConversionService. That bean is automatically created as
soon as the first converter is defined using the Spring Integration infrastructure. To register a Converter
all you need is to implement org.springframework.core.convert.converter.Converter,
org.springframework.core.convert.converter.GenericConverter or
org.springframework.core.convert.converter.ConverterFactory.

The Converter implementation is the simplest and converts from a single type to another. For more
sophistication, such as converting to a class hierarchy, you would implement a GenericConverter
and possibly a ConditionalConverter. These give you complete access to the from and to type
descriptors enabling complex conversions. For example, if you have an abstract class Foo that is
the target of your conversion (parameter type, channel data type etc) and you have two concrete
implementations Bar and Baz and you wish to convert to one or the other based on the input type,
the GenericConverter would be a good fit. Refer to the JavaDocs for these interfaces for more
information.

When you have implemented your converter, you can register it with convenient namespace support:

<int:converter ref="sampleConverter"/>

<bean id="sampleConverter" class="foo.bar.TestConverter"/>

or as an inner bean:

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/Trigger.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/support/PeriodicTrigger.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 139

<int:converter>

 <bean class="o.s.i.config.xml.ConverterParserTests$TestConverter3"/>

</int:converter>

Starting with Spring Integration 4.0, the above configuration is available using annotations:

@Component

@IntegrationConverter

public class TestConverter implements Converter<Boolean, Number> {

 public Number convert(Boolean source) {

 return source ? 1 : 0;

 }

}

or as a @Configuration part:

@Configuration

@EnableIntegration

public class ContextConfiguration {

 @Bean

 @IntegrationConverter

 public SerializingConverter serializingConverter() {

 return new SerializingConverter();

 }

}

Important

When configuring an Application Context, the Spring Framework allows you to add a
conversionService bean (see Configuring a ConversionService chapter). This service is used,
when needed, to perform appropriate conversions during bean creation and configuration.

In contrast, the integrationConversionService is used for runtime conversions. These uses are
quite different; converters that are intended for use when wiring bean constructor-args and
properties may produce unintended results if used at runtime for Spring Integration expression
evaluation against Messages within Datatype Channels, Payload Type transformers etc.

However, if you do want to use the Spring conversionService as the Spring Integration
integrationConversionService, you can configure an alias in the Application Context:

<alias name="conversionService" alias="integrationConversionService"/>

In this case the conversionService's Converters will be available for Spring Integration runtime
conversion.

Content Type Conversion

Starting with version 5.0, by default, the method invocation mechanism is based on
the org.springframework.messaging.handler.invocation.InvocableHandlerMethod

infrastructure. Its HandlerMethodArgumentResolver implementations (e.g.
PayloadArgumentResolver and MessageMethodArgumentResolver) can use the
MessageConverter abstraction to convert an incoming payload to the target method argument
type. The conversion can be based on the contentType message header. For this purpose Spring
Integration provides the ConfigurableCompositeMessageConverter that delegates to a list of

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-Spring-config

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 140

registered converters to be invoked until one of them returns a non-null result. By default this converter
provides (in strict order):

• MappingJackson2MessageConverter if Jackson processor is present in classpath;

• ByteArrayMessageConverter

• ObjectStringMessageConverter

• GenericMessageConverter

Please, consult their JavaDocs for more information about their purpose and appropriate contentType
value for conversion. The ConfigurableCompositeMessageConverter is used because it can
be be supplied with any other MessageConverter s including or excluding above mentioned default
converters and registered as an appropriate bean in the application context overriding the default one:

@Bean(name = IntegrationContextUtils.ARGUMENT_RESOLVER_MESSAGE_CONVERTER_BEAN_NAME)

public ConfigurableCompositeMessageConverter compositeMessageConverter() {

 List<MessageConverter> converters =

 Arrays.asList(new MarshallingMessageConverter(jaxb2Marshaller()),

 new JavaSerializationMessageConverter());

 return new ConfigurableCompositeMessageConverter(converters);

}

And those two new converters will be registered in the composite before the defaults. You can also not
use a ConfigurableCompositeMessageConverter, but provide your own MessageConverter
by registering a bean with the name integrationArgumentResolverMessageConverter
(IntegrationContextUtils.ARGUMENT_RESOLVER_MESSAGE_CONVERTER_BEAN_NAME
constant).

Note

The MessageConverter-based (including contentType header) conversion isn’t available
when using SpEL method invocation. In this case, only regular class to class conversion
mentioned above in the the section called “Payload Type Conversion” is available.

Asynchronous polling

If you want the polling to be asynchronous, a Poller can optionally specify a task-executor attribute
pointing to an existing instance of any TaskExecutor bean (Spring 3.0 provides a convenient
namespace configuration via the task namespace). However, there are certain things you must
understand when configuring a Poller with a TaskExecutor.

The problem is that there are two configurations in place. The Poller and the TaskExecutor, and they
both have to be in tune with each other otherwise you might end up creating an artificial memory leak.

Let’s look at the following configuration provided by one of the users on the Spring Integration Forum:

<int:channel id="publishChannel">

 <int:queue />

</int:channel>

<int:service-activator input-channel="publishChannel" ref="myService">

 <int:poller receive-timeout="5000" task-executor="taskExecutor" fixed-rate="50" />

</int:service-activator>

<task:executor id="taskExecutor" pool-size="20" />

The above configuration demonstrates one of those out of tune configurations.

http://forum.spring.io/forum/spring-projects/integration/87155-spring-integration-poller-configuration

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 141

By default, the task executor has an unbounded task queue. The poller keeps scheduling new tasks
even though all the threads are blocked waiting for either a new message to arrive, or the timeout to
expire. Given that there are 20 threads executing tasks with a 5 second timeout, they will be executed
at a rate of 4 per second (5000/20 = 250ms). But, new tasks are being scheduled at a rate of 20 per
second, so the internal queue in the task executor will grow at a rate of 16 per second (while the process
is idle), so we essentially have a memory leak.

One of the ways to handle this is to set the queue-capacity attribute of the Task Executor; and
even 0 is a reasonable value. You can also manage it by specifying what to do with messages that can
not be queued by setting the rejection-policy attribute of the Task Executor (e.g., DISCARD). In
other words, there are certain details you must understand with regard to configuring the TaskExecutor.
Please refer to Task Execution and Scheduling of the Spring reference manual for more detail on the
subject.

Endpoint Inner Beans

Many endpoints are composite beans; this includes all consumers and all polled inbound channel
adapters. Consumers (polled or event- driven) delegate to a MessageHandler; polled adapters obtain
messages by delegating to a MessageSource. Often, it is useful to obtain a reference to the delegate
bean, perhaps to change configuration at runtime, or for testing. These beans can be obtained from
the ApplicationContext with well-known names. MessageHandler s are registered with the
application context with a bean id someConsumer.handler (where consumer is the endpoint’s id
attribute). MessageSource s are registered with a bean id somePolledAdapter.source, again
where somePolledAdapter is the id of the adapter.

The above only applies to the framework component itself. If you use an inner bean definition such as
this:

<int:service-activator id="exampleServiceActivator" input-channel="inChannel"

 output-channel = "outChannel" method="foo">

 <beans:bean class="org.foo.ExampleServiceActivator"/>

</int:service-activator>

the bean is treated like any inner bean declared that way and is not registered with the application
context. If you wish to access this bean in some other manner, declare it at the top level with an id and
use the ref attribute instead. See the Spring Documentation for more information.

8.2 Endpoint Roles

Starting with version 4.2, endpoints can be assigned to roles. Roles allow endpoints to be started and
stopped as a group; this is particularly useful when using leadership election where a set of endpoints
can be started or stopped when leadership is granted or revoked respectively.

You can assign endpoints to roles using XML, Java configuration, or programmatically:

<int:inbound-channel-adapter id="ica" channel="someChannel" expression="'foo'" role="cluster"

 auto-startup="false">

 <int:poller fixed-rate="60000" />

</int:inbound-channel-adapter>

@Bean

@ServiceActivator(inputChannel = "sendAsyncChannel", autoStartup="false")

@Role("cluster")

public MessageHandler sendAsyncHandler() {

 return // some MessageHandler

}

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html#beans-inner-beans

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 142

@Payload("#args[0].toLowerCase()")

@Role("cluster")

public String handle(String payload) {

 return payload.toUpperCase();

}

@Autowired

private SmartLifecycleRoleController roleController;

...

 this.roleController.addSmartLifeCycleToRole("cluster", someEndpoint);

...

IntegrationFlow flow -> flow

 .handle(..., e -> e.role("cluster"));

Each of these adds the endpoint to the role cluster.

Invoking roleController.startLifecyclesInRole("cluster") (and the corresponding
stop... method) will start/stop the endpoints.

Note

Any object implementing SmartLifecycle can be programmatically added, not just endpoints.

The SmartLifecycleRoleController implements
ApplicationListener<AbstractLeaderEvent> and it will automatically start/stop its configured
SmartLifecycle objects when leadership is granted/revoked (when some bean publishes
OnGrantedEvent or OnRevokedEvent respectively).

Important

When using leadership election to start/stop components, it is important to set the auto-startup
XML attribute (autoStartup bean property) to false so the application context does not start
the components during context intialization.

Starting with _version 4.3.8, the SmartLifecycleRoleController provides several status
methods:

public Collection<String> getRoles() ❶

public boolean allEndpointsRunning(String role) ❷

public boolean noEndpointsRunning(String role) ❸

public Map<String, Boolean> getEndpointsRunningStatus(String role) ❹

❶ Returns a list of the roles being managed.

❷ Returns true if all endpoints in the role are running.

❸ Returns true if none of the endpoints in the role are running.

❹ Returns a map of component name : running status - the component name is usually
the bean name.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 143

8.3 Leadership Event Handling

Groups of endpoints can be started/stopped based on leadership being granted or revoked respectively.
This is useful in clustered scenarios where shared resources must only be consumed by a single
instance. An example of this is a file inbound channel adapter that is polling a shared directory. (See
Section 15.2, “Reading Files”).

To participate in a leader election and be notified when elected leader, when leadership is revoked
or, failure to acquire the resources to become leader, an application creates a component in the
application context called a "leader initiator". Normally a leader initiator is a SmartLifecycle so
it starts up (optionally) automatically when the context starts, and then publishes notifications when
leadership changes. Users can also receive failure notifications by setting the publishFailedEvents
to true (starting with version 5.0), in cases when they want take a specific action if a failure occurs.
By convention the user provides a Candidate that receives the callbacks and also can revoke
the leadership through a Context object provided by the framework. User code can also listen for
org.springframework.integration.leader.event.AbstractLeaderEvent s, and respond
accordingly, for instance using a SmartLifecycleRoleController.

There is a basic implementation of a leader initiator based on the LockRegistry abstraction. To use
it you just need to create an instance as a bean, for example:

@Bean

public LockRegistryLeaderInitiator leaderInitiator(LockRegistry locks) {

 return new LockRegistryLeaderInitiator(locks);

}

If the lock registry is implemented correctly, there will only ever be at most one leader. If the lock registry
also provides locks which throw exceptions (ideally InterruptedException) when they expire or are
broken, then the duration of the leaderless periods can be as short as is allowed by the inherent latency
in the lock implementation. By default there is a busyWaitMillis property that adds some additional
latency to prevent CPU starvation in the (more usual) case that the locks are imperfect and you only
know they expired by trying to obtain one again.

See Section 39.4, “Zookeeper Leadership Event Handling” for more information about leadership
election and events using Zookeeper.

8.4 Messaging Gateways

The primary purpose of a Gateway is to hide the messaging API provided by Spring Integration. It allows
your application’s business logic to be completely unaware of the Spring Integration API and using a
generic Gateway, your code interacts instead with a simple interface, only.

Enter the GatewayProxyFactoryBean

As mentioned above, it would be great to have no dependency on the Spring Integration
API at all - including the gateway class. For that reason, Spring Integration provides the
GatewayProxyFactoryBean that generates a proxy for any interface and internally invokes the
gateway methods shown below. Using dependency injection you can then expose the interface to your
business methods.

Here is an example of an interface that can be used to interact with Spring Integration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 144

package org.cafeteria;

public interface Cafe {

 void placeOrder(Order order);

}

Gateway XML Namespace Support

Namespace support is also provided which allows you to configure such an interface as a service as
demonstrated by the following example.

<int:gateway id="cafeService"

 service-interface="org.cafeteria.Cafe"

 default-request-channel="requestChannel"

 default-reply-timeout="10000"

 default-reply-channel="replyChannel"/>

With this configuration defined, the "cafeService" can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the Spring
Integration API. The general approach is similar to that of Spring Remoting (RMI, HttpInvoker, etc.). See
the "Samples" Appendix for an example that uses this "gateway" element (in the Cafe demo).

The defaults in the configuration above are applied to all methods on the gateway interface; if a reply
timeout is not specified, the calling thread will wait indefinitely for a reply. See the section called “Gateway
behavior when no response arrives”.

The defaults can be overridden for individual methods; see the section called “Gateway Configuration
with Annotations and/or XML”.

Setting the Default Reply Channel

Typically you don’t have to specify the default-reply-channel, since a Gateway will auto-create
a temporary, anonymous reply channel, where it will listen for the reply. However, there are some
cases which may prompt you to define a default-reply-channel (or reply-channel with adapter
gateways such as HTTP, JMS, etc.).

For some background, we’ll quickly discuss some of the inner-workings of the Gateway. A Gateway
will create a temporary point-to-point reply channel which is anonymous and is added to the Message
Headers with the name replyChannel. When providing an explicit default-reply-channel
(reply-channel with remote adapter gateways), you have the option to point to a publish-subscribe
channel, which is so named because you can add more than one subscriber to it. Internally Spring
Integration will create a Bridge between the temporary replyChannel and the explicitly defined
default-reply-channel.

So let’s say you want your reply to go not only to the gateway, but also to some other consumer. In
this case you would want two things: a) a named channel you can subscribe to and b) that channel
is a publish-subscribe-channel. The default strategy used by the gateway will not satisfy those needs,
because the reply channel added to the header is anonymous and point-to-point. This means that no
other subscriber can get a handle to it and even if it could, the channel has point-to-point behavior such
that only one subscriber would get the Message. So by defining a default-reply-channel you can
point to a channel of your choosing, which in this case would be a publish-subscribe-channel.
The Gateway would create a bridge from it to the temporary, anonymous reply channel that is stored
in the header.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 145

Another case where you might want to provide a reply channel explicitly is for monitoring or auditing via
an interceptor (e.g., wiretap). You need a named channel in order to configure a Channel Interceptor.

Gateway Configuration with Annotations and/or XML

public interface Cafe {

 @Gateway(requestChannel="orders")

 void placeOrder(Order order);

}

You may alternatively provide such content in method sub-elements if you prefer XML configuration
(see the next paragraph).

It is also possible to pass values to be interpreted as Message headers on the Message that is created
and sent to the request channel by using the @Header annotation:

public interface FileWriter {

 @Gateway(requestChannel="filesOut")

 void write(byte[] content, @Header(FileHeaders.FILENAME) String filename);

}

If you prefer the XML approach of configuring Gateway methods, you can provide method sub-elements
to the gateway configuration.

<int:gateway id="myGateway" service-interface="org.foo.bar.TestGateway"

 default-request-channel="inputC">

 <int:default-header name="calledMethod" expression="#gatewayMethod.name"/>

 <int:method name="echo" request-channel="inputA" reply-timeout="2" request-timeout="200"/>

 <int:method name="echoUpperCase" request-channel="inputB"/>

 <int:method name="echoViaDefault"/>

</int:gateway>

You can also provide individual headers per method invocation via XML. This could be very useful if
the headers you want to set are static in nature and you don’t want to embed them in the gateway’s
method signature via @Header annotations. For example, in the Loan Broker example we want to
influence how aggregation of the Loan quotes will be done based on what type of request was initiated
(single quote or all quotes). Determining the type of the request by evaluating what gateway method
was invoked, although possible, would violate the separation of concerns paradigm (the method is a
java artifact), but expressing your intention (meta information) via Message headers is natural in a
Messaging architecture.

<int:gateway id="loanBrokerGateway"

 service-interface="org.springframework.integration.loanbroker.LoanBrokerGateway">

 <int:method name="getLoanQuote" request-channel="loanBrokerPreProcessingChannel">

 <int:header name="RESPONSE_TYPE" value="BEST"/>

 </int:method>

 <int:method name="getAllLoanQuotes" request-channel="loanBrokerPreProcessingChannel">

 <int:header name="RESPONSE_TYPE" value="ALL"/>

 </int:method>

</int:gateway>

In the above case you can clearly see how a different value will be set for the RESPONSE_TYPE header
based on the gateway’s method.

Expressions and "Global" Headers

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 146

The <header/> element supports expression as an alternative to value. The SpEL expression is
evaluated to determine the value of the header. There is no #root object but the following variables
are available:

#args - an Object[] containing the method arguments

#gatewayMethod - the java.reflect.Method object representing the method in the service-
interface that was invoked. A header containing this variable can be used later in the flow, for
example, for routing. For example, if you wish to route on the simple method name, you might add a
header, with expression #gatewayMethod.name.

Note

The java.reflect.Method is not serializable; a header with expression #gatewayMethod
will be lost if you later serialize the message. So, you may wish to use #gatewayMethod.name
or #gatewayMethod.toString() in those cases; the toString() method provides a String
representation of the method, including parameter and return types.

Since 3.0, <default-header/> s can be defined to add headers to all messages produced by the
gateway, regardless of the method invoked. Specific headers defined for a method take precedence
over default headers. Specific headers defined for a method here will override any @Header annotations
in the service interface. However, default headers will NOT override any @Header annotations in the
service interface.

The gateway now also supports a default-payload-expression which will be applied for all
methods (unless overridden).

Mapping Method Arguments to a Message

Using the configuration techniques in the previous section allows control of how method arguments are
mapped to message elements (payload and header(s)). When no explicit configuration is used, certain
conventions are used to perform the mapping. In some cases, these conventions cannot determine
which argument is the payload and which should be mapped to headers.

public String send1(Object foo, Map bar);

public String send2(Map foo, Map bar);

In the first case, the convention will map the first argument to the payload (as long as it is not a Map)
and the contents of the second become headers.

In the second case (or the first when the argument for parameter foo is a Map), the framework cannot
determine which argument should be the payload; mapping will fail. This can generally be resolved
using a payload-expression, a @Payload annotation and/or a @Headers annotation.

Alternatively, and whenever the conventions break down, you can take the entire responsibility for
mapping the method calls to messages. To do this, implement an MethodArgsMessageMapper and
provide it to the <gateway/> using the mapper attribute. The mapper maps a MethodArgsHolder,
which is a simple class wrapping the java.reflect.Method instance and an Object[] containing
the arguments. When providing a custom mapper, the default-payload-expression attribute and
<default-header/> elements are not allowed on the gateway; similarly, the payload-expression
attribute and <header/> elements are not allowed on any <method/> elements.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 147

Mapping Method Arguments

Here are examples showing how method arguments can be mapped to the message (and some
examples of invalid configuration):

public interface MyGateway {

 void payloadAndHeaderMapWithoutAnnotations(String s, Map<String, Object> map);

 void payloadAndHeaderMapWithAnnotations(@Payload String s, @Headers Map<String, Object> map);

 void headerValuesAndPayloadWithAnnotations(@Header("k1") String x, @Payload String s, @Header("k2")

 String y);

 void mapOnly(Map<String, Object> map); // the payload is the map and no custom headers are added

 void twoMapsAndOneAnnotatedWithPayload(@Payload Map<String, Object> payload, Map<String, Object>

 headers);

 @Payload("#args[0] + #args[1] + '!'")

 void payloadAnnotationAtMethodLevel(String a, String b);

 @Payload("@someBean.exclaim(#args[0])")

 void payloadAnnotationAtMethodLevelUsingBeanResolver(String s);

 void payloadAnnotationWithExpression(@Payload("toUpperCase()") String s);

 void payloadAnnotationWithExpressionUsingBeanResolver(@Payload("@someBean.sum(#this)") String s); //

 ❶

 // invalid

 void twoMapsWithoutAnnotations(Map<String, Object> m1, Map<String, Object> m2);

 // invalid

 void twoPayloads(@Payload String s1, @Payload String s2);

 // invalid

 void payloadAndHeaderAnnotationsOnSameParameter(@Payload @Header("x") String s);

 // invalid

 void payloadAndHeadersAnnotationsOnSameParameter(@Payload @Headers Map<String, Object> map);

}

❶ Note that in this example, the SpEL variable #this refers to the argument - in this case, the value
of 's'.

The XML equivalent looks a little different, since there is no #this context for the method argument,
but expressions can refer to method arguments using the #args variable:

<int:gateway id="myGateway" service-interface="org.foo.bar.MyGateway">

 <int:method name="send1" payload-expression="#args[0] + 'bar'"/>

 <int:method name="send2" payload-expression="@someBean.sum(#args[0])"/>

 <int:method name="send3" payload-expression="#method"/>

 <int:method name="send4">

 <int:header name="foo" expression="#args[2].toUpperCase()"/>

 </int:method>

</int:gateway>

@MessagingGateway Annotation

Starting with version 4.0, gateway service interfaces can be marked with a @MessagingGateway
annotation instead of requiring the definition of a <gateway /> xml element for configuration. The
following compares the two approaches for configuring the same gateway:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 148

<int:gateway id="myGateway" service-interface="org.foo.bar.TestGateway"

 default-request-channel="inputC">

 <int:default-header name="calledMethod" expression="#gatewayMethod.name"/>

 <int:method name="echo" request-channel="inputA" reply-timeout="2" request-timeout="200"/>

 <int:method name="echoUpperCase" request-channel="inputB">

 <int:header name="foo" value="bar"/>

 </int:method>

 <int:method name="echoViaDefault"/>

</int:gateway>

@MessagingGateway(name = "myGateway", defaultRequestChannel = "inputC",

 defaultHeaders = @GatewayHeader(name = "calledMethod",

 expression="#gatewayMethod.name"))

public interface TestGateway {

 @Gateway(requestChannel = "inputA", replyTimeout = 2, requestTimeout = 200)

 String echo(String payload);

 @Gateway(requestChannel = "inputB", headers = @GatewayHeader(name = "foo", value="bar"))

 String echoUpperCase(String payload);

 String echoViaDefault(String payload);

}

Important

As with the XML version, Spring Integration creates the proxy implementation with its
messaging infrastructure, when discovering these annotations during a component scan.
To perform this scan and register the BeanDefinition in the application context,
add the @IntegrationComponentScan annotation to a @Configuration class. The
standard @ComponentScan infrastructure doesn’t deal with interfaces, therefore the custom
@IntegrationComponentScan logic has been introduced to determine @MessagingGateway
annotation on the interfaces and register GatewayProxyFactoryBean s for them. See also
Section E.6, “Annotation Support”

Note

If you have no XML configuration, the @EnableIntegration annotation is required on at least
one @Configuration class. See Section 3.5, “Configuration and @EnableIntegration” for more
information.

Invoking No-Argument Methods

When invoking methods on a Gateway interface that do not have any arguments, the default behavior
is to receive a Message from a PollableChannel.

At times however, you may want to trigger no-argument methods so that you can in fact interact
with other components downstream that do not require user-provided parameters, e.g. triggering no-
argument SQL calls or Stored Procedures.

In order to achieve send-and-receive semantics, you must provide a payload. In order to generate a
payload, method parameters on the interface are not necessary. You can either use the @Payload
annotation or the payload-expression attribute in XML on the method sub-element. Below please
find a few examples of what the payloads could be:

• a literal string

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 149

• #gatewayMethod.name

• new java.util.Date()

• @someBean.someMethod()'s return value

Here is an example using the @Payload annotation:

public interface Cafe {

 @Payload("new java.util.Date()")

 List<Order> retrieveOpenOrders();

}

If a method has no argument and no return value, but does contain a payload expression, it will be
treated as a send-only operation.

Error Handling

Of course, the Gateway invocation might result in errors. By default, any error that occurs downstream
will be re-thrown as is upon the Gateway’s method invocation. For example, consider the following
simple flow:

gateway -> service-activator

If the service invoked by the service activator throws a FooException, the framework wraps it in a
MessagingException, attaching the message passed to the service activator in the failedMessage
property. Any logging performed by the framework will therefore have full context of the failure. When
the exception is caught by the gateway, by default, the FooException will be unwrapped and thrown
to the caller. You can configure a throws clause on the gateway method declaration for matching
the particular exception type in the cause chain. For example if you would like to catch a whole
MessagingException with all the messaging information of the reason of downstream error, you
should have a gateway method like this:

public interface MyGateway {

 void performProcess() throws MessagingException;

}

Since we encourage POJO programming, you may not want to expose the caller to messaging
infrastructure.

If your gateway method does not have a throws clause, the gateway will traverse the cause tree looking
for a RuntimeException (that is not a MessagingException). If none is found, the framework will
simply throw the MessagingException. If the FooException in the discussion above has a cause
BarException and your method throws BarException then the gateway will further unwrap that
and throw it to the caller.

When a gateway is declared with no service-interface, an internal framework interface
RequestReplyExchanger is used.

public interface RequestReplyExchanger {

 Message<?> exchange(Message<?> request) throws MessagingException;

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 150

Before version 5.0 this exchange method did not have a throws clause and therefore the exception
was unwrapped. If you are using this interface, and wish to restore the previous unwrap behavior, use
a custom service-interface instead, or simply access the cause of the MessagingException
yourself.

However there are times when you may want to simply log the error rather than propagating it, or you
may want to treat an Exception as a valid reply, by mapping it to a Message that will conform to some
"error message" contract that the caller understands. To accomplish this, the Gateway provides support
for a Message Channel dedicated to the errors via the error-channel attribute. In the example below,
you can see that a transformer is used to create a reply Message from the Exception.

<int:gateway id="sampleGateway"

 default-request-channel="gatewayChannel"

 service-interface="foo.bar.SimpleGateway"

 error-channel="exceptionTransformationChannel"/>

<int:transformer input-channel="exceptionTransformationChannel"

 ref="exceptionTransformer" method="createErrorResponse"/>

The exceptionTransformer could be a simple POJO that knows how to create the expected error
response objects. That would then be the payload that is sent back to the caller. Obviously, you could
do many more elaborate things in such an "error flow" if necessary. It might involve routers (including
Spring Integration’s ErrorMessageExceptionTypeRouter), filters, and so on. Most of the time, a
simple transformer should be sufficient, however.

Alternatively, you might want to only log the Exception (or send it somewhere asynchronously). If you
provide a one-way flow, then nothing would be sent back to the caller. In the case that you want to
completely suppress Exceptions, you can provide a reference to the global "nullChannel" (essentially
a /dev/null approach). Finally, as mentioned above, if no "error-channel" is defined at all, then the
Exceptions will propagate as usual.

When using the @MessagingGateway annotation (see the section called “@MessagingGateway
Annotation”), use the errroChannel attribute.

Starting with version 5.0, when using a gateway method with a void return type (one-way flow), the
error-channel reference (if provided) is populated in the standard errorChannel header of each
message sent. This allows a downstream async flow, based on the standard ExecutorChannel
configuration (or a QueueChannel), to override a default global errorChannel exceptions sending
behavior. Previously you had to specify an errorChannel header manually via @GatewayHeader
annotation or <header> sub-element. The error-channel property was ignored for void methods
with an asynchronous flow; error messages were sent to the default errorChannel instead.

Important

Exposing the messaging system via simple POJI Gateways obviously provides benefits, but
"hiding" the reality of the underlying messaging system does come at a price so there are certain
things you should consider. We want our Java method to return as quickly as possible and not
hang for an indefinite amount of time while the caller is waiting on it to return (void, return value, or a
thrown Exception). When regular methods are used as a proxies in front of the Messaging system,
we have to take into account the potentially asynchronous nature of the underlying messaging.
This means that there might be a chance that a Message that was initiated by a Gateway could
be dropped by a Filter, thus never reaching a component that is responsible for producing a reply.
Some Service Activator method might result in an Exception, thus providing no reply (as we don’t
generate Null messages). So as you can see there are multiple scenarios where a reply message

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 151

might not be coming. That is perfectly natural in messaging systems. However think about the
implication on the gateway method. The Gateway’s method input arguments were incorporated
into a Message and sent downstream. The reply Message would be converted to a return value of
the Gateway’s method. So you might want to ensure that for each Gateway call there will always be
a reply Message. Otherwise, your Gateway method might never return and will hang indefinitely.
One of the ways of handling this situation is via an Asynchronous Gateway (explained later in this
section). Another way of handling it is to explicitly set the reply-timeout attribute. That way, the
gateway will not hang any longer than the time specified by the reply-timeout and will return null
if that timeout does elapse. Finally, you might want to consider setting downstream flags such as
requires-reply on a service-activator or throw-exceptions-on-rejection on a filter. These options
will be discussed in more detail in the final section of this chapter.

Note

If the downstream flow returns an ErrorMessage, its payload (a Throwable) is treated as a
regular downstream error: if there is an error-channel configured, it will be sent there, to the
error flow; otherwise the payload is thrown to the caller of gateway. Similarly, if the error flow on the
error-channel returns an ErrorMessage its payload is thrown to the caller. The same applies
to any message with a Throwable payload. This can be useful in async situations when when
there is a need propagate an Exception directly to the caller. To achieve this you can either
return an Exception as the reply from some service, or simply throw it. Generally, even with an
async flow, the framework will take care of propagating an exception thrown by the downstream
flow back to the gateway. The TCP Client-Server Multiplex sample demonstrates both techniques
to return the exception to the caller. It emulates a Socket IO error to the waiting thread using an
aggregator with group-timeout (see the section called “Aggregator and Group Timeout”)
and MessagingTimeoutException reply on the discard flow.

Gateway Timeouts

There are two properties requestTimeout and replyTimeout. The request timeout only applies if
the channel can block (e.g. a bounded QueueChannel that is full). The reply timeout is how long the
gateway will wait for a reply, or return null; it defaults to infinity.

The timeouts can be set as defaults for all methods on the gateway (defaultRequestTimeout,
defaultReplyTimeout) (or on the MessagingGateway interface annotation). Individual methods
can override these defaults (in <method/> child elements) or on the @Gateway annotation.

Starting with version 5.0, the timeouts can be defined as expressions:

@Gateway(payloadExpression = "#args[0]", requestChannel = "someChannel",

 requestTimeoutExpression = "#args[1]", replyTimeoutExpression = "#args[2]")

String lateReply(String payload, long requestTimeout, long replyTimeout);

The evaluation context has a BeanResolver (use @someBean to reference other beans) and the
#args array variable is available.

When configuring with XML, the timeout attributes can be a simple long value or a SpEL expression.

<method name="someMethod" request-channel="someRequestChannel"

 payload-expression="#args[0]"

 request-timeout="1000"

 reply-timeout="#args[1]">

</method>

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/tcp-client-server-multiplex

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 152

Asynchronous Gateway

Introduction

As a pattern, the Messaging Gateway is a very nice way to hide messaging-specific code
while still exposing the full capabilities of the messaging system. As you’ve seen, the
GatewayProxyFactoryBean provides a convenient way to expose a Proxy over a service-interface
thus giving you POJO-based access to a messaging system (based on objects in your own domain, or
primitives/Strings, etc). But when a gateway is exposed via simple POJO methods which return values
it does imply that for each Request message (generated when the method is invoked) there must be
a Reply message (generated when the method has returned). Since Messaging systems naturally are
asynchronous you may not always be able to guarantee the contract where "for each request there will
always be be a reply". With Spring Integration 2.0 we introduced support for an Asynchronous Gateway
which is a convenient way to initiate flows where you may not know if a reply is expected or how long
will it take for replies to arrive.

A natural way to handle these types of scenarios in Java would be relying upon
java.util.concurrent.Future instances, and that is exactly what Spring Integration uses to support an
Asynchronous Gateway.

From the XML configuration, there is nothing different and you still define Asynchronous Gateway the
same way as a regular Gateway.

<int:gateway id="mathService"

 service-interface="org.springframework.integration.sample.gateway.futures.MathServiceGateway"

 default-request-channel="requestChannel"/>

However the Gateway Interface (service-interface) is a little different:

public interface MathServiceGateway {

 Future<Integer> multiplyByTwo(int i);

}

As you can see from the example above, the return type for the gateway method is a Future.
When GatewayProxyFactoryBean sees that the return type of the gateway method is a Future,
it immediately switches to the async mode by utilizing an AsyncTaskExecutor. That is all. The call
to such a method always returns immediately with a Future instance. Then, you can interact with the
Future at your own pace to get the result, cancel, etc. And, as with any other use of Future instances,
calling get() may reveal a timeout, an execution exception, and so on.

MathServiceGateway mathService = ac.getBean("mathService", MathServiceGateway.class);

Future<Integer> result = mathService.multiplyByTwo(number);

// do something else here since the reply might take a moment

int finalResult = result.get(1000, TimeUnit.SECONDS);

For a more detailed example, please refer to the async-gateway sample distributed within the Spring
Integration samples.

ListenableFuture

Starting with version 4.1, async gateway methods can also return ListenableFuture (introduced
in Spring Framework 4.0). These return types allow you to provide a callback which is invoked
when the result is available (or an exception occurs). When the gateway detects this return

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/async-gateway

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 153

type, and the task executor (see below) is an AsyncListenableTaskExecutor, the executor’s
submitListenable() method is invoked.

ListenableFuture<String> result = this.asyncGateway.async("foo");

result.addCallback(new ListenableFutureCallback<String>() {

 @Override

 public void onSuccess(String result) {

 ...

 }

 @Override

 public void onFailure(Throwable t) {

 ...

 }

});

AsyncTaskExecutor

By default, the GatewayProxyFactoryBean uses
org.springframework.core.task.SimpleAsyncTaskExecutor when submitting internal
AsyncInvocationTask instances for any gateway method whose return type is Future. However
the async-executor attribute in the <gateway/> element’s configuration allows you to provide a
reference to any implementation of java.util.concurrent.Executor available within the Spring
application context.

The (default) SimpleAsyncTaskExecutor supports both Future and ListenableFuture return
types, returning FutureTask or ListenableFutureTask respectively. Also see the section called
“CompletableFuture” below. Even though there is a default executor, it is often useful to provide an
external one so that you can identify its threads in logs (when using XML, the thread name is based
on the executor’s bean name):

@Bean

public AsyncTaskExecutor exec() {

 SimpleAsyncTaskExecutor simpleAsyncTaskExecutor = new SimpleAsyncTaskExecutor();

 simpleAsyncTaskExecutor.setThreadNamePrefix("exec-");

 return simpleAsyncTaskExecutor;

}

@MessagingGateway(asyncExecutor = "exec")

public interface ExecGateway {

 @Gateway(requestChannel = "gatewayChannel")

 Future<?> doAsync(String foo);

}

If you wish to return a different Future implementation, you can provide a custom executor, or
disable the executor altogether and return the Future in the reply message payload from the
downstream flow. To disable the executor, simply set it to null in the GatewayProxyFactoryBean
(setAsyncTaskExecutor(null)). When configuring the gateway with XML, use async-

executor=""; when configuring using the @MessagingGateway annotation, use:

@MessagingGateway(asyncExecutor = AnnotationConstants.NULL)

public interface NoExecGateway {

 @Gateway(requestChannel = "gatewayChannel")

 Future<?> doAsync(String foo);

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 154

Important

If the return type is a specific concrete Future implementation or some other sub-interface that
is not supported by the configured executor, the flow will run on the caller’s thread and the flow
must return the required type in the reply message payload.

CompletableFuture

Starting with version 4.2, gateway methods can now return CompletableFuture<?>. There are
several modes of operation when returning this type:

When an async executor is provided and the return type is exactly CompletableFuture
(not a subclass), the framework will run the task on the executor and immediately return
a CompletableFuture to the caller. CompletableFuture.supplyAsync(Supplier<U>

supplier, Executor executor) is used to create the future.

When the async executor is explicitly set to null and the return type is CompletableFuture or the
return type is a subclass of CompletableFuture, the flow is invoked on the caller’s thread. In this
scenario, it is expected that the downstream flow will return a CompletableFuture of the appropriate
type.

Usage Scenarios

CompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="foo.Service" default-request-channel="orders" />

In this scenario, the caller thread returns immediately with a CompletableFuture<Invoice> which
will be completed when the downstream flow replies to the gateway (with an Invoice object).

CompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="foo.Service" default-request-channel="orders"

 async-executor="" />

In this scenario, the caller thread will return with a CompletableFuture<Invoice> when the downstream
flow provides it as the payload of the reply to the gateway. Some other process must complete the future
when the invoice is ready.

MyCompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="foo.Service" default-request-channel="orders" />

In this scenario, the caller thread will return with a CompletableFuture<Invoice> when the downstream
flow provides it as the payload of the reply to the gateway. Some other process must complete the
future when the invoice is ready. If DEBUG logging is enabled, a log is emitted indicating that the async
executor cannot be used for this scenario.

CompletableFuture s can be used to perform additional manipulation on the reply, such as:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 155

CompletableFuture<String> process(String data);

...

CompletableFuture result = process("foo")

 .thenApply(t -> t.toUpperCase());

...

String out = result.get(10, TimeUnit.SECONDS);

Reactor Mono

Starting with version 5.0, the GatewayProxyFactoryBean allows the use of the Project Reactor with
gateway interface methods, utilizing a Mono<T> return type. The internal AsyncInvocationTask is
wrapped in a Mono.fromCallable().

A Mono can be used to retrieve the result later (similar to a Future<?>) or you can consume from it
with the dispatcher invoking your Consumer when the result is returned to the gateway.

Important

The Mono isn’t flushed immediately by the framework. Hence the underlying message flow won’t
be started before the gateway method returns (as it is with Future<?> Executor task). The flow
will be started when the Mono is subscribed. Alternatively, the Mono (being a Composable) might
be a part of Reactor stream, when the subscribe() is related to the entire Flux. For example:

@MessagingGateway

public static interface TestGateway {

 @Gateway(requestChannel = "promiseChannel")

 Mono<Integer> multiply(Integer value);

 }

 ...

 @ServiceActivator(inputChannel = "promiseChannel")

 public Integer multiply(Integer value) {

 return value * 2;

 }

 ...

 Flux.just("1", "2", "3", "4", "5")

 .map(Integer::parseInt)

 .flatMap(this.testGateway::multiply)

 .collectList()

 .subscribe(integers -> ...);

Another example is a simple callback scenario:

Mono<Invoice> mono = service.process(myOrder);

mono.subscribe(invoice -> handleInvoice(invoice));

The calling thread continues, with handleInvoice() being called when the flow completes.

Gateway behavior when no response arrives

As it was explained earlier, the Gateway provides a convenient way of interacting with a Messaging
system via POJO method invocations, but realizing that a typical method invocation, which is generally

https://github.com/reactor/reactor-core

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 156

expected to always return (even with an Exception), might not always map one-to-one to message
exchanges (e.g., a reply message might not arrive - which is equivalent to a method not returning). It is
important to go over several scenarios especially in the Sync Gateway case and understand the default
behavior of the Gateway and how to deal with these scenarios to make the Sync Gateway behavior
more predictable regardless of the outcome of the message flow that was initialed from such Gateway.

There are certain attributes that could be configured to make Sync Gateway behavior more predictable,
but some of them might not always work as you might have expected. One of them is reply-timeout (at
the method level or default-reply-timeout at the gateway level). So, lets look at the reply-timeout attribute
and see how it can/can’t influence the behavior of the Sync Gateway in various scenarios. We will look
at single-threaded scenario (all components downstream are connected via Direct Channel) and multi-
threaded scenarios (e.g., somewhere downstream you may have Pollable or Executor Channel which
breaks single-thread boundary)

Long running process downstream

Sync Gateway - single-threaded. If a component downstream is still running (e.g., infinite loop or a
very slow service), then setting a reply-timeout has no effect and the Gateway method call will not
return until such downstream service exits (via return or exception). Sync Gateway - multi-threaded. If
a component downstream is still running (e.g., infinite loop or a very slow service), in a multi-threaded
message flow setting the reply-timeout will have an effect by allowing gateway method invocation to
return once the timeout has been reached, since the GatewayProxyFactoryBean will simply poll on
the reply channel waiting for a message until the timeout expires. However it could result in a null return
from the Gateway method if the timeout has been reached before the actual reply was produced. It is
also important to understand that the reply message (if produced) will be sent to a reply channel after
the Gateway method invocation might have returned, so you must be aware of that and design your
flow with this in mind.

Downstream component returns 'null'

Sync Gateway - single-threaded. If a component downstream returns null and no reply-timeout has been
configured, the Gateway method call will hang indefinitely unless: a) a reply-timeout has been configured
or b) the requires-reply attribute has been set on the downstream component (e.g., service-activator)
that might return null. In this case, an Exception would be thrown and propagated to the Gateway.Sync
Gateway - multi-threaded. Behavior is the same as above.

Downstream component return signature is void while Gateway method signature is non-void

Sync Gateway - single-threaded. If a component downstream returns void and no reply-timeout has been
configured, the Gateway method call will hang indefinitely unless a reply-timeout has been configured
 Sync Gateway - multi-threaded Behavior is the same as above.

Downstream component results in Runtime Exception (regardless of the method signature)

Sync Gateway - single-threaded. If a component downstream throws a Runtime Exception, such
exception will be propagated via an Error Message back to the gateway and re-thrown. Sync Gateway
- multi-threaded Behavior is the same as above.

Important

It is also important to understand that by default reply-timeout is unbounded* which means that
if not explicitly set there are several scenarios (described above) where your Gateway method

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 157

invocation might hang indefinitely. So, make sure you analyze your flow and if there is even a
remote possibility of one of these scenarios to occur, set the reply-timeout attribute to a safe value
or, even better, set the requires-reply attribute of the downstream component to true to ensure
a timely response as produced by the throwing of an Exception as soon as that downstream
component does return null internally. But also, realize that there are some scenarios (see the
very first one) where reply-timeout will not help. That means it is also important to analyze your
message flow and decide when to use a Sync Gateway vs an Async Gateway. As you’ve seen
the latter case is simply a matter of defining Gateway methods that return Future instances. Then,
you are guaranteed to receive that return value, and you will have more granular control over the
results of the invocation.Also, when dealing with a Router you should remember that setting the
resolution-required attribute to true will result in an Exception thrown by the router if it can not
resolve a particular channel. Likewise, when dealing with a Filter, you can set the throw-exception-
on-rejection attribute. In both of these cases, the resulting flow will behave like that containing
a service-activator with the requires-reply attribute. In other words, it will help to ensure a timely
response from the Gateway method invocation.

Note

* reply-timeout is unbounded for <gateway/> elements (created by the
GatewayProxyFactoryBean). Inbound gateways for external integration (ws, http, etc.) share
many characteristics and attributes with these gateways. However, for those inbound gateways,
the default reply-timeout is 1000 milliseconds (1 second). If a downstream async hand-off is made
to another thread, you may need to increase this attribute to allow enough time for the flow to
complete before the gateway times out.

Important

It is important to understand that the timer starts when the thread returns to the gateway, i.e. when
the flow completes or a message is handed off to another thread. At that time, the calling thread
starts waiting for the reply. If the flow was completely synchronous, the reply will be immediately
available; for asynchronous flows, the thread will wait for up to this time.

Also see Section 9.21, “IntegrationFlow as Gateway” in the Java DSL chapter for options to define
gateways via IntegrationFlows.

8.5 Service Activator

Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel
so that it may play the role of a service. If the service produces output, it may also be connected to an
output channel. Alternatively, an output producing service may be located at the end of a processing
pipeline or message flow in which case, the inbound Message’s "replyChannel" header can be used.
This is the default behavior if no output channel is defined and, as with most of the configuration options
you’ll see here, the same behavior actually applies for most of the other components we have seen.

Configuring Service Activator

To create a Service Activator, use the service-activator element with the input-channel and ref attributes:

<int:service-activator input-channel="exampleChannel" ref="exampleHandler"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 158

The configuration above selects all methods from the exampleHandler which meet one of the
Messaging requirements:

• annotated with @ServiceActivator;

• is public;

• not void return if requiresReply == true.

The target method for invocation at runtime is selected for each request message by their payload
type. Or as a fallback to Message<?> type if such a method is present on target class.

Starting with version 5.0, one service method can be marked with the
@org.springframework.integration.annotation.Default as a fallback for all non-matching
cases. This can be useful when using the section called “Content Type Conversion” with the target
method being invoked after conversion.

To delegate to an explicitly defined method of any object, simply add the "method" attribute.

<int:service-activator input-channel="exampleChannel" ref="somePojo" method="someMethod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<int:service-activator input-channel="exampleChannel" output-channel="replyChannel"

 ref="somePojo" method="someMethod"/>

If the method returns a result and no "output-channel" is defined, the framework will then check the
request Message’s replyChannel header value. If that value is available, it will then check its type.
If it is a MessageChannel, the reply message will be sent to that channel. If it is a String, then
the endpoint will attempt to resolve the channel name to a channel instance. If the channel cannot
be resolved, then a DestinationResolutionException will be thrown. It it can be resolved, the
Message will be sent there. If the request Message doesn’t have replyChannel header and and the
reply object is a Message, its replyChannel header is consulted for a target destination. This is
the technique used for Request Reply messaging in Spring Integration, and it is also an example of the
Return Address pattern.

If your method returns a result, and you want to discard it and end the flow, you should configure the
output-channel to send to a NullChannel. For convenience, the framework registers one with the
name nullChannel. See the section called “Special Channels” for more information.

The Service Activator is one of those components that is not required to produce a reply
message. If your method returns null or has a void return type, the Service Activator
exits after the method invocation, without any signals. This behavior can be controlled by
the AbstractReplyProducingMessageHandler.requiresReply option, also exposed as
requires-reply when configuring with the XML namespace. If the flag is set to true and the method
returns null, a ReplyRequiredException is thrown.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then
it will be assumed that it is a Message payload, which will be extracted from the message and injected
into such service method. This is generally the recommended approach as it follows and promotes a
POJO model when working with Spring Integration. Arguments may also have @Header or @Headers
annotations as described in Section E.6, “Annotation Support”

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 159

Note

The service method is not required to have any arguments at all, which means you can implement
event-style Service Activators, where all you care about is an invocation of the service method,
not worrying about the contents of the message. Think of it as a NULL JMS message. An example
use-case for such an implementation could be a simple counter/monitor of messages deposited
on the input channel.

Starting with version 4.1 the framework correct converts Message properties (payload and headers)
to the Java 8 Optional POJO method parameters:

public class MyBean {

 public String computeValue(Optional<String> payload,

 @Header(value="foo", required=false) String foo1,

 @Header(value="foo") Optional<String> foo2) {

 if (payload.isPresent()) {

 String value = payload.get();

 ...

 }

 else {

 ...

 }

 }

}

Using a ref attribute is generally recommended if the custom Service Activator handler implementation
can be reused in other <service-activator> definitions. However if the custom Service Activator
handler implementation is only used within a single definition of the <service-activator>, you can
provide an inner bean definition:

<int:service-activator id="exampleServiceActivator" input-channel="inChannel"

 output-channel = "outChannel" method="foo">

 <beans:bean class="org.foo.ExampleServiceActivator"/>

</int:service-activator>

Note

Using both the "ref" attribute and an inner handler definition in the same <service-activator>
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Important

If the "ref" attribute references a bean that extends AbstractMessageProducingHandler
(such as handlers provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref" must be to a separate
bean instance (or a prototype-scoped bean), or use the inner <bean/> configuration type.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

Service Activators and the Spring Expression Language (SpEL)

Since Spring Integration 2.0, Service Activators can also benefit from SpEL (http://
static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html).

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 160

For example, you may now invoke any bean method without pointing to the bean via a ref attribute or
including it as an inner bean definition. For example:

<int:service-activator input-channel="in" output-channel="out"

 expression="@accountService.processAccount(payload, headers.accountId)"/>

 <bean id="accountService" class="foo.bar.Account"/>

In the above configuration instead of injecting accountService using a ref or as an inner bean, we
are simply using SpEL’s @beanId notation and invoking a method which takes a type compatible with
Message payload. We are also passing a header value. As you can see, any valid SpEL expression
can be evaluated against any content in the Message. For simple scenarios your Service Activators do
not even have to reference a bean if all logic can be encapsulated by such an expression.

<int:service-activator input-channel="in" output-channel="out" expression="payload * 2"/>

In the above configuration our service logic is to simply multiply the payload value by 2, and SpEL lets
us handle it relatively easy.

See Section 9.12, “ServiceActivators (.handle())” in Java DSL chapter for more information about
configuring Service Activator.

Asynchronous Service Activator

The service activator is invoked by the calling thread; this would be some upstream thread if the input
channel is a SubscribableChannel, or a poller thread for a PollableChannel. If the service returns
a ListenableFuture<?> the default action is to send that as the payload of the message sent to
the output (or reply) channel. Starting with version 4.3, you can now set the async attribute to true
(setAsync(true) when using Java configuration). If the service returns a ListenableFuture<?
> when this is true, the calling thread is released immediately, and the reply message is sent on the
thread (from within your service) that completes the future. This is particularly advantageous for long-
running services using a PollableChannel because the poller thread is freed up to perform other
services within the framework.

If the service completes the future with an Exception, normal error processing will occur - an
ErrorMessage is sent to the errorChannel message header, if present or otherwise to the default
errorChannel (if available).

8.6 Delayer

Introduction

A Delayer is a simple endpoint that allows a Message flow to be delayed by a certain interval. When a
Message is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled
with an instance of org.springframework.scheduling.TaskScheduler to be sent to the output
channel after the delay has passed. This approach is scalable even for rather long delays, since it does
not result in a large number of blocked sender Threads. On the contrary, in the typical case a thread pool
will be used for the actual execution of releasing the Messages. Below you will find several examples
of configuring a Delayer.

Configuring a Delayer

The <delayer> element is used to delay the Message flow between two Message Channels. As
with the other endpoints, you can provide the input-channel and output-channel attributes, but the

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 161

delayer also has default-delay and expression attributes (and expression sub-element) that are used
to determine the number of milliseconds that each Message should be delayed. The following delays
all messages by 3 seconds:

<int:delayer id="delayer" input-channel="input"

 default-delay="3000" output-channel="output"/>

If you need per-Message determination of the delay, then you can also provide the SpEL expression
using the expression attribute:

<int:delayer id="delayer" input-channel="input" output-channel="output"

 default-delay="3000" expression="headers['delay']"/>

In the example above, the 3 second delay would only apply when the expression evaluates to null for
a given inbound Message. If you only want to apply a delay to Messages that have a valid result of the
expression evaluation, then you can use a default-delay of 0 (the default). For any Message that has a
delay of 0 (or less), the Message will be sent immediately, on the calling Thread.

The java configuration equivalent of the second example is:

@ServiceActivator(inputChannel = "input")

@Bean

public DelayHandler delayer() {

 DelayHandler handler = new DelayHandler("delayer.messageGroupId");

 handler.setDefaultDelay(3_000L);

 handler.setDelayExpressionString("headers['delay']");

 handler.setOutputChannelName("output");

 return handler;

}

and with the Java DSL:

@Bean

public IntegrationFlow flow() {

 return IntegrationFlows.from("input")

 .delay("delayer.messageGroupId", d -> d

 .defaultDelay(3_000L)

 .delayExpression("headers['delay']"))

 .channel("output")

 .get();

}

Note

The XML parser uses a message group id <beanName>.messageGroupId.

Tip

The delay handler supports expression evaluation results that represent an interval in milliseconds
(any Object whose toString() method produces a value that can be parsed into a Long) as well
as java.util.Date instances representing an absolute time. In the first case, the milliseconds
will be counted from the current time (e.g. a value of 5000 would delay the Message for at least 5
seconds from the time it is received by the Delayer). With a Date instance, the Message will not
be released until the time represented by that Date object. In either case, a value that equates
to a non-positive delay, or a Date in the past, will not result in any delay. Instead, it will be sent
directly to the output channel on the original sender’s Thread. If the expression evaluation result
is not a Date, and can not be parsed as a Long, the default delay (if any) will be applied.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 162

Important

The expression evaluation may throw an evaluation Exception for various reasons, including an
invalid expression, or other conditions. By default, such exceptions are ignored (logged at DEBUG
level) and the delayer falls back to the default delay (if any). You can modify this behavior by
setting the ignore-expression-failures attribute. By default this attribute is set to true
and the Delayer behavior is as described above. However, if you wish to not ignore expression
evaluation exceptions, and throw them to the delayer’s caller, set the ignore-expression-
failures attribute to false.

Tip

Notice in the example above that the delay expression is specified as headers['delay']. This
is the SpEL Indexer syntax to access a Map element (MessageHeaders implements Map), it
invokes: headers.get("delay"). For simple map element names (that do not contain .) you
can also use the SpEL dot accessor syntax, where the above header expression can be specified
as headers.delay. But, different results are achieved if the header is missing. In the first case,
the expression will evaluate to null; the second will result in something like:

 org.springframework.expression.spel.SpelEvaluationException: EL1008E:(pos 8):

 Field or property 'delay' cannot be found on object of

 type 'org.springframework.messaging.MessageHeaders'

So, if there is a possibility of the header being omitted, and you want to fall back to the default
delay, it is generally more efficient (and recommended) to use the Indexer syntax instead of dot
property accessor syntax, because detecting the null is faster than catching an exception.

The delayer delegates to an instance of Spring’s TaskScheduler abstraction. The default scheduler
used by the delayer is the ThreadPoolTaskScheduler instance provided by Spring Integration on
startup: Section E.3, “Configuring the Task Scheduler”. If you want to delegate to a different scheduler,
you can provide a reference through the delayer element’s scheduler attribute:

<int:delayer id="delayer" input-channel="input" output-channel="output"

 expression="headers.delay"

 scheduler="exampleTaskScheduler"/>

<task:scheduler id="exampleTaskScheduler" pool-size="3"/>

Tip

If you configure an external ThreadPoolTaskScheduler you can set on this scheduler property
waitForTasksToCompleteOnShutdown = true. It allows successful completion of delay
tasks, which already in the execution state (releasing the Message), when the application is
shutdown. Before Spring Integration 2.2 this property was available on the <delayer> element,
because DelayHandler could create its own scheduler on the background. Since 2.2 delayer
requires an external scheduler instance and waitForTasksToCompleteOnShutdown was
deleted; you should use the scheduler’s own configuration.

Tip

Also keep in mind ThreadPoolTaskScheduler has a property errorHandler which can
be injected with some implementation of org.springframework.util.ErrorHandler.
This handler allows to process an Exception from the thread of

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 163

the scheduled task sending the delayed message. By default it uses
an org.springframework.scheduling.support.TaskUtils$LoggingErrorHandler
and you will see a stack trace in the logs. You might want to consider using an
org.springframework.integration.channel.MessagePublishingErrorHandler,
which sends an ErrorMessage into an error-channel, either from the failed Message’s
header or into the default error-channel.

Delayer and a Message Store

The DelayHandler persists delayed Messages into the Message Group in the provided
MessageStore. (The groupId is based on required id attribute of <delayer> element.) A delayed
message is removed from the MessageStore by the scheduled task just before the DelayHandler
sends the Message to the output-channel. If the provided MessageStore is persistent (e.g.
JdbcMessageStore) it provides the ability to not lose Messages on the application shutdown.
After application startup, the DelayHandler reads Messages from its Message Group in the
MessageStore and reschedules them with a delay based on the original arrival time of the Message
(if the delay is numeric). For messages where the delay header was a Date, that is used when
rescheduling. If a delayed Message remained in the MessageStore more than its delay, it will be sent
immediately after startup.

The <delayer> can be enriched with mutually exclusive sub-elements <transactional>
or <advice-chain>. The List of these AOP Advices is applied to the proxied internal
DelayHandler.ReleaseMessageHandler, which has the responsibility to release the Message,
after the delay, on a Thread of the scheduled task. It might be used, for example, when the downstream
message flow throws an Exception and the ReleaseMessageHandler's transaction will be rolled
back. In this case the delayed Message will remain in the persistent MessageStore. You can use any
custom org.aopalliance.aop.Advice implementation within the <advice-chain>. A sample
configuration of the <delayer> may look like this:

<int:delayer id="delayer" input-channel="input" output-channel="output"

 expression="headers.delay"

 message-store="jdbcMessageStore">

 <int:advice-chain>

 <beans:ref bean="customAdviceBean"/>

 <tx:advice>

 <tx:attributes>

 <tx:method name="*" read-only="true"/>

 </tx:attributes>

 </tx:advice>

 </int:advice-chain>

</int:delayer>

The DelayHandler can be exported as a JMX MBean with managed operations
getDelayedMessageCount and reschedulePersistedMessages, which allows the rescheduling
of delayed persisted Messages at runtime, for example, if the TaskScheduler has previously been
stopped. These operations can be invoked via a Control Bus command:

Message<String> delayerReschedulingMessage =

 MessageBuilder.withPayload("@'delayer.handler'.reschedulePersistedMessages()").build();

 controlBusChannel.send(delayerReschedulingMessage);

Note

For more information regarding the Message Store, JMX and the Control Bus, please read
Chapter 10, System Management.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 164

8.7 Scripting support

With Spring Integration 2.1 we’ve added support for the JSR223 Scripting for Java specification,
introduced in Java version 6. This allows you to use scripts written in any supported language including
Ruby/JRuby, Javascript and Groovy to provide the logic for various integration components similar to
the way the Spring Expression Language (SpEL) is used in Spring Integration. For more information
about JSR223 please refer to the documentation

Important

Note that this feature requires Java 6 or higher. Sun developed a JSR223 reference
implementation which works with Java 5 but it is not officially supported and we have not tested
it with Spring Integration.

In order to use a JVM scripting language, a JSR223 implementation for that language must be included
in your class path. Java 6 natively supports Javascript. The Groovy and JRuby projects provide JSR233
support in their standard distribution. Other language implementations may be available or under
development. Please refer to the appropriate project website for more information.

Important

Various JSR223 language implementations have been developed by third parties. A particular
implementation’s compatibility with Spring Integration depends on how well it conforms to the
specification and/or the implementer’s interpretation of the specification.

Tip

If you plan to use Groovy as your scripting language, we recommended you use Spring-
Integration’s Groovy Support as it offers additional features specific to Groovy. However you will
find this section relevant as well.

Script configuration

Depending on the complexity of your integration requirements scripts may be provided inline as CDATA
in XML configuration or as a reference to a Spring resource containing the script. To enable scripting
support Spring Integration defines a ScriptExecutingMessageProcessor which will bind the
Message Payload to a variable named payload and the Message Headers to a headers variable,
both accessible within the script execution context. All that is left for you to do is write a script that uses
these variables. Below are a couple of sample configurations:

Filter

<int:filter input-channel="referencedScriptInput">

 <int-script:script lang="ruby" location="some/path/to/ruby/script/RubyFilterTests.rb"/>

</int:filter>

<int:filter input-channel="inlineScriptInput">

 <int-script:script lang="groovy">

 <![CDATA[

 return payload == 'good'

]]>

 </int-script:script>

</int:filter>

http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://www.groovy-lang.org/
http://jruby.org/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 165

Here, you see that the script can be included inline or can reference a resource location via the
location attribute. Additionally the lang attribute corresponds to the language name (or JSR223 alias)

Other Spring Integration endpoint elements which support scripting include router, service-activator,
transformer, and splitter. The scripting configuration in each case would be identical to the above
(besides the endpoint element).

Another useful feature of Scripting support is the ability to update (reload) scripts without having to
restart the Application Context. To accomplish this, specify the refresh-check-delay attribute on
the script element:

<int-script:script location="..." refresh-check-delay="5000"/>

In the above example, the script location will be checked for updates every 5 seconds. If the script is
updated, any invocation that occurs later than 5 seconds since the update will result in execution of
the new script.

<int-script:script location="..." refresh-check-delay="0"/>

In the above example the context will be updated with any script modifications as soon as such
modification occurs, providing a simple mechanism for real-time configuration. Any negative number
value means the script will not be reloaded after initialization of the application context. This is the default
behavior.

Important

Inline scripts can not be reloaded.

<int-script:script location="..." refresh-check-delay="-1"/>

Script variable bindings

Variable bindings are required to enable the script to reference variables externally provided to the
script’s execution context. As we have seen, payload and headers are used as binding variables by
default. You can bind additional variables to a script via <variable> sub-elements:

<script:script lang="js" location="foo/bar/MyScript.js">

 <script:variable name="foo" value="foo"/>

 <script:variable name="bar" value="bar"/>

 <script:variable name="date" ref="date"/>

</script:script>

As shown in the above example, you can bind a script variable either to a scalar value or a Spring bean
reference. Note that payload and headers will still be included as binding variables.

With Spring Integration 3.0, in addition to the variable sub-element, the variables attribute has
been introduced. This attribute and variable sub-elements aren’t mutually exclusive and you can
combine them within one script component. However variables must be unique, regardless of where
they are defined. Also, since Spring Integration 3.0, variable bindings are allowed for inline scripts too:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 166

<service-activator input-channel="input">

 <script:script lang="ruby" variables="foo=FOO, date-ref=dateBean">

 <script:variable name="bar" ref="barBean"/>

 <script:variable name="baz" value="bar"/>

 <![CDATA[

 payload.foo = foo

 payload.date = date

 payload.bar = bar

 payload.baz = baz

 payload

]]>

 </script:script>

</service-activator>

The example above shows a combination of an inline script, a variable sub-element and a
variables attribute. The variables attribute is a comma-separated value, where each segment
contains an = separated pair of the variable and its value. The variable name can be suffixed with -ref,
as in the date-ref variable above. That means that the binding variable will have the name date, but
the value will be a reference to the dateBean bean from the application context. This may be useful
when using Property Placeholder Configuration or command line arguments.

If you need more control over how variables are generated, you can implement your own Java class
using the ScriptVariableGenerator strategy:

public interface ScriptVariableGenerator {

 Map<String, Object> generateScriptVariables(Message<?> message);

}

This interface requires you to implement the method generateScriptVariables(Message). The
Message argument allows you to access any data available in the Message payload and headers and
the return value is the Map of bound variables. This method will be called every time the script is executed
for a Message. All you need to do is provide an implementation of ScriptVariableGenerator and
reference it with the script-variable-generator attribute:

<int-script:script location="foo/bar/MyScript.groovy"

 script-variable-generator="variableGenerator"/>

<bean id="variableGenerator" class="foo.bar.MyScriptVariableGenerator"/>

If a script-variable-generator is not provided, script components use
DefaultScriptVariableGenerator, which merges any provided <variable> s with payload and
headers variables from the Message in its generateScriptVariables(Message) method.

Important

You cannot provide both the script-variable-generator attribute and <variable> sub-
element(s) as they are mutually exclusive.

8.8 Groovy support

In Spring Integration 2.0 we added Groovy support allowing you to use the Groovy scripting language to
provide the logic for various integration components similar to the way the Spring Expression Language
(SpEL) is supported for routing, transformation and other integration concerns. For more information
about Groovy please refer to the Groovy documentation which you can find on the project website.

http://www.groovy-lang.org/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 167

Groovy configuration

With Spring Integration 2.1, Groovy Support’s configuration namespace is an extension of Spring
Integration’s Scripting Support and shares the core configuration and behavior described in detail in
the Scripting Support section. Even though Groovy scripts are well supported by generic Scripting
Support, Groovy Support provides the Groovy configuration namespace which is backed by the
Spring Framework’s org.springframework.scripting.groovy.GroovyScriptFactory and
related components, offering extended capabilities for using Groovy. Below are a couple of sample
configurations:

Filter

<int:filter input-channel="referencedScriptInput">

 <int-groovy:script location="some/path/to/groovy/file/GroovyFilterTests.groovy"/>

</int:filter>

<int:filter input-channel="inlineScriptInput">

 <int-groovy:script><![CDATA[

 return payload == 'good'

]]></int-groovy:script>

</int:filter>

As the above examples show, the configuration looks identical to the general Scripting Support
configuration. The only difference is the use of the Groovy namespace as indicated in the examples by
the int-groovy namespace prefix. Also note that the lang attribute on the <script> tag is not valid
in this namespace.

Groovy object customization

If you need to customize the Groovy object itself, beyond setting variables, you can reference a bean
that implements GroovyObjectCustomizer via the customizer attribute. For example, this might
be useful if you want to implement a domain-specific language (DSL) by modifying the MetaClass and
registering functions to be available within the script:

<int:service-activator input-channel="groovyChannel">

 <int-groovy:script location="foo/SomeScript.groovy" customizer="groovyCustomizer"/>

</int:service-activator>

<beans:bean id="groovyCustomizer" class="org.foo.MyGroovyObjectCustomizer"/>

Setting a custom GroovyObjectCustomizer is not mutually exclusive with <variable> sub-
elements or the script-variable-generator attribute. It can also be provided when defining an
inline script.

With Spring Integration 3.0, in addition to the variable sub-element, the variables attribute
has been introduced. Also, groovy scripts have the ability to resolve a variable to a bean in the
BeanFactory, if a binding variable was not provided with the name:

<int-groovy:script>

 <![CDATA[

 entityManager.persist(payload)

 payload

]]>

</int-groovy:script>

where variable entityManager is an appropriate bean in the application context.

For more information regarding <variable>, variables, and script-variable-generator, see
the paragraph Script variable bindings of the section called “Script configuration”.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 168

Groovy Script Compiler Customization

The @CompileStatic hint is the most popular Groovy compiler customization option, which can
be used on the class or method level. See more information in the Groovy Reference Manual and,
specifically, @CompileStatic. To utilize this feature for short scripts (in integration scenarios), we are
forced to change a simple script like this (a <filter> script):

headers.type == 'good'

to more Java-like code:

@groovy.transform.CompileStatic

String filter(Map headers) {

 headers.type == 'good'

}

filter(headers)

With that, the filter() method will be transformed and compiled to static Java code, bypassing the
Groovy dynamic phases of invocation, like getProperty() factories and CallSite proxies.

Starting with version 4.3, Spring Integration Groovy components can be configured with the compile-
static boolean option, specifying that ASTTransformationCustomizer for @CompileStatic
should be added to the internal CompilerConfiguration. With that in place, we can omit the method
declaration with @CompileStatic in our script code and still get compiled plain Java code. In this case
our script can still be short but still needs to be a little more verbose than interpreted script:

binding.variables.headers.type == 'good'

Where we can access the headers and payload (or any other) variables only through the
groovy.lang.Script binding property since, with @CompileStatic, we don’t have the dynamic
GroovyObject.getProperty() capability.

In addition, the compiler-configuration bean reference has been introduced. With this attribute,
you can provide any other required Groovy compiler customizations, e.g. ImportCustomizer. For
more information about this feature, please, refer to the Groovy Documentation: Advanced compiler
configuration.

Note

Using compilerConfiguration does not automatically add a
ASTTransformationCustomizer for @CompileStatic and overrides the
compileStatic option. If CompileStatic is still requirement, a new

ASTTransformationCustomizer(CompileStatic.class) should be manually added into
the CompilationCustomizers of that custom compilerConfiguration.

Note

The Groovy compiler customization does not have any effect to the refresh-check-delay
option and reloadable scripts can be statically compiled, too.

Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"

http://docs.groovy-lang.org/latest/html/documentation/index.html#_static_compilation
http://docs.groovy-lang.org/latest/html/documentation/index.html#compilestatic-annotation
http://groovy.jmiguel.eu/groovy.codehaus.org/Advanced+compiler+configuration.html
http://groovy.jmiguel.eu/groovy.codehaus.org/Advanced+compiler+configuration.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 169

messaging. In Spring Integration we build upon the adapters described above so that it’s possible to
send Messages as a means of invoking exposed operations. One option for those operations is Groovy
scripts.

<int-groovy:control-bus input-channel="operationChannel"/>

The Control Bus has an input channel that can be accessed for invoking operations on the beans in
the application context.

The Groovy Control Bus executes messages on the input channel as Groovy scripts. It takes
a message, compiles the body to a Script, customizes it with a GroovyObjectCustomizer,
and then executes it. The Control Bus' MessageProcessor exposes all beans in the application
context that are annotated with @ManagedResource, implement Spring’s Lifecycle interface or
extend Spring’s CustomizableThreadCreator base class (e.g. several of the TaskExecutor and
TaskScheduler implementations).

Important

Be careful about using managed beans with custom scopes (e.g. request) in the Control
Bus' command scripts, especially inside an async message flow. If The Control Bus'
MessageProcessor can’t expose a bean from the application context, you may end up
with some BeansException during command script’s executing. For example, if a custom
scope’s context is not established, the attempt to get a bean within that scope will trigger a
BeanCreationException.

If you need to further customize the Groovy objects, you can also provide a reference to a bean that
implements GroovyObjectCustomizer via the customizer attribute.

<int-groovy:control-bus input-channel="input"

 output-channel="output"

 customizer="groovyCustomizer"/>

<beans:bean id="groovyCustomizer" class="org.foo.MyGroovyObjectCustomizer"/>

8.9 Adding Behavior to Endpoints

Introduction

Prior to Spring Integration 2.2, you could add behavior to an entire Integration flow by adding an AOP
Advice to a poller’s <advice-chain/> element. However, let’s say you want to retry, say, just a REST
Web Service call, and not any downstream endpoints.

For example, consider the following flow:

inbound-adapter#poller#http-gateway1#http-gateway2#jdbc-outbound-adapter

If you configure some retry-logic into an advice chain on the poller, and, the call to http-gateway2 failed
because of a network glitch, the retry would cause both http-gateway1 and http-gateway2 to be called a
second time. Similarly, after a transient failure in the jdbc-outbound-adapter, both http-gateways would
be called a second time before again calling the jdbc-outbound-adapter.

Spring Integration 2.2 adds the ability to add behavior to individual endpoints. This is achieved by the
addition of the <request-handler-advice-chain/> element to many endpoints. For example:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 170

<int-http:outbound-gateway id="withAdvice"

 url-expression="'http://localhost/test1'"

 request-channel="requests"

 reply-channel="nextChannel">

 <int:request-handler-advice-chain>

 <ref bean="myRetryAdvice" />

 </request-handler-advice-chain>

</int-http:outbound-gateway>

In this case, myRetryAdvice will only be applied locally to this gateway and will not apply to further
actions taken downstream after the reply is sent to the nextChannel. The scope of the advice is limited
to the endpoint itself.

Important

At this time, you cannot advise an entire <chain/> of endpoints. The schema does not allow a
<request-handler-advice-chain/> as a child element of the chain itself.

However, a <request-handler-advice-chain/> can be added to individual reply-producing
endpoints within a <chain/> element. An exception is that, in a chain that produces no reply,
because the last element in the chain is an outbound-channel-adapter, that last element cannot
be advised. If you need to advise such an element, it must be moved outside of the chain (with
the output-channel of the chain being the input-channel of the adapter. The adapter can then be
advised as normal. For chains that produce a reply, every child element can be advised.

Provided Advice Classes

In addition to providing the general mechanism to apply AOP Advice classes in this way, three standard
Advices are provided:

• RequestHandlerRetryAdvice

• RequestHandlerCircuitBreakerAdvice

• ExpressionEvaluatingRequestHandlerAdvice

These are each described in detail in the following sections.

Retry Advice

The retry advice (o.s.i.handler.advice.RequestHandlerRetryAdvice) leverages the rich
retry mechanisms provided by the Spring Retry project. The core component of spring-retry is the
RetryTemplate, which allows configuration of sophisticated retry scenarios, including RetryPolicy
and BackoffPolicy strategies, with a number of implementations, as well as a RecoveryCallback
strategy to determine the action to take when retries are exhausted.

Stateless Retry

Stateless retry is the case where the retry activity is handled entirely within the advice, where the thread
pauses (if so configured) and retries the action.

Stateful Retry

Stateful retry is the case where the retry state is managed within the advice, but where an exception is
thrown and the caller resubmits the request. An example for stateful retry is when we want the message

https://github.com/spring-projects/spring-retry

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 171

originator (e.g. JMS) to be responsible for resubmitting, rather than performing it on the current thread.
Stateful retry needs some mechanism to detect a retried submission.

Further Information

For more information on spring-retry, refer to the project’s javadocs, as well as the reference
documentation for Spring Batch, where spring-retry originated.

Warning

The default back off behavior is no back off - retries are attempted immediately. Using a back off
policy that causes threads to pause between attempts may cause performance issues, including
excessive memory use and thread starvation. In high volume environments, back off policies
should be used with caution.

Configuring the Retry Advice

The following examples use a simple <service-activator/> that always throws an exception:

public class FailingService {

 public void service(String message) {

 throw new RuntimeException("foo");

 }

}

Simple Stateless Retry

This example uses the default RetryTemplate which has a SimpleRetryPolicy which tries 3 times.
There is no BackOffPolicy so the 3 attempts are made back-to-back-to-back with no delay between
attempts. There is no RecoveryCallback so, the result is to throw the exception to the caller after
the final failed retry occurs. In a Spring Integration environment, this final exception might be handled
using an error-channel on the inbound endpoint.

<int:service-activator input-channel="input" ref="failer" method="service">

 <int:request-handler-advice-chain>

 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice"/>

 </request-handler-advice-chain>

</int:service-activator>

DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]

DEBUG [task-scheduler-2]Retry: count=0

DEBUG [task-scheduler-2]Checking for rethrow: count=1

DEBUG [task-scheduler-2]Retry: count=1

DEBUG [task-scheduler-2]Checking for rethrow: count=2

DEBUG [task-scheduler-2]Retry: count=2

DEBUG [task-scheduler-2]Checking for rethrow: count=3

DEBUG [task-scheduler-2]Retry failed last attempt: count=3

Simple Stateless Retry with Recovery

This example adds a RecoveryCallback to the above example; it uses a
ErrorMessageSendingRecoverer to send an ErrorMessage to a channel.

http://docs.spring.io/spring-batch/reference/html/retry.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 172

<int:service-activator input-channel="input" ref="failer" method="service">

 <int:request-handler-advice-chain>

 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">

 <property name="recoveryCallback">

 <bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer">

 <constructor-arg ref="myErrorChannel" />

 </bean>

 </property>

 </bean>

 </request-handler-advice-chain>

</int:int:service-activator>

DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]

DEBUG [task-scheduler-2]Retry: count=0

DEBUG [task-scheduler-2]Checking for rethrow: count=1

DEBUG [task-scheduler-2]Retry: count=1

DEBUG [task-scheduler-2]Checking for rethrow: count=2

DEBUG [task-scheduler-2]Retry: count=2

DEBUG [task-scheduler-2]Checking for rethrow: count=3

DEBUG [task-scheduler-2]Retry failed last attempt: count=3

DEBUG [task-scheduler-2]Sending ErrorMessage :failedMessage:[Payload=...]

Stateless Retry with Customized Policies, and Recovery

For more sophistication, we can provide the advice with a customized RetryTemplate. This example
continues to use the SimpleRetryPolicy but it increases the attempts to 4. It also adds an
ExponentialBackoffPolicy where the first retry waits 1 second, the second waits 5 seconds and
the third waits 25 (for 4 attempts in all).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 173

<int:service-activator input-channel="input" ref="failer" method="service">

 <int:request-handler-advice-chain>

 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">

 <property name="recoveryCallback">

 <bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer">

 <constructor-arg ref="myErrorChannel" />

 </bean>

 </property>

 <property name="retryTemplate" ref="retryTemplate" />

 </bean>

 </request-handler-advice-chain>

</int:service-activator>

<bean id="retryTemplate" class="org.springframework.retry.support.RetryTemplate">

 <property name="retryPolicy">

 <bean class="org.springframework.retry.policy.SimpleRetryPolicy">

 <property name="maxAttempts" value="4" />

 </bean>

 </property>

 <property name="backOffPolicy">

 <bean class="org.springframework.retry.backoff.ExponentialBackOffPolicy">

 <property name="initialInterval" value="1000" />

 <property name="multiplier" value="5.0" />

 <property name="maxInterval" value="60000" />

 </bean>

 </property>

</bean>

27.058 DEBUG [task-scheduler-1]preSend on channel 'input', message: [Payload=...]

27.071 DEBUG [task-scheduler-1]Retry: count=0

27.080 DEBUG [task-scheduler-1]Sleeping for 1000

28.081 DEBUG [task-scheduler-1]Checking for rethrow: count=1

28.081 DEBUG [task-scheduler-1]Retry: count=1

28.081 DEBUG [task-scheduler-1]Sleeping for 5000

33.082 DEBUG [task-scheduler-1]Checking for rethrow: count=2

33.082 DEBUG [task-scheduler-1]Retry: count=2

33.083 DEBUG [task-scheduler-1]Sleeping for 25000

58.083 DEBUG [task-scheduler-1]Checking for rethrow: count=3

58.083 DEBUG [task-scheduler-1]Retry: count=3

58.084 DEBUG [task-scheduler-1]Checking for rethrow: count=4

58.084 DEBUG [task-scheduler-1]Retry failed last attempt: count=4

58.086 DEBUG [task-scheduler-1]Sending ErrorMessage :failedMessage:[Payload=...]

Namespace Support for Stateless Retry

Starting with version 4.0, the above configuration can be greatly simplified with the namespace support
for the retry advice:

<int:service-activator input-channel="input" ref="failer" method="service">

 <int:request-handler-advice-chain>

 <bean ref="retrier" />

 </request-handler-advice-chain>

</int:service-activator>

<int:handler-retry-advice id="retrier" max-attempts="4" recovery-channel="myErrorChannel">

 <int:exponential-back-off initial="1000" multiplier="5.0" maximum="60000" />

</int:handler-retry-advice>

In this example, the advice is defined as a top level bean so it can be used in multiple request-
handler-advice-chain s. You can also define the advice directly within the chain:

<int:service-activator input-channel="input" ref="failer" method="service">

 <int:request-handler-advice-chain>

 <int:retry-advice id="retrier" max-attempts="4" recovery-channel="myErrorChannel">

 <int:exponential-back-off initial="1000" multiplier="5.0" maximum="60000" />

 </int:retry-advice>

 </request-handler-advice-chain>

</int:service-activator>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 174

A <handler-retry-advice/> with no child element uses no back off; it can have a fixed-back-
off or exponential-back-off child element. If there is no recovery-channel, the exception is
thrown when retries are exhausted. The namespace can only be used with stateless retry.

For more complex environments (custom policies etc), use normal <bean/> definitions.

Simple Stateful Retry with Recovery

To make retry stateful, we need to provide the Advice with a RetryStateGenerator implementation.
This class is used to identify a message as being a resubmission so that the RetryTemplate
can determine the current state of retry for this message. The framework provides a
SpelExpressionRetryStateGenerator which determines the message identifier using a SpEL
expression. This is shown below; this example again uses the default policies (3 attempts with no back
off); of course, as with stateless retry, these policies can be customized.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 175

<int:service-activator input-channel="input" ref="failer" method="service">

 <int:request-handler-advice-chain>

 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">

 <property name="retryStateGenerator">

 <bean class="o.s.i.handler.advice.SpelExpressionRetryStateGenerator">

 <constructor-arg value="headers['jms_messageId']" />

 </bean>

 </property>

 <property name="recoveryCallback">

 <bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer">

 <constructor-arg ref="myErrorChannel" />

 </bean>

 </property>

 </bean>

 </int:request-handler-advice-chain>

</int:service-activator>

24.351 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]

24.368 DEBUG [Container#0-1]Retry: count=0

24.387 DEBUG [Container#0-1]Checking for rethrow: count=1

24.387 DEBUG [Container#0-1]Rethrow in retry for policy: count=1

24.387 WARN [Container#0-1]failure occurred in gateway sendAndReceive

org.springframework.integration.MessagingException: Failed to invoke handler

...

Caused by: java.lang.RuntimeException: foo

...

24.391 DEBUG [Container#0-1]Initiating transaction rollback on application exception

...

25.412 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]

25.412 DEBUG [Container#0-1]Retry: count=1

25.413 DEBUG [Container#0-1]Checking for rethrow: count=2

25.413 DEBUG [Container#0-1]Rethrow in retry for policy: count=2

25.413 WARN [Container#0-1]failure occurred in gateway sendAndReceive

org.springframework.integration.MessagingException: Failed to invoke handler

...

Caused by: java.lang.RuntimeException: foo

...

25.414 DEBUG [Container#0-1]Initiating transaction rollback on application exception

...

26.418 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]

26.418 DEBUG [Container#0-1]Retry: count=2

26.419 DEBUG [Container#0-1]Checking for rethrow: count=3

26.419 DEBUG [Container#0-1]Rethrow in retry for policy: count=3

26.419 WARN [Container#0-1]failure occurred in gateway sendAndReceive

org.springframework.integration.MessagingException: Failed to invoke handler

...

Caused by: java.lang.RuntimeException: foo

...

26.420 DEBUG [Container#0-1]Initiating transaction rollback on application exception

...

27.425 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]

27.426 DEBUG [Container#0-1]Retry failed last attempt: count=3

27.426 DEBUG [Container#0-1]Sending ErrorMessage :failedMessage:[Payload=...]

Comparing with the stateless examples, you can see that with stateful retry, the exception is thrown to
the caller on each failure.

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The default
configuration will retry for all exceptions and the exception classifier just looks at the top level exception.
If you configure it to, say, only retry on BarException and your application throws a FooException
where the cause is a BarException, retry will not occur.

Since Spring Retry 1.0.3, the BinaryExceptionClassifier has a property traverseCauses
(default false). When true it will traverse exception causes until it finds a match or there is no cause.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 176

To use this classifier for retry, use a SimpleRetryPolicy created with the constructor that takes the
max attempts, the Map of Exception s and the boolean (traverseCauses), and inject this policy into
the RetryTemplate.

Circuit Breaker Advice

The general idea of the Circuit Breaker Pattern is that, if a service is not
currently available, then don’t waste time (and resources) trying to use it. The
o.s.i.handler.advice.RequestHandlerCircuitBreakerAdvice implements this pattern.
When the circuit breaker is in the closed state, the endpoint will attempt to invoke the service. The circuit
breaker goes to the open state if a certain number of consecutive attempts fail; when it is in the open
state, new requests will "fail fast" and no attempt will be made to invoke the service until some time
has expired.

When that time has expired, the circuit breaker is set to the half-open state. When in this state, if even
a single attempt fails, the breaker will immediately go to the open state; if the attempt succeeds, the
breaker will go to the closed state, in which case, it won’t go to the open state again until the configured
number of consecutive failures again occur. Any successful attempt resets the state to zero failures for
the purpose of determining when the breaker might go to the open state again.

Typically, this Advice might be used for external services, where it might take some time to fail (such
as a timeout attempting to make a network connection).

The RequestHandlerCircuitBreakerAdvice has two properties: threshold and
halfOpenAfter. The threshold property represents the number of consecutive failures that need to
occur before the breaker goes open. It defaults to 5. The halfOpenAfter property represents the time after
the last failure that the breaker will wait before attempting another request. Default is 1000 milliseconds.

Example:

<int:service-activator input-channel="input" ref="failer" method="service">

 <int:request-handler-advice-chain>

 <bean class="o.s.i.handler.advice.RequestHandlerCircuitBreakerAdvice">

 <property name="threshold" value="2" />

 <property name="halfOpenAfter" value="12000" />

 </bean>

 </int:request-handler-advice-chain>

</int:service-activator>

05.617 DEBUG [task-scheduler-1]preSend on channel 'input', message: [Payload=...]

05.638 ERROR [task-scheduler-1]org.springframework.messaging.MessageHandlingException:

 java.lang.RuntimeException: foo

...

10.598 DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]

10.600 ERROR [task-scheduler-2]org.springframework.messaging.MessageHandlingException:

 java.lang.RuntimeException: foo

...

15.598 DEBUG [task-scheduler-3]preSend on channel 'input', message: [Payload=...]

15.599 ERROR [task-scheduler-3]org.springframework.messaging.MessagingException: Circuit Breaker is Open

 for ServiceActivator

...

20.598 DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]

20.598 ERROR [task-scheduler-2]org.springframework.messaging.MessagingException: Circuit Breaker is Open

 for ServiceActivator

...

25.598 DEBUG [task-scheduler-5]preSend on channel 'input', message: [Payload=...]

25.601 ERROR [task-scheduler-5]org.springframework.messaging.MessageHandlingException:

 java.lang.RuntimeException: foo

...

30.598 DEBUG [task-scheduler-1]preSend on channel 'input', message: [Payload=foo...]

30.599 ERROR [task-scheduler-1]org.springframework.messaging.MessagingException: Circuit Breaker is Open

 for ServiceActivator

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 177

In the above example, the threshold is set to 2 and halfOpenAfter is set to 12 seconds; a new request
arrives every 5 seconds. You can see that the first two attempts invoked the service; the third and fourth
failed with an exception indicating the circuit breaker is open. The fifth request was attempted because
the request was 15 seconds after the last failure; the sixth attempt fails immediately because the breaker
immediately went to open.

Expression Evaluating Advice

The final supplied advice class is the
o.s.i.handler.advice.ExpressionEvaluatingRequestHandlerAdvice. This advice is
more general than the other two advices. It provides a mechanism to evaluate an expression on the
original inbound message sent to the endpoint. Separate expressions are available to be evaluated,
either after success, or failure. Optionally, a message containing the evaluation result, together with the
input message, can be sent to a message channel.

A typical use case for this advice might be with an <ftp:outbound-channel-adapter/>, perhaps
to move the file to one directory if the transfer was successful, or to another directory if it fails:

The Advice has properties to set an expression when successful, an expression for failures, and
corresponding channels for each. For the successful case, the message sent to the successChannel is
an AdviceMessage, with the payload being the result of the expression evaluation, and an additional
property inputMessage which contains the original message sent to the handler. A message sent
to the failureChannel (when the handler throws an exception) is an ErrorMessage with a payload of
MessageHandlingExpressionEvaluatingAdviceException. Like all MessagingException
s, this payload has failedMessage and cause properties, as well as an additional property
evaluationResult, containing the result of the expression evaluation.

When an exception is thrown in the scope of the advice, by default, that exception is thrown to caller
after any failureExpression is evaluated. If you wish to suppress throwing the exception, set the
trapException property to true.

Example - Configuring the Advice with Java DSL.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 178

@SpringBootApplication

public class EerhaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context = SpringApplication.run(EerhaApplication.class, args);

 MessageChannel in = context.getBean("advised.input", MessageChannel.class);

 in.send(new GenericMessage<>("good"));

 in.send(new GenericMessage<>("bad"));

 context.close();

 }

 @Bean

 public IntegrationFlow advised() {

 return f -> f.handle((GenericHandler<String>) (payload, headers) -> {

 if (payload.equals("good")) {

 return null;

 }

 else {

 throw new RuntimeException("some failure");

 }

 }, c -> c.advice(expressionAdvice()));

 }

 @Bean

 public Advice expressionAdvice() {

 ExpressionEvaluatingRequestHandlerAdvice advice = new

 ExpressionEvaluatingRequestHandlerAdvice();

 advice.setSuccessChannelName("success.input");

 advice.setOnSuccessExpressionString("payload + ' was successful'");

 advice.setFailureChannelName("failure.input");

 advice.setOnFailureExpressionString(

 "payload + ' was bad, with reason: ' + #exception.cause.message");

 advice.setTrapException(true);

 return advice;

 }

 @Bean

 public IntegrationFlow success() {

 return f -> f.handle(System.out::println);

 }

 @Bean

 public IntegrationFlow failure() {

 return f -> f.handle(System.out::println);

 }

}

Custom Advice Classes

In addition to the provided Advice classes above, you can implement your own Advice
classes. While you can provide any implementation of org.aopalliance.aop.Advice (usually
org.aopalliance.intercept.MethodInterceptor), it is generally recommended that you
subclass o.s.i.handler.advice.AbstractRequestHandlerAdvice. This has the benefit of
avoiding writing low-level Aspect Oriented Programming code as well as providing a starting point that
is specifically tailored for use in this environment.

Subclasses need to implement the doInvoke()` method:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 179

/**

 * Subclasses implement this method to apply behavior to the {@link MessageHandler} callback.execute()

 * invokes the handler method and returns its result, or null).

 * @param callback Subclasses invoke the execute() method on this interface to invoke the handler

 method.

 * @param target The target handler.

 * @param message The message that will be sent to the handler.

 * @return the result after invoking the {@link MessageHandler}.

 * @throws Exception

 */

protected abstract Object doInvoke(ExecutionCallback callback, Object target, Message<?> message) throws

 Exception;

The callback parameter is simply a convenience to avoid subclasses dealing with AOP directly; invoking
the callback.execute() method invokes the message handler.

The target parameter is provided for those subclasses that need to maintain state for a specific handler,
perhaps by maintaining that state in a Map, keyed by the target. This allows the same advice to be
applied to multiple handlers. The RequestHandlerCircuitBreakerAdvice uses this to keep circuit
breaker state for each handler.

The message parameter is the message that will be sent to the handler. While the advice cannot
modify the message before invoking the handler, it can modify the payload (if it has mutable properties).
Typically, an advice would use the message for logging and/or to send a copy of the message
somewhere before or after invoking the handler.

The return value would normally be the value returned by callback.execute();
but the advice does have the ability to modify the return value. Note that only
AbstractReplyProducingMessageHandler s return a value.

public class MyAdvice extends AbstractRequestHandlerAdvice {

 @Override

 protected Object doInvoke(ExecutionCallback callback, Object target, Message<?> message) throws

 Exception {

 // add code before the invocation

 Object result = callback.execute();

 // add code after the invocation

 return result;

 }

}

Note

In addition to the execute() method, the ExecutionCallback provides an additional
method cloneAndExecute(). This method must be used in cases where the
invocation might be called multiple times within a single execution of doInvoke(),
such as in the RequestHandlerRetryAdvice. This is required because the Spring
AOP org.springframework.aop.framework.ReflectiveMethodInvocation object
maintains state of which advice in a chain was last invoked; this state must be reset for each call.

For more information, see the ReflectiveMethodInvocation JavaDocs.

Other Advice Chain Elements

While the abstract class mentioned above is provided as a convenience, you can add any Advice to
the chain, including a transaction advice.

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/aop/framework/ReflectiveMethodInvocation.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 180

Handle Message Advice

As discussed in the introduction to this section, advice objects in a request handler advice chain are
applied to just the current endpoint, not the downstream flow (if any). For MessageHandler s that
produce a reply (AbstractReplyProducingMessageHandler), the advice is applied to an internal
method handleRequestMessage() (called from MessageHandler.handleMessage()). For other
message handlers, the advice is applied to MessageHandler.handleMessage().

There are some circumstances where, even if a message handler is an
AbstractReplyProducingMessageHandler, the advice must be applied to the handleMessage
method - for example, the Idempotent Receiver might return null and this would cause an exception
if the handler’s replyRequired property is true.

Starting with version 4.3.1, a new HandleMessageAdvice and the
AbstractHandleMessageAdvice base implementation have been introduced. Advice s that
implement HandleMessageAdvice will always be applied to the handleMessage() method,
regardless of the handler type.

It is important to understand that HandleMessageAdvice implementations (such as Idempotent
Receiver), when applied to a handler that returns a response, are dissociated from the adviceChain
and properly applied to the MessageHandler.handleMessage() method. Bear in mind, however,
that this means the advice chain order is not complied with; and, with configuration such as:

<some-reply-producing-endpoint ... >

 <int:request-handler-advice-chain>

 <tx:advice ... />

 <bean ref="myHandleMessageAdvice" />

 </int:request-handler-advice-chain>

</some-reply-producing-endpoint>

The <tx:advice> is applied to the
AbstractReplyProducingMessageHandler.handleRequestMessage(), but
myHandleMessageAdvice is applied for to MessageHandler.handleMessage() and, therefore,
invoked before the <tx:advice>. To retain the order, you should follow with standard Spring AOP
configuration approach and use endpoint id together with the .handler suffix to obtain the target
MessageHandler bean. Note, however, that in that case, the entire downstream flow would be within
the transaction scope.

In the case of a MessageHandler that does not return a response, the advice chain order is retained.

Transaction Support

Starting with version 5.0 a new TransactionHandleMessageAdvice has been introduced to make
the whole downstream flow transactional, thanks to the HandleMessageAdvice implementation.
When regular TransactionInterceptor is used in the <request-handler-advice-chain>,
for example via <tx:advice> configuration, a started transaction is only applied only for an internal
AbstractReplyProducingMessageHandler.handleRequestMessage() and isn’t propagated
to the downstream flow.

To simplify XML configuration, alongside with the <request-handler-advice-chain>, a
<transactional> sub-element has been added to all <outbound-gateway> and <service-
activator> & family components:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/aop-api.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 181

<int-rmi:outbound-gateway remote-channel="foo" host="localhost"

 request-channel="good" reply-channel="reply" port="#{@port}">

 <int-rmi:transactional/>

</int-rmi:outbound-gateway>

<bean id="transactionManager" class="org.mockito.Mockito" factory-method="mock">

 <constructor-arg value="org.springframework.transaction.PlatformTransactionManager"/>

</bean>

For whom is familiar with JPA Integration components such a configuration isn’t new, but now we can
start transaction from any point in our flow, not only from the <poller> or Message Driven Channel
Adapter like in JMS.

Java & Annotation configuration can be simplified via newly introduced
TransactionInterceptorBuilder and the result bean name can be used in the Messaging
Annotations adviceChain attribute:

@Bean

public ConcurrentMetadataStore store() {

 return new SimpleMetadataStore(hazelcastInstance()

 .getMap("idempotentReceiverMetadataStore"));

}

@Bean

public IdempotentReceiverInterceptor idempotentReceiverInterceptor() {

 return new IdempotentReceiverInterceptor(

 new MetadataStoreSelector(

 message -> message.getPayload().toString(),

 message -> message.getPayload().toString().toUpperCase(), store()));

}

@Bean

public TransactionInterceptor transactionInterceptor() {

 return new TransactionInterceptorBuilder(true)

 .transactionManager(this.transactionManager)

 .isolation(Isolation.READ_COMMITTED)

 .propagation(Propagation.REQUIRES_NEW)

 .build();

}

@Bean

@org.springframework.integration.annotation.Transformer(inputChannel = "input",

 outputChannel = "output",

 adviceChain = { "idempotentReceiverInterceptor",

 "transactionInterceptor" })

public Transformer transformer() {

 return message -> message;

}

Note the true for the TransactionInterceptorBuilder constructor, which means produce
TransactionHandleMessageAdvice, not regular TransactionInterceptor.

Java DSL supports such an Advice via .transactional() options on the endpoint configuration:

@Bean

public IntegrationFlow updatingGatewayFlow() {

 return f -> f

 .handle(Jpa.updatingGateway(this.entityManagerFactory),

 e -> e.transactional(true))

 .channel(c -> c.queue("persistResults"));

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 182

Advising Filters

There is an additional consideration when advising Filter s. By default, any discard actions (when
the filter returns false) are performed within the scope of the advice chain. This could include all the flow
downstream of the discard channel. So, for example if an element downstream of the discard-channel
throws an exception, and there is a retry advice, the process will be retried. This is also the case if
throwExceptionOnRejection is set to true (the exception is thrown within the scope of the advice).

Setting discard-within-advice to "false" modifies this behavior and the discard (or exception) occurs after
the advice chain is called.

Advising Endpoints Using Annotations

When configuring certain endpoints using annotations (@Filter, @ServiceActivator, @Splitter,
and @Transformer), you can supply a bean name for the advice chain in the adviceChain attribute.
In addition, the @Filter annotation also has the discardWithinAdvice attribute, which can be used
to configure the discard behavior as discussed in the section called “Advising Filters”. An example with
the discard being performed after the advice is shown below.

@MessageEndpoint

public class MyAdvisedFilter {

 @Filter(inputChannel="input", outputChannel="output",

 adviceChain="adviceChain", discardWithinAdvice="false")

 public boolean filter(String s) {

 return s.contains("good");

 }

}

Ordering Advices within an Advice Chain

Advice classes are "around" advices and are applied in a nested fashion. The first advice is the
outermost, the last advice the innermost (closest to the handler being advised). It is important to put the
advice classes in the correct order to achieve the functionality you desire.

For example, let’s say you want to add a retry advice and a transaction advice. You may want to place
the retry advice advice first, followed by the transaction advice. Then, each retry will be performed in a
new transaction. On the other hand, if you want all the attempts, and any recovery operations (in the retry
RecoveryCallback), to be scoped within the transaction, you would put the transaction advice first.

Advised Handler Properties

Sometimes, it is useful to access handler properties from within the advice. For example, most handlers
implement NamedComponent and you can access the component name.

The target object can be accessed via the target argument when subclassing
AbstractRequestHandlerAdvice or invocation.getThis() when implementing
org.aopalliance.intercept.MethodInterceptor.

When the entire handler is advised (such as when the handler does not produce replies, or the advice
implements HandleMessageAdvice), you can simply cast the target object to the desired implemented
interface, such as NamedComponent.

String componentName = ((NamedComponent) target).getComponentName();

or

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 183

String componentName = ((NamedComponent) invocation.getThis()).getComponentName();

when implementing MethodInterceptor directly.

When only the handleRequestMessage() method is advised (in a reply-producing handler), you
need to access the full handler, which is an AbstractReplyProducingMessageHandler…

AbstractReplyProducingMessageHandler handler =

 ((AbstractReplyProducingMessageHandler.RequestHandler) target).getAdvisedHandler();

String componentName = handler.getComponentName();

Idempotent Receiver Enterprise Integration Pattern

Starting with version 4.1, Spring Integration provides an implementation of the Idempotent
Receiver Enterprise Integration Pattern. It is a functional pattern and the whole idempotency
logic should be implemented in the application, however to simplify the decision-making, the
IdempotentReceiverInterceptor component is provided. This is an AOP Advice, which is
applied to the MessageHandler.handleMessage() method and can filter a request message or
mark it as a duplicate, according to its configuration.

Previously, users could have implemented this pattern, by using a custom MessageSelector in a
<filter/> (Section 6.2, “Filter”), for example. However, since this pattern is really behavior of an
endpoint rather than being an endpoint itself, the Idempotent Receiver implementation doesn’t provide
an endpoint component; rather, it is applied to endpoints declared in the application.

The logic of the IdempotentReceiverInterceptor is based on the provided MessageSelector
and, if the message isn’t accepted by that selector, it will be enriched with the duplicateMessage
header set to true. The target MessageHandler (or downstream flow) can consult this header to
implement the correct idempotency logic. If the IdempotentReceiverInterceptor is configured
with a discardChannel and/or throwExceptionOnRejection = true, the duplicate Message
won’t be sent to the target MessageHandler.handleMessage(), but discarded. If you simply want
to discard (do nothing with) the duplicate Message, the discardChannel should be configured with a
NullChannel, such as the default nullChannel bean.

To maintain state between messages and provide the ability to compare messages for the idempotency,
the MetadataStoreSelector is provided. It accepts a MessageProcessor implementation (which
creates a lookup key based on the Message) and an optional ConcurrentMetadataStore
(Section 10.5, “Metadata Store”). See the MetadataStoreSelector JavaDocs for more
information. The value for ConcurrentMetadataStore also can be customized using additional
MessageProcessor. By default MetadataStoreSelector uses timestamp message header.

For convenience, the MetadataStoreSelector options are configurable directly on the
<idempotent-receiver> component:

<idempotent-receiver

 id="" ❶

 endpoint="" ❷

 selector="" ❸

 discard-channel="" ❹

 metadata-store="" ❺

 key-strategy="" ❻

 key-expression="" ❼

 value-strategy="" ❽

 value-expression="" ❾

 throw-exception-on-rejection="" /> ❿

http://www.eaipatterns.com/IdempotentReceiver.html
http://www.eaipatterns.com/IdempotentReceiver.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 184

❶ The id of the IdempotentReceiverInterceptor bean. Optional.

❷ Consumer Endpoint name(s) or pattern(s) to which this interceptor will be applied.
Separate names (patterns) with commas (,) e.g. endpoint="aaa, bbb*, *ccc,

ddd, eee*fff". Endpoint bean names matching these patterns are then used to
retrieve the target endpoint’s MessageHandler bean (using its .handler suffix), and the
IdempotentReceiverInterceptor will be applied to those beans. Required.

❸ A MessageSelector bean reference. Mutually exclusive with metadata-store and key-
strategy (key-expression). When selector is not provided, one of key-strategy or
key-strategy-expression is required.

❹ Identifies the channel to which to send a message when the
IdempotentReceiverInterceptor doesn’t accept it. When omitted, duplicate messages are
forwarded to the handler with a duplicateMessage header. Optional.

❺ A ConcurrentMetadataStore reference. Used by the underlying MetadataStoreSelector.
Mutually exclusive with selector. Optional. The default MetadataStoreSelector uses an
internal SimpleMetadataStore which does not maintain state across application executions.

❻ A MessageProcessor reference. Used by the underlying MetadataStoreSelector. Evaluates
an idempotentKey from the request Message. Mutually exclusive with selector and key-
expression. When a selector is not provided, one of key-strategy or key-strategy-
expression is required.

❼ A SpEL expression to populate an ExpressionEvaluatingMessageProcessor. Used by
the underlying MetadataStoreSelector. Evaluates an idempotentKey using the request
Message as the evaluation context root object. Mutually exclusive with selector and key-
strategy. When a selector is not provided, one of key-strategy or key-strategy-
expression is required.

❽ A MessageProcessor reference. Used by the underlying MetadataStoreSelector. Evaluates
a value for the idempotentKey from the request Message. Mutually exclusive with selector
and value-expression. By default, the MetadataStoreSelector uses the timestamp message
header as the Metadata value.

❾ A SpEL expression to populate an ExpressionEvaluatingMessageProcessor. Used by the
underlying MetadataStoreSelector. Evaluates a value for the idempotentKey using the
request Message as the evaluation context root object. Mutually exclusive with selector and
value-strategy. By default, the MetadataStoreSelector uses the timestamp message header
as the Metadata value.

❿ Throw an exception if the IdempotentReceiverInterceptor rejects the message defaults to
false. It is applied regardless of whether or not a discard-channel is provided.

For Java configuration, the method level IdempotentReceiver annotation is provided. It is used to
mark a method that has a Messaging annotation (@ServiceActivator, @Router etc.) to specify
which IdempotentReceiverInterceptor s will be applied to this endpoint:

@Bean

public IdempotentReceiverInterceptor idempotentReceiverInterceptor() {

 return new IdempotentReceiverInterceptor(new MetadataStoreSelector(m ->

 m.getHeaders().get(INVOICE_NBR_HEADER)));

}

@Bean

@ServiceActivator(inputChannel = "input", outputChannel = "output")

@IdempotentReceiver("idempotentReceiverInterceptor")

public MessageHandler myService() {

}

And with the Java DSL, the interceptor is added to the endpoint’s advice chain:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 185

@Bean

public IntegrationFlow flow() {

 ...

 .handle("someBean", "someMethod",

 e -> e.advice(idempotentReceiverInterceptor())

 ...

}

Note

The IdempotentReceiverInterceptor is designed only for the
MessageHandler.handleMessage(Message<?>) method and starting with version 4.3.1
it implements HandleMessageAdvice, with the AbstractHandleMessageAdvice as a
base class, for better dissociation. See the section called “Handle Message Advice” for more
information.

8.10 Logging Channel Adapter

The <logging-channel-adapter/> is often used in conjunction with a Wire Tap, as discussed in
the section called “Wire Tap”. However, it can also be used as the ultimate consumer of any flow. For
example, consider a flow that ends with a <service-activator/> that returns a result, but you wish
to discard that result. To do that, you could send the result to NullChannel. Alternatively, you can route
it to an INFO level <logging-channel-adapter/>; that way, you can see the discarded message
when logging at INFO level, but not see it when logging at, say, WARN level. With a NullChannel, you
would only see the discarded message when logging at DEBUG level.

<int:logging-channel-adapter

 channel="" ❶

 level="INFO" ❷

 expression="" ❸

 log-full-message="false" ❹

 logger-name="" /> ❺

❶ The channel connecting the logging adapter to an upstream component.

❷ The logging level at which messages sent to this adapter will be logged. Default: INFO.

❸ A SpEL expression representing exactly what part(s) of the message will be logged. Default:
payload - just the payload will be logged. This attribute cannot be specified if log-full-
message is specified.

❹ When true, the entire message will be logged (including headers). Default: false - just the
payload will be logged. This attribute cannot be specified if expression is specified.

❺ Specifies the name of the logger (known as category in log4j) used for log
messages created by this adapter. This enables setting the log name (in the logging
subsystem) for individual adapters. By default, all adapters will log under the name
org.springframework.integration.handler.LoggingHandler.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the LoggingHandler using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 186

@SpringBootApplication

public class LoggingJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(LoggingJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToLogger("foo");

 }

 @Bean

 @ServiceActivator(inputChannel = "logChannel")

 public LoggingHandler logging() {

 LoggingHandler adapter = new LoggingHandler(LoggingHandler.Level.DEBUG);

 adapter.setLoggerName("TEST_LOGGER");

 adapter.setLogExpressionString("headers.id + ': ' + payload");

 return adapter;

 }

 @MessagingGateway(defaultRequestChannel = "logChannel")

 public interface MyGateway {

 void sendToLogger(String data);

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the logging channel adapter
using the Java DSL:

@SpringBootApplication

public class LoggingJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(LoggingJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToLogger("foo");

 }

 @Bean

 public IntegrationFlow loggingFlow() {

 return IntegrationFlows.from(MyGateway.class)

 .log(LoggingHandler.Level.DEBUG, "TEST_LOGGER",

 m -> m.getHeaders().getId() + ": " + m.getPayload());

 }

 @MessagingGateway

 public interface MyGateway {

 void sendToLogger(String data);

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 187

9. Java DSL

The Spring Integration JavaConfig and DSL provides a set of convenient Builders and a fluent API to
configure Spring Integration message flows from Spring @Configuration classes.

9.1 Example Configurations

@Configuration

@EnableIntegration

public class MyConfiguration {

 @Bean

 public AtomicInteger integerSource() {

 return new AtomicInteger();

 }

 @Bean

 public IntegrationFlow myFlow() {

 return IntegrationFlows.from(integerSource::getAndIncrement,

 c -> c.poller(Pollers.fixedRate(100)))

 .channel("inputChannel")

 .filter((Integer p) -> p > 0)

 .transform(Object::toString)

 .channel(MessageChannels.queue())

 .get();

 }

}

As the result after ApplicationContext start up Spring Integration endpoints and Message Channels
will be created as is the case after XML parsing. Such configuration can be used to replace XML
configuration or along side with it.

9.2 Introduction

The Java DSL for Spring Integration is essentially a facade for Spring Integration. The DSL provides a
simple way to embed Spring Integration Message Flows into your application using the fluent Builder
pattern together with existing Java and Annotation configurations from Spring Framework and Spring
Integration as well. Another useful tool to simplify configuration is Java 8 Lambdas.

The cafe is a good example of using the DSL.

The DSL is presented by the IntegrationFlows Factory for the IntegrationFlowBuilder. This
produces the IntegrationFlow component, which should be registered as a Spring bean (@Bean).
The builder pattern is used to express arbitrarily complex structures as a hierarchy of methods that may
accept Lambdas as arguments.

The IntegrationFlowBuilder just collects integration components (MessageChannel s,
AbstractEndpoint s etc.) in the IntegrationFlow bean for further parsing and registration of
concrete beans in the application context by the IntegrationFlowBeanPostProcessor.

The Java DSL uses Spring Integration classes directly and bypasses any XML generation and parsing.
However, the DSL offers more than syntactic sugar on top of XML. One of its most compelling features is
the ability to define inline Lambdas to implement endpoint logic, eliminating the need for external classes
to implement custom logic. In some sense, Spring Integration’s support for the Spring Expression
Language (SpEL) and inline scripting address this, but Java Lambdas are easier and much more
powerful.

https://github.com/spring-projects/spring-integration-samples/tree/master/dsl/cafe-dsl

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 188

9.3 DSL Basics

The org.springframework.integration.dsl package contains the
IntegrationFlowBuilder API mentioned above and a bunch of IntegrationComponentSpec
implementations which are builders too and provide the fluent API to configure concrete endpoints. The
IntegrationFlowBuilder infrastructure provides common EIP for message based applications,
such as channels, endpoints, pollers and channel interceptors.

Endpoints are expressed as verbs in the DSL to improve readability. The following list includes the
common DSL method names and the associated EIP endpoint:

• transform # Transformer

• filter # Filter

• handle # ServiceActivator

• split # Splitter

• aggregate # Aggregator

• route # Router

• bridge # Bridge

Conceptually, integration processes are constructed by composing these endpoints into one or more
message flows. Note that EIP does not formally define the term message flow, but it is useful
to think of it as a unit of work that uses well known messaging patterns. The DSL provides an
IntegrationFlow component to define a composition of channels and endpoints between them, but
now IntegrationFlow plays only the configuration role to populate real beans in the application
context and isn’t used at runtime:

@Bean

public IntegrationFlow integerFlow() {

 return IntegrationFlows.from("input")

 .<String, Integer>transform(Integer::parseInt)

 .get();

}

Here we use the IntegrationFlows factory to define an IntegrationFlow bean using EIP-
methods from IntegrationFlowBuilder.

The transform method accepts a Lambda as an endpoint argument to operate on the message
payload. The real argument of this method is GenericTransformer<S, T>, hence any out-of-the-box
transformers (ObjectToJsonTransformer, FileToStringTransformer etc.) can be used here.

Under the covers, IntegrationFlowBuilder recognizes the MessageHandler and endpoint for
that: MessageTransformingHandler and ConsumerEndpointFactoryBean, respectively. Let’s
look at another example:

@Bean

public IntegrationFlow myFlow() {

 return IntegrationFlows.from("input")

 .filter("World"::equals)

 .transform("Hello "::concat)

 .handle(System.out::println)

 .get();

}

http://www.eaipatterns.com

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 189

The above example composes a sequence of Filter -> Transformer -> Service Activator.
The flow is one way, that is it does not provide a a reply message but simply prints the payload to
STDOUT. The endpoints are automatically wired together using direct channels.

9.4 Message Channels

In addition to the IntegrationFlowBuilder with EIP-methods the Java DSL provides a fluent API
to configure MessageChannel s. For this purpose the MessageChannels builder factory is provided:

@Bean

public MessageChannel priorityChannel() {

 return MessageChannels.priority(this.mongoDbChannelMessageStore, "priorityGroup")

 .interceptor(wireTap())

 .get();

}

The same MessageChannels builder factory can be used in the channel() EIP-method from
IntegrationFlowBuilder to wire endpoints similar to an input-channel/output-channel pair
in the XML configuration. By default endpoints are wired via DirectChannel s where the bean name
is based on the pattern: [IntegrationFlow.beanName].channel#[channelNameIndex]. This
rule is applied for unnamed channels produced by inline MessageChannels builder factory usage,
too. However all MessageChannels methods have a channelId -aware variant to create the bean
names for MessageChannel s. The MessageChannel references can be used as well as beanName,
as bean-method invocations. Here is a sample with possible variants of channel() EIP-method usage:

@Bean

public MessageChannel queueChannel() {

 return MessageChannels.queue().get();

}

@Bean

public MessageChannel publishSubscribe() {

 return MessageChannels.publishSubscribe().get();

}

@Bean

public IntegrationFlow channelFlow() {

 return IntegrationFlows.from("input")

 .fixedSubscriberChannel()

 .channel("queueChannel")

 .channel(publishSubscribe())

 .channel(MessageChannels.executor("executorChannel", this.taskExecutor))

 .channel("output")

 .get();

}

• from("input") means: find and use the MessageChannel with the "input" id, or create one;

• fixedSubscriberChannel() produces an instance of FixedSubscriberChannel and
registers it with name channelFlow.channel#0;

• channel("queueChannel") works the same way but, of course, uses an existing "queueChannel"
bean;

• channel(publishSubscribe()) - the bean-method reference;

• channel(MessageChannels.executor("executorChannel", this.taskExecutor)) the
IntegrationFlowBuilder unwraps IntegrationComponentSpec to the ExecutorChannel
and registers it as "executorChannel";

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 190

• channel("output") - registers the DirectChannel bean with "output" name as long as there
are no beans with this name.

Note: the IntegrationFlow definition shown above is valid and all of its channels are applied to
endpoints with BridgeHandler s.

Important

Be careful to use the same inline channel definition via MessageChannels factory from different
IntegrationFlow s. Even if the DSL parsers register non-existing objects as beans, it can’t
determine the same object (MessageChannel) from different IntegrationFlow containers.
This is wrong:

@Bean

public IntegrationFlow startFlow() {

 return IntegrationFlows.from("input")

 .transform(...)

 .channel(MessageChannels.queue("queueChannel"))

 .get();

}

@Bean

public IntegrationFlow endFlow() {

 return IntegrationFlows.from(MessageChannels.queue("queueChannel"))

 .handle(...)

 .get();

}

You end up with:

Caused by: java.lang.IllegalStateException:

Could not register object [queueChannel] under bean name 'queueChannel':

 there is already object [queueChannel] bound

 at o.s.b.f.s.DefaultSingletonBeanRegistry.registerSingleton(DefaultSingletonBeanRegistry.java:129)

To make it working there is just need to declare @Bean for that channel and use its bean-method from
different IntegrationFlow s.

9.5 Pollers

A similar fluent API is provided to configure PollerMetadata for AbstractPollingEndpoint
implementations. The Pollers builder factory can be used to configure common bean definitions or
those created from IntegrationFlowBuilder EIP-methods:

@Bean(name = PollerMetadata.DEFAULT_POLLER)

public PollerSpec poller() {

 return Pollers.fixedRate(500)

 .errorChannel("myErrors");

}

See Pollers and PollerSpec Java Docs for more information.

Important

If you use the DSL to construct a PollerSpec as a @Bean, do not call the get() method in the
bean definition; the PollerSpec is a FactoryBean that will generate the PollerMetadata
object from the specification and initialize all of its properties as needed.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 191

9.6 DSL and Endpoint Configuration

All IntegrationFlowBuilder EIP-methods have a variant to apply the Lambda parameter to provide
options for AbstractEndpoint s: SmartLifecycle, PollerMetadata, request-handler-
advice-chain etc. Each of them has generic arguments, so it allows you to simply configure an
endpoint and even its MessageHandler in the context:

@Bean

public IntegrationFlow flow2() {

 return IntegrationFlows.from(this.inputChannel)

 .transform(new PayloadSerializingTransformer(),

 c -> c.autoStartup(false).id("payloadSerializingTransformer"))

 .transform((Integer p) -> p * 2, c -> c.advice(this.expressionAdvice()))

 .get();

}

In addition the EndpointSpec provides an id() method to allow you to register an endpoint bean with
a given bean name, rather than a generated one.

9.7 Transformers

The DSL API provides a convenient, fluent Transformers factory to be used as inline target object
definition within .transform() EIP-method:

@Bean

public IntegrationFlow transformFlow() {

 return IntegrationFlows.from("input")

 .transform(Transformers.fromJson(MyPojo.class))

 .transform(Transformers.serializer())

 .get();

}

It avoids inconvenient coding using setters and makes the flow definition more straightforward. Note,
that Transformers can be use to declare target Transformer s as @Bean s and, again, use them
from IntegrationFlow definition as bean-methods. Nevertheless, the DSL parser takes care about
bean declarations for inline objects, if they aren’t defined as beans yet.

See Transformers Java Docs for more information and supported factory methods.

9.8 Inbound Channel Adapters

Typically message flows start from some Inbound Channel Adapter (e.g. <int-

jdbc:inbound-channel-adapter>). The adapter is configured with <poller> and it
asks a MessageSource<?> for producing messages periodically. Java DSL allows to start
IntegrationFlow from a MessageSource<?>, too. For this purpose IntegrationFlows builder
factory provides overloaded IntegrationFlows.from(MessageSource<?> messageSource)

method. The MessageSource<?> may be configured as a bean and provided as
argument for that method. The second parameter of IntegrationFlows.from() is a
Consumer<SourcePollingChannelAdapterSpec> Lambda and allows to provide options for the
SourcePollingChannelAdapter, e.g. PollerMetadata or SmartLifecycle:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 192

@Bean

public MessageSource<Object> jdbcMessageSource() {

 return new JdbcPollingChannelAdapter(this.dataSource, "SELECT * FROM foo");

}

@Bean

public IntegrationFlow pollingFlow() {

 return IntegrationFlows.from(jdbcMessageSource(),

 c -> c.poller(Pollers.fixedRate(100).maxMessagesPerPoll(1)))

 .transform(Transformers.toJson())

 .channel("furtherProcessChannel")

 .get();

}

There is also an IntegrationFlows.from() variant based on the
java.util.function.Supplier if there is no requirements to build Message objects directly. The
result of the Supplier.get() is wrapped to the Message (if it isn’t message already) by Framework
automatically.

The next sections discuss selected endpoints which require further explanation.

9.9 Message Routers

Spring Integration natively provides specialized router types including:

• HeaderValueRouter

• PayloadTypeRouter

• ExceptionTypeRouter

• RecipientListRouter

• XPathRouter

As with many other DSL IntegrationFlowBuilder EIP-methods the route() method
can apply any out-of-the-box AbstractMessageRouter implementation, or for convenience
a String as a SpEL expression, or a ref/method pair. In addition route() can
be configured with a Lambda - the inline method invocation case, and with a Lambda
for a Consumer<RouterSpec<MethodInvokingRouter>>. The fluent API also provides
AbstractMappingMessageRouter options like channelMapping(String key, String

channelName) pairs:

@Bean

public IntegrationFlow routeFlow() {

 return IntegrationFlows.from("routerInput")

 .<Integer, Boolean>route(p -> p % 2 == 0,

 m -> m.suffix("Channel")

 .channelMapping("true", "even")

 .channelMapping("false", "odd")

)

 .get();

}

A simple expression-based router:

@Bean

public IntegrationFlow routeFlow() {

 return IntegrationFlows.from("routerInput")

 .route("headers['destChannel']")

 .get();

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 193

The routeToRecipients() method takes a Consumer<RecipientListRouterSpec>:

@Bean

public IntegrationFlow recipientListFlow() {

 return IntegrationFlows.from("recipientListInput")

 .<String, String>transform(p -> p.replaceFirst("Payload", ""))

 .routeToRecipients(r -> r

 .recipient("foo-channel", "'foo' == payload")

 .recipient("bar-channel", m ->

 m.getHeaders().containsKey("recipient")

 && (boolean) m.getHeaders().get("recipient"))

 .recipientFlow("'foo' == payload or 'bar' == payload or 'baz' == payload",

 f -> f.<String, String>transform(String::toUpperCase)

 .channel(c -> c.queue("recipientListSubFlow1Result")))

 .recipientFlow((String p) -> p.startsWith("baz"),

 f -> f.transform("Hello "::concat)

 .channel(c -> c.queue("recipientListSubFlow2Result")))

 .recipientFlow(new FunctionExpression<Message<?>>(m ->

 "bax".equals(m.getPayload())),

 f -> f.channel(c -> c.queue("recipientListSubFlow3Result")))

 .defaultOutputToParentFlow())

 .get();

}

The .defaultOutputToParentFlow() of the .routeToRecipients() allows to make the
router’s defaultOutput as a gateway to continue a process for the unmatched messages in the main
flow.

9.10 Splitters

A splitter is created using the split() EIP-method. By default, if the payload is a Iterable,
Iterator, Array, Stream or Reactive Publisher, this will output each item as an individual
message. This takes a Lambda, SpEL expression, any AbstractMessageSplitter implementation,
or can be used without parameters to provide the DefaultMessageSplitter. For example:

@Bean

public IntegrationFlow splitFlow() {

 return IntegrationFlows.from("splitInput")

 .split(s ->

 s.applySequence(false).get().getT2().setDelimiters(","))

 .channel(MessageChannels.executor(this.taskExecutor()))

 .get();

}

This creates a splitter that splits a message containing a comma delimited String. Note: the getT2()
method comes from Tuple Collection which is the result of EndpointSpec.get() and represents
a pair of ConsumerEndpointFactoryBean and DefaultMessageSplitter for the example
above.

9.11 Aggregators and Resequencers

An Aggregator is conceptually the converse of a Splitter. It aggregates a sequence of individual
messages into a single message and is necessarily more complex. By default, an aggregator will return
a message containing a collection of payloads from incoming messages. The same rules are applied
for the Resequencer:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 194

@Bean

public IntegrationFlow splitAggregateFlow() {

 return IntegrationFlows.from("splitAggregateInput")

 .split()

 .channel(MessageChannels.executor(this.taskExecutor()))

 .resequence()

 .aggregate()

 .get();

}

The above is a canonical example of splitter/aggregator pattern. The split() method splits the list into
individual messages and sends them to the ExecutorChannel. The resequence() method reorders
messages by sequence details from message headers. The aggregate() method just collects those
messages to the result list.

However, you may change the default behavior by specifying a release strategy and correlation strategy,
among other things. Consider the following:

.aggregate(a ->

 a.correlationStrategy(m -> m.getHeaders().get("myCorrelationKey"))

 .releaseStrategy(g -> g.size() > 10)

 .messageStore(messageStore()))

The similar Lambda configurations are provided for the resequence() EIP-method.

9.12 ServiceActivators (.handle())

The .handle() EIP-method’s goal is to invoke any MessageHandler implementation or any
method on some POJO. Another option to define "activity" via Lambda expression. Hence a generic
GenericHandler<P> functional interface has been introduced. Its handle method requires two
arguments - P payload and Map<String, Object> headers. Having that we can define a flow
like this:

@Bean

public IntegrationFlow myFlow() {

 return IntegrationFlows.from("flow3Input")

 .<Integer>handle((p, h) -> p * 2)

 .get();

}

However one main goal of Spring Integration an achieving of loose coupling via runtime type
conversion from message payload to target arguments of message handler. Since Java doesn’t support
generic type resolution for Lambda classes, we introduced a workaround with additional payloadType
argument for the most EIP-methods and LambdaMessageProcessor, which delegates the hard
conversion work to the Spring’s ConversionService using provided type and requested message
to target method arguments. The IntegrationFlow might look like this:

@Bean

public IntegrationFlow integerFlow() {

 return IntegrationFlows.from("input")

 .<byte[], String>transform(p - > new String(p, "UTF-8"))

 .handle(Integer.class, (p, h) -> p * 2)

 .get();

}

Of course we register some custom BytesToIntegerConverter within ConversionService and
get rid of that additional .transform().

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 195

9.13 Operator log()

For convenience to log the message journey throw the Spring Integration flow (<logging-
channel-adapter>), a log() operator is presented. Underneath it is represented by the WireTap
ChannelInterceptor and LoggingHandler as subscriber. It is responsible to log message
incoming into the next endpoint or for the current channel:

.filter(...)

.log(LoggingHandler.Level.ERROR, "test.category", m -> m.getHeaders().getId())

.route(...)

In this example an id header will be logged with ERROR level onto "test.category" only for messages
passed the filter and before routing.

9.14 MessageChannelSpec.wireTap()

A .wireTap() fluent API exists for MessageChannelSpec builders. A target configuration gains much
more from Java DSL usage:

@Bean

public QueueChannelSpec myChannel() {

 return MessageChannels.queue()

 .wireTap("loggingFlow.input");

}

@Bean

public IntegrationFlow loggingFlow() {

 return f -> f.log();

}

Important

The log() or wireTap() opearators are applied to the current MessageChannel (if it
is an instance of ChannelInterceptorAware) or an intermediate DirectChannel is
injected into the flow for the currently configured endpoint. In the example below the
WireTap interceptor is added to the myChannel directly, because DirectChannel implements
ChannelInterceptorAware:

@Bean

MessageChannel myChannel() {

 return new DirectChannel();

}

...

 .channel(myChannel())

 .log()

}

When current MessageChannel doesn’t implement ChannelInterceptorAware, an implicit
DirectChannel and BridgeHandler are injected into the IntegrationFlow and the WireTap is
added to this new DirectChannel. And when there is not any channel declaration like in this sample:

.handle(...)

.log()

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 196

an implicit DirectChannel is injected in the current position of the IntegrationFlow and it is used
as an output channel for the currently configured ServiceActivatingHandler (the .handle()
above).

Important

If log() or wireTap() are used in the end of flow they are considered one-way
MessageHandler s. If the integration flow is expected to return a reply, a bridge() should be
added to the end, after log() or wireTap():

@Bean

public IntegrationFlow sseFlow() {

 return IntegrationFlows

 .from(WebFlux.inboundGateway("/sse")

 .requestMapping(m ->

 m.produces(MediaType.TEXT_EVENT_STREAM_VALUE)))

 .handle((p, h) -> Flux.just("foo", "bar", "baz"))

 .log(LoggingHandler.Level.WARN)

 .bridge()

 .get();

}

9.15 Working With Message Flows

As we have seen, IntegrationFlowBuilder provides a top level API to produce Integration
components wired to message flows. This is convenient if your integration may be accomplished
with a single flow (which is often the case). Alternately IntegrationFlow s can be joined via
MessageChannel s.

By default, the MessageFlow behaves as a Chain in Spring Integration parlance. That is, the endpoints
are automatically wired implicitly via DirectChannel s. The message flow is not actually constructed
as a chain, affording much more flexibility. For example, you may send a message to any component
within the flow, if you know its inputChannel name, i.e., explicitly define it. You may also reference
externally defined channels within a flow to allow the use of channel adapters to enable remote transport
protocols, file I/O, and the like, instead of direct channels. As such, the DSL does not support the Spring
Integration chain element since it doesn’t add much value.

Since the Spring Integration Java DSL produces the same bean definition model as any other
configuration options and is based on the existing Spring Framework @Configuration infrastructure,
it can be used together with Integration XML definitions and wired with Spring Integration Messaging
Annotations configuration.

Another alternative to define direct IntegrationFlow s is based on a fact that IntegrationFlow
can be declared as Lambda too:

@Bean

public IntegrationFlow lambdaFlow() {

 return f -> f.filter("World"::equals)

 .transform("Hello "::concat)

 .handle(System.out::println);

}

The result of this definition is the same bunch of Integration components wired with implicit
direct channel. Only limitation is here, that this flow is started with named direct channel -
lambdaFlow.input. And Lambda flow can’t start from MessageSource or MessageProducer.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 197

9.16 FunctionExpression

The FunctionExpression (an implementation of SpEL Expression) has been introduced to get a
gain of Java and Lambda usage for the method and its generics context. The Function<T, R>
option is provided for the DSL components alongside with expression option, when there is the implicit
Strategy variant from Core Spring Integration. The usage may look like:

.enrich(e -> e.requestChannel("enrichChannel")

 .requestPayload(Message::getPayload)

 .propertyFunction("date", m -> new Date()))

The FunctionExpression also supports runtime type conversion as it is done in the standard
SpelExpression.

9.17 Sub Flows support

Some of if...else and publish-subscribe components provide the support to specify their logic
or mapping using Sub Flows. The simplest sample is .publishSubscribeChannel():

@Bean

public IntegrationFlow subscribersFlow() {

 return flow -> flow

 .publishSubscribeChannel(Executors.newCachedThreadPool(), s -> s

 .subscribe(f -> f

 .<Integer>handle((p, h) -> p / 2)

 .channel(c -> c.queue("subscriber1Results")))

 .subscribe(f -> f

 .<Integer>handle((p, h) -> p * 2)

 .channel(c -> c.queue("subscriber2Results"))))

 .<Integer>handle((p, h) -> p * 3)

 .channel(c -> c.queue("subscriber3Results"));

}

Of course the same result we can achieve with separate IntegrationFlow @Bean definitions, but we
hope you’ll find the subflow style of logic composition useful.

Similar publish-subscribe subflow composition provides .routeToRecipients().

Another sample is .discardFlow() on the .filter() instead of .discardChannel().

The .route() deserves special attention. As a sample:

@Bean

public IntegrationFlow routeFlow() {

 return f -> f

 .<Integer, Boolean>route(p -> p % 2 == 0,

 m -> m.channelMapping("true", "evenChannel")

 .subFlowMapping("false", sf ->

 sf.<Integer>handle((p, h) -> p * 3)))

 .transform(Object::toString)

 .channel(c -> c.queue("oddChannel"));

}

The .channelMapping() continues to work as in regular Router mapping, but the
.subFlowMapping() tied that subflow with main flow. In other words, any router’s subflow returns to
the main flow after .route().

Of course, subflows can be nested with any depth, but we don’t recommend to do that because, in fact,
even in the router case, adding complex subflows within a flow would quickly begin to look like a plate
of spaghetti and difficult for a human to parse.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 198

9.18 Using Protocol Adapters

All of the examples so far illustrate how the DSL supports a messaging architecture using the Spring
Integration programming model, but we haven’t done any real integration yet. This requires access to
remote resources via http, jms, amqp, tcp, jdbc, ftp, smtp, and the like, or access to the local file system.
Spring Integration supports all of these and more. Ideally, the DSL should offer first class support for all of
them but it is a daunting task to implement all of these and keep up as new adapters are added to Spring
Integration. So the expectation is that the DSL will continually be catching up with Spring Integration.

Anyway we are providing the hi-level API to define protocol-specific seamlessly. This is achieved with
Factory and Builder patterns and, of course, with Lambdas. The factory classes can be considered
"Namespace Factories", because they play the same role as XML namespace for components from the
concrete protocol-specific Spring Integration modules. Currently, Spring Integration Java DSL supports
Amqp, Feed, Jms, Files, (S)Ftp, Http, JPA, MongoDb, TCP/UDP, Mail, WebFlux and Scripts
namespace factories:

@Bean

public IntegrationFlow amqpFlow() {

 return IntegrationFlows.from(Amqp.inboundGateway(this.rabbitConnectionFactory, queue()))

 .transform("hello "::concat)

 .transform(String.class, String::toUpperCase)

 .get();

}

@Bean

public IntegrationFlow jmsOutboundGatewayFlow() {

 return IntegrationFlows.from("jmsOutboundGatewayChannel")

 .handle(Jms.outboundGateway(this.jmsConnectionFactory)

 .replyContainer(c ->

 c.concurrentConsumers(3)

 .sessionTransacted(true))

 .requestDestination("jmsPipelineTest"))

 .get();

}

@Bean

public IntegrationFlow sendMailFlow() {

 return IntegrationFlows.from("sendMailChannel")

 .handle(Mail.outboundAdapter("localhost")

 .port(smtpPort)

 .credentials("user", "pw")

 .protocol("smtp")

 .javaMailProperties(p -> p.put("mail.debug", "true")),

 e -> e.id("sendMailEndpoint"))

 .get();

}

We show here the usage of namespace factories as inline adapters declarations, however they can be
used from @Bean definitions to make the IntegrationFlow method-chain more readable.

We are soliciting community feedback on these namespace factories before we spend effort on others;
we’d also appreciate some prioritization for which adapters/gateways we should support next.

See more Java DSL samples in the protocol-specific chapter throughout this reference manual.

All other protocol channel adapters may be configured as generic beans and wired to the
IntegrationFlow:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 199

@Bean

public QueueChannelSpec wrongMessagesChannel() {

 return MessageChannels

 .queue()

 .wireTap("wrongMessagesWireTapChannel");

}

@Bean

public IntegrationFlow xpathFlow(MessageChannel wrongMessagesChannel) {

 return IntegrationFlows.from("inputChannel")

 .filter(new StringValueTestXPathMessageSelector("namespace-uri(/*)", "my:namespace"),

 e -> e.discardChannel(wrongMessagesChannel))

 .log(LoggingHandler.Level.ERROR, "test.category", m -> m.getHeaders().getId())

 .route(xpathRouter(wrongMessagesChannel))

 .get();

}

@Bean

public AbstractMappingMessageRouter xpathRouter(MessageChannel wrongMessagesChannel) {

 XPathRouter router = new XPathRouter("local-name(/*)");

 router.setEvaluateAsString(true);

 router.setResolutionRequired(false);

 router.setDefaultOutputChannel(wrongMessagesChannel);

 router.setChannelMapping("Tags", "splittingChannel");

 router.setChannelMapping("Tag", "receivedChannel");

 return router;

}

9.19 IntegrationFlowAdapter

The IntegrationFlow as an interface can be implemented directly and specified as component for
scanning:

@Component

public class MyFlow implements IntegrationFlow {

 @Override

 public void configure(IntegrationFlowDefinition<?> f) {

 f.<String, String>transform(String::toUpperCase);

 }

}

And yes, it is picked up by the IntegrationFlowBeanPostProcessor and correctly parsed and
registered in the application context.

For convenience and loosely coupled architecture the IntegrationFlowAdapter base class
implementation is provided. It requires a buildFlow() method implementation to produce an
IntegrationFlowDefinition using one of from() support methods:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 200

@Component

public class MyFlowAdapter extends IntegrationFlowAdapter {

 private final AtomicBoolean invoked = new tomicBoolean();

 public Date nextExecutionTime(TriggerContext triggerContext) {

 return this.invoked.getAndSet(true) ? null : new Date();

 }

 @Override

 protected IntegrationFlowDefinition<?> buildFlow() {

 return from(this, "messageSource",

 e -> e.poller(p -> p.trigger(this::nextExecutionTime)))

 .split(this)

 .transform(this)

 .aggregate(a -> a.processor(this, null), null)

 .enrichHeaders(Collections.singletonMap("foo", "FOO"))

 .filter(this)

 .handle(this)

 .channel(c -> c.queue("myFlowAdapterOutput"));

 }

 public String messageSource() {

 return "B,A,R";

 }

 @Splitter

 public String[] split(String payload) {

 return StringUtils.commaDelimitedListToStringArray(payload);

 }

 @Transformer

 public String transform(String payload) {

 return payload.toLowerCase();

 }

 @Aggregator

 public String aggregate(List<String> payloads) {

 return payloads.stream().collect(Collectors.joining());

 }

 @Filter

 public boolean filter(@Header Optional<String> foo) {

 return foo.isPresent();

 }

 @ServiceActivator

 public String handle(String payload, @Header String foo) {

 return payload + ":" + foo;

 }

}

9.20 Dynamic and runtime Integration Flows

The IntegrationFlow s and therefore all its dependant components can be registered at runtime.
This was done previously by the BeanFactory.registerSingleton() hook and now via newly
introduced in the Spring Framework 5.0 programmatic BeanDefinition registration with the
instanceSupplier hook:

BeanDefinition beanDefinition =

 BeanDefinitionBuilder.genericBeanDefinition((Class<Object>) bean.getClass(), () -> bean)

 .getRawBeanDefinition();

((BeanDefinitionRegistry) this.beanFactory).registerBeanDefinition(beanName, beanDefinition);

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 201

and all the necessary bean initialization and lifecycle is done automatically as it is with the standard
context configuration bean definitions.

To simplify the development experience Spring Integration introduced IntegrationFlowContext to
register and manage IntegrationFlow instances at runtime:

@Autowired

private AbstractServerConnectionFactory server1;

@Autowired

private IntegrationFlowContext flowContext;

...

@Test

public void testTcpGateways() {

 TestingUtilities.waitListening(this.server1, null);

 IntegrationFlow flow = f -> f

 .handle(Tcp.outboundGateway(Tcp.netClient("localhost", this.server1.getPort())

 .serializer(TcpCodecs.crlf())

 .deserializer(TcpCodecs.lengthHeader1())

 .id("client1"))

 .remoteTimeout(m -> 5000))

 .transform(Transformers.objectToString());

 IntegrationFlowRegistration theFlow = this.flowContext.registration(flow).register();

 assertThat(theFlow.getMessagingTemplate().convertSendAndReceive("foo", String.class),

 equalTo("FOO"));

}

This is useful when we have multi configuration options and have to create several instances of similar
flows. So, we can iterate our options and create and register IntegrationFlow s within loop. Another
variant when our source of data isn’t Spring-based and we must create it on the fly. Such a sample is
Reactive Streams event source:

Flux<Message<?>> messageFlux =

 Flux.just("1,2,3,4")

 .map(v -> v.split(","))

 .flatMapIterable(Arrays::asList)

 .map(Integer::parseInt)

 .map(GenericMessage<Integer>::new);

QueueChannel resultChannel = new QueueChannel();

IntegrationFlow integrationFlow =

 IntegrationFlows.from(messageFlux)

 .<Integer, Integer>transform(p -> p * 2)

 .channel(resultChannel)

 .get();

this.integrationFlowContext.registration(integrationFlow)

 .register();

The IntegrationFlowRegistrationBuilder (as a result of the
IntegrationFlowContext.registration()) can be used to specify a bean name for the
IntegrationFlow to register, to control its autoStartup and also for additional, non Integration
beans registration. Usually those additional beans are connection factories (AMQP, JMS, (S)FTP, TCP/
UDP etc.), serializers/deserializers or any other required support components.

Such a dynamically registered IntegrationFlow and all its dependant beans can
be removed afterwards using IntegrationFlowRegistration.destroy() callback. See
IntegrationFlowContext JavaDocs for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 202

9.21 IntegrationFlow as Gateway

The IntegrationFlow can start from the service interface providing GatewayProxyFactoryBean
component:

public interface ControlBusGateway {

 void send(String command);

}

...

@Bean

public IntegrationFlow controlBusFlow() {

 return IntegrationFlows.from(ControlBusGateway.class)

 .controlBus()

 .get();

}

All the proxy for interface methods are supplied with the channel to send messages to the
next integration component in the IntegrationFlow. The service interface can be marked with
the @MessagingGateway as well as methods with the @Gateway annotations. Nevertheless the
requestChannel is ignored and overridden with that internal channel for the next component in the
IntegrationFlow. Otherwise such a configuration via IntegrationFlow won’t make sense.

By default a GatewayProxyFactoryBean gets a conventional bean name like
[FLOW_BEAN_NAME.gateway]. That id can be changed via @MessagingGateway.name() attribute
or the overloaded from(Class<?> serviceInterface, String beanName) factory method.

With the Java 8 on board we even can create such an Integration Gateway with the
java.util.function interfaces:

@Bean

public IntegrationFlow errorRecovererFlow() {

 return IntegrationFlows.from(Function.class, "errorRecovererFunction")

 .handle((GenericHandler<?>) (p, h) -> {

 throw new RuntimeException("intentional");

 }, e -> e.advice(retryAdvice()))

 .get();

}

That can be used lately as:

@Autowired

@Qualifier("errorRecovererFunction")

private Function<String, String> errorRecovererFlowGateway;

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 203

10. System Management

10.1 Metrics and Management

Configuring Metrics Capture

Note

Prior to version 4.2 metrics were only available when JMX was enabled. See Section 10.2, “JMX
Support”.

To enable MessageSource, MessageChannel and MessageHandler metrics, add an
<int:management/> bean to the application context, or annotate one of your @Configuration
classes with @EnableIntegrationManagement. MessageSource s only maintain counts,
MessageChannel s and MessageHandler s maintain duration statistics in addition to counts. See
the section called “MessageChannel Metric Features” and the section called “MessageHandler Metric
Features” below.

This causes the automatic registration of the IntegrationManagementConfigurer bean in the
application context. Only one such bean can exist in the context and it must have the bean name
integrationManagementConfigurer if registered manually via a <bean/> definition. This bean
applies it’s configuration to beans after all beans in the context have been instantiated.

In addition to metrics, you can control debug logging in the main message flow. It has been found that
in very high volume applications, even calls to isDebugEnabled() can be quite expensive with some
logging subsystems. You can disable all such logging to avoid this overhead; exception logging (debug
or otherwise) are not affected by this setting.

A number of options are available:

<int:management

 default-logging-enabled="true" ❶

 default-counts-enabled="false" ❷

 default-stats-enabled="false" ❸

 counts-enabled-patterns="foo, !baz, ba*" ❹

 stats-enabled-patterns="fiz, buz" ❺

 metrics-factory="myMetricsFactory" /> ❻

@Configuration

@EnableIntegration

@EnableIntegrationManagement(

 defaultLoggingEnabled = "true", ❶

 defaultCountsEnabled = "false", ❷

 defaultStatsEnabled = "false", ❸

 countsEnabled = { "foo", "${count.patterns}" }, ❹

 statsEnabled = { "qux", "!*" }, ❺

 MetricsFactory = "myMetricsFactory") ❻

public static class ContextConfiguration {

...

}

❶❶ Set to false to disable all logging in the main message flow, regardless of the log system category
settings. Set to true to enable debug logging (if also enabled by the logging subsystem). Only
applied if you have not explicitly configured the setting in a bean definition. Default true.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 204

❷❷ Enable or disable count metrics for components not matching one of the patterns in <4>. Only
applied if you have not explicitly configured the setting in a bean definition. Default false.

❸❸ Enable or disable statistical metrics for components not matching one of the patterns in <5>. Only
applied if you have not explicitly configured the setting in a bean definition. Default false.

❹❹ A comma-delimited list of patterns for beans for which counts should be enabled; negate the pattern
with !. First match wins (positive or negative). In the unlikely event that you have a bean name
starting with !, escape the ! in the pattern: \!foo positively matches a bean named !foo.

❺❺ A comma-delimited list of patterns for beans for which statistical metrics should be enabled; negate
the pattern with !. First match wins (positive or negative). In the unlikely event that you have a
bean name starting with !, escape the ! in the pattern: \!foo positively matches a bean named
!foo. Stats implies counts.

❻❻ A reference to a MetricsFactory. See the section called “Metrics Factory”.

At runtime, counts and statistics can be obtained by calling IntegrationManagementConfigurer
getChannelMetrics, getHandlerMetrics and getSourceMetrics, returning
MessageChannelMetrics, MessageHandlerMetrics and MessageSourceMetrics

respectively.

See the javadocs for complete information about these classes.

When JMX is enabled (see Section 10.2, “JMX Support”), these metrics are also exposed by the
IntegrationMBeanExporter.

Important

defaultLoggingEnabled, defaultCountsEnabled, and defaultStatsEnabled are only
applied if you have not explicitly configured the corresponding setting in a bean definition.

Starting with version 5.0.2, the framework will automatically detect if there is a single MetricsFactory
bean in the application context and use it instead of the default metrics factory.

Micrometer Integration

Starting with version 5.0.3, the presence of a Micrometer MeterRegistry in the application context will
trigger support for Micrometer metrics in addition to the inbuilt metrics (inbuilt metrics will be removed
in a future release).

Important

Micrometer was first supported in version 5.0.2, but changes were made to the Micrometer
Meters in version 5.0.3 to make them more suitable for use in dimensional systems.

Simply add a MeterRegistry bean of choice to the application context.

For each MessageHandler and MessageChannel, timers are registered. For each MessageSource,
a counter is registered.

This only applies to objects that extend AbstractMessageHandler, AbstractMessageChannel
and AbstractMessageSource respectively (which is the case for most framework components).

With Micrometer metrics, the statsEnabled flag takes no effect, since statistics capture is delegated
to Micrometer. The countsEnabled flag controls whether the Micrometer Meter s are updated when
processing each message.

https://micrometer.io/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 205

The Timer Meters for send operations on message channels have the following name/tags:

• name : spring.integration.send

• tag : type:channel

• tag : name:<componentName>

• tag : result:(success|failure)

• tag : exception:(none|exception simple class name)

• description : Send processing time

(A failure result with a none exception means the channel send() operation returned false).

The Counter Meters for receive operations on pollable message channels have the following names/
tags:

• name : spring.integration.receive

• tag : type:channel

• tag : name:<componentName>

• tag : result:(success|failure)

• tag : exception:(none|exception simple class name)

• description : Messages received

The Timer Meters for operations on message handlers have the following name/tags:

• name : spring.integration.send

• tag : type:handler

• tag : name:<componentName>

• tag : result:(success|failure)

• tag : exception:(none|exception simple class name)

• description : Send processing time

The Counter meters for message sources have the following names/tags:

• name : spring.integration.receive

• tag : type:source

• tag : name:<componentName>

• tag : result:success

• tag : exception:none

• description : Messages received

MessageChannel Metric Features

These legacy metrics will be removed in a future release; see the section called “Micrometer Integration”.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 206

Message channels report metrics according to their concrete type. If you are looking at a
DirectChannel, you will see statistics for the send operation. If it is a QueueChannel, you will also
see statistics for the receive operation, as well as the count of messages that are currently buffered by
this QueueChannel. In both cases there are some metrics that are simple counters (message count
and error count), and some that are estimates of averages of interesting quantities. The algorithms used
to calculate these estimates are described briefly in the section below.

Table 10.1. MessageChannel Metrics

Metric Type Example Algorithm

Count Send Count Simple incrementer. Increases by one when an
event occurs.

Error Count Send Error Count Simple incrementer. Increases by one when an
send results in an error.

Duration Send Duration (method
execution time in milliseconds)

Exponential Moving Average with decay
factor (10 by default). Average of the method
execution time over roughly the last 10 (default)
measurements.

Rate Send Rate (number of
operations per second)

Inverse of Exponential Moving Average of the
interval between events with decay in time
(lapsing over 60 seconds by default) and per
measurement (last 10 events by default).

Error Rate Send Error Rate (number of
errors per second)

Inverse of Exponential Moving Average of the
interval between error events with decay in time
(lapsing over 60 seconds by default) and per
measurement (last 10 events by default).

Ratio Send Success Ratio (ratio of
successful to total sends)

Estimate the success ratio as the Exponential
Moving Average of the series composed of
values 1 for success and 0 for failure (decaying
as per the rate measurement over time and
events by default). Error ratio is 1 - success ratio.

MessageHandler Metric Features

These legacy metrics will be removed in a future release; see the section called “Micrometer Integration”.

The following table shows the statistics maintained for message handlers. Some metrics are simple
counters (message count and error count), and one is an estimate of averages of send duration. The
algorithms used to calculate these estimates are described briefly in the table below:

Table 10.2. MessageHandlerMetrics

Metric Type Example Algorithm

Count Handle Count Simple incrementer. Increases by one when an
event occurs.

Error Count Handler Error Count Simple incrementer. Increases by one when an
invocation results in an error.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 207

Metric Type Example Algorithm

Active Count Handler Active Count Indicates the number of currently active
threads currently invoking the handler (or any
downstream synchronous flow).

Duration Handle Duration (method
execution time in milliseconds)

Exponential Moving Average with decay
factor (10 by default). Average of the method
execution time over roughly the last 10 (default)
measurements.

Time-Based Average Estimates

A feature of the time-based average estimates is that they decay with time if no new measurements
arrive. To help interpret the behaviour over time, the time (in seconds) since the last measurement is
also exposed as a metric.

There are two basic exponential models: decay per measurement (appropriate for duration and anything
where the number of measurements is part of the metric), and decay per time unit (more suitable for rate
measurements where the time in between measurements is part of the metric). Both models depend
on the fact that

S(n) = sum(i=0,i=n) w(i) x(i) has a special form when w(i) = r^i, with r=constant:

S(n) = x(n) + r S(n-1) (so you only have to store S(n-1), not the whole series x(i), to
generate a new metric estimate from the last measurement). The algorithms used in the duration metrics
use r=exp(-1/M) with M=10. The net effect is that the estimate S(n) is more heavily weighted to
recent measurements and is composed roughly of the last M measurements. So M is the "window" or
lapse rate of the estimate In the case of the vanilla moving average, i is a counter over the number of
measurements. In the case of the rate we interpret i as the elapsed time, or a combination of elapsed
time and a counter (so the metric estimate contains contributions roughly from the last M measurements
and the last T seconds).

Metrics Factory

A strategy interface MetricsFactory has been introduced allowing you to provide custom
channel metrics for your MessageChannel s and MessageHandler s. By default, a
DefaultMetricsFactory provides default implementation of MessageChannelMetrics and
MessageHandlerMetrics which are described above. To override the default MetricsFactory
configure it as described above, by providing a reference to your MetricsFactory bean instance.
You can either customize the default implementations as described in the next bullet, or provide
completely different implementations by extending AbstractMessageChannelMetrics and/or
AbstractMessageHandlerMetrics.

Also see the section called “Micrometer Integration”.

In addition to the default metrics factory described above, the framework provides the
AggregatingMetricsFactory. This factory creates AggregatingMessageChannelMetrics
and AggregatingMessageHandlerMetrics. In very high volume scenarios, the cost of capturing
statistics can be prohibitive (2 calls to the system time and storing the data for each message). The
aggregating metrics aggregate the response time over a sample of messages. This can save significant
CPU time.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 208

Caution

The statistics will be skewed if messages arrive in bursts. These metrics are intended for use with
high, constant-volume, message rates.

<bean id="aggregatingMetricsFactory"

 class="org.springframework.integration.support.management.AggregatingMetricsFactory">

 <constructor-arg value="1000" /> <!-- sample size -->

</bean>

The above configuration aggregates the duration over 1000 messages. Counts (send, error) are
maintained per-message but the statistics are per 1000 messages.

• Customizing the Default Channel/Handler Statistics

See the section called “Time-Based Average Estimates” and the Javadocs for the
ExponentialMovingAverage* classes for more information about these values.

By default, the DefaultMessageChannelMetrics and DefaultMessageHandlerMetrics use a
window of 10 measurements, a rate period of 1 second (rate per second) and a decay lapse period
of 1 minute.

If you wish to override these defaults, you can provide a custom MetricsFactory that returns
appropriately configured metrics and provide a reference to it to the MBean exporter as described above.

Example:

public static class CustomMetrics implements MetricsFactory {

 @Override

 public AbstractMessageChannelMetrics createChannelMetrics(String name) {

 return new DefaultMessageChannelMetrics(name,

 new ExponentialMovingAverage(20, 1000000.),

 new ExponentialMovingAverageRate(2000, 120000, 30, true),

 new ExponentialMovingAverageRatio(130000, 40, true),

 new ExponentialMovingAverageRate(3000, 140000, 50, true));

 }

 @Override

 public AbstractMessageHandlerMetrics createHandlerMetrics(String name) {

 return new DefaultMessageHandlerMetrics(name, new ExponentialMovingAverage(20, 1000000.));

 }

}

• Advanced Customization

The customizations described above are wholesale and will apply to all appropriate beans exported by
the MBean exporter. This is the extent of customization available using XML configuration.

Individual beans can be provided with different implementations using java @Configuration or
programmatically at runtime, after the application context has been refreshed, by invoking the
configureMetrics methods on AbstractMessageChannel and AbstractMessageHandler.

• Performance Improvement

Previously, the time-based metrics (see the section called “Time-Based Average Estimates”) were
calculated in real time. The statistics are now calculated when retrieved instead. This resulted in a

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 209

significant performance improvement, at the expense of a small amount of additional memory for each
statistic. As discussed in the bullet above, the statistics can be disabled altogether, while retaining the
MBean allowing the invocation of Lifecycle methods.

10.2 JMX Support

Spring Integration provides Channel Adapters for receiving and publishing JMX Notifications. There is
also an_Inbound Channel Adapter_ for polling JMX MBean attribute values, and an Outbound Channel
Adapter for invoking JMX MBean operations.

Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes
notifications to which this listener should be registered. A very simple configuration might look like this:

<int-jmx:notification-listening-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=publisher"/>

Tip

The notification-listening-channel-adapter registers with an MBeanServer at startup, and the
default bean name is mbeanServer which happens to be the same bean name generated when
using Spring’s <context:mbean-server/> element. If you need to use a different name, be sure to
include the_mbean-server_ attribute.

The adapter can also accept a reference to a NotificationFilter and a handback Object to provide
some context that is passed back with each Notification. Both of those attributes are optional. Extending
the above example to include those attributes as well as an explicit MBeanServer bean name would
produce the following:

<int-jmx:notification-listening-channel-adapter id="adapter"

 channel="channel"

 mbean-server="someServer"

 object-name="example.domain:name=somePublisher"

 notification-filter="notificationFilter"

 handback="myHandback"/>

The Notification-listening Channel Adapter is event-driven and registered with the MBeanServer
directly. It does not require any poller configuration.

Note

For this component only, the object-name attribute can contain an ObjectName pattern (e.g.
"org.foo:type=Bar,name=*") and the adapter will receive notifications from all MBeans with
ObjectNames that match the pattern. In addition, the object-name attribute can contain a SpEL
reference to a <util:list/> of ObjectName patterns:

<jmx:notification-listening-channel-adapter id="manyNotificationsAdapter"

 channel="manyNotificationsChannel"

 object-name="#{patterns}"/>

<util:list id="patterns">

 <value>org.foo:type=Foo,name=*</value>

 <value>org.foo:type=Bar,name=*</value>

</util:list>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 210

The names of the located MBean(s) will be logged when DEBUG level logging is enabled.

Notification Publishing Channel Adapter

The Notification-publishing Channel Adapter is relatively simple. It only requires a JMX ObjectName in
its configuration as shown below.

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=publisher"/>

It does also require that an MBeanExporter be present in the context. That is why the <context:mbean-
export/> element is shown above as well.

When Messages are sent to the channel for this adapter, the Notification is created from the Message
content. If the payload is a String it will be passed as the message text for the Notification. Any other
payload type will be passed as the userData of the Notification.

JMX Notifications also have a type, and it should be a dot-delimited String. There are two ways to
provide the type. Precedence will always be given to a Message header value associated with the
JmxHeaders.NOTIFICATION_TYPE key. On the other hand, you can rely on a fallback default-
notification-type attribute provided in the configuration.

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=publisher"

 default-notification-type="some.default.type"/>

Attribute Polling Channel Adapter

The Attribute Polling Channel Adapter is useful when you have a requirement, to periodically check on
some value that is available through an MBean as a managed attribute. The poller can be configured
in the same way as any other polling adapter in Spring Integration (or it’s possible to rely on the default
poller). The object-name and attribute-name are required. An MBeanServer reference is also required,
but it will automatically check for a bean named mbeanServer by default, just like the Notification-
listening Channel Adapter described above.

<int-jmx:attribute-polling-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=someService"

 attribute-name="InvocationCount">

 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>

</int-jmx:attribute-polling-channel-adapter>

Tree Polling Channel Adapter

The Tree Polling Channel Adapter queries the JMX MBean tree and sends a message with a payload
that is the graph of objects that matches the query. By default the MBeans are mapped to primitives and
simple Objects like Map, List and arrays - permitting simple transformation, for example, to JSON. An
MBeanServer reference is also required, but it will automatically check for a bean named mbeanServer
by default, just like the Notification-listening Channel Adapter described above. A basic configuration
would be:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 211

<int-jmx:tree-polling-channel-adapter id="adapter"

 channel="channel"

 query-name="example.domain:type=*">

 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>

</int-jmx:tree-polling-channel-adapter>

This will include all attributes on the MBeans selected. You can filter the attributes by providing an
MBeanObjectConverter that has an appropriate filter configured. The converter can be provided
as a reference to a bean definition using the converter attribute, or as an inner <bean/> definition.
A DefaultMBeanObjectConverter is provided which can take a MBeanAttributeFilter in its
constructor argument.

Two standard filters are provided; the NamedFieldsMBeanAttributeFilter allows you to specify a
list of attributes to include and the NotNamedFieldsMBeanAttributeFilter allows you to specify
a list of attributes to exclude. You can also implement your own filter

Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation
exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName
of the target MBean. Both of these must be explicitly provided via adapter configuration:

<int-jmx:operation-invoking-channel-adapter id="adapter"

 object-name="example.domain:name=TestBean"

 operation-name="ping"/>

Then the adapter only needs to be able to discover the mbeanServer bean. If a different bean name is
required, then provide the mbean-server attribute with a reference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs, whereas a List or array would be passed as
a simple argument list (with no explicit parameter names). If the operation requires a single parameter
value, then the payload can represent that single value, and if the operation requires no parameters,
then the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by Messages that need
not contain headers, then that option works well.

Operation Invoking Outbound Gateway

Similar to the operation-invoking-channel-adapter Spring Integration also provides a operation-invoking-
outbound-gateway, which could be used when dealing with non-void operations and a return value
is required. Such return value will be sent as message payload to the reply-channel specified by this
Gateway.

<int-jmx:operation-invoking-outbound-gateway request-channel="requestChannel"

 reply-channel="replyChannel"

 object-name="o.s.i.jmx.config:type=TestBean,name=testBeanGateway"

 operation-name="testWithReturn"/>

If the reply-channel attribute is not provided, the reply message will be sent to the channel that is
identified by the IntegrationMessageHeaderAccessor.REPLY_CHANNEL header. That header
is typically auto-created by the entry point into a message flow, such as any Gateway component.
However, if the message flow was started by manually creating a Spring Integration Message and

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 212

sending it directly to a Channel, then you must specify the message header explicitly or use the provided
reply-channel attribute.

MBean Exporter

Spring Integration components themselves may be exposed as MBeans when
the IntegrationMBeanExporter is configured. To create an instance of the
IntegrationMBeanExporter, define a bean and provide a reference to an MBeanServer and
a domain name (if desired). The domain can be left out, in which case the default domain is
org.springframework.integration.

<int-jmx:mbean-export id="integrationMBeanExporter"

 default-domain="my.company.domain" server="mbeanServer"/>

<bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean">

 <property name="locateExistingServerIfPossible" value="true"/>

</bean>

Important

The MBean exporter is orthogonal to the one provided in Spring core - it registers message
channels and message handlers, but not itself. You can expose the exporter itself, and certain
other components in Spring Integration, using the standard <context:mbean-export/> tag.
The exporter has a some metrics attached to it, for instance a count of the number of active
handlers and the number of queued messages.

It also has a useful operation, as discussed in the section called “Orderly Shutdown Managed
Operation”.

Starting with Spring Integration 4.0 the @EnableIntegrationMBeanExport annotation has been
introduced for convenient configuration of a default (integrationMbeanExporter) bean of type
IntegrationMBeanExporter with several useful options at the @Configuration class level. For
example:

@Configuration

@EnableIntegration

@EnableIntegrationMBeanExport(server = "mbeanServer", managedComponents = "input")

public class ContextConfiguration {

 @Bean

 public MBeanServerFactoryBean mbeanServer() {

 return new MBeanServerFactoryBean();

 }

}

If there is a need to provide more options, or have several IntegrationMBeanExporter beans e.g.
for different MBean Servers, or to avoid conflicts with the standard Spring MBeanExporter (e.g. via
@EnableMBeanExport), you can simply configure an IntegrationMBeanExporter as a generic
bean.

MBean ObjectNames

All the MessageChannel, MessageHandler and MessageSource instances in the application are
wrapped by the MBean exporter to provide management and monitoring features. The generated JMX
object names for each component type are listed in the table below:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 213

Table 10.3. MBean ObjectNames

Component Type ObjectName

MessageChannel o.s.i:type=MessageChannel,name=<channelName>

MessageSource o.s.i:type=MessageSource,name=<channelName>,bean=<source>

MessageHandler o.s.i:type=MessageSource,name=<channelName>,bean=<source>

The bean attribute in the object names for sources and handlers takes one of the values in the table
below:

Table 10.4. bean ObjectName Part

Bean Value Description

endpoint The bean name of the enclosing endpoint (e.g. <service-activator>) if
there is one

anonymous An indication that the enclosing endpoint didn’t have a user-specified bean
name, so the JMX name is the input channel name

internal For well-known Spring Integration default components

handler/source None of the above: fallback to the toString() of the object being
monitored (handler or source)

Custom elements can be appended to the object name by providing a reference to a Properties
object in the object-name-static-properties attribute.

Also, since Spring Integration 3.0, you can use a custom ObjectNamingStrategy using the object-
naming-strategy attribute. This permits greater control over the naming of the MBeans. For
example, to group all Integration MBeans under an Integration type. A simple custom naming strategy
implementation might be:

public class Namer implements ObjectNamingStrategy {

 private final ObjectNamingStrategy realNamer = new KeyNamingStrategy();

 @Override

 public ObjectName getObjectName(Object managedBean, String beanKey) throws MalformedObjectNameException

 {

 String actualBeanKey = beanKey.replace("type=", "type=Integration,componentType=");

 return realNamer.getObjectName(managedBean, actualBeanKey);

 }

}

The beanKey argument is a String containing the standard object name beginning with the default-
domain and including any additional static properties. This example simply moves the standard type
part to componentType and sets the type to Integration, enabling selection of all Integration MBeans
in one query:"my.domain:type=Integration,*. This also groups the beans under one tree entry
under the domain in tools like VisualVM.

Note

The default naming strategy is a MetadataNamingStrategy. The exporter propagates the
default-domain to that object to allow it to generate a fallback object name if parsing of the

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/ObjectNamingStrategy.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/MetadataNamingStrategy.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 214

bean key fails. If your custom naming strategy is a MetadataNamingStrategy (or subclass), the
exporter will not propagate the default-domain; you will need to configure it on your strategy
bean.

JMX Improvements

Version 4.2 introduced some important improvements, representing a fairly major overhaul to the JMX
support in the framework. These resulted in a significant performance improvement of the JMX statistics
collection and much more control thereof, but has some implications for user code in a few specific
(uncommon) situations. These changes are detailed below, with a caution where necessary.

• Metrics Capture

Previously, MessageSource, MessageChannel and MessageHandler metrics were captured by
wrapping the object in a JDK dynamic proxy to intercept appropriate method calls and capture the
statistics. The proxy was added when an integration MBean exporter was declared in the context.

Now, the statistics are captured by the beans themselves; see Section 10.1, “Metrics and Management”
for more information.

Warning

This change means that you no longer automatically get an MBean or statistics
for custom MessageHandler implementations, unless those custom handlers extend
AbstractMessageHandler. The simplest way to resolve this is to extend
AbstractMessageHandler. If that’s not possible, or desired, another work-around
is to implement the MessageHandlerMetrics interface. For convenience, a
DefaultMessageHandlerMetrics is provided to capture and report statistics. Invoke the
beforeHandle and afterHandle at the appropriate times. Your MessageHandlerMetrics
methods can then delegate to this object to obtain each statistic. Similarly,
MessageSource implementations must extend AbstractMessageSource or implement
MessageSourceMetrics. Message sources only capture a count so there is no provided
convenience class; simply maintain the count in an AtomicLong field.

The removal of the proxy has two additional benefits; 1) stack traces in exceptions are reduced (when
JMX is enabled) because the proxy is not on the stack; 2) cases where 2 MBeans were exported for
the same bean now only export a single MBean with consolidated attributes/operations (see the MBean
consolidation bullet below).

• Resolution

System.nanoTime() is now used to capture times instead of System.currentTimeMillis().
This may provide more accuracy on some JVMs, espcially when durations of less than 1 millisecond
are expected

• Setting Initial Statistics Collection State

Previously, when JMX was enabled, all sources, channels, handlers captured statistics. It is now
possible to control whether the statisics are enabled on an individual component. Further, it is possible
to capture simple counts on MessageChannel s and MessageHandler s instead of the complete
time-based statistics. This can have significant performance implications because you can selectively
configure where you need detailed statistics, as well as enable/disable at runtime.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 215

See Section 10.1, “Metrics and Management”.

• @IntegrationManagedResource

Similar to the @ManagedResource annotation, the @IntegrationManagedResource marks a
class as eligible to be exported as an MBean; however, it will only be exported if there is an
IntegrationMBeanExporter in the application context.

Certain Spring Integration classes (in the org.springframework.integration) package)
that were previously annotated with`@ManagedResource` are now annotated with both
@ManagedResource and @IntegrationManagedResource. This is for backwards compatibility
(see the next bullet). Such MBeans will be exported by any context MBeanServeror an
IntegrationMBeanExporter (but not both - if both exporters are present, the bean is exported by
the integration exporter if the bean matches a managed-components pattern).

• Consolidated MBeans

Certain classes within the framework (mapping routers for example) have additional attributes/
operations over and above those provided by metrics and Lifecycle. We will use a Router as an
example here.

Previously, beans of these types were exported as two distinct MBeans:

1) the metrics MBean (with an objectName such as:
intDomain:type=MessageHandler,name=myRouter,bean=endpoint). This MBean had
metrics attributes and metrics/Lifecycle operations.

2) a second MBean (with an objectName such as:
ctxDomain:name=org.springframework.integration.config.RouterFactoryBean#0

,type=MethodInvokingRouter) was exported with the channel mappings attribute and operations.

Now, the attributes and operations are consolidated into a single MBean. The objectName
will depend on the exporter. If exported by the integration MBean exporter, the objectName
will be, for example: intDomain:type=MessageHandler,name=myRouter,bean=endpoint.
If exported by another exporter, the objectName will be, for example:
ctxDomain:name=org.springframework.integration.config.RouterFactoryBean#0

,type=MethodInvokingRouter. There is no difference between these MBeans (aside from the
objectName), except that the statistics will not be enabled (the attributes will be 0) by exporters other
than the integration exporter; statistics can be enabled at runtime using the JMX operations. When
exported by the integration MBean exporter, the initial state can be managed as described above.

Warning

If you are currently using the second MBean to change, for example, channel mappings, and you
are using the integration MBean exporter, note that the objectName has changed because of the
MBean consolidation. There is no change if you are not using the integration MBean exporter.

• MBean Exporter Bean Name Patterns

Previously, the managed-components patterns were inclusive only. If a bean name matched one of
the patterns it would be included. Now, the pattern can be negated by prefixing it with !. i.e. "!foo*,
foox" will match all beans that don’t start with foo, except foox. Patterns are evaluated left to right
and the first match (positive or negative) wins and no further patterns are applied.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 216

Warning

The addition of this syntax to the pattern causes one possible (although perhaps unlikely) problem.
If you have a bean "!foo"and you included a pattern "!foo" in your MBean exporter’s
managed-components patterns; it will no long match; the pattern will now match all beans not
named foo. In this case, you can escape the ! in the pattern with \. The pattern "\!foo" means
match a bean named "!foo".

• IntegrationMBeanExporter changes

The IntegrationMBeanExporter no longer implements SmartLifecycle; this means that
start() and stop() operations are no longer available to register/unregister MBeans. The MBeans
are now registered during context initialization and unregistered when the context is destroyed.

Orderly Shutdown Managed Operation

The MBean exporter provides a JMX operation to shut down the application in an orderly manner,
intended for use before terminating the JVM.

public void stopActiveComponents(long howLong)

Its use and operation are described in Section 10.7, “Orderly Shutdown”.

10.3 Message History

The key benefit of a messaging architecture is loose coupling where participating components do not
maintain any awareness about one another. This fact alone makes your application extremely flexible,
allowing you to change components without affecting the rest of the flow, change messaging routes,
 message consuming styles (polling vs event driven), and so on. However, this unassuming style of
architecture could prove to be difficult when things go wrong. When debugging, you would probably like
to get as much information about the message as you can (its origin, channels it has traversed, etc.)

Message History is one of those patterns that helps by giving you an option to maintain some level
of awareness of a message path either for debugging purposes or to maintain an audit trail. Spring
integration provides a simple way to configure your message flows to maintain the Message History
by adding a header to the Message and updating that header every time a message passes through
a tracked component.

Message History Configuration

To enable Message History all you need is to define the message-history element in your
configuration.

<int:message-history/>

Now every named component (component that has an id defined) will be tracked. The framework will
set the history header in your Message. Its value is very simple - List<Properties>.

<int:gateway id="sampleGateway"

 service-interface="org.springframework.integration.history.sample.SampleGateway"

 default-request-channel="bridgeInChannel"/>

<int:chain id="sampleChain" input-channel="chainChannel" output-channel="filterChannel">

 <int:header-enricher>

 <int:header name="baz" value="baz"/>

 </int:header-enricher>

</int:chain>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 217

The above configuration will produce a very simple Message History structure:

[{name=sampleGateway, type=gateway, timestamp=1283281668091},

 {name=sampleChain, type=chain, timestamp=1283281668094}]

To get access to Message History all you need is access the MessageHistory header. For example:

Iterator<Properties> historyIterator =

 message.getHeaders().get(MessageHistory.HEADER_NAME, MessageHistory.class).iterator();

assertTrue(historyIterator.hasNext());

Properties gatewayHistory = historyIterator.next();

assertEquals("sampleGateway", gatewayHistory.get("name"));

assertTrue(historyIterator.hasNext());

Properties chainHistory = historyIterator.next();

assertEquals("sampleChain", chainHistory.get("name"));

You might not want to track all of the components. To limit the history to certain components based
on their names, all you need is provide the tracked-components attribute and specify a comma-
delimited list of component names and/or patterns that match the components you want to track.

<int:message-history tracked-components="*Gateway, sample*, foo"/>

In the above example, Message History will only be maintained for all of the components that end with
Gateway, start with sample, or match the name foo exactly.

Starting with version 4.0, you can also use the @EnableMessageHistory annotation in a
@Configuration class. In addition, the MessageHistoryConfigurer bean is now exposed
as a JMX MBean by the IntegrationMBeanExporter (see the section called “MBean
Exporter”), allowing the patterns to be changed at runtime. Note, however, that the bean must
be stopped (turning off message history) in order to change the patterns. This feature might
be useful to temporarily turn on history to analyze a system. The MBean’s object name is
"<domain>:name=messageHistoryConfigurer,type=MessageHistoryConfigurer".

Important

If multiple beans (declared by @EnableMessageHistory and/or <message-history/>) they
all must have identical component name patterns (when trimmed and sorted). Do not use a
generic <bean/> definition for the MessageHistoryConfigurer.

Note

Remember that by definition the Message History header is immutable (you can’t re-write history,
although some try). Therefore, when writing Message History values, the components are either
creating brand new Messages (when the component is an origin), or they are copying the history
from a request Message, modifying it and setting the new list on a reply Message. In either case,
the values can be appended even if the Message itself is crossing thread boundaries. That means
that the history values can greatly simplify debugging in an asynchronous message flow.

10.4 Message Store

Enterprise Integration Patterns (EIP) identifies several patterns that have the capability to buffer
messages. For example, an Aggregator buffers messages until they can be released and a
QueueChannel buffers messages until consumers explicitly receive those messages from that channel.
Because of the failures that can occur at any point within your message flow, EIP components that buffer
messages also introduce a point where messages could be lost.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 218

To mitigate the risk of losing Messages, EIP defines the Message Store pattern which allows EIP
components to store Messages typically in some type of persistent store (e.g. RDBMS).

Spring Integration provides support for the Message Store pattern by a) defining a
org.springframework.integration.store.MessageStore strategy interface, b) providing
several implementations of this interface, and c) exposing a message-store attribute on all
components that have the capability to buffer messages so that you can inject any instance that
implements the MessageStore interface.

Details on how to configure a specific Message Store implementation and/or how to inject a
MessageStore implementation into a specific buffering component are described throughout the
manual (see the specific component, such as QueueChannel, Aggregator, Delayer etc.), but here are
a couple of samples to give you an idea:

QueueChannel

<int:channel id="myQueueChannel">

 <int:queue message-store="refToMessageStore"/>

<int:channel>

Aggregator

<int:aggregator … message-store="refToMessageStore"/>

By default Messages are stored in-memory using
org.springframework.integration.store.SimpleMessageStore, an implementation of
MessageStore. That might be fine for development or simple low-volume environments where the
potential loss of non-persistent messages is not a concern. However, the typical production application
will need a more robust option, not only to mitigate the risk of message loss but also to avoid potential
out-of-memory errors. Therefore, we also provide MessageStore implementations for a variety of data-
stores. Below is a complete list of supported implementations:

• Section 19.4, “JDBC Message Store” - uses RDBMS to store Messages

• Section 25.4, “Redis Message Store” - uses Redis key/value datastore to store Messages

• Section 23.3, “MongoDB Message Store” - uses MongoDB document store to store Messages

• Section 17.5, “Gemfire Message Store” - uses Gemfire distributed cache to store Messages

Important

However be aware of some limitations while using persistent implementations of the
MessageStore.

The Message data (payload and headers) is serialized and deserialized using different
serialization strategies depending on the implementation of the MessageStore. For example,
when using JdbcMessageStore, only Serializable data is persisted by default. In this case
non-Serializable headers are removed before serialization occurs. Also be aware of the protocol
specific headers that are injected by transport adapters (e.g., FTP, HTTP, JMS etc.). For example,
<http:inbound-channel-adapter/> maps HTTP-headers into Message Headers and one
of them is an ArrayList of non-Serializable org.springframework.http.MediaType
instances. However you are able to inject your own implementation of the Serializer and/
or Deserializer strategy interfaces into some MessageStore implementations (such as
JdbcMessageStore) to change the behaviour of serialization and deserialization.

http://eaipatterns.com/MessageStore.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 219

Special attention must be paid to the headers that represent certain types of data. For example,
if one of the headers contains an instance of some Spring Bean, upon deserialization you may
end up with a different instance of that bean, which directly affects some of the implicit headers
created by the framework (e.g., REPLY_CHANNEL or ERROR_CHANNEL). Currently they are
not serializable, but even if they were, the deserialized channel would not represent the expected
instance.

Beginning with Spring Integration version 3.0, this issue can be resolved with a header
enricher, configured to replace these headers with a name after registering the channel with the
HeaderChannelRegistry.

Also when configuring a message-flow like this: gateway # queue-channel (backed by a persistent
Message Store) # service-activator That gateway creates a Temporary Reply Channel, and it will
be lost by the time the service-activator’s poller reads from the queue. Again, you can use the
header enricher to replace the headers with a String representation.

For more information, refer to the the section called “Header Enricher”.

Spring Integration 4.0 introduced two new interfaces ChannelMessageStore - to implement
operations specific for QueueChannel s, PriorityCapableChannelMessageStore - to mark
MessageStore implementation to be used for PriorityChannel s and to provide priority order
for persisted Messages. The real behaviour depends on implementation. The Framework provides
these implementations, which can be used as a persistent MessageStore for QueueChannel and
PriorityChannel:

• the section called “Redis Channel Message Stores”

• the section called “MongoDB Channel Message Store”

• the section called “Backing Message Channels”

Caution with SimpleMessageStore

Starting with version 4.1, the SimpleMessageStore no longer copies the message group when
calling getMessageGroup(). For large message groups, this was a significant performance
problem. 4.0.1 introduced a boolean copyOnGet allowing this to be controlled. When used
internally by the aggregator, this was set to false to improve performance. It is now false by default.

Users accessing the group store outside of components such as aggregators, will now get a direct
reference to the group being used by the aggregator, instead of a copy. Manipulation of the group
outside of the aggregator may cause unpredictable results.

For this reason, users should not perform such manipulation, or set the copyOnGet property to
true.

MessageGroupFactory

Starting with version 4.3, some MessageGroupStore implementations can be injected with a
custom MessageGroupFactory strategy to create/customize the MessageGroup instances used
by the MessageGroupStore. This defaults to a SimpleMessageGroupFactory which produces
SimpleMessageGroup s based on the GroupType.HASH_SET (LinkedHashSet) internal collection.
Other possible options are SYNCHRONISED_SET and BLOCKING_QUEUE, where the last one can
be used to reinstate the previous SimpleMessageGroup behavior. Also the PERSISTENT option is

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 220

available. See the next section for more information. Starting with _version 5.0.1, the LIST option is
also available for use-cases when the order and uniqueness of messages in the group doesn’t matter.

Persistence MessageGroupStore and Lazy-Load

Starting with version 4.3, all persistence MessageGroupStore s retrieve MessageGroup s and their
messages from the store with the Lazy-Load manner. In most cases it is useful for the Correlation
MessageHandler s (Section 6.4, “Aggregator” and Section 6.5, “Resequencer”), when it would be an
overhead to load entire MessageGroup from the store on each correlation operation.

To switch off the lazy-load behavior the
AbstractMessageGroupStore.setLazyLoadMessageGroups(false) option can be used from
the configuration.

Our performance tests for lazy-load on MongoDB MessageStore (Section 23.3, “MongoDB Message
Store”) and <aggregator> (Section 6.4, “Aggregator”) with custom release-strategy like:

<int:aggregator input-channel="inputChannel"

 output-channel="outputChannel"

 message-store="mongoStore"

 release-strategy-expression="size() == 1000"/>

demonstrate this results for 1000 simple messages:

StopWatch 'Lazy-Load Performance': running time (millis) = 38918

ms % Task name

02652 007% Lazy-Load

36266 093% Eager

10.5 Metadata Store

Many external systems, services or resources aren’t transactional (Twitter, RSS, file system etc.) and
there is no any ability to mark the data as read. Or there is just need to implement the Enterprise
Integration Pattern Idempotent Receiver in some integration solutions. To achieve this goal and store
some previous state of the Endpoint before the next interaction with external system, or deal with the
next Message, Spring Integration provides the Metadata Store component being an implementation of
the org.springframework.integration.metadata.MetadataStore interface with a general
key-value contract.

The Metadata Store is designed to store various types of generic meta-data (e.g., published date
of the last feed entry that has been processed) to help components such as the Feed adapter deal
with duplicates. If a component is not directly provided with a reference to a MetadataStore, the
algorithm for locating a metadata store is as follows: First, look for a bean with id metadataStore in
the ApplicationContext. If one is found then it will be used, otherwise it will create a new instance of
SimpleMetadataStore which is an in-memory implementation that will only persist metadata within
the lifecycle of the currently running Application Context. This means that upon restart you may end
up with duplicate entries.

If you need to persist metadata between Application Context restarts, these persistent
MetadataStores are provided by the framework:

• PropertiesPersistingMetadataStore

• Section 17.7, “Gemfire Metadata Store”

http://eaipatterns.com/IdempotentReceiver.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 221

• Section 19.7, “JDBC Metadata Store”

• the section called “MongoDB Metadata Store”

• Section 25.5, “Redis Metadata Store”

• Section 39.2, “Zookeeper Metadata Store”

The PropertiesPersistingMetadataStore is backed by a properties file and a
PropertiesPersister.

By default, it only persists the state when the application context is closed normally. It implements
Flushable so you can persist the state at will, be invoking flush().

<bean id="metadataStore"

 class="org.springframework.integration.metadata.PropertiesPersistingMetadataStore"/>

Alternatively, you can provide your own implementation of the MetadataStore interface (e.g.
JdbcMetadataStore) and configure it as a bean in the Application Context.

Starting with version 4.0, SimpleMetadataStore, PropertiesPersistingMetadataStore and
RedisMetadataStore implement ConcurrentMetadataStore. These provide for atomic updates
and can be used across multiple component or application instances.

Idempotent Receiver and Metadata Store

The Metadata Store is useful for implementing the EIP Idempotent Receiver pattern, when there is need
to filter an incoming Message if it has already been processed, and just discard it or perform some other
logic on discarding. The following configuration is an example of how to do this:

<int:filter input-channel="serviceChannel"

 output-channel="idempotentServiceChannel"

 discard-channel="discardChannel"

 expression="@metadataStore.get(headers.businessKey) == null"/>

<int:publish-subscribe-channel id="idempotentServiceChannel"/>

<int:outbound-channel-adapter channel="idempotentServiceChannel"

 expression="@metadataStore.put(headers.businessKey, '')"/>

<int:service-activator input-channel="idempotentServiceChannel" ref="service"/>

The value of the idempotent entry may be some expiration date, after which that entry should be
removed from Metadata Store by some scheduled reaper.

Also see the section called “Idempotent Receiver Enterprise Integration Pattern”.

MetadataStoreListener

Some metadata stores (currently only zookeeper) support registering a listener to receive events when
items change.

public interface MetadataStoreListener {

 void onAdd(String key, String value);

 void onRemove(String key, String oldValue);

 void onUpdate(String key, String newValue);

}

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/PropertiesPersister.html
http://eaipatterns.com/IdempotentReceiver.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 222

See the javadocs for more information. The MetadataStoreListenerAdapter can be subclassed
if you are only interested in a subset of events.

10.6 Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"
messaging. In Spring Integration we build upon the adapters described above so that it’s possible to
send Messages as a means of invoking exposed operations.

<int:control-bus input-channel="operationChannel"/>

The Control Bus has an input channel that can be accessed for invoking operations on the beans in
the application context. It also has all the common properties of a service activating endpoint, e.g. you
can specify an output channel if the result of the operation has a return value that you want to send
on to a downstream channel.

The Control Bus executes messages on the input channel as Spring Expression Language expressions.
It takes a message, compiles the body to an expression, adds some context, and then executes
it. The default context supports any method that has been annotated with @ManagedAttribute
or @ManagedOperation. It also supports the methods on Spring’s Lifecycle interface, and it
supports methods that are used to configure several of Spring’s TaskExecutor and TaskScheduler
implementations. The simplest way to ensure that your own methods are available to the Control Bus is
to use the @ManagedAttribute and/or @ManagedOperation annotations. Since those are also used
for exposing methods to a JMX MBean registry, it’s a convenient by-product (often the same types of
operations you want to expose to the Control Bus would be reasonable for exposing via JMX). Resolution
of any particular instance within the application context is achieved in the typical SpEL syntax. Simply
provide the bean name with the SpEL prefix for beans (@). For example, to execute a method on a
Spring Bean a client could send a message to the operation channel as follows:

Message operation = MessageBuilder.withPayload("@myServiceBean.shutdown()").build();

operationChannel.send(operation)

The root of the context for the expression is the Message itself, so you also have access to the payload
and headers as variables within your expression. This is consistent with all the other expression support
in Spring Integration endpoints.

With Java and Annotations the Control Bus can be configured as follows:

@Bean

@ServiceActivator(inputChannel = "operationChannel")

public ExpressionControlBusFactoryBean controlBus() {

 return new ExpressionControlBusFactoryBean();

}

Or, when using Java DSL flow definitions:

@Bean

public IntegrationFlow controlBusFlow() {

 return IntegrationFlows.from("controlBus")

 .controlBus()

 .get();

}

Or, if you prefer Lambda style with automatic DirectChannel creation:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 223

@Bean

public IntegrationFlow controlBus() {

 return IntegrationFlowDefinition::controlBus;

}

In this case, the channel is named controlBus.input.

10.7 Orderly Shutdown

As described in the section called “MBean Exporter”, the MBean exporter provides a JMX operation
stopActiveComponents, which is used to stop the application in an orderly manner. The operation has
a single long parameter. The parameter indicates how long (in milliseconds) the operation will wait to
allow in-flight messages to complete. The operation works as follows:

The first step calls beforeShutdown() on all beans that implement OrderlyShutdownCapable.
This allows such components to prepare for shutdown. Examples of components that implement this
interface, and what they do with this call include: JMS and AMQP message-driven adapters stop their
listener containers; TCP server connection factories stop accepting new connections (while keeping
existing connections open); TCP inbound endpoints drop (log) any new messages received; http
inbound endpoints return 503 - Service Unavailable for any new requests.

The second step stops any active channels, such as JMS- or AMQP-backed channels.

The third step stops all MessageSource s.

The fourth step stops all inbound MessageProducer s (that are not OrderlyShutdownCapable).

The fifth step waits for any remaining time left, as defined by the value of the long parameter passed in to
the operation. This is intended to allow any in-flight messages to complete their journeys. It is therefore
important to select an appropriate timeout when invoking this operation.

The sixth step calls afterShutdown() on all OrderlyShutdownCapable components. This allows such
components to perform final shutdown tasks (closing all open sockets, for example).

As discussed in the section called “Orderly Shutdown Managed Operation” this operation can be invoked
using JMX. If you wish to programmatically invoke the method, you will need to inject, or otherwise
get a reference to, the IntegrationMBeanExporter. If no id attribute is provided on the <int-
jmx:mbean-export/> definition, the bean will have a generated name. This name contains a random
component to avoid ObjectName collisions if multiple Spring Integration contexts exist in the same
JVM (MBeanServer).

For this reason, if you wish to invoke the method programmatically, it is recommended that you provide
the exporter with an id attribute so it can easily be accessed in the application context.

Finally, the operation can be invoked using the <control-bus>; see the monitoring Spring Integration
sample application for details.

Important

The above algorithm was improved in version 4.1. Previously, all task executors and schedulers
were stopped. This could cause mid-flow messages in QueueChannel s to remain. Now, the
shutdown leaves pollers running in order to allow these messages to be drained and processed.

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring
https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 224

10.8 Integration Graph

Starting with version 4.3, Spring Integration provides access to an application’s runtime object model
which can, optionally, include component metrics. It is exposed as a graph, which may be used to
visualize the current state of the integration application. The o.s.i.support.management.graph
package contains all the required classes to collect, build and render the runtime state of Spring
Integration components as a single tree-like Graph object. The IntegrationGraphServer should
be declared as a bean to build, retrieve and refresh the Graph object. The resulting Graph object can
be serialized to any format, although JSON is flexible and convenient to parse and represent on the
client side. A simple Spring Integration application with only the default components would expose a
graph as follows:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 225

{

 "contentDescriptor": {

 "providerVersion": "4.3.0.RELEASE",

 "providerFormatVersion": 1.0,

 "provider": "spring-integration",

 "name": "myApplication"

 },

 "nodes": [

 {

 "nodeId": 1,

 "name": "nullChannel",

 "stats": null,

 "componentType": "channel"

 },

 {

 "nodeId": 2,

 "name": "errorChannel",

 "stats": null,

 "componentType": "publish-subscribe-channel"

 },

 {

 "nodeId": 3,

 "name": "_org.springframework.integration.errorLogger",

 "stats": {

 "duration": {

 "count": 0,

 "min": 0.0,

 "max": 0.0,

 "mean": 0.0,

 "standardDeviation": 0.0,

 "countLong": 0

 },

 "errorCount": 0,

 "standardDeviationDuration": 0.0,

 "countsEnabled": true,

 "statsEnabled": true,

 "loggingEnabled": false,

 "handleCount": 0,

 "meanDuration": 0.0,

 "maxDuration": 0.0,

 "minDuration": 0.0,

 "activeCount": 0

 },

 "componentType": "logging-channel-adapter",

 "output": null,

 "input": "errorChannel"

 }

],

 "links": [

 {

 "from": 2,

 "to": 3,

 "type": "input"

 }

]

}

As you can see, the graph consists of three top-level elements.

The contentDescriptor graph element is pretty straightforward and contains general
information about the application providing the data. The name can be customized on
the IntegrationGraphServer bean or via spring.application.name application context
environment property. Other properties are provided by the framework and allows you to distinguish a
similar model from other sources.

The links graph element represents connections between nodes from the nodes graph element and,
therefore, between integration components in the source Spring Integration application. For example

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 226

from a MessageChannel to an EventDrivenConsumer with some MessageHandler; or from an
AbstractReplyProducingMessageHandler to a MessageChannel. For the convenience and to
allow to determine a link purpose, the model is supplied with the type attribute. The possible types are:

• input - identify the direction from MessageChannel to the endpoint; inputChannel or
requestChannel property;

• output - the direction from MessageHandler, MessageProducer or
SourcePollingChannelAdapter to the MessageChannel via an outputChannel or
replyChannel property;

• error - from MessageHandler on PollingConsumer or MessageProducer or
SourcePollingChannelAdapter to the MessageChannel via an errorChannel property;

• discard - from DiscardingMessageHandler (e.g. MessageFilter) to the MessageChannel via
errorChannel property.

• route - from AbstractMappingMessageRouter (e.g. HeaderValueRouter) to the
MessageChannel. Similar to output but determined at run-time. May be a configured channel
mapping, or a dynamically resolved channel. Routers will typically only retain up to 100 dynamic
routes for this purpose, but this can be modified using the dynamicChannelLimit property.

The information from this element can be used by a visualizing tool to render connections between
nodes from the nodes graph element, where the from and to numbers represent the value from the
nodeId property of the linked nodes. For example the link type can be used to determine the proper
port on the target node:

 +---(discard)

 |

 +----o----+

 | |

 | |

 | |

(input)--o o---(output)

 | |

 | |

 | |

 +----o----+

 |

 +---(error)

The nodes graph element is perhaps the most interesting because its elements contain
not only the runtime components with their componentType s and name s, but can also
optionally contain metrics exposed by the component. Node elements contain various properties
which are generally self-explanatory. For example, expression-based components include the
expression property containing the primary expression string for the component. To enable the
metrics, add an @EnableIntegrationManagement to some @Configuration class or add an
<int:management/> element to your XML configuration. You can control exactly which components in
the framework collect statistics. See Section 10.1, “Metrics and Management” for complete information.
See the stats attribute from the _org.springframework.integration.errorLogger

component in the JSON example above. The nullChannel and errorChannel don’t provide
statistics information in this case, because the configuration for this example was:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 227

@Configuration

@EnableIntegration

@EnableIntegrationManagement(statsEnabled = "_org.springframework.integration.errorLogger.handler",

 countsEnabled = "!*",

 defaultLoggingEnabled = "false")

public class ManagementConfiguration {

 @Bean

 public IntegrationGraphServer integrationGraphServer() {

 return new IntegrationGraphServer();

 }

}

The nodeId represents a unique incremental identifier to distinguish one component from another.
It is also used in the links element to represent a relationship (connection) of this component to
others, if any. The input and output attributes are for the inputChannel and outputChannel
properties of the AbstractEndpoint, MessageHandler, SourcePollingChannelAdapter or
MessageProducerSupport. See the next paragraph for more information.

Graph Runtime Model

Spring Integration components have various levels of complexity. For example, any polled
MessageSource also has a SourcePollingChannelAdapter and a MessageChannel to which to
send messages from the source data periodically. Other components might be middleware request-reply
components, e.g. JmsOutboundGateway, with a consuming AbstractEndpoint to subscribe to (or
poll) the requestChannel (input) for messages, and a replyChannel (output) to produce a reply
message to send downstream. Meanwhile, any MessageProducerSupport implementation (e.g.
ApplicationEventListeningMessageProducer) simply wraps some source protocol listening
logic and sends messages to the outputChannel.

Within the graph, Spring Integration components are represented using the IntegrationNode
class hierarchy, which you can find in the o.s.i.support.management.graph package.
For example the ErrorCapableDiscardingMessageHandlerNode could be used for the
AggregatingMessageHandler (because it has a discardChannel option) and can produce
errors when consuming from a PollableChannel using a PollingConsumer. Another sample
is CompositeMessageHandlerNode - for a MessageHandlerChain when subscribed to a
SubscribableChannel, using an EventDrivenConsumer.

Note

The @MessagingGateway (see Section 8.4, “Messaging Gateways”) provides nodes for each
its method, where the name attribute is based on the gateway’s bean name and the short method
signature. For example the gateway:

@MessagingGateway(defaultRequestChannel = "four")

public interface Gate {

 void foo(String foo);

 void foo(Integer foo);

 void bar(String bar);

}

produces nodes like:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 228

{

 "nodeId" : 10,

 "name" : "gate.bar(class java.lang.String)",

 "stats" : null,

 "componentType" : "gateway",

 "output" : "four",

 "errors" : null

},

{

 "nodeId" : 11,

 "name" : "gate.foo(class java.lang.String)",

 "stats" : null,

 "componentType" : "gateway",

 "output" : "four",

 "errors" : null

},

{

 "nodeId" : 12,

 "name" : "gate.foo(class java.lang.Integer)",

 "stats" : null,

 "componentType" : "gateway",

 "output" : "four",

 "errors" : null

}

This IntegrationNode hierarchy can be used for parsing the graph model on the client side, as
well as for the understanding the general Spring Integration runtime behavior. See also Section 3.8,
“Programming Tips and Tricks” for more information.

10.9 Integration Graph Controller

If your application is WEB-based (or built on top of Spring Boot using an embedded web container)
and the Spring Integration HTTP or WebFlux module (see Chapter 18, HTTP Support and Chapter 34,
WebFlux Support) is present on the classpath, you can use a IntegrationGraphController
to expose the IntegrationGraphServer functionality as a REST service. For this purpose,
the @EnableIntegrationGraphController @Configuration class annotation and the <int-
http:graph-controller/> XML element, are available in the HTTP module. Together
with the @EnableWebMvc annotation (or <mvc:annotation-driven/> for xml definitions),
this configuration registers an IntegrationGraphController @RestController where its
@RequestMapping.path can be configured on the @EnableIntegrationGraphController
annotation or <int-http:graph-controller/> element. The default path is /integration.

The IntegrationGraphController @RestController provides these services:

• @GetMapping(name = "getGraph") - to retrieve the state of the Spring
Integration components since the last IntegrationGraphServer refresh. The
o.s.i.support.management.graph.Graph is returned as a @ResponseBody of the REST
service;

• @GetMapping(path = "/refresh", name = "refreshGraph") - to refresh the current Graph
for the actual runtime state and return it as a REST response. It is not necessary to refresh the graph
for metrics, they are provided in real-time when the graph is retrieved. Refresh can be called if the
application context has been modified since the graph was last retrieved and the graph is completely
rebuilt.

Any Security and Cross Origin restrictions for the IntegrationGraphController can be achieved
with the standard configuration options and components provided by Spring Security and Spring MVC
projects. A simple example of that follows:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 229

<mvc:annotation-driven />

<mvc:cors>

 <mvc:mapping path="/myIntegration/**"

 allowed-origins="http://localhost:9090"

 allowed-methods="GET" />

</mvc:cors>

<security:http>

 <security:intercept-url pattern="/myIntegration/**" access="ROLE_ADMIN" />

</security:http>

<int-http:graph-controller path="/myIntegration" />

The Java & Annotation Configuration variant follows; note that, for convenience, the annotation provides
an allowedOrigins attribute; this just provides GET access to the path. For more sophistication, you
can configure the CORS mappings using standard Spring MVC mechanisms.

@Configuration

@EnableWebMvc // or @EnableWebFlux

@EnableWebSecurity // or @EnableWebFluxSecurity

@EnableIntegration

@EnableIntegrationGraphController(path = "/testIntegration", allowedOrigins="http://localhost:9090")

public class IntegrationConfiguration extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .antMatchers("/testIntegration/**").hasRole("ADMIN")

 // ...

 .formLogin();

 }

 //...

}

Part V. Integration Endpoints
This section covers the various Channel Adapters and Messaging Gateways provided by Spring
Integration to support Message-based communication with external systems.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 231

11. Endpoint Quick Reference Table

As discussed in the sections above, Spring Integration provides a number of endpoints used to interface
with external systems, file systems etc. The following is a summary of the various endpoints with quick
links to the appropriate chapter.

To recap, Inbound Channel Adapters are used for one-way integration bringing data into the
messaging application. Outbound Channel Adapters are used for one-way integration to send data
out of the messaging application. Inbound Gateways are used for a bidirectional integration flow where
some other system invokes the messaging application and receives a reply.Outbound Gateways are
used for a bidirectional integration flow where the messaging application invokes some external service
or entity, expecting a result.

Table 11.1. Endpoint Quick Reference

Module Inbound Adapter Outbound
Adapter

Inbound
Gateway

Outbound
Gateway

AMQP Section 12.2,
“Inbound Channel
Adapter”

Section 12.6,
“Outbound
Channel Adapter”

Section 12.4,
“Inbound
Gateway”

Section 12.7,
“Outbound
Gateway”

Events Section 13.1,
“Receiving Spring
Application
Events”

Section 13.2,
“Sending Spring
Application
Events”

N N

Feed Section 14.2,
“Feed Inbound
Channel Adapter”

N N N

File Section 15.2,
“Reading Files”
and the section
called “'Tail’ing
Files”

Section 15.3,
“Writing files”

N Section 15.3,
“Writing files”

FTP(S) Section 16.4,
“FTP Inbound
Channel Adapter”

Section 16.7,
“FTP Outbound
Channel Adapter”

N Section 16.8,
“FTP Outbound
Gateway”

Gemfire Section 17.2,
“Inbound Channel
Adapter” and
Section 17.3,
“Continuous
Query Inbound
Channel Adapter”

Section 17.4,
“Outbound
Channel Adapter”

N N

HTTP Section 18.4,
“HTTP
Namespace
Support”

Section 18.4,
“HTTP
Namespace
Support”

Section 18.2,
“Http Inbound
Components”

Section 18.3,
“Http Outbound
Components”

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 232

Module Inbound Adapter Outbound
Adapter

Inbound
Gateway

Outbound
Gateway

JDBC Section 19.1,
“Inbound Channel
Adapter” and the
section called
“Stored Procedure
Inbound Channel
Adapter”

Section 19.2,
“Outbound
Channel Adapter”
and the section
called “Stored
Procedure
Outbound
Channel Adapter”

N Section 19.3,
“Outbound
Gateway” and
the section called
“Stored Procedure
Outbound
Gateway”

JMS Section 21.1,
“Inbound Channel
Adapter” and
Section 21.2,
“Message-Driven
Channel Adapter”

Section 21.3,
“Outbound
Channel Adapter”

Section 21.4,
“Inbound
Gateway”

Section 21.5,
“Outbound
Gateway”

JMX the section called
“Notification
Listening Channel
Adapter” and the
section called
“Attribute Polling
Channel Adapter”
and the section
called “Tree
Polling Channel
Adapter”

the section called
“Notification
Publishing
Channel Adapter”
and the section
called “Operation
Invoking Channel
Adapter”

N the section
called “Operation
Invoking
Outbound
Gateway”

JPA Section 20.4,
“Inbound Channel
Adapter”

Section 20.5,
“Outbound
Channel Adapter”

N the section
called “Updating
Outbound
Gateway” and
the section
called “Retrieving
Outbound
Gateway”

Mail Section 22.2,
“Mail-Receiving
Channel Adapter”

Section 22.1,
“Mail-Sending
Channel Adapter”

N N

MongoDB Section 23.4,
“MongoDB
Inbound Channel
Adapter”

Section 23.5,
“MongoDB
Outbound
Channel Adapter”

N N

MQTT Section 24.2,
“Inbound

Section 24.3,
“Outbound
Channel Adapter”

N N

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 233

Module Inbound Adapter Outbound
Adapter

Inbound
Gateway

Outbound
Gateway

(message-driven)
Channel Adapter”

Redis the section called
“Redis Inbound
Channel Adapter”
and the section
called “Redis
Queue Inbound
Channel Adapter”
and Section 25.6,
“RedisStore
Inbound Channel
Adapter”

the section called
“Redis Outbound
Channel Adapter”
and the section
called “Redis
Queue Outbound
Channel Adapter”
and Section 25.7,
“RedisStore
Outbound
Channel Adapter”

Section 25.10,
“Redis Queue
Inbound Gateway”

Section 25.8,
“Redis Outbound
Command
Gateway” and
Section 25.9,
“Redis Queue
Outbound
Gateway”

Resource Section 26.2,
“Resource
Inbound Channel
Adapter”

N N N

RMI N N Section 27.3,
“Inbound RMI”

Section 27.2,
“Outbound RMI”

SFTP Section 28.7,
“SFTP Inbound
Channel Adapter”

Section 28.10,
“SFTP Outbound
Channel Adapter”

N Section 28.11,
“SFTP Outbound
Gateway”

STOMP Section 29.3,
“STOMP Inbound
Channel Adapter”

Section 29.4,
“STOMP
Outbound
Channel Adapter”

N N

Stream Section 30.2,
“Reading from
streams”

Section 30.3,
“Writing to
streams”

N N

Syslog Section 31.2,
“Syslog <inbound-
channel-adapter>”

N N N

TCP Section 32.6,
“TCP Adapters”

Section 32.6,
“TCP Adapters”

Section 32.7,
“TCP Gateways”

Section 32.7,
“TCP Gateways”

Twitter Section 33.4,
“Twitter Inbound
Adapters”

Section 33.5,
“Twitter Outbound
Adapter”

N Section 33.6,
“Twitter Search
Outbound
Gateway”

UDP Section 32.2,
“UDP Adapters”

Section 32.2,
“UDP Adapters”

N N

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 234

Module Inbound Adapter Outbound
Adapter

Inbound
Gateway

Outbound
Gateway

Web Services N N Section 36.2,
“Inbound
Web Service
Gateways”

Section 36.1,
“Outbound
Web Service
Gateways”

Web Sockets Section 35.3,
“WebSocket
Inbound Channel
Adapter”

Section 35.4,
“WebSocket
Outbound
Channel Adapter”

N N

XMPP Section 38.3,
“XMPP
Messages” and
Section 38.4,
“XMPP Presence”

Section 38.3,
“XMPP
Messages” and
Section 38.4,
“XMPP Presence”

N N

In addition, as discussed in Part IV, “Core Messaging”, endpoints are provided for interfacing with Plain
Old Java Objects (POJOs). As discussed in Section 4.3, “Channel Adapter”, the <int:inbound-
channel-adapter> allows polling a java method for data; the <int:outbound-channel-
adapter> allows sending data to a void method, and as discussed in Section 8.4, “Messaging
Gateways”, the <int:gateway> allows any Java program to invoke a messaging flow. Each of these
without requiring any source level dependencies on Spring Integration. The equivalent of an outbound
gateway in this context would be to use a Section 8.5, “Service Activator” to invoke a method that returns
an Object of some kind.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 235

12. AMQP Support

12.1 Introduction

Spring Integration provides Channel Adapters for receiving and sending messages using the Advanced
Message Queuing Protocol (AMQP). The following adapters are available:

• Inbound Channel Adapter

• Inbound Gateway

• Outbound Channel Adapter

• Outbound Gateway

• Async Outbound Gateway

Spring Integration also provides a point-to-point Message Channel as well as a publish/subscribe
Message Channel backed by AMQP Exchanges and Queues.

In order to provide AMQP support, Spring Integration relies on (Spring AMQP) which "applies core
Spring concepts to the development of AMQP-based messaging solutions". Spring AMQP provides
similar semantics to (Spring JMS).

Whereas the provided AMQP Channel Adapters are intended for unidirectional Messaging (send or
receive) only, Spring Integration also provides inbound and outbound AMQP Gateways for request/
reply operations.

Tip

Please familiarize yourself with the reference documentation of the Spring AMQP project as well.
It provides much more in-depth information regarding Spring’s integration with AMQP in general
and RabbitMQ in particular.

12.2 Inbound Channel Adapter

A configuration sample for an AMQP Inbound Channel Adapter is shown below.

http://projects.spring.io/spring-amqp
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jms.html
http://docs.spring.io/spring-amqp/reference/html/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 236

<int-amqp:inbound-channel-adapter

 id="inboundAmqp" ❶

 channel="inboundChannel" ❷

 queue-names="si.test.queue" ❸

 acknowledge-mode="AUTO" ❹

 advice-chain="" ❺

 channel-transacted="" ❻

 concurrent-consumers="" ❼

 connection-factory="" ❽

 error-channel="" ❾

 expose-listener-channel="" ❿

 header-mapper="" 11

 mapped-request-headers="" 12

 listener-container="" 13

 message-converter="" 14

 message-properties-converter="" 15

 phase="" 16

 prefetch-count="" 17

 receive-timeout="" 18

 recovery-interval="" 19

 missing-queues-fatal="" 20

 shutdown-timeout="" 21

 task-executor="" 22

 transaction-attribute="" 23

 transaction-manager="" 24

 tx-size="" 25

 consumers-per-queue /> 26

❶ Unique ID for this adapter. Optional.

❷ Message Channel to which converted Messages should be sent. Required.

❸ Names of the AMQP Queues from which Messages should be consumed (comma-separated
list).Required.

❹ Acknowledge Mode for the MessageListenerContainer. When set to MANUAL, the delivery
tag and channel are provided in message headers amqp_deliveryTag and amqp_channel
respectively; the user application is responsible for acknowledgement. NONE means no
acknowledgements (autoAck); AUTO means the adapter’s container will acknowledge when the
downstream flow completes.Optional (Defaults to AUTO) see Section 12.5, “Inbound Endpoint
Acknowledge Mode”.

❺ Extra AOP Advice(s) to handle cross cutting behavior associated with this Inbound Channel
Adapter. Optional.

❻ Flag to indicate that channels created by this component will be transactional. If true, tells the
framework to use a transactional channel and to end all operations (send or receive) with a commit
or rollback depending on the outcome, with an exception signalling a rollback. Optional (Defaults
to false).

❼ Specify the number of concurrent consumers to create. Default is 1. Raising the number of
concurrent consumers is recommended in order to scale the consumption of messages coming
in from a queue. However, note that any ordering guarantees are lost once multiple consumers
are registered. In general, use 1 consumer for low-volume queues. Not allowed when consumers-
per-queue is set. Optional.

❽ Bean reference to the RabbitMQ ConnectionFactory. Optional (Defaults to connectionFactory).

❾ Message Channel to which error Messages should be sent. Optional.

❿ Shall the listener channel (com.rabbitmq.client.Channel) be exposed to a registered
ChannelAwareMessageListener. Optional (Defaults to true).

11 A reference to an AmqpHeaderMapper to use when receiving AMQP Messages. Optional. By
default only standard AMQP properties (e.g. contentType) will be copied to Spring Integration
MessageHeaders. Any user-defined headers within the AMQP MessageProperties will NOT

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 237

be copied to the Message by the default DefaultAmqpHeaderMapper. Not allowed if request-
header-names is provided.

12 Comma-separated list of names of AMQP Headers to be mapped from the AMQP request into the
MessageHeaders. This can only be provided if the header-mapper reference is not provided. The
values in this list can also be simple patterns to be matched against the header names (e.g. "*"
or "foo*, bar" or "*foo").

13 Reference to the AbstractMessageListenerContainer to use for receiving AMQP
Messages. If this attribute is provided, then no other attribute related to the listener container
configuration should be provided. In other words, by setting this reference, you must take full
responsibility of the listener container configuration. The only exception is the MessageListener
itself. Since that is actually the core responsibility of this Channel Adapter implementation,
the referenced listener container must NOT already have its own MessageListener configured.
Optional.

14 The MessageConverter to use when receiving AMQP Messages. Optional.
15 The MessagePropertiesConverter to use when receiving AMQP Messages. Optional.
16 Specify the phase in which the underlying AbstractMessageListenerContainer should be

started and stopped. The startup order proceeds from lowest to highest, and the shutdown order is
the reverse of that. By default this value is Integer.MAX_VALUE meaning that this container starts
as late as possible and stops as soon as possible. Optional.

17 Tells the AMQP broker how many messages to send to each consumer in a single request. Often
this can be set quite high to improve throughput. It should be greater than or equal to the transaction
size (see attribute "tx-size"). Optional (Defaults to 1).

18 Receive timeout in milliseconds. Optional (Defaults to 1000).
19 Specifies the interval between recovery attempts of the underlying

AbstractMessageListenerContainer (in milliseconds) .Optional (Defaults to 5000).
20 If true, and none of the queues are available on the broker, the container will throw a fatal exception

during startup and will stop if the queues are deleted when the container is running (after making
3 attempts to passively declare the queues). If false, the container will not throw an exception
and go into recovery mode, attempting to restart according to the recovery-interval. Optional
(Defaults to true).

21 The time to wait for workers in milliseconds after the underlying
AbstractMessageListenerContainer is stopped, and before the AMQP connection is forced
closed. If any workers are active when the shutdown signal comes they will be allowed to finish
processing as long as they can finish within this timeout. Otherwise the connection is closed and
messages remain unacked (if the channel is transactional). Optional (Defaults to 5000).

22 By default, the underlying AbstractMessageListenerContainer uses a
SimpleAsyncTaskExecutor implementation, that fires up a new Thread for each task, executing
it asynchronously. By default, the number of concurrent threads is unlimited. NOTE: This
implementation does not reuse threads. Consider a thread-pooling TaskExecutor implementation
as an alternative. Optional (Defaults to SimpleAsyncTaskExecutor).

23 By default the underlying AbstractMessageListenerContainer creates a new instance of the
DefaultTransactionAttribute (takes the EJB approach to rolling back on runtime, but not checked
exceptions. Optional (Defaults to DefaultTransactionAttribute).

24 Sets a Bean reference to an external PlatformTransactionManager on the underlying
AbstractMessageListenerContainer. The transaction manager works in conjunction with the
"channel-transacted" attribute. If there is already a transaction in progress when the framework
is sending or receiving a message, and the channelTransacted flag is true, then the commit or
rollback of the messaging transaction will be deferred until the end of the current transaction. If the
channelTransacted flag is false, then no transaction semantics apply to the messaging operation
(it is auto-acked). For further information see Transactions with Spring AMQP. Optional.

http://docs.spring.io/spring-amqp/reference/html/%5Freference.html#%5Ftransactions

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 238

25 Tells the SimpleMessageListenerContainer how many messages to process in a single
transaction (if the channel is transactional). For best results it should be less than or equal to the
set "prefetch-count". Not allowed when consumers-per-queue is set. Optional (Defaults to 1).

26 Indicates that the underlying listener container should be a
DirectMessageListenerContainer instead of the default
SimpleMessageListenerContainer. Refer to the Spring AMQP Reference Manual for more
information.

container

Note that when configuring an external container, you cannot use the Spring AMQP namespace
to define the container. This is because the namespace requires at least one <listener/>
element. In this environment, the listener is internal to the adapter. For this reason, you must
define the container using a normal Spring <bean/> definition, such as:

<bean id="container"

 class="org.springframework.amqp.rabbit.listener.SimpleMessageListenerContainer">

 <property name="connectionFactory" ref="connectionFactory" />

 <property name="queueNames" value="foo.queue" />

 <property name="defaultRequeueRejected" value="false"/>

</bean>

Important

Even though the Spring Integration JMS and AMQP support is very similar, important differences
exist. The JMS Inbound Channel Adapter is using a JmsDestinationPollingSource under
the covers and expects a configured Poller. The AMQP Inbound Channel Adapter uses an
AbstractMessageListenerContainer and is message driven. In that regard, it is more
similar to the JMS Message Driven Channel Adapter.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 239

@SpringBootApplication

public class AmqpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public MessageChannel amqpInputChannel() {

 return new DirectChannel();

 }

 @Bean

 public AmqpInboundChannelAdapter inbound(SimpleMessageListenerContainer listenerContainer,

 @Qualifier("amqpInputChannel") MessageChannel channel) {

 AmqpInboundChannelAdapter adapter = new AmqpInboundChannelAdapter(listenerContainer);

 adapter.setOutputChannel(channel);

 return adapter;

 }

 @Bean

 public SimpleMessageListenerContainer container(ConnectionFactory connectionFactory) {

 SimpleMessageListenerContainer container =

 new SimpleMessageListenerContainer(connectionFactory);

 container.setQueueNames("foo");

 container.setConcurrentConsumers(2);

 // ...

 return container;

 }

 @Bean

 @ServiceActivator(inputChannel = "amqpInputChannel")

 public MessageHandler handler() {

 return new MessageHandler() {

 @Override

 public void handleMessage(Message<?> message) throws MessagingException {

 System.out.println(message.getPayload());

 }

 };

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 240

@SpringBootApplication

public class AmqpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public IntegrationFlow amqpInbound(ConnectionFactory connectionFactory) {

 return IntegrationFlows.from(Amqp.inboundAdapter(connectionFactory, "foo"))

 .handle(m -> System.out.println(m.getPayload()))

 .get();

 }

}

12.3 Polled Inbound Channel Adapter

Starting with version 5.0.1, a polled channel adapter is provided, allowing fetching individual messages
on-demand, for example with a MessageSourcePollingTemplate or a poller. See the section called
“Deferred Acknowledgment Pollable Message Source” for more information.

It does not currently have XML configuration.

@Bean

public AmqpMessageSource source(ConnectionFactory connectionFactory) {

 return new AmpqpMessageSource(connectionFactory, "someQueue");

}

Refer to the javadocs for configuration properties.

With the Java DSL:

@Bean

public IntegrationFlow flow() {

 return IntegrationFlows.from(Amqp.inboundPolledAdapter(connectionFactory(), DSL_QUEUE),

 e -> e.poller(Pollers.fixedDelay(1_000)).autoStartup(false))

 .handle(p -> {

 ...

 })

 .get();

}

12.4 Inbound Gateway

The inbound gateway supports all the attributes on the inbound channel adapter (except channel is
replaced by request-channel), plus some additional attributes:

<int-amqp:inbound-gateway

 id="inboundGateway" ❶

 request-channel="myRequestChannel" ❷

 header-mapper="" ❸

 mapped-request-headers="" ❹

 mapped-reply-headers="" ❺

 reply-channel="myReplyChannel" ❻

 reply-timeout="1000" ❼

 amqp-template="" ❽

 default-reply-to="" /> ❾

❶ Unique ID for this adapter. Optional.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 241

❷ Message Channel to which converted Messages should be sent. Required.

❸ A reference to an AmqpHeaderMapper to use when receiving AMQP Messages. Optional. By
default only standard AMQP properties (e.g. contentType) will be copied to and from Spring
Integration MessageHeaders. Any user-defined headers within the AMQP MessageProperties
will NOT be copied to or from an AMQP Message by the default DefaultAmqpHeaderMapper.
Not allowed if request-header-names or reply-header-names is provided.

❹ Comma-separated list of names of AMQP Headers to be mapped from the AMQP request into the
MessageHeaders. This can only be provided if the header-mapper reference is not provided. The
values in this list can also be simple patterns to be matched against the header names (e.g. "*"
or "foo*, bar" or "*foo").

❺ Comma-separated list of names of MessageHeaders to be mapped into the AMQP Message
Properties of the AMQP reply message. All standard Headers (e.g., contentType) will be mapped
to AMQP Message Properties while user-defined headers will be mapped to the headers property.
This can only be provided if the header-mapper reference is not provided. The values in this list
can also be simple patterns to be matched against the header names (e.g. "*" or "foo*, bar"
or "*foo").

❻ Message Channel where reply Messages will be expected. Optional.

❼ Used to set the receiveTimeout on the underlying
org.springframework.integration.core.MessagingTemplate for receiving messages
from the reply channel. If not specified this property will default to "1000" (1 second). Only applies
if the container thread hands off to another thread before the reply is sent.

❽ The customized AmqpTemplate bean reference to have more control for the reply messages to
send or you can provide an alternative implementation to the RabbitTemplate.

❾ The replyTo org.springframework.amqp.core.Address to be used when the
requestMessage doesn’t have replyTo property. If this option isn’t specified, no amqp-
template is provided, and no replyTo property exists in the request message, an
IllegalStateException is thrown because the reply can’t be routed. If this option isn’t
specified, and an external amqp-template is provided, no exception will be thrown. You must
either specify this option, or configure a default exchange and routingKey on that template, if
you anticipate cases when no replyTo property exists in the request message.

See the note in Section 12.2, “Inbound Channel Adapter” about configuring the listener-container
attribute.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound gateway using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 242

@SpringBootApplication

public class AmqpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public MessageChannel amqpInputChannel() {

 return new DirectChannel();

 }

 @Bean

 public AmqpInboundGateway inbound(SimpleMessageListenerContainer listenerContainer,

 @Qualifier("amqpInputChannel") MessageChannel channel) {

 AmqpInboundGateway gateway = new AmqpInboundGateway(listenerContainer);

 gateway.setRequestChannel(channel);

 gateway.setDefaultReplyTo("bar");

 return gateway;

 }

 @Bean

 public SimpleMessageListenerContainer container(ConnectionFactory connectionFactory) {

 SimpleMessageListenerContainer container =

 new SimpleMessageListenerContainer(connectionFactory);

 container.setQueueNames("foo");

 container.setConcurrentConsumers(2);

 // ...

 return container;

 }

 @Bean

 @ServiceActivator(inputChannel = "amqpInputChannel")

 public MessageHandler handler() {

 return new AbstractReplyProducingMessageHandler() {

 @Override

 protected Object handleRequestMessage(Message<?> requestMessage) {

 return "reply to " + requestMessage.getPayload();

 }

 };

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound gateway using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 243

@SpringBootApplication

public class AmqpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean // return the upper cased payload

 public IntegrationFlow amqpInboundGateway(ConnectionFactory connectionFactory) {

 return IntegrationFlows.from(Amqp.inboundGateway(connectionFactory, "foo"))

 .transform(String.class, String::toUpperCase)

 .get();

 }

}

12.5 Inbound Endpoint Acknowledge Mode

By default the inbound endpoints use acknowledge mode AUTO, which means the container
automatically acks the message when the downstream integration flow completes (or a message is
handed off to another thread using a QueueChannel or ExecutorChannel). Setting the mode to
NONE configures the consumer such that acks are not used at all (the broker automatically acks the
message as soon as it is sent). Setting the mode to MANUAL allows user code to ack the message at
some other point during processing. To support this, with this mode, the endpoints provide the Channel
and deliveryTag in the amqp_channel and amqp_deliveryTag headers respectively.

You can perform any valid rabbit command on the Channel but, generally, only basicAck and
basicNack (or basicReject) would be used. In order to not interfere with the operation of the
container, you should not retain a reference to the channel and just use it in the context of the current
message.

Note

Since the Channel is a reference to a "live" object, it cannot be serialized and will be lost if a
message is persisted.

This is an example of how you might use MANUAL acknowledgement:

@ServiceActivator(inputChannel = "foo", outputChannel = "bar")

public Object handle(@Payload String payload, @Header(AmqpHeaders.CHANNEL) Channel channel,

 @Header(AmqpHeaders.DELIVERY_TAG) Long deliveryTag) throws Exception {

 // Do some processing

 if (allOK) {

 channel.basicAck(deliveryTag, false);

 // perhaps do some more processing

 }

 else {

 channel.basicNack(deliveryTag, false, true);

 }

 return someResultForDownStreamProcessing;

}

12.6 Outbound Channel Adapter

A configuration sample for an AMQP Outbound Channel Adapter is shown below.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 244

<int-amqp:outbound-channel-adapter id="outboundAmqp" ❶

 channel="outboundChannel" ❷

 amqp-template="myAmqpTemplate" ❸

 exchange-name="" ❹

 exchange-name-expression="" ❺

 order="1" ❻

 routing-key="" ❼

 routing-key-expression="" ❽

 default-delivery-mode"" ❾

 confirm-correlation-expression="" ❿

 confirm-ack-channel="" 11

 confirm-nack-channel="" 12

 return-channel="" 13

 error-message-strategy="" 14

 header-mapper="" 15

 mapped-request-headers="" 16

 lazy-connect="true" /> 17

❶ Unique ID for this adapter. Optional.

❷ Message Channel to which Messages should be sent in order to have them converted and
published to an AMQP Exchange. Required.

❸ Bean Reference to the configured AMQP Template Optional (Defaults to "amqpTemplate").

❹ The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Mutually exclusive with exchange-name-expression.
Optional.

❺ A SpEL expression that is evaluated to determine the name of the AMQP Exchange to which
Messages should be sent, with the message as the root object. If not provided, Messages will be
sent to the default, no-name Exchange. Mutually exclusive with exchange-name. Optional.

❻ The order for this consumer when multiple consumers are registered thereby enabling
load-balancing and/or failover. Optional (Defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

❼ The fixed routing-key to use when sending Messages. By default, this will be an empty String.
Mutually exclusive with routing-key-expression.Optional.

❽ A SpEL expression that is evaluated to determine the routing-key to use when sending Messages,
with the message as the root object (e.g. payload.key). By default, this will be an empty String.
Mutually exclusive with routing-key. Optional.

❾ The default delivery mode for messages; PERSISTENT or NON_PERSISTENT. Overridden if
the header-mapper sets the delivery mode. The DefaultHeaderMapper sets the value if
the Spring Integration message header amqp_deliveryMode is present. If this attribute is not
supplied and the header mapper doesn’t set it, the default depends on the underlying spring-amqp
MessagePropertiesConverter used by the RabbitTemplate. If that is not customized at all,
the default is PERSISTENT. Optional.

❿ An expression defining correlation data. When provided, this configures the underlying amqp
template to receive publisher confirms. Requires a dedicated RabbitTemplate and a
CachingConnectionFactory with the publisherConfirms property set to true. When
a publisher confirm is received, and correlation data is supplied, it is written to either
the confirm-ack-channel, or the confirm-nack-channel, depending on the confirmation type.
The payload of the confirm is the correlation data as defined by this expression and
the message will have a header amqp_publishConfirm set to true (ack) or false (nack).
Examples: "headers['myCorrelationData']", "payload". Starting with version 4.1 the
amqp_publishConfirmNackCause message header has been added. It contains the cause of
a nack for publisher confirms. Starting with version 4.2, if the expression resolves to a Message<?
> instance (such as "#this"), the message emitted on the ack/nack channel is based on that

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 245

message, with the additional header(s) added. Previously, a new message was created with the
correlation data as its payload, regardless of type. Optional.

11 The channel to which positive (ack) publisher confirms are sent; payload is the correlation data
defined by the confirm-correlation-expression. If the expression is #root or #this, the message
is built from the original message, with the amqp_publishConfirm header set to true. Optional,
default=nullChannel.

12 The channel to which negative (nack) publisher confirms are sent; payload is the correlation
data defined by the confirm-correlation-expression (if there is no ErrorMessageStrategy
configured). If the expression is #root or #this, the message is built from the
original message, with the amqp_publishConfirm header set to false. When there
is an ErrorMessageStrategy, the message will be an ErrorMessage with a
NackedAmqpMessageException payload. Optional, default=nullChannel.

13 The channel to which returned messages are sent. When provided, the underlying amqp
template is configured to return undeliverable messages to the adapter. When there is no
ErrorMessageStrategy configured, the message will be constructed from the data received
from amqp, with the following additional headers: amqp_returnReplyCode, amqp_returnReplyText,
amqp_returnExchange, amqp_returnRoutingKey. When there is an ErrorMessageStrategy,
the message will be an ErrorMessage with a ReturnedAmqpMessageException payload.
Optional.

14 A reference to an ErrorMessageStrategy implementation used to build ErrorMessage s when
sending returned or negatively acknowedged messages.

15 A reference to an AmqpHeaderMapper to use when sending AMQP Messages. By default
only standard AMQP properties (e.g. contentType) will be copied to the Spring Integration
MessageHeaders. Any user-defined headers will NOT be copied to the Message by the
default`DefaultAmqpHeaderMapper`. Not allowed if request-header-names is provided. Optional.

16 Comma-separated list of names of AMQP Headers to be mapped from the MessageHeaders to
the AMQP Message. Not allowed if the header-mapper reference is provided. The values in this
list can also be simple patterns to be matched against the header names (e.g. "*" or "foo*,
bar" or "*foo").

17 When set to false, the endpoint will attempt to connect to the broker during application context
initialization. This allows "fail fast" detection of bad configuration, but will also cause initialization
to fail if the broker is down. When true (default), the connection is established (if it doesn’t already
exist because some other component established it) when the first message is sent.

return-channel

Using a return-channel requires a RabbitTemplate with the mandatory property set to
true, and a CachingConnectionFactory with the publisherReturns property set to true.
When using multiple outbound endpoints with returns, a separate RabbitTemplate is needed
for each endpoint.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the outbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 246

@SpringBootApplication

@IntegrationComponentScan

public class AmqpJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToRabbit("foo");

 }

 @Bean

 @ServiceActivator(inputChannel = "amqpOutboundChannel")

 public AmqpOutboundEndpoint amqpOutbound(AmqpTemplate amqpTemplate) {

 AmqpOutboundEndpoint outbound = new AmqpOutboundEndpoint(amqpTemplate);

 outbound.setRoutingKey("foo"); // default exchange - route to queue 'foo'

 return outbound;

 }

 @Bean

 public MessageChannel amqpOutboundChannel() {

 return new DirectChannel();

 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")

 public interface MyGateway {

 void sendToRabbit(String data);

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the outbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 247

@SpringBootApplication

@IntegrationComponentScan

public class AmqpJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToRabbit("foo");

 }

 @Bean

 public IntegrationFlow amqpOutbound(AmqpTemplate amqpTemplate) {

 return IntegrationFlows.from(amqpOutboundChannel())

 .handle(Amqp.outboundAdapter(amqpTemplate)

 .routingKey("foo")) // default exchange - route to queue 'foo'

 .get();

 }

 @Bean

 public MessageChannel amqpOutboundChannel() {

 return new DirectChannel();

 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")

 public interface MyGateway {

 void sendToRabbit(String data);

 }

}

12.7 Outbound Gateway

Configuration for an AMQP Outbound Gateway is shown below.

<int-amqp:outbound-gateway id="inboundGateway" ❶

 request-channel="myRequestChannel" ❷

 amqp-template="" ❸

 exchange-name="" ❹

 exchange-name-expression="" ❺

 order="1" ❻

 reply-channel="" ❼

 reply-timeout="" ❽

 requires-reply="" ❾

 routing-key="" ❿

 routing-key-expression="" 11

 default-delivery-mode"" 12

 confirm-correlation-expression="" 13

 confirm-ack-channel="" 14

 confirm-nack-channel="" 15

 return-channel="" 16

 error-message-strategy="" 17

 lazy-connect="true" /> 18

❶ Unique ID for this adapter. Optional.

❷ Message Channel to which Messages should be sent in order to have them converted and
published to an AMQP Exchange. Required.

❸ Bean Reference to the configured AMQP Template Optional (Defaults to "amqpTemplate").

❹ The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Mutually exclusive with exchange-name-expression.
Optional.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 248

❺ A SpEL expression that is evaluated to determine the name of the AMQP Exchange to which
Messages should be sent, with the message as the root object. If not provided, Messages will be
sent to the default, no-name Exchange. Mutually exclusive with exchange-name. Optional.

❻ The order for this consumer when multiple consumers are registered thereby enabling
load-balancing and/or failover. Optional (Defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

❼ Message Channel to which replies should be sent after being received from an AMQP Queue and
converted.Optional.

❽ The time the gateway will wait when sending the reply message to the reply-channel. This only
applies if the reply-channel can block - such as a QueueChannel with a capacity limit that is
currently full. Default: infinity.

❾ When true, the gateway will throw an exception if no reply message is received within the
AmqpTemplate's replyTimeout property. Default: true.

❿ The routing-key to use when sending Messages. By default, this will be an empty String. Mutually
exclusive with routing-key-expression. Optional.

11 A SpEL expression that is evaluated to determine the routing-key to use when sending Messages,
with the message as the root object (e.g. payload.key). By default, this will be an empty String.
Mutually exclusive with routing-key. Optional.

12 The default delivery mode for messages; PERSISTENT or NON_PERSISTENT. Overridden if
the header-mapper sets the delivery mode. The DefaultHeaderMapper sets the value if
the Spring Integration message header amqp_deliveryMode is present. If this attribute is not
supplied and the header mapper doesn’t set it, the default depends on the underlying spring-amqp
MessagePropertiesConverter used by the RabbitTemplate. If that is not customized at all,
the default is PERSISTENT. Optional.

13 Since version 4.2. An expression defining correlation data. When provided, this configures the
underlying amqp template to receive publisher confirms. Requires a dedicated RabbitTemplate
and a CachingConnectionFactory with the publisherConfirms property set to true.
When a publisher confirm is received, and correlation data is supplied, it is written to
either the confirm-ack-channel, or the confirm-nack-channel, depending on the confirmation
type. The payload of the confirm is the correlation data as defined by this expression and
the message will have a header amqp_publishConfirm set to true (ack) or false (nack).
For nacks, an additional header amqp_publishConfirmNackCause is provided. Examples:
"headers[myCorrelationData]", "payload". If the expression resolves to a Message<?> instance
(such as "#this"), the message emitted on the ack/nack channel is based on that message, with
the additional header(s) added. Previously, a new message was created with the correlation data
as its payload, regardless of type. Optional.

14 The channel to which positive (ack) publisher confirms are sent; payload is the correlation data
defined by the confirm-correlation-expression. If the expression is #root or #this, the message
is built from the original message, with the amqp_publishConfirm header set to true. Optional,
default=nullChannel.

15 The channel to which negative (nack) publisher confirms are sent; payload is the correlation
data defined by the confirm-correlation-expression (if there is no ErrorMessageStrategy
configured). If the expression is #root or #this, the message is built from the
original message, with the amqp_publishConfirm header set to false. When there
is an ErrorMessageStrategy, the message will be an ErrorMessage with a
NackedAmqpMessageException payload. Optional, default=nullChannel.

16 The channel to which returned messages are sent. When provided, the underlying amqp
template is configured to return undeliverable messages to the adapter. When there is no
ErrorMessageStrategy configured, the message will be constructed from the data received
from amqp, with the following additional headers: amqp_returnReplyCode, amqp_returnReplyText,

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 249

amqp_returnExchange, amqp_returnRoutingKey. When there is an ErrorMessageStrategy,
the message will be an ErrorMessage with a ReturnedAmqpMessageException payload.
Optional.

17 A reference to an ErrorMessageStrategy implementation used to build ErrorMessage s when
sending returned or negatively acknowedged messages.

18 When set to false, the endpoint will attempt to connect to the broker during application context
initialization. This allows "fail fast" detection of bad configuration, by logging an error message if
the broker is down. When true (default), the connection is established (if it doesn’t already exist
because some other component established it) when the first message is sent.

return-channel

Using a return-channel requires a RabbitTemplate with the mandatory property set to
true, and a CachingConnectionFactory with the publisherReturns property set to true.
When using multiple outbound endpoints with returns, a separate RabbitTemplate is needed
for each endpoint.

Important

The underlying AmqpTemplate has a default replyTimeout of 5 seconds. If you require a
longer timeout, it must be configured on the template.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the outbound gateway using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 250

@SpringBootApplication

@IntegrationComponentScan

public class AmqpJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 String reply = gateway.sendToRabbit("foo");

 System.out.println(reply);

 }

 @Bean

 @ServiceActivator(inputChannel = "amqpOutboundChannel")

 public AmqpOutboundEndpoint amqpOutbound(AmqpTemplate amqpTemplate) {

 AmqpOutboundEndpoint outbound = new AmqpOutboundEndpoint(amqpTemplate);

 outbound.setExpectReply(true);

 outbound.setRoutingKey("foo"); // default exchange - route to queue 'foo'

 return outbound;

 }

 @Bean

 public MessageChannel amqpOutboundChannel() {

 return new DirectChannel();

 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")

 public interface MyGateway {

 String sendToRabbit(String data);

 }

}

Notice that the only difference between the outbound adapter and outbound gateway configuration is
the setting of the expectReply property.

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the outbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 251

@SpringBootApplication

@IntegrationComponentScan

public class AmqpJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(AmqpJavaApplication.class)

 .web(false)

 .run(args);

 RabbitTemplate template = context.getBean(RabbitTemplate.class);

 MyGateway gateway = context.getBean(MyGateway.class);

 String reply = gateway.sendToRabbit("foo");

 System.out.println(reply);

 }

 @Bean

 public IntegrationFlow amqpOutbound(AmqpTemplate amqpTemplate) {

 return IntegrationFlows.from(amqpOutboundChannel())

 .handle(Amqp.outboundGateway(amqpTemplate)

 .routingKey("foo")) // default exchange - route to queue 'foo'

 .get();

 }

 @Bean

 public MessageChannel amqpOutboundChannel() {

 return new DirectChannel();

 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")

 public interface MyGateway {

 String sendToRabbit(String data);

 }

}

12.8 Async Outbound Gateway

The gateway discussed in the previous section is synchronous, in that the sending thread is suspended
until a reply is received (or a timeout occurs). Spring Integration version 4.3 added this asynchronous
gateway, which uses the AsyncRabbitTemplate from Spring AMQP. When a message is sent, the
thread returns immediately after the send completes, and the reply is sent on the template’s listener
container thread when it is received. This can be useful when the gateway is invoked on a poller thread;
the thread is released and is available for other tasks in the framework.

Configuration for an AMQP Async Outbound Gateway is shown below.

<int-amqp:outbound-gateway id="inboundGateway" ❶

 request-channel="myRequestChannel" ❷

 async-template="" ❸

 exchange-name="" ❹

 exchange-name-expression="" ❺

 order="1" ❻

 reply-channel="" ❼

 reply-timeout="" ❽

 requires-reply="" ❾

 routing-key="" ❿

 routing-key-expression="" 11

 default-delivery-mode"" 12

 confirm-correlation-expression="" 13

 confirm-ack-channel="" 14

 confirm-nack-channel="" 15

 return-channel="" 16

 lazy-connect="true" /> 17

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 252

❶ Unique ID for this adapter. Optional.

❷ Message Channel to which Messages should be sent in order to have them converted and
published to an AMQP Exchange. Required.

❸ Bean Reference to the configured AsyncRabbitTemplate Optional (Defaults to
"asyncRabbitTemplate").

❹ The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Mutually exclusive with exchange-name-expression.
Optional.

❺ A SpEL expression that is evaluated to determine the name of the AMQP Exchange to which
Messages should be sent, with the message as the root object. If not provided, Messages will be
sent to the default, no-name Exchange. Mutually exclusive with exchange-name. Optional.

❻ The order for this consumer when multiple consumers are registered thereby enabling
load-balancing and/or failover. Optional (Defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

❼ Message Channel to which replies should be sent after being received from an AMQP Queue and
converted. Optional.

❽ The time the gateway will wait when sending the reply message to the reply-channel. This only
applies if the reply-channel can block - such as a QueueChannel with a capacity limit that is
currently full. Default: infinity.

❾ When true, the gateway will send an error message to the inbound message’s errorChannel
header, if present or otherwise to the default errorChannel (if available), when no reply message
is received within the AsyncRabbitTemplate's receiveTimeout property. Default: true.

❿ The routing-key to use when sending Messages. By default, this will be an empty String. Mutually
exclusive with routing-key-expression. Optional.

11 A SpEL expression that is evaluated to determine the routing-key to use when sending Messages,
with the message as the root object (e.g. payload.key). By default, this will be an empty String.
Mutually exclusive with routing-key. Optional.

12 The default delivery mode for messages; PERSISTENT or NON_PERSISTENT. Overridden if
the header-mapper sets the delivery mode. The DefaultHeaderMapper sets the value if
the Spring Integration message header amqp_deliveryMode is present. If this attribute is not
supplied and the header mapper doesn’t set it, the default depends on the underlying spring-amqp
MessagePropertiesConverter used by the RabbitTemplate. If that is not customized at all,
the default is PERSISTENT. Optional.

13 An expression defining correlation data. When provided, this configures the underlying amqp
template to receive publisher confirms. Requires a dedicated RabbitTemplate and a
CachingConnectionFactory with the publisherConfirms property set to true. When
a publisher confirm is received, and correlation data is supplied, it is written to either
the confirm-ack-channel, or the confirm-nack-channel, depending on the confirmation type.
The payload of the confirm is the correlation data as defined by this expression and
the message will have a header amqp_publishConfirm set to true (ack) or false (nack).
For nacks, an additional header amqp_publishConfirmNackCause is provided. Examples:
"headers[myCorrelationData]", "payload". If the expression resolves to a Message<?> instance
(such as "#this"), the message emitted on the ack/nack channel is based on that message, with
the additional header(s) added. Optional.

14 The channel to which positive (ack) publisher confirms are sent; payload is the correlation data
defined by the confirm-correlation-expression. Requires the underlying AsyncRabbitTemplate
to have its enableConfirms property set to true. Optional, default=nullChannel.

15 Since version 4.2. The channel to which negative (nack) publisher confirms are sent;
payload is the correlation data defined by the confirm-correlation-expression. Requires the

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 253

underlying AsyncRabbitTemplate to have its enableConfirms property set to true. Optional,
default=nullChannel.

16 The channel to which returned messages are sent. When provided, the underlying amqp template
is configured to return undeliverable messages to the gateway. The message will be constructed
from the data received from amqp, with the following additional headers: amqp_returnReplyCode,
amqp_returnReplyText, amqp_returnExchange, amqp_returnRoutingKey. Requires the underlying
AsyncRabbitTemplate to have its mandatory property set to true. Optional.

17 When set to false, the endpoint will attempt to connect to the broker during application context
initialization. This allows "fail fast" detection of bad configuration, by logging an error message if
the broker is down. When true (default), the connection is established (if it doesn’t already exist
because some other component established it) when the first message is sent.

Also see the section called “Asynchronous Service Activator” for more information.

RabbitTemplate

When using confirms and returns, it is recommended that the RabbitTemplate wired
into the AsyncRabbitTemplate be dedicated. Otherwise, unexpected side-effects may be
encountered.

Configuring with Java Configuration

The following configuration provides an example of configuring the outbound gateway using Java
configuration:

@Configuration

public class AmqpAsyncConfig {

 @Bean

 @ServiceActivator(inputChannel = "amqpOutboundChannel")

 public AsyncAmqpOutboundGateway amqpOutbound(AmqpTemplate asyncTemplate) {

 AsyncAmqpOutboundGateway outbound = new AsyncAmqpOutboundGateway(asyncTemplate);

 outbound.setRoutingKey("foo"); // default exchange - route to queue 'foo'

 return outbound;

 }

 @Bean

 public AsyncRabbitTemplate asyncTemplate(RabbitTemplate rabbitTemplate,

 SimpleMessageListenerContainer replyContainer) {

 return new AsyncRabbitTemplate(rabbitTemplate, replyContainer);

 }

 @Bean

 public SimpleMessageListenerContainer replyContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer(ccf);

 container.setQueueNames("asyncRQ1");

 return container;

 }

 @Bean

 public MessageChannel amqpOutboundChannel() {

 return new DirectChannel();

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the outbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 254

@SpringBootApplication

public class AmqpAsyncApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(AmqpAsyncApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 String reply = gateway.sendToRabbit("foo");

 System.out.println(reply);

 }

 @Bean

 public IntegrationFlow asyncAmqpOutbound(AsyncRabbitTemplate asyncRabbitTemplate) {

 return f -> f

 .handle(Amqp.asyncOutboundGateway(asyncRabbitTemplate)

 .routingKey("foo")); // default exchange - route to queue 'foo'

 }

 @MessagingGateway(defaultRequestChannel = "asyncAmqpOutbound.input")

 public interface MyGateway {

 String sendToRabbit(String data);

 }

}

12.9 Outbound Message Conversion

Spring AMQP 1.4 introduced the ContentTypeDelegatingMessageConverter where the actual
converter is selected based on the incoming content type message property. This could be used by
inbound endpoints.

Spring Integration version 4.3 now allows the ContentTypeDelegatingMessageConverter to be
used on outbound endpoints as well - with the contentType header specifiying which converter will
be used.

The following configures a ContentTypeDelegatingMessageConverter with the default converter
being the SimpleMessageConverter (which handles java serialization and plain text), together with
a JSON converter:

<amqp:outbound-channel-adapter id="withContentTypeConverter" channel="ctRequestChannel"

 exchange-name="someExchange"

 routing-key="someKey"

 amqp-template="amqpTemplateContentTypeConverter" />

<int:channel id="ctRequestChannel"/>

<rabbit:template id="amqpTemplateContentTypeConverter"

 connection-factory="connectionFactory" message-converter="ctConverter" />

<bean id="ctConverter"

 class="o.s.amqp.support.converter.ContentTypeDelegatingMessageConverter">

 <property name="delegates">

 <map>

 <entry key="application/json">

 <bean class="o.s.amqp.support.converter.Jackson2JsonMessageConverter" />

 </entry>

 </map>

 </property>

</bean>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 255

Sending a message to ctRequestChannel with the contentType header set to application/
json will cause the JSON converter to be selected.

This applies to both the outbound channel adapter and gateway.

Note

Starting with version 5.0, headers that are added to the MessageProperties of the outbound
message are never overwritten by mapped headers (by default). Previously, this was only the case
if the message converter was a ContentTypeDelegatingMessageConverter (in that case,
the header was mapped first, so that the proper converter could be selected). For other converters,
such as the SimpleMessageConverter, mapped headers overwrote any headers added by the
converter. This caused problems when an outbound message had some left over contentType
header (perhaps from an inbound channel adapter) and the correct outbound contentType was
incorrectly overwritten. The work-around was to use a header filter to remove the header before
sending the message to the outbound endpoint.

There are, however, cases where the previous behavior is desired. For example, with a String
payload containing JSON, the SimpleMessageConverter is not aware of the content and sets
the contentType message property to text/plain, but your application would like to override
that to application/json by setting the the contentType header of the message sent to the
outbound endpoint. The ObjectToJsonTransformer does exactly that (by default).

There is now a property on the outbound channel adapter and gateway (as well as AMQP-backed
channels) headersMappedLast. Setting this to true will restore the behavior of overwriting the
property added by the converter.

12.10 Outbound User Id

Spring AMQP version 1.6 introduced a mechanism to allow the specification of a default user id
for outbound messages. It has always been possible to set the AmqpHeaders.USER_ID header
which will now take precedence over the default. This might be useful to message recipients;
for inbound messages, if the message publisher sets the property, it is made available in the
AmqpHeaders.RECEIVED_USER_ID header. Note that RabbitMQ validates that the user id is the
actual user id for the connection or one for which impersonation is allowed.

To configure a default user id for outbound messages, configure it on a RabbitTemplate and
configure the outbound adapter or gateway to use that template. Similarly, to set the user id property
on replies, inject an appropriately configured template into the inbound gateway. See the Spring AMQP
documentation for more information.

12.11 Delayed Message Exchange

Spring AMQP supports the RabbitMQ Delayed Message Exchange Plugin. For inbound messages,
the x-delay header is mapped to the AmqpHeaders.RECEIVED_DELAY header. Setting the
AMQPHeaders.DELAY header will cause the corresponding x-delay header to be set in outbound
messages. You can also specify the delay and delayExpression properties on outbound
endpoints (delay-expression when using XML configuration). This takes precedence over the
AmqpHeaders.DELAY header.

https://www.rabbitmq.com/validated-user-id.html
https://www.rabbitmq.com/validated-user-id.html
http://docs.spring.io/spring-amqp/reference/html/_reference.html#template-user-id
http://docs.spring.io/spring-amqp/reference/html/_reference.html#template-user-id
http://docs.spring.io/spring-amqp/reference/html/_reference.html#delayed-message-exchange

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 256

12.12 AMQP Backed Message Channels

There are two Message Channel implementations available. One is point-to-point, and the other
is publish/subscribe. Both of these channels provide a wide range of configuration attributes for
the underlying AmqpTemplate and SimpleMessageListenerContainer as you have seen on the
Channel Adapters and Gateways. However, the examples we’ll show here are going to have minimal
configuration. Explore the XML schema to view the available attributes.

A point-to-point channel would look like this:

<int-amqp:channel id="p2pChannel"/>

Under the covers a Queue named "si.p2pChannel" would be declared, and this channel will send to
that Queue (technically by sending to the no-name Direct Exchange with a routing key that matches
this Queue’s name). This channel will also register a consumer on that Queue. If you want the channel
to be "pollable" instead of message-driven, then simply provide the "message-driven" flag with a value
of false:

<int-amqp:channel id="p2pPollableChannel" message-driven="false"/>

A publish/subscribe channel would look like this:

<int-amqp:publish-subscribe-channel id="pubSubChannel"/>

Under the covers a Fanout Exchange named "si.fanout.pubSubChannel" would be declared, and this
channel will send to that Fanout Exchange. This channel will also declare a server-named exclusive,
auto-delete, non-durable Queue and bind that to the Fanout Exchange while registering a consumer
on that Queue to receive Messages. There is no "pollable" option for a publish-subscribe-channel; it
must be message-driven.

Starting with version 4.1 AMQP Backed Message Channels, alongside with channel-transacted,
support template-channel-transacted to separate transactional configuration for the
AbstractMessageListenerContainer and for the RabbitTemplate. Note, previously, the
channel-transacted was true by default, now it changed to false as standard default value for
the AbstractMessageListenerContainer.

Prior to version 4.3, AMQP-backed channels only supported messages with Serializable payloads
and headers. The entire message was converted (serialized) and sent to RabbitMQ. Now, you can set
the extract-payload attribute (or setExtractPayload() when using Java configuration) to true.
When this flag is true, the message payload is converted and the headers mapped, in a similar manner
to when using channel adapters. This allows AMQP-backed channels to be used with non-serializable
payloads (perhaps with another message converter such as the Jackson2JsonMessageConverter).
The default mapped headers are discussed in Section 12.13, “AMQP Message Headers”. You
can modify the mapping by providing custom mappers using the outbound-header-mapper and
inbound-header-mapper attributes. You can now also specify a default-delivery-mode, used
to set the delivery mode when there is no amqp_deliveryMode header. By default, Spring AMQP
MessageProperties uses PERSISTENT delivery mode.

Important

Just as with other persistence-backed channels, AMQP-backed channels are intended to provide
message persistence to avoid message loss. They are not intended to distribute work to other
peer applications; for that purpose, use channel adapters instead.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 257

Important

Starting with version 5.0, the pollable channel now blocks the poller thread for the specified
receiveTimeout (default 1 second). Previously, unlike other PollableChannel s, the thread
returned immediately to the scheduler if no message was available, regardless of the receive
timeout. Blocking is a little more expensive than just using a basicGet() to retrieve a message
(with no timeout) because a consumer has to be created to receive each message. To restore the
previous behavior, set the poller receiveTimeout to 0.

Configuring with Java Configuration

The following provides an example of configuring the channels using Java configuration:

@Bean

public AmqpChannelFactoryBean pollable(ConnectionFactory connectionFactory) {

 AmqpChannelFactoryBean factoryBean = new AmqpChannelFactoryBean();

 factoryBean.setConnectionFactory(connectionFactory);

 factoryBean.setQueueName("foo");

 factoryBean.setPubSub(false);

 return factoryBean;

}

@Bean

public AmqpChannelFactoryBean messageDriven(ConnectionFactory connectionFactory) {

 AmqpChannelFactoryBean factoryBean = new AmqpChannelFactoryBean(true);

 factoryBean.setConnectionFactory(connectionFactory);

 factoryBean.setQueueName("bar");

 factoryBean.setPubSub(false);

 return factoryBean;

}

@Bean

public AmqpChannelFactoryBean pubSub(ConnectionFactory connectionFactory) {

 AmqpChannelFactoryBean factoryBean = new AmqpChannelFactoryBean(true);

 factoryBean.setConnectionFactory(connectionFactory);

 factoryBean.setQueueName("baz");

 factoryBean.setPubSub(false);

 return factoryBean;

}

Configuring with the Java DSL

The following provides an example of configuring the channels using the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 258

@Bean

public IntegrationFlow pollableInFlow(ConnectionFactory connectionFactory) {

 return IntegrationFlows.from(...)

 ...

 .channel(Amqp.pollableChannel(connectionFactory)

 .queueName("foo"))

 ...

 .get();

}

@Bean

public IntegrationFlow messageDrivenInFow(ConnectionFactory connectionFactory) {

 return IntegrationFlows.from(...)

 ...

 .channel(Amqp.channel(connectionFactory)

 .queueName("bar"))

 ...

 .get();

}

@Bean

public IntegrationFlow pubSubInFlow(ConnectionFactory connectionFactory) {

 return IntegrationFlows.from(...)

 ...

 .channel(Amqp.publisSubscribeChannel(connectionFactory)

 .queueName("baz"))

 ...

 .get();

}

12.13 AMQP Message Headers

The Spring Integration AMQP Adapters will map all AMQP properties and headers automatically. (This
is a change in 4.3 - previously, only standard headers were mapped). These properties will be copied
by default to and from Spring Integration MessageHeaders using the DefaultAmqpHeaderMapper.

Of course, you can pass in your own implementation of AMQP specific header mappers, as the adapters
have respective properties to support that.

Any user-defined headers within the AMQP MessageProperties WILL be copied to or from an AMQP
Message, unless explicitly negated by the requestHeaderNames and/or replyHeaderNames properties
of the DefaultAmqpHeaderMapper. For an outbound mapper, no x-* headers are mapped by default;
see the caution below for the reason why.

To override the default, and revert to the pre-4.3 behavior, use STANDARD_REQUEST_HEADERS and
STANDARD_REPLY_HEADERS in the properties.

Tip

When mapping user-defined headers, the values can also contain simple wildcard patterns (e.g.
"foo*" or "*foo") to be matched. * matches all headers.

Starting with version 4.1, the AbstractHeaderMapper (a DefaultAmqpHeaderMapper superclass)
allows the NON_STANDARD_HEADERS token to be configured for the requestHeaderNames and/
or replyHeaderNames properties (in addition to the existing STANDARD_REQUEST_HEADERS and
STANDARD_REPLY_HEADERS) to map all user-defined headers.

Class org.springframework.amqp.support.AmqpHeaders identifies the default headers that
will be used by the DefaultAmqpHeaderMapper:

http://docs.spring.io/spring-integration/api/org/springframework/integration/amqp/support/DefaultAmqpHeaderMapper.html
http://docs.spring.io/spring-amqp/api/org/springframework/amqp/core/MessageProperties.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 259

• amqp_appId

• amqp_clusterId

• amqp_contentEncoding

• amqp_contentLength

• content-type

• amqp_correlationId

• amqp_delay

• amqp_deliveryMode

• amqp_deliveryTag

• amqp_expiration

• amqp_messageCount

• amqp_messageId

• amqp_receivedDelay

• amqp_receivedDeliveryMode

• amqp_receivedExchange

• amqp_receivedRoutingKey

• amqp_redelivered

• amqp_replyTo

• amqp_timestamp

• amqp_type

• amqp_userId

• amqp_publishConfirm

• amqp_publishConfirmNackCause

• amqp_returnReplyCode

• amqp_returnReplyText

• amqp_returnExchange

• amqp_returnRoutingKey

• amqp_channel

• amqp_consumerTag

• amqp_consumerQueue

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 260

Caution

As mentioned above, using a header mapping pattern * is a common way to copy all headers.
However, this can have some unexpected side-effects because certain RabbitMQ proprietary
properties/headers will be copied as well. For example, when you use Federation, the received
message may have a property named x-received-from which contains the node that sent
the message. If you use the wildcard character * for the request and reply header mapping on
the Inbound Gateway, this header will be copied as well, which may cause some issues with
federation; this reply message may be federated back to the sending broker, which will think
that a message is looping and is thus silently dropped. If you wish to use the convenience of
wildcard header mapping, you may need to filter out some headers in the downstream flow.
For example, to avoid copying the x-received-from header back to the reply you can use
<int:header-filter ... header-names="x-received-from"> before sending the
reply to the AMQP Inbound Gateway. Alternatively, you could explicitly list those properties that
you actually want mapped instead of using wildcards. For these reasons, for inbound messages,
the mapper by default does not map any x-* headers; it also does not map the deliveryMode
to amqp_deliveryMode header, to avoid propagation of that header from an inbound message
to an outbound message. Instead, this header is mapped to amqp_receivedDeliveryMode,
which is not mapped on output.

Starting with version 4.3, patterns in the header mappings can be negated by preceding the pattern
with !. Negated patterns get priority, so a list such as STANDARD_REQUEST_HEADERS,foo,ba*,!
bar,!baz,qux,!foo will NOT map foo (nor bar nor baz); the standard headers plus bad, qux will
be mapped.

Important

If you have a user defined header that begins with ! that you do wish to map, you need to escape
it with \ thus: STANDARD_REQUEST_HEADERS,\!myBangHeader and it WILL be mapped.

12.14 AMQP Samples

To experiment with the AMQP adapters, check out the samples available in the Spring Integration
Samples Git repository at:

• https://github.com/SpringSource/spring-integration-samples

Currently there is one sample available that demonstrates the basic functionality of the Spring Integration
AMQP Adapter using an Outbound Channel Adapter and an Inbound Channel Adapter. As AMQP Broker
implementation the sample uses RabbitMQ (http://www.rabbitmq.com/).

Note

In order to run the example you will need a running instance of RabbitMQ. A local installation
with just the basic defaults will be sufficient. For detailed RabbitMQ installation procedures please
visit: http://www.rabbitmq.com/install.html

Once the sample application is started, you enter some text on the command prompt and a message
containing that entered text is dispatched to the AMQP queue. In return that message is retrieved via
Spring Integration and then printed to the console.

The image belows illustrates the basic set of Spring Integration components used in this sample.

https://www.rabbitmq.com/federated-exchanges.html
https://github.com/spring-projects/spring-integration-samples
http://www.rabbitmq.com/
http://www.rabbitmq.com/install.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 261

Figure 12.1. The Spring Integration graph of the AMQP sample

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 262

13. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound ApplicationEvents as defined by the
underlying Spring Framework. For more information about Spring’s support for events and listeners,
refer to the Spring Reference Manual.

13.1 Receiving Spring Application Events

To receive events and send them to a channel, simply define an instance of Spring Integration’s
ApplicationEventListeningMessageProducer. This class is an implementation of Spring’s
ApplicationListener interface. By default it will pass all received events as Spring Integration
Messages. To limit based on the type of event, configure the list of event types that you want to receive
with the eventTypes property. If a received event has a Message instance as its source, then that
will be passed as-is. Otherwise, if a SpEL-based "payloadExpression" has been provided, that will be
evaluated against the ApplicationEvent instance. If the event’s source is not a Message instance and no
"payloadExpression" has been provided, then the ApplicationEvent itself will be passed as the payload.

Starting with version 4.2 the ApplicationEventListeningMessageProducer implements
GenericApplicationListener and can be configured to accept not only ApplicationEvent
types, but any type for treating payload events which are supported since Spring Framework 4.2, too.
When the accepted event is an instance of PayloadApplicationEvent, its payload is used for the
message to send.

For convenience namespace support is provided to configure an
ApplicationEventListeningMessageProducer via the inbound-channel-adapter element.

<int-event:inbound-channel-adapter channel="eventChannel"

 error-channel="eventErrorChannel"

 event-types="example.FooEvent, example.BarEvent, java.util.Date"/>

<int:publish-subscribe-channel id="eventChannel"/>

In the above example, all Application Context events that match one of the types specified by the event-
types (optional) attribute will be delivered as Spring Integration Messages to the Message Channel
named eventChannel. If a downstream component throws an exception, a MessagingException
containing the failed message and exception will be sent to the channel named eventErrorChannel. If
no "error-channel" is specified and the downstream channels are synchronous, the Exception will be
propagated to the caller.

13.2 Sending Spring Application Events

To send Spring ApplicationEvents, create an instance of the
ApplicationEventPublishingMessageHandler and register it within an endpoint.
This implementation of the MessageHandler interface also implements Spring’s
ApplicationEventPublisherAware interface and thus acts as a bridge between Spring Integration
Messages and ApplicationEvents.

For convenience namespace support is provided to configure an
ApplicationEventPublishingMessageHandler via the outbound-channel-adapter element.

<int:channel id="eventChannel"/>

<int-event:outbound-channel-adapter channel="eventChannel"/>

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#context-functionality-events

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 263

If you are using a PollableChannel (e.g., Queue), you can also provide poller as a sub-element of the
outbound-channel-adapter element. You can also optionally provide a task-executor reference for that
poller. The following example demonstrates both.

<int:channel id="eventChannel">

 <int:queue/>

</int:channel>

<int-event:outbound-channel-adapter channel="eventChannel">

 <int:poller max-messages-per-poll="1" task-executor="executor" fixed-rate="100"/>

</int-event:outbound-channel-adapter>

<task:executor id="executor" pool-size="5"/>

In the above example, all messages sent to the eventChannel channel will be published as
ApplicationEvents to any relevant ApplicationListener instances that are registered within the same
Spring ApplicationContext. If the payload of the Message is an ApplicationEvent, it will be passed as-
is. Otherwise the Message itself will be wrapped in a MessagingEvent instance.

Starting with version 4.2 the ApplicationEventPublishingMessageHandler (<int-
event:outbound-channel-adapter>) can be configured with the publish-payload boolean
attribute to publish to the application context payload as is, instead of wrapping it to a
MessagingEvent instance.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 264

14. Feed Adapter

Spring Integration provides support for Syndication via Feed Adapters. The implementation is based
on the ROME Framework.

14.1 Introduction

Web syndication is a form of publishing material such as news stories, press releases, blog posts, and
other items typically available on a website but also made available in a feed format such as RSS or
ATOM.

Spring integration provides support for Web Syndication via its feed adapter and provides convenient
namespace-based configuration for it. To configure the feed namespace, include the following elements
within the headers of your XML configuration file:

xmlns:int-feed="http://www.springframework.org/schema/integration/feed"

xsi:schemaLocation="http://www.springframework.org/schema/integration/feed

 http://www.springframework.org/schema/integration/feed/spring-integration-feed.xsd"

14.2 Feed Inbound Channel Adapter

The only adapter that is really needed to provide support for retrieving feeds is an inbound channel
adapter. This allows you to subscribe to a particular URL. Below is an example configuration:

<int-feed:inbound-channel-adapter id="feedAdapter"

 channel="feedChannel"

 url="http://feeds.bbci.co.uk/news/rss.xml">

 <int:poller fixed-rate="10000" max-messages-per-poll="100" />

</int-feed:inbound-channel-adapter>

In the above configuration, we are subscribing to a URL identified by the url attribute.

As news items are retrieved they will be converted to Messages and sent to a
channel identified by the channel attribute. The payload of each message will be a
com.sun.syndication.feed.synd.SyndEntry instance. That encapsulates various data about a
news item (content, dates, authors, etc.).

You can also see that the Inbound Feed Channel Adapter is a Polling Consumer. That means
you have to provide a poller configuration. However, one important thing you must understand
with regard to Feeds is that its inner-workings are slightly different then most other poling
consumers. When an Inbound Feed adapter is started, it does the first poll and receives a
com.sun.syndication.feed.synd.SyndEntryFeed instance. That is an object that contains
multiple SyndEntry objects. Each entry is stored in the local entry queue and is released based on the
value in the max-messages-per-poll attribute such that each Message will contain a single entry.
If during retrieval of the entries from the entry queue the queue had become empty, the adapter will
attempt to update the Feed thereby populating the queue with more entries (SyndEntry instances) if
available. Otherwise the next attempt to poll for a feed will be determined by the trigger of the poller
(e.g., every 10 seconds in the above configuration).

Duplicate Entries

Polling for a Feed might result in entries that have already been processed ("I already read that news
item, why are you showing it to me again?"). Spring Integration provides a convenient mechanism to
eliminate the need to worry about duplicate entries. Each feed entry will have a published date field.

https://rometools.github.io/rome/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 265

Every time a new Message is generated and sent, Spring Integration will store the value of the latest
published date in an instance of the MetadataStore strategy (Section 10.5, “Metadata Store”).

Note

The key used to persist the latest published date is the value of the (required) id attribute of
the Feed Inbound Channel Adapter component plus the feedUrl (if any) from the adapter’s
configuration.

Other Options

Starting with version 5.0, the deprecated com.rometools.fetcher.FeedFetcher option
has been removed and an overloaded FeedEntryMessageSource constructor for an
org.springframework.core.io.Resource is provided. This is useful when Feed source
isn’t an HTTP endpoint, but any other resource, local or remote on FTP, for example.
In the FeedEntryMessageSource logic such a resource (or provided URL) is parsed by
the SyndFeedInput to the SyndFeed object for processing mentioned above. A customized
SyndFeedInput (for example with the allowDoctypes option) instance also can be injected to the
FeedEntryMessageSource.

14.3 Java DSL and Annotation configuration

The following Spring Boot application provides an example of configuring the Inbound Adapter using
the Java DSL:

@SpringBootApplication

public class FeedJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FeedJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Value("org/springframework/integration/feed/sample.rss")

 private Resource feedResource;

 @Bean

 public MetadataStore metadataStore() {

 PropertiesPersistingMetadataStore metadataStore = new PropertiesPersistingMetadataStore();

 metadataStore.setBaseDirectory(tempFolder.getRoot().getAbsolutePath());

 return metadataStore;

 }

 @Bean

 public IntegrationFlow feedFlow() {

 return IntegrationFlows

 .from(Feed.inboundAdapter(this.feedResource, "feedTest")

 .metadataStore(metadataStore()),

 e -> e.poller(p -> p.fixedDelay(100)))

 .channel(c -> c.queue("entries"))

 .get();

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 266

15. File Support

15.1 Introduction

Spring Integration’s File support extends the Spring Integration Core with a dedicated vocabulary to deal
with reading, writing, and transforming files. It provides a namespace that enables elements defining
Channel Adapters dedicated to files and support for Transformers that can read file contents into strings
or byte arrays.

This section will explain the workings of FileReadingMessageSource and
FileWritingMessageHandler and how to configure them as beans. Also the support for dealing with
files through file specific implementations of Transformer will be discussed. Finally the file specific
namespace will be explained.

15.2 Reading Files

A FileReadingMessageSource can be used to consume files from the filesystem. This is an
implementation of MessageSource that creates messages from a file system directory.

<bean id="pollableFileSource"

 class="org.springframework.integration.file.FileReadingMessageSource"

 p:directory="${input.directory}"/>

To prevent creating messages for certain files, you may supply a FileListFilter. By default the
following 2 filters are used:

• IgnoreHiddenFileListFilter

• AcceptOnceFileListFilter

The IgnoreHiddenFileListFilter ensures that hidden files are not being processed. Please keep
in mind that the exact definition of hidden is system-dependent. For example, on UNIX-based systems,
a file beginning with a period character is considered to be hidden. Microsoft Windows, on the other
hand, has a dedicated file attribute to indicate hidden files.

Important

The IgnoreHiddenFileListFilter was introduced with version 4.2. In prior versions hidden
files were included. With the default configuration, the IgnoreHiddenFileListFilter will be
triggered first, then the AcceptOnceFileListFilter.

The AcceptOnceFileListFilter ensures files are picked up only once from the directory.

Note

The AcceptOnceFileListFilter stores its state in memory. If you wish the state to survive
a system restart, consider using the FileSystemPersistentAcceptOnceFileListFilter
instead. This filter stores the accepted file names in a MetadataStore implementation
(Section 10.5, “Metadata Store”). This filter matches on the filename and modified time.

Since version 4.0, this filter requires a ConcurrentMetadataStore. When used with a shared
data store (such as Redis with the RedisMetadataStore) this allows filter keys to be shared
across multiple application instances, or when a network file share is being used by multiple
servers.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 267

Since version 4.1.5, this filter has a new property flushOnUpdate which will cause it to flush the
metadata store on every update (if the store implements Flushable).

<bean id="pollableFileSource"

 class="org.springframework.integration.file.FileReadingMessageSource"

 p:inputDirectory="${input.directory}"

 p:filter-ref="customFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
AcceptOnceFileListFilter does not prevent this. In most cases, this can be prevented if the
file-writing process renames each file as soon as it is ready for reading. A filename-pattern or
filename-regex filter that accepts only files that are ready (e.g. based on a known suffix), composed
with the default AcceptOnceFileListFilter allows for this. The CompositeFileListFilter
enables the composition.

<bean id="pollableFileSource"

 class="org.springframework.integration.file.FileReadingMessageSource"

 p:inputDirectory="${input.directory}"

 p:filter-ref="compositeFilter"/>

<bean id="compositeFilter"

 class="org.springframework.integration.file.filters.CompositeFileListFilter">

 <constructor-arg>

 <list>

 <bean class="o.s.i.file.filters.AcceptOnceFileListFilter"/>

 <bean class="o.s.i.file.filters.RegexPatternFileListFilter">

 <constructor-arg value="^test.*$"/>

 </bean>

 </list>

 </constructor-arg>

</bean>

If it is not possible to create the file with a temporary name and rename to the final name, another
alternative is provided. The LastModifiedFileListFilter was added in version 4.2. This filter can
be configured with an age property and only files older than this will be passed by the filter. The age
defaults to 60 seconds, but you should choose an age that is large enough to avoid picking up a file
early, due to, say, network glitches.

<bean id="filter" class="org.springframework.integration.file.filters.LastModifiedFileListFilter">

 <property name="age" value="120" />

</bean>

Starting with version 4.3.7 a ChainFileListFilter (an extension of CompositeFileListFilter)
has been introduced to allow scenarios when subsequent filters should only see the result of the previous
filter. (With the CompositeFileListFilter, all filters see all the files, but only files that pass all
filters are passed by the CompositeFileListFilter). An example of where the new behavior is
required is a combination of LastModifiedFileListFilter and AcceptOnceFileListFilter,
when we do not wish to accept the file until some amount of time has elapsed. With the
CompositeFileListFilter, since the AcceptOnceFileListFilter sees all the files on the first
pass, it won’t pass it later when the other filter does. The CompositeFileListFilter approach is
useful when a pattern filter is combined with a custom filter that looks for a secondary indicating file
transfer is complete. The pattern filter might only pass the primary file (e.g. foo.txt) but the "done"
filter needs to see if, say foo.done is present.

Say we have files a.txt, a.done, and b.txt.

The pattern filter only passes a.txt and b.txt, the "done" filter will see all three files and only pass
a.txt. The final result of the composite filter is only a.txt is released.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 268

Note

With the ChainFileListFilter, if any filter in the chain returns an empty list, the remaining
filters are not invoked.

Starting with version 5.0 an ExpressionFileListFilter has been introduced to allow to execute
SpEL expression against file as a context evaluation root object. For this purpose all the XML
components for file handling (local and remote), alongside with an existing filter attribute, have been
supplied with the filter-expression option:

<int-file:inbound-channel-adapter

 directory="${inputdir}"

 filter-expression="name matches '.text'"

 auto-startup="false"/>

Message Headers

Starting with version 5.0 the FileReadingMessageSource, in addition to the payload as a polled
File, populates these headers to the outbound Message:

• FileHeaders.FILENAME - the File.getName() of the file to send. Can be used for subsequent
rename or copy logic;

• FileHeaders.ORIGINAL_FILE - the File object itself. Typically this header is populated
automatically by Framework components, like Section 15.5, “File Splitter” or Section 15.4, “File
Transformers”, when we lose the original File object. But for consistency and convenience with any
other custom use-cases this header can be useful to get access to the original file;

• FileHeaders.RELATIVE_PATH - a new header introduced to represent the part of file path relative
to the root directory for the scan. This header can be useful when the requirement is to restore a
source directory hierarchy in the other places. For this purpose the DefaultFileNameGenerator
(the section called “Generating File Names”) can be configured to use this header.

Directory scanning and polling

The FileReadingMessageSource doesn’t produce messages for files from the directory
immediately. It uses an internal queue for eligible files returned by the scanner. The scanEachPoll
option is used to ensure that the internal queue is refreshed with the latest input directory content
on each poll. By default (scanEachPoll = false), the FileReadingMessageSource empties
its queue before scanning the directory again. This default behavior is particularly useful to reduce
scans of large numbers of files in a directory. However, in cases where custom ordering is
required, it is important to consider the effects of setting this flag to true; the order in which
files are processed may not be as expected. By default, files in the queue are processed in
their natural (path) order. New files added by a scan, even when the queue already has files,
are inserted in the appropriate position to maintain that natural order. To customize the order,
the FileReadingMessageSource can accept a Comparator<File> as a constructor argument.
It is used by the internal (PriorityBlockingQueue) to reorder its content according to the
business requirements. Therefore, to process files in a specific order, you should provide a
comparator to the FileReadingMessageSource, rather than ordering the list produced by a custom
DirectoryScanner.

Starting with version 5.0, a new RecursiveDirectoryScanner is presented to perform
file tree visiting. The implementation is based on the Files.walk(Path start,

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 269

int maxDepth, FileVisitOption... options) functionality. The root directory
(DirectoryScanner.listFiles(File) argument) is excluded from the result. All other
sub-directories includes/excludes are based on the target FileListFilter implementation.
For example the SimplePatternFileListFilter filters directories by default. See
AbstractDirectoryAwareFileListFilter and its implementations for more information.

Namespace Support

The configuration for file reading can be simplified using the file specific namespace. To do this use
the following template.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-file="http://www.springframework.org/schema/integration/file"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/file

 http://www.springframework.org/schema/integration/file/spring-integration-file.xsd">

</beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound
Channel Adapter like this:

<int-file:inbound-channel-adapter id="filesIn1"

 directory="file:${input.directory}" prevent-duplicates="true" ignore-hidden="true"/>

<int-file:inbound-channel-adapter id="filesIn2"

 directory="file:${input.directory}"

 filter="customFilterBean" />

<int-file:inbound-channel-adapter id="filesIn3"

 directory="file:${input.directory}"

 filename-pattern="test*" />

<int-file:inbound-channel-adapter id="filesIn4"

 directory="file:${input.directory}"

 filename-regex="test[0-9]+\.txt" />

The first channel adapter example is relying on the default FileListFilter s:

• IgnoreHiddenFileListFilter (Do not process hidden files)

• AcceptOnceFileListFilter (Prevents duplication)

Therefore, you can also leave off the 2 attributes prevent-duplicates and ignore-hidden as
they are true by default.

Important

The ignore-hidden attribute was introduced with Spring Integration 4.2. In prior versions hidden
files were included.

The second channel adapter example is using a custom filter, the third is using the filename-
pattern attribute to add an AntPathMatcher based filter, and the fourth is using the filename-
regex attribute to add a regular expression Pattern based filter to the FileReadingMessageSource.
The filename-pattern and filename-regex attributes are each mutually exclusive with the regular

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 270

filter reference attribute. However, you can use the filter attribute to reference an instance of
CompositeFileListFilter that combines any number of filters, including one or more pattern based
filters to fit your particular needs.

When multiple processes are reading from the same directory it can be desirable to lock files to prevent
them from being picked up concurrently. To do this you can use a FileLocker. There is a java.nio
based implementation available out of the box, but it is also possible to implement your own locking
scheme. The nio locker can be injected as follows

<int-file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}" prevent-duplicates="true">

 <int-file:nio-locker/>

</int-file:inbound-channel-adapter>

A custom locker you can configure like this:

<int-file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}" prevent-duplicates="true">

 <int-file:locker ref="customLocker"/>

</int-file:inbound-channel-adapter>

Note

When a file inbound adapter is configured with a locker, it will take the responsibility to acquire a
lock before the file is allowed to be received. It will not assume the responsibility to unlock the
file. If you have processed the file and keeping the locks hanging around you have a memory leak.
If this is a problem in your case you should call FileLocker.unlock(File file) yourself
at the appropriate time.

When filtering and locking files is not enough it might be needed to control the way files are listed
entirely. To implement this type of requirement you can use an implementation of DirectoryScanner.
This scanner allows you to determine entirely what files are listed each poll. This is also the
interface that Spring Integration uses internally to wire FileListFilter s and FileLocker to
the FileReadingMessageSource. A custom DirectoryScanner can be injected into the <int-
file:inbound-channel-adapter/> on the scanner attribute.

<int-file:inbound-channel-adapter id="filesIn" directory="file:${input.directory}"

 scanner="customDirectoryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

It is also important to understand that filters (including patterns, regex, prevent-duplicates
etc) and locker s, are actually used by the scanner. Any of these attributes set on the adapter
are subsequently injected into the internal scanner. For the case of an external scanner, all filter
and locker attributes are prohibited on the FileReadingMessageSource; they must be specified
(if required) on that custom DirectoryScanner. In other words, if you inject a scanner into the
FileReadingMessageSource, you should supply filter and locker on that scanner not on the
FileReadingMessageSource.

Note

The DefaultDirectoryScanner uses a IgnoreHiddenFileListFilter and
AcceptOnceFileListFilter by default. To prevent their use, you should configure your own
filter (e.g. AcceptAllFileListFilter) or even set it to null.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 271

WatchServiceDirectoryScanner

The FileReadingMessageSource.WatchServiceDirectoryScanner relies on file system
events when new files are added to the directory. During initialization, the directory is registered to
generate events; the initial file list is also built. While walking the directory tree, any subdirectories
encountered are also registered to generate events. On the first poll, the initial file list from walking
the directory is returned. On subsequent polls, files from new creation events are returned. If a new
subdirectory is added, its creation event is used to walk the new subtree to find existing files, as well
as registering any new subdirectories found.

Note

There is a case with WatchKey, when its internal events queue isn’t drained by the program
as quickly as the directory modification events occur. If the queue size is exceeded, a
StandardWatchEventKinds.OVERFLOW is emitted to indicate that some file system events
may be lost. In this case, the root directory is re-scanned completely. To avoid duplicates consider
using an appropriate FileListFilter such as the AcceptOnceFileListFilter and/or
remove files when processing is completed.

The WatchServiceDirectoryScanner can be enable via FileReadingMessageSource.use-
watch-service option, which is mutually exclusive with the scanner option. An internal
FileReadingMessageSource.WatchServiceDirectoryScanner instance is populated for the
provided directory.

In addition, now the WatchService polling logic can track the
StandardWatchEventKinds.ENTRY_MODIFY and
StandardWatchEventKinds.ENTRY_DELETE, too.

The ENTRY_MODIFY events logic should be implemented properly in the FileListFilter to track
not only new files but also the modification, if that is requirement. Otherwise the files from those events
are treated the same way.

The ENTRY_DELETE events have effect for the ResettableFileListFilter implementations and,
therefore, their files are provided for the remove() operation. This means that (when this event is
enabled), filters such as the AcceptOnceFileListFilter will have the file removed, meaning that,
if a file with the same name appears, it will pass the filter and be sent as a message.

For this purpose the watch-events

(FileReadingMessageSource.setWatchEvents(WatchEventType... watchEvents)) has
been introduced (WatchEventType is a public inner enum in FileReadingMessageSource). With
such an option we can implement some scenarios, when we would like to do one downstream flow
logic for new files, and other for modified. We can achieve that with different <int-file:inbound-
channel-adapter> definitions, but for the same directory:

<int-file:inbound-channel-adapter id="newFiles"

 directory="${input.directory}"

 use-watch-service="true"/>

<int-file:inbound-channel-adapter id="modifiedFiles"

 directory="${input.directory}"

 use-watch-service="true"

 filter="acceptAllFilter"

 watch-events="MODIFY"/> <!-- CREATE by default -->

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 272

Limiting Memory Consumption

A HeadDirectoryScanner can be used to limit the number of files retained in memory. This can be
useful when scanning large directories. With XML configuration, this is enabled using the queue-size
property on the inbound channel adapter.

Prior to version 4.2, this setting was incompatible with the use of any other filters. Any other filters
(including prevent-duplicates="true") overwrote the filter used to limit the size.

Note

The use of a HeadDirectoryScanner is incompatible with an AcceptOnceFileListFilter.
Since all filters are consulted during the poll decision, the AcceptOnceFileListFilter
does not know that other filters might be temporarily filtering files. Even if files that were
previously filtered by the HeadDirectoryScanner.HeadFilter are now available, the
AcceptOnceFileListFilter will filter them.

Generally, instead of using an AcceptOnceFileListFilter in this case, one would simply
remove the processed files so that the previously filtered files will be available on a future poll.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

@SpringBootApplication

public class FileReadingJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FileReadingJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public MessageChannel fileInputChannel() {

 return new DirectChannel();

 }

 @Bean

 @InboundChannelAdapter(value = "fileInputChannel", poller = @Poller(fixedDelay = "1000"))

 public MessageSource<File> fileReadingMessageSource() {

 FileReadingMessageSource source = new FileReadingMessageSource();

 source.setDirectory(new File(INBOUND_PATH));

 source.setFilter(new SimplePatternFileListFilter("*.txt"));

 return source;

 }

 @Bean

 @Transformer(inputChannel = "fileInputChannel", outputChannel = "processFileChannel")

 public FileToStringTransformer fileToStringTransformer() {

 return new FileToStringTransformer();

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 273

@SpringBootApplication

public class FileReadingJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FileReadingJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public IntegrationFlow fileReadingFlow() {

 return IntegrationFlows

 .from(s -> s.file(new File(INBOUND_PATH))

 .patternFilter("*.txt"),

 e -> e.poller(Pollers.fixedDelay(1000)))

 .transform(Transformers.fileToString())

 .channel("processFileChannel")

 .get();

 }

}

'Tail’ing Files

Another popular use case is to get lines from the end (or tail) of a file,
capturing new lines when they are added. Two implementations are provided; the first,
OSDelegatingFileTailingMessageProducer, uses the native tail command (on operating
systems that have one). This is likely the most efficient implementation on those platforms.
For operating systems that do not have a tail command, the second implementation
ApacheCommonsFileTailingMessageProducer which uses the Apache commons-io Tailer
class.

In both cases, file system events, such as files being unavailable etc, are published as
ApplicationEvent s using the normal Spring event publishing mechanism. Examples of such events
are:

[message=tail: cannot open ̀ /tmp/foo' for reading: No such file or directory,

file=/tmp/foo]

[message=tail: `/tmp/foo' has become accessible, file=/tmp/foo]

[message=tail: ̀ /tmp/foo' has become inaccessible: No such file or directory,

file=/tmp/foo]

[message=tail: `/tmp/foo' has appeared; following end of new file, file=/

tmp/foo]

This sequence of events might occur, for example, when a file is rotated.

Starting with version 5.0, a FileTailingIdleEvent is emitted when there is no data in the file during
idleEventInterval.

[message=Idle timeout, file=/tmp/foo] [idle time=5438]

Note

Not all platforms supporting a tail command provide these status messages.

Messages emitted from these endpoints have the following headers:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 274

• FileHeaders.ORIGINAL_FILE - the File object

• FileHeaders.FILENAME - the file name (File.getName())

Note

In versions prior to version 5.0, the FileHeaders.FILENAME header contained a
string representation of the file’s absolute path. You can now obtain that by calling
getAbsolutePath() on the original file header.

Example configurations:

<int-file:tail-inbound-channel-adapter id="native"

 channel="input"

 task-executor="exec"

 file="/tmp/foo"/>

This creates a native adapter with default -F -n 0 options (follow the file name from the current end).

<int-file:tail-inbound-channel-adapter id="native"

 channel="input"

 native-options="-F -n +0"

 task-executor="exec"

 file-delay=10000

 file="/tmp/foo"/>

This creates a native adapter with -F -n +0 options (follow the file name, emitting all existing lines). If the
tail command fails (on some platforms, a missing file causes the tail to fail, even with -F specified),
the command will be retried every 10 seconds.

<int-file:tail-inbound-channel-adapter id="native"

 channel="input"

 enable-status-reader="false"

 task-executor="exec"

 file="/tmp/foo"/>

By default native adapter capture from standard output and send them as messages and from standard
error to raise events. Starting with version 4.3.6, you can discard the standard error events by setting
the enable-status-reader to false.

<int-file:tail-inbound-channel-adapter id="native"

 channel="input"

 idle-event-interval="5000"

 task-executor="exec"

 file="/tmp/foo"/>

IdleEventInterval is set to 5000 then, if no lines are written for 5 second,
FileTailingIdleEvent will be triggered every 5 second. This can be useful if we need to stop the
adapter.

<int-file:tail-inbound-channel-adapter id="apache"

 channel="input"

 task-executor="exec"

 file="/tmp/bar"

 delay="2000"

 end="false"

 reopen="true"

 file-delay="10000"/>

This creates an Apache commons-io Tailer adapter that examines the file for new lines every 2
seconds, and checks for existence of a missing file every 10 seconds. The file will be tailed from the

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 275

beginning (end="false") instead of the end (which is the default). The file will be reopened for each
chunk (the default is to keep the file open).

Important

Specifying the delay, end or reopen attributes, forces the use of the Apache commons-io
adapter and the native-options attribute is not allowed.

Dealing With Incomplete Data

A common problem in file transfer scenarios is how to determine that the transfer is complete, so you
don’t start reading an incomplete file. A common technique to solve this problem is to write the file with
a temporary name and then atomically rename it to the final name. This, together with a filter that masks
the temporary file from being picked up by the consumer provides a robust solution. This technique
is used by Spring Integration components that write files (locally or remotely); by default, they append
.writing to the file name and remove it when the transfer is complete.

Another common technique is to write a second "marker" file to indicate the file transfer
is complete. In this scenario, say, you should not consider foo.txt to be available for
use until foo.txt.complete is also present. Spring Integration version 5.0 introduces
new filters to support this mechanism. Implementations are provided for the file system
(FileSystemMarkerFilePresentFileListFilter), FTP and SFTP. They are configurable such
that the marker file can have any name, although it will usually be related to the file being transferred.
See the javadocs for more information.

15.3 Writing files

To write messages to the file system you can use a FileWritingMessageHandler. This class can deal
with the following payload types:

• File,

• String

• byte array

• InputStream (since version 4.2)

You can configure the encoding and the charset that will be used in case of a String payload.

To make things easier, you can configure the FileWritingMessageHandler as part of an Outbound
Channel Adapter or Outbound Gateway using the provided XML namespace support.

Starting with version 4.3, you can specify the buffer size to use when writing files.

Generating File Names

In its simplest form, the FileWritingMessageHandler only requires a destination directory for
writing the files. The name of the file to be written is determined by the handler’s FileNameGenerator.
The default implementation looks for a Message header whose key matches the constant defined as
FileHeaders.FILENAME.

Alternatively, you can specify an expression to be evaluated against the Message in order to generate
a file name, e.g. headers[myCustomHeader] + '.foo'. The expression must evaluate to a String. For

http://docs.spring.io/spring-integration/api/org/springframework/integration/file/FileWritingMessageHandler.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/file/FileNameGenerator.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/file/DefaultFileNameGenerator.html
http://docs.spring.io/spring-integration/api/constant-values.html#org.springframework.integration.file.FileHeaders.FILENAME

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 276

convenience, the DefaultFileNameGenerator also provides the setHeaderName method, allowing
you to explicitly specify the Message header whose value shall be used as the filename.

Once setup, the DefaultFileNameGenerator will employ the following resolution steps to determine
the filename for a given Message payload:

1. Evaluate the expression against the Message and, if the result is a non-empty String, use it as
the filename.

2. Otherwise, if the payload is a java.io.File, use the file’s filename.

3. Otherwise, use the Message ID appended with .msg as the filename.

When using the XML namespace support, both, the File Outbound Channel Adapter and the File
Outbound Gateway support the following two mutually exclusive configuration attributes:

• filename-generator (a reference to a FileNameGenerator implementation)

• filename-generator-expression (an expression evaluating to a String)

While writing files, a temporary file suffix will be used (default: .writing). It is appended to the filename
while the file is being written. To customize the suffix, you can set the temporary-file-suffix attribute on
both the File Outbound Channel Adapter and the File Outbound Gateway.

Note

When using the APPEND file mode, the temporary-file-suffix attribute is ignored, since the data
is appended to the file directly.

Starting with version 4.2.5 the generated file name (as a result of filename-generator/filename-
generator-expression evaluation) can represent a sub-path together with the target file name. It
is used as a second constructor argument for File(File parent, String child) as before, but
in the past we didn’t created (mkdirs()) directories for sub-path assuming only the file name. This
approach is useful for cases when we need to restore the file system tree according the source directory.
For example we unzipping the archive and want to save all file in the target directory at the same order.

Specifying the Output Directory

Both, the File Outbound Channel Adapter and the File Outbound Gateway provide two configuration
attributes for specifying the output directory:

• directory

• directory-expression

Note

The directory-expression attribute is available since Spring Integration 2.2.

Using the directory attribute

When using the directory attribute, the output directory will be set to a fixed value, that is set at
initialization time of the FileWritingMessageHandler. If you don’t specify this attribute, then you
must use the directory-expression attribute.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 277

Using the directory-expression attribute

If you want to have full SpEL support you would choose the directory-expression attribute. This attribute
accepts a SpEL expression that is evaluated for each message being processed. Thus, you have full
access to a Message’s payload and its headers to dynamically specify the output file directory.

The SpEL expression must resolve to either a String or to java.io.File. Furthermore the resulting
String or File must point to a directory. If you don’t specify the directory-expression attribute, then
you must set the directory attribute.

Using the auto-create-directory attribute

If the destination directory does not exists, yet, by default the respective destination directory and any
non-existing parent directories are being created automatically. You can set the auto-create-directory
attribute to false in order to prevent that. This attribute applies to both, the directory and the directory-
expression attribute.

Note

When using the directory attribute and auto-create-directory is false, the following change was
made starting with Spring Integration 2.2:

Instead of checking for the existence of the destination directory at initialization time of the adapter,
this check is now performed for each message being processed.

Furthermore, if auto-create-directory is true and the directory was deleted between the
processing of messages, the directory will be re-created for each message being processed.

Dealing with Existing Destination Files

When writing files and the destination file already exists, the default behavior is to overwrite that target
file. This behavior, though, can be changed by setting the mode attribute on the respective File Outbound
components. The following options exist:

• REPLACE (Default)

• REPLACE_IF_MODIFIED

• APPEND

• APPEND_NO_FLUSH

• FAIL

• IGNORE

Note

The mode attribute and the options APPEND, FAIL and IGNORE, are available since Spring
Integration 2.2.

REPLACE

If the target file already exists, it will be overwritten. If the mode attribute is not specified, then this is
the default behavior when writing files.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 278

REPLACE_IF_MODIFIED

If the target file already exists, it will be overwritten only if the last modified timestamp is different to the
source file. For File payloads, the payload lastModified time is compared to the existing file. For
other payloads, the FileHeaders.SET_MODIFIED (file_setModified) header is compared to the
existing file. If the header is missing, or has a value that is not a Number, the file is always replaced.

APPEND

This mode allows you to append Message content to the existing file instead of creating a new file
each time. Note that this attribute is mutually exclusive with temporary-file-suffix attribute since when
appending content to the existing file, the adapter no longer uses a temporary file. The file is closed
after each message.

APPEND_NO_FLUSH

This has the same semantics as APPEND but the data is not flushed and the file is not closed after each
message. This can provide a significant performance at the risk of data loss in the case of a failure. See
the section called “Flushing Files When using APPEND_NO_FLUSH” for more information.

FAIL

If the target file exists, a MessageHandlingException is thrown.

IGNORE

If the target file exists, the message payload is silently ignored.

Note

When using a temporary file suffix (default: .writing), the IGNORE mode will apply if the final
file name exists, or the temporary file name exists.

Flushing Files When using APPEND_NO_FLUSH

The APPEND_NO_FLUSH mode was added in version 4.3. This can improve performance because
the file is not closed after each message. However, this can cause data loss in the event of a failure.

Several flushing strategies, to mitigate this data loss, are provided:

• flushInterval - if a file is not written to for this period of time, it is automatically flushed. This is
approximate and may be up to 1.33x this time (with an average of 1.167x).

• Send a message to the message handler’s trigger method containing a regular expression. Files
with absolute path names matching the pattern will be flushed.

• Provide the handler with a custom MessageFlushPredicate implementation to modify the action
taken when a message is sent to the trigger method.

• Invoke one of the handler’s flushIfNeeded methods passing in a custom
FileWritingMessageHandler.FlushPredicate or
FileWritingMessageHandler.MessageFlushPredicate implementation.

The predicates are called for each open file. See the java docs for these interfaces for more information.
Note that, since version 5.0, the predicate methods provide another parameter - the time that the current
file was first written to if new or previously closed.

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/MessageHandlingException.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 279

When using flushInterval, the interval starts at the last write - the file is flushed only if it is idle for
the interval. Starting with version 4.3.7, and additional property flushWhenIdle can be set to false,
meaning that the interval starts with the first write to a previously flushed (or new) file.

File Timestamps

By default, the destination file lastModified timestamp will be the time the file was created (except
a rename in-place will retain the current timestamp). Starting with version 4.3, you can now configure
preserve-timestamp (or setPreserveTimestamp(true) when using Java configuration). For
File payloads, this will transfer the timestamp from the inbound file to the outbound (regardless
of whether a copy was required). For other payloads, if the FileHeaders.SET_MODIFIED header
(file_setModified) is present, it will be used to set the destination file’s lastModified timestamp,
as long as the header is a Number.

File Permissions

Starting with version 5.0, when writing files to a file system that supports Posix permissions, you can
specify those permissions on the outbound channel adapter or gateway. The property is an integer and
is usually supplied in the familiar octal format; e.g. 0640 meaning the owner has read/write permissions,
the group has read only permission and others have no access.

File Outbound Channel Adapter

<int-file:outbound-channel-adapter id="filesOut" directory="${input.directory.property}"/>

The namespace based configuration also supports a delete-source-files attribute. If set to true,
it will trigger the deletion of the original source files after writing to a destination. The default value for
that flag is false.

<int-file:outbound-channel-adapter id="filesOut"

 directory="${output.directory}"

 delete-source-files="true"/>

Note

The delete-source-files attribute will only have an effect if the inbound Message has a File
payload or if the FileHeaders.ORIGINAL_FILE header value contains either the source File
instance or a String representing the original file path.

Starting with version 4.2 The FileWritingMessageHandler supports an append-new-line
option. If set to true, a new line is appended to the file after a message is written. The default attribute
value is false.

<int-file:outbound-channel-adapter id="newlineAdapter"

 append-new-line="true"

 directory="${output.directory}"/>

Outbound Gateway

In cases where you want to continue processing messages based on the written file, you can use
the outbound-gateway instead. It plays a very similar role as the outbound-channel-adapter.
However, after writing the file, it will also send it to the reply channel as the payload of a Message.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 280

<int-file:outbound-gateway id="mover" request-channel="moveInput"

 reply-channel="output"

 directory="${output.directory}"

 mode="REPLACE" delete-source-files="true"/>

As mentioned earlier, you can also specify the mode attribute, which defines the behavior of how to
deal with situations where the destination file already exists. Please see the section called “Dealing with
Existing Destination Files” for further details. Generally, when using the File Outbound Gateway, the
result file is returned as the Message payload on the reply channel.

This also applies when specifying the IGNORE mode. In that case the pre-existing destination file is
returned. If the payload of the request message was a file, you still have access to that original file
through the Message Header FileHeaders.ORIGINAL_FILE.

Note

The outbound-gateway works well in cases where you want to first move a file and then send it
through a processing pipeline. In such cases, you may connect the file namespace’s inbound-
channel-adapter element to the outbound-gateway and then connect that gateway’s
reply-channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be
converted to file content you could extend the FileWritingMessageHandler, but a much better
option is to rely on a Transformer.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

@SpringBootApplication

@IntegrationComponentScan

public class FileWritingJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(FileWritingJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.writeToFile("foo.txt", new File(tmpDir.getRoot(), "fileWritingFlow"), "foo");

 }

 @Bean

 @ServiceActivator(inputChannel = "writeToFileChannel")

 public MessageHandler fileWritingMessageHandler() {

 Expression directoryExpression = new

 SpelExpressionParser().parseExpression("headers.directory");

 FileWritingMessageHandler handler = new FileWritingMessageHandler(directoryExpression);

 handler.setFileExistsMode(FileExistsMode.APPEND);

 return handler;

 }

 @MessagingGateway(defaultRequestChannel = "writeToFileChannel")

 public interface MyGateway {

 void writeToFile(@Header(FileHeaders.FILENAME) String fileName,

 @Header(FileHeaders.FILENAME) File directory, String data);

 }

}

http://docs.spring.io/spring-integration/api/org/springframework/integration/file/FileHeaders.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 281

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter using
the Java DSL:

@SpringBootApplication

public class FileWritingJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(FileWritingJavaApplication.class)

 .web(false)

 .run(args);

 MessageChannel fileWritingInput = context.getBean("fileWritingInput", MessageChannel.class);

 fileWritingInput.send(new GenericMessage<>("foo"));

 }

 @Bean

 public IntegrationFlow fileWritingFlow() {

 return IntegrationFlows.from("fileWritingInput")

 .enrichHeaders(h -> h.header(FileHeaders.FILENAME, "foo.txt")

 .header("directory", new File(tmpDir.getRoot(), "fileWritingFlow")))

 .handleWithAdapter(a -> a.fileGateway(m -> m.getHeaders().get("directory")))

 .channel(MessageChannels.queue("fileWritingResultChannel"))

 .get();

 }

}

15.4 File Transformers

To transform data read from the file system to objects and the other way around you
need to do some work. Contrary to FileReadingMessageSource and to a lesser extent
FileWritingMessageHandler, it is very likely that you will need your own mechanism to
get the job done. For this you can implement the Transformer interface. Or extend the
AbstractFilePayloadTransformer for inbound messages. Some obvious implementations have
been provided.

FileToByteArrayTransformer transforms Files into byte[] using Spring’s FileCopyUtils. It is
often better to use a sequence of transformers than to put all transformations in a single class. In that
case the File to byte[] conversion might be a logical first step.

FileToStringTransformer will convert Files to Strings as the name suggests. If nothing else, this
can be useful for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<int-file:file-to-bytes-transformer input-channel="input" output-channel="output"

 delete-files="true"/>

<int-file:file-to-string-transformer input-channel="input" output-channel="output"

 delete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File
after the transformation is complete. This is in no way a replacement for using the
AcceptOnceFileListFilter when the FileReadingMessageSource is being used in a multi-
threaded environment (e.g. Spring Integration in general).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 282

15.5 File Splitter

The FileSplitter was added in version 4.1.2 and namespace support was added in version 4.2.
The FileSplitter splits text files into individual lines, based on BufferedReader.readLine().
By default, the splitter uses an Iterator to emit lines one-at-a-time as they are read from the file.
Setting the iterator property to false causes it to read all the lines into memory before emitting
them as messages. One use case for this might be if you want to detect I/O errors on the file before
sending any messages containing lines. However, it is only practical for relatively short files.

Inbound payloads can be File, String (a File path), InputStream, or Reader. Other payload
types will be emitted unchanged.

<int-file:splitter id="splitter" ❶

 iterator="" ❷

 markers="" ❸

 markers-json="" ❹

 apply-sequence="" ❺

 requires-reply="" ❻

 charset="" ❼

 first-line-as-header="" ❽

 input-channel="" ❾

 output-channel="" ❿

 send-timeout="" 11

 auto-startup="" 12

 order="" 13

 phase="" /> 14

❶ The bean name of the splitter.

❷ Set to true to use an iterator (default); false to load the file into memory before sending lines.

❸ Set to true to emit start/end of file marker messages before and after the file data. Markers are
messages with FileSplitter.FileMarker payloads (with START and END values in the mark
property). Markers might be used when sequentially processing files in a downstream flow where
some lines are filtered. They enable the downstream processing to know when a file has been
completely processed. In addition, a header file_marker containing START or END are added
to these messages. The END marker includes a line count. If the file is empty, only START and END
markers are emitted with 0 as the lineCount. Default: false. When true, apply-sequence
is false by default. Also see markers-json.

❹ When markers is true, set this to true and the FileMarker objects will be converted to a JSON
String. Requires a supported JSON processor library on the classpath (Jackson, Boon).

❺ Set to false to disable the inclusion of sequenceSize and sequenceNumber headers in
messages. Default: true, unless markers is true. When true and markers is true, the
markers are included in the sequencing. When true and iterator is true, the sequenceSize
header is set to 0 because the size is unknown.

❻ Set to true to cause a RequiresReplyException to be thrown if there are no lines in the file.
Default: false.

❼ Set the charset name to be used when reading the text data into String payloads. Default:
platform charset.

❽ The header name for the first line to be carried as a header in the messages emitted for the
remaining lines. Since version 5.0.

❾ Set the input channel used to send messages to the splitter.

❿ Set the output channel to which messages will be sent.
11 Set the send timeout - only applies if the output-channel can block - such as a full

QueueChannel.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 283

12 Set to false to disable automatically starting the splitter when the context is refreshed. Default:
true.

13 Set the order of this endpoint if the input-channel is a <publish-subscribe-channel/>.
14 Set the startup phase for the splitter (used when auto-startup is true).

The FileSplitter will also split any text-based InputStream into lines. When used in conjunction
with an FTP or SFTP streaming inbound channel adapter, or an FTP or SFTP outbound gateway using
the stream option to retrieve a file, starting with version 4.3, the splitter will automatically close the
session supporting the stream, when the file is completely consumed. See Section 16.5, “FTP Streaming
Inbound Channel Adapter” and Section 28.8, “SFTP Streaming Inbound Channel Adapter” as well
as Section 16.8, “FTP Outbound Gateway” and Section 28.11, “SFTP Outbound Gateway” for more
information about these facilities.

When using Java configuration, an additional constructor is available:

public FileSplitter(boolean iterator, boolean markers, boolean markersJson)

When markersJson is true, the markers will be represented as a JSON string, as long as a suitable
JSON processor library, such as Jackson or Boon, is on the classpath.

Starting with version 5.0, the firstLineAsHeader option is introduced to specify that the first line
of content is a header (such as column names in a CSV file). The argument passed to this property
is the header name under which the first line will be carried as a header in the messages emitted for
the remaining lines. This line is not included in the sequence header (if applySequence is true) nor
in the FileMarker.END lineCount. If file contains only the header line, the file is treated as empty
and therefore only FileMarker s are emitted during splitting (if markers are enabled, otherwise no
messages are emitted). By default (if no header name is set), the first line is considered to be data and
will be the payload of the first emitted message.

If you need more complex logic about headers extraction from the file content (not first line, not the whole
content of the line, not one header etc.), consider to use Header Enricher upfront of the FileSplitter.
The lines which have been moved to the headers might be filtered downstream from the normal content
process.

Configuring with Java Configuration

@Splitter(inputChannel="toSplitter")

@Bean

public MessageHandler fileSplitter() {

 FileSplitter splitter = new FileSplitter(true, true);

 splitter.setApplySequence(true);

 splitter.setOutputChannel(outputChannel);

 return splitter;

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 284

@SpringBootApplication

public class FileSplitterApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FileSplitterApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public IntegrationFlow fileSplitterFlow() {

 return IntegrationFlows

 .from(Files.inboundAdapter(tmpDir.getRoot())

 .filter(new ChainFileListFilter<File>()

 .addFilter(new AcceptOnceFileListFilter<>())

 .addFilter(new ExpressionFileListFilter<>(

 new FunctionExpression<File>(f -> "foo.tmp".equals(f.getName()))))))

 .split(Files.splitter()

 .markers()

 .charset(StandardCharsets.US_ASCII)

 .firstLineAsHeader("fileHeader")

 .applySequence(true))

 .channel(c -> c.queue("fileSplittingResultChannel"))

 .get();

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 285

16. FTP/FTPS Adapters

Spring Integration provides support for file transfer operations via FTP and FTPS.

16.1 Introduction

The File Transfer Protocol (FTP) is a simple network protocol which allows you to transfer files between
two computers on the Internet.

There are two actors when it comes to FTP communication: client and server. To transfer files with FTP/
FTPS, you use a client which initiates a connection to a remote computer that is running an FTP server.
After the connection is established, the client can choose to send and/or receive copies of files.

Spring Integration supports sending and receiving files over FTP/FTPS by providing three client side
endpoints: Inbound Channel Adapter, Outbound Channel Adapter, and Outbound Gateway. It also
provides convenient namespace-based configuration options for defining these client components.

To use the FTP namespace, add the following to the header of your XML file:

xmlns:int-ftp="http://www.springframework.org/schema/integration/ftp"

xsi:schemaLocation="http://www.springframework.org/schema/integration/ftp

 http://www.springframework.org/schema/integration/ftp/spring-integration-ftp.xsd"

16.2 FTP Session Factory

Default Factories

Important

Starting with version 3.0, sessions are no longer cached by default. See Section 16.9, “FTP
Session Caching”.

Before configuring FTP adapters you must configure an FTP Session Factory. You can configure
the FTP Session Factory with a regular bean definition where the implementation class is
org.springframework.integration.ftp.session.DefaultFtpSessionFactory: Below is
a basic configuration:

<bean id="ftpClientFactory"

 class="org.springframework.integration.ftp.session.DefaultFtpSessionFactory">

 <property name="host" value="localhost"/>

 <property name="port" value="22"/>

 <property name="username" value="kermit"/>

 <property name="password" value="frog"/>

 <property name="clientMode" value="0"/>

 <property name="fileType" value="2"/>

 <property name="bufferSize" value="100000"/>

</bean>

For FTPS connections all you need to do is use
org.springframework.integration.ftp.session.DefaultFtpsSessionFactory instead.
Below is the complete configuration sample:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 286

<bean id="ftpClientFactory"

 class="org.springframework.integration.ftp.session.DefaultFtpsSessionFactory">

 <property name="host" value="localhost"/>

 <property name="port" value="22"/>

 <property name="username" value="oleg"/>

 <property name="password" value="password"/>

 <property name="clientMode" value="1"/>

 <property name="fileType" value="2"/>

 <property name="useClientMode" value="true"/>

 <property name="cipherSuites" value="a,b.c"/>

 <property name="keyManager" ref="keyManager"/>

 <property name="protocol" value="SSL"/>

 <property name="trustManager" ref="trustManager"/>

 <property name="prot" value="P"/>

 <property name="needClientAuth" value="true"/>

 <property name="authValue" value="oleg"/>

 <property name="sessionCreation" value="true"/>

 <property name="protocols" value="SSL, TLS"/>

 <property name="implicit" value="true"/>

</bean>

Every time an adapter requests a session object from its SessionFactory the session is returned
from a session pool maintained by a caching wrapper around the factory. A Session in the session pool
might go stale (if it has been disconnected by the server due to inactivity) so the SessionFactory will
perform validation to make sure that it never returns a stale session to the adapter. If a stale session
was encountered, it will be removed from the pool, and a new one will be created.

Note

If you experience connectivity problems and would like to trace Session creation as well as
see which Sessions are polled you may enable it by setting the logger to TRACE level (e.g.,
log4j.category.org.springframework.integration.file=TRACE)

Now all you need to do is inject these session factories into your adapters. Obviously the protocol (FTP
or FTPS) that an adapter will use depends on the type of session factory that has been injected into
the adapter.

Note

A more practical way to provide values for FTP/FTPS Session Factories is by using Spring’s
property placeholder support (See: http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/beans.html#beans-factory-placeholderconfigurer).

Advanced Configuration

DefaultFtpSessionFactory provides an abstraction over the underlying client API which, since
Spring Integration 2.0, is Apache Commons Net. This spares you from the low level configuration details
of the org.apache.commons.net.ftp.FTPClient. Several common properties are exposed on
the session factory (since version 4.0, this now includes connectTimeout, defaultTimeout and
dataTimeout). However there are times when access to lower level FTPClient configuration is
necessary to achieve more advanced configuration (e.g., setting the port range for active mode etc.). For
that purpose, AbstractFtpSessionFactory (the base class for all FTP Session Factories) exposes
hooks, in the form of the two post-processing methods below.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://commons.apache.org/net/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 287

/**

 * Will handle additional initialization after client.connect() method was invoked,

 * but before any action on the client has been taken

 */

protected void postProcessClientAfterConnect(T t) throws IOException {

 // NOOP

}

/**

 * Will handle additional initialization before client.connect() method was invoked.

 */

protected void postProcessClientBeforeConnect(T client) throws IOException {

 // NOOP

}

As you can see, there is no default implementation for these two methods. However, by
extending DefaultFtpSessionFactory you can override these methods to provide more advanced
configuration of the FTPClient. For example:

public class AdvancedFtpSessionFactory extends DefaultFtpSessionFactory {

 protected void postProcessClientBeforeConnect(FTPClient ftpClient) throws IOException {

 ftpClient.setActivePortRange(4000, 5000);

 }

}

FTPS and Shared SSLSession

When using FTP over SSL/TLS, some servers require the same SSLSession to be used on the control
and data connections; this is to prevent "stealing" data connections; see here for more information.

Currently, the Apache FTPSClient does not support this feature - see NET-408.

The following solution, courtesy of Stack Overflow, uses reflection on the
sun.security.ssl.SSLSessionContextImpl so may not work on other JVMs. The stack overflow
answer was submitted in 2015 and the solution has been tested by the Spring Integration team recently
on JDK 1.8.0_112.

https://scarybeastsecurity.blogspot.cz/2009/02/vsftpd-210-released.html
https://issues.apache.org/jira/browse/NET-408
http://stackoverflow.com/questions/32398754/how-to-connect-to-ftps-server-with-data-connection-using-same-tls-session

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 288

@Bean

public DefaultFtpsSessionFactory sf() {

 DefaultFtpsSessionFactory sf = new DefaultFtpsSessionFactory() {

 @Override

 protected FTPSClient createClientInstance() {

 return new SharedSSLFTPSClient();

 }

 };

 sf.setHost("...");

 sf.setPort(21);

 sf.setUsername("...");

 sf.setPassword("...");

 sf.setNeedClientAuth(true);

 return sf;

}

private static final class SharedSSLFTPSClient extends FTPSClient {

 @Override

 protected void _prepareDataSocket_(final Socket socket) throws IOException {

 if (socket instanceof SSLSocket) {

 // Control socket is SSL

 final SSLSession session = ((SSLSocket) _socket_).getSession();

 final SSLSessionContext context = session.getSessionContext();

 context.setSessionCacheSize(0); // you might want to limit the cache

 try {

 final Field sessionHostPortCache = context.getClass()

 .getDeclaredField("sessionHostPortCache");

 sessionHostPortCache.setAccessible(true);

 final Object cache = sessionHostPortCache.get(context);

 final Method method = cache.getClass().getDeclaredMethod("put", Object.class,

 Object.class);

 method.setAccessible(true);

 String key = String.format("%s:%s", socket.getInetAddress().getHostName(),

 String.valueOf(socket.getPort())).toLowerCase(Locale.ROOT);

 method.invoke(cache, key, session);

 key = String.format("%s:%s", socket.getInetAddress().getHostAddress(),

 String.valueOf(socket.getPort())).toLowerCase(Locale.ROOT);

 method.invoke(cache, key, session);

 }

 catch (NoSuchFieldException e) {

 // Not running in expected JRE

 logger.warn("No field sessionHostPortCache in SSLSessionContext", e);

 }

 catch (Exception e) {

 // Not running in expected JRE

 logger.warn(e.getMessage());

 }

 }

 }

}

16.3 Delegating Session Factory

Version 4.2 introduced the DelegatingSessionFactory which allows the selection of the actual
session factory at runtime. Prior to invoking the ftp endpoint, call setThreadKey() on the factory to
associate a key with the current thread. That key is then used to lookup the actual session factory to be
used. The key can be cleared by calling clearThreadKey() after use.

Convenience methods have been added so this can easily be done from a message flow:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 289

<bean id="dsf" class="org.springframework.integration.file.remote.session.DelegatingSessionFactory">

 <constructor-arg>

 <bean class="o.s.i.file.remote.session.DefaultSessionFactoryLocator">

 <!-- delegate factories here -->

 </bean>

 </constructor-arg>

</bean>

<int:service-activator input-channel="in" output-channel="c1"

 expression="@dsf.setThreadKey(#root, headers['factoryToUse'])" />

<int-ftp:outbound-gateway request-channel="c1" reply-channel="c2" ... />

<int:service-activator input-channel="c2" output-channel="out"

 expression="@dsf.clearThreadKey(#root)" />

Important

When using session caching (see Section 16.9, “FTP Session Caching”), each of the delegates
should be cached; you cannot cache the DelegatingSessionFactory itself.

16.4 FTP Inbound Channel Adapter

The FTP Inbound Channel Adapter is a special listener that will connect to the FTP server and will listen
for the remote directory events (e.g., new file created) at which point it will initiate a file transfer.

<int-ftp:inbound-channel-adapter id="ftpInbound"

 channel="ftpChannel"

 session-factory="ftpSessionFactory"

 auto-create-local-directory="true"

 delete-remote-files="true"

 filename-pattern="*.txt"

 remote-directory="some/remote/path"

 remote-file-separator="/"

 preserve-timestamp="true"

 local-filename-generator-expression="#this.toUpperCase() + '.a'"

 scanner="myDirScanner"

 local-filter="myFilter"

 temporary-file-suffix=".writing"

 max-fetch-size="-1"

 local-directory=".">

 <int:poller fixed-rate="1000"/>

</int-ftp:inbound-channel-adapter>

As you can see from the configuration above you can configure an FTP Inbound Channel Adapter via
the inbound-channel-adapter element while also providing values for various attributes such as
local-directory, filename-pattern (which is based on simple pattern matching, not regular
expressions), and of course the reference to a session-factory.

By default the transferred file will carry the same name as the original file. If you want to override this
behavior you can set the local-filename-generator-expression attribute which allows you
to provide a SpEL Expression to generate the name of the local file. Unlike outbound gateways and
adapters where the root object of the SpEL Evaluation Context is a Message, this inbound adapter does
not yet have the Message at the time of evaluation since that’s what it ultimately generates with the
transferred file as its payload. So, the root object of the SpEL Evaluation Context is the original name
of the remote file (String).

The inbound channel adapter first retrieves the file to a local directory and then emits each file according
to the poller configuration. Starting with version 5.0, you can now limit the number of files fetched from
the FTP server when new file retrievals are needed. This can be beneficial when the target files are very

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 290

large and/or when running in a clustered system with a persistent file list filter discussed below. Use
max-fetch-size for this purpose; a negative value (default) means no limit and all matching files will
be retrieved; see Section 16.6, “Inbound Channel Adapters: Controlling Remote File Fetching” for more
information. Since version 5.0, you can also provide a custom DirectoryScanner implementation to
the inbound-channel-adapter via the scanner attribute.

Starting with Spring Integration 3.0, you can specify the preserve-timestamp attribute (default
false); when true, the local file’s modified timestamp will be set to the value retrieved from the server;
otherwise it will be set to the current time.

Starting with version 4.2, you can specify remote-directory-expression instead of remote-
directory, allowing you to dynamically determine the directory on each poll. e.g remote-
directory-expression="@myBean.determineRemoteDir()".

Starting with version 4.3, the remote-directory/remote-directory-expression attributes can
be omitted assuming null. In this case, according to the FTP protocol, the Client working directory is
used as a default remote directory.

Sometimes file filtering based on the simple pattern specified via filename-pattern attribute
might not be sufficient. If this is the case, you can use the filename-regex attribute to specify
a Regular Expression (e.g. filename-regex=".*\.test$"). And of course if you need complete
control you can use filter attribute and provide a reference to any custom implementation of the
org.springframework.integration.file.filters.FileListFilter, a strategy interface
for filtering a list of files. This filter determines which remote files are retrieved. You can also combine a
pattern based filter with other filters, such as an AcceptOnceFileListFilter to avoid synchronizing
files that have previously been fetched, by using a CompositeFileListFilter.

The AcceptOnceFileListFilter stores its state in memory. If you wish the state to survive a
system restart, consider using the FtpPersistentAcceptOnceFileListFilter instead. This filter
stores the accepted file names in an instance of the MetadataStore strategy (Section 10.5, “Metadata
Store”). This filter matches on the filename and the remote modified time.

Since version 4.0, this filter requires a ConcurrentMetadataStore. When used with a shared data
store (such as Redis with the RedisMetadataStore) this allows filter keys to be shared across
multiple application or server instances.

Starting with version 5.0, the FtpPersistentAcceptOnceFileListFilter with in-memory
SimpleMetadataStore is applied by default for the FtpInboundFileSynchronizer. This filter
is also applied together with the regex or pattern option in the XML configuration as well as
via FtpInboundChannelAdapterSpec in Java DSL. Any other use-cases can be reached via
CompositeFileListFilter (or ChainFileListFilter).

The above discussion refers to filtering the files before retrieving them. Once the files have been
retrieved, an additional filter is applied to the files on the file system. By default, this is an
AcceptOnceFileListFilter which, as discussed, retains state in memory and does not consider
the file’s modified time. Unless your application removes files after processing, the adapter will re-
process the files on disk by default after an application restart.

Also, if you configure the filter to use a FtpPersistentAcceptOnceFileListFilter, and the
remote file timestamp changes (causing it to be re-fetched), the default local filter will not allow this new
file to be processed.

Use the local-filter attribute to configure the behavior of the local file system filter. Starting with
version 4.3.8, a FileSystemPersistentAcceptOnceFileListFilter is configured by default.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 291

This filter stores the accepted file names and modified timestamp in an instance of the MetadataStore
strategy (Section 10.5, “Metadata Store”), and will detect changes to the local file modified time. The
default MetadataStore is a SimpleMetadataStore which stores state in memory.

Since version 4.1.5, these filters have a new property flushOnUpdate which will cause them to flush
the metadata store on every update (if the store implements Flushable).

Important

Further, if you use a distributed MetadataStore (such as Section 25.5, “Redis Metadata Store”
or Section 17.7, “Gemfire Metadata Store”) you can have multiple instances of the same adapter/
application and be sure that one and only one will process a file.

The actual local filter is a CompositeFileListFilter containing the supplied filter and a pattern filter
that prevents processing files that are in the process of being downloaded (based on the temporary-
file-suffix); files are downloaded with this suffix (default: .writing) and the file is renamed to its
final name when the transfer is complete, making it visible to the filter.

The remote-file-separator attribute allows you to configure a file separator character to use if the
default / is not applicable for your particular environment.

Please refer to the schema for more details on these attributes.

It is also important to understand that the FTP Inbound Channel Adapter is a Polling Consumer and
therefore you must configure a poller (either via a global default or a local sub-element). Once a file has
been transferred, a Message with a java.io.File as its payload will be generated and sent to the
channel identified by the channel attribute.

More on File Filtering and Large Files

Sometimes the file that just appeared in the monitored (remote) directory is not complete. Typically such
a file will be written with temporary extension (e.g., foo.txt.writing) and then renamed after the writing
process finished. As a user in most cases you are only interested in files that are complete and would
like to filter only files that are complete. To handle these scenarios you can use the filtering support
provided by the filename-pattern, filename-regex and filter attributes. Here is an example
that uses a custom Filter implementation.

<int-ftp:inbound-channel-adapter

 channel="ftpChannel"

 session-factory="ftpSessionFactory"

 filter="customFilter"

 local-directory="file:/my_transfers">

 remote-directory="some/remote/path"

 <int:poller fixed-rate="1000"/>

</int-ftp:inbound-channel-adapter>

<bean id="customFilter" class="org.example.CustomFilter"/>

Poller configuration notes for the inbound FTP adapter

The job of the inbound FTP adapter consists of two tasks: 1) Communicate with a remote server in
order to transfer files from a remote directory to a local directory. 2) For each transferred file, generate
a Message with that file as a payload and send it to the channel identified by the channel attribute. That
is why they are called channel-adapters rather than just adapters. The main job of such an adapter is to
generate a Message to be sent to a Message Channel. Essentially, the second task mentioned above

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 292

takes precedence in such a way that IF your local directory already has one or more files it will first
generate Messages from those, and ONLY when all local files have been processed, will it initiate the
remote communication to retrieve more files.

Also, when configuring a trigger on the poller you should pay close attention to the max-messages-
per-poll attribute. Its default value is 1 for all SourcePollingChannelAdapter instances
(including FTP). This means that as soon as one file is processed, it will wait for the next execution
time as determined by your trigger configuration. If you happened to have one or more files sitting in
the local-directory, it would process those files before it would initiate communication with the
remote FTP server. And, if the max-messages-per-poll were set to 1 (default), then it would be
processing only one file at a time with intervals as defined by your trigger, essentially working as one-
poll === one-file.

For typical file-transfer use cases, you most likely want the opposite behavior: to process all the files
you can for each poll and only then wait for the next poll. If that is the case, set max-messages-per-
poll to -1. Then, on each poll, the adapter will attempt to generate as many Messages as it possibly
can. In other words, it will process everything in the local directory, and then it will connect to the remote
directory to transfer everything that is available there to be processed locally. Only then is the poll
operation considered complete, and the poller will wait for the next execution time.

You can alternatively set the max-messages-per-poll value to a positive value indicating the upward
limit of Messages to be created from files with each poll. For example, a value of 10 means that on each
poll it will attempt to process no more than 10 files.

Recovering from Failures

It is important to understand the architecture of the adapter. There is a file synchronizer which fetches the
files, and a FileReadingMessageSource to emit a message for each synchronized file. As discussed
above, there are two filters involved. The filter attribute (and patterns) refers to the remote (FTP)
file list - to avoid fetching files that have already been fetched. The local-filter is used by the
FileReadingMessageSource to determine which files are to be sent as messages.

The synchronizer lists the remote files and consults its filter; the files are then transferred. If an IO
error occurs during file transfer, any files that have already been added to the filter are removed
so they are eligible to be re-fetched on the next poll. This only applies if the filter implements
ReversibleFileListFilter (such as the AcceptOnceFileListFilter).

If, after synchronizing the files, an error occurs on the downstream flow processing a file, there is no
automatic rollback of the filter so the failed file will not be reprocessed by default.

If you wish to reprocess such files after a failure, you can use configuration similar to the
following to facilitate the removal of the failed file from the filter. This will work for any
ResettableFileListFilter.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 293

<int-ftp:inbound-channel-adapter id="ftpAdapter"

 session-factory="ftpSessionFactory"

 channel="requestChannel"

 remote-directory-expression="'/sftpSource'"

 local-directory="file:myLocalDir"

 auto-create-local-directory="true"

 filename-pattern="*.txt">

 <int:poller fixed-rate="1000">

 <int:transactional synchronization-factory="syncFactory" />

 </int:poller>

</int-ftp:inbound-channel-adapter>

<bean id="acceptOnceFilter"

 class="org.springframework.integration.file.filters.AcceptOnceFileListFilter" />

<int:transaction-synchronization-factory id="syncFactory">

 <int:after-rollback expression="payload.delete()" />

</int:transaction-synchronization-factory>

<bean id="transactionManager"

 class="org.springframework.integration.transaction.PseudoTransactionManager" />

Starting with version 5.0, the Inbound Channel Adapter can build sub-directories
locally according the generated local file name. That can be a remote sub-
path as well. To be able to read local directory recursively for modification
according the hierarchy support, an internal FileReadingMessageSource now can
be supplied with a new RecursiveDirectoryScanner based on the Files.walk()

algorithm. See AbstractInboundFileSynchronizingMessageSource.setScanner() for
more information. Also the AbstractInboundFileSynchronizingMessageSource can now
be switched to the WatchService -based DirectoryScanner via setUseWatchService()
option. It is also configured for all the WatchEventType s to react for any
modifications in local directory. The reprocessing sample above is based on the
build-in functionality of the FileReadingMessageSource.WatchServiceDirectoryScanner
to perform ResettableFileListFilter.remove() when the file is deleted
(StandardWatchEventKinds.ENTRY_DELETE) from the local directory. See the section called
“WatchServiceDirectoryScanner” for more information.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 294

@SpringBootApplication

public class FtpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FtpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public SessionFactory<FTPFile> ftpSessionFactory() {

 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();

 sf.setHost("localhost");

 sf.setPort(port);

 sf.setUsername("foo");

 sf.setPassword("foo");

 return new CachingSessionFactory<FTPFile>(sf);

 }

 @Bean

 public FtpInboundFileSynchronizer ftpInboundFileSynchronizer() {

 FtpInboundFileSynchronizer fileSynchronizer = new

 FtpInboundFileSynchronizer(ftpSessionFactory());

 fileSynchronizer.setDeleteRemoteFiles(false);

 fileSynchronizer.setRemoteDirectory("foo");

 fileSynchronizer.setFilter(new FtpSimplePatternFileListFilter("*.xml"));

 return fileSynchronizer;

 }

 @Bean

 @InboundChannelAdapter(channel = "ftpChannel", poller = @Poller(fixedDelay = "5000"))

 public MessageSource<File> ftpMessageSource() {

 FtpInboundFileSynchronizingMessageSource source =

 new FtpInboundFileSynchronizingMessageSource(ftpInboundFileSynchronizer());

 source.setLocalDirectory(new File("ftp-inbound"));

 source.setAutoCreateLocalDirectory(true);

 source.setLocalFilter(new AcceptOnceFileListFilter<File>());

 source.setMaxFetchSize(1);

 return source;

 }

 @Bean

 @ServiceActivator(inputChannel = "ftpChannel")

 public MessageHandler handler() {

 return new MessageHandler() {

 @Override

 public void handleMessage(Message<?> message) throws MessagingException {

 System.out.println(message.getPayload());

 }

 };

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 295

@SpringBootApplication

public class FtpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FtpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public IntegrationFlow ftpInboundFlow() {

 return IntegrationFlows

 .from(s -> s.ftp(this.ftpSessionFactory)

 .preserveTimestamp(true)

 .remoteDirectory("foo")

 .regexFilter(".*\\.txt$")

 .localFilename(f -> f.toUpperCase() + ".a")

 .localDirectory(new File("d:\\ftp_files")),

 e -> e.id("ftpInboundAdapter")

 .autoStartup(true)

 .poller(Pollers.fixedDelay(5000)))

 .handle(m -> System.out.println(m.getPayload()))

 .get();

 }

}

Dealing With Incomplete Data

See the section called “Dealing With Incomplete Data”.

The FtpSystemMarkerFilePresentFileListFilter is provided to filter remote files that don’t
have a corresponding marker file on the remote system. See the javadocs for configuration information.

16.5 FTP Streaming Inbound Channel Adapter

The streaming inbound channel adapter was introduced in version 4.3. This adapter produces message
with payloads of type InputStream, allowing files to be fetched without writing to the local file
system. Since the session remains open, the consuming application is responsible for closing the
session when the file has been consumed. The session is provided in the closeableResource
header (IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE). Standard framework
components, such as the FileSplitter and StreamTransformer will automatically close the
session. See Section 15.5, “File Splitter” and the section called “Stream Transformer” for more
information about these components.

<int-ftp:inbound-streaming-channel-adapter id="ftpInbound"

 channel="ftpChannel"

 session-factory="sessionFactory"

 filename-pattern="*.txt"

 filename-regex=".*\.txt"

 filter="filter"

 filter-expression="@myFilterBean.check(#root)"

 remote-file-separator="/"

 comparator="comparator"

 max-fetch-size="1"

 remote-directory-expression="'foo/bar'">

 <int:poller fixed-rate="1000" />

</int-ftp:inbound-streaming-channel-adapter>

Only one of filename-pattern, filename-regex, filter or filter-expression is allowed.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 296

Important

Starting with version 5.0, by default, the FtpStreamingMessageSource adapter prevents
duplicates for remote files via FtpPersistentAcceptOnceFileListFilter based on
the in-memory SimpleMetadataStore. This filter is also applied by default together with
the filename pattern (or regex) as well. If there is a requirement to allow duplicates,
the AcceptAllFileListFilter can be used. Any other use-cases can be reached via
CompositeFileListFilter (or ChainFileListFilter). The java configuration below
shows one technique to remove the remote file after processing, avoiding duplicates.

Use the max-fetch-size attribute to limit the number of files fetched on each poll when a fetch is
necessary; set to 1 and use a persistent filter when running in a clustered environment; see Section 16.6,
“Inbound Channel Adapters: Controlling Remote File Fetching” for more information.

The adapter puts the remote directory and file name in headers FileHeaders.REMOTE_DIRECTORY
and FileHeaders.REMOTE_FILE respectively. Starting with version 5.0, additional remote file
information, represented in JSON by default, is provided in the FileHeaders.REMOTE_FILE_INFO
header. If you set the fileInfoJson property on the FtpStreamingMessageSource to false,
the header will contain an FtpFileInfo object. The FTPFile object provided by the underlying
Apache Net library can be accessed using the FtpFileInfo.getFileInfo() method. The
fileInfoJson property is not available when using XML configuration but you can set it by injecting
the FtpStreamingMessageSource into one of your configuration classes.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 297

@SpringBootApplication

public class FtpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FtpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 @InboundChannelAdapter(channel = "stream")

 public MessageSource<InputStream> ftpMessageSource() {

 FtpStreamingMessageSource messageSource = new FtpStreamingMessageSource(template());

 messageSource.setRemoteDirectory("ftpSource/");

 messageSource.setFilter(new AcceptAllFileListFilter<>());

 messageSource.setMaxFetchSize(1);

 return messageSource;

 }

 @Bean

 @Transformer(inputChannel = "stream", outputChannel = "data")

 public org.springframework.integration.transformer.Transformer transformer() {

 return new StreamTransformer("UTF-8");

 }

 @Bean

 public FtpRemoteFileTemplate template() {

 return new FtpRemoteFileTemplate(ftpSessionFactory());

 }

 @ServiceActivator(inputChannel = "data", adviceChain = "after")

 @Bean

 public MessageHandler handle() {

 return System.out::println;

 }

 @Bean

 public ExpressionEvaluatingRequestHandlerAdvice after() {

 ExpressionEvaluatingRequestHandlerAdvice advice = new

 ExpressionEvaluatingRequestHandlerAdvice();

 advice.setOnSuccessExpression(

 "@template.remove(headers['file_remoteDirectory'] + headers['file_remoteFile'])");

 advice.setPropagateEvaluationFailures(true);

 return advice;

 }

}

Notice that, in this example, the message handler downstream of the transformer has an advice that
removes the remote file after processing.

16.6 Inbound Channel Adapters: Controlling Remote File
Fetching

There are two properties that should be considered when configuring inbound channel adapters. max-
messages-per-poll, as with all pollers, can be used to limit the number of messages emitted on
each poll (if more than the configured value are ready). max-fetch-size (since version 5.0) can limit
the number of files retrieved from the remote server at a time.

The following scenarios assume the starting state is an empty local directory.

• max-messages-per-poll=2 and max-fetch-size=1, the adapter will fetch one file, emit it, fetch
the next file, emit it; then sleep until the next poll.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 298

• max-messages-per-poll=2 and max-fetch-size=2), the adapter will fetch both files, then emit
each one.

• max-messages-per-poll=2 and max-fetch-size=4, the adapter will fetch up to 4 files (if
available) and emit the first two (if there are at least two); the next two files will be emitted on the
next poll.

• max-messages-per-poll=2 and max-fetch-size not specified, the adapter will fetch all remote
files and emit the first two (if there are at least two); the subsequent files will be emitted on subsequent
polls (2-at-a-time); when all are consumed, the remote fetch will be attempted again, to pick up any
new files.

Important

When deploying multiple instances of an application, a small max-fetch-size is recommended
to avoid one instance "grabbing" all the files and starving other instances.

Another use for max-fetch-size is if you want to stop fetching remote files, but continue to process
files that have already been fetched. Setting the maxFetchSize property on the MessageSource
(programmatically, via JMX, or via a control bus) effectively stops the adapter from fetching more files,
but allows the poller to continue to emit messages for files that have previously been fetched. If the
poller is active when the property is changed, the change will take effect on the next poll.

16.7 FTP Outbound Channel Adapter

The FTP Outbound Channel Adapter relies upon a MessageHandler implementation that will
connect to the FTP server and initiate an FTP transfer for every file it receives in the payload of
incoming Messages. It also supports several representations of the File so you are not limited only to
java.io.File typed payloads. The FTP Outbound Channel Adapter supports the following payloads: 1)
java.io.File - the actual file object; 2) byte[] - a byte array that represents the file contents; and
3) java.lang.String - text that represents the file contents.

<int-ftp:outbound-channel-adapter id="ftpOutbound"

 channel="ftpChannel"

 session-factory="ftpSessionFactory"

 charset="UTF-8"

 remote-file-separator="/"

 auto-create-directory="true"

 remote-directory-expression="headers['remote_dir']"

 temporary-remote-directory-expression="headers['temp_remote_dir']"

 filename-generator="fileNameGenerator"

 use-temporary-filename="true"

 mode="REPLACE"/>

As you can see from the configuration above you can configure an FTP Outbound
Channel Adapter via the outbound-channel-adapter element while also providing
values for various attributes such as filename-generator (an implementation of
the org.springframework.integration.file.FileNameGenerator strategy interface), a
reference to a session-factory, as well as other attributes. You can also see some
examples of *expression attributes which allow you to use SpEL to configure things like
remote-directory-expression, temporary-remote-directory-expression and remote-
filename-generator-expression (a SpEL alternative to filename-generator shown above).
As with any component that allows the usage of SpEL, access to Payload and Message Headers is
available via payload and headers variables. Please refer to the schema for more details on the available
attributes.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 299

Note

By default Spring Integration will use o.s.i.file.DefaultFileNameGenerator if none is
specified. DefaultFileNameGenerator will determine the file name based on the value of
the file_name header (if it exists) in the MessageHeaders, or if the payload of the Message is
already a java.io.File, then it will use the original name of that file.

Important

Defining certain values (e.g., remote-directory) might be platform/ftp server dependent. For
example as it was reported on this forum http://forum.springsource.org/showthread.php?
p=333478&posted=1#post333478 on some platforms you must add slash to the end of the
directory definition (e.g., remote-directory="/foo/bar/" instead of remote-directory="/foo/bar")

Starting with version 4.1, you can specify the mode when transferring the file. By default, an existing
file will be overwritten; the modes are defined on enum FileExistsMode, having values REPLACE
(default), APPEND, IGNORE, and FAIL. With IGNORE and FAIL, the file is not transferred; FAIL causes
an exception to be thrown whereas IGNORE silently ignores the transfer (although a DEBUG log entry
is produced).

Avoiding Partially Written Files

One of the common problems, when dealing with file transfers, is the possibility of processing a partial
file - a file might appear in the file system before its transfer is actually complete.

To deal with this issue, Spring Integration FTP adapters use a very common algorithm where files are
transferred under a temporary name and then renamed once they are fully transferred.

By default, every file that is in the process of being transferred will appear in the file system with an
additional suffix which, by default, is .writing; this can be changed using the temporary-file-
suffix attribute.

However, there may be situations where you don’t want to use this technique (for example, if the server
does not permit renaming files). For situations like this, you can disable this feature by setting use-
temporary-file-name to false (default is true). When this attribute is false, the file is written
with its final name and the consuming application will need some other mechanism to detect that the
file is completely uploaded before accessing it.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the Outbound Adapter using
Java configuration:

http://forum.springsource.org/showthread.php?p=333478&posted=1#post333478
http://forum.springsource.org/showthread.php?p=333478&posted=1#post333478

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 300

@SpringBootApplication

@IntegrationComponentScan

public class FtpJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(FtpJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToFtp(new File("/foo/bar.txt"));

 }

 @Bean

 public SessionFactory<FTPFile> ftpSessionFactory() {

 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();

 sf.setHost("localhost");

 sf.setPort(port);

 sf.setUsername("foo");

 sf.setPassword("foo");

 return new CachingSessionFactory<FTPFile>(sf);

 }

 @Bean

 @ServiceActivator(inputChannel = "ftpChannel")

 public MessageHandler handler() {

 FtpMessageHandler handler = new FtpMessageHandler(ftpSessionFactory());

 handler.setRemoteDirectoryExpressionString("headers['remote-target-dir']");

 handler.setFileNameGenerator(new FileNameGenerator() {

 @Override

 public String generateFileName(Message<?> message) {

 return "handlerContent.test";

 }

 });

 return handler;

 }

 @MessagingGateway

 public interface MyGateway {

 @Gateway(requestChannel = "toFtpChannel")

 void sendToFtp(File file);

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Outbound Adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 301

@SpringBootApplication

@IntegrationComponentScan

public class FtpJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(FtpJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToFtp(new File("/foo/bar.txt"));

 }

 @Bean

 public SessionFactory<FTPFile> ftpSessionFactory() {

 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();

 sf.setHost("localhost");

 sf.setPort(port);

 sf.setUsername("foo");

 sf.setPassword("foo");

 return new CachingSessionFactory<FTPFile>(sf);

 }

 @Bean

 public IntegrationFlow ftpOutboundFlow() {

 return IntegrationFlows.from("toFtpChannel")

 .handle(Ftp.outboundAdapter(ftpSessionFactory(), FileExistsMode.FAIL)

 .useTemporaryFileName(false)

 .fileNameExpression("headers['" + FileHeaders.FILENAME + "']")

 .remoteDirectory(this.ftpServer.getTargetFtpDirectory().getName())

).get();

 }

 @MessagingGateway

 public interface MyGateway {

 @Gateway(requestChannel = "toFtpChannel")

 void sendToFtp(File file);

 }

}

16.8 FTP Outbound Gateway

The FTP Outbound Gateway provides a limited set of commands to interact with a remote FTP/FTPS
server. Commands supported are:

• ls (list files)

• nlst (list file names)

• get (retrieve file)

• mget (retrieve file(s))

• rm (remove file(s))

• mv (move/rename file)

• put (send file)

• mput (send multiple files)

ls

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 302

ls lists remote file(s) and supports the following options:

• -1 - just retrieve a list of file names, default is to retrieve a list of FileInfo objects.

• -a - include all files (including those starting with .)

• -f - do not sort the list

• -dirs - include directories (excluded by default)

• -links - include symbolic links (excluded by default)

• -R - list the remote directory recursively

In addition, filename filtering is provided, in the same manner as the inbound-channel-adapter.

The message payload resulting from an ls operation is a list of file names, or a list of FileInfo objects.
These objects provide information such as modified time, permissions etc.

The remote directory that the ls command acted on is provided in the file_remoteDirectory header.

When using the recursive option (-R), the fileName includes any subdirectory elements, representing
a relative path to the file (relative to the remote directory). If the -dirs option is included, each recursive
directory is also returned as an element in the list. In this case, it is recommended that the -1 is not
used because you would not be able to determine files Vs. directories, which is achievable using the
FileInfo objects.

Starting with version 4.3, the FtpSession supports null for the list() and listNames() methods,
therefore the expression attribute can be omitted. For Java configuration, there are two constructors
without an expression argument for convenience. null for LS, NLST, PUT and MPUT commands
is treated as the Client working directory according to the FTP protocol. All other commands must
be supplied with the expression to evaluate remote path against request message. The working
directory can be set via the FTPClient.changeWorkingDirectory() function when you extend the
DefaultFtpSessionFactory and implement postProcessClientAfterConnect() callback.

nlst

(Since version 5.0)

Lists remote file names and supports the following options:

• -f - do not sort the list

The message payload resulting from an nlst operation is a list of file names.

The remote directory that the nlst command acted on is provided in the file_remoteDirectory
header.

Unlike the -1 option for the ls command (see above), which uses the LIST command, the nlst command
sends an NLST command to the target FTP server. This command is useful when the server doesn’t
support LIST, due to security restrictions, for example. The result of the nlst is just the names, therefore
the framework can’t determine if an entity is a directory, to perform filtering or recursive listing, for
example.

get

get retrieves a remote file and supports the following option:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 303

• -P - preserve the timestamp of the remote file.

• -stream - retrieve the remote file as a stream.

• -D - delete the remote file after successful transfer. The remote file is NOT deleted if the transfer is
ignored because the FileExistsMode is IGNORE and the local file already exists.

The remote directory is provided in the file_remoteDirectory header, and the filename is provided
in the file_remoteFile header.

The message payload resulting from a get operation is a File object representing the retrieved file,
or an InputStream when the -stream option is provided. This option allows retrieving the file as a
stream. For text files, a common use case is to combine this operation with a File Splitter or Stream
Transformer. When consuming remote files as streams, the user is responsible for closing the Session
after the stream is consumed. For convenience, the Session is provided in the closeableResource
header, a convenience method is provided on the IntegrationMessageHeaderAccessor:

Closeable closeable = new IntegrationMessageHeaderAccessor(message).getCloseableResource();

if (closeable != null) {

 closeable.close();

}

Framework components such as the File Splitter and Stream Transformer will automatically close the
session after the data is transferred.

The following shows an example of consuming a file as a stream:

<int-ftp:outbound-gateway session-factory="ftpSessionFactory"

 request-channel="inboundGetStream"

 command="get"

 command-options="-stream"

 expression="payload"

 remote-directory="ftpTarget"

 reply-channel="stream" />

<int-file:splitter input-channel="stream" output-channel="lines" />

Note: if you consume the input stream in a custom component, you must close the Session. You can
either do that in your custom code, or route a copy of the message to a service-activator and
use SpEL:

<int:service-activator input-channel="closeSession"

 expression="headers['closeableResource'].close()" />

mget

mget retrieves multiple remote files based on a pattern and supports the following options:

• -P - preserve the timestamps of the remote files.

• -R - retrieve the entire directory tree recursively.

• -x - Throw an exception if no files match the pattern (otherwise an empty list is returned).

• -D - delete each remote file after successful transfer. The remote file is NOT deleted if the transfer is
ignored because the FileExistsMode is IGNORE and the local file already exists.

The message payload resulting from an mget operation is a List<File> object - a List of File objects,
each representing a retrieved file.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 304

Important

Starting with version 5.0, if the FileExistsMode is IGNORE, the payload of the output message
will no longer contain files that were not fetched due to the file already existing. Previously, the
array contained all files, including those that already existed.

The expression used to determine the remote path should produce a result that ends with * - e.g. foo/
* will fetch the complete tree under foo.

Starting with version 5.0, a recursive MGET, combined with the new
FileExistsMode.REPLACE_IF_MODIFIED mode, can be used to periodically synchronize an entire
remote directory tree locally. This mode will set the local file last modified timestamp with the remote
timestamp, regardless of the -P (preserve timestamp) option.

Notes for when using recursion (-R)

The pattern is ignored, and * is assumed. By default, the entire remote tree is retrieved. However,
files in the tree can be filtered, by providing a FileListFilter; directories in the tree can also be
filtered this way. A FileListFilter can be provided by reference or by filename-pattern
or filename-regex attributes. For example, filename-regex="(subDir|.*1.txt)" will
retrieve all files ending with 1.txt in the remote directory and the subdirectory subDir. However,
see below for an alternative available in version 5.0.

If a subdirectory is filtered, no additional traversal of that subdirectory is performed.

The -dirs option is not allowed (the recursive mget uses the recursive ls to obtain the directory
tree and the directories themselves cannot be included in the list).

Typically, you would use the #remoteDirectory variable in the local-directory-
expression so that the remote directory structure is retained locally.

Starting with version 5.0, the FtpSimplePatternFileListFilter and
FtpRegexPatternFileListFilter can be configured to always pass directories by setting the
alwaysAcceptDirectories to true. This allows recursion for a simple pattern; examples follow:

<bean id="starDotTxtFilter"

 class="org.springframework.integration.ftp.filters.FtpSimplePatternFileListFilter">

 <constructor-arg value="*.txt" />

 <property name="alwaysAcceptDirectories" value="true" />

</bean>

<bean id="dotStarDotTxtFilter"

 class="org.springframework.integration.ftp.filters.FtpRegexPatternFileListFilter">

 <constructor-arg value="^.*\.txt$" />

 <property name="alwaysAcceptDirectories" value="true" />

</bean>

and provide one of these filters using filter property on the gateway.

See also the section called “Outbound Gateway Partial Success (mget and mput)”.

put

put sends a file to the remote server; the payload of the message can be a java.io.File, a byte[]
or a String. A remote-filename-generator (or expression) is used to name the remote file.
Other available attributes include remote-directory, temporary-remote-directory (and their

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 305

*-expression) equivalents, use-temporary-file-name, and auto-create-directory. Refer
to the schema documentation for more information.

The message payload resulting from a put operation is a String representing the full path of the file
on the server after transfer.

mput

mput sends multiple files to the server and supports the following option:

• -R - Recursive - send all files (possibly filtered) in the directory and subdirectories

The message payload must be a java.io.File representing a local directory.

The same attributes as the put command are supported. In addition, files in the local directory can
be filtered with one of mput-pattern, mput-regex, mput-filter or mput-filter-expression.
The filter works with recursion, as long as the subdirectories themselves pass the filter. Subdirectories
that do not pass the filter are not recursed.

The message payload resulting from an mget operation is a List<String> object - a List of remote
file paths resulting from the transfer.

See also the section called “Outbound Gateway Partial Success (mget and mput)”.

rm

The rm command has no options.

The message payload resulting from an rm operation is Boolean.TRUE if the remove was successful,
Boolean.FALSE otherwise. The remote directory is provided in the file_remoteDirectory header,
and the filename is provided in the file_remoteFile header.

mv

The mv command has no options.

The expression attribute defines the "from" path and the rename-expression attribute defines the "to"
path. By default, the rename-expression is headers['file_renameTo']. This expression must not
evaluate to null, or an empty String. If necessary, any remote directories needed will be created.
The payload of the result message is Boolean.TRUE. The original remote directory is provided in the
file_remoteDirectory header, and the filename is provided in the file_remoteFile header.
The new path is in the file_renameTo header.

Additional Information

The get and mget commands support the local-filename-generator-expression attribute. It defines
a SpEL expression to generate the name of local file(s) during the transfer. The root object of
the evaluation context is the request Message but, in addition, the remoteFileName variable is
also available, which is particularly useful for mget, for example: local-filename-generator-
expression="#remoteFileName.toUpperCase() + headers.foo".

The get and mget commands support the local-directory-expression attribute. It defines a SpEL
expression to generate the name of local directory(ies) during the transfer. The root object of the
evaluation context is the request Message but, in addition, the remoteDirectory variable is also
available, which is particularly useful for mget, for example: local-directory-expression="'/
tmp/local/' + #remoteDirectory.toUpperCase() + headers.foo". This attribute is
mutually exclusive with local-directory attribute.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 306

For all commands, the PATH that the command acts on is provided by the expression property of
the gateway. For the mget command, the expression might evaluate to , meaning retrieve all files, or
somedirectory/ etc.

Here is an example of a gateway configured for an ls command…

<int-ftp:outbound-gateway id="gateway1"

 session-factory="ftpSessionFactory"

 request-channel="inbound1"

 command="ls"

 command-options="-1"

 expression="payload"

 reply-channel="toSplitter"/>

The payload of the message sent to the toSplitter channel is a list of String objects containing the
filename of each file. If the command-options was omitted, it would be a list of FileInfo objects.
Options are provided space-delimited, e.g. command-options="-1 -dirs -links".

Starting with version 4.2, the GET, MGET, PUT and MPUT commands support a FileExistsMode
property (mode when using the namespace support). This affects the behavior when the local file exists
(GET and MGET) or the remote file exists (PUT and MPUT). Supported modes are REPLACE, APPEND,
FAIL and IGNORE. For backwards compatibility, the default mode for PUT and MPUT operations is
REPLACE and for GET and MGET operations, the default is FAIL.

Starting with version 5.0, the setWorkingDirExpression() (working-dir-expression) option
is provided on the FtpOutboundGateway (<int-ftp:outbound-gateway>) enabling the client
working directory to be changed at runtime; the expression is evaluated against the request message.
The previous working directory is restored after each gateway operation.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the Outbound Gateway using
Java configuration:

@SpringBootApplication

public class FtpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FtpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public SessionFactory<FTPFile> ftpSessionFactory() {

 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();

 sf.setHost("localhost");

 sf.setPort(port);

 sf.setUsername("foo");

 sf.setPassword("foo");

 return new CachingSessionFactory<FTPFile>(sf);

 }

 @Bean

 @ServiceActivator(inputChannel = "ftpChannel")

 public MessageHandler handler() {

 FtpOutboundGateway ftpOutboundGateway =

 new FtpOutboundGateway(ftpSessionFactory(), "ls", "'my_remote_dir/'");

 ftpOutboundGateway.setOutputChannelName("lsReplyChannel");

 return ftpOutboundGateway;

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 307

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Outbound Gateway using
the Java DSL:

@SpringBootApplication

public class FtpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(FtpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public SessionFactory<FTPFile> ftpSessionFactory() {

 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();

 sf.setHost("localhost");

 sf.setPort(port);

 sf.setUsername("foo");

 sf.setPassword("foo");

 return new CachingSessionFactory<FTPFile>(sf);

 }

 @Bean

 public FtpOutboundGatewaySpec ftpOutboundGateway() {

 return Ftp.outboundGateway(ftpSessionFactory(),

 AbstractRemoteFileOutboundGateway.Command.MGET, "payload")

 .options(AbstractRemoteFileOutboundGateway.Option.RECURSIVE)

 .regexFileNameFilter("(subFtpSource|.*1.txt)")

 .localDirectoryExpression("'localDirectory/' + #remoteDirectory")

 .localFilenameExpression("#remoteFileName.replaceFirst('ftpSource', 'localTarget')");

 }

 @Bean

 public IntegrationFlow ftpMGetFlow(AbstractRemoteFileOutboundGateway<FTPFile> ftpOutboundGateway) {

 return f -> f

 .handle(ftpOutboundGateway)

 .channel(c -> c.queue("remoteFileOutputChannel"));

 }

}

Outbound Gateway Partial Success (mget and mput)

When performing operations on multiple files (mget and mput) it is possible that an exception occurs
some time after one or more files have been transferred. In this case (starting with version 4.2),
a PartialSuccessException is thrown. As well as the usual MessagingException properties
(failedMessage and cause), this exception has two additional properties:

• partialResults - the successful transfer results.

• derivedInput - the list of files generated from the request message (e.g. local files to transfer for
an mput).

This will enable you to determine which files were successfully transferred, and which were not.

In the case of a recursive mput, the PartialSuccessException may have nested
PartialSuccessException s.

Consider:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 308

root/

|- file1.txt

|- subdir/

 | - file2.txt

 | - file3.txt

|- zoo.txt

If the exception occurs on file3.txt, the PartialSuccessException thrown by the gateway
will have derivedInput of file1.txt, subdir, zoo.txt and partialResults of file1.txt.
It’s cause will be another PartialSuccessException with derivedInput of file2.txt,
file3.txt and partialResults of file2.txt.

16.9 FTP Session Caching

Important

Starting with Spring Integration version 3.0, sessions are no longer cached by default;
the cache-sessions attribute is no longer supported on endpoints. You must use a
CachingSessionFactory (see below) if you wish to cache sessions.

In versions prior to 3.0, the sessions were cached automatically by default. A cache-sessions
attribute was available for disabling the auto caching, but that solution did not provide a way to
configure other session caching attributes. For example, you could not limit on the number of sessions
created. To support that requirement and other configuration options, a CachingSessionFactory
was provided. It provides sessionCacheSize and sessionWaitTimeout properties. As its name
suggests, the sessionCacheSize property controls how many active sessions the factory will maintain
in its cache (the DEFAULT is unbounded). If the sessionCacheSize threshold has been reached,
any attempt to acquire another session will block until either one of the cached sessions becomes
available or until the wait time for a Session expires (the DEFAULT wait time is Integer.MAX_VALUE).
The sessionWaitTimeout property enables configuration of that value.

If you want your Sessions to be cached, simply configure your default Session Factory as described
above and then wrap it in an instance of CachingSessionFactory where you may provide those
additional properties.

<bean id="ftpSessionFactory" class="o.s.i.ftp.session.DefaultFtpSessionFactory">

 <property name="host" value="localhost"/>

</bean>

<bean id="cachingSessionFactory" class="o.s.i.file.remote.session.CachingSessionFactory">

 <constructor-arg ref="ftpSessionFactory"/>

 <constructor-arg value="10"/>

 <property name="sessionWaitTimeout" value="1000"/>

</bean>

In the above example you see a CachingSessionFactory created with the sessionCacheSize
set to 10 and the sessionWaitTimeout set to 1 second (its value is in milliseconds).

Starting with Spring Integration version 3.0, the CachingConnectionFactory provides a
resetCache() method. When invoked, all idle sessions are immediately closed and in-use sessions
are closed when they are returned to the cache. New requests for sessions will establish new sessions
as necessary.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 309

16.10 RemoteFileTemplate

Starting with Spring Integration version 3.0 a new abstraction is provided over the FtpSession object.
The template provides methods to send, retrieve (as an InputStream), remove, and rename files.
In addition an execute method is provided allowing the caller to execute multiple operations on the
session. In all cases, the template takes care of reliably closing the session. For more information, refer
to the JavaDocs for RemoteFileTemplate. There is a subclass for FTP: FtpRemoteFileTemplate.

Additional methods were added in version 4.1 including getClientInstance() which provides
access to the underlying FTPClient enabling access to low-level APIs.

Not all FTP servers properly implement STAT <path> command, in that it can return a positive result
for a non-existent path. The NLST command reliably returns the name, when the path is a file and it
exists. However, this does not support checking that an empty directory exists since NLST always returns
an empty list in this case, when the path is a directory. Since the template doesn’t know if the path
represents a directory or not, it has to perform additional checks when the path does not appear to exist,
when using NLST. This adds overhead, requiring several requests to the server. Starting with version
4.1.9 the FtpRemoteFileTemplate provides FtpRemoteFileTemplate.ExistsMode property
with the following options:

• STAT - Perform the STAT FTP command (FTPClient.getStatus(path)) to check the path
existence; this is the default and requires that your FTP server properly supports the STAT command
(with a path).

• NLST - Perform the NLST FTP command - FTPClient.listName(path); use this if you are testing
for a path that is a full path to a file; it won’t work for empty directories.

• NLST_AND_DIRS - Perform the NLST command first and if it returns no files,
fall back to a technique which temporarily switches the working directory using
FTPClient.changeWorkingDirectory(path). See FtpSession.exists() for more
information.

Since we know that the FileExistsMode.FAIL case is always only looking for a file (and not
a directory), we safely use NLST mode for the FtpMessageHandler and FtpOutboundGateway
components.

For any other cases the FtpRemoteFileTemplate can be extended for implementing a custom logic
in the overridden exist() method.

Starting with version 5.0, the new RemoteFileOperations.invoke(OperationsCallback<F,
T> action) method is available. This method allows several RemoteFileOperations calls to
be called in the scope of the same, thread-bounded, Session. This is useful when you need to
perform several high-level operations of the RemoteFileTemplate as one unit of work. For example
AbstractRemoteFileOutboundGateway uses it with the mput command implementation, where we
perform a put operation for each file in the provided directory and recursively for its sub-directories. See
the JavaDocs for more information.

16.11 MessageSessionCallback

Starting with Spring Integration version 4.2, a MessageSessionCallback<F, T> implementation
can be used with the <int-ftp:outbound-gateway/> (FtpOutboundGateway) to perform any
operation(s) on the Session<FTPFile> with the requestMessage context. It can be used for any

http://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileTemplate.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 310

non-standard or low-level FTP operation (or several); for example, allowing access from an integration
flow definition, and functional interface (Lambda) implementation injection:

@Bean

@ServiceActivator(inputChannel = "ftpChannel")

public MessageHandler ftpOutboundGateway(SessionFactory<FTPFile> sessionFactory) {

 return new FtpOutboundGateway(sessionFactory,

 (session, requestMessage) -> session.list(requestMessage.getPayload()));

}

Another example might be to pre- or post- process the file data being sent/retrieved.

When using XML configuration, the <int-ftp:outbound-gateway/> provides a session-
callback attribute to allow you to specify the MessageSessionCallback bean name.

Note

The session-callback is mutually exclusive with the command and expression attributes.
When configuring with Java, different constructors are available in the FtpOutboundGateway
class.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 311

17. GemFire Support
Spring Integration provides support for VMWare vFabric GemFire

17.1 Introduction

VMWare vFabric GemFire (GemFire) is a distributed data management platform providing a key-
value data grid along with advanced distributed system features such as event processing, continuous
querying, and remote function execution. This guide assumes some familiarity with GemFire and its API.

Spring integration provides support for GemFire by providing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and MessageStore and
MessageGroupStore implementations. Spring integration leverages thehttp://www.springsource.org/
spring-gemfire[Spring Gemfire] project, providing a thin wrapper over its components.

To configure the int-gfe namespace, include the following elements within the headers of your XML
configuration file:

xmlns:int-gfe="http://www.springframework.org/schema/integration/gemfire"

xsi:schemaLocation="http://www.springframework.org/schema/integration/gemfire

 http://www.springframework.org/schema/integration/gemfire/spring-integration-gemfire.xsd"

17.2 Inbound Channel Adapter

The inbound-channel-adapter produces messages on a channel triggered by a GemFire EntryEvent.
GemFire generates events whenever an entry is CREATED, UPDATED, DESTROYED, or
INVALIDATED in the associated region. The inbound channel adapter allows you to filter on a subset
of these events. For example, you may want to only produce messages in response to an entry being
CREATED. In addition, the inbound channel adapter can evaluate a SpEL expression if, for example,
you want your message payload to contain an event property such as the new entry value.

<gfe:cache/>

<gfe:replicated-region id="region"/>

<int-gfe:inbound-channel-adapter id="inputChannel" region="region"

 cache-events="CREATED" expression="newValue"/>

In the above configuration, we are creating a GemFire Cache and Region using Spring GemFire’s
gfe namespace. The inbound-channel-adapter requires a reference to the GemFire region for which
the adapter will be listening for events. Optional attributes include cache-events which can contain
a comma separated list of event types for which a message will be produced on the input channel. By
default CREATED and UPDATED are enabled. Note that this adapter conforms to Spring integration
conventions. If no channel attribute is provided, the channel will be created from the id attribute.
This adapter also supports an error-channel. The GemFire EntryEvent is the #root object of the
expression evaluation. Example:

expression="new foo.MyEvent(key, oldValue, newValue)"

If the expression attribute is not provided, the message payload will be the GemFire EntryEvent
itself.

17.3 Continuous Query Inbound Channel Adapter

The cq-inbound-channel-adapter produces messages a channel triggered by a GemFire continuous
query or CqEvent event. Spring GemFire introduced continuous query support in release 1.1, including

http://www.vmware.com/support/pubs/vfabric-gemfire.html
http://www.vmware.com/support/developer/vfabric-gemfire/662-api/index.html
http://www.gemstone.com/docs/current/product/docs/japi/com/gemstone/gemfire/cache/EntryEvent.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 312

a ContinuousQueryListenerContainer which provides a nice abstraction over the GemFire native
API. This adapter requires a reference to a ContinuousQueryListenerContainer, and creates a listener
for a given query and executes the query. The continuous query acts as an event source that will fire
whenever its result set changes state.

Note

GemFire queries are written in OQL and are scoped to the entire cache (not just one region).
Additionally, continuous queries require a remote (i.e., running in a separate process or
remote host) cache server. Please consult the GemFire documentation for more information on
implementing continuous queries.

<gfe:client-cache id="client-cache" pool-name="client-pool"/>

<gfe:pool id="client-pool" subscription-enabled="true" >

 <!--configure server or locator here required to address the cache server -->

</gfe:pool>

<gfe:client-region id="test" cache-ref="client-cache" pool-name="client-pool"/>

<gfe:cq-listener-container id="queryListenerContainer" cache="client-cache"

 pool-name="client-pool"/>

<int-gfe:cq-inbound-channel-adapter id="inputChannel"

 cq-listener-container="queryListenerContainer"

 query="select * from /test"/>

In the above configuration, we are creating a GemFire client cache (recall a remote cache server is
required for this implementation and its address is configured as a sub-element of the pool), a client
region and a ContinuousQueryListenerContainer using Spring GemFire. The continuous query
inbound channel adapter requires a cq-listener-container attribute which contains a reference
to the ContinuousQueryListenerContainer. Optionally, it accepts an expression attribute
which uses SpEL to transform the CqEvent or extract an individual property as needed. The cq-
inbound-channel-adapter provides a query-events attribute, containing a comma separated list of
event types for which a message will be produced on the input channel. Available event types are
CREATED, UPDATED, DESTROYED, REGION_DESTROYED, REGION_INVALIDATED. CREATED
and UPDATED are enabled by default. Additional optional attributes include, query-name which
provides an optional query name, and expression which works as described in the above section, and
durable - a boolean value indicating if the query is durable (false by default). Note that this adapter
conforms to Spring integration conventions. If no channel attribute is provided, the channel will be
created from the id attribute. This adapter also supports an error-channel

17.4 Outbound Channel Adapter

The outbound-channel-adapter writes cache entries mapped from the message payload. In its simplest
form, it expects a payload of type java.util.Map and puts the map entries into its configured region.

<int-gfe:outbound-channel-adapter id="cacheChannel" region="region"/>

Given the above configuration, an exception will be thrown if the payload is not a Map. Additionally, the
outbound channel adapter can be configured to create a map of cache entries using SpEL of course.

http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Continuous%20Querying

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 313

<int-gfe:outbound-channel-adapter id="cacheChannel" region="region">

 <int-gfe:cache-entries>

 <entry key="payload.toUpperCase()" value="payload.toLowerCase()"/>

 <entry key="'foo'" value="'bar'"/>

 </int-gfe:cache-entries>

</int-gfe:outbound-channel-adapter>

In the above configuration, the inner element cache-entries is semantically equivalent to Spring
map element. The adapter interprets the key and value attributes as SpEL expressions with the
message as the evaluation context. Note that this contain arbitrary cache entries (not only those
derived from the message) and that literal values must be enclosed in single quotes. In the above
example, if the message sent to cacheChannel has a String payload with a value "Hello", two entries
[HELLO:hello, foo:bar] will be written (created or updated) in the cache region. This adapter also
supports the order attribute which may be useful if it is bound to a PublishSubscribeChannel.

17.5 Gemfire Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful
when dealing with components that have a capability to buffer messages (QueueChannel, Aggregator,
Resequencer, etc.) if reliability is a concern. In Spring Integration, the MessageStore strategy also
provides the foundation for thehttp://www.eaipatterns.com/StoreInLibrary.html[ClaimCheck] pattern,
which is described in EIP as well.

Spring Integration’s Gemfire module provides the GemfireMessageStore which is an implementation
of both the the MessageStore strategy (mainly used by the QueueChannel and ClaimCheck patterns)
and the MessageGroupStore strategy (mainly used by the Aggregator and Resequencer patterns).

<bean id="gemfireMessageStore" class="o.s.i.gemfire.store.GemfireMessageStore">

 <constructor-arg ref="myRegion"/>

</bean>

<gfe:cache/>

<gfe:replicated-region id="myRegion"/>

<int:channel id="somePersistentQueueChannel">

 <int:queue message-store="gemfireMessageStore"/>

<int:channel>

<int:aggregator input-channel="inputChannel" output-channel="outputChannel"

 message-store="gemfireMessageStore"/>

In the above example, the cache and region are configured using the spring-gemfire namespace (not to
be confused with the spring-integration-gemfire namespace). Often it is desirable for the message store
to be maintained in one or more remote cache servers in a client-server configuration (See the GemFire
product documentation for more details). In this case, you configure a client cache, client region, and
client pool and inject the region into the MessageStore. Here is an example:

<bean id="gemfireMessageStore"

 class="org.springframework.integration.gemfire.store.GemfireMessageStore">

 <constructor-arg ref="myRegion"/>

</bean>

<gfe:client-cache/>

<gfe:client-region id="myRegion" shortcut="PROXY" pool-name="messageStorePool"/>

<gfe:pool id="messageStorePool">

 <gfe:server host="localhost" port="40404" />

</gfe:pool>

http://www.eaipatterns.com/MessageStore.html
http://www.vmware.com/support/pubs/vfabric-gemfire.html
http://www.vmware.com/support/pubs/vfabric-gemfire.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 314

Note the pool element is configured with the address of a cache server (a locator may be substituted
here). The region is configured as a PROXY so that no data will be stored locally. The region’s id
corresponds to a region with the same name configured in the cache server.

Starting with version 4.3.12, the GemfireMessageStore supports the key prefix option to allow
distinguishing between instances of the store on the same Gemfire region.

17.6 Gemfire Lock Registry

Starting with version 4.0, the GemfireLockRegistry is available. Certain components (for example
aggregator and resequencer) use a lock obtained from a LockRegistry instance to ensure that only
one thread is manipulating a group at a time. The DefaultLockRegistry performs this function
within a single component; you can now configure an external lock registry on these components. When
used with a shared MessageGroupStore, the GemfireLockRegistry can be use to provide this
functionality across multiple application instances, such that only one instance can manipulate the group
at a time.

Note

One of the GemfireLockRegistry constructors requires a Region as an argument; it is used to
obtain a Lock via the getDistributedLock() method. This operation requires GLOBAL scope
for the Region. Another constructor requires Cache and the Region will be created with GLOBAL
scope and with the name LockRegistry.

17.7 Gemfire Metadata Store

As of version 4.0, a new Gemfire-based MetadataStore (Section 10.5, “Metadata Store”)
implementation is available. The GemfireMetadataStore can be used to maintain metadata state
across application restarts. This new MetadataStore implementation can be used with adapters such
as:

• Section 33.4, “Twitter Inbound Adapters”

• Section 14.2, “Feed Inbound Channel Adapter”

• Section 15.2, “Reading Files”

• Section 16.4, “FTP Inbound Channel Adapter”

• Section 28.7, “SFTP Inbound Channel Adapter”

In order to instruct these adapters to use the new GemfireMetadataStore, simply declare a Spring
bean using the bean name metadataStore. The Twitter Inbound Channel Adapter and the Feed Inbound
Channel Adapter will both automatically pick up and use the declared GemfireMetadataStore.

Note

The GemfireMetadataStore also implements ConcurrentMetadataStore, allowing it to
be reliably shared across multiple application instances where only one instance will be allowed
to store or modify a key’s value. These methods give various levels of concurrency guarantees
based on the scope and data policy of the region. They are implemented in the peer cache and
client/server cache but are disallowed in peer Regions having NORMAL or EMPTY data policies.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 315

Note

Since version 5.0, the GemfireMetadataStore also implements
ListenableMetadataStore, allowing users to listen to cache events by providing
MetadataStoreListener instances to the store:

GemfireMetadataStore metadataStore = new GemfireMetadataStore(cache);

metadataStore.addListener(new MetadataStoreListenerAdapter() {

 @Override

 public void onAdd(String key, String value) {

 ...

 }

});

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 316

18. HTTP Support

18.1 Introduction

The HTTP support allows for the execution of HTTP requests and the processing of
inbound HTTP requests. The HTTP support consists of the following gateway implementations:
HttpInboundEndpoint, HttpRequestExecutingMessageHandler. Also see Chapter 34,
WebFlux Support.

18.2 Http Inbound Components

To receive messages over HTTP, you need to use an HTTP Inbound Channel Adapter or Gateway.
To support the HTTP Inbound Adapters, they need to be deployed within a servlet container such as
Apache Tomcat or Jetty. The easiest way to do this is to use Spring’s HttpRequestHandlerServlet, by
providing the following servlet definition in the web.xml file:

<servlet>

 <servlet-name>inboundGateway</servlet-name>

 <servlet-class>o.s.web.context.support.HttpRequestHandlerServlet</servlet-class>

</servlet>

Notice that the servlet name matches the bean name. For more information on using the
HttpRequestHandlerServlet, see chapter Remoting and web services using Spring, which is part
of the Spring Framework Reference documentation.

If you are running within a Spring MVC application, then the aforementioned explicit servlet definition is
not necessary. In that case, the bean name for your gateway can be matched against the URL path just
like a Spring MVC Controller bean. For more information, please see the chapter Web MVC framework,
which is part of the Spring Framework Reference documentation.

Tip

For a sample application and the corresponding configuration, please see the Spring Integration
Samples repository. It contains the Http Sample application demonstrating Spring Integration’s
HTTP support.

Below is an example bean definition for a simple HTTP inbound endpoint.

<bean id="httpInbound"

 class="org.springframework.integration.http.inbound.HttpRequestHandlingMessagingGateway">

 <property name="requestChannel" ref="httpRequestChannel" />

 <property name="replyChannel" ref="httpReplyChannel" />

</bean>

The HttpRequestHandlingMessagingGateway accepts a list of HttpMessageConverter
instances or else relies on a default list. The converters allow customization of the mapping from
HttpServletRequest to Message. The default converters encapsulate simple strategies, which for
example will create a String message for a POST request where the content type starts with "text", see
the Javadoc for full details. An additional flag (mergeWithDefaultConverters) can be set along with
the list of custom HttpMessageConverter to add the default converters after the custom converters.
By default this flag is set to false, meaning that the custom converters replace the default list.

The message conversion process uses the (optional) requestPayloadType property and the
incoming Content-Type header. Starting with version 4.3, if a request has no content type header,

http://tomcat.apache.org/
http://www.eclipse.org/jetty/
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/context/support/HttpRequestHandlerServlet.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/remoting.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration-samples/tree/master/basic/http

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 317

application/octet-stream is assumed, as recommended by RFC 2616. Previously, the body of
such messages was ignored.

Starting with Spring Integration 2.0, MultiPart File support is implemented. If the request has been
wrapped as a MultipartHttpServletRequest, when using the default converters, that request
will be converted to a Message payload that is a MultiValueMap containing values that may be
byte arrays, Strings, or instances of Spring’s MultipartFile depending on the content type of the
individual parts.

Note

The HTTP inbound Endpoint will locate a MultipartResolver in the context if one
exists with the bean name "multipartResolver" (the same name expected by Spring’s
DispatcherServlet). If it does in fact locate that bean, then the support for MultipartFiles will
be enabled on the inbound request mapper. Otherwise, it will fail when trying to map a multipart-file
request to a Spring Integration Message. For more on Spring’s support for MultipartResolver,
refer to the Spring Reference Manual.

Note

If you wish to proxy a multipart/form-data to another server, it may be better to keep it in
raw form. To handle this situation, do not add the multipartResolver bean to the context;
configure the endpoint to expect a byte[] request; customize the message converters to include
a ByteArrayHttpMessageConverter, and disable the default multipart converter. You may
need some other converter(s) for the replies:

<int-http:inbound-gateway

 channel="receiveChannel"

 path="/inboundAdapter.htm"

 request-payload-type="byte[]"

 message-converters="converters"

 merge-with-default-converters="false"

 supported-methods="POST" />

<util:list id="converters">

 <beans:bean class="org.springframework.http.converter.ByteArrayHttpMessageConverter" />

 <beans:bean class="org.springframework.http.converter.StringHttpMessageConverter" />

 <beans:bean class="org.springframework.http.converter.json.MappingJackson2HttpMessageConverter"

 />

</util:list>

In sending a response to the client there are a number of ways to customize the behavior of the gateway.
By default the gateway will simply acknowledge that the request was received by sending a 200 status
code back. It is possible to customize this response by providing a viewName to be resolved by the
Spring MVC ViewResolver. In the case that the gateway should expect a reply to the Message then
setting the expectReply flag (constructor argument) will cause the gateway to wait for a reply Message
before creating an HTTP response. Below is an example of a gateway configured to serve as a Spring
MVC Controller with a view name. Because of the constructor arg value of TRUE, it wait for a reply.
This also shows how to customize the HTTP methods accepted by the gateway, which are POST and
GET by default.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-multipart

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 318

<bean id="httpInbound"

 class="org.springframework.integration.http.inbound.HttpRequestHandlingController">

 <constructor-arg value="true" /> <!-- indicates that a reply is expected -->

 <property name="requestChannel" ref="httpRequestChannel" />

 <property name="replyChannel" ref="httpReplyChannel" />

 <property name="viewName" value="jsonView" />

 <property name="supportedMethodNames" >

 <list>

 <value>GET</value>

 <value>DELETE</value>

 </list>

 </property>

</bean>

The reply message will be available in the Model map. The key that is used for that map entry by default
is reply, but this can be overridden by setting the replyKey property on the endpoint’s configuration.

18.3 Http Outbound Components

HttpRequestExecutingMessageHandler

To configure the HttpRequestExecutingMessageHandler write a bean definition like this:

<bean id="httpOutbound"

 class="org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler">

 <constructor-arg value="http://localhost:8080/example" />

 <property name="outputChannel" ref="responseChannel" />

</bean>

This bean definition will execute HTTP requests by delegating to a RestTemplate. That template in
turn delegates to a list of HttpMessageConverters to generate the HTTP request body from the Message
payload. You can configure those converters as well as the ClientHttpRequestFactory instance to use:

<bean id="httpOutbound"

 class="org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler">

 <constructor-arg value="http://localhost:8080/example" />

 <property name="outputChannel" ref="responseChannel" />

 <property name="messageConverters" ref="messageConverterList" />

 <property name="requestFactory" ref="customRequestFactory" />

</bean>

By default the HTTP request will be generated using an instance of
SimpleClientHttpRequestFactory which uses the JDK HttpURLConnection. Use
of the Apache Commons HTTP Client is also supported through the provided
CommonsClientHttpRequestFactory which can be injected as shown above.

Note

In the case of the Outbound Gateway, the reply message produced by the gateway will contain
all Message Headers present in the request message.

Cookies

Basic cookie support is provided by the transfer-cookies attribute on the outbound gateway. When set
to true (default is false), a Set-Cookie header received from the server in a response will be converted to
Cookie in the reply message. This header will then be used on subsequent sends. This enables simple
stateful interactions, such as…

...->logonGateway->...->doWorkGateway->...->logoffGateway->...

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 319

If transfer-cookies is false, any Set-Cookie header received will remain as Set-Cookie in the reply
message, and will be dropped on subsequent sends.

Note: Empty Response Bodies

HTTP is a request/response protocol. However the response may not have a body, just headers.
In this case, the HttpRequestExecutingMessageHandler produces a reply Message with
the payload being an org.springframework.http.ResponseEntity, regardless of any
provided expected-response-type. According to the HTTP RFC Status Code Definitions,
there are many statuses which identify that a response MUST NOT contain a message-body (e.g.
204 No Content). There are also cases where calls to the same URL might, or might not, return a
response body; for example, the first request to an HTTP resource returns content, but the second
does not (e.g. 304 Not Modified). In all cases, however, the http_statusCode message header
is populated. This can be used in some routing logic after the Http Outbound Gateway. You could
also use a`<payload-type-router/>` to route messages with an ResponseEntity to a different
flow than that used for responses with a body.

Note: expected-response-type

Further to the note above regarding empty response bodies, if a response does contain a
body, you must provide an appropriate expected-response-type attribute or, again, you will
simply receive a ResponseEntity with no body. The expected-response-type must be
compatible with the (configured or default) HttpMessageConverter s and the Content-Type
header in the response. Of course, this can be an abstract class, or even an interface (such as
java.io.Serializable when using java serialization and Content-Type: application/
x-java-serialized-object).

18.4 HTTP Namespace Support

Introduction

Spring Integration provides an http namespace and the corresponding schema definition. To include it
in your configuration, simply provide the following namespace declaration in your application context
configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-http="http://www.springframework.org/schema/integration/http"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/http

 http://www.springframework.org/schema/integration/http/spring-integration-http.xsd">

 ...

</beans>

Inbound

The XML Namespace provides two components for handling HTTP Inbound requests. In order to
process requests without returning a dedicated response, use the inbound-channel-adapter:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 320

<int-http:inbound-channel-adapter id="httpChannelAdapter" channel="requests"

 supported-methods="PUT, DELETE"/>

To process requests that do expect a response, use an inbound-gateway:

<int-http:inbound-gateway id="inboundGateway"

 request-channel="requests"

 reply-channel="responses"/>

Request Mapping Support

Note

Spring Integration 3.0 is improving the REST support by introducing the
IntegrationRequestMappingHandlerMapping. The implementation relies on the enhanced REST
support provided by Spring Framework 3.1 or higher.

The parsing of the HTTP Inbound Gateway or the HTTP Inbound Channel
Adapter registers an integrationRequestMappingHandlerMapping bean of type
IntegrationRequestMappingHandlerMapping, in case there is none registered, yet. This
particular implementation of the HandlerMapping delegates its logic to the
RequestMappingInfoHandlerMapping. The implementation provides similar functionality as
the one provided by the org.springframework.web.bind.annotation.RequestMapping
annotation in Spring MVC.

Note

For more information, please see Mapping Requests With @RequestMapping.

For this purpose, Spring Integration 3.0 introduces the <request-mapping> sub-element.
This optional sub-element can be added to the <http:inbound-channel-adapter> and the
<http:inbound-gateway>. It works in conjunction with the path and supported-methods
attributes:

<inbound-gateway id="inboundController"

 request-channel="requests"

 reply-channel="responses"

 path="/foo/{fooId}"

 supported-methods="GET"

 view-name="foo"

 error-code="oops">

 <request-mapping headers="User-Agent"

 params="myParam=myValue"

 consumes="application/json"

 produces="!text/plain"/>

</inbound-gateway>

Based on this configuration, the namespace parser creates an instance
of the IntegrationRequestMappingHandlerMapping (if none exists, yet), a
HttpRequestHandlingController bean and associated with it an instance of RequestMapping,
which in turn, is converted to the Spring MVC RequestMappingInfo.

The <request-mapping> sub-element provides the following attributes:

• headers

• params

http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/HandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfoHandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping
http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/RequestMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfo.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 321

• consumes

• produces

With the path and supported-methods attributes of the <http:inbound-

channel-adapter> or the <http:inbound-gateway>, <request-mapping>

attributes translate directly into the respective options provided by the
org.springframework.web.bind.annotation.RequestMapping annotation in Spring MVC.

The <request-mapping> sub-element allows you to configure several Spring Integration HTTP
Inbound Endpoints to the same path (or even the same supported-methods) and to provide different
downstream message flows based on incoming HTTP requests.

Alternatively, you can also declare just one HTTP Inbound Endpoint and apply routing and filtering logic
within the Spring Integration flow to achieve the same result. This allows you to get the Message into
the flow as early as possibly, e.g.:

<int-http:inbound-gateway request-channel="httpMethodRouter"

 supported-methods="GET,DELETE"

 path="/process/{entId}"

 payload-expression="#pathVariables.entId"/>

<int:router input-channel="httpMethodRouter" expression="headers.http_requestMethod">

 <int:mapping value="GET" channel="in1"/>

 <int:mapping value="DELETE" channel="in2"/>

</int:router>

<int:service-activator input-channel="in1" ref="service" method="getEntity"/>

<int:service-activator input-channel="in2" ref="service" method="delete"/>

For more information regarding Handler Mappings, please see: Handler Mappings.

Cross-Origin Resource Sharing (CORS) Support

Starting with version 4.2 the <http:inbound-channel-adapter> and <http:inbound-

gateway> can be configured with a <cross-origin> sub-element. It represents the same options as
Spring MVC’s @CrossOrigin for @Controller methods and allows the configuration of Cross-origin
resource sharing (CORS) for Spring Integration HTTP endpoints:

• origin - List of allowed origins. * means that all origins are allowed. These values are placed in
the Access-Control-Allow-Origin header of both the pre-flight and actual responses. Default
value is *.

• allowed-headers - Indicates which request headers can be used during the actual request. *
means that all headers asked by the client are allowed. This property controls the value of the pre-
flight response’s Access-Control-Allow-Headers header. Default value is *.

• exposed-headers - List of response headers that the user-agent will allow the client to access. This
property controls the value of the actual response’s Access-Control-Expose-Headers header.

• method - The HTTP request methods to allow: GET, POST, HEAD, OPTIONS, PUT, PATCH,
DELETE, TRACE. Methods specified here overrides those in supported-methods.

• allow-credentials - Set to true if the the browser should include any cookies associated to
the domain of the request, or false if it should not. Empty string "" means undefined. If true, the
pre-flight response will include the header Access-Control-Allow-Credentials=true. Default
value is true.

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-handlermapping

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 322

• max-age - Controls the cache duration for pre-flight responses. Setting this to a reasonable value can
reduce the number of pre-flight request/response interactions required by the browser. This property
controls the value of the Access-Control-Max-Age header in the pre-flight response. A value of
-1 means undefined. Default value is 1800 seconds, or 30 minutes.

The CORS Java Configuration is represented by the
org.springframework.integration.http.inbound.CrossOrigin class, instances of which
can be injected to the HttpRequestHandlingEndpointSupport beans.

Response StatusCode

Starting with version 4.1 the <http:inbound-channel-adapter> can be configured with a
status-code-expression to override the default 200 OK status. The expression must
return an object which can be converted to an org.springframework.http.HttpStatus
enum value. The evaluationContext has a BeanResolver but no variables, so the
usage of this attribute is somewhat limited. An example might be to resolve, at runtime,
some scoped Bean that returns a status code value but, most likely, it will be set to
a fixed value such as status-code=expression="204" (No Content), or status-code-
expression="T(org.springframework.http.HttpStatus).NO_CONTENT". By default,
status-code-expression is null meaning that the normal 200 OK response status will be returned.

<http:inbound-channel-adapter id="inboundController"

 channel="requests" view-name="foo" error-code="oops"

 status-code-expression="T(org.springframework.http.HttpStatus).ACCEPTED">

 <request-mapping headers="BAR"/>

</http:inbound-channel-adapter>

The <http:inbound-gateway> resolves the status code from the http_statusCode header of the
reply Message. Starting with version 4.2, the default response status code when no reply is received
within the reply-timeout is 500 Internal Server Error. There are two ways to modify this
behavior:

• add a reply-timeout-status-code-expression - this has the same semantics as the
status-code-expression on the inbound adapter.

• Add an error-channel and return an appropriate message with an http status code header, such
as…

<int:chain input-channel="errors">

 <int:header-enricher>

 <int:header name="http_statusCode" value="504" />

 </int:header-enricher>

 <int:transformer expression="payload.failedMessage" />

</int:chain>

The payload of the ErrorMessage is a MessageTimeoutException; it must be transformed to
something that can be converted by the gateway, such as a String; a good candidate is the exception’s
message property, which is the value used when using the expression technique.

If the error flow times out after a main flow timeout, 500 Internal Server Error is returned, or
the reply-timeout-status-code-expression is evaluated, if present.

Note

previously, the default status code for a timeout was 200 OK; to restore that behavior, set reply-
timeout-status-code-expression="200".

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 323

URI Template Variables and Expressions

By Using the path attribute in conjunction with the payload-expression attribute as well as the header
sub-element, you have a high degree of flexibility for mapping inbound request data.

In the following example configuration, an Inbound Channel Adapter is configured to accept requests
using the following URI: /first-name/{firstName}/last-name/{lastName}

Using the payload-expression attribute, the URI template variable {firstName} is mapped to be the
Message payload, while the {lastName} URI template variable will map to the lname Message header.

<int-http:inbound-channel-adapter id="inboundAdapterWithExpressions"

 path="/first-name/{firstName}/last-name/{lastName}"

 channel="requests"

 payload-expression="#pathVariables.firstName">

 <int-http:header name="lname" expression="#pathVariables.lastName"/>

</int-http:inbound-channel-adapter>

For more information about URI template variables, please see the Spring Reference Manual: uri
template patterns.

Since Spring Integration 3.0, in addition to the existing #pathVariables and #requestParams
variables being available in payload and header expressions, other useful variables have been added.

The entire list of available expression variables:

• #requestParams - the MultiValueMap from the ServletRequest parameterMap.

• #pathVariables - the Map from URI Template placeholders and their values;

• #matrixVariables - the Map of MultiValueMap according to Spring MVC Specification. Note,
#matrixVariables require Spring MVC 3.2 or higher;

• #requestAttributes - the
org.springframework.web.context.request.RequestAttributes associated with the
current Request;

• #requestHeaders - the org.springframework.http.HttpHeaders object from the current
Request;

• #cookies - the Map<String, Cookie> of javax.servlet.http.Cookie s from the current
Request.

Note, all these values (and others) can be accessed within expressions in the downstream message flow
via the ThreadLocal org.springframework.web.context.request.RequestAttributes
variable, if that message flow is single-threaded and lives within the request thread:

<int-:transformer

 expression="T(org.springframework.web.context.request.RequestContextHolder).

 requestAttributes.request.queryString"/>

Outbound

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration options for an outbound Http gateway. Most importantly, notice
that the http-method and expected-response-type are provided. Those are two of the most commonly
configured values. The default http-method is POST, and the default response type is null. With a null
response type, the payload of the reply Message would contain the ResponseEntity as long as it’s http

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping-uri-templates
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping-uri-templates
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-matrix-variables

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 324

status is a success (non-successful status codes will throw Exceptions). If you are expecting a different
type, such as a String, then provide that fully-qualified class name as shown below. See also the note
about empty response bodies in Section 18.3, “Http Outbound Components”.

Important

Beginning with Spring Integration 2.1 the request-timeout attribute of the HTTP Outbound
Gateway was renamed to reply-timeout to better reflect the intent.

<int-http:outbound-gateway id="example"

 request-channel="requests"

 url="http://localhost/test"

 http-method="POST"

 extract-request-payload="false"

 expected-response-type="java.lang.String"

 charset="UTF-8"

 request-factory="requestFactory"

 reply-timeout="1234"

 reply-channel="replies"/>

Important

Since Spring Integration 2.2, Java serialization over HTTP is no longer enabled by default.
Previously, when setting the expected-response-type attribute to a Serializable
object, the Accept header was not properly set up. Since Spring Integration 2.2, the
SerializingHttpMessageConverter has now been updated to set the Accept header to
application/x-java-serialized-object.

However, because this could cause incompatibility with existing applications, it was decided
to no longer automatically add this converter to the HTTP endpoints. If you wish to use Java
serialization, you will need to add the SerializingHttpMessageConverter to the appropriate
endpoints, using the message-converters attribute, when using XML configuration, or using
the setMessageConverters() method. Alternatively, you may wish to consider using JSON
instead which is enabled by simply having Jackson on the classpath.

Beginning with Spring Integration 2.2 you can also determine the HTTP Method dynamically using
SpEL and the http-method-expression attribute. Note that this attribute is obviously mutually exclusive
with http-method You can also use expected-response-type-expression attribute instead of
expected-response-type and provide any valid SpEL expression that determines the type of the
response.

<int-http:outbound-gateway id="example"

 request-channel="requests"

 url="http://localhost/test"

 http-method-expression="headers.httpMethod"

 extract-request-payload="false"

 expected-response-type-expression="payload"

 charset="UTF-8"

 request-factory="requestFactory"

 reply-timeout="1234"

 reply-channel="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-channel-
adapter instead. This means that a successful response will simply execute without sending any
Messages to a reply channel. In the case of any non-successful response status code, it will throw an
exception. The configuration looks very similar to the gateway:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 325

<int-http:outbound-channel-adapter id="example"

 url="http://localhost/example"

 http-method="GET"

 channel="requests"

 charset="UTF-8"

 extract-payload="false"

 expected-response-type="java.lang.String"

 request-factory="someRequestFactory"

 order="3"

 auto-startup="false"/>

Note

To specify the URL; you can use either the url attribute or the url-expression attribute. The url is
a simple string (with placeholders for URI variables, as described below); the url-expression is a
SpEL expression, with the Message as the root object, enabling dynamic urls. The url resulting
from the expression evaluation can still have placeholders for URI variables.

In previous releases, some users used the place holders to replace the entire URL with a URI
variable. Changes in Spring 3.1 can cause some issues with escaped characters, such as ?. For
this reason, it is recommended that if you wish to generate the URL entirely at runtime, you use
the url-expression attribute.

Mapping URI Variables

If your URL contains URI variables, you can map them using the uri-variable sub-element. This
sub-element is available for the Http Outbound Gateway and the Http Outbound Channel Adapter.

<int-http:outbound-gateway id="trafficGateway"

 url="http://local.yahooapis.com/trafficData?appid=YdnDemo&zip={zipCode}"

 request-channel="trafficChannel"

 http-method="GET"

 expected-response-type="java.lang.String">

 <int-http:uri-variable name="zipCode" expression="payload.getZip()"/>

</int-http:outbound-gateway>

The uri-variable sub-element defines two attributes: name and expression. The name attribute
identifies the name of the URI variable, while the expression attribute is used to set the actual value.
Using the expression attribute, you can leverage the full power of the Spring Expression Language
(SpEL) which gives you full dynamic access to the message payload and the message headers. For
example, in the above configuration the getZip() method will be invoked on the payload object of the
Message and the result of that method will be used as the value for the URI variable named zipCode.

Since Spring Integration 3.0, HTTP Outbound Endpoints support the uri-variables-expression
attribute to specify an Expression which should be evaluated, resulting in a Map for all URI variable
placeholders within the URL template. It provides a mechanism whereby different variable expressions
can be used, based on the outbound message. This attribute is mutually exclusive with the <uri-
variable/> sub-element:

<int-http:outbound-gateway

 url="http://foo.host/{foo}/bars/{bar}"

 request-channel="trafficChannel"

 http-method="GET"

 uri-variables-expression="@uriVariablesBean.populate(payload)"

 expected-response-type="java.lang.String"/>

where uriVariablesBean might be:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 326

public class UriVariablesBean {

 private static final ExpressionParser EXPRESSION_PARSER = new SpelExpressionParser();

 public Map<String, ?> populate(Object payload) {

 Map<String, Object> variables = new HashMap<String, Object>();

 if (payload instanceOf String.class)) {

 variables.put("foo", "foo"));

 }

 else {

 variables.put("foo", EXPRESSION_PARSER.parseExpression("headers.bar"));

 }

 return variables;

 }

}

Note

The uri-variables-expression must evaluate to a Map. The values of the Map must be
instances of String or Expression. This Map is provided to an ExpressionEvalMap for
further resolution of URI variable placeholders using those expressions in the context of the
outbound Message.

Scenarios when we need to supply a dynamic set of URI variables on per message basis can
be achieved with the custom url-expression and some utilities for building and encoding URL
parameters:

url-expression="T(org.springframework.web.util.UriComponentsBuilder)

 .fromHttpUrl('http://HOST:PORT/PATH')

 .queryParams(payload)

 .build()

 .toUri()"

where queryParams() expects a MultiValueMap<String, String> as an argument, so a real
set of URL query parameters can be build in advance, before performing request.

The whole queryString can also be presented as an uri variable:

<int-http:outbound-gateway id="proxyGateway" request-channel="testChannel"

 url="http://testServer/test?{queryString}">

 <int-http:uri-variable name="queryString" expression="'a=A&b=B'"/>

</int-http:outbound-gateway>

In this case the URL encoding must be provided manually. For example the
org.apache.http.client.utils.URLEncodedUtils#format() can be used for this purpose.
A mentioned, manually built, MultiValueMap<String, String> can be converted to the the
List<NameValuePair> format() method argument using this Java Streams snippet:

List<NameValuePair> nameValuePairs =

 params.entrySet()

 .stream()

 .flatMap(e -> e

 .getValue()

 .stream()

 .map(v -> new BasicNameValuePair(e.getKey(), v)))

 .collect(Collectors.toList());

Controlling URI Encoding

By default, the URL string is encoded (see UriComponentsBuilder) to the URI object before sending
the request. In some scenarios with a non-standard URI (e.g. the RabbitMQ Rest API) it is undesirable

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 327

to perform the encoding. The <http:outbound-gateway/> and <http:outbound-channel-
adapter/> provide an encode-uri attribute. To disable encoding the URL, this attribute should be
set to false (by default it is true). If you wish to partially encode some of the URL, this can be achieved
using an expression within a <uri-variable/>:

<http:outbound-gateway url="http://somehost/%2f/fooApps?bar={param}" encode-uri="false">

 <http:uri-variable name="param"

 expression="T(org.apache.commons.httpclient.util.URIUtil)

 .encodeWithinQuery('Hello World!')"/>

</http:outbound-gateway>

18.5 Configuring HTTP Endpoints with Java

Inbound Gateway Using Java Configuration.

@Bean

public HttpRequestHandlingMessagingGateway inbound() {

 HttpRequestHandlingMessagingGateway gateway =

 new HttpRequestHandlingMessagingGateway(true);

 gateway.setRequestMapping(mapping());

 gateway.setRequestPayloadType(String.class);

 gateway.setRequestChannelName("httpRequest");

 return gateway;

}

@Bean

public RequestMapping mapping() {

 RequestMapping requestMapping = new RequestMapping();

 requestMapping.setPathPatterns("/foo");

 requestMapping.setMethods(HttpMethod.POST);

 return requestMapping;

}

Inbound Gateway Using the Java DSL.

@Bean

public IntegrationFlow inbound() {

 return IntegrationFlows.from(Http.inboundGateway("/foo")

 .requestMapping(m -> m.methods(HttpMethod.POST))

 .requestPayloadType(String.class))

 .channel("httpRequest")

 .get();

}

Outbound Gateway Using Java Configuration.

@ServiceActivator(inputChannel = "httpOutRequest")

@Bean

public HttpRequestExecutingMessageHandler outbound() {

 HttpRequestExecutingMessageHandler handler =

 new HttpRequestExecutingMessageHandler("http://localhost:8080/foo");

 handler.setHttpMethod(HttpMethod.POST);

 handler.setExpectedResponseType(String.class);

 return handler;

}

Outbound Gateway Using the Java DSL.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 328

@Bean

public IntegrationFlow outbound() {

 return IntegrationFlows.from("httpOutRequest")

 .handle(Http.outboundGateway("http://localhost:8080/foo")

 .httpMethod(HttpMethod.POST)

 .expectedResponseType(String.class))

 .get();

}

18.6 Timeout Handling

In the context of HTTP components, there are two timing areas that have to be considered.

Timeouts when interacting with Spring Integration Channels

Timeouts when interacting with a remote HTTP server

First, the components interact with Message Channels, for which timeouts can be specified. For
example, an HTTP Inbound Gateway will forward messages received from connected HTTP Clients to a
Message Channel (Request Timeout) and consequently the HTTP Inbound Gateway will receive a reply
Message from the Reply Channel (Reply Timeout) that will be used to generate the HTTP Response.
Please see the figure below for an illustration.

Figure 18.1. How timeout settings apply to an HTTP Inbound Gateway

For outbound endpoints, the second thing to consider is timing while interacting with the remote server.

Figure 18.2. How timeout settings apply to an HTTP Outbound Gateway

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 329

You may want to configure the HTTP related timeout behavior, when making active HTTP requests
using the HTTP Outbound Gateway or the HTTP Outbound Channel Adapter. In those instances, these
two components use Spring’s RestTemplate support to execute HTTP requests.

In order to configure timeouts for the HTTP Outbound Gateway and the HTTP Outbound Channel
Adapter, you can either reference a RestTemplate bean directly, using the rest-template attribute, or
you can provide a reference to a ClientHttpRequestFactory bean using the request-factory attribute.
Spring provides the following implementations of the ClientHttpRequestFactory interface:

SimpleClientHttpRequestFactory - Uses standard J2SE facilities for making HTTP Requests

HttpComponentsClientHttpRequestFactory - Uses Apache HttpComponents HttpClient (Since Spring
3.1)

If you don’t explicitly configure the request-factory or rest-template attribute respectively, then a default
RestTemplate which uses a SimpleClientHttpRequestFactory will be instantiated.

Note

With some JVM implementations, the handling of timeouts using the URLConnection class may
not be consistent.

E.g. from the Java™ Platform, Standard Edition 6 API Specification on setConnectTimeout:
[quote] Some non-standard implementation of this method may ignore the specified timeout. To
see the connect timeout set, please call getConnectTimeout().

Please test your timeouts if you have specific needs. Consider using
the HttpComponentsClientHttpRequestFactory which, in turn, uses Apache
HttpComponents HttpClient instead.

Important

When using the Apache HttpComponents HttpClient with a Pooling Connection Manager, be
aware that, by default, the connection manager will create no more than 2 concurrent connections
per given route and no more than 20 connections in total. For many real-world applications these
limits may prove too constraining. Refer to the Apache documentation (link above) for information
about configuring this important component.

Here is an example of how to configure an HTTP Outbound Gateway using a
SimpleClientHttpRequestFactory, configured with connect and read timeouts of 5 seconds
respectively:

<int-http:outbound-gateway url="http://www.google.com/ig/api?weather={city}"

 http-method="GET"

 expected-response-type="java.lang.String"

 request-factory="requestFactory"

 request-channel="requestChannel"

 reply-channel="replyChannel">

 <int-http:uri-variable name="city" expression="payload"/>

</int-http:outbound-gateway>

<bean id="requestFactory"

 class="org.springframework.http.client.SimpleClientHttpRequestFactory">

 <property name="connectTimeout" value="5000"/>

 <property name="readTimeout" value="5000"/>

</bean>

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/ClientHttpRequestFactory.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/SimpleClientHttpRequestFactory.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/HttpComponentsClientHttpRequestFactory.html
http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 330

HTTP Outbound Gateway

For the HTTP Outbound Gateway, the XML Schema defines only the
reply-timeout. The reply-timeout maps to the sendTimeout property of the
org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler class. More
precisely, the property is set on the extended AbstractReplyProducingMessageHandler class,
which ultimately sets the property on the MessagingTemplate.

The value of the sendTimeout property defaults to "-1" and will be applied to the connected
MessageChannel. This means, that depending on the implementation, the Message Channel’s send
method may block indefinitely. Furthermore, the sendTimeout property is only used, when the actual
MessageChannel implementation has a blocking send (such as full bounded QueueChannel).

HTTP Inbound Gateway

For the HTTP Inbound Gateway, the XML Schema defines the request-timeout attribute, which will be
used to set the requestTimeout property on the HttpRequestHandlingMessagingGateway class
(on the extended MessagingGatewaySupport class). Secondly, the_reply-timeout_ attribute exists and
it maps to the replyTimeout property on the same class.

The default for both timeout properties is "1000ms". Ultimately, the request-timeout property will be used
to set the sendTimeout on the used MessagingTemplate instance. The replyTimeout property on the
other hand, will be used to set the receiveTimeout property on the used MessagingTemplate instance.

Tip

In order to simulate connection timeouts, connect to a non-routable IP address, for example
10.255.255.10.

18.7 HTTP Proxy configuration

If you are behind a proxy and need to configure proxy settings for HTTP outbound adapters and/or
gateways, you can apply one of two approaches. In most cases, you can rely on the standard Java
System Properties that control the proxy settings. Otherwise, you can explicitly configure a Spring bean
for the HTTP client request factory instance.

Standard Java Proxy configuration

There are 3 System Properties you can set to configure the proxy settings that will be used by the HTTP
protocol handler:

• http.proxyHost - the host name of the proxy server.

• http.proxyPort - the port number, the default value being 80.

• http.nonProxyHosts - a list of hosts that should be reached directly, bypassing the proxy. This is a list
of patterns separated by |. The patterns may start or end with a * for wildcards. Any host matching
one of these patterns will be reached through a direct connection instead of through a proxy.

And for HTTPS:

• https.proxyHost - the host name of the proxy server.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 331

• https.proxyPort - the port number, the default value being 80.

For more information please refer to this document: http://download.oracle.com/javase/6/docs/
technotes/guides/net/proxies.html

Spring’s SimpleClientHttpRequestFactory

If for any reason, you need more explicit control over the proxy configuration, you can use Spring’s
SimpleClientHttpRequestFactory and configure its proxy property as such:

<bean id="requestFactory"

 class="org.springframework.http.client.SimpleClientHttpRequestFactory">

 <property name="proxy">

 <bean id="proxy" class="java.net.Proxy">

 <constructor-arg>

 <util:constant static-field="java.net.Proxy.Type.HTTP"/>

 </constructor-arg>

 <constructor-arg>

 <bean class="java.net.InetSocketAddress">

 <constructor-arg value="123.0.0.1"/>

 <constructor-arg value="8080"/>

 </bean>

 </constructor-arg>

 </bean>

 </property>

</bean>

18.8 HTTP Header Mappings

Spring Integration provides support for Http Header mapping for both HTTP Request and HTTP
Responses.

By default all standard Http Headers as defined here http://en.wikipedia.org/wiki/
List_of_HTTP_header_fields will be mapped from the message to HTTP request/response headers
without further configuration. However if you do need further customization you may provide additional
configuration via convenient namespace support. You can provide a comma-separated list of header
names, and you can also include simple patterns with the * character acting as a wildcard. If you do
provide such values, it will override the default behavior. Basically, it assumes you are in complete
control at that point. However, if you do want to include all of the standard HTTP headers, you can
use the shortcut patterns: HTTP_REQUEST_HEADERS and HTTP_RESPONSE_HEADERS. Here are some
examples:

<int-http:outbound-gateway id="httpGateway"

 url="http://localhost/test2"

 mapped-request-headers="foo, bar"

 mapped-response-headers="X-*, HTTP_RESPONSE_HEADERS"

 channel="someChannel"/>

<int-http:outbound-channel-adapter id="httpAdapter"

 url="http://localhost/test2"

 mapped-request-headers="foo, bar, HTTP_REQUEST_HEADERS"

 channel="someChannel"/>

The adapters and gateways will use the DefaultHttpHeaderMapper which now provides two static
factory methods for "inbound" and "outbound" adapters so that the proper direction can be applied
(mapping HTTP requests/responses IN/OUT as appropriate).

If further customization is required you can also configure a DefaultHttpHeaderMapper
independently and inject it into the adapter via the header-mapper attribute.

http://download.oracle.com/javase/6/docs/technotes/guides/net/proxies.html
http://download.oracle.com/javase/6/docs/technotes/guides/net/proxies.html
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 332

Before version 5.0, the DefaultHttpHeaderMapper the default prefix for user-defined, non-standard
HTTP headers was X-. In _version 5.0_ this has been changed to an empty string. According to
RFC-6648, the use of such prefixes is now discouraged. This option can still be customized by setting
the DefaultHttpHeaderMapper.setUserDefinedHeaderPrefix() property.

<int-http:outbound-gateway id="httpGateway"

 url="http://localhost/test2"

 header-mapper="headerMapper"

 channel="someChannel"/>

<bean id="headerMapper" class="o.s.i.http.support.DefaultHttpHeaderMapper">

 <property name="inboundHeaderNames" value="foo*, *bar, baz"/>

 <property name="outboundHeaderNames" value="a*b, d"/>

</bean>

Of course, you can even implement the HeaderMapper strategy interface directly and provide a
reference to that if you need to do something other than what the DefaultHttpHeaderMapper
supports.

18.9 Integration Graph Controller

Starting with version 4.3, the HTTP module provides an @EnableIntegrationGraphController
@Configuration class annotation and <int-http:graph-controller/> XML element to expose
the IntegrationGraphServer as a REST service. See Section 10.8, “Integration Graph” for more
information.

18.10 HTTP Samples

Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
(server)

This example demonstrates how simple it is to send a Multipart HTTP request via Spring’s RestTemplate
and receive it with a Spring Integration HTTP Inbound Adapter. All we are doing is creating a
MultiValueMap and populating it with multi-part data. The RestTemplate will take care of the rest
(no pun intended) by converting it to a MultipartHttpServletRequest . This particular client will
send a multipart HTTP Request which contains the name of the company as well as an image file with
the company logo.

RestTemplate template = new RestTemplate();

String uri = "http://localhost:8080/multipart-http/inboundAdapter.htm";

Resource s2logo =

 new ClassPathResource("org/springframework/samples/multipart/spring09_logo.png");

MultiValueMap map = new LinkedMultiValueMap();

map.add("company", "SpringSource");

map.add("company-logo", s2logo);

HttpHeaders headers = new HttpHeaders();

headers.setContentType(new MediaType("multipart", "form-data"));

HttpEntity request = new HttpEntity(map, headers);

ResponseEntity<?> httpResponse = template.exchange(uri, HttpMethod.POST, request, null);

That is all for the client.

On the server side we have the following configuration:

https://tools.ietf.org/html/rfc6648

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 333

<int-http:inbound-channel-adapter id="httpInboundAdapter"

 channel="receiveChannel"

 path="/inboundAdapter.htm"

 supported-methods="GET, POST"/>

<int:channel id="receiveChannel"/>

<int:service-activator input-channel="receiveChannel">

 <bean class="org.springframework.integration.samples.multipart.MultipartReceiver"/>

</int:service-activator>

<bean id="multipartResolver"

 class="org.springframework.web.multipart.commons.CommonsMultipartResolver"/>

The httpInboundAdapter will receive the request, convert it to a Message with a payload that is
a LinkedMultiValueMap. We then are parsing that in the multipartReceiver service-activator;

public void receive(LinkedMultiValueMap<String, Object> multipartRequest){

 System.out.println("### Successfully received multipart request ###");

 for (String elementName : multipartRequest.keySet()) {

 if (elementName.equals("company")){

 System.out.println("\t" + elementName + " - " +

 ((String[]) multipartRequest.getFirst("company"))[0]);

 }

 else if (elementName.equals("company-logo")){

 System.out.println("\t" + elementName + " - as UploadedMultipartFile: " +

 ((UploadedMultipartFile) multipartRequest

 .getFirst("company-logo")).getOriginalFilename());

 }

 }

}

You should see the following output:

Successfully received multipart request

 company - SpringSource

 company-logo - as UploadedMultipartFile: spring09_logo.png

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 334

19. JDBC Support
Spring Integration provides Channel Adapters for receiving and sending messages via database
queries. Through those adapters Spring Integration supports not only plain JDBC SQL Queries, but also
Stored Procedure and Stored Function calls.

The following JDBC components are available by default:

• Inbound Channel Adapter

• Outbound Channel Adapter

• Outbound Gateway

• Stored Procedure Inbound Channel Adapter

• Stored Procedure Outbound Channel Adapter

• Stored Procedure Outbound Gateway

Furthermore, the Spring Integration JDBC Module also provides a JDBC Message Store

19.1 Inbound Channel Adapter

The main function of an inbound Channel Adapter is to execute a SQL SELECT query and turn the result
set as a message. The message payload is the whole result set, expressed as a List, and the types of
the items in the list depend on the row-mapping strategy that is used. The default strategy is a generic
mapper that just returns a Map for each row in the query result. Optionally, this can be changed by
adding a reference to a RowMapper instance (see the Spring JDBC documentation for more detailed
information about row mapping).

Note

If you want to convert rows in the SELECT query result to individual messages you can use a
downstream splitter.

The inbound adapter also requires a reference to either a JdbcTemplate instance or a DataSource.

As well as the SELECT statement to generate the messages, the adapter above also has an UPDATE
statement that is being used to mark the records as processed so that they don’t show up in the next
poll. The update can be parameterized by the list of ids from the original select. This is done through a
naming convention by default (a column in the input result set called "id" is translated into a list in the
parameter map for the update called "id"). The following example defines an inbound Channel Adapter
with an update query and a DataSource reference.

<int-jdbc:inbound-channel-adapter query="select * from item where status=2"

 channel="target" data-source="dataSource"

 update="update item set status=10 where id in (:id)" />

Note

The parameters in the update query are specified with a colon (:) prefix to the name of a parameter
(which in this case is an expression to be applied to each of the rows in the polled result set).
This is a standard feature of the named parameter JDBC support in Spring JDBC combined with
a convention (projection onto the polled result list) adopted in Spring Integration. The underlying

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 335

Spring JDBC features limit the available expressions (e.g. most special characters other than
period are disallowed), but since the target is usually a list of or an individual object addressable
by simple bean paths this isn’t unduly restrictive.

To change the parameter generation strategy you can inject a SqlParameterSourceFactory into
the adapter to override the default behavior (the adapter has a sql-parameter-source-factory
attribute). Spring Integration provides a ExpressionEvaluatingSqlParameterSourceFactory
which will create a SpEL-based parameter source, with the results of the query as the #root object.
(If update-per-row is true, the root object is the row). If the same parameter name appears multiple
times in the update query, it is evaluated only one time, and its result is cached.

You can also use a parameter source for the select query. In this case, since there is no "result" object
to evaluate against, a single parameter source is used each time (rather than using a parameter source
factory). Starting with version 4.0, you can use Spring to create a SpEL based parameter source as
follows:

<int-jdbc:inbound-channel-adapter query="select * from item where status=:status"

 channel="target" data-source="dataSource"

 select-sql-parameter-source="parameterSource" />

<bean id="parameterSource" factory-bean="parameterSourceFactory"

 factory-method="createParameterSourceNoCache">

 <constructor-arg value="" />

</bean>

<bean id="parameterSourceFactory"

 class="o.s.integration.jdbc.ExpressionEvaluatingSqlParameterSourceFactory">

 <property name="parameterExpressions">

 <map>

 <entry key="status" value="@statusBean.which()" />

 </map>

 </property>

</bean>

<bean id="statusBean" class="foo.StatusDetermination" />

The value in each parameter expression can be any valid SpEL expression. The #root object for the
expression evaluation is the constructor argument defined on the parameterSource bean. It is static
for all evaluations (in this case, an empty String).

Starting with version 5.0, the ExpressionEvaluatingSqlParameterSourceFactory can be
supplied with the sqlParameterTypes to specify the target SQL type for the particular parameter.

Below example provides sql type for the parameters being used in the query.

<int-jdbc:inbound-channel-adapter query="select * from item where status=:status"

 channel="target" data-source="dataSource"

 select-sql-parameter-source="parameterSource" />

<bean id="parameterSource" factory-bean="parameterSourceFactory"

 factory-method="createParameterSourceNoCache">

 <constructor-arg value="" />

</bean>

<bean id="parameterSourceFactory"

 class="o.s.integration.jdbc.ExpressionEvaluatingSqlParameterSourceFactory">

 <property name="sqlParameterTypes">

 <map>

 <entry key="status" value=""#{ T(java.sql.Types).BINARY}" />

 </map>

 </property>

</bean>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 336

Important

Use the createParameterSourceNoCache factory method; otherwise the parameter source
will cache the result of the evaluation. Also note that, because caching is disabled, if the same
parameter name appears in the select query multiple times, it will be re-evaluated for each
occurrence.

Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a sub element, so for instance the
frequency of the polling can be controlled. A very important feature of the poller for JDBC usage is the
option to wrap the poll operation in a transaction, for example:

<int-jdbc:inbound-channel-adapter query="..."

 channel="target" data-source="dataSource" update="...">

 <int:poller fixed-rate="1000">

 <int:transactional/>

 </int:poller>

</int-jdbc:inbound-channel-adapter>

Note

If a poller is not explicitly specified, a default value will be used (and as per normal with Spring
Integration can be defined as a top level bean).

In this example the database is polled every 1000 milliseconds, and the update and select queries are
both executed in the same transaction. The transaction manager configuration is not shown, but as long
as it is aware of the data source then the poll is transactional. A common use case is for the downstream
channels to be direct channels (the default), so that the endpoints are invoked in the same thread, and
hence the same transaction. Then if any of them fail, the transaction rolls back and the input data is
reverted to its original state.

Max-rows-per-poll versus Max-messages-per-poll

The JDBC Inbound Channel Adapter defines an attribute max-rows-per-poll. When you specify the
adapter’s Poller, you can also define a property called max-messages-per-poll. While these two
attributes look similar, their meaning is quite different.

max-messages-per-poll specifies the number of times the query is executed per polling interval,
whereas max-rows-per-poll specifies the number of rows returned for each execution.

Under normal circumstances, you would likely not want to set the Poller’s max-messages-per-poll
property when using the JDBC Inbound Channel Adapter. Its default value is 1, which means that the
JDBC Inbound Channel Adapter's receive() method is executed exactly once for each poll interval.

Setting the max-messages-per-poll attribute to a larger value means that the query is executed that
many times back to back. For more information regarding the max-messages-per-poll attribute,
please see the section called “Configuring An Inbound Channel Adapter”.

In contrast, the max-rows-per-poll attribute, if greater than 0, specifies the maximum number of
rows that will be used from the query result set, per execution of the receive() method. If the attribute
is set to 0, then all rows will be included in the resulting message. If not explicitly set, the attribute
defaults to 0.

https://docs.spring.io/spring-integration/api/org/springframework/integration/jdbc/JdbcPollingChannelAdapter.html#receive()

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 337

19.2 Outbound Channel Adapter

The outbound Channel Adapter is the inverse of the inbound: its role is to handle a message and use it to
execute a SQL query. The message payload and headers are available by default as input parameters
to the query, for instance:

<int-jdbc:outbound-channel-adapter

 query="insert into foos (id, status, name) values (:headers[id], 0, :payload[foo])"

 data-source="dataSource"

 channel="input"/>

In the example above, messages arriving on the channel labelled input have a payload of a map with key
foo, so the [] operator dereferences that value from the map. The headers are also accessed as a map.

Note

The parameters in the query above are bean property expressions on the incoming message (not
Spring EL expressions). This behavior is part of the SqlParameterSource which is the default
source created by the outbound adapter. Other behavior is possible in the adapter, and requires
the user to inject a different SqlParameterSourceFactory.

The outbound adapter requires a reference to either a DataSource or a JdbcTemplate. It can also
have a SqlParameterSourceFactory injected to control the binding of each incoming message to
a query.

If the input channel is a direct channel, then the outbound adapter runs its query in the same thread,
and therefore the same transaction (if there is one) as the sender of the message.

Passing Parameters using SpEL Expressions

A common requirement for most JDBC Channel Adapters is to pass parameters as part of Sql queries
or Stored Procedures/Functions. As mentioned above, these parameters are by default bean property
expressions, not SpEL expressions. However, if you need to pass SpEL expression as parameters, you
must inject a SqlParameterSourceFactory explicitly.

The following example uses a ExpressionEvaluatingSqlParameterSourceFactory to achieve
that requirement.

<jdbc:outbound-channel-adapter data-source="dataSource" channel="input"

 query="insert into MESSAGES (MESSAGE_ID,PAYLOAD,CREATED_DATE) \

 values (:id, :payload, :createdDate)"

 sql-parameter-source-factory="spelSource"/>

<bean id="spelSource"

 class="o.s.integration.jdbc.ExpressionEvaluatingSqlParameterSourceFactory">

 <property name="parameterExpressions">

 <map>

 <entry key="id" value="headers['id'].toString()"/>

 <entry key="createdDate" value="new java.util.Date()"/>

 <entry key="payload" value="payload"/>

 </map>

 </property>

</bean>

For further information, please also see the section called “Defining Parameter Sources”

PreparedStatement Callback

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 338

There are some cases when the flexibility and loose-coupling of SqlParameterSourceFactory isn’t
enough for the target PreparedStatement or we need to do some low-level JDBC work. The Spring
JDBC module provides APIs to configure the execution environment (e.g. ConnectionCallback or
PreparedStatementCreator) and manipulation of parameter values (e.g. SqlParameterSource).
Or even APIs for low level operations, for example StatementCallback.

Starting with Spring Integration 4.2, the MessagePreparedStatementSetter is available to allow the
specification of parameters on the PreparedStatement manually, in the requestMessage context.
This class plays exactly the same role as PreparedStatementSetter in the standard Spring JDBC
API. Actually it is invoked directly from an inline PreparedStatementSetter implementation, when
the JdbcMessageHandler invokes execute on the JdbcTemplate.

This functional interface option is mutually exclusive with sqlParameterSourceFactory and can
be used as a more powerful alternative to populate parameters of the PreparedStatement from the
requestMessage. For example it is useful when we need to store File data to the DataBase BLOB
column in a stream manner:

@Bean

@ServiceActivator(inputChannel = "storeFileChannel")

public MessageHandler jdbcMessageHandler(DataSource dataSource) {

 JdbcMessageHandler jdbcMessageHandler = new JdbcMessageHandler(dataSource,

 "INSERT INTO imagedb (image_name, content, description) VALUES (?, ?, ?)");

 jdbcMessageHandler.setPreparedStatementSetter((ps, m) -> {

 ps.setString(1, m.getHeaders().get(FileHeaders.FILENAME));

 try (FileInputStream inputStream = new FileInputStream((File) m.getPayload())) {

 ps.setBlob(2, inputStream);

 }

 catch (Exception e) {

 throw new MessageHandlingException(m, e);

 }

 ps.setClob(3, new StringReader(m.getHeaders().get("description", String.class)));

 });

 return jdbcMessageHandler;

}

From the XML configuration perspective, the prepared-statement-setter attribute is
available on the <int-jdbc:outbound-channel-adapter> component, to specify a
MessagePreparedStatementSetter bean reference.

19.3 Outbound Gateway

The outbound Gateway is like a combination of the outbound and inbound adapters: its role is to handle
a message and use it to execute a SQL query and then respond with the result sending it to a reply
channel. The message payload and headers are available by default as input parameters to the query,
for instance:

<int-jdbc:outbound-gateway

 update="insert into foos (id, status, name) values (:headers[id], 0, :payload[foo])"

 request-channel="input" reply-channel="output" data-source="dataSource" />

The result of the above would be to insert a record into the "foos" table and return a message to the
output channel indicating the number of rows affected (the payload is a map: {UPDATED=1}).

If the update query is an insert with auto-generated keys, the reply message can be populated with the
generated keys by adding keys-generated="true" to the above example (this is not the default
because it is not supported by some database platforms). For example:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 339

<int-jdbc:outbound-gateway

 update="insert into foos (status, name) values (0, :payload[foo])"

 request-channel="input" reply-channel="output" data-source="dataSource"

 keys-generated="true"/>

Instead of the update count or the generated keys, you can also provide a select query to execute and
generate a reply message from the result (like the inbound adapter), e.g:

<int-jdbc:outbound-gateway

 update="insert into foos (id, status, name) values (:headers[id], 0, :payload[foo])"

 query="select * from foos where id=:headers[$id]"

 request-channel="input" reply-channel="output" data-source="dataSource"/>

Since Spring Integration 2.2 the update SQL query is no longer mandatory. You can now solely provide
a select query, using either the query attribute or the query sub-element. This is extremely useful if you
need to actively retrieve data using e.g. a generic Gateway or a Payload Enricher. The reply message
is then generated from the result, like the inbound adapter, and passed to the reply channel.

<int-jdbc:outbound-gateway

 query="select * from foos where id=:headers[id]"

 request-channel="input"

 reply-channel="output"

 data-source="dataSource"/>

Important

By default the component for the SELECT query returns only one, first row from the cursor. This
can be adjusted with the max-rows-per-poll option. Consider to specify max-rows-per-
poll="0" if you need to return all the rows from the SELECT.

As with the channel adapters, there is also the option to provide SqlParameterSourceFactory
instances for request and reply. The default is the same as for the outbound adapter, so the request
message is available as the root of an expression. If keys-generated="true" then the root of the
expression is the generated keys (a map if there is only one or a list of maps if multi-valued).

The outbound gateway requires a reference to either a DataSource or a JdbcTemplate. It can also have a
SqlParameterSourceFactory injected to control the binding of the incoming message to the query.

Starting with the version 4.2 the request-prepared-statement-setter attribute is available
on the <int-jdbc:outbound-gateway> as an alternative to the request-sql-parameter-
source-factory. It allows you to specify a MessagePreparedStatementSetter bean reference,
which implements more sophisticated PreparedStatement preparation before its execution.

See Section 19.2, “Outbound Channel Adapter” for more information about
MessagePreparedStatementSetter.

19.4 JDBC Message Store

Spring Integration provides 2 JDBC specific Message Store implementations. The first one, is the
JdbcMessageStore which is suitable to be used in conjunction with Aggregators and the Claim-Check
pattern. While it can be used for backing Message Channels as well, you may want to consider using
the JdbcChannelMessageStore implementation instead, as it provides a more targeted and scalable
implementation.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 340

Initializing the Database

Before starting to use JDBC Message Store components, it is important to provision target data base
with the appropriate objects.

Spring Integration ships with some sample scripts that can be used to initialize a
database. In the spring-integration-jdbc JAR file you can find scripts in the
org.springframework.integration.jdbc package: there is a create and a drop script example
for a range of common database platforms. A common way to use these scripts is to reference them in
a Spring JDBC data source initializer. Note that the scripts are provided as samples or specifications of
the the required table and column names. You may find that you need to enhance them for production
use (e.g. with index declarations).

The Generic JDBC Message Store

The JDBC module provides an implementation of the Spring Integration MessageStore (important in
the Claim Check pattern) and MessageGroupStore (important in stateful patterns like Aggregator)
backed by a database. Both interfaces are implemented by the JdbcMessageStore, and there is also
support for configuring store instances in XML. For example:

<int-jdbc:message-store id="messageStore" data-source="dataSource"/>

A JdbcTemplate can be specified instead of a DataSource.

Other optional attributes are show in the next example:

<int-jdbc:message-store id="messageStore" data-source="dataSource"

 lob-handler="lobHandler" table-prefix="MY_INT_"/>

Here we have specified a LobHandler for dealing with messages as large objects (e.g. often necessary
if using Oracle) and a prefix for the table names in the queries generated by the store. The table name
prefix defaults to INT_.

Backing Message Channels

If you intend backing Message Channels using JDBC, it is recommended to use the provided
JdbcChannelMessageStore implementation instead. It can only be used in conjunction with Message
Channels.

Supported Databases

The JdbcChannelMessageStore uses database specific SQL queries to retrieve messages from
the database. Therefore, users must set the ChannelMessageStoreQueryProvider property on
the JdbcChannelMessageStore. This channelMessageStoreQueryProvider provides the SQL
queries and Spring Integration provides support for the following relational databases:

• PostgreSQL

• HSQLDB

• MySQL

• Oracle

• Derby

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-intializing-datasource

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 341

• H2

• SqlServer

• Sybase

• DB2

If your database is not listed, you can easily extend the
AbstractChannelMessageStoreQueryProvider class and provide your own custom queries.

Since version 4.0, the MESSAGE_SEQUENCE column has been added to the table to ensure first-in-first-
out (FIFO) queueing even when messages are stored in the same millisecond.

Since version 5.0, by overloading ChannelMessageStorePreparedStatementSetter class you
can provide custom implementation for message insertion in the JdbcChannelMessageStore. It
might be different columns or table structure or serialization strategy. For example, instead of default
serialization to byte[], we can store its structure in JSON string.

Below example uses the default implementation of setValues to store common columns and overrides
the behavior just to store the message payload as varchar.

public class JsonPreparedStatementSetter extends ChannelMessageStorePreparedStatementSetter {

 public JsonPreparedStatementSetter() {

 super();

 }

 @Override

 public void setValues(PreparedStatement preparedStatement, Message<?> requestMessage,

 Object groupId, String region, boolean priorityEnabled) throws SQLException {

 // Populate common columns

 super.setValues(preparedStatement, requestMessage, groupId, region, priorityEnabled);

 // Store message payload as varchar

 preparedStatement.setString(6, requestMessage.getPayload().toString());

 }

}

Important

Generally it is not recommended to use a relational database for the purpose of queuing. Instead,
if possible, consider using either JMS or AMQP backed channels instead. For further reference
please see the following resources:

• 5 subtle ways you’re using MySQL as a queue, and why it’ll bite you.

• The Database As Queue Anti-Pattern.

Concurrent Polling

When polling a Message Channel, you have the option to configure the associated Poller with a
TaskExecutor reference.

Important

Keep in mind, though, that if you use a JDBC backed Message Channel and you are planning on
polling the channel and consequently the message store transactionally with multiple threads, you

https://www.engineyard.com/blog/2011/5-subtle-ways-youre-using-mysql-as-a-queue-and-why-itll-bite-you/
https://mikehadlow.blogspot.com/2012/04/database-as-queue-anti-pattern.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 342

should ensure that you use a relational database that supports Multiversion Concurrency Control
(MVCC). Otherwise, locking may be an issue and the performance, when using multiple threads,
may not materialize as expected. For example Apache Derby is problematic in that regard.

To achieve better JDBC queue throughput, and avoid issues when different threads may poll
the same Message from the queue, it is important to set the usingIdCache property of
JdbcChannelMessageStore to true when using databases that do not support MVCC:

<bean id="queryProvider"

 class="o.s.i.jdbc.store.channel.PostgresChannelMessageStoreQueryProvider"/>

<int:transaction-synchronization-factory id="syncFactory">

 <int:after-commit expression="@store.removeFromIdCache(headers.id.toString())" />

 <int:after-rollback expression="@store.removeFromIdCache(headers.id.toString())"/>

</int:transaction-synchronization-factory>

<task:executor id="pool" pool-size="10"

 queue-capacity="10" rejection-policy="CALLER_RUNS" />

<bean id="store" class="o.s.i.jdbc.store.JdbcChannelMessageStore">

 <property name="dataSource" ref="dataSource"/>

 <property name="channelMessageStoreQueryProvider" ref="queryProvider"/>

 <property name="region" value="TX_TIMEOUT"/>

 <property name="usingIdCache" value="true"/>

</bean>

<int:channel id="inputChannel">

 <int:queue message-store="store"/>

</int:channel>

<int:bridge input-channel="inputChannel" output-channel="outputChannel">

 <int:poller fixed-delay="500" receive-timeout="500"

 max-messages-per-poll="1" task-executor="pool">

 <int:transactional propagation="REQUIRED" synchronization-factory="syncFactory"

 isolation="READ_COMMITTED" transaction-manager="transactionManager" />

 </int:poller>

</int:bridge>

<int:channel id="outputChannel" />

Priority Channel

Starting with version 4.0, the JdbcChannelMessageStore implements
PriorityCapableChannelMessageStore and provides the priorityEnabled option allowing
it to be used as a message-store reference for priority-queue s. For this purpose, the
INT_CHANNEL_MESSAGE has a MESSAGE_PRIORITY column to store the value of PRIORITY Message
header. In addition, a new MESSAGE_SEQUENCE column is also provided to achieve a robust first-
in-first-out (FIFO) polling mechanism, even when multiple messages are stored with the same
priority in the same millisecond. Messages are polled (selected) from the database with order by
MESSAGE_PRIORITY DESC NULLS LAST, CREATED_DATE, MESSAGE_SEQUENCE.

Note

It’s not recommended to use the same JdbcChannelMessageStore bean for priority
and non-priority queue channel, because priorityEnabled option applies to the entire
store and proper FIFO queue semantics will not be retained for the queue channel.
However the same INT_CHANNEL_MESSAGE table, and even region, can be used for both
JdbcChannelMessageStore types. To configure that scenario, simply extend one message
store bean from the other:

https://en.wikipedia.org/wiki/Multiversion_concurrency_control

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 343

<bean id="channelStore" class="o.s.i.jdbc.store.JdbcChannelMessageStore">

 <property name="dataSource" ref="dataSource"/>

 <property name="channelMessageStoreQueryProvider" ref="queryProvider"/>

</bean>

<int:channel id="queueChannel">

 <int:queue message-store="channelStore"/>

</int:channel>

<bean id="priorityStore" parent="channelStore">

 <property name="priorityEnabled" value="true"/>

</bean>

<int:channel id="priorityChannel">

 <int:priority-queue message-store="priorityStore"/>

</int:channel>

Partitioning a Message Store

It is common to use a JdbcMessageStore as a global store for a group of applications, or nodes in
the same application. To provide some protection against name clashes, and to give control over the
database meta-data configuration, the message store allows the tables to be partitioned in two ways.
One is to use separate table names, by changing the prefix as described above, and the other is to
specify a "region" name for partitioning data within a single table. An important use case for this is when
the MessageStore is managing persistent queues backing a Spring Integration Message Channel. The
message data for a persistent channel is keyed in the store on the channel name, so if the channel
names are not globally unique then there is the danger of channels picking up data that was not intended
for them. To avoid this, the message store region can be used to keep data separate for different physical
channels that happen to have the same logical name.

19.5 Stored Procedures

In certain situations plain JDBC support is not sufficient. Maybe you deal with legacy relational database
schemas or you have complex data processing needs, but ultimately you have to use Stored Procedures
or Stored Functions. Since Spring Integration 2.1, we provide three components in order to execute
Stored Procedures or Stored Functions:

• Stored Procedures Inbound Channel Adapter

• Stored Procedures Outbound Channel Adapter

• Stored Procedures Outbound Gateway

Supported Databases

In order to enable calls to Stored Procedures and Stored Functions, the Stored Procedure components
use the org.springframework.jdbc.core.simple.SimpleJdbcCall class. Consequently, the
following databases are fully supported for executing Stored Procedures:

• Apache Derby

• DB2

• MySQL

• Microsoft SQL Server

https://en.wikipedia.org/wiki/Stored_procedure
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 344

• Oracle

• PostgreSQL

• Sybase

If you want to execute Stored Functions instead, the following databases are fully supported:

• MySQL

• Microsoft SQL Server

• Oracle

• PostgreSQL

Note

Even though your particular database may not be fully supported, chances are, that you can use
the Stored Procedure Spring Integration components quite successfully anyway, provided your
RDBMS supports Stored Procedures or Functions.

As a matter of fact, some of the provided integration tests use the H2 database. Nevertheless, it
is very important to thoroughly test those usage scenarios.

Configuration

The Stored Procedure components provide full XML Namespace support and configuring the
components is similar as for the general purpose JDBC components discussed earlier.

Common Configuration Attributes

Certain configuration parameters are shared among all Stored Procedure components and are
described below:

auto-startup

Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Optional.

data-source

Reference to a javax.sql.DataSource, which is used to access the database. Required.

id

Identifies the underlying Spring bean definition, which is an instance of either EventDrivenConsumer
or PollingConsumer, depending on whether the Outbound Channel Adapter’s channel attribute
references a SubscribableChannel or a PollableChannel. Optional.

ignore-column-meta-data

For fully supported databases, the underlying SimpleJdbcCall class can automatically retrieve the
parameter information for the to be invoked Stored Procedure or Function from the JDBC Meta-data.

http://www.h2database.com/
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 345

However, if the used database does not support meta data lookups or if you like to provide customized
parameter definitions, this flag can be set to true. It defaults to false. Optional.

is-function

If true, a SQL Function is called. In that case the stored-procedure-name or stored-
procedure-name-expression attributes define the name of the called function. Defaults to false.
Optional.

stored-procedure-name

The attribute specifies the name of the stored procedure. If the is-function attribute is set to true,
this attribute specifies the function name instead. Either this property or stored-procedure-name-
expression must be specified.

stored-procedure-name-expression

This attribute specifies the name of the stored procedure using a SpEL expression. Using SpEL you have
access to the full message (if available), including its headers and payload. You can use this attribute to
invoke different Stored Procedures at runtime. For example, you can provide Stored Procedure names
that you would like to execute as a Message Header. The expression must resolve to a String.

If the is-function attribute is set to true, this attribute specifies a Stored Function. Either this
property or stored-procedure-name must be specified.

jdbc-call-operations-cache-size

Defines the maximum number of cached SimpleJdbcCallOperations instances. Basically, for each
Stored Procedure Name a new SimpleJdbcCallOperations instance is created that in return is
being cached.

Note

The stored-procedure-name-expression attribute and the jdbc-call-operations-
cache-size were added with Spring Integration 2.2.

The default cache size is 10. A value of 0 disables caching. Negative values are not permitted.

If you enable JMX, statistical information about the jdbc-call-operations-cache is exposed as
MBean. Please see the section called “MBean Exporter” for more information.

sql-parameter-source-factory (Not available for the Stored Procedure Inbound Channel Adapter.)

Reference to a SqlParameterSourceFactory. By default bean properties of the passed in
Message payload will be used as a source for the Stored Procedure’s input parameters using a
BeanPropertySqlParameterSourceFactory.

This may be sufficient for basic use cases. For more sophisticated options, consider passing in one or
more ProcedureParameter. Please also refer to the section called “Defining Parameter Sources”.
Optional.

use-payload-as-parameter-source (Not available for the Stored Procedure Inbound Channel
Adapter.)

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCallOperations.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 346

If set to true, the payload of the Message will be used as a source for providing parameters. If false,
however, the entire Message will be available as a source for parameters.

If no Procedure Parameters are passed in, this property will default to true. This means that using
a default BeanPropertySqlParameterSourceFactory the bean properties of the payload will be
used as a source for parameter values for the to-be-executed Stored Procedure or Stored Function.

However, if Procedure Parameters are passed in, then this property will by default evaluate to false.
ProcedureParameter allow for SpEL Expressions to be provided and therefore it is highly beneficial
to have access to the entire Message. The property is set on the underlying StoredProcExecutor.
Optional.

Common Configuration Sub-Elements

The Stored Procedure components share a common set of sub-elements to define and pass parameters
to Stored Procedures or Functions. The following elements are available:

• parameter

• returning-resultset

• sql-parameter-definition

• poller

parameter

Provides a mechanism to provide Stored Procedure parameters. Parameters can be either static or
provided using a SpEL Expressions. Optional.

<int-jdbc:parameter name="" ❶

 type="" ❷

 value=""/> ❸

<int-jdbc:parameter name=""

 expression=""/> ❹

❶ The name of the parameter to be passed into the Stored Procedure or Stored Function. Required.

❷ This attribute specifies the type of the value. If nothing is provided this attribute will default to
java.lang.String. This attribute is only used when the value attribute is used. Optional.

❸ The value of the parameter. You have to provider either this attribute or the expression attribute
must be provided instead. Optional.

❹ Instead of the value attribute, you can also specify a SpEL expression for passing the value of
the parameter. If you specify the expression the value attribute is not allowed. Optional.

returning-resultset

Stored Procedures may return multiple result sets. By setting one or more returning-resultset
elements, you can specify RowMappers in order to convert each returned ResultSet to meaningful
objects. Optional.

<int-jdbc:returning-resultset name="" row-mapper="" />

sql-parameter-definition

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 347

If you are using a database that is fully supported, you typically don’t have to specify the Stored
Procedure parameter definitions. Instead, those parameters can be automatically derived from the
JDBC Meta-data. However, if you are using databases that are not fully supported, you must set those
parameters explicitly using the sql-parameter-definition sub-element.

You can also choose to turn off any processing of parameter meta data information obtained via JDBC
using the ignore-column-meta-data attribute.

<int-jdbc:sql-parameter-definition

 name="" ❶

 direction="IN" ❷

 type="STRING" ❸

 scale="5" ❹

 type-name="FOO_STRUCT" ❺

 return-type="fooSqlReturnType"/> ❻

❶ Specifies the name of the SQL parameter. Required.

❷ Specifies the direction of the SQL parameter definition. Defaults to IN. Valid values are: IN, OUT
and INOUT. If your procedure is returning ResultSets, please use the returning-resultset
element. Optional.

❸ The SQL type used for this SQL parameter definition. Will translate into the integer value as defined
by java.sql.Types. Alternatively you can provide the integer value as well. If this attribute is not
explicitly set, then it will default to VARCHAR. Optional.

❹ The scale of the SQL parameter. Only used for numeric and decimal parameters. Optional.

❺ The typeName for types that are user-named like: STRUCT, DISTINCT, JAVA_OBJECT, named
array types. This attribute is mutually exclusive with the scale attribute. Optional.

❻ The reference to a custom value handler for complex types. An implementation of SqlReturnType.
This attribute is mutually exclusive with the scale attribute and is applicable for OUT(INOUT)-
parameters only. Optional.

poller

Allows you to configure a Message Poller if this endpoint is a PollingConsumer. Optional.

Defining Parameter Sources

Parameter Sources govern the techniques of retrieving and mapping the Spring Integration Message
properties to the relevant Stored Procedure input parameters. The Stored Procedure components follow
certain rules.

By default bean properties of the passed in Message payload will be used as a source for the Stored
Procedure’s input parameters. In that case a BeanPropertySqlParameterSourceFactory will be
used. This may be sufficient for basic use cases. The following example illustrates that default behavior.

Important

Please be aware that for the "automatic" lookup of bean properties
using the BeanPropertySqlParameterSourceFactory to work, your bean
properties must be defined in lower case. This is due to the fact
that in org.springframework.jdbc.core.metadata.CallMetaDataContext (method
matchInParameterValuesWithCallParameters()), the retrieved Stored Procedure
parameter declarations are converted to lower case. As a result, if you have camel-case bean
properties such as "lastName", the lookup will fail. In that case, please provide an explicit
ProcedureParameter.

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/SqlReturnType.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 348

Let’s assume we have a payload that consists of a simple bean with the following three properties: id,
name and description. Furthermore, we have a simplistic Stored Procedure called INSERT_COFFEE
that accepts three input parameters: id, name and description. We also use a fully supported database.
In that case the following configuration for a Stored Procedure Outbound Adapter will be sufficient:

<int-jdbc:stored-proc-outbound-channel-adapter data-source="dataSource"

 channel="insertCoffeeProcedureRequestChannel"

 stored-procedure-name="INSERT_COFFEE"/>

For more sophisticated options consider passing in one or more ProcedureParameter.

If you do provide ProcedureParameter explicitly, then as default an
ExpressionEvaluatingSqlParameterSourceFactory will be used for parameter processing in
order to enable the full power of SpEL expressions.

Furthermore, if you need even more control over how parameters are retrieved, consider passing in a
custom implementation of a SqlParameterSourceFactory using the sql-parameter-source-
factory attribute.

Stored Procedure Inbound Channel Adapter

<int-jdbc:stored-proc-inbound-channel-adapter

 channel="" ❶

 stored-procedure-name=""

 data-source=""

 auto-startup="true"

 id=""

 ignore-column-meta-data="false"

 is-function="false"

 max-rows-per-poll="" ❷

 skip-undeclared-results="" ❸

 return-value-required="false" ❹

 <int:poller/>

 <int-jdbc:sql-parameter-definition name="" direction="IN"

 type="STRING"

 scale=""/>

 <int-jdbc:parameter name="" type="" value=""/>

 <int-jdbc:parameter name="" expression=""/>

 <int-jdbc:returning-resultset name="" row-mapper="" />

</int-jdbc:stored-proc-inbound-channel-adapter>

❶ Channel to which polled messages will be sent. If the stored procedure or function does not return
any data, the payload of the Message will be Null. Required.

❷ Limits the number of rows extracted per query. Otherwise all rows are extracted into the outgoing
message. Optional.

❸ If this attribute is set to true, then all results from a stored procedure call that don’t have a
corresponding SqlOutParameter declaration will be bypassed. E.g. Stored Procedures may
return an update count value, even though your Stored Procedure only declared a single result
parameter. The exact behavior depends on the used database. The value is set on the underlying
JdbcTemplate. Few developers will probably ever want to process update counts, thus the value
defaults to true. Optional.

❹ Indicates whether this procedure’s return value should be included. Since Spring Integration 3.0.
Optional.

Note

When you declare a Poller, you may notice the Poller’s max-messages-per-poll attribute.
For information about how it relates to the max-rows-per-poll attribute of the Stored

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 349

Procedure Inbound Channel Adapter, please see the section called “Max-rows-per-poll versus
Max-messages-per-poll” for a thorough discussion. The meaning of the attributes is the same as
for the JDBC Inbound Channel Adapter.

Stored Procedure Outbound Channel Adapter

<int-jdbc:stored-proc-outbound-channel-adapter channel="" ❶

 stored-procedure-name=""

 data-source=""

 auto-startup="true"

 id=""

 ignore-column-meta-data="false"

 order="" ❷

 sql-parameter-source-factory=""

 use-payload-as-parameter-source="">

 <int:poller fixed-rate=""/>

 <int-jdbc:sql-parameter-definition name=""/>

 <int-jdbc:parameter name=""/>

</int-jdbc:stored-proc-outbound-channel-adapter>

❶ The receiving Message Channel of this endpoint. Required.

❷ Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Optional.

Stored Procedure Outbound Gateway

<int-jdbc:stored-proc-outbound-gateway request-channel="" ❶

 stored-procedure-name=""

 data-source=""

 auto-startup="true"

 id=""

 ignore-column-meta-data="false"

 is-function="false"

 order=""

 reply-channel="" ❷

 reply-timeout="" ❸

 return-value-required="false" ❹

 skip-undeclared-results="" ❺

 sql-parameter-source-factory=""

 use-payload-as-parameter-source="">

<int-jdbc:sql-parameter-definition name="" direction="IN"

 type=""

 scale="10"/>

<int-jdbc:sql-parameter-definition name=""/>

<int-jdbc:parameter name="" type="" value=""/>

<int-jdbc:parameter name="" expression=""/>

<int-jdbc:returning-resultset name="" row-mapper="" />

❶ The receiving Message Channel of this endpoint. Required.

❷ Message Channel to which replies should be sent, after receiving the database response. Optional.

❸ Allows you to specify how long this gateway will wait for the reply message to be sent successfully
before throwing an exception. Keep in mind that when sending to a DirectChannel, the
invocation will occur in the sender’s thread so the failing of the send operation may be caused by
other components further downstream. By default the Gateway will wait indefinitely. The value is
specified in milliseconds. Optional.

❹ Indicates whether this procedure’s return value should be included. Optional.

❺ If the skip-undeclared-results attribute is set to true, then all results from a stored
procedure call that don’t have a corresponding SqlOutParameter declaration will be bypassed.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 350

E.g. Stored Procedures may return an update count value, even though your Stored Procedure
only declared a single result parameter. The exact behavior depends on the used database. The
value is set on the underlying JdbcTemplate. Few developers will probably ever want to process
update counts, thus the value defaults to true. Optional.

Examples

In the following two examples we call Apache Derby Stored Procedures. The first procedure will call
a Stored Procedure that returns a ResultSet, and using a RowMapper the data is converted into a
domain object, which then becomes the Spring Integration message payload.

In the second sample we call a Stored Procedure that uses Output Parameters instead, in order to
return data.

Note

Please have a look at the Spring Integration Samples project, located at null

The project contains the Apache Derby example referenced here, as well as instruction on how
to run it. The Spring Integration Samples project also provides an example using Oracle Stored
Procedures.

In the first example, we call a Stored Procedure named FIND_ALL_COFFEE_BEVERAGES that does
not define any input parameters but which returns a ResultSet.

In Apache Derby, Stored Procedures are implemented using Java. Here is the method signature
followed by the corresponding Sql:

public static void findAllCoffeeBeverages(ResultSet[] coffeeBeverages)

 throws SQLException {

 ...

}

CREATE PROCEDURE FIND_ALL_COFFEE_BEVERAGES() \

PARAMETER STYLE JAVA LANGUAGE JAVA MODIFIES SQL DATA DYNAMIC RESULT SETS 1 \

EXTERNAL NAME

 'org.springframework.integration.jdbc.storedproc.derby.DerbyStoredProcedures.findAllCoffeeBeverages';

In Spring Integration, you can now call this Stored Procedure using e.g. a stored-proc-outbound-
gateway

<int-jdbc:stored-proc-outbound-gateway id="outbound-gateway-storedproc-find-all"

 data-source="dataSource"

 request-channel="findAllProcedureRequestChannel"

 expect-single-result="true"

 stored-procedure-name="FIND_ALL_COFFEE_BEVERAGES">

<int-jdbc:returning-resultset name="coffeeBeverages"

 row-mapper="org.springframework.integration.support.CoffeBeverageMapper"/>

</int-jdbc:stored-proc-outbound-gateway>

In the second example, we call a Stored Procedure named FIND_COFFEE that has one input
parameter. Instead of returning a ResultSet, an output parameter is used:

public static void findCoffee(int coffeeId, String[] coffeeDescription)

 throws SQLException {

 ...

}

https://db.apache.org/derby/
https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/stored-procedures-oracle

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 351

CREATE PROCEDURE FIND_COFFEE(IN ID INTEGER, OUT COFFEE_DESCRIPTION VARCHAR(200)) \

PARAMETER STYLE JAVA LANGUAGE JAVA EXTERNAL NAME \

'org.springframework.integration.jdbc.storedproc.derby.DerbyStoredProcedures.findCoffee';

In Spring Integration, you can now call this Stored Procedure using e.g. a stored-proc-outbound-
gateway

<int-jdbc:stored-proc-outbound-gateway id="outbound-gateway-storedproc-find-coffee"

 data-source="dataSource"

 request-channel="findCoffeeProcedureRequestChannel"

 skip-undeclared-results="true"

 stored-procedure-name="FIND_COFFEE"

 expect-single-result="true">

 <int-jdbc:parameter name="ID" expression="payload" />

</int-jdbc:stored-proc-outbound-gateway>

19.6 JDBC Lock Registry

Starting with version 4.3, the JdbcLockRegistry is available. Certain components (for example
aggregator and resequencer) use a lock obtained from a LockRegistry instance to ensure that only
one thread is manipulating a group at a time. The DefaultLockRegistry performs this function within
a single component; you can now configure an external lock registry on these components. When used
with a shared MessageGroupStore, the JdbcLockRegistry can be use to provide this functionality
across multiple application instances, such that only one instance can manipulate the group at a time.

When a lock is released by a local thread, another local thread will generally be able to acquire the
lock immediately. If a lock is released by a thread using a different registry instance, it can take up to
100ms to acquire the lock.

The JdbcLockRegistry is based on the LockRepository abstraction, where a
DefaultLockRepository implementation is present. The data base schema scripts are located in the
org.springframework.integration.jdbc package divided to the particular RDBMS vendors.
For example the H2 DDL for lock table looks like:

CREATE TABLE INT_LOCK (

 LOCK_KEY CHAR(36),

 REGION VARCHAR(100),

 CLIENT_ID CHAR(36),

 CREATED_DATE TIMESTAMP NOT NULL,

 constraint LOCK_PK primary key (LOCK_KEY, REGION)

);

The INT_ can be changed according to the target data base design requirements. Therefore prefix
property must be used on the DefaultLockRepository bean definition.

Sometimes it happens that one application has moved to the state when it can’t release distributed
lock - remove the particular record in the data base. For this purpose such dead locks can be
expired by the other application on the next locking invocation. The timeToLive (TTL) option on the
DefaultLockRepository is provided for this purpose. The user may also want to specify CLIENT_ID
for the locks stored for a given DefaultLockRepository instance. In this case you can specify the
id to be associated with the DefaultLockRepository as a constructor parameter.

19.7 JDBC Metadata Store

Starting with version 5.0, the JDBC MetadataStore (Section 10.5, “Metadata Store”) implementation
is available. The JdbcMetadataStore can be used to maintain metadata state across application
restarts. This MetadataStore implementation can be used with adapters such as:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 352

• Section 33.4, “Twitter Inbound Adapters”

• Section 14.2, “Feed Inbound Channel Adapter”

• Section 15.2, “Reading Files”

• Section 16.4, “FTP Inbound Channel Adapter”

• Section 28.7, “SFTP Inbound Channel Adapter”

In order to configure these adapters to use the JdbcMetadataStore, simply declare a Spring bean
using the bean name metadataStore. The Twitter Inbound Channel Adapter and the Feed Inbound
Channel Adapter will both automatically pick up and use the declared JdbcMetadataStore:

@Bean

public MetadataStore metadataStore(DataSource dataSource) {

 return new JdbcMetadataStore(dataSource);

}

Data base schema scripts for several RDMBS vendors are located in the
org.springframework.integration.jdbc package. For example the H2 DDL for metadata table
looks like:

CREATE TABLE INT_METADATA_STORE (

 METADATA_KEY VARCHAR(255) NOT NULL,

 METADATA_VALUE VARCHAR(4000),

 REGION VARCHAR(100) NOT NULL,

 constraint METADATA_STORE primary key (METADATA_KEY, REGION)

);

The INT_ prefix can be changed according to the target data base design requirements and the
JdbcMetadataStore can be configured to use the custom prefix.

The JdbcMetadataStore implements ConcurrentMetadataStore, allowing it to be reliably shared
across multiple application instances where only one instance will be allowed to store or modify a key’s
value. All of these operations are atomic via transaction guarantees.

Transaction management is required to use JdbcMetadataStore. Inbound Channel Adapters can
be supplied with a reference to the TransactionManager in the poller configuration. Unlike non-
transactional MetadataStore implementations, with JdbcMetadataStore, the entry appears in the
target table only after the transaction commits. When a rollback occurs, no entries is added to the
INT_METADATA_STORE table.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 353

20. JPA Support

Spring Integration’s JPA (Java Persistence API) module provides components for performing various
database operations using JPA. The following components are provided:

• Inbound Channel Adapter

• Outbound Channel Adapter

• Updating Outbound Gateway

• Retrieving Outbound Gateway

These components can be used to perform select, create, update and delete operations on the target
databases by sending/receiving messages to them.

The JPA Inbound Channel Adapter lets you poll and retrieve (select) data from the database using JPA
whereas the JPA Outbound Channel Adapter lets you create, update and delete entities.

Outbound Gateways for JPA can be used to persist entities to the database, yet allowing you to continue
with the flow and execute further components downstream. Similarly, you can use an Outbound Gateway
to retrieve entities from the database.

For example, you may use the Outbound Gateway, which receives a Message with a userId as payload
on its request channel, to query the database and retrieve the User entity and pass it downstream for
further processing.

Recognizing these semantic differences, Spring Integration provides 2 separate JPA Outbound
Gateways:

• Retrieving Outbound Gateway

• Updating Outbound Gateway

Functionality

All JPA components perform their respective JPA operations by using either one of the following:

• Entity classes

• Java Persistence Query Language (JPQL) for update, select and delete (inserts are not supported
by JPQL)

• Native Query

• Named Query

In the following sections we will describe each of these components in more detail.

20.1 Supported Persistence Providers

The Spring Integration JPA support has been tested using the following persistence providers:

• Hibernate

• EclipseLink

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 354

When using a persistence provider, please ensure that the provider is compatible with JPA 2.1.

20.2 Java Implementation

Each of the provided components uses the o.s.i.jpa.core.JpaExecutor class which, in turn,
uses an implementation of the o.s.i.jpa.core.JpaOperations interface. JpaOperations
operates like a typical Data Access Object (DAO) and provides methods such as
find, persist, executeUpdate etc. For most use cases the provided default implementation
o.s.i.jpa.core.DefaultJpaOperations should be sufficient. Nevertheless, you have the option
to specify your own implementation in case you require custom behavior.

For initializing a JpaExecutor you have to use one of 3 available constructors that accept one of:

• EntityManagerFactory

• EntityManager or

• JpaOperations

@Bean

public JpaExecutor jpaExecutor() {

 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);

 executor.setJpaParameters(Collections.singletonList(new JpaParameter("firstName", null, "#this")));

 executor.setUsePayloadAsParameterSource(true);

 executor.setExpectSingleResult(true);

 return executor;

}

@ServiceActivator(inputChannel = "getEntityChannel")

@Bean

public MessageHandler retrievingJpaGateway() {

 JpaOutboundGateway gateway = new JpaOutboundGateway(jpaExecutor());

 gateway.setGatewayType(OutboundGatewayType.RETRIEVING);

 gateway.setOutputChannelName("resultsChannel");

 return gateway;

}

20.3 Namespace Support

When using XML namespace support, the underlying parser classes will instantiate the relevant Java
classes for you. Thus, you typically don’t have to deal with the inner workings of the JPA adapter. This
section will document the XML Namespace Support provided by the Spring Integration and will show
you how to use the XML Namespace Support to configure the Jpa components.

Common XML Namespace Configuration Attributes

Certain configuration parameters are shared amongst all JPA components and are described below:

auto-startup

Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Optional.

id

Identifies the underlying Spring bean definition, which is an instance of either EventDrivenConsumer
or PollingConsumer. Optional.

entity-manager-factory

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 355

The reference to the JPA Entity Manager Factory that will be used by the adapter to create the
EntityManager. Either this attribute or the entity-manager attribute or the jpa-operations attribute
must be provided.

entity-manager

The reference to the JPA Entity Manager that will be used by the component. Either this attribute or the
entity-manager-factory attribute or the jpa-operations attribute must be provided.

Note

Usually your Spring Application Context only defines a JPA Entity Manager Factory and the
EntityManager is injected using the @PersistenceContext annotation. This, however, is not
applicable for the Spring Integration JPA components. Usually, injecting the JPA Entity Manager
Factory will be best but in case you want to inject an EntityManager explicitly, you have to
define a SharedEntityManagerBean. For more information, please see the relevant JavaDoc.

<bean id="entityManager"

 class="org.springframework.orm.jpa.support.SharedEntityManagerBean">

 <property name="entityManagerFactory" ref="entityManagerFactoryBean" />

</bean>

jpa-operations

Reference to a bean implementing the JpaOperations interface. In rare cases it might be advisable
to provide your own implementation of the JpaOperations interface, instead of relying on the default
implementation org.springframework.integration.jpa.core.DefaultJpaOperations.
As JpaOperations wraps the necessary datasource; the JPA Entity Manager or JPA Entity Manager
Factory must not be provided, if the jpa-operations attribute is used.

entity-class

The fully qualified name of the entity class. The exact semantics of this attribute vary, depending on
whether we are performing a persist/update operation or whether we are retrieving objects from the
database.

When retrieving data, you can specify the entity-class attribute to indicate that you would like to retrieve
objects of this type from the database. In that case you must not define any of the query attributes (
jpa-query, native-query or named-query)

When persisting data, the entity-class attribute will indicate the type of object to persist. If not specified
(for persist operations) the entity class will be automatically retrieved from the Message’s payload.

jpa-query

Defines the JPA query (Java Persistence Query Language) to be used.

native-query

Defines the native SQL query to be used.

named-query

This attribute refers to a named query. A named query can either be defined in Native SQL or JPAQL
but the underlying JPA persistence provider handles that distinction internally.

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/support/SharedEntityManagerBean.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 356

Providing JPA Query Parameters

For providing parameters, the parameter XML sub-element can be used. It provides a mechanism to
provide parameters for the queries that are either based on the Java Persistence Query Language
(JPQL) or native SQL queries. Parameters can also be provided for Named Queries.

Expression based Parameters

<int-jpa:parameter expression="payload.name" name="firstName"/>

Value based Parameters

<int-jpa:parameter name="name" type="java.lang.String" value="myName"/>

Positional Parameters

<int-jpa:parameter expression="payload.name"/>

<int-jpa:parameter type="java.lang.Integer" value="21"/>

Transaction Handling

All JPA operations like INSERT, UPDATE and DELETE require a transaction to be active whenever they
are performed. For Inbound Channel Adapters there is nothing special to be done, it is similar to the
way we configure transaction managers with pollers used with other inbound channel adapters. The
xml snippet below shows a sample where a transaction manager is configured with the poller used with
an Inbound Channel Adapter.

<int-jpa:inbound-channel-adapter

 channel="inboundChannelAdapterOne"

 entity-manager="em"

 auto-startup="true"

 jpa-query="select s from Student s"

 expect-single-result="true"

 delete-after-poll="true">

 <int:poller fixed-rate="2000" >

 <int:transactional propagation="REQUIRED"

 transaction-manager="transactionManager"/>

 </int:poller>

</int-jpa:inbound-channel-adapter>

However, it may be necessary to specifically start a transaction when using an Outbound Channel
Adapter/Gateway. If a DirectChannel is an input channel for the outbound adapter/gateway, and if
transaction is active in the current thread of execution, the JPA operation will be performed in the same
transaction context. We can also configure to execute this JPA operation in a new transaction as below.

<int-jpa:outbound-gateway

 request-channel="namedQueryRequestChannel"

 reply-channel="namedQueryResponseChannel"

 named-query="updateStudentByRollNumber"

 entity-manager="em"

 gateway-type="UPDATING">

 <int-jpa:parameter name="lastName" expression="payload"/>

 <int-jpa:parameter name="rollNumber" expression="headers['rollNumber']"/>

 <int-jpa:transactional propagation="REQUIRES_NEW"

 transaction-manager="transactionManager"/>

</int-jpa:outbound-gateway>

As we can see above, the transactional sub element of the outbound gateway/adapter will be used to
specify the transaction attributes. It is optional to define this child element if you have DirectChannel

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 357

as an input channel to the adapter and you want the adapter to execute the operations in the same
transaction context as the caller. If, however, you are using an ExecutorChannel, it is required to have
the transactional sub element as the invoking client’s transaction context is not propagated.

Note

Unlike the transactional sub element of the poller which is defined in the spring integration’s
namespace, the transactional sub element for the outbound gateway/adapter is defined in the
jpa namespace.

20.4 Inbound Channel Adapter

An Inbound Channel Adapter is used to execute a select query over the database using JPA QL and
return the result. The message payload will be either a single entity or a List of entities. Below is a
sample xml snippet that shows a sample usage of inbound-channel-adapter.

<int-jpa:inbound-channel-adapter channel="inboundChannelAdapterOne" ❶

 entity-manager="em" ❷

 auto-startup="true" ❸

 query="select s from Student s" ❹

 expect-single-result="true" ❺

 max-results="" ❻

 max-results-expression="" ❼

 delete-after-poll="true" ❽

 flush-after-delete="true"> ❾

 <int:poller fixed-rate="2000" >

 <int:transactional propagation="REQUIRED" transaction-manager="transactionManager"/>

 </int:poller>

</int-jpa:inbound-channel-adapter>

❶ The channel over which the inbound-channel-adapter will put the messages with the payload
received after executing the provided JPA QL in the query attribute.

❷ The EntityManager instance that will be used to perform the required JPA operations.

❸ Attribute signalling if the component should be automatically started on startup of the Application
Context. The value defaults to true

❹ The JPA QL that needs to be executed and whose result needs to be sent out as the payload of
the message

❺ The attribute that tells if the executed JPQL query gives a single entity in the result or a List of
entities. If the value is set to true, the single entity retrieved is sent as the payload of the message.
If, however, multiple results are returned after setting this to true, a MessagingException is
thrown. The value defaults to false.

❻ This non zero, non negative integer value tells the adapter not to select more than given number
of rows on execution of the select operation. By default, if this attribute is not set, all the possible
records are selected by given query. This attribute is mutually exclusive with max-results-
expression. Optional.

❼ An expression, mutually exclusive with max-results, that can be used to provide an expression
that will be evaluated to find the maximum number of results in a result set. Optional.

❽ Set this value to true if you want to delete the rows received after execution of the query. Please
ensure that the component is operating as part of a transaction. Otherwise, you may encounter an
Exception such as: java.lang.IllegalArgumentException: Removing a detached instance …

❾ Set this value to true if you want to the persistence context immediately after deleting received
entities and if you don’t want rely on the EntityManager's flushMode. The default value is set
to false.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 358

Configuration Parameter Reference

<int-jpa:inbound-channel-adapter

 auto-startup="true" ❶

 channel="" ❷

 delete-after-poll="false" ❸

 delete-per-row="false" ❹

 entity-class="" ❺

 entity-manager="" ❻

 entity-manager-factory="" ❼

 expect-single-result="false" ❽

 id=""

 jpa-operations="" ❾

 jpa-query="" ❿

 named-query="" 11

 native-query="" 12

 parameter-source="" 13

 send-timeout=""> 14

 <int:poller ref="myPoller"/>

 </int-jpa:inbound-channel-adapter>

❶ This Lifecycle attribute signaled if this component should be started during startup of the Application
Context. This attribute defaults to true.Optional.

❷ The channel to which the adapter will send a message with the payload that was received after
performing the desired JPA operation.

❸ A boolean flag that indicates whether the records selected are to be deleted after they are being
polled by the adapter. By default the value is false, that is, the records will not be deleted. Please
ensure that the component is operating as part of a transaction. Otherwise, you may encounter
an Exception such as: java.lang.IllegalArgumentException: Removing a detached instance …
.Optional.

❹ A boolean flag that indicates whether the records can be deleted in bulk or are deleted one record
at a time. By default the value is false, that is, the records are bulk deleted.Optional.

❺ The fully qualified name of the entity class that would be queried from the database. The adapter will
automatically build a JPA Query to be executed based on the entity class name provided.Optional.

❻ An instance of javax.persistence.EntityManager that will be used to perform the JPA
operations. Optional.

❼ An instance of javax.persistence.EntityManagerFactory that will be used to obtain
an instance of javax.persistence.EntityManager that will perform the JPA operations.
Optional.

❽ A boolean flag indicating whether the select operation is expected to return a single result or a
List of results. If this flag is set to true, the single entity selected is sent as the payload of the
message. If multiple entities are returned, an exception is thrown. If false, the List of entities is
being sent as the payload of the message. By default the value is false.Optional.

❾ An implementation of org.springframework.integration.jpa.core.JpaOperations
that would be used to perform the JPA operations. It is
recommended not to provide an implementation of your own but use
the default org.springframework.integration.jpa.core.DefaultJpaOperations

implementation. Either of the entity-manager, entity-manager-factory or jpa-operations attributes
is to be used. Optional.

❿ The JPA QL that needs to be executed by this adapter.Optional.
11 The named query that needs to be executed by this adapter.Optional.
12 The native query that will be executed by this adapter. Either of the jpa-query, named-query,entity-

class or native-query attributes are to be used. Optional.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 359

13 An implementation of o.s.i.jpa.support.parametersource.ParameterSource which
will be used to resolve the values of the parameters provided in the query. Ignored if entity-class
attribute is provided.Optional.

14 Maximum amount of time in milliseconds to wait when sending a message to the channel.Optional.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @Bean

 public JpaExecutor jpaExecutor() {

 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);

 jpaExecutor.setJpaQuery("from Student");

 return executor;

 }

 @Bean

 @InboundChannelAdapter(channel = "jpaInputChannel",

 poller = @Poller(fixedDelay = "${poller.interval}"))

 public MessageSource<?> jpaInbound() {

 return new JpaPollingChannelAdapter(jpaExecutor());

 }

 @Bean

 @ServiceActivator(inputChannel = "jpaInputChannel")

 public MessageHandler handler() {

 return message -> System.out.println(message.getPayload());

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Inbound Adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 360

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @Bean

 public IntegrationFlow pollingAdapterFlow() {

 return IntegrationFlows

 .from(Jpa.inboundAdapter(this.entityManagerFactory)

 .entityClass(StudentDomain.class)

 .maxResults(1)

 .expectSingleResult(true),

 e -> e.poller(p -> p.trigger(new OnlyOnceTrigger())))

 .channel(c -> c.queue("pollingResults"))

 .get();

 }

}

20.5 Outbound Channel Adapter

The JPA Outbound channel adapter allows you to accept messages over a request channel. The
payload can either be used as the entity to be persisted, or used along with the headers in parameter
expressions for a defined JPQL query to be executed. In the following sub sections we shall see what
those possible ways of performing these operations are.

Using an Entity Class

The XML snippet below shows how we can use the Outbound Channel Adapter to persist an entity to
the database.

<int-jpa:outbound-channel-adapter channel="entityTypeChannel" ❶

 entity-class="org.springframework.integration.jpa.test.entity.Student" ❷

 persist-mode="PERSIST" ❸

 entity-manager="em"/ > ❹

❶ The channel over which a valid JPA entity will be sent to the JPA Outbound Channel Adapter.

❷ The fully qualified name of the entity class that would be accepted by the adapter to be persisted in
the database. You can actually leave off this attribute in most cases as the adapter can determine
the entity class automatically from the Spring Integration Message payload.

❸ The operation that needs to be done by the adapter, valid values are PERSIST, MERGE and
DELETE. The default value is MERGE.

❹ The JPA entity manager to be used.

As we can see above these 4 attributes of the outbound-channel-adapter are all we need to configure
it to accept entities over the input channel and process them to PERSIST,MERGE or DELETE it from
the underlying data source.

Note

As of Spring Integration 3.0, payloads to PERSIST or MERGE can
also be of type http://docs.oracle.com/javase/7/docs/api/java/lang/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 361

Iterable.html[java.lang.Iterable]. In that case, each object returned by the Iterable
is treated as an entity and persisted or merged using the underlying EntityManager. NULL
values returned by the iterator are ignored.

Using JPA Query Language (JPA QL)

We have seen in the above sub section how to perform a PERSIST action using an entity We will now see
how to use the outbound channel adapter which uses JPA QL (Java Persistence API Query Language)

<int-jpa:outbound-channel-adapter channel="jpaQlChannel" ❶

 jpa-query="update Student s set s.firstName = :firstName where s.rollNumber = :rollNumber" ❷

 entity-manager="em"> ❸

 <int-jpa:parameter name="firstName" expression="payload['firstName']"/> ❹

 <int-jpa:parameter name="rollNumber" expression="payload['rollNumber']"/>

</int-jpa:outbound-channel-adapter>

❶ The input channel over which the message is being sent to the outbound channel adapter

❷ The JPA QL that needs to be executed.This query may contain parameters that will be evaluated
using the parameter child tag.

❸ The entity manager used by the adapter to perform the JPA operations

❹ This sub element, one for each parameter will be used to evaluate the value of the parameter
names specified in the JPA QL specified in the query attribute

The parameter sub element accepts an attribute name which corresponds to the named parameter
specified in the provided JPA QL (point 2 in the above mentioned sample). The value of the parameter
can either be static or can be derived using an expression. The static value and the expression to derive
the value is specified using the value and the expression attributes respectively. These attributes are
mutually exclusive.

If the value attribute is specified we can provide an optional type attribute. The value of this attribute is
the fully qualified name of the class whose value is represented by the value attribute. By default the
type is assumed to be a java.lang.String.

<int-jpa:outbound-channel-adapter ...

>

 <int-jpa:parameter name="level" value="2" type="java.lang.Integer"/>

 <int-jpa:parameter name="name" expression="payload['name']"/>

</int-jpa:outbound-channel-adapter>

As seen in the above snippet, it is perfectly valid to use multiple parameter sub elements within
an outbound channel adapter tag and derive some parameters using expressions and some with
static value. However, care should be taken not to specify the same parameter name multiple times,
and, provide one parameter sub element for each named parameter specified in the JPA query. For
example, we are specifying two parameters level and name where level attribute is a static value of type
java.lang.Integer, where as the name attribute is derived from the payload of the message

Note

Though specifying select is valid for JPA QL, it makes no sense as outbound channel adapters
will not be returning any result. If you want to select some values, consider using the outbound
gateway instead.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 362

Using Native Queries

In this section we will see how to use native queries to perform the operations using JPA outbound
channel adapter. Using native queries is similar to using JPA QL, except that the query specified here
is a native database query. By choosing native queries we lose the database vendor independence
which we get using JPA QL.

One of the things we can achieve using native queries is to perform database inserts, which is not
possible using JPA QL (To perform inserts we send JPA entities to the channel adapter as we have
seen earlier). Below is a small xml fragment that demonstrates the use of native query to insert values
in a table. Please note that we have only mentioned the important attributes below. All other attributes
like channel, entity-manager and the parameter sub element has the same semantics as when we use
JPA QL.

Important

Please be aware that named parameters may not be supported by your JPA provider in
conjunction with native SQL queries. While they work fine using Hibernate, OpenJPA and
EclipseLink do NOT support them: https://issues.apache.org/jira/browse/OPENJPA-111 Section
3.8.12 of the JPA 2.0 spec states: "Only positional parameter binding and positional access to
result items may be portably used for native queries."

<int-jpa:outbound-channel-adapter channel="nativeQlChannel"

 native-query="insert into STUDENT_TABLE(FIRST_NAME,LAST_UPDATED) values (:lastName,:lastUpdated)" ❶

 entity-manager="em">

 <int-jpa:parameter name="lastName" expression="payload['updatedLastName']"/>

 <int-jpa:parameter name="lastUpdated" expression="new java.util.Date()"/>

</int-jpa:outbound-channel-adapter>

❶ The native query that will be executed by this outbound channel adapter

Using Named Queries

We will now see how to use named queries after seeing using entity, JPA QL and native query in previous
sub sections. Using named query is also very similar to using JPA QL or a native query, except that
we specify a named query instead of a query. Before we go further and see the xml fragment for the
declaration of the outbound-channel-adapter, we will see how named JPA named queries are defined.

In our case, if we have an entity called Student, then we have the following in the class to define
two named queries selectStudent and updateStudent. Below is a way to define named queries using
annotations

@Entity

@Table(name="Student")

@NamedQueries({

 @NamedQuery(name="selectStudent",

 query="select s from Student s where s.lastName = 'Last One'"),

 @NamedQuery(name="updateStudent",

 query="update Student s set s.lastName = :lastName,

 lastUpdated = :lastUpdated where s.id in (select max(a.id) from Student a)")

})

public class Student {

...

You can alternatively use the orm.xml to define named queries as seen below

https://issues.apache.org/jira/browse/OPENJPA-111

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 363

<entity-mappings ...>

 ...

 <named-query name="selectStudent">

 <query>select s from Student s where s.lastName = 'Last One'</query>

 </named-query>

</entity-mappings>

Now that we have seen how we can define named queries using annotations or using orm.xml, we will
now see a small xml fragment for defining an outbound-channel-adapter using named query

<int-jpa:outbound-channel-adapter channel="namedQueryChannel"

 named-query="updateStudent" ❶

 entity-manager="em">

 <int-jpa:parameter name="lastName" expression="payload['updatedLastName']"/>

 <int-jpa:parameter name="lastUpdated" expression="new java.util.Date()"/>

</int-jpa:outbound-channel-adapter>

❶ The named query that we want the adapter to execute when it receives a message over the channel

Configuration Parameter Reference

<int-jpa:outbound-channel-adapter

 auto-startup="true" ❶

 channel="" ❷

 entity-class="" ❸

 entity-manager="" ❹

 entity-manager-factory="" ❺

 id=""

 jpa-operations="" ❻

 jpa-query="" ❼

 named-query="" ❽

 native-query="" ❾

 order="" ❿

 parameter-source-factory="" 11

 persist-mode="MERGE" 12

 flush="true" 13

 flush-size="10" 14

 clear-on-flush="true" 15

 use-payload-as-parameter-source="true" 16

 <int:poller/>

 <int-jpa:transactional/> 17

 <int-jpa:parameter/> 18

</int-jpa:outbound-channel-adapter>

❶ Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Optional.

❷ The channel from which the outbound adapter will receive messages for performing the desired
operation.

❸ The fully qualified name of the entity class for the JPA Operation. The attributes entity-class, query
and named-query are mutually exclusive. Optional.

❹ An instance of javax.persistence.EntityManager that will be used to perform the JPA
operations. Optional.

❺ An instance of javax.persistence.EntityManagerFactory that will be used to obtain
an instance of javax.persistence.EntityManager that will perform the JPA operations.
Optional.

❻ An implementation of org.springframework.integration.jpa.core.JpaOperations
that would be used to perform the JPA operations. It is
recommended not to provide an implementation of your own but use
the default org.springframework.integration.jpa.core.DefaultJpaOperations

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 364

implementation. Either of the entity-manager, entity-manager-factory or jpa-operations attributes
is to be used. Optional.

❼ The JPA QL that needs to be executed by this adapter.Optional.

❽ The named query that needs to be executed by this adapter.Optional.

❾ The native query that will be executed by this adapter. Either of the jpa-query, named-query or
native-query attributes are to be used. Optional.

❿ The order for this consumer when multiple consumers are registered thereby managing load-
balancing and/or failover. Optional (Defaults to Ordered.LOWEST_PRECEDENCE).

11 An instance of o.s.i.jpa.support.parametersource.ParameterSourceFactory that
will be used to get an instance of
o.s.i.jpa.support.parametersource.ParameterSource which will be used to resolve
the values of the parameters provided in the query. Ignored if operations are
performed using a JPA entity. If a parameter sub element is used, the factory
must be of type ExpressionEvaluatingParameterSourceFactory located in package
o.s.i.jpa.support.parametersource. Optional.

12 Accepts one of the following: PERSIST, MERGE or DELETE. Indicates the operation that the
adapter needs to perform. Relevant only if an entity is being used for JPA operations. Ignored if
JPA QL, named query or native query is provided. Defaults to MERGE. Optional. As of Spring
Integration 3.0, payloads to persist or merge can also be of type http://docs.oracle.com/
javase/7/docs/api/java/lang/Iterable.html[java.lang.Iterable]. In that case,
each object returned by the Iterable is treated as an entity and persisted or merged using the
underlying EntityManager. NULL values returned by the iterator are ignored.

13 Set this value to true if you want to flush the persistence context immediately after persist, merge
or delete operations and don’t want to rely on the EntityManager's flushMode. The default value
is set to false. Applies only if the flush-size attribute isn’t specified. If this attribute is set to
true, then flush-size will be implicitly set to 1, if it wasn’t configured to any other value.

14 Set this attribute to a value greater than 0 if you want to flush the persistence context
immediately after persist, merge or delete operations and don’t want to rely on the
EntityManagers flushMode. The default value is set to 0 which means 'no flush. This
attribute is geared towards messages with Iterable payloads. For instance, if flush-size
is set to 3, then entityManager.flush() is called after every third entity. Furthermore,
entityManager.flush() will be called once more after the entire loop. There is no reason to
configure the flush attribute, if the flush-size attribute is specified with a value greater than 0.

15 Set this value to true if you want to clear persistence context immediately after each flush operation.
The attribute’s value is applied only if the flush attribute is set to true or if the flush-size
attribute is set to a value greater than 0.

16 If set to true, the payload of the Message will be used as a source for providing parameters. If false,
however, the entire Message will be available as a source for parameters.Optional.

17 Defines the transaction management attributes and the reference to transaction manager to be
used by the JPA adapter.Optional.

18 One or more parameter attributes, one for each parameter used in the query. The value or
expression provided will be evaluated to compute the value of the parameter.Optional.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 365

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

@IntegrationComponentScan

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @MessagingGateway

 interface JpaGateway {

 @Gateway(requestChannel = "jpaPersistChannel")

 @Transactional

 void persistStudent(StudentDomain payload);

 }

 @Bean

 public JpaExecutor jpaExecutor() {

 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);

 jpaExecutor.setEntityClass(StudentDomain.class);

 jpaExecutor.setPersistMode(PersistMode.PERSIST);

 return executor;

 }

 @Bean

 @ServiceActivator(channel = "jpaPersistChannel")

 public MessageHandler jpaOutbound() {

 JpaOutboundGateway adapter = new JpaOutboundGateway(jpaExecutor());

 adapter.setProducesReply(false);

 return adapter;

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Inbound Adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 366

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @Bean

 public IntegrationFlow outboundAdapterFlow() {

 return f -> f

 .handle(Jpa.outboundAdapter(this.entityManagerFactory)

 .entityClass(StudentDomain.class)

 .persistMode(PersistMode.PERSIST),

 e -> e.transactional());

 }

}

20.6 Outbound Gateways

The JPA Inbound Channel Adapter allows you to poll a database in order to retrieve one or more JPA
entities and the retrieved data is consequently used to start a Spring Integration flow using the retrieved
data as message payload.

Additionally, you may use JPA Outbound Channel Adapters at the end of your flow in order to persist
data, essentially terminating the flow at the end of the persistence operation.

However, how can you execute JPA persistence operation in the middle of a flow? For example, you
may have business data that you are processing in your Spring Integration message flow, that you
would like to persist, yet you still need to execute other components further downstream. Or instead of
polling the database using a poller, you rather have the need to execute JPQL queries and retrieve data
actively which then is used to being processed in subsequent components within your flow.

This is where JPA Outbound Gateways come into play. They give you the ability to persist data as
well as retrieving data. To facilitate these uses, Spring Integration provides two types of JPA Outbound
Gateways:

• Updating Outbound Gateway

• Retrieving Outbound Gateway

Whenever the Outbound Gateway is used to perform an action that saves, updates or solely deletes
some records in the database, you need to use an Updating Outbound Gateway gateway. If for example
an entity is used to persist it, then a merged/persisted entity is returned as a result. In other cases the
number of records affected (updated or deleted) is returned instead.

When retrieving (selecting) data from the database, we use a Retrieving Outbound Gateway. With a
Retrieving Outbound Gateway gateway, we can use either JPQL, Named Queries (native or JPQL-
based) or Native Queries (SQL) for selecting the data and retrieving the results.

An Updating Outbound Gateway is functionally very similar to an Outbound Channel Adapter, except
that an Updating Outbound Gateway is used to send a result to the Gateway’s reply channel after
performing the given JPA operation.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 367

A Retrieving Outbound Gateway is quite similar to an Inbound Channel Adapter.

Note

We recommend you to first refer to the JPA Outbound Channel Adapter section and the JPA
Inbound Channel Adapter sections above, as most of the common concepts are being explained
there.

This similarity was the main factor to use the central JpaExecutor class to unify common functionality
as much as possible.

Common for all JPA Outbound Gateways and simlar to the outbound-channel-adapter, we can use

• Entity classes

• JPA Query Language (JPQL)

• Native query

• Named query

for performing various JPA operations. For configuration examples please see the section called “JPA
Outbound Gateway Samples”.

Common Configuration Parameters

JPA Outbound Gateways always have access to the Spring Integration Message as input. As such the
following parameters are available:

parameter-source-factory

An instance of o.s.i.jpa.support.parametersource.ParameterSourceFactory that will be
used to get an instance of o.s.i.jpa.support.parametersource.ParameterSource. The
ParameterSource is used to resolve the values of the parameters provided in the query. The_parameter-
source-factory_ attribute is ignored, if operations are performed using a JPA entity. If a parameter sub-
element is used, the factory must be of type ExpressionEvaluatingParameterSourceFactory,
located in package o.s.i.jpa.support.parametersource. Optional.

use-payload-as-parameter-source

If set to true, the payload of the Message will be used as a source for providing parameters.
If set to false, the entire Message will be available as a source for parameters. If no JPA
Parameters are passed in, this property will default to true. This means that using a default
BeanPropertyParameterSourceFactory, the bean properties of the payload will be used as a
source for parameter values for the to-be-executed JPA query. However, if JPA Parameters are passed
in, then this property will by default evaluate to false. The reason is that JPA Parameters allow for SpEL
Expressions to be provided and therefore it is highly beneficial to have access to the entire Message,
including the Headers.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 368

Updating Outbound Gateway

<int-jpa:updating-outbound-gateway request-channel="" ❶

 auto-startup="true"

 entity-class=""

 entity-manager=""

 entity-manager-factory=""

 id=""

 jpa-operations=""

 jpa-query=""

 named-query=""

 native-query=""

 order=""

 parameter-source-factory=""

 persist-mode="MERGE"

 reply-channel="" ❷

 reply-timeout="" ❸

 use-payload-as-parameter-source="true">

 <int:poller/>

 <int-jpa:transactional/>

 <int-jpa:parameter name="" type="" value=""/>

 <int-jpa:parameter name="" expression=""/>

</int-jpa:updating-outbound-gateway>

❶ The channel from which the outbound gateway will receive messages for performing the desired
operation. This attribute is similar to channel attribute of the outbound-channel-adapter.Optional.

❷ The channel to which the gateway will send the response after performing the required JPA
operation. If this attribute is not defined, the request message must have a replyChannel header.
Optional.

❸ Specifies the time the gateway will wait to send the result to the reply channel. Only applies when
the reply channel itself might block the send (for example a bounded QueueChannel that is currently
full). By default the Gateway will wait indefinitely. The value is specified in milliseconds. Optional.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 369

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

@IntegrationComponentScan

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @MessagingGateway

 interface JpaGateway {

 @Gateway(requestChannel = "jpaUpdateChannel")

 @Transactional

 void updateStudent(StudentDomain payload);

 }

 @Bean

 @ServiceActivator(channel = "jpaUpdateChannel")

 public MessageHandler jpaOutbound() {

 JpaOutboundGateway adapter =

 new JpaOutboundGateway(new JpaExecutor(this.entityManagerFactory));

 adapter.setOutputChannelName("updateResults");

 return adapter;

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Inbound Adapter using
the Java DSL:

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @Bean

 public IntegrationFlow updatingGatewayFlow() {

 return f -> f

 .handle(Jpa.updatingGateway(this.entityManagerFactory),

 e -> e.transactional(true))

 .channel(c -> c.queue("updateResults"));

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 370

Retrieving Outbound Gateway

<int-jpa:retrieving-outbound-gateway request-channel=""

 auto-startup="true"

 delete-after-poll="false"

 delete-in-batch="false"

 entity-class=""

 id-expression="" ❶

 entity-manager=""

 entity-manager-factory=""

 expect-single-result="false" ❷

 id=""

 jpa-operations=""

 jpa-query=""

 max-results="" ❸

 max-results-expression="" ❹

 first-result="" ❺

 first-result-expression="" ❻

 named-query=""

 native-query=""

 order=""

 parameter-source-factory=""

 reply-channel=""

 reply-timeout=""

 use-payload-as-parameter-source="true">

 <int:poller></int:poller>

 <int-jpa:transactional/>

 <int-jpa:parameter name="" type="" value=""/>

 <int-jpa:parameter name="" expression=""/>

</int-jpa:retrieving-outbound-gateway>

❶ (Since Spring Integration 4.0) The SpEL expression to determine the primaryKey value for
EntityManager.find(Class entityClass, Object primaryKey) method against
the requestMessage as root object of evaluation context. The entityClass argument is
determined from entity-class attribute, if presented, otherwise from payload class. All other
attributed are disallowed in case of id-expression. Optional.

❷ A boolean flag indicating whether the select operation is expected to return a single result or a
List of results. If this flag is set to true, the single entity selected is sent as the payload of the
message. If multiple entities are returned, an exception is thrown. If false, the List of entities is
being sent as the payload of the message. By default the value is false. Optional.

❸ This non zero, non negative integer value tells the adapter not to select more than given number
of rows on execution of the select operation. By default, if this attribute is not set, all the possible
records are selected by given query. This attribute is mutually exclusive with max-results-
expression. Optional.

❹ An expression, mutually exclusive with max-results, that can be used to provide an expression
that will be evaluated to find the maximum number of results in a result set. Optional.

❺ This non zero, non negative integer value tells the adapter the first record from which the results are
to be retrieved This attribute is mutually exclusive to first-result-expression. This attribute
is introduced since version 3.0. Optional.

❻ This expression is evaluated against the message to find the position of first record in the result set
to be retrieved This attribute is mutually exclusive to first-result. This attribute is introduced
since version 3.0. Optional.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 371

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @Bean

 public JpaExecutor jpaExecutor() {

 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);

 jpaExecutor.setJpaQuery("from Student s where s.id = :id");

 executor.setJpaParameters(Collections.singletonList(new JpaParameter("id", null, "payload")));

 jpaExecutor.setExpectSingleResult(true);

 return executor;

 }

 @Bean

 @ServiceActivator(channel = "jpaRetrievingChannel")

 public MessageHandler jpaOutbound() {

 JpaOutboundGateway adapter = new JpaOutboundGateway(jpaExecutor());

 adapter.setOutputChannelName("retrieveResults");

 adapter.setGatewayType(OutboundGatewayType.RETRIEVING);

 return adapter;

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Inbound Adapter using
the Java DSL:

@SpringBootApplication

@EntityScan(basePackageClasses = StudentDomain.class)

public class JpaJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(JpaJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private EntityManagerFactory entityManagerFactory;

 @Bean

 public IntegrationFlow retrievingGatewayFlow() {

 return f -> f

 .handle(Jpa.retrievingGateway(this.entityManagerFactory)

 .jpaQuery("from Student s where s.id = :id")

 .expectSingleResult(true)

 .parameterExpression("id", "payload"))

 .channel(c -> c.queue("retrieveResults"));

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 372

Important

When choosing to delete entities upon retrieval and you have retrieved a collection of entities,
please be aware that by default entities are deleted on a per entity basis. This may cause
performance issues.

Alternatively, you can set attribute deleteInBatch to true, which will perform a batch delete.
However, please be aware of the limitation that in that case cascading deletes are not supported.

JSR 317: Java™ Persistence 2.0 states in chapter Chapter 4.10, Bulk Update and Delete
Operations that:

"A delete operation only applies to entities of the specified class and its subclasses. It does not
cascade to related entities."

For more information please see JSR 317: Java™ Persistence 2.0

JPA Outbound Gateway Samples

This section contains various examples of the Updating Outbound Gateway and Retrieving Outbound
Gateway

Update using an Entity Class

In this example an Updating Outbound Gateway is persisted using solely the entity class
org.springframework.integration.jpa.test.entity.Student as JPA defining parameter.

<int-jpa:updating-outbound-gateway request-channel="entityRequestChannel" ❶

 reply-channel="entityResponseChannel" ❷

 entity-class="org.springframework.integration.jpa.test.entity.Student"

 entity-manager="em"/>

❶ This is the request channel for the outbound gateway, this is similar to the channel attribute of the
outbound-channel-adapter

❷ This is where a gateway differs from an outbound adapter, this is the channel over which the
reply of the performed JPA operation is received. If,however, you are not interested in the reply
received and just want to perform the operation, then using a JPA outbound-channel-adapter is
the appropriate choice. In above case, where we are using entity class, the reply will be the entity
object that was created/merged as a result of the JPA operation.

Update using JPQL

In this example, we will see how we can update an entity using the Java Persistence Query Language
(JPQL). For this we use an_Updating Outbound Gateway_.

<int-jpa:updating-outbound-gateway request-channel="jpaqlRequestChannel"

 reply-channel="jpaqlResponseChannel"

 jpa-query="update Student s set s.lastName = :lastName where s.rollNumber = :rollNumber" ❶

 entity-manager="em">

 <int-jpa:parameter name="lastName" expression="payload"/>

 <int-jpa:parameter name="rollNumber" expression="headers['rollNumber']"/>

</int-jpa:updating-outbound-gateway>

❶ The JPQL query that will be executed by the gateway. Since an Updating Outbound Gateway is
used, only update and delete JPQL queries would be sensible choices.

http://jcp.org/en/jsr/detail?id=317

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 373

When sending a message with a String payload and containing a header rollNumber with a long value,
the last name of the student with the provided roll number is updated to the value provided in the
message payload. When using an UPDATING gateway, the return value is always an integer value
which denotes the number of records affected by execution of the JPA QL.

Retrieving an Entity using JPQL

The following examples uses a Retrieving Outbound Gateway together with JPQL to retrieve (select)
one or more entities from the database.

<int-jpa:retrieving-outbound-gateway request-channel="retrievingGatewayReqChannel"

 reply-channel="retrievingGatewayReplyChannel"

 jpa-query="select s from Student s where s.firstName = :firstName and s.lastName = :lastName"

 entity-manager="em">

 <int-jpa:parameter name="firstName" expression="payload"/>

 <int-jpa:parameter name="lastName" expression="headers['lastName']"/>

</int-jpa:outbound-gateway>

Retrieving an Entity using id-expression

The following examples uses a Retrieving Outbound Gateway together with id-expression to retrieve
(find) one and only one entity from the database. The primaryKey is the result of id-expression
evaluation. The entityClass is a class of Message payload.

<int-jpa:retrieving-outbound-gateway

 request-channel="retrievingGatewayReqChannel"

 reply-channel="retrievingGatewayReplyChannel"

 id-expression="payload.id"

 entity-manager="em"/>

Update using a Named Query

Using a Named Query is basically the same as using a JPQL query directly. The difference is that the
named-query attribute is used instead, as seen in the xml snippet below.

<int-jpa:updating-outbound-gateway request-channel="namedQueryRequestChannel"

 reply-channel="namedQueryResponseChannel"

 named-query="updateStudentByRollNumber"

 entity-manager="em">

 <int-jpa:parameter name="lastName" expression="payload"/>

 <int-jpa:parameter name="rollNumber" expression="headers['rollNumber']"/>

</int-jpa:outbound-gateway>

Note

You can find a complete Sample application for using Spring Integration’s JPA adapter at jpa
sample.

https://github.com/spring-projects/spring-integration-samples/tree/master/basic/jpa
https://github.com/spring-projects/spring-integration-samples/tree/master/basic/jpa

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 374

21. JMS Support

Spring Integration provides Channel Adapters for receiving and sending JMS messages. There are
actually two JMS-based inbound Channel Adapters. The first uses Spring’s JmsTemplate to receive
based on a polling period. The second is "message-driven" and relies upon a Spring MessageListener
container. There is also an outbound Channel Adapter which uses the JmsTemplate to convert and
send a JMS Message on demand.

As you can see from above by using JmsTemplate and MessageListener container Spring
Integration relies on Spring’s JMS support. This is important to understand since most of the
attributes exposed on these adapters will configure the underlying Spring’s JmsTemplate and/
or MessageListener container. For more details about JmsTemplate and MessageListener
container please refer to Spring JMS documentation.

Whereas the JMS Channel Adapters are intended for unidirectional Messaging (send-only
or receive-only), Spring Integration also provides inbound and outbound JMS Gateways for
request/reply operations. The inbound gateway relies on one of Spring’s MessageListener
container implementations for Message-driven reception that is also capable of sending a return
value to the reply-to Destination as provided by the received Message. The outbound
Gateway sends a JMS Message to a request-destination (or request-destination-
name or request-destination-expression) and then receives a reply Message. The reply-
destination reference (or reply-destination-name or reply-destination-expression)
can be configured explicitly or else the outbound gateway will use a JMS TemporaryQueue.

Prior to Spring Integration 2.2, if necessary, a TemporaryQueue was created (and removed) for each
request/reply. Beginning with Spring Integration 2.2, the outbound gateway can be configured to use a
MessageListener container to receive replies instead of directly using a new (or cached) Consumer
to receive the reply for each request. When so configured, and no explicit reply destination is provided,
a single TemporaryQueue is used for each gateway instead of one for each request.

21.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JmsTemplate instance or
both ConnectionFactory and Destination (a destinationName can be provided in place of
the destination reference). The following example defines an inbound Channel Adapter with a
Destination reference.

<int-jms:inbound-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel">

 <int:poller fixed-rate="30000"/>

</int-jms:inbound-channel-adapter>

Tip

Notice from the configuration that the inbound-channel-adapter is a Polling Consumer. That
means that it invokes receive() when triggered. This should only be used in situations where
polling is done relatively infrequently and timeliness is not important. For all other situations (a
vast majority of JMS-based use-cases), the message-driven-channel-adapter described below is
a better option.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jms.html
http://docs.oracle.com/javaee/6/api/javax/jms/TemporaryQueue.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 375

Note

All of the JMS adapters that require a reference to the ConnectionFactory will automatically
look for a bean named jmsConnectionFactory by default. That is why you don’t
see a "connection-factory" attribute in many of the examples. However, if your JMS
ConnectionFactory has a different bean name, then you will need to provide that attribute.

If extract-payload is set to true (which is the default), the received JMS Message will be passed
through the MessageConverter. When relying on the default SimpleMessageConverter, this
means that the resulting Spring Integration Message will have the JMS Message’s body as its payload.
A JMS TextMessage will produce a String-based payload, a JMS BytesMessage will produce a byte
array payload, and a JMS ObjectMessage 's Serializable instance will become the Spring Integration
Message’s payload. If instead you prefer to have the raw JMS Message as the Spring Integration
Message’s payload, then set extract-payload to false.

<int-jms:inbound-channel-adapter id="jmsIn"

 destination="inQueue"

 channel="exampleChannel"

 extract-payload="false"/>

 <int:poller fixed-rate="30000"/>

</int-jms:inbound-channel-adapter>

Transactions

Starting with version 4.0, the inbound channel adapter supports the session-transacted attribute.
In earlier versions, you had to inject a JmsTemplate with sessionTransacted set to true. (The
adapter did allow the acknowledge attribute to be set to transacted but this was incorrect and did
not work).

Note, however, that setting session-transacted to true has little value because the transaction is
committed immediately after the receive() and before the message is sent to the channel.

If you want the entire flow to be transactional (for example if there is a downstream outbound channel
adapter), you must use a transactional poller, with a JmsTransactionManager. Or, consider
using a jms-message-driven-channel-adapter with acknowledge set to transacted (the
default).

21.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter" requires a reference to either an instance of a Spring
MessageListener container (any subclass of AbstractMessageListenerContainer) or both
ConnectionFactory and Destination (a destinationName can be provided in place of the
destination reference). The following example defines a message-driven Channel Adapter with a
Destination reference.

<int-jms:message-driven-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel"/>

Note

The Message-Driven adapter also accepts several properties that pertain to the MessageListener
container. These values are only considered if you do not provide a container reference.
In that case, an instance of DefaultMessageListenerContainer will be created and configured
based on these properties. For example, you can specify the "transaction-manager" reference,

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 376

the "concurrent-consumers" value, and several other property references and values. Refer to the
JavaDoc and Spring Integration’s JMS Schema (spring-integration-jms.xsd) for more details.

If you have a custom listener container implementation (usually a subclass of
DefaultMessageListenerContainer), you can either provide a reference to an instance
of it using the container attribute, or simply provide its fully qualified class name using the
container-class attribute. In that case, the attributes on the adapter are transferred to an
instance of your custom container.

Important

Starting with version 4.2, the default acknowledge mode is transacted, unless an external
container is provided, in which case the container should be configured as needed. It is
recommended to use transacted with the DefaultMessageListenerContainer to avoid
message loss.

The extract-payload property has the same effect as described above, and once again its default value
is true. The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be
actively invoked. For most usage scenarios, the message-driven approach is better since the Messages
will be passed along to the MessageChannel as soon as they are received from the underlying JMS
consumer.

Finally, the <message-driven-channel-adapter> also accepts the error-channel attribute.
This provides the same basic functionality as described in the section called “Enter the
GatewayProxyFactoryBean”.

<int-jms:message-driven-channel-adapter id="jmsIn" destination="inQueue"

 channel="exampleChannel"

 error-channel="exampleErrorChannel"/>

When comparing this to the generic gateway configuration, or the JMS inbound-gateway that will be
discussed below, the key difference here is that we are in a one-way flow since this is a channel-
adapter, not a gateway. Therefore, the flow downstream from the error-channel should also be one-
way. For example, it could simply send to a logging handler, or it could be connected to a different JMS
<outbound-channel-adapter> element.

When consuming from topics, set the pub-sub-domain attribute to true; set subscription-
durable to true for a durable subscription, subscription-shared for a shared subscription (requires
a JMS 2.0 broker and has been available since version 4.2). Use subscription-name to name the
subscription.

Inbound Conversion Errors

Note

Starting with version 4.2 the error-channel is used for the conversion errors, too. Previously, if
a JMS <message-driven-channel-adapter/> or <inbound-gateway/> could not deliver
a message due to a conversion error, an exception would be thrown back to the container.
If the container was configured to use transactions, the message would be rolled back and
redelivered repeatedly. The conversion process occurs before and during message construction
so such errors were not sent to the error-channel. Now such conversion exceptions result in an
ErrorMessage being sent to the error-channel, with the exception as the payload. If you wish

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 377

the transaction to be rolled back, and you have an error-channel defined, the integration flow on
the error-channel must re-throw the exception (or another). If the error flow does not throw an
exception, the transaction will be committed and the message removed. If no error-channel is
defined, the exception is thrown back to the container, as before.

21.3 Outbound Channel Adapter

The JmsSendingMessageHandler implements the MessageHandler interface and is capable of
converting Spring Integration Messages to JMS messages and then sending to a JMS destination.
It requires either a jmsTemplate reference or both jmsConnectionFactory and destination
references (again, the destinationName may be provided in place of the destination). As with
the inbound Channel Adapter, the easiest way to configure this adapter is with the namespace support.
The following configuration will produce an adapter that receives Spring Integration Messages from the
"exampleChannel" and then converts those into JMS Messages and sends them to the JMS Destination
reference whose bean name is "outQueue".

<int-jms:outbound-channel-adapter id="jmsOut" destination="outQueue" channel="exampleChannel"/>

As with the inbound Channel Adapters, there is an extract-payload property. However, the meaning is
reversed for the outbound adapter. Rather than applying to the JMS Message, the boolean property
applies to the Spring Integration Message payload. In other words, the decision is whether to pass the
Spring Integration Message itself as the JMS Message body or whether to pass the Spring Integration
Message’s payload as the JMS Message body. The default value is once again true. Therefore, if you
pass a Spring Integration Message whose payload is a String, a JMS TextMessage will be created. If
on the other hand you want to send the actual Spring Integration Message to another system via JMS,
then simply set this to false.

Note

Regardless of the boolean value for payload extraction, the Spring Integration MessageHeaders
will map to JMS properties as long as you are relying on the default converter or provide a
reference to another instance of HeaderMappingMessageConverter (the same holds true for
inbound adapters except that in those cases, it’s the JMS properties mapping to Spring Integration
MessageHeaders).

Transactions

Starting with version 4.0, the outbound channel adapter supports the session-transacted attribute.
In earlier versions, you had to inject a JmsTemplate with sessionTransacted set to true. The
attribute now sets the property on the built-in default JmsTemplate. If a transaction exists (perhaps
from an upstream message-driven-channel-adapter) the send will be performed within the same
transaction. Otherwise a new transaction will be started.

21.4 Inbound Gateway

Spring Integration’s message-driven JMS inbound-gateway delegates to a MessageListener
container, supports dynamically adjusting concurrent consumers, and can also handle replies. The
inbound gateway requires references to a ConnectionFactory, and a request Destination (or
requestDestinationName). The following example defines a JMS "inbound-gateway" that receives from
the JMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named
"exampleChannel".

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 378

<int-jms:inbound-gateway id="jmsInGateway"

 request-destination="inQueue"

 request-channel="exampleChannel"/>

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also
have two distinct properties for the "payload extraction" (as discussed above for the Channel Adapters'
extract-payload setting). For an inbound-gateway, the extract-request-payload property determines
whether the received JMS Message body will be extracted. If false, the JMS Message itself will become
the Spring Integration Message payload. The default is true.

Similarly, for an inbound-gateway the extract-reply-payload property applies to the Spring Integration
Message that is going to be converted into a reply JMS Message. If you want to pass the whole Spring
Integration Message (as the body of a JMS ObjectMessage) then set this to false. By default, it is also
true such that the Spring Integration Message payload will be converted into a JMS Message (e.g. String
payload becomes a JMS TextMessage).

As with anything else, Gateway invocation might result in error. By default Producer will not be notified
of the errors that might have occurred on the consumer side and will time out waiting for the reply.
However there might be times when you want to communicate an error condition back to the consumer,
in other words treat the Exception as a valid reply by mapping it to a Message. To accomplish this JMS
Inbound Gateway provides support for a Message Channel to which errors can be sent for processing,
potentially resulting in a reply Message payload that conforms to some contract defining what a caller
may expect as an "error" reply. Such a channel can be configured via the error-channel attribute.

<int-jms:inbound-gateway request-destination="requestQueue"

 request-channel="jmsinputchannel"

 error-channel="errorTransformationChannel"/>

<int:transformer input-channel="exceptionTransformationChannel"

 ref="exceptionTransformer" method="createErrorResponse"/>

You might notice that this example looks very similar to that included within the section called “Enter
the GatewayProxyFactoryBean”. The same idea applies here: The exceptionTransformer could be a
simple POJO that creates error response objects, you could reference the "nullChannel" to suppress
the errors, or you could leave error-channel out to let the Exception propagate.

Note

See the section called “Inbound Conversion Errors”.

When consuming from topics, set the pub-sub-domain attribute to true; set subscription-
durable to true for a durable subscription, subscription-shared for a shared subscription (requires
a JMS 2.0 broker and has been available since version 4.2). Use subscription-name to name the
subscription.

Important

Starting with version 4.2, the default acknowledge mode is transacted, unless an external
container is provided, in which case the container should be configured as needed. It is
recommended to use transacted with the DefaultMessageListenerContainer to avoid
message loss.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 379

21.5 Outbound Gateway

The outbound Gateway creates JMS Messages from Spring Integration Messages and then sends to
a request-destination. It will then handle the JMS reply Message either by using a selector to receive
from the reply-destination that you configure, or if no reply-destination is provided, it will create JMS
TemporaryQueue s.

Warning

Using a reply-destination (or reply-destination-name), together with a
CachingConnectionFactory with cacheConsumers set to true, can cause Out of Memory
conditions. This is because each request gets a new consumer with a new selector (selecting on
the correlation-key value, or on the sent JMSMessageID when there is no correlation-key). Given
that these selectors are unique, they will remain in the cache unused after the current request
completes.

If you specify a reply destination, you are advised to NOT use cached consumers. Alternatively,
consider using a <reply-listener/> as described below.

<int-jms:outbound-gateway id="jmsOutGateway"

 request-destination="outQueue"

 request-channel="outboundJmsRequests"

 reply-channel="jmsReplies"/>

The outbound-gateway payload extraction properties are inversely related to those of the inbound-
gateway (see the discussion above). That means that the extract-request-payload property value applies
to the Spring Integration Message that is being converted into a JMS Message to be sent as a request,
and the extract-reply-payload property value applies to the JMS Message that is received as a reply
and then converted into a Spring Integration Message to be subsequently sent to the reply-channel as
shown in the example configuration above.

<reply-listener/>

Spring Integration 2.2 introduced an alternative technique for handling replies. If you add a <reply-
listener/> child element to the gateway, instead of creating a consumer for each reply, a
MessageListener container is used to receive the replies and hand them over to the requesting
thread. This provides a number of performance benefits as well as alleviating the cached consumer
memory utilization problem described in the caution above.

When using a <reply-listener/> with an outbound gateway with no reply-destination,
instead of creating a TemporaryQueue for each request, a single TemporaryQueue is used (the
gateway will create an additional TemporaryQueue, as necessary, if the connection to the broker is
lost and recovered).

When using a correlation-key, multiple gateways can share the same reply destination because
the listener container uses a selector that is unique to each gateway.

Warning

If you specify a reply listener, and specify a reply destination (or reply destination name), but
provide NO correlation key, the gateway will log a warning and fall back to pre-2.2 behavior. This
is because there is no way to configure a selector in this case, thus there is no way to avoid a
reply going to a different gateway that might be configured with the same reply destination.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 380

Note that, in this situation, a new consumer is used for each request, and consumers can build up
in memory as described in the caution above; therefore cached consumers should not be used
in this case.

<int-jms:outbound-gateway id="jmsOutGateway"

 request-destination="outQueue"

 request-channel="outboundJmsRequests"

 reply-channel="jmsReplies">

 <int-jms:reply-listener />

</int-jms-outbound-gateway>

In the above example, a reply listener with default attributes is used. The listener is very lightweight and
it is anticipated that, in most cases, only a single consumer will be needed. However, attributes such
as concurrent-consumers, max-concurrent-consumers etc., can be added. Refer to the schema for a
complete list of supported attributes, together with the Spring JMS documentation for their meanings.

Idle Reply Listeners

Starting with version 4.2, the reply listener can be started as needed (and stopped after an idle time)
instead of running for the duration of the gateway’s lifecycle. This might be useful if you have many
gateways in the application context where they are mostly idle. One such situation is a context with many
(inactive) partitioned Spring Batch jobs using Spring Integration and JMS for partition distribution. If all
the reply listeners were active, the JMS broker would have an active consumer for each gateway. By
enabling the idle timeout, each consumer would exist only while the corresponding batch job is running
(and for a short time after it finishes).

See idle-reply-listener-timeout in the section called “Attribute Reference”.

Gateway Reply Correlation

The following describes the mechanisms used for reply correlation (ensuring the originating gateway
receives replies to only its requests), depending on how the gateway is configured. See the next section
for complete description of the attributes discussed here.

1. No reply-destination* properties; no <reply-listener>

A TemporaryQueue is created for each request, and deleted when the request is complete
(successfully or otherwise). correlation-key is irrelevant.

2. A reply-destination* property is provided; no <reply-listener/>; no correlation-
key

The JMSCorrelationID equal to the outgoing message id is used as a message selector for the
consumer:

messageSelector = "JMSCorrelationID = '" + messageId + "'"

The responding system is expected to return the inbound JMSMessageID in the reply
JMSCorrelationID - this is a common pattern and is implemented by the Spring Integration inbound
gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs.

Note

When using this configuration, you should not use a topic for replies; the reply may be lost.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jms.html
http://projects.spring.io/spring-batch/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 381

3. A reply-destination* property is provided; no <reply-listener/>; correlation-
key="JMSCorrelationID"

The gateway generates a unique correlation id and inserts it in the JMSCorrelationID header. The
message selector is:

messageSelector = "JMSCorrelationID = '" + uniqueId + "'"

The responding system is expected to return the inbound JMSCorrelationID in the reply
JMSCorrelationID - this is a common pattern and is implemented by the Spring Integration inbound
gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs.

4. A reply-destination* property is provided; no <reply-listener/>; correlation-
key="myCorrelationHeader"

The gateway generates a unique correlation id and inserts it in the myCorrelationHeader message
property. The correlation-key can be any user-defined value; the message selector is:

messageSelector = "myCorrelationHeader = '" + uniqueId + "'"

The responding system is expected to return the inbound myCorrelationHeader in the reply
myCorrelationHeader.

5. A reply-destination* property is provided; no <reply-listener/>; correlation-
key="JMSCorrelationID*"

(Note the * in the correlation key)

The gateway uses the value in the jms_correlationId header (if present) from the request message,
and inserts it in the JMSCorrelationID header. The message selector is:

messageSelector = "JMSCorrelationID = '" + headers['jms_correlationId'] + "'"

The user must ensure this value is unique.

If the header does not exist, the gateway behaves as in 3. above.

The responding system is expected to return the inbound JMSCorrelationID in the reply
JMSCorrelationID - this is a common pattern and is implemented by the Spring Integration inbound
gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs.

6. No reply-destination* properties; with <reply-listener>

A temporary queue is created and used for all replies from this gateway instance. No correlation data
is needed in the message but the outgoing JMSMessageID is used internally in the gateway to direct
the reply to the correct requesting thread.

7. A reply-destination* property is provided; with <reply-listener>, no correlation-
key

NOT ALLOWED

The <reply-listener/> configuration is ignored and the gateway behaves as in 2. above. A warning
log message is written indicating this situation.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 382

8. A reply-destination* property is provided; with <reply-listener>, correlation-
key="JMSCorrelationID"

The gateway has a unique correlation id and inserts it, together with an incrementing value in the
JMSCorrelationID header (gatewayId + "_" + ++seq). The message selector is:

messageSelector = "JMSCorrelationID LIKE '" + gatewayId%'"

The responding system is expected to return the inbound JMSCorrelationID in the reply
JMSCorrelationID - this is a common pattern and is implemented by the Spring Integration inbound
gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs. Since each
gateway has a unique id, each instance only gets its own replies; the complete correlation data is used
to route the reply to the correct requesting thread.

9. A reply-destination* property is provided; with <reply-listener/>; correlation-
key="myCorrelationHeader"

The gateway has a unique correlation id and inserts it, together with an incrementing value in the
myCorrelationHeader property (gatewayId + "_" + ++seq). The correlation-key can be
any user-defined value; and the message selector is:

messageSelector = "myCorrelationHeader LIKE '" + gatewayId%'"

The responding system is expected to return the inbound myCorrelationHeader in the reply
myCorrelationHeader. Since each gateway has a unique id, each instance only gets its own replies;
the complete correlation data is used to route the reply to the correct requesting thread.

10. A reply-destination* property is provided; with <reply-listener/>; correlation-
key="JMSCorrelationID*"

(Note the * in the correlation key)

NOT ALLOWED

User-supplied correlation ids are not permitted with a reply listener; the gateway will not initialize with
this configuration.

Async Gateway

Starting with version 4.3, you can now specify async="true" (or setAsync(true)) when configuring
the outbound gateway.

By default, when a request is sent to the gateway, the requesting thread is suspended until the reply is
received and the flow then continues on that thread. If async is true, the requesting thread is released
immediately after the send completes, and the reply is returned (and the flow continues) on the listener
container thread. This can be useful when the gateway is invoked on a poller thread; the thread is
released and is available for other tasks within the framework.

async requires a <reply-listener/> (or setUseReplyContainer(true) when using Java
configuration); it also requires a correlationKey (usually JMSCorrelationID) to be specified. If
either of these conditions are not met, async is ignored.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 383

Attribute Reference

<int-jms:outbound-gateway

 connection-factory="connectionFactory" ❶

 correlation-key="" ❷

 delivery-persistent="" ❸

 destination-resolver="" ❹

 explicit-qos-enabled="" ❺

 extract-reply-payload="true" ❻

 extract-request-payload="true" ❼

 header-mapper="" ❽

 message-converter="" ❾

 priority="" ❿

 receive-timeout="" 11

 reply-channel="" 12

 reply-destination="" 13

 reply-destination-expression="" 14

 reply-destination-name="" 15

 reply-pub-sub-domain="" 16

 reply-timeout="" 17

 request-channel="" 18

 request-destination="" 19

 request-destination-expression="" 20

 request-destination-name="" 21

 request-pub-sub-domain="" 22

 time-to-live="" 23

 requires-reply="" 24

 idle-reply-listener-timeout="" 25

 async=""> 26

 <int-jms:reply-listener /> 27

</int-jms:outbound-gateway>

❶ Reference to a javax.jms.ConnectionFactory; default jmsConnectionFactory.

❷ The name of a property that will contain correlation data to correlate responses with replies.
If omitted, the gateway will expect the responding system to return the value of the outbound
JMSMessageID header in the JMSCorrelationID header. If specified, the gateway will generate a
correlation id and populate the specified property with it; the responding system must echo back
that value in the same property. Can be set to JMSCorrelationID, in which case the standard
header is used instead of a simple String property to hold the correlation data. When a <reply-
container/> is used, the correlation-key MUST be specified if an explicit reply-destination
is provided. Starting with version 4.0.1 this attribute also supports the value JMSCorrelationID*,
which means that if the outbound message already has a JMSCorrelationID (mapped from
the jms_correlationId) header, it will be used, instead of generating a new one. Note, the
JMSCorrelationID* key is not allowed when using a <reply-container/> because the
container needs to set up a message selector during initialization.IMPORTANT: You should
understand that the gateway has no means to ensure uniqueness and unexpected side effects can
occur if the provided correlation id is not unique.

❸ A boolean value indicating whether the delivery mode should be DeliveryMode.PERSISTENT (true)
or DeliveryMode.NON_PERSISTENT (false). This setting will only take effect if explicit-qos-
enabled is true.

❹ A DestinationResolver; default is a DynamicDestinationResolver which simply maps
the destination name to a queue or topic of that name.

❺ When set to true, enables the use of quality of service attributes - priority, delivery-mode,
time-to-live.

❻ When set to true (default), the payload of the Spring Integration reply Message will be created
from the JMS Reply Message’s body (using the MessageConverter). When set to false, the
entire JMS Message will become the payload of the Spring Integration Message.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 384

❼ When set to true (default), the payload of the Spring Integration Message will be converted to a
JMSMessage (using the MessageConverter). When set to false, the entire Spring Integration
Message will be converted to the the JMSMessage. In both cases, the Spring Integration Message
Headers are mapped to JMS headers and properties using the HeaderMapper.

❽ A HeaderMapper used to map Spring Integration Message Headers to/from JMS Message
Headers/Properties.

❾ A reference to a MessageConverter for converting between JMS Messages and the Spring
Integration Message payloads (or messages if extract-request-payload is false). Default
is a SimpleMessageConverter.

❿ The default priority of request messages. Overridden by the message priority header, if present;
range 0-9. This setting will only take effect if explicit-qos-enabled is true.

11 The time (in millseconds) to wait for a reply. Default 5 seconds.
12 The channel to which the reply message will be sent.
13 A reference to a Destination which will be set as the JMSReplyTo header. At most, only one of

reply-destination, reply-destination-expression, or reply-destination-name
is allowed. If none is provided, a TemporaryQueue is used for replies to this gateway.

14 A SpEL expression evaluating to a Destination which will be set as the JMSReplyTo
header. The expression can result in a Destination object, or a String, which will be used
by the DestinationResolver to resolve the actual Destination. At most, only one of
reply-destination, reply-destination-expression, or reply-destination-name
is allowed. If none is provided, a TemporaryQueue is used for replies to this gateway.

15 The name of the destination which will be set as the JMSReplyTo header; used by
the DestinationResolver to resolve the actual Destination. At most, only one of
reply-destination, reply-destination-expression, or reply-destination-name
is allowed. If none is provided, a TemporaryQueue is used for replies to this gateway.

16 When set to true, indicates that any reply Destination resolved by the
DestinationResolver should be a Topic rather then a Queue.

17 The time the gateway will wait when sending the reply message to the reply-channel. This only
has an effect if the reply-channel can block - such as a QueueChannel with a capacity limit
that is currently full. Default: infinity.

18 The channel on which this gateway receives request messages.
19 A reference to a Destination to which request messages will be sent. One, and only one, of

reply-destination, reply-destination-expression, or reply-destination-name
is required.

20 A SpEL expression evaluating to a Destination to which request messages will be sent.
The expression can result in a Destination object, or a String, which will be used by
the DestinationResolver to resolve the actual Destination. One, and only one, of
reply-destination, reply-destination-expression, or reply-destination-name
is required.

21 The name of the destination to which request messages will be sent; used by the
DestinationResolver to resolve the actual Destination. One, and only one, of
reply-destination, reply-destination-expression, or reply-destination-name
is required.

22 When set to true, indicates that any request Destination resolved by the
DestinationResolver should be a Topic rather then a Queue.

23 Specify the message time to live. This setting will only take effect if explicit-qos-enabled
is true.

24 Specify whether this outbound gateway must return a non-null value. This value is true by default,
and a MessageTimeoutException will be thrown when the underlying service does not return
a value after the receive-timeout. Note, it is important to keep in mind that, if the service is

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 385

never expected to return a reply, it would be better to use a <int-jms:outbound-channel-
adapter/> instead of a <int-jms:outbound-gateway/> with requires-reply="false".
With the latter, the sending thread is blocked, waiting for a reply for the receive-timeout period.

25 When a <reply-listener /> is used, it’s lifecycle (start/stop) matches that of the gateway by
default. When this value is greater than 0, the container is started on demand (when a request is
sent). The container continues to run until at least this time elapses with no requests being received
(and no replies are outstanding). The container will be started again on the next request. The stop
time is a minimum and may actually be up to 1.5x this value.

26 See the section called “Async Gateway”.
27 When this element is included, replies are received by an asynchronous

MessageListenerContainer rather than creating a consumer for each reply. This can be more
efficient in many cases.

21.6 Mapping Message Headers to/from JMS Message

JMS Message can contain meta-information such as JMS API headers as well as simple properties. You
can map those to/from Spring Integration Message Headers using JmsHeaderMapper. The JMS API
headers are passed to the appropriate setter methods (e.g. setJMSReplyTo) whereas other headers
will be copied to the general properties of the JMS Message. JMS Outbound Gateway is bootstrapped
with the default implementation of JmsHeaderMapper which will map standard JMS API Headers as
well as primitive/String Message Headers. Custom header mapper could also be provided via header-
mapper attribute of inbound and outbound gateways.

Important

Since version 4.0, the JMSPriority header is mapped to the standard priority header for
inbound messages (previously, the priority header was only used for outbound messages).
To revert to the previous behavior (do not map inbound priority), use the mapInboundPriority
property of DefaultJmsHeaderMapper with argument set to false.

Important

Since version 4.3, the DefaultJmsHeaderMapper now maps the standard correlationId
header as a message property by invoking its toString() method (correlationId is often
a UUID, which is not a type that is supported by JMS). On the inbound side, it is mapped as a
String. This is independent of the jms_correlationId header which is mapped to/from the
JMSCorrelationID header. The JMSCorrelationID is generally used to correlate requests
and replies whereas the correlationId is often used to combine related messages into a group
(such as with an aggregator or resequencer).

21.7 Message Conversion, Marshalling and Unmarshalling

If you need to convert the message, all JMS adapters and gateways, allow you to provide
a MessageConverter via message-converter attribute. Simply provide the bean name of an
instance of MessageConverter that is available within the same ApplicationContext. Also,
to provide some consistency with Marshaller and Unmarshaller interfaces Spring provides
MarshallingMessageConverter which you can configure with your own custom Marshallers and
Unmarshallers

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 386

<int-jms:inbound-gateway request-destination="requestQueue"

 request-channel="inbound-gateway-channel"

 message-converter="marshallingMessageConverter"/>

<bean id="marshallingMessageConverter"

 class="org.springframework.jms.support.converter.MarshallingMessageConverter">

 <constructor-arg>

 <bean class="org.bar.SampleMarshaller"/>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.bar.SampleUnmarshaller"/>

 </constructor-arg>

</bean>

Note

Note, however, that when you provide your own MessageConverter instance, it will still be
wrapped within the HeaderMappingMessageConverter. This means that the extract-request-
payload and extract-reply-payload properties may affect what actual objects are passed to
your converter. The HeaderMappingMessageConverter itself simply delegates to a target
MessageConverter while also mapping the Spring Integration MessageHeaders to JMS Message
properties and vice-versa.

21.8 JMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applications that are integrating
with other external systems. The inbound options assume that some other system is sending JMS
Messages to the JMS Destination and the outbound options assume that some other system is receiving
from the Destination. The other system may or may not be a Spring Integration application. Of course,
when sending the Spring Integration Message instance as the body of the JMS Message itself (with the
extract-payload value set to false), it is assumed that the other system is based on Spring Integration.
However, that is by no means a requirement. That flexibility is one of the benefits of using a Message-
based integration option with the abstraction of "channels" or Destinations in the case of JMS.

There are cases where both the producer and consumer for a given JMS Destination are intended to
be part of the same application, running within the same process. This could be accomplished by using
a pair of inbound and outbound Channel Adapters. The problem with that approach is that two adapters
are required even though conceptually the goal is to have a single Message Channel. A better option
is supported as of Spring Integration version 2.0. Now it is possible to define a single "channel" when
using the JMS namespace.

<int-jms:channel id="jmsChannel" queue="exampleQueue"/>

The channel in the above example will behave much like a normal <channel/> element from the
main Spring Integration namespace. It can be referenced by both "input-channel" and "output-channel"
attributes of any endpoint. The difference is that this channel is backed by a JMS Queue instance named
"exampleQueue". This means that asynchronous messaging is possible between the producing and
consuming endpoints, but unlike the simpler asynchronous Message Channels created by adding a
<queue/> sub-element within a non-JMS <channel/> element, the Messages are not just stored in an
in-memory queue. Instead those Messages are passed within a JMS Message body, and the full power
of the underlying JMS provider is then available for that channel. Probably the most common rationale
for using this alternative would be to take advantage of the persistence made available by the store
and forward approach of JMS messaging. If configured properly, the JMS-backed Message Channel
also supports transactions. In other words, a producer would not actually write to a transactional JMS-

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 387

backed channel if its send operation is part of a transaction that rolls back. Likewise, a consumer would
not physically remove a JMS Message from the channel if the reception of that Message is part of a
transaction that rolls back. Note that the producer and consumer transactions are separate in such a
scenario. This is significantly different than the propagation of a transactional context across the simple,
synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a JMS Queue instance, it will act as a point-to-point channel.
If on the other hand, publish/subscribe behavior is needed, then a separate element can be used, and
a JMS Topic can be referenced instead.

<int-jms:publish-subscribe-channel id="jmsChannel" topic="exampleTopic"/>

For either type of JMS-backed channel, the name of the destination may be provided instead of a
reference.

<int-jms:channel id="jmsQueueChannel" queue-name="exampleQueueName"/>

<jms:publish-subscribe-channel id="jmsTopicChannel" topic-name="exampleTopicName"/>

In the examples above, the Destination names would be resolved by Spring’s
default DynamicDestinationResolver implementation, but any implementation of the
DestinationResolver interface could be provided. Also, the JMS ConnectionFactory
is a required property of the channel, but by default the expected bean name would be
jmsConnectionFactory. The example below provides both a custom instance for resolution of the
JMS Destination names and a different name for the ConnectionFactory.

<int-jms:channel id="jmsChannel" queue-name="exampleQueueName"

 destination-resolver="customDestinationResolver"

 connection-factory="customConnectionFactory"/>

For the <publish-subscribe-channel />; set the durable attribute to true for a durable
subscription, subscription-shared for a shared subscription (requires a JMS 2.0 broker and has
been available since version 4.2). Use subscription to name the subscription.

21.9 Using JMS Message Selectors

With JMS message selectors you can filter JMS Messages based on JMS headers as well as JMS
properties. For example, if you want to listen to messages whose custom JMS header property
fooHeaderProperty equals bar, you can specify the following expression:

fooHeaderProperty = 'bar'

Message selector expressions are a subset of the SQL-92 conditional expression syntax, and are
defined as part of the Java Message Service specification (Version 1.1 April 12, 2002). Specifically,
please see chapter "3.8 Message Selection". It contains a detailed explanation of the expressions
syntax.

You can specify the JMS message selector attribute using XML Namespace configuration for the
following Spring Integration JMS components:

• JMS Channel

• JMS Publish Subscribe Channel

• JMS Inbound Channel Adapter

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://en.wikipedia.org/wiki/SQL-92
http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 388

• JMS Inbound Gateway

• JMS Message-driven Channel Adapter

Important

It is important to remember that you cannot reference message body values using JMS Message
selectors.

21.10 JMS Samples

To experiment with these JMS adapters, check out the JMS samples available in the Spring Integration
Samples Git repository:

• https://github.com/SpringSource/spring-integration-samples/tree/master/basic/jms

There are two samples included. One provides Inbound and Outbound Channel Adapters, and the
other provides Inbound and Outbound Gateways. They are configured to run with an embedded_http://
activemq.apache.org/[ActiveMQ]_ process, but the samples' common.xml__Spring Application Context
file can easily be modified to support either a different JMS provider or a standalone ActiveMQ process.

In other words, you can split the configuration, so that the Inbound and Outbound Adapters are running
in separate JVMs. If you have ActiveMQ installed, simply modify the brokerURL property within the
common.xml file to use tcp://localhost:61616 (instead of vm://localhost). Both of the samples accept
input via stdin and then echo back to stdout. Look at the configuration to see how these messages are
routed over JMS.

https://github.com/SpringSource/spring-integration-samples/tree/master/basic/jms
https://github.com/SpringSource/spring-integration-samples/blob/master/basic/jms/src/main/resources/META-INF/spring/integration/common.xml

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 389

22. Mail Support

22.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the MailSendingMessageHandler. It
delegates to a configured instance of Spring’s JavaMailSender:

 JavaMailSender mailSender = context.getBean("mailSender", JavaMailSender.class);

 MailSendingMessageHandler mailSendingHandler = new MailSendingMessageHandler(mailSender);

MailSendingMessageHandler has various mapping strategies that use Spring’s MailMessage
abstraction. If the received Message’s payload is already a MailMessage instance, it will be sent
directly. Therefore, it is generally recommended to precede this consumer with a Transformer for non-
trivial MailMessage construction requirements. However, a few simple Message mapping strategies
are supported out-of-the-box. For example, if the message payload is a byte array, then that will be
mapped to an attachment. For simple text-based emails, you can provide a String-based Message
payload. In that case, a MailMessage will be created with that String as the text content. If you are
working with a Message payload type whose toString() method returns appropriate mail text content,
then consider adding Spring Integration’s ObjectToStringTransformer prior to the outbound Mail adapter
(see the example within the section called “Configuring Transformer with XML” for more detail).

The outbound MailMessage may also be configured with certain values from the MessageHeaders. If
available, values will be mapped to the outbound mail’s properties, such as the recipients (TO, CC, and
BCC), the from/reply-to, and the subject. The header names are defined by the following constants:

 MailHeaders.SUBJECT

 MailHeaders.TO

 MailHeaders.CC

 MailHeaders.BCC

 MailHeaders.FROM

 MailHeaders.REPLY_TO

Note

MailHeaders also allows you to override corresponding MailMessage values. For example: If
MailMessage.to is set to foo@bar.com and MailHeaders.TO Message header is provided it
will take precedence and override the corresponding value in MailMessage.

22.2 Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the MailReceivingMessageSource.
It delegates to a configured instance of Spring Integration’s own MailReceiver interface, and there are
two implementations: Pop3MailReceiver and ImapMailReceiver. The easiest way to instantiate
either of these is by passing the uri for a Mail store to the receiver’s constructor. For example:

MailReceiver receiver = new Pop3MailReceiver("pop3://usr:pwd@localhost/INBOX");

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you
are using). Spring Integration provides the ImapIdleChannelAdapter which is itself a Message-
producing endpoint. It delegates to an instance of the ImapMailReceiver but enables asynchronous
reception of Mail Messages. There are examples in the next section of configuring both types of inbound
Channel Adapter with Spring Integration’s namespace support in the mail schema.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 390

Important

Normally, when IMAPMessage.getContent() method is called, certain headers as well as the
body are rendered (for a simple text email):

To: foo@bar

From: bar@baz

Subject: Test Email

foo

With a simple MimeMessage, getContent() just returns the mail body (foo in this case).

Starting with version 2.2, the framework eagerly fetches IMAP messages and exposes them
as an internal subclass of MimeMessage. This had the undesired side effect of changing the
getContent() behavior. This inconsistency was further exacerbated by the Mail Mapping
enhancement in version 4.3 in that, when a header mapper was provided, the payload was
rendered by the IMAPMessage.getContent() method. This meant that IMAP content differed
depending on whether or not a header mapper was provided. Starting with version 5.0,
messages originating from an IMAP source will now render the content in accordance with
IMAPMessage.getContent() behavior, regardless of whether a header mapper is provided.
If you are not using a header mapper, and you wish to revert to the previous behavior of just
rendering the body, set the simpleContent boolean property on the mail receiver to true. This
property now controls the rendering regardless of whether a header mapper is used; it now allows
the simple body-only rendering when a header mapper is provided.

22.3 Inbound Mail Message Mapping

By default, the payload of messages produced by the inbound adapters is the raw MimeMessage;
you can interrogate the headers and content using that object. Starting with version 4.3, you can
provide a HeaderMapper<MimeMessage> to map the headers to MessageHeaders; for convenience,
a DefaultMailHeaderMapper is provided for this purpose. This maps the following headers:

• mail_from - A String representation of the from address.

• mail_bcc - A String array containing the bcc addresses.

• mail_cc - A String array containing the cc addresses.

• mail_to - A String array containing the to addresses.

• mail_replyTo - A String representation of the replyTo address.

• mail_subject - The mail subject.

• mail_lineCount - A line count (if available).

• mail_receivedDate - The received date (if available).

• mail_size - The mail size (if available).

• mail_expunged - A boolen indicating if the message is expunged.

• mail_raw - A MultiValueMap containing all the mail headers and their values.

• mail_contentType - The content type of the original mail message.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 391

• contentType - The payload content type (see below).

When message mapping is enabled, the payload depends on the mail message and its implementation.
Email contents are usually rendered by a DataHandler within the MimeMessage.

• For a simple text/* email, the payload will be a String and the contentType header will be the
same as mail_contentType.

• For a messages with embedded javax.mail.Part s, the DataHandler usually renders a Part
object - these objects are not Serializable, and are not suitable for serialization using alternative
technologies such as Kryo. For this reason, by default, when mapping is enabled, such payloads
are rendered as a raw byte[] containing the Part data. Examples of Part are Message and
Multipart. The contentType header is application/octet-stream in this case. To change
this behavior, and receive a Multipart object payload, set embeddedPartsAsBytes to false
on the MailReceiver. For content types that are unknown to the DataHandler, the contents are
rendered as a byte[] with a contentType header of application/octet-stream.

When you do not provide a header mapper, the message payload is the MimeMessage presented by
javax.mail. The framework provides a MailToStringTransformer which can be used to convert
the message using a simple strategy to convert the mail contents to a String. This is also available using
the XML namespace:

<int-mail:mail-to-string-transformer ... >

and with Java configuration:

@Bean

@Transformer(inputChannel="...", outputChannel="...")

public Transformer transformer() {

 return new MailToStringTransformer();

}

and with the Java DSL:

 ...

 .transform(Transformers.fromMail())

 ...

Starting with version 4.3, the transformer will handle embedded Part as well as Multipart which was
handled previously. The transformer is a subclass of AbstractMailTransformer which maps the
address and subject headers from the list above. If you wish to perform some other transformation on
the message, consider subclassing AbstractMailTransformer.

22.4 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int-mail="http://www.springframework.org/schema/integration/mail"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration/mail

 http://www.springframework.org/schema/integration/mail/spring-integration-mail.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the MailSender:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 392

<int-mail:outbound-channel-adapter channel="outboundMail"

 mail-sender="mailSender"/>

Alternatively, provide the host, username, and password:

<int-mail:outbound-channel-adapter channel="outboundMail"

 host="somehost" username="someuser" password="somepassword"/>

Note

Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, a <poller> sub-element should be provided (see the section called
“Endpoint Namespace Support”).

When using the namespace support, a header-enricher Message Transformer is also available. This
simplifies the application of the headers mentioned above to any Message prior to sending to the Mail
Outbound Channel Adapter.

<int-mail:header-enricher input-channel="expressionsInput" default-overwrite="false">

 <int-mail:to expression="payload.to"/>

 <int-mail:cc expression="payload.cc"/>

 <int-mail:bcc expression="payload.bcc"/>

 <int-mail:from expression="payload.from"/>

 <int-mail:reply-to expression="payload.replyTo"/>

 <int-mail:subject expression="payload.subject" overwrite="true"/>

</int-mail:header-enricher>

This example assumes the payload is a JavaBean with appropriate getters for the specified properties,
but any SpEL expression can be used. Alternatively, use the value attribute to specify a literal. Notice
also that you can specify default-overwrite and individual overwrite attributes to control the
behavior with existing headers.

To configure an Inbound Channel Adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP IDLE - if not, then polling is the only option). A polling Channel
Adapter simply requires the store URI and the channel to send inbound Messages to. The URI may
begin with "pop3" or "imap":

<int-mail:inbound-channel-adapter id="imapAdapter"

 store-uri="imaps://[username]:[password]@imap.gmail.com/INBOX"

 java-mail-properties="javaMailProperties"

 channel="receiveChannel"

 should-delete-messages="true"

 should-mark-messages-as-read="true"

 auto-startup="true">

 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>

</int-mail:inbound-channel-adapter>

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter"
element instead. Since the "idle" command enables event-driven notifications, no poller is necessary
for this adapter. It will send a Message to the specified channel as soon as it receives the notification
that new mail is available:

<int-mail:imap-idle-channel-adapter id="customAdapter"

 store-uri="imaps://[username]:[password]@imap.gmail.com/INBOX"

 channel="receiveChannel"

 auto-startup="true"

 should-delete-messages="false"

 should-mark-messages-as-read="true"

 java-mail-properties="javaMailProperties"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 393

...where javaMailProperties could be provided by creating and populating a regular
java.utils.Properties object. For example via util namespace provided by Spring.

Important

If your username contains the @ character use %40 instead of @ to avoid parsing errors from
the underlying JavaMail API.

<util:properties id="javaMailProperties">

 <prop key="mail.imap.socketFactory.class">javax.net.ssl.SSLSocketFactory</prop>

 <prop key="mail.imap.socketFactory.fallback">false</prop>

 <prop key="mail.store.protocol">imaps</prop>

 <prop key="mail.debug">false</prop>

</util:properties>

By default, the ImapMailReceiver will search for Messages based on the default SearchTerm which
is All mails that are RECENT (if supported), that are NOT ANSWERED, that are NOT DELETED,
that are NOT SEEN and have not been processed by this mail receiver (enabled by the use of the
custom USER flag or simply NOT FLAGGED if not supported). The custom user flag is spring-
integration-mail-adapter but can be configured. Since version 2.2, the SearchTerm used by
the ImapMailReceiver is fully configurable via the SearchTermStrategy which you can inject via
the search-term-strategy attribute. SearchTermStrategy is a simple strategy interface with
a single method that allows you to create an instance of the SearchTerm that will be used by the
ImapMailReceiver.

See Section 22.5, “Marking IMAP Messages When \Recent is Not Supported” regarding message
flagging.

public interface SearchTermStrategy {

 SearchTerm generateSearchTerm(Flags supportedFlags, Folder folder);

}

For example:

<mail:imap-idle-channel-adapter id="customAdapter"

 store-uri="imap:foo"

 …

 search-term-strategy="searchTermStrategy"/>

<bean id="searchTermStrategy"

 class="o.s.i.mail.config.ImapIdleChannelAdapterParserTests.TestSearchTermStrategy"/>

In the above example instead of relying on the default SearchTermStrategy the
TestSearchTermStrategy will be used instead

Important: IMAP PEEK

Starting with version 4.1.1, the IMAP mail receiver will use the mail.imap.peek or
mail.imaps.peek javamail property, if specified. Previously, the receiver ignored the property
and always set the PEEK flag. Now, if you explicitly set this property to false, the message will
be marked as \Seen regardless of the setting of shouldMarkMessagesRead. If not specified,
the previous behavior is retained (peek is true).

IMAP IDLE and lost connection

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 394

When using IMAP IDLE channel adapter there might be situations where connection to the server may
be lost (e.g., network failure) and since Java Mail documentation explicitly states that the actual IMAP
API is EXPERIMENTAL it is important to understand the differences in the API and how to deal with
them when configuring IMAP IDLE adapters. Currently Spring Integration Mail adapters was tested with
Java Mail 1.4.1 and Java Mail 1.4.3 and depending on which one is used special attention must be
payed to some of the java mail properties that needs to be set with regard to auto-reconnect.

Note

The following behavior was observed with GMAIL but should provide you with some tips on how to
solve re-connect issue with other providers, however feedback is always welcome. Again, below
notes are based on GMAIL.

With Java Mail 1.4.1 if mail.imaps.timeout property is set for a relatively short period of time
(e.g., ~ 5 min) then IMAPFolder.idle() will throw FolderClosedException after this timeout.
However if this property is not set (should be indefinite) the behavior that was observed is that
IMAPFolder.idle() method never returns nor it throws an exception. It will however reconnect
automatically if connection was lost for a short period of time (e.g., under 10 min), but if connection
was lost for a long period of time (e.g., over 10 min), then IMAPFolder.idle() will not throw
FolderClosedException nor it will re-establish connection and will remain in the blocked state
indefinitely, thus leaving you no possibility to reconnect without restarting the adapter. So the only way
to make re-connect to work with Java Mail 1.4.1 is to set mail.imaps.timeout property explicitly
to some value, but it also means that such value should be relatively short (under 10 min) and the
connection should be re-established relatively quickly. Again, it may be different with other providers.
With Java Mail 1.4.3 there was significant improvements to the API ensuring that there will always be
a condition which will force IMAPFolder.idle() method to return via StoreClosedException or
FolderClosedException or simply return, thus allowing us to proceed with auto-reconnect. Currently
auto-reconnect will run infinitely making attempts to reconnect every 10 sec.

Important

In both configurations channel and should-delete-messages are the REQUIRED attributes.
The important thing to understand is why should-delete-messages is required. The issue is
with the POP3 protocol, which does NOT have any knowledge of messages that were READ.
It can only know what’s been read within a single session. This means that when your POP3
mail adapter is running, emails are successfully consumed as as they become available during
each poll and no single email message will be delivered more then once. However, as soon as
you restart your adapter and begin a new session all the email messages that might have been
retrieved in the previous session will be retrieved again. That is the nature of POP3. Some might
argue that should-delete-messages should be TRUE by default. In other words, there are
two valid and mutually exclusive use cases which make it very hard to pick a single "best" default.
You may want to configure your adapter as the only email receiver in which case you want to
be able to restart such adapter without fear that messages that were delivered before will not be
redelivered again. In this case setting should-delete-messages to TRUE would make most
sense. However, you may have another use case where you may want to have multiple adapters
that simply monitor email servers and their content. In other words you just want to peek but not
touch. Then setting should-delete-messages to FALSE would be much more appropriate.
So since it is hard to choose what should be the right default value for the should-delete-
messages attribute, we simply made it a required attribute, to be set by the user. Leaving it up to
the user also means, you will be less likely to end up with unintended behavior.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 395

Note

When configuring a polling email adapter’s should-mark-messages-as-read attribute, be aware of
the protocol you are configuring to retrieve messages. For example POP3 does not support this
flag which means setting it to either value will have no effect as messages will NOT be marked
as read.

Important

It is important to understand that that these actions (marking messages read, and deleting
messages) are performed after the messages are received, but before they are processed. This
can cause messages to be lost.

You may wish to consider using transaction synchronization instead - see Section 22.7,
“Transaction Synchronization”

The <imap-idle-channel-adapter/> also accepts the error-channel attribute. If a downstream
exception is thrown and an error-channel is specified, a MessagingException message containing
the failed message and original exception, will be sent to this channel. Otherwise, if the downstream
channels are synchronous, any such exception will simply be logged as a warning by the channel
adapter.

Note

Beginning with the 3.0 release, the IMAP idle adapter emits application events (specifically
ImapIdleExceptionEvent s) when exceptions occur. This allows applications to
detect and act on those exceptions. The events can be obtained using an <int-
event:inbound-channel-adapter> or any ApplicationListener configured to receive
an ImapIdleExceptionEvent or one of its super classes.

22.5 Marking IMAP Messages When \Recent is Not Supported

If shouldMarkMessagesAsRead is true, the IMAP adapters set the \Seen flag.

In addition, when an email server does not support the \Recent flag, the IMAP adapters mark
messages with a user flag (spring-integration-mail-adapter by default) as long as the server
supports user flags. If not, Flag.FLAGGED is set to true. These flags are applied regardless of the
shouldMarkMessagesRead setting.

As discussed in Section 22.4, “Mail Namespace Support”, the default SearchTermStrategy will
ignore messages so flagged.

Starting with version 4.2.2, the name of the user flag can be set using setUserFlag on the
MailReceiver - this allows multiple receivers to use a different flag (as long as the mail server supports
user flags). The attribute user-flag is available when configuring the adapter with the namespace.

22.6 Email Message Filtering

Very often you may encounter a requirement to filter incoming messages (e.g., You want to only read
emails that have Spring Integration in the Subject line). This could be easily accomplished by connecting
Inbound Mail adapter with an expression-based Filter. Although it would work, there is a downside to
this approach. Since messages would be filtered after going through inbound mail adapter all such

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 396

messages would be marked as read (SEEN) or Un-read (depending on the value of should-mark-
messages-as-read attribute). However in reality what would be more useful is to mark messages as
SEEN only if they passed the filtering criteria. This is very similar to looking at your email client while
scrolling through all the messages in the preview pane, but only flagging messages as SEEN that were
actually opened and read.

In Spring Integration 2.0.4 we’ve introduced mail-filter-expression attribute on inbound-
channel-adapter and imap-idle-channel-adapter. This attribute allows you to provide an
expression which is a combination of SpEL and Regular Expression. For example if you would like
to read only emails that contain Spring Integration in the Subject line, you would configure mail-
filter-expression attribute like this this: mail-filter-expression="subject matches '(?
i).*Spring Integration.*"

Since javax.mail.internet.MimeMessage is the root context of SpEL Evaluation Context, you can
filter on any value available through MimeMessage including the actual body of the message. This one
is particularly important since reading the body of the message would typically result in such message
to be marked as SEEN by default, but since we now setting PEAK flag of every incomming message to
true, only messages that were explicitly marked as SEEN will be seen as read.

So in the below example only messages that match the filter expression will be output by this adapter and
only those messages will be marked as SEEN. In this case based on the mail-filter-expression
only messages that contain Spring Integration in the subject line will be produced by this adapter.

<int-mail:imap-idle-channel-adapter id="customAdapter"

 store-uri="imaps://some_google_address:${password}@imap.gmail.com/INBOX"

 channel="receiveChannel"

 should-mark-messages-as-read="true"

 java-mail-properties="javaMailProperties"

 mail-filter-expression="subject matches '(?i).*Spring Integration.*'"/>

Another reasonable question is what happens on the next poll, or idle event, or what happens when
such adapter is restarted. Will there be a potential duplication of massages to be filtered? In other words
if on the last retrieval where you had 5 new messages and only 1 passed the filter what would happen
with the other 4. Would they go through the filtering logic again on the next poll or idle? After all they
were not marked as SEEN. The actual answer is no. They would not be subject of duplicate processing
due to another flag (RECENT) that is set by the Email server and is used by Spring Integration mail
search filter. Folder implementations set this flag to indicate that this message is new to this folder, that
is, it has arrived since the last time this folder was opened. In other while our adapter may peek at the
email it also lets the email server know that such email was touched and therefore will be marked as
RECENT by the email server.

22.7 Transaction Synchronization

Transaction synchronization for inbound adapters allows you to take different actions after a transaction
commits, or rolls back. Transaction synchronization is enabled by adding a <transactional/
> element to the poller for the polled <inbound-adapter/>, or to the <imap-idle-inbound-
adapter/>. Even if there is no real transaction involved, you can still enable this feature by using
a PseudoTransactionManager with the <transactional/> element. For more information, see
Section C.3, “Transaction Synchronization”.

Because of the many different mail servers, and specifically the limitations that some have, at this time
we only provide a strategy for these transaction synchronizations. You can send the messages to some
other Spring Integration components, or invoke a custom bean to perform some action. For example,

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 397

to move an IMAP message to a different folder after the transaction commits, you might use something
similar to the following:

<int-mail:imap-idle-channel-adapter id="customAdapter"

 store-uri="imaps://foo.com:password@imap.foo.com/INBOX"

 channel="receiveChannel"

 auto-startup="true"

 should-delete-messages="false"

 java-mail-properties="javaMailProperties">

 <int:transactional synchronization-factory="syncFactory"/>

</int-mail:imap-idle-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">

 <int:after-commit expression="@syncProcessor.process(payload)"/>

</int:transaction-synchronization-factory>

<bean id="syncProcessor" class="foo.bar.Mover"/>

public class Mover {

 public void process(MimeMessage message) throws Exception{

 Folder folder = message.getFolder();

 folder.open(Folder.READ_WRITE);

 String messageId = message.getMessageID();

 Message[] messages = folder.getMessages();

 FetchProfile contentsProfile = new FetchProfile();

 contentsProfile.add(FetchProfile.Item.ENVELOPE);

 contentsProfile.add(FetchProfile.Item.CONTENT_INFO);

 contentsProfile.add(FetchProfile.Item.FLAGS);

 folder.fetch(messages, contentsProfile);

 // find this message and mark for deletion

 for (int i = 0; i < messages.length; i++) {

 if (((MimeMessage) messages[i]).getMessageID().equals(messageId)) {

 messages[i].setFlag(Flags.Flag.DELETED, true);

 break;

 }

 }

 Folder fooFolder = store.getFolder("FOO"));

 fooFolder.appendMessages(new MimeMessage[]{message});

 folder.expunge();

 folder.close(true);

 fooFolder.close(false);

 }

}

Important

For the message to be still available for manipulation after the transaction, should-delete-
messages must be set to false.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 398

23. MongoDb Support

As of version 2.1 Spring Integration introduces support for MongoDB: a "high-performance, open source,
document-oriented database". This support comes in the form of a MongoDB-based MessageStore.

23.1 Introduction

To download, install, and run MongoDB please refer to the MongoDB documentation.

23.2 Connecting to MongoDb

To begin interacting with MongoDB you first need to connect to it. Spring Integration builds on the
support provided by another Spring project, Spring Data MongoDB, which provides a factory class called
MongoDbFactory that simplifies integration with the MongoDB Client API.

MongoDbFactory

To connect to MongoDB you can use an implementation of the MongoDbFactory interface:

public interface MongoDbFactory {

 /**

 * Creates a default {@link DB} instance.

 *

 * @return the DB instance

 * @throws DataAccessException

 */

 DB getDb() throws DataAccessException;

 /**

 * Creates a {@link DB} instance to access the database with the given name.

 *

 * @param dbName must not be {@literal null} or empty.

 *

 * @return the DB instance

 * @throws DataAccessException

 */

 DB getDb(String dbName) throws DataAccessException;

}

The example below shows SimpleMongoDbFactory, the out-of-the-box implementation:

In Java:

MongoDbFactory mongoDbFactory = new SimpleMongoDbFactory(new Mongo(), "test");

Or in Spring’s XML configuration:

<bean id="mongoDbFactory" class="o.s.data.mongodb.core.SimpleMongoDbFactory">

 <constructor-arg>

 <bean class="com.mongodb.Mongo"/>

 </constructor-arg>

 <constructor-arg value="test"/>

</bean>

As you can see SimpleMongoDbFactory takes two arguments: 1) a Mongo instance and 2) a String
specifying the name of the database. If you need to configure properties such as host, port, etc,
you can pass those using one of the constructors provided by the underlying Mongo class. For more
information on how to configure MongoDB, please refer to the Spring-Data-MongoDB reference.

http://www.mongodb.org/
http://www.mongodb.org/downloads
http://projects.spring.io/spring-data-mongodb/
http://docs.spring.io/spring-data/data-mongo/docs/current/reference/html/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 399

23.3 MongoDB Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful
when dealing with components that have a capability to buffer messages (QueueChannel, Aggregator,
Resequencer, etc.) if reliability is a concern. In Spring Integration, the MessageStore strategy also
provides the foundation for the ClaimCheck pattern, which is described in EIP as well.

Spring Integration’s MongoDB module provides the MongoDbMessageStore which is an
implementation of both the MessageStore strategy (mainly used by the ClaimCheck pattern) and the
MessageGroupStore strategy (mainly used by the Aggregator and Resequencer patterns).

<bean id="mongoDbMessageStore" class="o.s.i.mongodb.store.MongoDbMessageStore">

 <constructor-arg ref="mongoDbFactory"/>

</bean>

<int:channel id="somePersistentQueueChannel">

 <int:queue message-store="mongoDbMessageStore"/>

<int:channel>

<int:aggregator input-channel="inputChannel" output-channel="outputChannel"

 message-store="mongoDbMessageStore"/>

Above is a sample MongoDbMessageStore configuration that shows its usage by a QueueChannel
and an Aggregator. As you can see it is a simple bean configuration, and it expects a MongoDbFactory
as a constructor argument.

The MongoDbMessageStore expands the Message as a Mongo document with all nested properties
using the Spring Data Mongo Mapping mechanism. It is useful when you need to have access to the
payload or headers for auditing or analytics, for example, against stored messages.

Important

The MongoDbMessageStore uses a custom MappingMongoConverter implementation to
store Message s as MongoDB documents and there are some limitations for the properties
(payload and header values) of the Message. For example, there is no ability to configure
custom converters for complex domain payload s or header values. Or to provide a custom
MongoTemplate (or MappingMongoConverter). To achieve these capabilities, an alternative
MongoDB MessageStore implementation has been introduced; see next paragraph.

Spring Integration 3.0 introduced the ConfigurableMongoDbMessageStore - MessageStore
and MessageGroupStore implementation. This class can receive, as a constructor argument,
a MongoTemplate, with which you can configure with a custom WriteConcern, for example.
Another constructor requires a MappingMongoConverter, and a MongoDbFactory, which
allows you to provide some custom conversions for Message s and their properties. Note, by
default, the ConfigurableMongoDbMessageStore uses standard Java serialization to write/
read Message s to/from MongoDB (see MongoDbMessageBytesConverter) and relies on
default values for other properties from MongoTemplate, which is built from the provided
MongoDbFactory and MappingMongoConverter. The default name for the collection stored by the
ConfigurableMongoDbMessageStore is configurableStoreMessages. It is recommended to
use this implementation for robust and flexible solutions when messages contain complex data types.

MongoDB Channel Message Store

Starting with version 4.0, the new MongoDbChannelMessageStore has been introduced; it
is an optimized MessageGroupStore for use in QueueChannel s. With priorityEnabled

http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 400

= true, it can be used in <int:priority-queue> s to achieve priority order polling
for persisted messages. The priority MongoDB document field is populated from the
IntegrationMessageHeaderAccessor.PRIORITY (priority) message header.

In addition, all MongoDB MessageStore s now have a sequence field for MessageGroup documents.
The sequence value is the result of an $inc operation for a simple sequence document from the
same collection, which is created on demand. The sequence field is used in poll operations to provide
first-in-first-out (FIFO) message order (within priority if configured) when messages are stored within
the same millisecond.

Note

It is not recommended to use the same MongoDbChannelMessageStore bean for priority and
non-priority, because the priorityEnabled option applies to the entire store. However, the
same collection can be used for both MongoDbChannelMessageStore types, because
message polling from the store is sorted and uses indexes. To configure that scenario, simply
extend one message store bean from the other:

<bean id="channelStore" class="o.s.i.mongodb.store.MongoDbChannelMessageStore">

 <constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>

</bean>

<int:channel id="queueChannel">

 <int:queue message-store="store"/>

</int:channel>

<bean id="priorityStore" parent="channelStore">

 <property name="priorityEnabled" value="true"/>

</bean>

<int:channel id="priorityChannel">

 <int:priority-queue message-store="priorityStore"/>

</int:channel>

MongoDB Metadata Store

As of Spring Integration 4.2, a new MongoDB-based MetadataStore (Section 10.5, “Metadata Store”)
implementation is available. The MongoDbMetadataStore can be used to maintain metadata state
across application restarts. This new MetadataStore implementation can be used with adapters such
as:

• Section 33.4, “Twitter Inbound Adapters”

• Section 14.2, “Feed Inbound Channel Adapter”

• Section 15.2, “Reading Files”

• Section 16.4, “FTP Inbound Channel Adapter”

• Section 28.7, “SFTP Inbound Channel Adapter”

In order to instruct these adapters to use the new MongoDbMetadataStore, simply declare a Spring
bean using the bean name metadataStore. The Twitter Inbound Channel Adapter and the Feed Inbound
Channel Adapter will both automatically pick up and use the declared MongoDbMetadataStore:

@Bean

public MetadataStore metadataStore(MongoDbFactory factory) {

 return new MongoDbMetadataStore(factory, "integrationMetadataStore");

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 401

The MongoDbMetadataStore also implements ConcurrentMetadataStore, allowing it to be
reliably shared across multiple application instances where only one instance will be allowed to store or
modify a key’s value. All these operations are atomic via MongoDB guarantees.

23.4 MongoDB Inbound Channel Adapter

The MongoDb Inbound Channel Adapter is a polling consumer that reads data from MongoDb and
sends it as a Message payload.

<int-mongodb:inbound-channel-adapter id="mongoInboundAdapter"

 channel="replyChannel"

 query="{'name' : 'Bob'}"

 entity-class="java.lang.Object"

 auto-startup="false">

 <int:poller fixed-rate="100"/>

</int-mongodb:inbound-channel-adapter>

As you can see from the configuration above, you configure a MongoDb Inbound Channel Adapter using
the inbound-channel-adapter element, providing values for various attributes such as:

• query - a JSON query (see MongoDb Querying)

• query-expression - A SpEL expression that is evaluated to a JSON query String (as the query
attribute above), or to an instance of o.s.data.mongodb.core.query.Query. Mutually exclusive
with query attribute.

• entity-class - the type of the payload object; if not supplied, a com.mongodb.DBObject will
be returned.

• collection-name or collection-name-expression - Identifies the name of the MongoDb
collection to use.

• mongodb-factory - reference to an instance of o.s.data.mongodb.MongoDbFactory

• mongo-template - reference to an instance of o.s.data.mongodb.core.MongoTemplate

and other attributes that are common across all other inbound adapters (e.g., 'channel').

Note

You cannot set both mongo-template and mongodb-factory.

The example above is relatively simple and static since it has a literal value for the query and uses the
default name for a collection. Sometimes you may need to change those values at runtime, based
on some condition. To do that, simply use their -expression equivalents (query-expression and
collection-name-expression) where the provided expression can be any valid SpEL expression.

Also, you may wish to do some post-processing to the successfully processed data that was read from
the MongoDb. For example; you may want to move or remove a document after its been processed.
You can do this using Transaction Synchronization feature that was added with Spring Integration 2.2.

http://www.mongodb.org/display/DOCS/Querying

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 402

<int-mongodb:inbound-channel-adapter id="mongoInboundAdapter"

 channel="replyChannel"

 query-expression="new BasicQuery('{''name'' : ''Bob''}').limit(100)"

 entity-class="java.lang.Object"

 auto-startup="false">

 <int:poller fixed-rate="200" max-messages-per-poll="1">

 <int:transactional synchronization-factory="syncFactory"/>

 </int:poller>

</int-mongodb:inbound-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">

 <int:after-commit

 expression="@documentCleaner.remove(#mongoTemplate, payload, headers.mongo_collectionName)"

 channe="someChannel"/>

</int:transaction-synchronization-factory>

<bean id="documentCleaner" class="foo.bar.DocumentCleaner"/>

<bean id="transactionManager" class="o.s.i.transaction.PseudoTransactionManager"/>

public class DocumentCleaner {

 public void remove(MongoOperations mongoOperations, Object target, String collectionName) {

 if (target instanceof List<?>){

 List<?> documents = (List<?>) target;

 for (Object document : documents) {

 mongoOperations.remove(new BasicQuery(JSON.serialize(document)), collectionName);

 }

 }

 }

}

As you can see from the above, all you need to do is declare your poller to be transactional with
a transactional element. This element can reference a real transaction manager (for example
if some other part of your flow invokes JDBC). If you don’t have a real transaction, you can use
a org.springframework.integration.transaction.PseudoTransactionManager which
is an implementation of Spring’s PlatformTransactionManager and enables the use of the
transaction synchronization features of the mongo adapter when there is no actual transaction.

Important

This does NOT make MongoDB itself transactional, it simply allows the synchronization of actions
to be taken before/after success (commit) or after failure (rollback).

Once your poller is transactional all you need to do is set an instance of
the o.s.i.transaction.TransactionSynchronizationFactory on the transactional
element. TransactionSynchronizationFactory will create an instance of the
TransactionSynchronization. For your convenience, we’ve exposed a default SpEL-based
TransactionSynchronizationFactory which allows you to configure SpEL expressions, with
their execution being coordinated (synchronized) with a transaction. Expressions for before-commit,
after-commit, and after-rollback are supported, together with a channel for each where the evaluation
result (if any) will be sent. For each sub-element you can specify expression and/or channel
attributes. If only the channel attribute is present the received Message will be sent there as part of
the particular synchronization scenario. If only the expression attribute is present and the result of an
expression is a non-Null value, a Message with the result as the payload will be generated and sent to
a default channel (NullChannel) and will appear in the logs (DEBUG). If you want the evaluation result
to go to a specific channel add a channel attribute. If the result of an expression is null or void, no
Message will be generated.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 403

For more information about transaction synchronization, see Section C.3, “Transaction
Synchronization”.

23.5 MongoDB Outbound Channel Adapter

The MongoDb Outbound Channel Adapter allows you to write the Message payload to a MongoDb
document store

<int-mongodb:outbound-channel-adapter id="fullConfigWithCollectionExpression"

 collection-name="myCollection"

 mongo-converter="mongoConverter"

 mongodb-factory="mongoDbFactory" />

As you can see from the configuration above, you configure a MongoDb Outbound Channel Adapter
using the outbound-channel-adapter element, providing values for various attributes such as:

• collection-name or collection-name-expression - Identifies the name of the MongoDb
collection to use.

• mongo-converter - reference to an instance of
o.s.data.mongodb.core.convert.MongoConverter to assist with converting a raw java
object to a JSON document representation

• mongodb-factory - reference to an instance of o.s.data.mongodb.MongoDbFactory

• mongo-template - reference to an instance of o.s.data.mongodb.core.MongoTemplate
(NOTE: you can not have both mongo-template and mongodb-factory set)

and other attributes that are common across all other inbound adapters (e.g., channel).

The example above is relatively simple and static since it has a literal value for the collection-
name. Sometimes you may need to change this value at runtime based on some condition. To do that,
simply use collection-name-expression where the provided expression can be any valid SpEL
expression.

23.6 MongoDB Outbound Gateway

Starting with version 5.0, the MongoDb Outbound Gateway is provided and it allows you to query a
database by sending a Message to its request channel. The gateway will then send the response to
the reply channel. The Message payload and headers can be used to specify the query, as well as
collection name.

<int-mongodb:outbound-gateway id="gatewayQuery"

 mongodb-factory="mongoDbFactory"

 mongo-converter="mongoConverter"

 query="{firstName: 'Bob'}"

 collection-name="foo"

 request-channel="in"

 reply-channel="out"

 entity-class="org.springframework.integration.mongodb.test.entity$Person"/>

• collection-name or collection-name-expression - identifies the name of the MongoDb
collection to use;

• mongo-converter - reference to an instance of
o.s.data.mongodb.core.convert.MongoConverter to assist with converting a raw java
object to a JSON document representation

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 404

• mongodb-factory - reference to an instance of o.s.data.mongodb.MongoDbFactory

• mongo-template - reference to an instance of o.s.data.mongodb.core.MongoTemplate
(NOTE: you can not have both mongo-template and mongodb-factory set)

• entity-class - the fully qualified name of the entity class to be passed to find(..) or
findOne(..) method in MongoTemplate. If this attribute is not provided the default value is
org.bson.Document;

• query or query-expression - specifies the MongoDb query. Please refer to MongoDB
documentation for more query samples.

• collection-callback - reference to an instance of
org.springframework.data.mongodb.core.CollectionCallback (NOTE: you can not
have both collection-callback and any of the query attributes).

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the outbound gateway using
Java configuration:

@SpringBootApplication

public class MongoDbJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(MongoDbJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private MongoDbFactory mongoDbFactory;

 @Bean

 @ServiceActivator(inputChannel = "requestChannel")

 public MessageHandler mongoDbOutboundGateway() {

 MongoDbOutboundGateway gateway = new MongoDbOutboundGateway(this.mongoDbFactory);

 gateway.setCollectionNameExpressionString("'foo'");

 gateway.setQueryExpressionString("'{''name'' : ''Bob''}'");

 gateway.setExpectSingleResult(true);

 gateway.setEntityClass(Person.class);

 gateway.setOutputChannelName("replyChannel");

 return gateway;

 }

 @Bean

 @ServiceActivator(inputChannel = "replyChannel")

 public MessageHandler handler() {

 return message -> System.out.println(message.getPayload());

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Outbound Gateway using
the Java DSL:

http://www.mongodb.org/display/DOCS/Querying
http://www.mongodb.org/display/DOCS/Querying

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 405

@SpringBootApplication

public class MongoDbJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(MongoDbJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Autowired

 private MongoDbFactory;

 @Autowired

 private MongoConverter;

 @Bean

 public IntegrationFlow gatewaySingleQueryFlow() {

 return f -> f

 .handle(queryOutboundGateway())

 .channel(c -> c.queue("retrieveResults"));

 }

 private MongoDbOutboundGatewaySpec queryOutboundGateway() {

 return MongoDb.outboundGateway(this.mongoDbFactory, this.mongoConverter)

 .query("{name : 'Bob'}")

 .collectionNameFunction(m -> m.getHeaders().get("collection"))

 .expectSingleResult(true)

 .entityClass(Person.class);

 }

}

Alternatively to the query and query-expression properties, you can specify other database
operations through the collectionCallback property. The following example specifies a count
operation:

private MongoDbOutboundGatewaySpec collectionCallbackOutboundGateway() {

 return MongoDb.outboundGateway(this.mongoDbFactory, this.mongoConverter)

 .collectionCallback(MongoCollection::count)

 .collectionName("foo");

 }

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 406

24. MQTT Support

24.1 Introduction

Spring Integration provides inbound and outbound channel adapters supporting the MQ Telemetry
Transport (MQTT) protocol. The current implementation uses the Eclipse Paho MQTT Client library.

Configuration of both adapters is achieved using the DefaultMqttPahoClientFactory. Refer to
the Paho documentation for more information about configuration options.

24.2 Inbound (message-driven) Channel Adapter

The inbound channel adapter is implemented by the MqttPahoMessageDrivenChannelAdapter.
For convenience, it can be configured using the namespace. A minimal configuration might be:

<bean id="clientFactory"

 class="org.springframework.integration.mqtt.core.DefaultMqttPahoClientFactory">

 <property name="userName" value="${mqtt.username}"/>

 <property name="password" value="${mqtt.password}"/>

</bean>

<int-mqtt:message-driven-channel-adapter id="mqttInbound"

 client-id="${mqtt.default.client.id}.src"

 url="${mqtt.url}"

 topics="sometopic"

 client-factory="clientFactory"

 channel="output"/>

Attributes:

<int-mqtt:message-driven-channel-adapter id="oneTopicAdapter"

 client-id="foo" ❶

 url="tcp://localhost:1883" ❷

 topics="bar,baz" ❸

 qos="1,2" ❹

 converter="myConverter" ❺

 client-factory="clientFactory" ❻

 send-timeout="123" ❼

 error-channel="errors" ❽

 recovery-interval="10000" ❾

 channel="out" />

❶ The client id.

❷ The broker URL.

❸ A comma delimited list of topics from which this adapter will receive messages.

❹ A comma delimited list of QoS values. Can be a single value that is applied to all topics, or a value
for each topic (in which case the lists must the same length).

❺ An MqttMessageConverter (optional). The default DefaultPahoMessageConverter

produces a message with a String payload (by default) with the following headers:
mqtt_topic - the topic from which the message was received
mqtt_duplicate - true if the message is a duplicate
mqtt_qos - the quality of service
The DefaultPahoMessageConverter can be configured to return the raw byte[] in the
payload by declaring it as a <bean/> and setting the payloadAsBytes property.

❻ The client factory.

http://www.eclipse.org/paho/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 407

❼ The send timeout - only applies if the channel might block (such as a bounded QueueChannel
that is currently full).

❽ The error channel - downstream exceptions will be sent to this channel, if supplied, in an
ErrorMessage; the payload is a MessagingException containing the failed message and
cause.

❾ The recovery interval - controls the interval at which the adapter will attempt to reconnect after a
failure; it defaults to 10000ms (ten seconds).

Note

Starting with version 4.1 the url can be omitted and, instead, the server URIs can be provided in the
serverURIs property of the DefaultMqttPahoClientFactory. This enables, for example,
connection to a highly available (HA) cluster.

Starting with version 4.2.2, an MqttSubscribedEvent is published when the adapter successfully
subscribes to the topic(s). MqttConnectionFailedEvent s are published when the connection/
subscription fails. These events can be received by a bean that implements ApplicationListener.

Also, a new property recoveryInterval controls the interval at which the adapter will attempt to
reconnect after a failure; it defaults to 10000ms (ten seconds).

Note

Prior to version 4.2.3, the client always unsubscribed when the adapter was stopped. This was
incorrect because if the client QOS is > 0, we need to keep the subscription active so that
messages arriving while the adapter is stopped will be delivered on the next start. This also
requires setting the cleanSession property on the client factory to false - it defaults to true.

Starting with version 4.2.3, the adapter will not unsubscribe (by default) if the cleanSession
property is false.

This behavior can be overridden by setting the consumerCloseAction property on the factory. It
can have values: UNSUBSCRIBE_ALWAYS, UNSUBSCRIBE_NEVER, and UNSUBSCRIBE_CLEAN.
The latter (the default) will unsubscribe only if the cleanSession property is true.

To revert to the pre-4.2.3 behavior, use UNSUBSCRIBE_ALWAYS.

Important

Starting with version 5.0, the topic, qos and retained properties
are mapped to .RECEIVED_... headers (MqttHeaders.RECEIVED_TOPIC,
MqttHeaders.RECEIVED_QOS, and MqttHeaders.RECEIVED_RETAINED), to avoid
inadvertent propagation to an outbound message which (by default) uses the
MqttHeaders.TOPIC, MqttHeaders.QOS, and MqttHeaders.RETAINED headers.

Adding/Removing Topics at Runtime

Starting with version 4.1, it is possible to programmatically change the topics to which the adapter
is subscribed. Methods addTopic() and removeTopic() are provided. When adding topics, you
can optionally specify the QoS (default: 1). You can also modify the topics by sending an appropriate
message to a <control-bus/> with an appropriate payload: "myMqttAdapter.addTopic('foo',
1)".

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 408

Stopping/starting the adapter has no effect on the topic list (it does not revert to the original settings in
the configuration). The changes are not retained beyond the life cycle of the application context; a new
application context will revert to the configured settings.

Changing the topics while the adapter is stopped (or disconnected from the broker) will take effect the
next time a connection is established.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

@SpringBootApplication

public class MqttJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(MqttJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public MessageChannel mqttInputChannel() {

 return new DirectChannel();

 }

 @Bean

 public MessageProducer inbound() {

 MqttPahoMessageDrivenChannelAdapter adapter =

 new MqttPahoMessageDrivenChannelAdapter("tcp://localhost:1883", "testClient",

 "topic1", "topic2");

 adapter.setCompletionTimeout(5000);

 adapter.setConverter(new DefaultPahoMessageConverter());

 adapter.setQos(1);

 adapter.setOutputChannel(mqttInputChannel());

 return adapter;

 }

 @Bean

 @ServiceActivator(inputChannel = "mqttInputChannel")

 public MessageHandler handler() {

 return new MessageHandler() {

 @Override

 public void handleMessage(Message<?> message) throws MessagingException {

 System.out.println(message.getPayload());

 }

 };

 }

}

24.3 Outbound Channel Adapter

The outbound channel adapter is implemented by the MqttPahoMessageHandler which is wrapped
in a ConsumerEndpoint. For convenience, it can be configured using the namespace.

Starting with version 4.1, the adapter supports asynchronous sends, avoiding blocking until the delivery
is confirmed; application events can be emitted to enable applications to confirm delivery if desired.

Attributes:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 409

<int-mqtt:outbound-channel-adapter id="withConverter"

 client-id="foo" ❶

 url="tcp://localhost:1883" ❷

 converter="myConverter" ❸

 client-factory="clientFactory" ❹

 default-qos="1" ❺

 qos-expression="" ❻

 default-retained="true" ❼

 retained-expression="" ❽

 default-topic="bar" ❾

 topic-expression="" ❿

 async="false" 11

 async-events="false" 12

 channel="target" />

❶ The client id.

❷ The broker URL.

❸ An MqttMessageConverter (optional). The default DefaultPahoMessageConverter

recognizes the following headers:
mqtt_topic - the topic to which the message will be sent
mqtt_retained - true if the message is to be retained
mqtt_qos - the quality of service

❹ The client factory.

❺ The default quality of service (used if no mqtt_qos header is found or the qos-expression
returns null. Not used if a custom converter is supplied.

❻ An expression to evaluate to determine the qos; default headers[mqtt_qos].

❼ The default value of the retained flag (used if no mqtt_retained header is found). Not used if
a custom converter is supplied.

❽ An expression to evaluate to determine the retained boolean; default
headers[mqtt_retained].

❾ The default topic to which the message will be sent (used if no mqtt_topic header is found).

❿ An expression to evaluate to determine the destination topic; default headers['topic'].
11 When true, the caller will not block waiting for delivery confirmation when a message is sent.

Default:false (the send blocks until delivery is confirmed).
12 When async and async-events are both true, an MqttMessageSentEvent is emitted,

containing the message, the topic, the messageId generated by the client library, the clientId
and the clientInstance (incremented each time the client is connected). When the delivery is
confirmed by the client library, an MqttMessageDeliveredEvent is emitted, containing the the
messageId, clientId and the clientInstance, enabling delivery to be correlated with the
send. These events can be received by any ApplicationListener, or by an event inbound
channel adapter. Note that it is possible that the MqttMessageDeliveredEvent might be
received before the MqttMessageSentEvent. Default: false.

Note

Starting with version 4.1 the url can be omitted and, instead, the server URIs can be provided in the
serverURIs property of the DefaultMqttPahoClientFactory. This enables, for example,
connection to a highly available (HA) cluster.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the outbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 410

@SpringBootApplication

@IntegrationComponentScan

public class MqttJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(MqttJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToMqtt("foo");

 }

 @Bean

 public MqttPahoClientFactory mqttClientFactory() {

 DefaultMqttPahoClientFactory factory = new DefaultMqttPahoClientFactory();

 factory.setServerURIs("tcp://host1:1883", "tcp://host2:1883");

 factory.setUserName("username");

 factory.setPassword("password");

 return factory;

 }

 @Bean

 @ServiceActivator(inputChannel = "mqttOutboundChannel")

 public MessageHandler mqttOutbound() {

 MqttPahoMessageHandler messageHandler =

 new MqttPahoMessageHandler("testClient", mqttClientFactory());

 messageHandler.setAsync(true);

 messageHandler.setDefaultTopic("testTopic");

 return messageHandler;

 }

 @Bean

 public MessageChannel mqttOutboundChannel() {

 return new DirectChannel();

 }

 @MessagingGateway(defaultRequestChannel = "mqttOutboundChannel")

 public interface MyGateway {

 void sendToMqtt(String data);

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 411

25. Redis Support

Since version 2.1 Spring Integration introduces support for Redis: _"an open source advanced key-value
store". _ This support comes in the form of a Redis-based MessageStore as well as Publish-Subscribe
Messaging adapters that are supported by Redis via its PUBLISH, SUBSCRIBE and UNSUBSCRIBE
commands.

25.1 Introduction

To download, install and run Redis please refer to the Redis documentation.

25.2 Connecting to Redis

To begin interacting with Redis you first need to connect to it. Spring Integration uses support
provided by another Spring project, Spring Data Redis, which provides typical Spring constructs:
ConnectionFactory and Template. Those abstractions simplify integration with several Redis-client
Java APIs. Currently Spring-Data-Redis supportshttps://github.com/xetorthio/jedis[jedis], jredis and rjc

RedisConnectionFactory

To connect to Redis you would use one of the implementations of the RedisConnectionFactory
interface:

public interface RedisConnectionFactory extends PersistenceExceptionTranslator {

 /**

 * Provides a suitable connection for interacting with Redis.

 *

 * @return connection for interacting with Redis.

 */

 RedisConnection getConnection();

}

The example below shows how to create a JedisConnectionFactory.

In Java:

JedisConnectionFactory jcf = new JedisConnectionFactory();

jcf.afterPropertiesSet();

Or in Spring’s XML configuration:

<bean id="redisConnectionFactory"

 class="o.s.data.redis.connection.jedis.JedisConnectionFactory">

 <property name="port" value="7379" />

</bean>

The implementations of RedisConnectionFactory provide a set of properties such as port and host
that can be set if needed. Once an instance of RedisConnectionFactory is created, you can create an
instance of RedisTemplate and inject it with the RedisConnectionFactory.

RedisTemplate

As with other template classes in Spring (e.g., JdbcTemplate, JmsTemplate) RedisTemplate is a
helper class that simplifies Redis data access code. For more information about RedisTemplate and
its variations (e.g., StringRedisTemplate) please refer to the Spring-Data-Redis documentation

http://redis.io/
http://redis.io/topics/pubsub
http://redis.io/download
https://github.com/SpringSource/spring-data-redis
http://code.google.com/p/jredis/
https://github.com/e-mzungu/rjc
http://static.springsource.org/spring-data/data-redis/docs/current/reference/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 412

The code below shows how to create an instance of RedisTemplate:

In Java:

RedisTemplate rt = new RedisTemplate<String, Object>();

rt.setConnectionFactory(redisConnectionFactory);

Or in Spring’s XML configuration

<bean id="redisTemplate" class="org.springframework.data.redis.core.RedisTemplate">

 <property name="connectionFactory" ref="redisConnectionFactory"/>

</bean>

25.3 Messaging with Redis

As mentioned in the introduction Redis provides support for Publish-Subscribe messaging via its
PUBLISH, SUBSCRIBE and UNSUBSCRIBE commands. As with JMS and AMQP, Spring Integration
provides Message Channels and adapters for sending and receiving messages via Redis.

Redis Publish/Subscribe channel

Similar to the JMS there are cases where both the producer and consumer are intended to be part of
the same application, running within the same process. This could be accomplished by using a pair of
inbound and outbound Channel Adapters, however just like with Spring Integration’s JMS support, there
is a simpler approach to address this use case.

<int-redis:publish-subscribe-channel id="redisChannel" topic-name="si.test.topic"/>

The publish-subscribe-channel (above) will behave much like a normal <publish-subscribe-
channel/> element from the main Spring Integration namespace. It can be referenced by both input-
channel and output-channel attributes of any endpoint. The difference is that this channel is
backed by a Redis topic name - a String value specified by the topic-name attribute. However unlike
JMS this topic doesn’t have to be created in advance or even auto-created by Redis. In Redis topics
are simple String values that play the role of an address, and all the producer and consumer need
to do to communicate is use the same String value as their topic name. A simple subscription to
this channel means that asynchronous pub-sub messaging is possible between the producing and
consuming endpoints, but unlike the asynchronous Message Channels created by adding a <queue/>
sub-element within a simple Spring Integration <channel/> element, the Messages are not just stored
in an in-memory queue. Instead those Messages are passed through Redis allowing you to rely on its
support for persistence and clustering as well as its interoperability with other non-java platforms.

Redis Inbound Channel Adapter

The Redis-based Inbound Channel Adapter (RedisInboundChannelAdapter) adapts incoming
Redis messages into Spring Messages in the same way as other inbound adapters. It receives
platform-specific messages (Redis in this case) and converts them to Spring Messages using a
MessageConverter strategy.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 413

<int-redis:inbound-channel-adapter id="redisAdapter"

 topics="foo, bar"

 channel="receiveChannel"

 error-channel="testErrorChannel"

 message-converter="testConverter" />

<bean id="redisConnectionFactory"

 class="o.s.data.redis.connection.jedis.JedisConnectionFactory">

 <property name="port" value="7379" />

</bean>

<bean id="testConverter" class="foo.bar.SampleMessageConverter" />

Above is a simple but complete configuration of a Redis Inbound Channel Adapter. Note that the above
configuration relies on the familiar Spring paradigm of auto-discovering certain beans. In this case the
redisConnectionFactory is implicitly injected into the adapter. You can of course specify it explicitly
using the connection-factory attribute instead.

Also, note that the above configuration injects the adapter with a custom MessageConverter. The
approach is similar to JMS where MessageConverters are used to convert between Redis Messages
and the Spring Integration Message payloads. The default is a SimpleMessageConverter.

Inbound adapters can subscribe to multiple topic names hence the comma-delimited set of values in
the topics attribute.

Since version 3.0, the Inbound Adapter, in addition to the existing topics attribute, now has the topic-
patterns attribute. This attribute contains a comma-delimited set of Redis topic patterns. For more
information regarding Redis publish/subscribe, see Redis Pub/Sub.

Inbound adapters can use a RedisSerializer to deserialize the body of Redis Messages. The
serializer attribute of the <int-redis:inbound-channel-adapter> can be set to an empty
string, which results in a null value for the RedisSerializer property. In this case the raw byte[]
bodies of Redis Messages are provided as the message payloads.

Since version 5.0, an Executor instance can be provided to the Inbound Adapter via the task-
executor attribute of the <int-redis:inbound-channel-adapter>. Also the received Spring
Integration Messages have now RedisHeaders.MESSAGE_SOURCE header to indicate the source of
the published message - topic or pattern. This can be used downstream for routing logic.

Redis Outbound Channel Adapter

The Redis-based Outbound Channel Adapter adapts outgoing Spring Integration messages into Redis
messages in the same way as other outbound adapters. It receives Spring Integration messages and
converts them to platform-specific messages (Redis in this case) using a MessageConverter strategy.

<int-redis:outbound-channel-adapter id="outboundAdapter"

 channel="sendChannel"

 topic="foo"

 message-converter="testConverter"/>

<bean id="redisConnectionFactory"

 class="o.s.data.redis.connection.jedis.JedisConnectionFactory">

 <property name="port" value="7379"/>

</bean>

<bean id="testConverter" class="foo.bar.SampleMessageConverter" />

As you can see the configuration is similar to the Redis Inbound Channel Adapter. The
adapter is implicitly injected with a RedisConnectionFactory which was defined with

http://redis.io/topics/pubsub

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 414

redisConnectionFactory as its bean name. This example also includes the optional, custom
MessageConverter (the testConverter bean).

Since Spring Integration 3.0, the <int-redis:outbound-channel-adapter>, as an alternative to
the topic attribute, has the topic-expression attribute to determine the Redis topic against the
Message at runtime. These attributes are mutually exclusive.

Redis Queue Inbound Channel Adapter

Since Spring Integration 3.0, a Queue Inbound Channel Adapter is available to pop messages from a
Redis List. By default it uses right pop, but it can be configured to use left pop instead. The adapter is
message-driven using an internal listener thread and does not use a poller.

<int-redis:queue-inbound-channel-adapter id="" ❶

 channel="" ❷

 auto-startup="" ❸

 phase="" ❹

 connection-factory="" ❺

 queue="" ❻

 error-channel="" ❼

 serializer="" ❽

 receive-timeout="" ❾

 recovery-interval="" ❿

 expect-message="" 11

 task-executor="" 12

 right-pop=""/> 13

❶ The component bean name. If the channel attribute isn’t provided a DirectChannel is created
and registered with application context with this id attribute as the bean name. In this case, the
endpoint itself is registered with the bean name id + '.adapter'.

❷ The MessageChannel to which to send Message s from this Endpoint.

❸ A SmartLifecycle attribute to specify whether this Endpoint should start automatically after the
application context start or not. Default is true.

❹ A SmartLifecycle attribute to specify the phase in which this Endpoint will be started. Default
is 0.

❺ A reference to a RedisConnectionFactory bean. Defaults to redisConnectionFactory.

❻ The name of the Redis List on which the queue-based pop operation is performed to get Redis
messages.

❼ The MessageChannel to which to send ErrorMessage s with Exception s from the listening
task of the Endpoint. By default the underlying MessagePublishingErrorHandler uses the
default errorChannel from the application context.

❽ The RedisSerializer bean reference. Can be an empty string, which means no serializer. In
this case the raw byte[] from the inbound Redis message is sent to the channel as the Message
payload. By default it is a JdkSerializationRedisSerializer.

❾ The timeout in milliseconds for pop operation to wait for a Redis message from the queue. Default
is 1 second.

❿ The time in milliseconds for which the listener task should sleep after exceptions on the pop
operation, before restarting the listener task.

11 Specify if this Endpoint expects data from the Redis queue to contain entire Message s. If this
attribute is set to true, the serializer can’t be an empty string because messages require
some form of deserialization (JDK serialization by default). Default is false.

12 A reference to a Spring TaskExecutor (or standard JDK 1.5+ Executor) bean. It is used for the
underlying listening task. By default a SimpleAsyncTaskExecutor is used.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 415

13 Specify whether this Endpoint should use right pop (when true) or left pop (when false) to read
messages from the Redis List. If true, the Redis List acts as a FIFO queue when used with a
default Redis Queue Outbound Channel Adapter. Set to false to use with software that writes to
the list with right push, or to achieve a stack-like message order. Default is true. Since version 4.3.

Redis Queue Outbound Channel Adapter

Since Spring Integration 3.0, a Queue Outbound Channel Adapter is available to push to a Redis List
from Spring Integration messages. By default, it uses left push, but it can be configured to use right
push instead.

<int-redis:queue-outbound-channel-adapter id="" ❶

 channel="" ❷

 connection-factory="" ❸

 queue="" ❹

 queue-expression="" ❺

 serializer="" ❻

 extract-payload="" ❼

 left-push=""/> ❽

❶ The component bean name. If the channel attribute isn’t provided, a DirectChannel is created
and registered with the application context with this id attribute as the bean name. In this case,
the endpoint is registered with the bean name id + '.adapter'.

❷ The MessageChannel from which this Endpoint receives Message s.

❸ A reference to a RedisConnectionFactory bean. Defaults to redisConnectionFactory.

❹ The name of the Redis List on which the queue-based push operation is performed to send Redis
messages. This attribute is mutually exclusive with queue-expression.

❺ A SpEL Expression to determine the name of the Redis List using the incoming Message at
runtime as the #root variable. This attribute is mutually exclusive with queue.

❻ A RedisSerializer bean reference. By default it is a JdkSerializationRedisSerializer.
However, for String payloads, a StringRedisSerializer is used, if a serializer reference
isn’t provided.

❼ Specify if this Endpoint should send just the payload to the Redis queue, or the entire Message.
Default is true.

❽ Specify whether this Endpoint should use left push (when true) or right push (when false) to
write messages to the Redis List. If true, the Redis List acts as a FIFO queue when used with a
default Redis Queue Inbound Channel Adapter. Set to false to use with software that reads from
the list with left pop, or to achieve a stack-like message order. Default is true. Since version 4.3.

Redis Application Events

Since Spring Integration 3.0, the Redis module provides an implementation of
IntegrationEvent - which, in turn, is a org.springframework.context.ApplicationEvent.
The RedisExceptionEvent encapsulates an Exception s from Redis operations
(with the Endpoint being the source of the event). For example, the
<int-redis:queue-inbound-channel-adapter/> emits those events after catching
Exception s from the BoundListOperations.rightPop operation. The exception
may be any generic org.springframework.data.redis.RedisSystemException or a
org.springframework.data.redis.RedisConnectionFailureException. Handling these
events using an <int-event:inbound-channel-adapter/> can be useful to determine problems
with background Redis tasks and to take administrative actions.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 416

25.4 Redis Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful when
dealing with components that have a capability to buffer messages (Aggregator, Resequencer, etc.) if
reliability is a concern. In Spring Integration, the MessageStore strategy also provides the foundation
for the ClaimCheck pattern, which is described in EIP as well.

Spring Integration’s Redis module provides the RedisMessageStore.

<bean id="redisMessageStore" class="o.s.i.redis.store.RedisMessageStore">

 <constructor-arg ref="redisConnectionFactory"/>

</bean>

<int:aggregator input-channel="inputChannel" output-channel="outputChannel"

 message-store="redisMessageStore"/>

Above is a sample RedisMessageStore configuration that shows its usage by an Aggregator. As you
can see it is a simple bean configuration, and it expects a RedisConnectionFactory as a constructor
argument.

By default the RedisMessageStore will use Java serialization to serialize the Message. However if
you want to use a different serialization technique (e.g., JSON), you can provide your own serializer via
the valueSerializer property of the RedisMessageStore.

Starting with version 4.3.10, the Framework provides Jackson Serializer and Deserializer
implementations for Message s and MessageHeaders - MessageHeadersJacksonSerializer
and MessageJacksonDeserializer, respectively. They have to be configured via the
SimpleModule options for the ObjectMapper. In addition, enableDefaultTyping should be
configured on the ObjectMapper to add type information for each serialized complex object.
That type information is then used during deserialization. The Framework provides a utility method
JacksonJsonUtils.messagingAwareMapper(), which is already supplied with all the above-
mentioned properties and serializers. To manage JSON serialization in the RedisMessageStore, it
must be configured like so:

RedisMessageStore store = new RedisMessageStore(jedisConnectionFactory);

ObjectMapper mapper = JacksonJsonUtils.messagingAwareMapper();

RedisSerializer<Object> serializer = new GenericJackson2JsonRedisSerializer(mapper);

store.setValueSerializer(serializer);

Starting with version 4.3.12, the RedisMessageStore supports the key prefix option to allow
distinguishing between instances of the store on the same Redis server.

Redis Channel Message Stores

The RedisMessageStore above maintains each group as a value under a single key (the
group id). While this can be used to back a QueueChannel for persistence, a specialized
RedisChannelMessageStore is provided for that purpose (since version 4.0). This store uses a LIST
for each channel and LPUSH when sending and RPOP when receiving messages. This store also uses
JDK serialization by default, but the value serializer can be modified as described above.

It is recommended that this store is used for backing channels, instead of the general
RedisMessageStore.

http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 417

<bean id="redisMessageStore" class="o.s.i.redis.store.RedisChannelMessageStore">

 <constructor-arg ref="redisConnectionFactory"/>

</bean>

<int:channel id="somePersistentQueueChannel">

 <int:queue message-store="redisMessageStore"/>

<int:channel>

The keys that are used to store the data have the form <storeBeanName>:<channelId> (in the
above example, redisMessageStore:somePersistentQueueChannel).

In addition, a subclass RedisChannelPriorityMessageStore is also provided. When this is used
with a QueueChannel, the messages are received in (FIFO within) priority order. It uses the standard
IntegrationMessageHeaderAccessor.PRIORITY header and supports priority values 0 - 9;
messages with other priorities (and messages with no priority) are retrieved in FIFO order after any
messages with priority.

Important

These stores implement only BasicMessageGroupStore and do not implement
MessageGroupStore; they can only be used for situations such as backing a QueueChannel.

25.5 Redis Metadata Store

As of Spring Integration 3.0 a new Redis-based MetadataStore (Section 10.5, “Metadata Store”)
implementation is available. The RedisMetadataStore can be used to maintain state of a
MetadataStore across application restarts. This new MetadataStore implementation can be used
with adapters such as:

• Section 33.4, “Twitter Inbound Adapters”

• Section 14.2, “Feed Inbound Channel Adapter”

• Section 15.2, “Reading Files”

• Section 16.4, “FTP Inbound Channel Adapter”

• Section 28.7, “SFTP Inbound Channel Adapter”

In order to instruct these adapters to use the new RedisMetadataStore simply declare a Spring bean
using the bean name metadataStore. The Twitter Inbound Channel Adapter and the Feed Inbound
Channel Adapter will both automatically pick up and use the declared RedisMetadataStore.

<bean name="metadataStore" class="o.s.i.redis.store.metadata.RedisMetadataStore">

 <constructor-arg name="connectionFactory" ref="redisConnectionFactory"/>

</bean>

The RedisMetadataStore is backed by RedisProperties and interaction with it uses
BoundHashOperations, which, in turn, requires a key for the entire Properties store. In the case
of the MetadataStore, this key plays the role of a region, which is useful in distributed environment,
when several applications use the same Redis server. By default this key has the value MetaData.

Starting with version 4.0, this store now implements ConcurrentMetadataStore, allowing it to be
reliably shared across multiple application instances where only one instance will be allowed to store
or modify a key’s value.

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/metadata/MetadataStore.html
http://docs.spring.io/spring-data/data-redis/docs/current/api/org/springframework/data/redis/support/collections/RedisProperties.html
http://docs.spring.io/spring-data/data-redis/docs/current/api/org/springframework/data/redis/core/BoundHashOperations.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 418

Important

The RedisMetadataStore.replace() (for example in the
AbstractPersistentAcceptOnceFileListFilter) can’t be used with a Redis cluster
since the WATCH command for atomicity is not currently supported.

25.6 RedisStore Inbound Channel Adapter

The RedisStore Inbound Channel Adapter is a polling consumer that reads data from a Redis collection
and sends it as a Message payload.

<int-redis:store-inbound-channel-adapter id="listAdapter"

 connection-factory="redisConnectionFactory"

 key="myCollection"

 channel="redisChannel"

 collection-type="LIST" >

 <int:poller fixed-rate="2000" max-messages-per-poll="10"/>

</int-redis:store-inbound-channel-adapter>

As you can see from the configuration above you configure a Redis Store Inbound Channel Adapter
using the store-inbound-channel-adapter element, providing values for various attributes such
as:

• key or key-expression - The name of the key for the collection being used.

• collection-type - enumeration of the Collection types supported by this adapter. Supported
Collections are: LIST, SET, ZSET, PROPERTIES, MAP

• connection-factory - reference to an instance of
o.s.data.redis.connection.RedisConnectionFactory

• redis-template - reference to an instance of o.s.data.redis.core.RedisTemplate

and other attributes that are common across all other inbound adapters (e.g., channel).

Note

You cannot set both redis-template and connection-factory.

Important

By default, the adapter uses a StringRedisTemplate; this uses StringRedisSerializer
s for keys, values, hash keys and hash values. If your Redis store contains objects that are
serialized with other techniques, you must supply a RedisTemplate configured with appropriate
serializers. For example, if the store is written to using a RedisStore Outbound Adapter that has
its extract-payload-elements set to false, you must provide a RedisTemplate configured
thus:

<bean id="redisTemplate" class="org.springframework.data.redis.core.RedisTemplate">

 <property name="connectionFactory" ref="redisConnectionFactory"/>

 <property name="keySerializer">

 <bean class="org.springframework.data.redis.serializer.StringRedisSerializer"/>

 </property>

 <property name="hashKeySerializer">

 <bean class="org.springframework.data.redis.serializer.StringRedisSerializer"/>

 </property>

</bean>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 419

This uses String serializers for keys and hash keys and the default JDK Serialization serializers
for values and hash values.

The example above is relatively simple and static since it has a literal value for the key. Sometimes,
you may need to change the value of the key at runtime based on some condition. To do that, simply
use key-expression instead, where the provided expression can be any valid SpEL expression.

Also, you may wish to perform some post-processing to the successfully processed data that was read
from the Redis collection. For example; you may want to move or remove the value after its been
processed. You can do this using the Transaction Synchronization feature that was added with Spring
Integration 2.2.

<int-redis:store-inbound-channel-adapter id="zsetAdapterWithSingleScoreAndSynchronization"

 connection-factory="redisConnectionFactory"

 key-expression="'presidents'"

 channel="otherRedisChannel"

 auto-startup="false"

 collection-type="ZSET">

 <int:poller fixed-rate="1000" max-messages-per-poll="2">

 <int:transactional synchronization-factory="syncFactory"/>

 </int:poller>

</int-redis:store-inbound-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">

 <int:after-commit expression="payload.removeByScore(18, 18)"/>

</int:transaction-synchronization-factory>

<bean id="transactionManager" class="o.s.i.transaction.PseudoTransactionManager"/>

As you can see from the above all, you need to do is declare your poller to be transactional with
a transactional element. This element can reference a real transaction manager (for example
if some other part of your flow invokes JDBC). If you don’t have a real transaction, you can use
a o.s.i.transaction.PseudoTransactionManager which is an implementation of Spring’s
PlatformTransactionManager and enables the use of the transaction synchronization features of
the redis adapter when there is no actual transaction.

Important

This does NOT make the Redis activities themselves transactional, it simply allows the
synchronization of actions to be taken before/after success (commit) or after failure (rollback).

Once your poller is transactional all you need to do is set an instance of
the o.s.i.transaction.TransactionSynchronizationFactory on the transactional
element. TransactionSynchronizationFactory will create an instance of the
TransactionSynchronization. For your convenience we’ve exposed a default SpEL-based
TransactionSynchronizationFactory which allows you to configure SpEL expressions, with
their execution being coordinated (synchronized) with a transaction. Expressions for before-commit,
after-commit, and after-rollback are supported, together with a channel for each where the evaluation
result (if any) will be sent. For each sub-element you can specify expression and/or channel
attributes. If only the channel attribute is present the received Message will be sent there as part of
the particular synchronization scenario. If only the expression attribute is present and the result of an
expression is a non-Null value, a Message with the result as the payload will be generated and sent to
a default channel (NullChannel) and will appear in the logs (DEBUG). If you want the evaluation result
to go to a specific channel add a channel attribute. If the result of an expression is null or void, no
Message will be generated.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 420

For more information about transaction synchronization, see Section C.3, “Transaction
Synchronization”.

25.7 RedisStore Outbound Channel Adapter

The RedisStore Outbound Channel Adapter allows you to write a Message payload to a Redis collection

<int-redis:store-outbound-channel-adapter id="redisListAdapter"

 collection-type="LIST"

 channel="requestChannel"

 key="myCollection" />

As you can see from the configuration above, you configure a Redis Store Outbound Channel Adapter
using the store-inbound-channel-adapter element, providing values for various attributes such
as:

• key or key-expression - The name of the key for the collection being used.

• extract-payload-elements - If set to true (Default) and the payload is an instance of a "multi-
value" object (i.e., Collection or Map) it will be stored using addAll/ putAll semantics. Otherwise, if set
to false the payload will be stored as a single entry regardless of its type. If the payload is not an
instance of a "multi-value" object, the value of this attribute is ignored and the payload will always
be stored as a single entry.

• collection-type - enumeration of the Collection types supported by this adapter. Supported
Collections are: LIST, SET, ZSET, PROPERTIES, MAP

• map-key-expression - SpEL expression that returns the name of the key for entry being stored.
Only applies if the collection-type is MAP or PROPERTIES and extract-payload-elements is
false.

• connection-factory - reference to an instance of
o.s.data.redis.connection.RedisConnectionFactory

• redis-template - reference to an instance of o.s.data.redis.core.RedisTemplate

and other attributes that are common across all other inbound adapters (e.g., channel).

Note

You cannot set both redis-template and connection-factory.

Important

By default, the adapter uses a StringRedisTemplate; this uses StringRedisSerializer
s for keys, values, hash keys and hash values. However, if extract-payload-elements is
set to false, a RedisTemplate using StringRedisSerializer s for keys and hash keys, and
JdkSerializationRedisSerializer s for values and hash values will be used. With the
JDK serializer, it is important to understand that java serialization is used for all values, regardless
of whether the value is actually a collection or not. If you need more control over the serialization
of values, you may want to consider providing your own RedisTemplate rather than relying
upon these defaults.

The example above is relatively simple and static since it has a literal values for the key and other
attributes. Sometimes you may need to change the values dynamically at runtime based on some

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 421

condition. To do that simply use their -expression equivalents (key-expression, map-key-
expression etc.) where the provided expression can be any valid SpEL expression.

25.8 Redis Outbound Command Gateway

Since Spring Integration 4.0, the Redis Command Gateway is available to perform any standard Redis
command using generic RedisConnection#execute method:

<int-redis:outbound-gateway

 request-channel="" ❶

 reply-channel="" ❷

 requires-reply="" ❸

 reply-timeout="" ❹

 connection-factory="" ❺

 redis-template="" ❻

 arguments-serializer="" ❼

 command-expression="" ❽

 argument-expressions="" ❾

 use-command-variable="" ❿

 arguments-strategy="" /> 11

❶ The MessageChannel from which this Endpoint receives Message s.

❷ The MessageChannel where this Endpoint sends reply Message s.

❸ Specify whether this outbound gateway must return a non-null value. This value is true by default.
A ReplyRequiredException will be thrown when the Redis returns a null value.

❹ The timeout in milliseconds to wait until the reply message will be sent or not. Typically is applied
for queue-based limited reply-channels.

❺ A reference to a RedisConnectionFactory bean. Defaults to redisConnectionFactory.
Mutually exclusive with redis-template attribute.

❻ A reference to a RedisTemplate bean. Mutually exclusive with connection-factory attribute.

❼ Reference to an instance of
org.springframework.data.redis.serializer.RedisSerializer. Used to serialize
each command argument to byte[] if necessary.

❽ The SpEL expression that returns the command key. Default is the redis_command message
header. Must not evaluate to null.

❾ Comma-separate SpEL expressions that will be evaluated as command arguments. Mutually
exclusive with the arguments-strategy attribute. If neither of them is provided the payload
is used as the command argument(s). Argument expressions may evaluate to null, to support a
variable number of arguments.

❿ A boolean flag to specify if the evaluated Redis command string will be
made available as the #cmd variable in the expression evaluation context
in the o.s.i.redis.outbound.ExpressionArgumentsStrategy when argument-

expressions is configured, otherwise this attribute is ignored.
11 Reference to an instance of o.s.i.redis.outbound.ArgumentsStrategy. Mutually

exclusive with argument-expressions attribute. If neither of them is provided the payload is
used as the command argument(s).

The <int-redis:outbound-gateway> can be used as a common component to perform any
desired Redis operation. For example to get incremented value from Redis Atomic Number:

<int-redis:outbound-gateway request-channel="requestChannel"

 reply-channel="replyChannel"

 command-expression="'INCR'"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 422

where the Message payload should be a name of redisCounter, which may be
provided by org.springframework.data.redis.support.atomic.RedisAtomicInteger

bean definition.

The RedisConnection#execute has a generic Object as return type and real result depends on
command type, for example MGET returns a List<byte[]>. For more information about commands,
their arguments and result type seehttp://redis.io/commands[Redis Specification].

25.9 Redis Queue Outbound Gateway

Since Spring Integration 4.1, the Redis Queue Outbound Gateway is available to perform request and
reply scenarios. It pushes a conversation`UUID` to the provided queue, then pushes the value to a
Redis List with that UUID as its key and waits for the reply from a Redis List with a key of UUID +
'.reply'. A different UUID is used for each interaction.

<int-redis:queue-outbound-gateway

 request-channel="" ❶

 reply-channel="" ❷

 requires-reply="" ❸

 reply-timeout="" ❹

 connection-factory="" ❺

 queue="" ❻

 order="" ❼

 serializer="" ❽

 extract-payload=""/> ❾

❶ The MessageChannel from which this Endpoint receives Message s.

❷ The MessageChannel where this Endpoint sends reply Message s.

❸ Specify whether this outbound gateway must return a non-null value. This value is false by
default, otherwise a ReplyRequiredException will be thrown when the Redis returns a null value.

❹ The timeout in milliseconds to wait until the reply message will be sent or not. Typically is applied
for queue-based limited reply-channels.

❺ A reference to a RedisConnectionFactory bean. Defaults to redisConnectionFactory.
Mutually exclusive with redis-template attribute.

❻ The name of the Redis List to which outbound gateway will send a conversation`UUID`.

❼ The order for this outbound gateway when multiple gateway are registered thereby

❽ The RedisSerializer bean reference. Can be an empty string, which means no serializer. In
this case the raw byte[] from the inbound Redis message is sent to the channel as the Message
payload. By default it is a JdkSerializationRedisSerializer.

❾ Specify if this Endpoint expects data from the Redis queue to contain entire Message s. If this
attribute is set to true, the serializer can’t be an empty string because messages require
some form of deserialization (JDK serialization by default).

25.10 Redis Queue Inbound Gateway

Since Spring Integration 4.1, the Redis Queue Inbound Gateway is available to perform request and
reply scenarios. It pops a conversation UUID from the provided queue, then pops the value from the
Redis List with that UUID as its key and pushes the reply to the Redis List with a key of UUID +
'.reply':

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 423

<int-redis:queue-inbound-gateway

 request-channel="" ❶

 reply-channel="" ❷

 executor="" ❸

 reply-timeout="" ❹

 connection-factory="" ❺

 queue="" ❻

 order="" ❼

 serializer="" ❽

 receive-timeout="" ❾

 expect-message="" ❿

 recovery-interval=""/> 11

❶ The MessageChannel from which this Endpoint receives Message s.

❷ The MessageChannel where this Endpoint sends reply Message s.

❸ A reference to a Spring TaskExecutor (or standard JDK 1.5+ Executor) bean. It is used for the
underlying listening task. By default a SimpleAsyncTaskExecutor is used.

❹ The timeout in milliseconds to wait until the reply message will be sent or not. Typically is applied
for queue-based limited reply-channels.

❺ A reference to a RedisConnectionFactory bean. Defaults to redisConnectionFactory.
Mutually exclusive with redis-template attribute.

❻ The name of the Redis List for the conversation UUID s.

❼ The order for this inbound gateway when multiple gateway are registered thereby

❽ The RedisSerializer bean reference. Can be an empty string, which means no serializer. In
this case the raw byte[] from the inbound Redis message is sent to the channel as the Message
payload. By default it is a JdkSerializationRedisSerializer. (Note that in releases before
version 4.3, it was a StringRedisSerializer by default; to restore that behavior provide a
reference to a StringRedisSerializer).

❾ The timeout in milliseconds to wait until the receive message will be get or not. Typically is applied
for queue-based limited request-channels.

❿ Specify if this Endpoint expects data from the Redis queue to contain entire Message s. If this
attribute is set to true, the serializer can’t be an empty string because messages require
some form of deserialization (JDK serialization by default).

11 The time in milliseconds for which the listener task should sleep after exceptions on the right pop
operation, before restarting the listener task.

25.11 Redis Lock Registry

Starting with version 4.0, the RedisLockRegistry is available. Certain components (for example
aggregator and resequencer) use a lock obtained from a LockRegistry instance to ensure that only
one thread is manipulating a group at a time. The DefaultLockRegistry performs this function within
a single component; you can now configure an external lock registry on these components. When used
with a shared MessageGroupStore, the RedisLockRegistry can be use to provide this functionality
across multiple application instances, such that only one instance can manipulate the group at a time.

When a lock is released by a local thread, another local thread will generally be able to acquire the
lock immediately. If a lock is released by a thread using a different registry instance, it can take up to
100ms to acquire the lock.

To avoid "hung" locks (when a server fails), the locks in this registry are expired after a default 60
seconds, but this can be configured on the registry. Locks are normally held for a much smaller time.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 424

Important

Because the keys can expire, an attempt to unlock an expired lock will result in an exception
being thrown. However, be aware that the resources protected by such a lock may have been
compromised so such exceptions should be considered severe. The expiry should be set at a
large enough value to prevent this condition, while small enough that the lock can be recovered
after a server failure in a reasonable amount of time.

Starting with version 5.0, the RedisLockRegistry implements ExpirableLockRegistry providing
functionality to remove locks last acquired more than age ago that are not currently locked.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 425

26. Resource Support

26.1 Introduction

The Resource Inbound Channel Adapter builds upon Spring’s Resource abstraction to support greater
flexibility across a variety of actual types of underlying resources, such as a file, a URL, or a class path
resource. Therefore, it’s similar to but more generic than the File Inbound Channel Adapter.

26.2 Resource Inbound Channel Adapter

The Resource Inbound Channel Adapter is a polling adapter that creates a Message whose payload
is a collection of Resource objects.

Resource objects are resolved based on the pattern specified using the pattern attribute. The
collection of resolved Resource objects is then sent as a payload within a Message to the adapter’s
channel. That is one major difference between Resource Inbound Channel Adapter and File Inbound
Channel Adapter; the latter buffers File objects and sends a single File object per Message.

Below is an example of a very simple configuration which will find all files ending with the properties
extension in the foo.bar package available on the classpath and will send them as the payload of a
Message to the channel named resultChannel:

<int:resource-inbound-channel-adapter id="resourceAdapter"

 channel="resultChannel"

 pattern="classpath:foo/bar/*.properties">

 <int:poller fixed-rate="1000"/>

</int:resource-inbound-channel-adapter>

The Resource Inbound Channel Adapter relies on the
org.springframework.core.io.support.ResourcePatternResolver strategy interface to
resolve the provided pattern. It defaults to an instance of the current ApplicationContext.
However you may provide a reference to an instance of your own implementation of
ResourcePatternResolver using the pattern-resolver attribute:

<int:resource-inbound-channel-adapter id="resourceAdapter"

 channel="resultChannel"

 pattern="classpath:foo/bar/*.properties"

 pattern-resolver="myPatternResolver">

 <int:poller fixed-rate="1000"/>

</int:resource-inbound-channel-adapter>

<bean id="myPatternResolver" class="org.example.MyPatternResolver"/>

You may have a use case where you need to further filter the collection of resources resolved
by the ResourcePatternResolver. For example, you may want to prevent resources that
were resolved already from appearing in a collection of resolved resources ever again. On
the other hand your resources might be updated rather often and you do want them to be
picked up again. In other words there is a valid use case for defining an additional filter
as well as disabling filtering altogether. You can provide your own implementation of the
org.springframework.integration.util.CollectionFilter strategy interface:

public interface CollectionFilter<T> {

 Collection<T> filter(Collection<T> unfilteredElements);

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 426

As you can see the CollectionFilter receives a collection of un-filtered elements (which would be
Resource objects in this case), and it returns a collection of filtered elements of that same type.

If you are defining the adapter via XML but you do not specify a filter
reference, a default implementation of CollectionFilter will be used by the
Resource Inbound Channel Adapter. The implementation class of that default filter is
org.springframework.integration.util.AcceptOnceCollectionFilter. It remembers
the elements passed in the previous invocation in order to avoid returning those elements more than
once.

To inject your own implementation of CollectionFilter instead, use the filter attribute.

<int:resource-inbound-channel-adapter id="resourceAdapter"

 channel="resultChannel"

 pattern="classpath:foo/bar/*.properties"

 filter="myFilter">

 <int:poller fixed-rate="1000"/>

</int:resource-inbound-channel-adapter>

<bean id="myFilter" class="org.example.MyFilter"/>

If you don’t need any filtering and want to disable even the default CollectionFilter strategy, simply
provide an empty value for the filter attribute (e.g., filter="")

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 427

27. RMI Support

27.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple
JVMs. The first section will deal with sending messages over RMI. The second section shows how to
receive messages over RMI. The last section shows how to define rmi channel adapters through the
namespace support.

27.2 Outbound RMI

To send messages from a channel over RMI, simply define an RmiOutboundGateway. This gateway
will use Spring’s RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that
to invoke a remote interface that doesn’t use Spring Integration you should use a service activator in
combination with Spring’s RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiOutboundGateway>

 <constructor-arg value="rmi://host"/>

 <property name="replyChannel" value="replies"/>

</bean>

27.3 Inbound RMI

To receive messages over RMI you need to use a RmiInboundGateway. This gateway can be
configured like this

<bean id="rmiInGateway" class=org.spf.integration.rmi.RmiInboundGateway>

 <property name="requestChannel" value="requests"/>

</bean>

Important

If you use an errorChannel on an inbound gateway, it would be normal for the error flow to
return a result (or throw an exception). This is because it is likely that there is a corresponding
outbound gateway waiting for a response of some kind. Consuming a message on the error flow,
and not replying, will result in no reply at the inbound gateway. Exceptions (on the main flow when
there is no errorChannel, or on the error flow) will be propagated to the corresponding inbound
gateway.

27.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 428

<int-rmi:inbound-gateway id="gatewayWithDefaults" request-channel="testChannel"/>

<int-rmi:inbound-gateway id="gatewayWithCustomProperties" request-channel="testChannel"

 expect-reply="false" request-timeout="123" reply-timeout="456"/>

<int-rmi:inbound-gateway id="gatewayWithHost" request-channel="testChannel"

 registry-host="localhost"/>

<int-rmi:inbound-gateway id="gatewayWithPort" request-channel="testChannel"

 registry-port="1234" error-channel="rmiErrorChannel"/>

<int-rmi:inbound-gateway id="gatewayWithExecutorRef" request-channel="testChannel"

 remote-invocation-executor="invocationExecutor"/>

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound rmi gateway.

<int-rmi:outbound-gateway id="gateway"

 request-channel="localChannel"

 remote-channel="testChannel"

 host="localhost"/>

27.5 Configuring with Java Configuration

@Bean

public RmiInboundGateway inbound() {

 RmiInboundGateway gateway = new RmiInboundGateway();

 gateway.setRequestChannel(requestChannel());

 gateway.setRegistryHost("host");

 gateway.setRegistryPort(port);

 return gateway;

}

@Bean

@ServiceActivator(inputChannel="inChannel")

public RmiOutboundGateway outbound() {

 RmiOutboundGateway gateway = new RmiOutboundGateway("rmi://host:port/"

 + RmiInboundGateway.SERVICE_NAME_PREFIX + "remoteChannelName");

 return gateway;

}

Starting with version 4.3, the outbound gateway has a second constructor that takes a
RmiProxyFactoryBeanConfigurer instance along with the service url argument. This allows
further configuration before the proxy is created; for example, to inject a Spring Security
ContextPropagatingRemoteInvocationFactory:

@Bean

@ServiceActivator(inputChannel="inChannel")

public RmiOutboundGateway outbound() {

 RmiOutboundGateway gateway = new RmiOutboundGateway("rmi://host:port/"

 + RmiInboundGateway.SERVICE_NAME_PREFIX + "remoteChannelName",

 pfb -> {

 pfb.setRemoteInvocationFactory(new ContextPropagatingRemoteInvocationFactory());

 });

 return gateway;

}

Starting with version 5.0, this can be set using the XML namespace, using the configurer attribute.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 429

28. SFTP Adapters

Spring Integration provides support for file transfer operations via SFTP.

28.1 Introduction

The Secure File Transfer Protocol (SFTP) is a network protocol which allows you to transfer files
between two computers on the Internet over any reliable stream.

The SFTP protocol requires a secure channel, such as SSH, as well as visibility to a client’s identity
throughout the SFTP session.

Spring Integration supports sending and receiving files over SFTP by providing three client side
endpoints: Inbound Channel Adapter, Outbound Channel Adapter, and Outbound Gateway It also
provides convenient namespace configuration to define these client components.

xmlns:int-sftp="http://www.springframework.org/schema/integration/sftp"

xsi:schemaLocation="http://www.springframework.org/schema/integration/sftp

 http://www.springframework.org/schema/integration/sftp/spring-integration-sftp.xsd"

28.2 SFTP Session Factory

Important

Starting with version 3.0, sessions are no longer cached by default. See Section 28.5, “SFTP
Session Caching”.

Before configuring SFTP adapters, you must configure an SFTP Session Factory. You can configure
the SFTP Session Factory via a regular bean definition:

<beans:bean id="sftpSessionFactory"

 class="org.springframework.integration.sftp.session.DefaultSftpSessionFactory">

 <beans:property name="host" value="localhost"/>

 <beans:property name="privateKey" value="classpath:META-INF/keys/sftpTest"/>

 <beans:property name="privateKeyPassphrase" value="springIntegration"/>

 <beans:property name="port" value="22"/>

 <beans:property name="user" value="kermit"/>

</beans:bean>

Every time an adapter requests a session object from its SessionFactory, a new SFTP session is
being created. Under the covers, the SFTP Session Factory relies on the JSch library to provide the
SFTP capabilities.

However, Spring Integration also supports the caching of SFTP sessions, please see Section 28.5,
“SFTP Session Caching” for more information.

Important

JSch supports multiple channels (operations) over a connection to the server. By default, the
Spring Integration session factory uses a separate physical connection for each channel. Since
Spring Integration 3.0, you can configure the session factory (using a boolean constructor arg -
default false) to use a single connection to the server and create multiple JSch channels on
that single connection.

http://www.jcraft.com/jsch/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 430

When using this feature, you must wrap the session factory in a caching session factory, as
described below, so that the connection is not physically closed when an operation completes.

If the cache is reset, the session is disconnected only when the last channel is closed.

The connection will be refreshed if it is found to be disconnected when a new operation obtains
a session.

Note

If you experience connectivity problems and would like to trace Session creation as well as
see which Sessions are polled you may enable it by setting the logger to TRACE level (e.g.,
log4j.category.org.springframework.integration.sftp=TRACE). Please also see Section 28.12,
“SFTP/JSCH Logging”.

Now all you need to do is inject this SFTP Session Factory into your adapters.

Note

A more practical way to provide values for the SFTP Session Factory would be via Spring’s
property placeholder support.

Configuration Properties

Below you will find all properties that are exposed by the DefaultSftpSessionFactory.

isSharedSession (constructor argument)

When true, a single connection will be used and JSch Channels will be multiplexed. Defaults to false.

clientVersion

Allows you to set the client version property. It’s default depends on the underlying JSch version but it
will look like:_SSH-2.0-JSCH-0.1.45_

enableDaemonThread

If true, all threads will be daemon threads. If set to false, normal non-daemon threads will be used
instead. This property will be set on the underlying Session. There, this property will default to false,
if not explicitly set.

host

The url of the host you want connect to. Mandatory.

hostKeyAlias

Sets the host key alias, used when comparing the host key to the known hosts list.

knownHosts

Specifies the filename that will be used for a host key repository. The file has the same format as
OpenSSH’s known_hosts file and is required and must be pre-populated if allowUnknownKeys is
false.

password

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring-integration/api/org/springframework/integration/sftp/session/DefaultSftpSessionFactory.html
http://epaul.github.io/jsch-documentation/javadoc/com/jcraft/jsch/Session.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 431

The password to authenticate against the remote host. If a password is not provided, then the privateKey
property is mandatory. Not allowed if userInfo is set; the password is obtained from that object.

port

The port over which the SFTP connection shall be established. If not specified, this value defaults to
22. If specified, this properties must be a positive number.

privateKey

Allows you to set a Resource, which represents the location of the private key used for authenticating
against the remote host. If the privateKey is not provided, then the password property is mandatory.

privateKeyPassphrase

The password for the private key. Not allowed if userInfo is set; the passphrase is obtained from that
object. Optional.

proxy

Allows for specifying a JSch-based Proxy. If set, then the proxy object is used to create the connection to
the remote host via the proxy. See Section 28.3, “Proxy Factory Bean” for a convenient way to configure
the proxy.

serverAliveCountMax

Specifies the number of server-alive messages, which will be sent without any reply from the server
before disconnecting. If not set, this property defaults to 1.

serverAliveInterval

Sets the timeout interval (milliseconds) before a server alive message is sent, in case no message is
received from the server.

sessionConfig

Using Properties, you can set additional configuration setting on the underlying JSch Session.

socketFactory

Allows you to pass in a SocketFactory. The socket factory is used to create a socket to the target host.
When a proxy is used, the socket factory is passed to the proxy. By default plain TCP sockets are used.

timeout

The timeout property is used as the socket timeout parameter, as well as the default connection timeout.
Defaults to 0, which means, that no timeout will occur.

user

The remote user to use. Mandatory.

allowUnknownKeys

Set to true to allow connections to hosts with unknown (or changed) keys. Default false (since 4.2 -
defaults to true in 4.1.7 and was not configurable before that version). Only applied if no userInfo
is provided. If false, a pre-populated knownHosts file is required.

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
http://epaul.github.com/jsch-documentation/javadoc/com/jcraft/jsch/Proxy.html
http://epaul.github.com/jsch-documentation/javadoc/com/jcraft/jsch/SocketFactory.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 432

userInfo

Set a custom UserInfo used during authentication. In particular, be aware that promptYesNo() is
invoked when an unknown (or changed) host key is received. Also see allowUnknownHosts. When
a UserInfo is provided, the password and private key passphrase is obtained from it, and discrete
password and privateKeyPassprase properties cannot be set.

28.3 Proxy Factory Bean

Jsch provides a mechanism to connect to the server via an HTTP or SOCKS proxy. To use this feature,
configure the Proxy and provide a reference to the DefaultSftpSessionFactory as discussed
above. Three implementations are provided by Jsch, HTTP, SOCKS4 and SOCKS5. Spring Integration
4.3 provides a FactoryBean making configuration of these proxies easier, allowing property injection:

<bean id="proxySocks5" class="org.springframework.integration.sftp.session.JschProxyFactoryBean">

 <constructor-arg value="SOCKS5" />

 <constructor-arg value="${sftp.proxy.address}" />

 <constructor-arg value="${sftp.proxy.port}" />

 <constructor-arg value="${sftp.proxy.user}" />

 <constructor-arg value="${sftp.proxy.pw}" />

</bean>

<bean id="sessionFactory"

 class="org.springframework.integration.sftp.session.DefaultSftpSessionFactory" >

 ...

 <property name="proxy" ref="proxySocks5" />

 ...

</bean>

28.4 Delegating Session Factory

Version 4.2 introduced the DelegatingSessionFactory which allows the selection of the actual
session factory at runtime. Prior to invoking the ftp endpoint, call setThreadKey() on the factory to
associate a key with the current thread. That key is then used to lookup the actual session factory to be
used. The key can be cleared by calling clearThreadKey() after use.

Convenience methods have been added so this can easily be done from a message flow:

<bean id="dsf" class="org.springframework.integration.file.remote.session.DelegatingSessionFactory">

 <constructor-arg>

 <bean class="o.s.i.file.remote.session.DefaultSessionFactoryLocator">

 <!-- delegate factories here -->

 </bean>

 </constructor-arg>

</bean>

<int:service-activator input-channel="in" output-channel="c1"

 expression="@dsf.setThreadKey(#root, headers['factoryToUse'])" />

<int-sftp:outbound-gateway request-channel="c1" reply-channel="c2" ... />

<int:service-activator input-channel="c2" output-channel="out"

 expression="@dsf.clearThreadKey(#root)" />

Important

When using session caching (see Section 28.5, “SFTP Session Caching”), each of the delegates
should be cached; you cannot cache the DelegatingSessionFactory itself.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 433

28.5 SFTP Session Caching

Important

Starting with Spring Integration version 3.0, sessions are no longer cached by default;
the cache-sessions attribute is no longer supported on endpoints. You must use a
CachingSessionFactory (see below) if you wish to cache sessions.

In versions prior to 3.0, the sessions were cached automatically by default. A cache-sessions
attribute was available for disabling the auto caching, but that solution did not provide a way to
configure other session caching attributes. For example, you could not limit on the number of sessions
created. To support that requirement and other configuration options, a CachingSessionFactory
was provided. It provides sessionCacheSize and sessionWaitTimeout properties. As its name
suggests, the sessionCacheSize property controls how many active sessions the factory will maintain
in its cache (the DEFAULT is unbounded). If the sessionCacheSize threshold has been reached,
any attempt to acquire another session will block until either one of the cached sessions becomes
available or until the wait time for a Session expires (the DEFAULT wait time is Integer.MAX_VALUE).
The sessionWaitTimeout property enables configuration of that value.

If you want your Sessions to be cached, simply configure your default Session Factory as described
above and then wrap it in an instance of CachingSessionFactory where you may provide those
additional properties.

<bean id="sftpSessionFactory"

 class="org.springframework.integration.sftp.session.DefaultSftpSessionFactory">

 <property name="host" value="localhost"/>

</bean>

<bean id="cachingSessionFactory"

 class="org.springframework.integration.file.remote.session.CachingSessionFactory">

 <constructor-arg ref="sftpSessionFactory"/>

 <constructor-arg value="10"/>

 <property name="sessionWaitTimeout" value="1000"/>

</bean>

In the above example you see a CachingSessionFactory created with the sessionCacheSize
set to 10 and the sessionWaitTimeout set to 1 second (its value is in milliseconds).

Starting with Spring Integration version 3.0, the CachingConnectionFactory provides a
resetCache() method. When invoked, all idle sessions are immediately closed and in-use sessions
are closed when they are returned to the cache. When using isSharedSession=true, the channel
is closed, and the shared session is closed only when the last channel is closed. New requests for
sessions will establish new sessions as necessary.

28.6 RemoteFileTemplate

Starting with Spring Integration version 3.0, a new abstraction is provided over the SftpSession
object. The template provides methods to send, retrieve (as an InputStream), remove, and
rename files. In addition an execute method is provided allowing the caller to execute multiple
operations on the session. In all cases, the template takes care of reliably closing the session. For
more information, refer to the javadocs for RemoteFileTemplate There is a subclass for SFTP:
SftpRemoteFileTemplate.

Additional methods were added in version 4.1 including getClientInstance() which provides
access to the underlying ChannelSftp enabling access to low-level APIs.

http://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileTemplate.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 434

Starting with version 5.0, the new RemoteFileOperations.invoke(OperationsCallback<F,
T> action) method is available. This method allows several RemoteFileOperations calls to
be called in the scope of the same, thread-bounded, Session. This is useful when you need to
perform several high-level operations of the RemoteFileTemplate as one unit of work. For example
AbstractRemoteFileOutboundGateway uses it with the mput command implementation, where we
perform a put operation for each file in the provided directory and recursively for its sub-directories. See
the JavaDocs for more information.

28.7 SFTP Inbound Channel Adapter

The SFTP Inbound Channel Adapter is a special listener that will connect to the server and listen for
the remote directory events (e.g., new file created) at which point it will initiate a file transfer.

<int-sftp:inbound-channel-adapter id="sftpAdapterAutoCreate"

 session-factory="sftpSessionFactory"

 channel="requestChannel"

 filename-pattern="*.txt"

 remote-directory="/foo/bar"

 preserve-timestamp="true"

 local-directory="file:target/foo"

 auto-create-local-directory="true"

 local-filename-generator-expression="#this.toUpperCase() + '.a'"

 scanner="myDirScanner"

 local-filter="myFilter"

 temporary-file-suffix=".writing"

 max-fetch-size="-1"

 delete-remote-files="false">

 <int:poller fixed-rate="1000"/>

</int-sftp:inbound-channel-adapter>

As you can see from the configuration above you can configure the SFTP Inbound Channel Adapter via
the inbound-channel-adapter element while also providing values for various attributes such as
local-directory - where files are going to be transferred TO and remote-directory - the remote
source directory where files are going to be transferred FROM - as well as other attributes including a
session-factory reference to the bean we configured earlier.

By default the transferred file will carry the same name as the original file. If you want to override this
behavior you can set the local-filename-generator-expression attribute which allows you
to provide a SpEL Expression to generate the name of the local file. Unlike outbound gateways and
adapters where the root object of the SpEL Evaluation Context is a Message, this inbound adapter does
not yet have the Message at the time of evaluation since that’s what it ultimately generates with the
transferred file as its payload. So, the root object of the SpEL Evaluation Context is the original name
of the remote file (String).

The inbound channel adapter first retrieves the file to a local directory and then emits each file according
to the poller configuration. Starting with version 5.0 you can now limit the number of files fetched from
the FTP server when new file retrievals are needed. This can be beneficial when the target files are very
large and/or when running in a clustered system with a persistent file list filter discussed below. Use
max-fetch-size for this purpose; a negative value (default) means no limit and all matching files will
be retrieved; see Section 28.9, “Inbound Channel Adapters: Controlling Remote File Fetching” for more
information. Since version 5.0, you can also provide a custom DirectoryScanner implementation to
the inbound-channel-adapter via the scanner attribute.

Starting with Spring Integration 3.0, you can specify the preserve-timestamp attribute (default
false); when true, the local file’s modified timestamp will be set to the value retrieved from the server;
otherwise it will be set to the current time.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 435

Starting with version 4.2, you can specify remote-directory-expression instead of remote-
directory, allowing you to dynamically determine the directory on each poll. e.g remote-
directory-expression="@myBean.determineRemoteDir()".

Sometimes file filtering based on the simple pattern specified via filename-pattern attribute
might not be sufficient. If this is the case, you can use the filename-regex attribute to specify
a Regular Expression (e.g. filename-regex=".*\.test$"). And of course if you need complete
control you can use the filter attribute to provide a reference to a custom implementation of the
org.springframework.integration.file.filters.FileListFilter - a strategy interface
for filtering a list of files. This filter determines which remote files are retrieved. You can also combine a
pattern based filter with other filters, such as an AcceptOnceFileListFilter to avoid synchronizing
files that have previously been fetched, by using a CompositeFileListFilter.

The AcceptOnceFileListFilter stores its state in memory. If you wish the state to survive a system
restart, consider using the SftpPersistentAcceptOnceFileListFilter instead. This filter stores
the accepted file names in an instance of the MetadataStore strategy (Section 10.5, “Metadata
Store”). This filter matches on the filename and the remote modified time.

Since version 4.0, this filter requires a ConcurrentMetadataStore. When used with a shared data
store (such as Redis with the RedisMetadataStore) this allows filter keys to be shared across
multiple application or server instances.

Starting with version 5.0, the SftpPersistentAcceptOnceFileListFilter with in-memory
SimpleMetadataStore is applied by default for the SftpInboundFileSynchronizer. This filter
is also applied together with the regex or pattern option in the XML configuration as well as
via FtpInboundChannelAdapterSpec in Java DSL. Any other use-cases can be reached via
CompositeFileListFilter (or ChainFileListFilter).

The above discussion refers to filtering the files before retrieving them. Once the files have
been retrieved, an additional filter is applied to the files on the file system. By default, this is
an`AcceptOnceFileListFilter` which, as discussed, retains state in memory and does not consider the
file’s modified time. Unless your application removes files after processing, the adapter will re-process
the files on disk by default after an application restart.

Also, if you configure the filter to use a FtpPersistentAcceptOnceFileListFilter, and the
remote file timestamp changes (causing it to be re-fetched), the default local filter will not allow this new
file to be processed.

Use the local-filter attribute to configure the behavior of the local file system filter. Starting with
version 4.3.8, a FileSystemPersistentAcceptOnceFileListFilter is configured by default.
This filter stores the accepted file names and modified timestamp in an instance of the MetadataStore
strategy (Section 10.5, “Metadata Store”), and will detect changes to the local file modified time. The
default MetadataStore is a SimpleMetadataStore which stores state in memory.

Since version 4.1.5, these filters have a new property flushOnUpdate which will cause them to flush
the metadata store on every update (if the store implements Flushable).

Important

Further, if you use a distributed MetadataStore (such as Section 25.5, “Redis Metadata Store”
or Section 17.7, “Gemfire Metadata Store”) you can have multiple instances of the same adapter/
application and be sure that one and only one will process a file.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 436

The actual local filter is a CompositeFileListFilter containing the supplied filter and a pattern filter
that prevents processing files that are in the process of being downloaded (based on the temporary-
file-suffix); files are downloaded with this suffix (default: .writing) and the file is renamed to its
final name when the transfer is complete, making it visible to the filter.

Please refer to the schema for more detail on these attributes.

It is also important to understand that SFTP Inbound Channel Adapter is a Polling Consumer and
therefore you must configure a poller (either a global default or a local sub-element). Once the file
has been transferred to a local directory, a Message with java.io.File as its payload type will be
generated and sent to the channel identified by the channel attribute.

More on File Filtering and Large Files

Sometimes a file that just appeared in the monitored (remote) directory is not complete. Typically such a
file will be written with some temporary extension (e.g., foo.txt.writing) and then renamed after the writing
process completes. As a user in most cases you are only interested in files that are complete and would
like to filter only those files. To handle these scenarios, use filtering support provided via the filename-
pattern, filename-regex and filter attributes. If you need a custom filter implementation simply
include a reference in your adapter via the filter attribute.

<int-sftp:inbound-channel-adapter id="sftpInbondAdapter"

 channel="receiveChannel"

 session-factory="sftpSessionFactory"

 filter="customFilter"

 local-directory="file:/local-test-dir"

 remote-directory="/remote-test-dir">

 <int:poller fixed-rate="1000" max-messages-per-poll="10" task-executor="executor"/>

</int-sftp:inbound-channel-adapter>

<bean id="customFilter" class="org.foo.CustomFilter"/>

Recovering from Failures

It is important to understand the architecture of the adapter. There is a file synchronizer which fetches the
files, and a FileReadingMessageSource to emit a message for each synchronized file. As discussed
above, there are two filters involved. The filter attribute (and patterns) refers to the remote (SFTP)
file list - to avoid fetching files that have already been fetched. The local-filter is used by the
FileReadingMessageSource to determine which files are to be sent as messages.

The synchronizer lists the remote files and consults its filter; the files are then transferred. If an IO
error occurs during file transfer, any files that have already been added to the filter are removed
so they are eligible to be re-fetched on the next poll. This only applies if the filter implements
ReversibleFileListFilter (such as the AcceptOnceFileListFilter).

If, after synchronizing the files, an error occurs on the downstream flow processing a file, there is no
automatic rollback of the filter so the failed file will not be reprocessed by default.

If you wish to reprocess such files after a failure, you can use configuration similar to the
following to facilitate the removal of the failed file from the filter. This will work for any
ResettableFileListFilter.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 437

<int-sftp:inbound-channel-adapter id="sftpAdapter"

 session-factory="sftpSessionFactory"

 channel="requestChannel"

 remote-directory-expression="'/sftpSource'"

 local-directory="file:myLocalDir"

 auto-create-local-directory="true"

 filename-pattern="*.txt">

 <int:poller fixed-rate="1000">

 <int:transactional synchronization-factory="syncFactory" />

 </int:poller>

</int-sftp:inbound-channel-adapter>

<bean id="acceptOnceFilter"

 class="org.springframework.integration.file.filters.AcceptOnceFileListFilter" />

<int:transaction-synchronization-factory id="syncFactory">

 <int:after-rollback expression="payload.delete()" />

</int:transaction-synchronization-factory>

<bean id="transactionManager"

 class="org.springframework.integration.transaction.PseudoTransactionManager" />

Starting with version 5.0, the Inbound Channel Adapter can build sub-directories
locally according the generated local file name. That can be a remote sub-
path as well. To be able to read local directory recursively for modification
according the hierarchy support, an internal FileReadingMessageSource now can
bve supplied with a new RecursiveDirectoryScanner based on the Files.walk()

algorithm. See AbstractInboundFileSynchronizingMessageSource.setScanner() for
more information. Also the AbstractInboundFileSynchronizingMessageSource can now
be switched to the WatchService -based DirectoryScanner via setUseWatchService()
option. It is also configured for all the WatchEventType s to react for any
modifications in local directory. The reprocessing sample above is based on the
build-in functionality of the FileReadingMessageSource.WatchServiceDirectoryScanner
to perform ResettableFileListFilter.remove() when the file is deleted
(StandardWatchEventKinds.ENTRY_DELETE) from the local directory. See the section called
“WatchServiceDirectoryScanner” for more information.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 438

@SpringBootApplication

public class SftpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SftpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public SessionFactory<LsEntry> sftpSessionFactory() {

 DefaultSftpSessionFactory factory = new DefaultSftpSessionFactory(true);

 factory.setHost("localhost");

 factory.setPort(port);

 factory.setUser("foo");

 factory.setPassword("foo");

 factory.setAllowUnknownKeys(true);

 return new CachingSessionFactory<LsEntry>(factory);

 }

 @Bean

 public SftpInboundFileSynchronizer sftpInboundFileSynchronizer() {

 SftpInboundFileSynchronizer fileSynchronizer = new

 SftpInboundFileSynchronizer(sftpSessionFactory());

 fileSynchronizer.setDeleteRemoteFiles(false);

 fileSynchronizer.setRemoteDirectory("foo");

 fileSynchronizer.setFilter(new SftpSimplePatternFileListFilter("*.xml"));

 return fileSynchronizer;

 }

 @Bean

 @InboundChannelAdapter(channel = "sftpChannel", poller = @Poller(fixedDelay = "5000"))

 public MessageSource<File> sftpMessageSource() {

 SftpInboundFileSynchronizingMessageSource source =

 new SftpInboundFileSynchronizingMessageSource(sftpInboundFileSynchronizer());

 source.setLocalDirectory(new File("sftp-inbound"));

 source.setAutoCreateLocalDirectory(true);

 source.setLocalFilter(new AcceptOnceFileListFilter<File>());

 source.setMaxFetchSize(1);

 return source;

 }

 @Bean

 @ServiceActivator(inputChannel = "sftpChannel")

 public MessageHandler handler() {

 return new MessageHandler() {

 @Override

 public void handleMessage(Message<?> message) throws MessagingException {

 System.out.println(message.getPayload());

 }

 };

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 439

@SpringBootApplication

public class SftpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SftpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public IntegrationFlow sftpInboundFlow() {

 return IntegrationFlows

 .from(s -> s.sftp(this.sftpSessionFactory)

 .preserveTimestamp(true)

 .remoteDirectory("foo")

 .regexFilter(".*\\.txt$")

 .localFilenameExpression("#this.toUpperCase() + '.a'")

 .localDirectory(new File("sftp-inbound")),

 e -> e.id("sftpInboundAdapter")

 .autoStartup(true)

 .poller(Pollers.fixedDelay(5000)))

 .handle(m -> System.out.println(m.getPayload()))

 .get();

 }

}

Dealing With Incomplete Data

See the section called “Dealing With Incomplete Data”.

The SftpSystemMarkerFilePresentFileListFilter is provided to filter remote files that don’t
have the corresponding marker file on the remote system. See the javadocs for configuration
information.

28.8 SFTP Streaming Inbound Channel Adapter

The streaming inbound channel adapter was introduced in version 4.3. This adapter produces message
with payloads of type InputStream, allowing files to be fetched without writing to the local file
system. Since the session remains open, the consuming application is responsible for closing the
session when the file has been consumed. The session is provided in the closeableResource
header (IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE). Standard framework
components, such as the FileSplitter and StreamTransformer will automatically close the
session. See Section 15.5, “File Splitter” and the section called “Stream Transformer” for more
information about these components.

<int-sftp:inbound-streaming-channel-adapter id="ftpInbound"

 channel="ftpChannel"

 session-factory="sessionFactory"

 filename-pattern="*.txt"

 filename-regex=".*\.txt"

 filter="filter"

 filter-expression="@myFilterBean.check(#root)"

 remote-file-separator="/"

 comparator="comparator"

 max-fetch-size="1"

 remote-directory-expression="'foo/bar'">

 <int:poller fixed-rate="1000" />

</int-sftp:inbound-streaming-channel-adapter>

Only one of filename-pattern, filename-regex, filter or filter-expression is allowed.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 440

Important

Starting with version 5.0, by default, the SftpStreamingMessageSource adapter prevents
duplicates for remote files via SftpPersistentAcceptOnceFileListFilter based on
the in-memory SimpleMetadataStore. This filter is also applied by default together with
the filename pattern (or regex) as well. If there is a requirement to allow duplicates,
the AcceptAllFileListFilter can be used. Any other use-cases can be reached via
CompositeFileListFilter (or ChainFileListFilter). The java configuration below
shows one technique to remove the remote file after processing, avoiding duplicates.

Use the max-fetch-size attribute to limit the number of files fetched on each poll when a fetch is
necessary; set to 1 and use a persistent filter when running in a clustered environment; see Section 28.9,
“Inbound Channel Adapters: Controlling Remote File Fetching” for more information.

The adapter puts the remote directory and file name in headers FileHeaders.REMOTE_DIRECTORY
and FileHeaders.REMOTE_FILE respectively. Starting with version 5.0, additional remote file
information, in JSON, is provided in the FileHeaders.REMOTE_FILE_INFO header. If you set the
fileInfoJson property on the SftpStreamingMessageSource to false, the header will contain
an SftpFileInfo object. The LsEntry object provided by the underlying Jsch library can be accessed
using the SftpFileInfo.getFileInfo() method. The fileInfoJson property is not available
when using XML configuration but you can set it by injecting the SftpStreamingMessageSource
into one of your configuration classes.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the inbound adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 441

@SpringBootApplication

public class SftpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SftpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 @InboundChannelAdapter(channel = "stream")

 public MessageSource<InputStream> ftpMessageSource() {

 SftpStreamingMessageSource messageSource = new SftpStreamingMessageSource(template());

 messageSource.setRemoteDirectory("sftpSource/");

 messageSource.setFilter(new AcceptAllFileListFilter<>());

 messageSource.setMaxFetchSize(1);

 return messageSource;

 }

 @Bean

 @Transformer(inputChannel = "stream", outputChannel = "data")

 public org.springframework.integration.transformer.Transformer transformer() {

 return new StreamTransformer("UTF-8");

 }

 @Bean

 public SftpRemoteFileTemplate template() {

 return new SftpRemoteFileTemplate(sftpSessionFactory());

 }

 @ServiceActivator(inputChannel = "data", adviceChain = "after")

 @Bean

 public MessageHandler handle() {

 return System.out::println;

 }

 @Bean

 public ExpressionEvaluatingRequestHandlerAdvice after() {

 ExpressionEvaluatingRequestHandlerAdvice advice = new

 ExpressionEvaluatingRequestHandlerAdvice();

 advice.setOnSuccessExpression(

 "@template.remove(headers['file_remoteDirectory'] + headers['file_remoteFile'])");

 advice.setPropagateEvaluationFailures(true);

 return advice;

 }

}

Notice that, in this example, the message handler downstream of the transformer has an advice that
removes the remote file after processing.

28.9 Inbound Channel Adapters: Controlling Remote File
Fetching

There are two properties that should be considered when configuring inbound channel adapters. max-
messages-per-poll, as with all pollers, can be used to limit the number of messages emitted on
each poll (if more than the configured value are ready). max-fetch-size (since version 5.0) can limit
the number of files retrieved from the remote server at a time.

The following scenarios assume the starting state is an empty local directory.

• max-messages-per-poll=2 and max-fetch-size=1, the adapter will fetch one file, emit it, fetch
the next file, emit it; then sleep until the next poll.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 442

• max-messages-per-poll=2 and max-fetch-size=2), the adapter will fetch both files, then emit
each one.

• max-messages-per-poll=2 and max-fetch-size=4, the adapter will fetch up to 4 files (if
available) and emit the first two (if there are at least two); the next two files will be emitted on the
next poll.

• max-messages-per-poll=2 and max-fetch-size not specified, the adapter will fetch all remote
files and emit the first two (if there are at least two); the subsequent files will be emitted on subsequent
polls (2-at-a-time); when all are consumed, the remote fetch will be attempted again, to pick up any
new files.

Important

When deploying multiple instances of an application, a small max-fetch-size is recommended
to avoid one instance "grabbing" all the files and starving other instances.

Another use for max-fetch-size is if you want to stop fetching remote files, but continue to process
files that have already been fetched. Setting the maxFetchSize property on the MessageSource
(programmatically, via JMX, or via a control bus) effectively stops the adapter from fetching more files,
but allows the poller to continue to emit messages for files that have previously been fetched. If the
poller is active when the property is changed, the change will take effect on the next poll.

28.10 SFTP Outbound Channel Adapter

The SFTP Outbound Channel Adapter is a special MessageHandler that will connect to the remote
directory and will initiate a file transfer for every file it will receive as the payload of an incoming Message.
It also supports several representations of the File so you are not limited to the File object. Similar to
the FTP outbound adapter, the SFTP Outbound Channel Adapter supports the following payloads: 1)
java.io.File - the actual file object; 2) byte[] - byte array that represents the file contents; 3)
java.lang.String - text that represents the file contents.

<int-sftp:outbound-channel-adapter id="sftpOutboundAdapter"

 session-factory="sftpSessionFactory"

 channel="inputChannel"

 charset="UTF-8"

 remote-file-separator="/"

 remote-directory="foo/bar"

 remote-filename-generator-expression="payload.getName() + '-foo'"

 filename-generator="fileNameGenerator"

 use-temporary-filename="true"

 chmod="600"

 mode="REPLACE"/>

As you can see from the configuration above you can configure the SFTP Outbound Channel Adapter
via the outbound-channel-adapter element. Please refer to the schema for more detail on these
attributes.

SpEL and the SFTP Outbound Adapter

As with many other components in Spring Integration, you can benefit from the Spring Expression
Language (SpEL) support when configuring an SFTP Outbound Channel Adapter, by specifying two
attributes remote-directory-expression and remote-filename-generator-expression
(see above). The expression evaluation context will have the Message as its root object, thus allowing

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 443

you to provide expressions which can dynamically compute the file name or the existing directory path
based on the data in the Message (either from payload or headers). In the example above we are
defining the remote-filename-generator-expression attribute with an expression value that
computes the file name based on its original name while also appending a suffix: -foo.

Starting with version 4.1, you can specify the mode when transferring the file. By default, an existing
file will be overwritten; the modes are defined on enum FileExistsMode, having values REPLACE
(default), APPEND, IGNORE, and FAIL. With IGNORE and FAIL, the file is not transferred; FAIL causes
an exception to be thrown whereas IGNORE silently ignores the transfer (although a DEBUG log entry
is produced).

Avoiding Partially Written Files

One of the common problems, when dealing with file transfers, is the possibility of processing a partial
file - a file might appear in the file system before its transfer is actually complete.

To deal with this issue, Spring Integration SFTP adapters use a very common algorithm where files are
transferred under a temporary name and than renamed once they are fully transferred.

By default, every file that is in the process of being transferred will appear in the file system with an
additional suffix which, by default, is .writing; this can be changed using the temporary-file-
suffix attribute.

However, there may be situations where you don’t want to use this technique (for example, if the server
does not permit renaming files). For situations like this, you can disable this feature by setting use-
temporary-file-name to false (default is true). When this attribute is false, the file is written
with its final name and the consuming application will need some other mechanism to detect that the
file is completely uploaded before accessing it.

Version 4.3 introduced the chmod attribute which changes the remote file permissions after upload. Use
the conventional Unix octal format, e.g. 600 allows read-write for the file owner only. When configuring
the adapter using java, you can use setChmodOctal("600") or setChmodDecimal(384).

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the Outbound Adapter using
Java configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 444

@SpringBootApplication

@IntegrationComponentScan

public class SftpJavaApplication {

 public static void main(String[] args) {

 ConfigurableApplicationContext context =

 new SpringApplicationBuilder(SftpJavaApplication.class)

 .web(false)

 .run(args);

 MyGateway gateway = context.getBean(MyGateway.class);

 gateway.sendToSftp(new File("/foo/bar.txt"));

 }

 @Bean

 public SessionFactory<LsEntry> sftpSessionFactory() {

 DefaultSftpSessionFactory factory = new DefaultSftpSessionFactory(true);

 factory.setHost("localhost");

 factory.setPort(port);

 factory.setUser("foo");

 factory.setPassword("foo");

 factory.setAllowUnknownKeys(true);

 return new CachingSessionFactory<LsEntry>(factory);

 }

 @Bean

 @ServiceActivator(inputChannel = "toSftpChannel")

 public MessageHandler handler() {

 SftpMessageHandler handler = new SftpMessageHandler(sftpSessionFactory());

 handler.setRemoteDirectoryExpressionString("headers['remote-target-dir']");

 handler.setFileNameGenerator(new FileNameGenerator() {

 @Override

 public String generateFileName(Message<?> message) {

 return "handlerContent.test";

 }

 });

 return handler;

 }

 @MessagingGateway

 public interface MyGateway {

 @Gateway(requestChannel = "toSftpChannel")

 void sendToSftp(File file);

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Outbound Adapter using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 445

@SpringBootApplication

public class SftpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SftpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public IntegrationFlow sftpOutboundFlow() {

 return IntegrationFlows.from("toSftpChannel")

 .handle(Sftp.outboundAdapter(this.sftpSessionFactory, FileExistsMode.FAIL)

 .useTemporaryFileName(false)

 .remoteDirectory("/foo")

).get();

 }

}

28.11 SFTP Outbound Gateway

The SFTP Outbound Gateway provides a limited set of commands to interact with a remote SFTP
server. Commands supported are:

• ls (list files)

• nlst (list file names)

• get (retrieve file)

• mget (retrieve file(s))

• rm (remove file(s))

• mv (move/rename file)

• put (send file)

• mput (send multiple files)

ls

ls lists remote file(s) and supports the following options:

• -1 - just retrieve a list of filenames, default is to retrieve a list of FileInfo objects.

• -a - include all files (including those starting with .)

• -f - do not sort the list

• -dirs - include directories (excluded by default)

• -links - include symbolic links (excluded by default)

• -R - list the remote directory recursively

In addition, filename filtering is provided, in the same manner as the inbound-channel-adapter.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 446

The message payload resulting from an ls operation is a list of file names, or a list of FileInfo objects.
These objects provide information such as modified time, permissions etc.

The remote directory that the ls command acted on is provided in the file_remoteDirectory header.

When using the recursive option (-R), the fileName includes any subdirectory elements, representing
a relative path to the file (relative to the remote directory). If the -dirs option is included, each recursive
directory is also returned as an element in the list. In this case, it is recommended that the -1 is not
used because you would not be able to determine files Vs. directories, which is achievable using the
FileInfo objects.

nlst

(Since version 5.0)

Lists remote file names and supports the following options:

• -f - do not sort the list

The message payload resulting from an nlst operation is a list of file names.

The remote directory that the nlst command acted on is provided in the file_remoteDirectory
header.

The SFTP protocol doesn’t provide list names functionality, s this command is fully equivalent of the ls
command with -1 option and added here for convenience.

get

get retrieves a remote file and supports the following option:

• -P - preserve the timestamp of the remote file.

• -stream - retrieve the remote file as a stream.

• -D - delete the remote file after successful transfer. The remote file is NOT deleted if the transfer is
ignored because the FileExistsMode is IGNORE and the local file already exists.

The remote directory is provided in the file_remoteDirectory header, and the filename is provided
in the file_remoteFile header.

The message payload resulting from a get operation is a File object representing the retrieved file,
or an InputStream when the -stream option is provided. This option allows retrieving the file as a
stream. For text files, a common use case is to combine this operation with a File Splitter or Stream
Transformer. When consuming remote files as streams, the user is responsible for closing the Session
after the stream is consumed. For convenience, the Session is provided in the closeableResource
header, a convenience method is provided on the IntegrationMessageHeaderAccessor:

Closeable closeable = new IntegrationMessageHeaderAccessor(message).getCloseableResource();

if (closeable != null) {

 closeable.close();

}

Framework components such as the File Splitter and Stream Transformer will automatically close the
session after the data is transferred.

The following shows an example of consuming a file as a stream:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 447

<int-sftp:outbound-gateway session-factory="ftpSessionFactory"

 request-channel="inboundGetStream"

 command="get"

 command-options="-stream"

 expression="payload"

 remote-directory="ftpTarget"

 reply-channel="stream" />

<int-file:splitter input-channel="stream" output-channel="lines" />

Note: if you consume the input stream in a custom component, you must close the Session. You can
either do that in your custom code, or route a copy of the message to a service-activator and
use SpEL:

<int:service-activator input-channel="closeSession"

 expression="headers['closeableResource'].close()" />

mget

mget retrieves multiple remote files based on a pattern and supports the following options:

• -P - preserve the timestamps of the remote files.

• -R - retrieve the entire directory tree recursively.

• -x - Throw an exception if no files match the pattern (otherwise an empty list is returned).

• -D - delete each remote file after successful transfer. The remote file is NOT deleted if the transfer is
ignored because the FileExistsMode is IGNORE and the local file already exists.

The message payload resulting from an mget operation is a List<File> object - a List of File objects,
each representing a retrieved file.

Important

Starting with version 5.0, if the FileExistsMode is IGNORE, the payload of the output message
will no longer contain files that were not fetched due to the file already existing. Previously, the
array contained all files, including those that already existed.

The expression used to determine the remote path should produce a result that ends with * - e.g. foo/
* will fetch the complete tree under foo.

Starting with version 5.0, a recursive MGET, combined with the new
FileExistsMode.REPLACE_IF_MODIFIED mode, can be used to periodically synchronize an entire
remote directory tree locally. This mode will set the local file last modified timestamp to the remote file
timestamp, regardless of the -P (preserve timestamp) option.

Notes for when using recursion (-R)

The pattern is ignored, and * is assumed. By default, the entire remote tree is retrieved. However,
files in the tree can be filtered, by providing a FileListFilter; directories in the tree can also be
filtered this way. A FileListFilter can be provided by reference or by filename-pattern
or filename-regex attributes. For example, filename-regex="(subDir|.*1.txt)" will
retrieve all files ending with 1.txt in the remote directory and the subdirectory subDir. However,
see below for an alternative available in version 5.0.

If a subdirectory is filtered, no additional traversal of that subdirectory is performed.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 448

The -dirs option is not allowed (the recursive mget uses the recursive ls to obtain the directory
tree and the directories themselves cannot be included in the list).

Typically, you would use the #remoteDirectory variable in the local-directory-
expression so that the remote directory structure is retained locally.

Starting with version 5.0, the SftpSimplePatternFileListFilter and
SftpRegexPatternFileListFilter can be configured to always pass directories by setting the
alwaysAcceptDirectorties to true. This allows recursion for a simple pattern; examples follow:

<bean id="starDotTxtFilter"

 class="org.springframework.integration.sftp.filters.SftpSimplePatternFileListFilter">

 <constructor-arg value="*.txt" />

 <property name="alwaysAcceptDirectories" value="true" />

</bean>

<bean id="dotStarDotTxtFilter"

 class="org.springframework.integration.sftp.filters.SftpRegexPatternFileListFilter">

 <constructor-arg value="^.*\.txt$" />

 <property name="alwaysAcceptDirectories" value="true" />

</bean>

and provide one of these filters using filter property on the gateway.

See also the section called “Outbound Gateway Partial Success (mget and mput)”

put

put sends a file to the remote server; the payload of the message can be a java.io.File, a byte[]
or a String. A remote-filename-generator (or expression) is used to name the remote file.
Other available attributes include remote-directory, temporary-remote-directory (and their
*-expression) equivalents, use-temporary-file-name, and auto-create-directory. Refer
to the schema documentation for more information.

The message payload resulting from a put operation is a String representing the full path of the file
on the server after transfer.

Version 4.3 introduced the chmod attribute which changes the remote file permissions after upload. Use
the conventional Unix octal format, e.g. 600 allows read-write for the file owner only. When configuring
the adapter using java, you can use setChmod(0600).

mput

mput sends multiple files to the server and supports the following option:

• -R - Recursive - send all files (possibly filtered) in the directory and subdirectories

The message payload must be a java.io.File representing a local directory.

The same attributes as the put command are supported. In addition, files in the local directory can
be filtered with one of mput-pattern, mput-regex, mput-filter or mput-filter-expression.
The filter works with recursion, as long as the subdirectories themselves pass the filter. Subdirectories
that do not pass the filter are not recursed.

The message payload resulting from an mget operation is a List<String> object - a List of remote
file paths resulting from the transfer.

See also the section called “Outbound Gateway Partial Success (mget and mput)”

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 449

Version 4.3 introduced the chmod attribute which changes the remote file permissions after upload. Use
the conventional Unix octal format, e.g. 600 allows read-write for the file owner only. When configuring
the adapter using java, you can use setChmodOctal("600") or setChmodDecimal(384).

rm

The rm command has no options.

The message payload resulting from an rm operation is Boolean.TRUE if the remove was successful,
Boolean.FALSE otherwise. The remote directory is provided in the file_remoteDirectory header,
and the filename is provided in the file_remoteFile header.

mv

The mv command has no options.

The expression attribute defines the "from" path and the rename-expression attribute defines the "to"
path. By default, the rename-expression is headers['file_renameTo']. This expression must not
evaluate to null, or an empty String. If necessary, any remote directories needed will be created.
The payload of the result message is Boolean.TRUE. The original remote directory is provided in the
file_remoteDirectory header, and the filename is provided in the file_remoteFile header.
The new path is in the file_renameTo header.

Additional Information

The get and mget commands support the local-filename-generator-expression attribute. It defines
a SpEL expression to generate the name of local file(s) during the transfer. The root object of
the evaluation context is the request Message but, in addition, the remoteFileName variable is
also available, which is particularly useful for mget, for example: local-filename-generator-
expression="#remoteFileName.toUpperCase() + headers.foo"

The get and mget commands support the local-directory-expression attribute. It defines a SpEL
expression to generate the name of local directory(ies) during the transfer. The root object of the
evaluation context is the request Message but, in addition, the remoteDirectory variable is also
available, which is particularly useful for mget, for example: local-directory-expression="'/
tmp/local/' + #remoteDirectory.toUpperCase() + headers.foo". This attribute is
mutually exclusive with local-directory attribute.

For all commands, the PATH that the command acts on is provided by the expression property of
the gateway. For the mget command, the expression might evaluate to , meaning retrieve all files, or
somedirectory/ etc.

Here is an example of a gateway configured for an ls command…

<int-ftp:outbound-gateway id="gateway1"

 session-factory="ftpSessionFactory"

 request-channel="inbound1"

 command="ls"

 command-options="-1"

 expression="payload"

 reply-channel="toSplitter"/>

The payload of the message sent to the toSplitter channel is a list of String objects containing the
filename of each file. If the command-options was omitted, it would be a list of FileInfo objects.
Options are provided space-delimited, e.g. command-options="-1 -dirs -links".

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 450

Starting with version 4.2, the GET, MGET, PUT and MPUT commands support a FileExistsMode
property (mode when using the namespace support). This affects the behavior when the local file exists
(GET and MGET) or the remote file exists (PUT and MPUT). Supported modes are REPLACE, APPEND,
FAIL and IGNORE. For backwards compatibility, the default mode for PUT and MPUT operations is
REPLACE and for GET and MGET operations, the default is FAIL.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the Outbound Gateway using
Java configuration:

@SpringBootApplication

public class SftpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SftpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 @ServiceActivator(inputChannel = "sftpChannel")

 public MessageHandler handler() {

 return new SftpOutboundGateway(ftpSessionFactory(), "ls", "'my_remote_dir/'");

 }

}

Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the Outbound Gateway using
the Java DSL:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 451

@SpringBootApplication

public class SftpJavaApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SftpJavaApplication.class)

 .web(false)

 .run(args);

 }

 @Bean

 public SessionFactory<LsEntry> sftpSessionFactory() {

 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();

 sf.setHost("localhost");

 sf.setPort(port);

 sf.setUsername("foo");

 sf.setPassword("foo");

 return new CachingSessionFactory<LsEntry>(sf);

 }

 @Bean

 public QueueChannelSpec remoteFileOutputChannel() {

 return MessageChannels.queue();

 }

 @Bean

 public IntegrationFlow sftpMGetFlow() {

 return IntegrationFlows.from("sftpMgetInputChannel")

 .handleWithAdapter(h ->

 h.sftpGateway(sftpSessionFactory(), AbstractRemoteFileOutboundGateway.Command.MGET,

 "payload")

 .options(AbstractRemoteFileOutboundGateway.Option.RECURSIVE)

 .regexFileNameFilter("(subSftpSource|.*1.txt)")

 .localDirectoryExpression("'myDir/' + #remoteDirectory")

 .localFilenameExpression("#remoteFileName.replaceFirst('sftpSource',

 'localTarget')"))

 .channel("remoteFileOutputChannel")

 .get();

 }

}

Outbound Gateway Partial Success (mget and mput)

When performing operations on multiple files (mget and mput) it is possible that an exception occurs
some time after one or more files have been transferred. In this case (starting with version 4.2),
a PartialSuccessException is thrown. As well as the usual MessagingException properties
(failedMessage and cause), this exception has two additional properties:

• partialResults - the successful transfer results.

• derivedInput - the list of files generated from the request message (e.g. local files to transfer for
an mput).

This will enable you to determine which files were successfully transferred, and which were not.

In the case of a recursive mput, the PartialSuccessException may have nested
PartialSuccessException s.

Consider:

root/

|- file1.txt

|- subdir/

 | - file2.txt

 | - file3.txt

|- zoo.txt

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 452

If the exception occurs on file3.txt, the PartialSuccessException thrown by the gateway
will have derivedInput of file1.txt, subdir, zoo.txt and partialResults of file1.txt.
It’s cause will be another PartialSuccessException with derivedInput of file2.txt,
file3.txt and partialResults of file2.txt.

28.12 SFTP/JSCH Logging

Since we use JSch libraries (http://www.jcraft.com/jsch/) to provide SFTP support, at times you may
require more information from the JSch API itself, especially if something is not working properly (e.g.,
Authentication exceptions). Unfortunately JSch does not use commons-logging but instead relies on
custom implementations of their com.jcraft.jsch.Logger interface. As of Spring Integration 2.0.1,
we have implemented this interface. So, now all you need to do to enable JSch logging is to configure
your logger the way you usually do. For example, here is valid configuration of a logger using Log4J.

log4j.category.com.jcraft.jsch=DEBUG

28.13 MessageSessionCallback

Starting with Spring Integration version 4.2, a MessageSessionCallback<F, T> implementation
can be used with the <int-sftp:outbound-gateway/> (SftpOutboundGateway) to perform any
operation(s) on the Session<LsEntry> with the requestMessage context. It can be used for any
non-standard or low-level FTP operation (or several); for example, allowing access from an integration
flow definition, and functional interface (Lambda) implementation injection:

@Bean

@ServiceActivator(inputChannel = "sftpChannel")

public MessageHandler sftpOutboundGateway(SessionFactory<ChannelSftp.LsEntry> sessionFactory) {

 return new SftpOutboundGateway(sessionFactory,

 (session, requestMessage) -> session.list(requestMessage.getPayload()));

}

Another example might be to pre- or post- process the file data being sent/retrieved.

When using XML configuration, the <int-sftp:outbound-gateway/> provides a session-
callback attribute to allow you to specify the MessageSessionCallback bean name.

Note

The session-callback is mutually exclusive with the command and expression attributes.
When configuring with Java, different constructors are available in the SftpOutboundGateway
class.

http://www.jcraft.com/jsch/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 453

29. STOMP Support

29.1 Introduction

Spring Integration version 4.2 introduced STOMP Client support. It is based on the architecture,
infrastructure and API from the Spring Framework’s messaging module, stomp package. Many of
Spring STOMP components (e.g. StompSession or StompClientSupport) are used within Spring
Integration. For more information, please, refer to the Spring Framework STOMP Support chapter in
the Spring Framework reference manual.

29.2 Overview

To configure STOMP (Simple [or Streaming] Text Orientated Messaging Protocol) let’s start with the
STOMP Client object. The Spring Framework provides these implementations:

• WebSocketStompClient - built on the Spring WebSocket API with support for standard JSR-356
WebSocket, Jetty 9, as well as SockJS for HTTP-based WebSocket emulation with SockJS Client.

• ReactorNettyTcpStompClient - built on ReactorNettyTcpClient from the reactor-netty
project.

Any other StompClientSupport implementation can be provided. See the JavaDocs of those classes
for more information.

The StompClientSupport class is designed as a factory to produce a StompSession for
the provided StompSessionHandler and all the remaining work is done through the callbacks
to that StompSessionHandler and StompSession abstraction. With the Spring Integration
adapter abstraction, we need to provide some managed shared object to represent our application
as a STOMP client with its unique session. For this purpose, Spring Integration provides the
StompSessionManager abstraction to manage the single StompSession between any provided
StompSessionHandler. This allows the use of inbound or outbound channel adapters (or both) for
the particular STOMP Broker. See StompSessionManager (and its implementations) JavaDocs for
more information.

29.3 STOMP Inbound Channel Adapter

The StompInboundChannelAdapter is a one-stop MessageProducer component to subscribe
our Spring Integration application to the provided STOMP destinations and receive messages from
them, converted from the STOMP frames using the provided MessageConverter on the connected
StompSession. The destinations (and therefore STOMP subscriptions) can be changed at runtime
using appropriate @ManagedOperation s on the StompInboundChannelAdapter.

For more configuration options see Section 29.8, “STOMP Namespace Support” and the
StompInboundChannelAdapter JavaDocs.

29.4 STOMP Outbound Channel Adapter

The StompMessageHandler is the MessageHandler for the <int-stomp:outbound-channel-
adapter> to send the outgoing Message<?> s to the STOMP destination (pre-configured or
determined at runtime via a SpEL expression) STOMP through the StompSession, provided by the
shared StompSessionManager.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp-client

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 454

For more configuration option see Section 29.8, “STOMP Namespace Support” and the
StompMessageHandler JavaDocs.

29.5 STOMP Headers Mapping

The STOMP protocol provides headers as part of frame; the entire structure of the STOMP frame has
this format:

COMMAND

header1:value1

header2:value2

Body^@

Spring Framework provides StompHeaders, to represent these headers. See the JavaDocs for
more details. STOMP frames are converted to/from Message<?> and these headers are mapped to/
from MessageHeaders. Spring Integration provides a default HeaderMapper implementation for the
STOMP adapters. The implementation is StompHeaderMapper which provides fromHeaders() and
toHeaders() operations for the inbound and outbound adapters respectively.

As with many other Spring Integration modules, the IntegrationStompHeaders class has been
introduced to map standard STOMP headers to MessageHeaders with stomp_ as the header name
prefix. In addition, all MessageHeaders with that prefix are mapped to the StompHeaders when
sending to a destination.

For more information, see the JavaDocs of those classes and the mapped-headers attribute
description in the Section 29.8, “STOMP Namespace Support”.

29.6 STOMP Integration Events

Many STOMP operations are asynchronous, including error handling. For example, STOMP has
a RECEIPT server frame that is returned when a client frame has requested one by adding
the RECEIPT header. To provide access to these asynchronous events, Spring Integration emits
StompIntegrationEvent s which can be obtained by implementing an ApplicationListener
or using an <int-event:inbound-channel-adapter> (see Section 13.1, “Receiving Spring
Application Events”).

Specifically, a StompExceptionEvent is emitted from the AbstractStompSessionManager, when
a stompSessionListenableFuture receives onFailure() in case of failure to connect to STOMP
Broker. Another example is the StompMessageHandler which processes ERROR STOMP frames,
which are server responses to improper, unaccepted, messages sent by this StompMessageHandler.

The StompReceiptEvent s are emitted from the StompMessageHandler as a part of
StompSession.Receiptable callbacks in the asynchronous answers for the sent messages to the
StompSession. The StompReceiptEvent can be positive and negative depending on whether or
not the RECEIPT frame was received from the server within the receiptTimeLimit period, which
can be configured on the StompClientSupport instance. Defaults to 15 * 1000.

Note

The StompSession.Receiptable callbacks are added only if the RECEIPT STOMP header
of the message to send is not null. Automatic RECEIPT header generation can be enabled
on the StompSession through its autoReceipt option and on the StompSessionManager
respectively.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 455

See the next paragraph for more information how to configure Spring Integration to accept those
ApplicationEvent s.

29.7 STOMP Adapters Java Configuration

A comprehensive Java & Annotation Configuration for STOMP Adapters may look like this:

@Configuration

@EnableIntegration

public class StompConfiguration {

 @Bean

 public ReactorNettyTcpStompClient stompClient() {

 ReactorNettyTcpStompClient stompClient = new ReactorNettyTcpStompClient("127.0.0.1", 61613);

 stompClient.setMessageConverter(new PassThruMessageConverter());

 ThreadPoolTaskScheduler taskScheduler = new ThreadPoolTaskScheduler();

 taskScheduler.afterPropertiesSet();

 stompClient.setTaskScheduler(taskScheduler);

 stompClient.setReceiptTimeLimit(5000);

 return stompClient;

 }

 @Bean

 public StompSessionManager stompSessionManager() {

 ReactorNettyTcpStompSessionManager stompSessionManager = new

 ReactorNettyTcpStompSessionManager(stompClient());

 stompSessionManager.setAutoReceipt(true);

 return stompSessionManager;

 }

 @Bean

 public PollableChannel stompInputChannel() {

 return new QueueChannel();

 }

 @Bean

 public StompInboundChannelAdapter stompInboundChannelAdapter() {

 StompInboundChannelAdapter adapter =

 new StompInboundChannelAdapter(stompSessionManager(), "/topic/myTopic");

 adapter.setOutputChannel(stompInputChannel());

 return adapter;

 }

 @Bean

 @ServiceActivator(inputChannel = "stompOutputChannel")

 public MessageHandler stompMessageHandler() {

 StompMessageHandler handler = new StompMessageHandler(stompSessionManager());

 handler.setDestination("/topic/myTopic");

 return handler;

 }

 @Bean

 public PollableChannel stompEvents() {

 return new QueueChannel();

 }

 @Bean

 public ApplicationListener<ApplicationEvent> stompEventListener() {

 ApplicationEventListeningMessageProducer producer = new

 ApplicationEventListeningMessageProducer();

 producer.setEventTypes(StompIntegrationEvent.class);

 producer.setOutputChannel(stompEvents());

 return producer;

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 456

29.8 STOMP Namespace Support

Spring Integration STOMP namespace implements the inbound and outbound channel adapter
components described below. To include it in your configuration, simply provide the following
namespace declaration in your application context configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-stomp="http://www.springframework.org/schema/integration/stomp"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/stomp

 http://www.springframework.org/schema/integration/stomp/spring-integration-stomp.xsd">

 ...

</beans>

<int-stomp:outbound-channel-adapter>

<int-stomp:outbound-channel-adapter

 id="" ❶

 channel="" ❷

 stomp-session-manager="" ❸

 header-mapper="" ❹

 mapped-headers="" ❺

 destination="" ❻

 destination-expression="" ❼

 auto-startup="" ❽

 phase=""/> ❾

❶ The component bean name. The MessageHandler is registered with the bean alias id +

'.handler'. If the channel attribute isn’t provided, a DirectChannel is created and registered
with the application context with this id attribute as the bean name. In this case, the endpoint is
registered with the bean name id + '.adapter'.

❷ Identifies the channel attached to this adapter. Optional - if id is present - see id.

❸ Reference to a StompSessionManager bean, which encapsulates the low-level connection and
StompSession handling operations. Required.

❹ Reference to a bean implementing HeaderMapper<StompHeaders> that maps Spring
Integration MessageHeaders to/from STOMP frame headers. This is mutually exclusive with
mapped-headers. Defaults to StompHeaderMapper.

❺ Comma-separated list of names of STOMP Headers to be mapped to the STOMP frame headers.
This can only be provided if the header-mapper reference is not set. The values in this list can
also be simple patterns to be matched against the header names (e.g. "foo*" or "*foo"). A special
token STOMP_OUTBOUND_HEADERS represents all the standard STOMP headers (content-length,
receipt, heart-beat etc); they are included by default. If you wish to add your own headers, you
must also include this token if you wish the standard headers to also be mapped or provide your
own HeaderMapper implementation using header-mapper.

❻ Name of the destination to which STOMP Messages will be sent. Mutually exclusive with the
destination-expression.

❼ A SpEL expression to be evaluated at runtime against each Spring Integration Message as the
root object. Mutually exclusive with the destination.

❽ Boolean value indicating whether this endpoint should start automatically. Default to true.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 457

❾ The lifecycle phase within which this endpoint should start and stop. The lower the value the earlier
this endpoint will start and the later it will stop. The default is Integer.MIN_VALUE. Values can
be negative. See SmartLifeCycle.

<int-stomp:inbound-channel-adapter>

<int-stomp:inbound-channel-adapter

 id="" ❶

 channel="" ❷

 error-channel="" ❸

 stomp-session-manager="" ❹

 header-mapper="" ❺

 mapped-headers="" ❻

 destinations="" ❼

 send-timeout="" ❽

 payload-type="" ❾

 auto-startup="" ❿

 phase=""/> 11

❶ The component bean name. If the channel attribute isn’t provided, a DirectChannel is created
and registered with the application context with this id attribute as the bean name. In this case,
the endpoint is registered with the bean name id + '.adapter'.

❷ Identifies the channel attached to this adapter.

❸ The MessageChannel bean reference to which the ErrorMessages should be sent.

❹ See the same option on the <int-stomp:outbound-channel-adapter>.

❺ Comma-separated list of names of STOMP Headers to be mapped from the STOMP frame
headers. This can only be provided if the header-mapper reference is not set. The values in this
list can also be simple patterns to be matched against the header names (e.g. "foo*" or "*foo"). A
special token STOMP_INBOUND_HEADERS represents all the standard STOMP headers (content-
length, receipt, heart-beat etc); they are included by default. If you wish to add your own headers,
you must also include this token if you wish the standard headers to also be mapped or provide
your own HeaderMapper implementation using header-mapper.

❻ See the same option on the <int-stomp:outbound-channel-adapter>.

❼ Comma-separated list of STOMP destination names to subscribe. The list of destinations (and
therefore subscriptions) can be modified at runtime through the addDestination() and
removeDestination() @ManagedOperation s.

❽ Maximum amount of time in milliseconds to wait when sending a message to the channel if
the channel may block. For example, a QueueChannel can block until space is available if its
maximum capacity has been reached.

❾ Fully qualified name of the java type for the target payload to convert from the incoming STOMP
Frame. Default to String.class.

❿ See the same option on the <int-stomp:outbound-channel-adapter>.
11 See the same option on the <int-stomp:outbound-channel-adapter>.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 458

30. Stream Support

30.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to
a Stream as a message payload to a consumer. Instead messages are created from data that is read
from an input stream and message payloads are written to an output stream one by one.

30.2 Reading from streams

Spring Integration provides two adapters for streams. Both ByteStreamReadingMessageSource
and CharacterStreamReadingMessageSource implement MessageSource. By configuring one
of these within a channel-adapter element, the polling period can be configured, and the Message
Bus can automatically detect and schedule them. The byte stream version requires an InputStream,
and the character stream version requires a Reader as the single constructor argument. The
ByteStreamReadingMessageSource also accepts the bytesPerMessage property to determine how
many bytes it will attempt to read into each Message. The default value is 1024.

<bean class="org.springframework.integration.stream.ByteStreamReadingMessageSource">

 <constructor-arg ref="someInputStream"/>

 <property name="bytesPerMessage" value="2048"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamReadingMessageSource">

 <constructor-arg ref="someReader"/>

</bean>

The CharacterStreamReadingMessageSource wraps the reader in a BufferedReader (if
it’s not one already). You can set the buffer size used by the buffered reader in the second
constructor argument. Starting with version 5.0, a third constructor argument (blockToDetectEOF)
controls the behavior of the CharacterStreamReadingMessageSource. When false (default),
the receive() method checks if the reader is ready() and returns null if not. EOF is not
detected in this case. When true, the receive() method blocks until data is available, or
EOF is detected on the underlying stream. When EOF is detected, a StreamClosedEvent
(application event) is published; you can consume this event with a bean implementing
ApplicationListener<StreamClosedEvent>.

Note

To facilitate EOF detection, the poller thread will block in the receive() method until either data
arrives or EOF is detected.

Important

The poller will continue to publish an event on each poll once EOF has been detected; the
application listener can stop the adapter to prevent this. The event is published on the poller
thread and stopping the adapter will cause the thread to be interrupted. If you intend to perform
some interruptible task after stopping the adapter, you must either perform the stop() on a
different thread, or use a different thread for those downstream activities. Note that sending to a
QueueChannel is interruptible so if you wish to send a message from the listener, do it before
stopping the adapter.

This facilitates "piping" or redirecting data to stdin, such as…

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 459

cat foo.txt | java -jar my.jar

or

java -jar my.jar < foo.txt

allowing the application to terminate when the pipe is closed.

Four convenient factory methods are available:

public static final CharacterStreamReadingMessageSource stdin() { ... }

public static final CharacterStreamReadingMessageSource stdin(String charsetName) { ... }

public static final CharacterStreamReadingMessageSource stdinPipe() { ... }

public static final CharacterStreamReadingMessageSource stdinPipe(String charsetName) { ... }

30.3 Writing to streams

For target streams, there are also two implementations: ByteStreamWritingMessageHandler
and CharacterStreamWritingMessageHandler. Each requires a single constructor argument
- OutputStream for byte streams or Writer for character streams, and each provides a
second constructor that adds the optional bufferSize. Since both of these ultimately implement the
MessageHandler interface, they can be referenced from a channel-adapter configuration as described
in more detail in Section 4.3, “Channel Adapter”.

<bean class="org.springframework.integration.stream.ByteStreamWritingMessageHandler">

 <constructor-arg ref="someOutputStream"/>

 <constructor-arg value="1024"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamWritingMessageHandler">

 <constructor-arg ref="someWriter"/>

</bean>

30.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined.
The following schema locations are needed to use it.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:int-stream="http://www.springframework.org/schema/integration/stream"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration/stream

 http://www.springframework.org/schema/integration/stream/spring-integration-stream.xsd">

To configure the inbound channel adapter the following code snippet shows the different configuration
options that are supported.

<int-stream:stdin-channel-adapter id="adapterWithDefaultCharset"/>

<int-stream:stdin-channel-adapter id="adapterWithProvidedCharset" charset="UTF-8"/>

Starting with version 5.0 you can set the detect-eof attribute which sets the blockToDetectEOF
property - see Section 30.2, “Reading from streams” for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 460

To configure the outbound channel adapter you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound channel adapters.

<int-stream:stdout-channel-adapter id="stdoutAdapterWithDefaultCharset"

 channel="testChannel"/>

<int-stream:stdout-channel-adapter id="stdoutAdapterWithProvidedCharset" charset="UTF-8"

 channel="testChannel"/>

<int-stream:stderr-channel-adapter id="stderrAdapter" channel="testChannel"/>

<int-stream:stdout-channel-adapter id="newlineAdapter" append-newline="true"

 channel="testChannel"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 461

31. Syslog Support

31.1 Introduction

Spring Integration 2.2 introduced the Syslog transformer SyslogToMapTransformer. This
transformer, together with a UDP or TCP inbound adapter could be used to receive and analyze syslog
records from other hosts. The transformer creates a message payload containing a map of the elements
from the syslog message.

Spring Integration 3.0 introduced convenient namespace support for configuring a Syslog inbound
adapter in a single element.

Starting with version 4.1.1, the framework now supports the extended Syslog format, as specified in RFC
5424>. In addition, when using TCP and RFC5424, both octet counting and non-transparent
framing described in RFC 6587 are supported.

31.2 Syslog <inbound-channel-adapter>

This element encompasses a UDP or TCP inbound channel adapter and a MessageConverter to
convert the Syslog message to a Spring Integration message. The DefaultMessageConverter
delegates to the SyslogToMapTransformer, creating a message with its payload being the Map of
Syslog fields. In addition, all fields except the message are also made available as headers in the
message, prefixed with syslog_. In this mode, only RFC 3164 (BSD) syslogs are supported.

Since version 4.1, the DefaultMessageConverter has a property asMap (default true); when it is
false, the converter will leave the message payload as the original complete syslog message, in a
byte[], while still setting the headers.

Since version 4.1.1, RFC 5424 is also supported, using the RFC5424MessageConverter; in this case
the fields are not copied as headers, unless asMap is set to false, in which case the original message
is the payload and the decoded fields are headers.

Important

To use RFC 5424 with a TCP transport, additional configuration is required, to enable the
different framing techniques described in RFC 6587. The adapter needs a TCP connection factory
configured with a RFC6587SyslogDeserializer. By default, this deserializer will handle
octet counting and non-transparent framing, using a linefeed (LF) to delimit syslog
messages; it uses a ByteArrayLfSerializer when octet counting is not detected. To
use different non-transparent framing, you can provide it with some other deserializer. While
the deserializer can support both octet counting and non-transparent framing, only
one form of the latter is supported. If asMap is false on the converter, you must set the
retainOriginal constructor argument in the RFC6587SyslogDeserializer.

Example Configuration

<int-syslog:inbound-channel-adapter id="syslogIn" port="1514" />

A UDP adapter that sends messages to channel syslogIn (the adapter bean name is
syslogIn.adapter). The adapter listens on port 1514.

https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc6587
https://tools.ietf.org/html/rfc3164

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 462

<int-syslog:inbound-channel-adapter id="syslogIn"

 channel="fromSyslog" port="1514" />

A UDP adapter that sends message to channel fromSyslog (the adapter bean name is syslogIn).
The adapter listens on port 1514.

<int-syslog:inbound-channel-adapter id="bar" protocol="tcp" port="1514" />

A TCP adapter that sends messages to channel syslogIn (the adapter bean name is
syslogIn.adapter). The adapter listens on port 1514.

Note the addition of the protocol attribute. This attribute can contain udp or tcp; it defaults to udp.

<int-syslog:inbound-channel-adapter id="udpSyslog"

 channel="fromSyslog"

 auto-startup="false"

 phase="10000"

 converter="converter"

 send-timeout="1000"

 error-channel="errors">

 <int-syslog:udp-attributes port="1514" lookup-host="false" />

</int-syslog:inbound-channel-adapter>

A UDP adapter that sends messages to channel fromSyslog. It also shows the
SmartLifecycle attributes auto-startup and phase. It has a reference to a custom
org.springframework.integration.syslog.MessageConverter with id converter and an
error-channel. Also notice the udp-attributes child element. You can set various UDP attributes
here, as defined in Table 32.2, “UDP Inbound Channel Adapter Attributes”.

Note

When using the udp-attributes element, the port attribute must be provided there rather
than on the inbound-channel-adapter element itself.

<int-syslog:inbound-channel-adapter id="TcpSyslog"

 protocol="tcp"

 channel="fromSyslog"

 connection-factory="cf" />

<int-ip:tcp-connection-factory id="cf" type="server" port="1514" />

A TCP adapter that sends messages to channel fromSyslog. It also shows how to reference an
externally defined connection factory, which can be used for advanced configuration (socket keep alive
etc). For more information, see Section 32.3, “TCP Connection Factories”.

Note

The externally configured connection-factory must be of type server and, the port is
defined there rather than on the inbound-channel-adapter element itself.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 463

<int-syslog:inbound-channel-adapter id="rfc5424Tcp"

 protocol="tcp"

 channel="fromSyslog"

 connection-factory="cf"

 converter="rfc5424" />

<int-ip:tcp-connection-factory id="cf"

 using-nio="true"

 type="server"

 port="1514"

 deserializer="rfc6587" />

<bean id="rfc5424" class="org.springframework.integration.syslog.RFC5424MessageConverter" />

<bean id="rfc6587" class="org.springframework.integration.syslog.inbound.RFC6587SyslogDeserializer" />

A TCP adapter that sends messages to channel fromSyslog. It is configured to use the RFC 5424
converter and is configured with a reference to an externally defined connection factory with the RFC
6587 deserializer (required for RFC 5424).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 464

32. TCP and UDP Support

Spring Integration provides Channel Adapters for receiving and sending messages over internet
protocols. Both UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are
provided. Each adapter provides for one-way communication over the underlying protocol. In addition,
simple inbound and outbound tcp gateways are provided. These are used when two-way communication
is needed.

32.1 Introduction

Two flavors each of UDP inbound and outbound channel adapters are
provided UnicastSendingMessageHandler sends a datagram packet to a single
destination. UnicastReceivingChannelAdapter receives incoming datagram packets.
MulticastSendingMessageHandler sends (broadcasts) datagram packets to a multicast address.
MulticastReceivingChannelAdapter receives incoming datagram packets by joining to a
multicast address.

TCP inbound and outbound channel adapters are provided TcpSendingMessageHandler sends
messages over TCP. TcpReceivingChannelAdapter receives messages over TCP.

An inbound TCP gateway is provided; this allows for simple request/response processing. While the
gateway can support any number of connections, each connection can only process serially. The thread
that reads from the socket waits for, and sends, the response before reading again. If the connection
factory is configured for single use connections, the connection is closed after the socket times out.

An outbound TCP gateway is provided; this allows for simple request/response processing. If the
associated connection factory is configured for single use connections, a new connection is immediately
created for each new request. Otherwise, if the connection is in use, the calling thread blocks on the
connection until either a response is received or a timeout or I/O error occurs.

The TCP and UDP inbound channel adapters, and the TCP inbound gateway, support the "error-
channel" attribute. This provides the same basic functionality as described in the section called “Enter
the GatewayProxyFactoryBean”.

32.2 UDP Adapters

Outbound (XML Configuration)

<int-ip:udp-outbound-channel-adapter id="udpOut"

 host="somehost"

 port="11111"

 multicast="false"

 channel="exampleChannel"/>

A simple UDP outbound channel adapter.

Tip

When setting multicast to true, provide the multicast address in the host attribute.

UDP is an efficient, but unreliable protocol. Two attributes are added to improve reliability. When check-
length is set to true, the adapter precedes the message data with a length field (4 bytes in network byte

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 465

order). This enables the receiving side to verify the length of the packet received. If a receiving system
uses a buffer that is too short the contain the packet, the packet can be truncated. The length header
provides a mechanism to detect this.

Starting with version 4.3, the port can be set to 0, in which case the Operating System chooses
the port; the chosen port can be discovered by invoking getPort() after the adapter is started and
isListening() returns true.

<int-ip:udp-outbound-channel-adapter id="udpOut"

 host="somehost"

 port="11111"

 multicast="false"

 check-length="true"

 channel="exampleChannel"/>

An outbound channel adapter that adds length checking to the datagram packets.

Tip

The recipient of the packet must also be configured to expect a length to precede the actual data.
For a Spring Integration UDP inbound channel adapter, set its check-length attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used.
The receiver must send an acknowledgment to the sender within a specified time.

<int-ip:udp-outbound-channel-adapter id="udpOut"

 host="somehost"

 port="11111"

 multicast="false"

 check-length="true"

 acknowledge="true"

 ack-host="thishost"

 ack-port="22222"

 ack-timeout="10000"

 channel="exampleChannel"/>

An outbound channel adapter that adds length checking to the datagram packets and waits for an
acknowledgment.

Tip

Setting acknowledge to true implies the recipient of the packet can interpret the header added
to the packet containing acknowledgment data (host and port). Most likely, the recipient will be a
Spring Integration inbound channel adapter.

Tip

When multicast is true, an additional attribute min-acks-for-success specifies how many
acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

Starting with version 4.3, the ackPort can be set to 0, in which case the Operating System chooses
the port.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 466

Outbound (Java Configuration)

@Bean

@ServiceActivator(inputChannel = "udpOut")

public UnicastSendingMessageHandler handler() {

 return new UnicastSendingMessageHandler("localhost", 11111);

}

(or MulticastSendingChannelAdapter for multicast).

Outbound (Java DSL Configuration)

@Bean

public IntegrationFlow udpOutFlow() {

 return IntegrationFlows.from("udpOut")

 .handle(Udp.outboundAdapter("localhost", 1234))

 .get();

}

Inbound (XML Configuration)

<int-ip:udp-inbound-channel-adapter id="udpReceiver"

 channel="udpOutChannel"

 port="11111"

 receive-buffer-size="500"

 multicast="false"

 check-length="true"/>

A basic unicast inbound udp channel adapter.

<int-ip:udp-inbound-channel-adapter id="udpReceiver"

 channel="udpOutChannel"

 port="11111"

 receive-buffer-size="500"

 multicast="true"

 multicast-address="225.6.7.8"

 check-length="true"/>

A basic multicast inbound udp channel adapter.

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to hostnames
for use in message headers. In environments where DNS is not configured, this can cause delays. This
default behavior can be overridden by setting the lookup-host attribute to "false".

Inbound (Java Configuration)

@Bean

public UnicastReceivingChannelAdapter udpIn() {

 UnicastReceivingChannelAdapter adapter = new UnicastReceivingChannelAdapter(11111);

 adapter.setOutputChannelName("udpChannel");

 return adapter;

}

Inbound (Java DSL Configuration)

@Bean

public IntegrationFlow udpIn() {

 return IntegrationFlows.from(Udp.inboundAdapter(11111))

 .channel("udpChannel")

 .get();

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 467

Server Listening Events

Starting with version 5.0.2, a UdpServerListeningEvent is emitted when an inbound adapter is
started and has begun listening. This is useful when the adapter is configured to listen on port 0, meaning
that the operating system chooses the port. It can also be used instead of polling isListening(), if
you need to wait before starting some other process that will connect to the socket.

Advanced Outbound Configuration

The destination-expression and socket-expression options are available for the <int-
ip:udp-outbound-channel-adapter> (UnicastSendingMessageHandler).

The destination-expression can be used as a runtime alternative to the hardcoded
host/port pair to determine the destination address for the outgoing datagram packet against
a requestMessage as the root object for the evaluation context. The expression must evaluate
to an URI, or String in the URI style (see RFC-2396) or SocketAddress. The inbound
IpHeaders.PACKET_ADDRESS header can be used for this expression as well. In the Framework, this
header is populated by the DatagramPacketMessageMapper, when we receive datagrams in the
UnicastReceivingChannelAdapter and convert them to messages. The header value is exactly
the result of DatagramPacket.getSocketAddress() of the incoming datagram.

With the socket-expression, the Outbound Channel Adapter can use e.g. an Inbound Channel
Adapter socket to send datagrams through same port which they were received. It’s useful in a scenario
when our application works as a UDP server and clients operate behind NAT. This expression must
evaluate to a DatagramSocket. The requestMessage is used as the root object for the evaluation
context. The socket-expression parameter cannot be used with parameters multicast and
acknowledge.

<int-ip:udp-inbound-channel-adapter id="inbound" port="0" channel="in" />

<int:channel id="in" />

<int:transformer expression="new String(payload).toUpperCase()"

 input-channel="in" output-channel="out"/>

<int:channel id="out" />

<int-ip:udp-outbound-channel-adapter id="outbound"

 socket-expression="@inbound.socket"

 destination-expression="headers['ip_packetAddress']"

 channel="out" />

The equivalent configuration using Java DSL Configuration:

@Bean

public IntegrationFlow udpEchoUpcaseServer() {

 return IntegrationFlows.from(Udp.inboundAdapter(11111).id("udpIn"))

 .<byte[], String>transform(p -> new String(p).toUpperCase())

 .handle(Udp.outboundAdapter("headers['ip_packetAddress']")

 .socketExpression("@udpIn.socket"))

 .get();

}

32.3 TCP Connection Factories

For TCP, the configuration of the underlying connection is provided using a Connection Factory. Two
types of connection factory are provided; a client connection factory and a server connection factory.

http://www.ietf.org/rfc/rfc2396.txt

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 468

Client connection factories are used to establish outgoing connections; Server connection factories
listen for incoming connections.

A client connection factory is used by an outbound channel adapter but a reference to a client connection
factory can also be provided to an inbound channel adapter and that adapter will receive any incoming
messages received on connections created by the outbound adapter.

A server connection factory is used by an inbound channel adapter or gateway (in fact the connection
factory will not function without one). A reference to a server connection factory can also be provided
to an outbound adapter; that adapter can then be used to send replies to incoming messages to the
same connection.

Tip

Reply messages will only be routed to the connection if the reply contains the header
ip_connectionId that was inserted into the original message by the connection factory.

Tip

This is the extent of message correlation performed when sharing connection factories between
inbound and outbound adapters. Such sharing allows for asynchronous two-way communication
over TCP. By default, only payload information is transferred using TCP; therefore any message
correlation must be performed by downstream components such as aggregators or other
endpoints. Support for transferring selected headers was introduced in version 3.0. For more
information refer to Section 32.8, “TCP Message Correlation”.

A maximum of one adapter of each type may be given a reference to a connection factory.

Connection factories using java.net.Socket and java.nio.channel.SocketChannel are
provided.

<int-ip:tcp-connection-factory id="server"

 type="server"

 port="1234"/>

A simple server connection factory that uses java.net.Socket connections.

<int-ip:tcp-connection-factory id="server"

 type="server"

 port="1234"

 using-nio="true"/>

A simple server connection factory that uses java.nio.channel.SocketChannel connections.

Note

Starting with Spring Integration version 4.2, if the server is configured to listen on a random
port (0), the actual port chosen by the OS can be obtained using getPort(). Also,
getServerSocketAddress() is available to get the complete SocketAddress. See the
javadocs for the TcpServerConnectionFactory interface for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 469

<int-ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="1234"

 single-use="true"

 so-timeout="10000"/>

A client connection factory that uses java.net.Socket connections and creates a new connection
for each message.

<int-ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="1234"

 single-use="true"

 so-timeout="10000"

 using-nio=true/>

A client connection factory that uses java.nio.channel.Socket connections and creates a new
connection for each message.

TCP is a streaming protocol; this means that some structure has to be provided to data transported
over TCP, so the receiver can demarcate the data into discrete messages. Connection factories are
configured to use (de)serializers to convert between the message payload and the bits that are sent
over TCP. This is accomplished by providing a deserializer and serializer for inbound and outbound
messages respectively. A number of standard (de)serializers are provided.

The ByteArrayCrlfSerializer*, converts a byte array to a stream of bytes followed by carriage
return and linefeed characters (\r\n). This is the default (de)serializer and can be used with telnet as
a client, for example.

The ByteArraySingleTerminatorSerializer*, converts a byte array to a stream of bytes
followed by a single termination character (default 0x00).

The ByteArrayLfSerializer*, converts a byte array to a stream of bytes followed by a single
linefeed character (0x0a).

The ByteArrayStxEtxSerializer*, converts a byte array to a stream of bytes preceded by an STX
(0x02) and followed by an ETX (0x03).

The ByteArrayLengthHeaderSerializer, converts a byte array to a stream of bytes preceded by
a binary length in network byte order (big endian). This a very efficient deserializer because it does not
have to parse every byte looking for a termination character sequence. It can also be used for payloads
containing binary data; the above serializers only support text in the payload. The default size of the
length header is 4 bytes (Integer), allowing for messages up to (2^31 - 1) bytes. However, the length
header can be a single byte (unsigned) for messages up to 255 bytes, or an unsigned short (2 bytes)
for messages up to (2^16 - 1) bytes. If you need any other format for the header, you can subclass
this class and provide implementations for the readHeader and writeHeader methods. The absolute
maximum data size supported is (2^31 - 1) bytes.

The ByteArrayRawSerializer*, converts a byte array to a stream of bytes and adds no additional
message demarcation data; with this (de)serializer, the end of a message is indicated by the client
closing the socket in an orderly fashion. When using this serializer, message reception will hang until
the client closes the socket, or a timeout occurs; a timeout will NOT result in a message. When
this serializer is being used, and the client is a Spring Integration application, the client must use

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 470

a connection factory that is configured with single-use=true - this causes the adapter to close the
socket after sending the message; the serializer will not, itself, close the connection. This serializer
should only be used with connection factories used by channel adapters (not gateways), and the
connection factories should be used by either an inbound or outbound adapter, and not both. Also see
ByteArrayElasticRawDeserializer below.

Note

Before version 4.2.2, when using NIO, this serializer treated a timeout (during read) as an
end of file and the data read so far was emitted as a message. This is unreliable and
should not be used to delimit messages; it now treats such conditions as an exception. In the
unlikely event you are using it this way, the previous behavior can be restored by setting the
treatTimeoutAsEndOfMessage constructor argument to true.

Each of these is a subclass of AbstractByteArraySerializer

which implements both org.springframework.core.serializer.Serializer and
org.springframework.core.serializer.Deserializer. For backwards compatibility,
connections using any subclass of AbstractByteArraySerializer for serialization will also accept
a String which will be converted to a byte array first. Each of these (de)serializers converts an input
stream containing the corresponding format to a byte array payload.

To avoid memory exhaustion due to a badly behaved client (one that does not adhere to the protocol of
the configured serializer), these serializers impose a maximum message size. If the size is exceeded
by an incoming message, an exception will be thrown. The default maximum message size is 2048
bytes, and can be increased by setting the maxMessageSize property. If you are using the default
(de)serializer and wish to increase the maximum message size, you must declare it as an explicit bean
with the property set and configure the connection factory to use that bean.

The classes marked with * above use an intermediate buffer and copy the decoded data to a final buffer
of the correct size. Starting with version 4.3, these can be configured with a poolSize property to allow
these raw buffers to be reused instead of being allocated and discarded for each message, which is
the default behavior. Setting the property to a negative value will create a pool that has no bounds. If
the pool is bounded, you can also set the poolWaitTimeout property (milliseconds) after which an
exception is thrown if no buffer becomes available; it defaults to infinity. Such an exception will cause
the socket to be closed.

If you wish to use the same mechanism in custom deserializers,
subclass AbstractPooledBufferByteArraySerializer instead of its super class
AbstractByteArraySerializer, and implement doDeserialize() instead of
deserialize(). The buffer will be returned to the pool automatically.
AbstractPooledBufferByteArraySerializer also provides a convenient utility method
copyToSizedArray().

Version 5.0 added the ByteArrayElasticRawDeserializer. This is similar to the deserializer side
of ByteArrayRawSerializer above, except it is not necessary to set a maxMessageSize. Internally,
it uses a ByteArrayOutputStream which allows the buffer to grow as needed. The client must close
the socket in an orderly manner to signal end of message.

The MapJsonSerializer uses a Jackson ObjectMapper to convert between a Map and
JSON. This can be used in conjunction with a MessageConvertingTcpMessageMapper and a
MapMessageConverter to transfer selected headers and the payload in a JSON format.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 471

Note

The Jackson ObjectMapper cannot demarcate messages in the stream. Therefore, the
MapJsonSerializer needs to delegate to another (de)serializer to handle message
demarcation. By default, a ByteArrayLfSerializer is used, resulting in messages with the
format <json><LF> on the wire, but you can configure it to use others instead.

The final standard serializer is org.springframework.core.serializer.DefaultSerializer
which can be used to convert Serializable objects using java
serialization.org.springframework.core.serializer.DefaultDeserializer is provided for
inbound deserialization of streams containing Serializable objects.

To implement a custom (de)serializer pair, implement the
org.springframework.core.serializer.Deserializer and
org.springframework.core.serializer.Serializer interfaces.

If you do not wish to use the default (de)serializer (ByteArrayCrLfSerializer), you must supply
serializer and deserializer attributes on the connection factory (example below).

<bean id="javaSerializer"

 class="org.springframework.core.serializer.DefaultSerializer" />

<bean id="javaDeserializer"

 class="org.springframework.core.serializer.DefaultDeserializer" />

<int-ip:tcp-connection-factory id="server"

 type="server"

 port="1234"

 deserializer="javaDeserializer"

 serializer="javaSerializer"/>

A server connection factory that uses java.net.Socket connections and uses Java serialization on
the wire.

For full details of the attributes available on connection factories, see the reference at the end of this
section.

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to hostnames
for use in message headers. In environments where DNS is not configured, this can cause connection
delays. This default behavior can be overridden by setting the lookup-host attribute to "false".

Note

It is possible to modify the creation of and/or attributes of sockets - see Section 32.10, “SSL/TLS
Support”. As is noted there, such modifications are possible whether or not SSL is being used.

TCP Caching Client Connection Factory

As noted above, TCP sockets can be single-use (one request/response) or shared. Shared sockets do
not perform well with outbound gateways, in high-volume environments, because the socket can only
process one request/response at a time.

To improve performance, users could use collaborating channel adapters instead of gateways, but that
requires application-level message correlation. See Section 32.8, “TCP Message Correlation” for more
information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 472

Spring Integration 2.2 introduced a caching client connection factory, where a pool of shared sockets is
used, allowing a gateway to process multiple concurrent requests with a pool of shared connections.

TCP Failover Client Connection Factory

It is now possible to configure a TCP connection factory that supports failover to one or more other
servers. When sending a message, the factory will iterate over all its configured factories until either the
message can be sent, or no connection can be found. Initially, the first factory in the configured list is
used; if a connection subsequently fails the next factory will become the current factory.

<bean id="failCF" class="o.s.i.ip.tcp.connection.FailoverClientConnectionFactory">

 <constructor-arg>

 <list>

 <ref bean="clientFactory1"/>

 <ref bean="clientFactory2"/>

 </list>

 </constructor-arg>

</bean>

Note

When using the failover connection factory, the singleUse property must be consistent between
the factory itself and the list of factories it is configured to use.

TCP Thread Affinity Connection Factory

Spring Integration version 5.0 introduced this connection factory. It binds a connection to the calling
thread and the same connection is reused each time that thread sends a message. This continues until
the connection is closed (by the server or network) or until the thread calls the releaseConnection()
method. The connections themselves are provided by another client factory implementation; which must
be configured to provide non-shared (single-use) connections so that each thread gets a connection.

Example configuration:

@Bean

public TcpNetClientConnectionFactory cf() {

 TcpNetClientConnectionFactory cf = new TcpNetClientConnectionFactory("localhost",

 Integer.parseInt(System.getProperty(PORT)));

 cf.setSingleUse(true);

 return cf;

}

@Bean

public ThreadAffinityClientConnectionFactory tacf() {

 return new ThreadAffinityClientConnectionFactory(cf());

}

@Bean

@ServiceActivator(inputChannel = "out")

public TcpOutboundGateway outGate() {

 TcpOutboundGateway outGate = new TcpOutboundGateway();

 outGate.setConnectionFactory(tacf());

 outGate.setReplyChannelName("toString");

 return outGate;

}

32.4 TCP Connection Interceptors

Connection factories can be configured with a reference to a
TcpConnectionInterceptorFactoryChain. Interceptors can be used to add behavior to

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 473

connections, such as negotiation, security, and other setup. No interceptors are currently provided by
the framework but, for an example, see the InterceptedSharedConnectionTests in the source
repository.

The HelloWorldInterceptor used in the test case works as follows:

When configured with a client connection factory, when the first message is sent over a connection that
is intercepted, the interceptor sends Hello over the connection, and expects to receive world!. When
that occurs, the negotiation is complete and the original message is sent; further messages that use the
same connection are sent without any additional negotiation.

When configured with a server connection factory, the interceptor requires the first message to be Hello
and, if it is, returns world!. Otherwise it throws an exception causing the connection to be closed.

All TcpConnection methods are intercepted. Interceptor instances are created for each
connection by an interceptor factory. If an interceptor is stateful, the factory should create
a new instance for each connection; if there is no state, the same interceptor can wrap
each connection. Interceptor factories are added to the configuration of an interceptor factory
chain, which is provided to a connection factory using the interceptor-factory attribute.
Interceptors must extend TcpConnectionInterceptorSupport; factories must implement
the TcpConnectionInterceptorFactory interface. TcpConnectionInterceptorSupport is
provided with passthrough methods; by extending this class, you only need to implement those methods
you wish to intercept.

<bean id="helloWorldInterceptorFactory"

 class="o.s.i.ip.tcp.connection.TcpConnectionInterceptorFactoryChain">

 <property name="interceptors">

 <array>

 <bean class="o.s.i.ip.tcp.connection.HelloWorldInterceptorFactory"/>

 </array>

 </property>

</bean>

<int-ip:tcp-connection-factory id="server"

 type="server"

 port="12345"

 using-nio="true"

 single-use="true"

 interceptor-factory-chain="helloWorldInterceptorFactory"/>

<int-ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="12345"

 single-use="true"

 so-timeout="100000"

 using-nio="true"

 interceptor-factory-chain="helloWorldInterceptorFactory"/>

Configuring a connection interceptor factory chain.

32.5 TCP Connection Events

Beginning with version 3.0, changes to TcpConnection s are reported by TcpConnectionEvent
s. TcpConnectionEvent is a subclass of ApplicationEvent and thus can be received by any
ApplicationListener defined in the ApplicationContext, for example Event Inbound Channel
Adapter.

TcpConnectionEvents have the following properties:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 474

• connectionId - the connection identifier which can be used in a message header to send data to
the connection

• connectionFactoryName - the bean name of the connection factory the connection belongs to

• throwable - the Throwable (for TcpConnectionExceptionEvent events only)

• source - the TcpConnection; this can be used, for example, to determine the remote IP Address
with getHostAddress() (cast required)

In addition, since version 4.0 the standard deserializers discussed in Section 32.3, “TCP Connection
Factories” now emit TcpDeserializationExceptionEvent s when problems are encountered
decoding the data stream. These events contain the exception, the buffer that was in the process of
being built, and an offset into the buffer (if available) at the point the exception occurred. Applications can
use a normal ApplicationListener, or see Section 13.1, “Receiving Spring Application Events”, to
capture these events, allowing analysis of the problem.

Starting with versions 4.0.7, 4.1.3, TcpConnectionServerExceptionEvent s are published
whenever an unexpected exception occurs on a server socket (such as a BindException when the
server socket is in use). These events have a reference to the connection factory and the cause.

Starting with version 4.2, TcpConnectionFailedCorrelationEvent s are published whenever an
endpoint (inbound gateway or collaborating outbound channel adapter) receives a message that cannot
be routed to a connection because the ip_connectionId header is invalid. Outbound gateways also
publish this event when a late reply is received (the sender thread has timed out). The event contains
the connection id as well as an exception in the cause property that contains the failed message.

Starting with version 4.3, a TcpConnectionServerListeningEvent is emitted when a server
connection factory is started. This is useful when the factory is configured to listen on port 0, meaning
that the operating system chooses the port. It can also be used instead of polling isListening(), if
you need to wait before starting some other process that will connect to the socket.

Important

To avoid delaying the listening thread from accepting connections, the event is published on a
separate thread.

Starting with version 4.3.2, a TcpConnectionFailedEvent is emitted whenever a client connection
can’t be created. The source of the event is the connection factory which can be used to determine the
host and port to which the connection could not be established.

32.6 TCP Adapters

TCP inbound and outbound channel adapters that utilize the above connection factories are provided.
These adapters have attributes connection-factory and channel. The channel attribute specifies
the channel on which messages arrive at an outbound adapter and on which messages are placed by
an inbound adapter. The connection-factory attribute indicates which connection factory is to be used to
manage connections for the adapter. While both inbound and outbound adapters can share a connection
factory, server connection factories are always owned by an inbound adapter; client connection factories
are always owned by an outbound adapter. One, and only one, adapter of each type may get a reference
to a connection factory.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 475

<bean id="javaSerializer"

 class="org.springframework.core.serializer.DefaultSerializer"/>

<bean id="javaDeserializer"

 class="org.springframework.core.serializer.DefaultDeserializer"/>

<int-ip:tcp-connection-factory id="server"

 type="server"

 port="1234"

 deserializer="javaDeserializer"

 serializer="javaSerializer"

 using-nio="true"

 single-use="true"/>

<int-ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="#{server.port}"

 single-use="true"

 so-timeout="10000"

 deserializer="javaDeserializer"

 serializer="javaSerializer"/>

<int:channel id="input" />

<int:channel id="replies">

 <int:queue/>

</int:channel>

<int-ip:tcp-outbound-channel-adapter id="outboundClient"

 channel="input"

 connection-factory="client"/>

<int-ip:tcp-inbound-channel-adapter id="inboundClient"

 channel="replies"

 connection-factory="client"/>

<int-ip:tcp-inbound-channel-adapter id="inboundServer"

 channel="loop"

 connection-factory="server"/>

<int-ip:tcp-outbound-channel-adapter id="outboundServer"

 channel="loop"

 connection-factory="server"/>

<int:channel id="loop"/>

In this configuration, messages arriving in channel input are serialized over connections created by client
received at the server and placed on channel loop. Since loop is the input channel for outboundServer
the message is simply looped back over the same connection and received by inboundClient and
deposited in channel replies. Java serialization is used on the wire.

Normally, inbound adapters use a type="server" connection factory, which listens for incoming
connection requests. In some cases, it is desirable to establish the connection in reverse, whereby the
inbound adapter connects to an external server and then waits for inbound messages on that connection.

This topology is supported by using client-mode="true" on the inbound adapter. In this case, the
connection factory must be of type client and must have single-use set to false.

Two additional attributes are used to support this mechanism: retry-interval specifies (in milliseconds)
how often the framework will attempt to reconnect after a connection failure. scheduler is used to supply
a TaskScheduler used to schedule the connection attempts, and to test that the connection is still
active.

For an outbound adapter, the connection is normally established when the first message is sent. client-
mode="true" on an outbound adapter will cause the connection to be established when the adapter

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 476

is started. Adapters are automatically started by default. Again, the connection factory must be of
type client and have single-use set to false and retry-interval and scheduler are also supported. If a
connection fails, it will be re-established either by the scheduler or when the next message is sent.

For both inbound and outbound, if the adapter is started, you may force the adapter to establish
a connection by sending a <control-bus /> command: @adapter_id.retryConnection() and
examine the current state with @adapter_id.isConnected().

32.7 TCP Gateways

The inbound TCP gateway TcpInboundGateway and outbound TCP gateway
TcpOutboundGateway use a server and client connection factory respectively. Each connection can
process a single request/response at a time.

The inbound gateway, after constructing a message with the incoming payload and sending it to the
requestChannel, waits for a response and sends the payload from the response message by writing
it to the connection.

Note

For the inbound gateway, care must be taken to retain, or populate, the ip_connectionId header
because it is used to correlate the message to a connection. Messages that originate at the
gateway will automatically have the header set. If the reply is constructed as a new message, you
will need to set the header. The header value can be captured from the incoming message.

As with inbound adapters, inbound gateways normally use a type="server" connection factory, which
listens for incoming connection requests. In some cases, it is desirable to establish the connection in
reverse, whereby the inbound gateway connects to an external server and then waits for, and replies
to, inbound messages on that connection.

This topology is supported by using client-mode="true" on the inbound gateway. In this case, the
connection factory must be of type client and must have single-use set to false.

Two additional attributes are used to support this mechanism: retry-interval specifies (in milliseconds)
how often the framework will attempt to reconnect after a connection failure. scheduler is used to supply
a TaskScheduler used to schedule the connection attempts, and to test that the connection is still
active.

If the gateway is started, you may force the gateway to establish a connection by sending a
<control-bus /> command: @adapter_id.retryConnection() and examine the current state with
@adapter_id.isConnected().

The outbound gateway, after sending a message over the connection, waits for a response and
constructs a response message and puts in on the reply channel. Communications over the connections
are single-threaded. Users should be aware that only one message can be handled at a time and,
if another thread attempts to send a message before the current response has been received, it will
block until any previous requests are complete (or time out). If, however, the client connection factory
is configured for single-use connections each new request gets its own connection and is processed
immediately.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 477

<int-ip:tcp-inbound-gateway id="inGateway"

 request-channel="tcpChannel"

 reply-channel="replyChannel"

 connection-factory="cfServer"

 reply-timeout="10000"/>

A simple inbound TCP gateway; if a connection factory configured with the default (de)serializer is used,
messages will be \r\n delimited data and the gateway can be used by a simple client such as telnet.

<int-ip:tcp-outbound-gateway id="outGateway"

 request-channel="tcpChannel"

 reply-channel="replyChannel"

 connection-factory="cfClient"

 request-timeout="10000"

 remote-timeout="10000"/> <!-- or e.g.

remote-timeout-expression="headers['timeout']" -->

A simple outbound TCP gateway.

32.8 TCP Message Correlation

Overview

One goal of the IP Endpoints is to provide communication with systems other than another Spring
Integration application. For this reason, only message payloads are sent and received, by default. Since
3.0, headers can be transferred, using JSON, Java serialization, or with custom Serializer s and
Deserializer s; see the section called “Transferring Headers” for more information. No message
correlation is provided by the framework, except when using the gateways, or collaborating channel
adapters on the server side. In the paragraphs below we discuss the various correlation techniques
available to applications. In most cases, this requires specific application-level correlation of messages,
even when message payloads contain some natural correlation data (such as an order number).

Gateways

The gateways will automatically correlate messages. However, an outbound gateway should only be
used for relatively low-volume use. When the connection factory is configured for a single shared
connection to be used for all message pairs (single-use="false"), only one message can be processed at
a time. A new message will have to wait until the reply to the previous message has been received. When
a connection factory is configured for each new message to use a new connection (single-use="true"),
the above restriction does not apply. While this may give higher throughput than a shared connection
environment, it comes with the overhead of opening and closing a new connection for each message
pair.

Therefore, for high-volume messages, consider using a collaborating pair of channel adapters. However,
you will need to provide collaboration logic.

Another solution, introduced in Spring Integration 2.2, is to use a
CachingClientConnectionFactory, which allows the use of a pool of shared connections.

Collaborating Outbound and Inbound Channel Adapters

To achieve high-volume throughput (avoiding the pitfalls of using gateways as mentioned above) you
may consider configuring a pair of collaborating outbound and inbound channel adapters. Collaborating
adapters can also be used (server-side or client-side) for totally asynchronous communication (rather

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 478

than with request/reply semantics). On the server side, message correlation is automatically handled by
the adapters because the inbound adapter adds a header allowing the outbound adapter to determine
which connection to use to send the reply message.

Note

On the server side, care must be taken to populate the ip_connectionId header because it is used
to correlate the message to a connection. Messages that originate at the inbound adapter will
automatically have the header set. If you wish to construct other messages to send, you will need
to set the header. The header value can be captured from an incoming message.

On the client side, the application will have to provide its own correlation logic, if needed. This can be
done in a number of ways.

If the message payload has some natural correlation data, such as a transaction id or an order number,
AND there is no need to retain any information (such as a reply channel header) from the original
outbound message, the correlation is simple and would done at the application level in any case.

If the message payload has some natural correlation data, such as a transaction id or an order number,
but there is a need to retain some information (such as a reply channel header) from the original
outbound message, you may need to retain a copy of the original outbound message (perhaps by using
a publish-subscribe channel) and use an aggregator to recombine the necessary data.

For either of the previous two paragraphs, if the payload has no natural correlation data, you may need
to provide a transformer upstream of the outbound channel adapter to enhance the payload with such
data. Such a transformer may transform the original payload to a new object containing both the original
payload and some subset of the message headers. Of course, live objects (such as reply channels)
from the headers can not be included in the transformed payload.

If such a strategy is chosen you will need to ensure the connection factory has an appropriate
serializer/deserializer pair to handle such a payload, such as the DefaultSerializer/

Deserializer which use java serialization, or a custom serializer and deserializer. The
ByteArray*Serializer options mentioned in Section 32.3, “TCP Connection Factories”, including
the default ByteArrayCrLfSerializer, do not support such payloads, unless the transformed
payload is a String or byte[],

Note

Before the 2.2 release, when a client connection factory was used by collaborating channel
adapters, the so-timeout attribute defaulted to the default reply timeout (10 seconds). This meant
that if no data were received by the inbound adapter for this period of time, the socket was closed.

This default behavior was not appropriate in a truly asynchronous environment, so it now defaults
to an infinite timeout. You can reinstate the previous default behavior by setting the so-timeout
attribute on the client connection factory to 10000 milliseconds.

Transferring Headers

TCP is a streaming protocol; Serializers and Deserializers are used to demarcate messages
within the stream. Prior to 3.0, only message payloads (String or byte[]) could be transferred over TCP.
Beginning with 3.0, you can now transfer selected headers as well as the payload. It is important to
understand, though, that "live" objects, such as the replyChannel header cannot be serialized.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 479

Sending header information over TCP requires some additional configuration.

The first step is to provide the ConnectionFactory with a
MessageConvertingTcpMessageMapper using the mapper attribute. This mapper delegates to
any MessageConverter implementation to convert the message to/from some object that can be
(de)serialized by the configured serializer and deserializer.

A MapMessageConverter is provided, which allows the specification of a list of headers that will be
added to a Map object, along with the payload. The generated Map has two entries: payload and
headers. The headers entry is itself a Map containing the selected headers.

The second step is to provide a (de)serializer that can convert between a Map and some wire format.
This can be a custom (de)Serializer, which would typically be needed if the peer system is not a
Spring Integration application.

A MapJsonSerializer is provided that will convert a Map to/from JSON. This uses a
Spring Integration JsonObjectMapper to perform this function. You can provide a custom
JsonObjectMapper if needed. By default, the serializer inserts a linefeed 0x0a character between
objects. See the JavaDocs for more information.

Note

At the time of writing, the JsonObjectMapper uses whichever version of Jackson is on the
classpath.

You can also use standard Java serialization of the Map, using the DefaultSerializer and
DefaultDeserializer.

The following example shows the configuration of a connection factory that transfers the
correlationId, sequenceNumber, and sequenceSize headers using JSON.

<int-ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="12345"

 mapper="mapper"

 serializer="jsonSerializer"

 deserializer="jsonSerializer"/>

<bean id="mapper"

 class="o.sf.integration.ip.tcp.connection.MessageConvertingTcpMessageMapper">

 <constructor-arg name="messageConverter">

 <bean class="o.sf.integration.support.converter.MapMessageConverter">

 <property name="headerNames">

 <list>

 <value>correlationId</value>

 <value>sequenceNumber</value>

 <value>sequenceSize</value>

 </list>

 </property>

 </bean>

 </constructor-arg>

</bean>

<bean id="jsonSerializer" class="o.sf.integration.ip.tcp.serializer.MapJsonSerializer" />

A message sent with the above configuration, with payload foo would appear on the wire like so:

{"headers":{"correlationId":"bar","sequenceSize":5,"sequenceNumber":1},"payload":"foo"}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 480

32.9 A Note About NIO

Using NIO (see using-nio in Section 32.12, “IP Configuration Attributes”) avoids dedicating a thread
to read from each socket. For a small number of sockets, you will likely find that not using NIO, together
with an async handoff (e.g. to a QueueChannel), will perform as well as, or better than, using NIO.

Consider using NIO when handling a large number of connections. However, the use of NIO has some
other ramifications. A pool of threads (in the task executor) is shared across all the sockets; each
incoming message is assembled and sent to the configured channel as a separate unit of work on
a thread selected from that pool. Two sequential messages arriving on the same socket might be
processed by different threads. This means that the order in which the messages are sent to the channel
is indeterminate; the strict ordering of the messages arriving on the socket is not maintained.

For some applications, this is not an issue; for others it is. If strict ordering is required, consider setting
using-nio to false and using async handoff.

Alternatively, you may choose to insert a resequencer downstream of the inbound endpoint to return
the messages to their proper sequence. Set apply-sequence to true on the connection factory, and
messages arriving on a TCP connection will have sequenceNumber and correlationId headers set. The
resequencer uses these headers to return the messages to their proper sequence.

Pool Size

The pool size attribute is no longer used; previously, it specified the size of the default thread pool when
a task-executor was not specified. It was also used to set the connection backlog on server sockets. The
first function is no longer needed (see below); the second function is replaced by the backlog attribute.

Previously, when using a fixed thread pool task executor (which was the default), with NIO, it was
possible to get a deadlock and processing would stop. The problem occurred when a buffer was
full, a thread reading from the socket was trying to add more data to the buffer, and there were no
threads available to make space in the buffer. This only occurred with a very small pool size, but it
could be possible under extreme conditions. Since 2.2, two changes have eliminated this problem.
First, the default task executor is a cached thread pool executor. Second, deadlock detection logic has
been added such that if thread starvation occurs, instead of deadlocking, an exception is thrown, thus
releasing the deadlocked resources.

Important

Now that the default task executor is unbounded, it is possible that an out of memory condition
might occur with high rates of incoming messages, if message processing takes extended time.
If your application exhibits this type of behavior, you are advised to use a pooled task executor
with an appropriate pool size, but see the next section.

Thread Pool Task Executor with CALLER_RUNS Policy

There are some important considerations when using a fixed thread pool with the CallerRunsPolicy
(CALLER_RUNS when using the <task/> namespace) and the queue capacity is small.

The following does not apply if you are not using a fixed thread pool.

With NIO connections there are 3 distinct task types; the IO Selector processing is performed on one
dedicated thread - detecting events, accepting new connections, and dispatching the IO read operations

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 481

to other threads, using the task executor. When an IO reader thread (to which the read operation
is dispatched) reads data, it hands off to another thread to assemble the incoming message; large
messages may take several reads to complete. These "assembler" threads can block waiting for data.
When a new read event occurs, the reader determines if this socket already has an assembler and runs
a new one if not. When the assembly process is complete, the assembler thread is returned to the pool.

This can cause a deadlock when the pool is exhausted and the CALLER_RUNS rejection policy is in
use, and the task queue is full. When the pool is empty and there is no room in the queue, the IO
selector thread receives an OP_READ event and dispatches the read using the executor; the queue is
full, so the selector thread itself starts the read process; now, it detects that there is not an assembler
for this socket and, before it does the read, fires off an assembler; again, the queue is full, and the
selector thread becomes the assembler. The assembler is now blocked awaiting the data to be read,
which will never happen. The connection factory is now deadlocked because the selector thread can’t
handle new events.

We must avoid the selector (or reader) threads performing the assembly task to avoid this deadlock. It
is desirable to use seperate pools for the IO and assembly operations.

The framework provides a CompositeExecutor, which allows the configuration of two distinct
executors; one for performing IO operations, and one for message assembly. In this environment, an
IO thread can never become an assembler thread, and the deadlock cannot occur.

In addition, the task executors should be configured to use a AbortPolicy (ABORT when using
<task>). When an IO cannot be completed, it is deferred for a short time and retried continually until
it can be completed and an assembler allocated. By default, the delay is 100ms but it can be changed
using the readDelay property on the connection factory (read-delay when configuring with the XML
namespace).

Example configuration of the composite executor is shown below.

@Bean

private CompositeExecutor compositeExecutor() {

 ThreadPoolTaskExecutor ioExec = new ThreadPoolTaskExecutor();

 ioExec.setCorePoolSize(4);

 ioExec.setMaxPoolSize(10);

 ioExec.setQueueCapacity(0);

 ioExec.setThreadNamePrefix("io-");

 ioExec.setRejectedExecutionHandler(new AbortPolicy());

 ioExec.initialize();

 ThreadPoolTaskExecutor assemblerExec = new ThreadPoolTaskExecutor();

 assemblerExec.setCorePoolSize(4);

 assemblerExec.setMaxPoolSize(10);

 assemblerExec.setQueueCapacity(0);

 assemblerExec.setThreadNamePrefix("assembler-");

 assemblerExec.setRejectedExecutionHandler(new AbortPolicy());

 assemblerExec.initialize();

 return new CompositeExecutor(ioExec, assemblerExec);

}

<bean id="myTaskExecutor" class="org.springframework.integration.util.CompositeExecutor">

 <constructor-arg ref="io"/>

 <constructor-arg ref="assembler"/>

</bean>

<task:executor id="io" pool-size="4-10" queue-capacity="0" rejection-policy="ABORT" />

<task:executor id="assembler" pool-size="4-10" queue-capacity="0" rejection-policy="ABORT" />

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 482

<bean id="myTaskExecutor" class="org.springframework.integration.util.CompositeExecutor">

 <constructor-arg>

 <bean class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">

 <property name="threadNamePrefix" value="io-" />

 <property name="corePoolSize" value="4" />

 <property name="maxPoolSize" value="8" />

 <property name="queueCapacity" value="0" />

 <property name="rejectedExecutionHandler">

 <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy" />

 </property>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">

 <property name="threadNamePrefix" value="assembler-" />

 <property name="corePoolSize" value="4" />

 <property name="maxPoolSize" value="10" />

 <property name="queueCapacity" value="0" />

 <property name="rejectedExecutionHandler">

 <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy" />

 </property>

 </bean>

 </constructor-arg>

</bean>

32.10 SSL/TLS Support

Overview

Secure Sockets Layer/Transport Layer Security is supported. When using NIO, the JDK 5+ SSLEngine
feature is used to handle handshaking after the connection is established. When not using NIO, standard
SSLSocketFactory and SSLServerSocketFactory objects are used to create connections. A
number of strategy interfaces are provided to allow significant customization; default implementations
of these interfaces provide for the simplest way to get started with secure communications.

Getting Started

Regardless of whether NIO is being used, you need to configure the ssl-context-support attribute
on the connection factory. This attribute references a <bean/> definition that describes the location and
passwords for the required key stores.

SSL/TLS peers require two keystores each; a keystore containing private/public key pairs identifying
the peer; a truststore, containing the public keys for peers that are trusted. See the documentation for
the keytool utility provided with the JDK. The essential steps are

1. Create a new key pair and store in a keystore.

2. Export the public key.

3. Import the public key into the peer’s truststore.

Repeat for the other peer.

Note

It is common in test cases to use the same key stores on both peers, but this should be avoided
for production.

After establishing the key stores, the next step is to indicate their locations to the
TcpSSLContextSupport bean, and provide a reference to that bean to the connection factory.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 483

<bean id="sslContextSupport"

 class="o.sf.integration.ip.tcp.connection.support.DefaultTcpSSLContextSupport">

 <constructor-arg value="client.ks"/>

 <constructor-arg value="client.truststore.ks"/>

 <constructor-arg value="secret"/>

 <constructor-arg value="secret"/>

</bean>

<ip:tcp-connection-factory id="clientFactory"

 type="client"

 host="localhost"

 port="1234"

 ssl-context-support="sslContextSupport" />

The DefaulTcpSSLContextSupport class also has an optional protocol property, which can be
SSL or TLS (default).

The keystore file names (first two constructor arguments) use the Spring Resource abstraction; by
default the files will be located on the classpath, but this can be overridden by using the file: prefix,
to find the files on the filesystem instead.

Starting with version 4.3.6, when using NIO, you can specify an ssl-handshake-timeout (seconds)
on the connection factory. This timeout (default 30) is used during SSL handshake when waiting for
data; if the timeout is exceeded, the process is aborted and the socket closed.

32.11 Advanced Techniques

Strategy Interfaces

In many cases, the configuration described above is all that is needed to enable secure communication
over TCP/IP. However, a number of strategy interfaces are provided to allow customization and
modification of socket factories and sockets.

• TcpSSLContextSupport

• TcpSocketFactorySupport

• TcpSocketSupport

• TcpNetConnectionSupport

• TcpNioConnectionSupport

TcpSSLContextSupport.

public interface TcpSSLContextSupport {

 SSLContext getSSLContext() throws Exception;

}

Implementations of this interface are responsible for creating an SSLContext. The implementation
provided by the framework is the DefaultTcpSSLContextSupport described above. If you require
different behavior, implement this interface and provide the connection factory with a reference to a
bean of your class' implementation.

TcpSocketFactorySupport.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 484

public interface TcpSocketFactorySupport {

 ServerSocketFactory getServerSocketFactory();

 SocketFactory getSocketFactory();

}

Implementations of this interface are responsible for obtaining references to
ServerSocketFactory and SocketFactory. Two implementations are provided; the first is
DefaultTcpNetSocketFactorySupport for non-SSL sockets (when no ssl-context-support
attribute is defined); this simply uses the JDK’s default factories. The second implementation is
DefaultTcpNetSSLSocketFactorySupport; this is used, by default, when an ssl-context-
support attribute is defined; it uses the SSLContext created by that bean to create the socket
factories.

Note

This interface only applies if using-nio is "false"; socket factories are not used by NIO.

TcpSocketSupport.

public interface TcpSocketSupport {

 void postProcessServerSocket(ServerSocket serverSocket);

 void postProcessSocket(Socket socket);

}

Implementations of this interface can modify sockets after they are created, and after all configured
attributes have been applied, but before the sockets are used. This applies whether or not NIO is being
used. For example, you could use an implementation of this interface to modify the supported cipher
suites on an SSL socket, or you could add a listener that gets notified after SSL handshaking is complete.
The sole implementation provided by the framework is the DefaultTcpSocketSupport which does
not modify the sockets in any way

To supply your own implementation of TcpSocketFactorySupport or TcpSocketSupport, provide
the connection factory with references to beans of your custom type using the socket-factory-
support and socket-support attributes, respectively.

TcpNetConnectionSupport.

public interface TcpNetConnectionSupport {

 TcpNetConnection createNewConnection(Socket socket,

 boolean server, boolean lookupHost,

 ApplicationEventPublisher applicationEventPublisher,

 String connectionFactoryName) throws Exception;

}

This interface is invoked to create TcpNetConnection objects (or objects from subclasses).
The framework provides a single implementation DefatulTcpNetConnectionSupport which
creates simple TcpNetConnection objects by default. It has two properties pushbackCapable
and pushbackBufferSize; when push back is enabled, the implementation returns a subclass
that wraps the connection’s InputStream in a PushbackInputStream. Aligned with the
PushbackInputStream default, the buffer size defaults to 1. This enables deserializers to

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 485

"unread" (push back) bytes into the stream. The following is a trivial example of how it might be used in
a delegating deserializer which "peeks" at the first byte to determine which deserializer to invoke:

public class CompositeDeserializer implements Deserializer<byte[]> {

 private final ByteArrayStxEtxSerializer stxEtx = new ByteArrayStxEtxSerializer();

 private final ByteArrayCrLfSerializer crlf = new ByteArrayCrLfSerializer();

 @Override

 public byte[] deserialize(InputStream inputStream) throws IOException {

 PushbackInputStream pbis = (PushbackInputStream) inputStream;

 int first = pbis.read();

 if (first < 0) {

 throw new SoftEndOfStreamException();

 }

 pbis.unread(first);

 if (first == ByteArrayStxEtxSerializer.STX) {

 this.receivedStxEtx = true;

 return this.stxEtx.deserialize(pbis);

 }

 else {

 this.receivedCrLf = true;

 return this.crlf.deserialize(pbis);

 }

 }

}

TcpNioConnectionSupport.

public interface TcpNioConnectionSupport {

 TcpNioConnection createNewConnection(SocketChannel socketChannel,

 boolean server, boolean lookupHost,

 ApplicationEventPublisher applicationEventPublisher,

 String connectionFactoryName) throws Exception;

}

This interface is invoked to create TcpNioConnection objects (or objects from
subclasses). Two implementations are provided DefaultTcpNioSSLConnectionSupport and
DefaultTcpNioConnectionSupport which are used depending on whether SSL is in use
or not. A common use case would be to subclass DefaultTcpNioSSLConnectionSupport
and override postProcessSSLEngine; see the example below. As with the
DefatulTcpNetConnectionSupport, these implementations also support push back.

Example: Enabling SSL Client Authentication

To enable client certificate authentication when using SSL, the technique depends on whether NIO is
in use or not. When NIO is not being used, provide a custom TcpSocketSupport implementation to
post-process the server socket:

serverFactory.setTcpSocketSupport(new DefaultTcpSocketSupport() {

 @Override

 public void postProcessServerSocket(ServerSocket serverSocket) {

 ((SSLServerSocket) serverSocket).setNeedClientAuth(true);

 }

});

(When using XML configuration, provide a reference to your bean using the socket-support
attribute).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 486

When using NIO, provide a custom TcpNioSslConnectionSupport implementation to post-process
the SSLEngine.

@Bean

public DefaultTcpNioSSLConnectionSupport tcpNioConnectionSupport() {

 return new DefaultTcpNioSSLConnectionSupport(serverSslContextSupport) {

 @Override

 protected void postProcessSSLEngine(SSLEngine sslEngine) {

 sslEngine.setNeedClientAuth(true);

 }

 }

}

@Bean

public TcpNioServerConnectionFactory server() {

 ...

 serverFactory.setTcpNioConnectionSupport(tcpNioConnectionSupport());

 ...

}

(When using XML configuration, since version 4.3.7, provide a reference to your bean using the nio-
connection-support attribute).

32.12 IP Configuration Attributes

Table 32.1. Connection Factory Attributes

Attribute Name Client? Server? Allowed
Values

Attribute Description

type Y Y client,
server

Determines whether the connection factory
is a client or server.

host Y N The host name or ip address of the
destination.

port Y Y The port.

serializer Y Y An implementation of Serializer
used to serialize the payload. Defaults to
ByteArrayCrLfSerializer

deserializer Y Y An implementation of Deserializer
used to deserialize the payload. Defaults to
ByteArrayCrLfSerializer

using-nio Y Y true,
false

Whether or not connection uses NIO.
Refer to the java.nio package for more
information. See Section 32.9, “A Note
About NIO”. Default false.

using-direct-buffers Y N true,
false

When using NIO, whether or not the
connection uses direct buffers. Refer to
java.nio.ByteBuffer documentation
for more information. Must be false if using-
nio is false.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 487

Attribute Name Client? Server? Allowed
Values

Attribute Description

apply-sequence Y Y true,
false

When using NIO, it may be necessary
to resequence messages. When this
attribute is set to true, correlationId and
sequenceNumber headers will be added to
received messages. See Section 32.9, “A
Note About NIO”. Default false.

so-timeout Y Y Defaults to 0 (infinity), except for server
connection factories with single-use="true".
In that case, it defaults to the default reply
timeout (10 seconds).

so-send-buffer-size Y Y See java.net.Socket.
setSendBufferSize().

so-receive-buffer-
size

Y Y See java.net.Socket.
setReceiveBufferSize().

so-keep-alive Y Y true,
false

See java.net.Socket.
setKeepAlive().

so-linger Y Y Sets linger to true with supplied value. See
java.net.Socket. setSoLinger().

so-tcp-no-delay Y Y true,
false

See java.net.Socket.
setTcpNoDelay().

so-traffic-class Y Y See java.net.Socket.
setTrafficClass().

local-address N Y On a multi-homed system, specifies an
IP address for the interface to which the
socket will be bound.

task-executor Y Y Specifies a specific Executor to be used
for socket handling. If not supplied, an
internal cached thread executor will be
used. Needed on some platforms that
require the use of specific task executors
such as a WorkManagerTaskExecutor.

single-use Y Y true,
false

Specifies whether a connection can be
used for multiple messages. If true, a new
connection will be used for each message.

pool-size N N This attribute is no longer used. For
backward compatibility, it sets the backlog
but users should use backlog to specify the
connection backlog in server factories

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 488

Attribute Name Client? Server? Allowed
Values

Attribute Description

backlog N Y Sets the connection backlog for server
factories.

lookup-host Y Y true,
false

Specifies whether reverse lookups are
done on IP addresses to convert to host
names for use in message headers. If
false, the IP address is used instead.
Defaults to true.

interceptor-factory-
chain

Y Y See Section 32.4, “TCP Connection
Interceptors”

ssl-context-support Y Y See Section 32.10, “SSL/TLS Support”

socket-factory-
support

Y Y See Section 32.10, “SSL/TLS Support”

socket-support Y Y See Section 32.10, “SSL/TLS Support”

nio-connection-
support

Y Y See Section 32.11, “Advanced
Techniques”

read-delay Y Y long > 0 The delay (in milliseconds) before retrying
a read after the previous attempt failed due
to insufficient threads. Default 100. Only
applies if using-nio is true.

Table 32.2. UDP Inbound Channel Adapter Attributes

Attribute
Name

Allowed
Values

Attribute Description

port The port on which the adapter listens.

multicast true, false Whether or not the udp adapter uses multicast.

multicast-
address

 When multicast is true, the multicast address to which the adapter
joins.

pool-size Specifies the concurrency. Specifies how many packets can
be handled concurrently. It only applies if task-executor is not
configured. Defaults to 5.

task-executor Specifies a specific Executor to be used for socket handling. If
not supplied, an internal pooled executor will be used. Needed
on some platforms that require the use of specific task executors
such as a WorkManagerTaskExecutor. See pool-size for thread
requirements.

receive-buffer-
size

 The size of the buffer used to receive DatagramPackets. Usually
set to the MTU size. If a smaller buffer is used than the size of the
sent packet, truncation can occur. This can be detected by means
of the check-length attribute..

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 489

Attribute
Name

Allowed
Values

Attribute Description

check-length true, false Whether or not a udp adapter expects a data length field in the
packet received. Used to detect packet truncation.

so-timeout See java.net.DatagramSocket setSoTimeout() methods for
more information.

so-send-
buffer-size

 Used for udp acknowledgment packets. See
java.net.DatagramSocket setSendBufferSize() methods for
more information.

so-receive-
buffer- size

 See java.net.DatagramSocket setReceiveBufferSize() for
more information.

local-address On a multi-homed system, specifies an IP address for the interface
to which the socket will be bound.

error-channel If an Exception is thrown by a downstream component, the
MessagingException message containing the exception and failed
message is sent to this channel.

lookup-host true, false Specifies whether reverse lookups are done on IP addresses to
convert to host names for use in message headers. If false, the IP
address is used instead. Defaults to true.

Table 32.3. UDP Outbound Channel Adapter Attributes

Attribute
Name

Allowed
Values

Attribute Description

host The host name or ip address of the destination. For multicast udp
adapters, the multicast address.

port The port on the destination.

multicast true, false Whether or not the udp adapter uses multicast.

acknowledge true, false Whether or not a udp adapter requires an acknowledgment from
the destination. when enabled, requires setting the following 4
attributes.

ack-host When acknowledge is true, indicates the host or ip address to
which the acknowledgment should be sent. Usually the current
host, but may be different, for example when Network Address
Transaction (NAT) is being used.

ack-port When acknowledge is true, indicates the port to which the
acknowledgment should be sent. The adapter listens on this port
for acknowledgments.

ack-timeout When acknowledge is true, indicates the time in milliseconds
that the adapter will wait for an acknowledgment. If an
acknowledgment is not received in time, the adapter will throw an
exception.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 490

Attribute
Name

Allowed
Values

Attribute Description

min-acks-for-
success

 Defaults to 1. For multicast adapters, you can set this to a larger
value, requiring acknowledgments from multiple destinations.

check-length true, false Whether or not a udp adapter includes a data length field in the
packet sent to the destination.

time-to-live For multicast adapters, specifies the time to live attribute for the
MulticastSocket; controls the scope of the multicasts. Refer to
the Java API documentation for more information.

so-timeout See java.net.DatagramSocket setSoTimeout() methods for
more information.

so-send-
buffer-size

 See java.net.DatagramSocket setSendBufferSize() methods
for more information.

so-receive-
buffer- size

 Used for udp acknowledgment packets. See
java.net.DatagramSocket setReceiveBufferSize() methods
for more information.

local-address On a multi-homed system, for the UDP adapter, specifies an IP
address for the interface to which the socket will be bound for reply
messages. For a multicast adapter it is also used to determine
which interface the multicast packets will be sent over.

task-executor Specifies a specific Executor to be used for acknowledgment
handling. If not supplied, an internal single threaded executor
will be used. Needed on some platforms that require the use of
specific task executors such as a WorkManagerTaskExecutor.
One thread will be dedicated to handling acknowledgments (if the
acknowledge option is true).

destination-
expression

SpEL
expression

A SpEL expression to be evaluated to determine which
SocketAddress to use as a destination address for the outgoing
UDP packets.

socket-
expression

SpEL
expression

A SpEL expression to be evaluated to determine which datagram
socket use for sending outgoing UDP packets.

Table 32.4. TCP Inbound Channel Adapter Attributes

Attribute
Name

Allowed
Values

Attribute Description

channel The channel to which inbound messages will be sent.

connection-
factory

 If the connection factory has a type server, the factory is owned
by this adapter. If it has a type client, it is owned by an outbound
channel adapter and this adapter will receive any incoming
messages on the connection created by the outbound adapter.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 491

Attribute
Name

Allowed
Values

Attribute Description

error-channel If an Exception is thrown by a downstream component, the
MessagingException message containing the exception and failed
message is sent to this channel.

client-mode true, false When true, the inbound adapter will act as a client, with respect to
establishing the connection and then receive incoming messages
on that connection. Default = false. Also see retry-interval and
scheduler. The connection factory must be of type client and have
single-use set to false.

retry-interval When in client-mode, specifies the number of milliseconds to wait
between connection attempts, or after a connection failure. Default
60,000 (60 seconds).

scheduler true, false Specifies a TaskScheduler to use for managing the client-mode
connection. Defaults to a ThreadPoolTaskScheduler with a
pool size of `.

Table 32.5. TCP Outbound Channel Adapter Attributes

Attribute
Name

Allowed
Values

Attribute Description

channel The channel on which outbound messages arrive.

connection-
factory

 If the connection factory has a type client, the factory is owned
by this adapter. If it has a type server, it is owned by an inbound
channel adapter and this adapter will attempt to correlate
messages to the connection on which an original inbound
message was received.

client-mode true, false When true, the outbound adapter will attempt to establish the
connection as soon as it is started. When false, the connection is
established when the first message is sent. Default = false. Also
see retry-interval and scheduler. The connection factory must be
of type client and have single-use set to false.

retry-interval When in client-mode, specifies the number of milliseconds to wait
between connection attempts, or after a connection failure. Default
60,000 (60 seconds).

scheduler true, false Specifies a TaskScheduler to use for managing the client-mode
connection. Defaults to a ThreadPoolTaskScheduler with a
pool size of `.

Table 32.6. TCP Inbound Gateway Attributes

Attribute
Name

Allowed
Values

Attribute Description

connection-
factory

 The connection factory must be of type server.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 492

Attribute
Name

Allowed
Values

Attribute Description

request-
channel

 The channel to which incoming messages will be sent.

reply-channel The channel on which reply messages may arrive. Usually replies
will arrive on a temporary reply channel added to the inbound
message header

reply-timeout The time in milliseconds for which the gateway will wait for a reply.
Default 1000 (1 second).

error-channel If an Exception is thrown by a downstream component, the
MessagingException message containing the exception and failed
message is sent to this channel; any reply from that flow will then
be returned as a response by the gateway.

client-mode true, false When true, the inbound gateway will act as a client, with respect
to establishing the connection and then receive (and reply to)
incoming messages on that connection. Default = false. Also see
retry-interval and scheduler. The connection factory must be of
type client and have single-use set to false.

retry-interval When in client-mode, specifies the number of milliseconds to wait
between connection attempts, or after a connection failure. Default
60,000 (60 seconds).

scheduler true, false Specifies a TaskScheduler to use for managing the client-mode
connection. Defaults to a ThreadPoolTaskScheduler with a
pool size of `.

Table 32.7. TCP Outbound Gateway Attributes

Attribute
Name

Allowed
Values

Attribute Description

connection-
factory

 The connection factory must be of type client.

request-
channel

 The channel on which outgoing messages will arrive.

reply-channel Optional. The channel to which reply messages may be sent.

remote-
timeout

 The time in milliseconds for which the gateway will wait for a
reply from the remote system. Mutually exclusive with remote-
timeout-expression. Default: 10000 (10 seconds). Note: in
versions prior to 4.2 this value defaulted to reply-timeout (if
set).

remote-
timeout-
expression

 A SpEL expression, evaluated against the message to determine
the time in milliseconds for which the gateway will wait for a
reply from the remote system. Mutually exclusive with remote-
timeout.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 493

Attribute
Name

Allowed
Values

Attribute Description

request-
timeout

 If a single-use connection factory is not being used, The time in
milliseconds for which the gateway will wait to get access to the
shared connection.

reply-timeout The time in milliseconds for which the gateway will wait when
sending the reply to the reply-channel. Only applies if the reply-
channel might block, such as a bounded QueueChannel that is
currently full.

32.13 IP Message Headers

IP Message Headers. The following MessageHeader s are used by this module:

Header Name IpHeaders Constant Description

ip_hostname HOSTNAME The host name from which a TCP message or
UDP packet was received. If lookupHost is
false, this will contain the ip address.

ip_address IP_ADDRESS The ip address from which a TCP message or
UDP packet was received.

ip_port PORT The remote port for a UDP packet.

ip_localInetAddress IP_LOCAL_ADDRESS The local InetAddress to which the socket is
connected (since version 4.2.5).

ip_ackTo ACKADDRESS The remote ip address to which UDP application-
level acks will be sent. The framework includes
acknowledgment information in the data packet.

ip_ackId ACK_ID A correlation id for UDP application-level acks.
The framework includes acknowledgment
information in the data packet.

ip_tcp_remotePort REMOTE_PORT The remote port for a TCP connection.

ip_connectionId CONNECTION_ID A unique identifier for a TCP connection; set
by the framework for inbound messages; when
sending to a server-side inbound channel
adapter, or replying to an inbound gateway,
this header is required so the endpoint can
determine which connection to send the
message to.

ip_actualConnectionId ACTUAL_
CONNECTION_ID

For information only - when using a cached or
failover client connection factory, contains the
actual underlying connection id.

contentType MessageHeaders.
CONTENT_TYPE

An optional content type for inbound messages;
see below. Note that, unlike the other header

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 494

Header Name IpHeaders Constant Description

constants, this constant is in the class
MessageHeaders not IpHeaders.

For inbound messages, ip_hostname, ip_address, ip_tcp_remotePort and
ip_connectionId are mapped by the default TcpHeaderMapper. Set the mapper’s
addContentTypeHeader property to true and the mapper will set the contentType header
(application/octet-stream;charset="UTF-8") by default. You can change the default
by setting the contentType property. Users can add additional headers by subclassing
TcpHeaderMapper and overriding the method supplyCustomHeaders. For example, when using
SSL, properties of the SSLSession can be added by obtaining the session object from the
TcpConnection object which is provided as an argument to the supplyCustomHeaders method.

For outbound messages, String payloads are converted to byte[] using the default (UTF-8) charset.
Set the charset property to change the default.

When customizing the mapper properties, or subclassing, declare the mapper as a bean and provide
an instance to the connection factory using the mapper property

32.14 Annotation-Based Configuration

The following example from the samples repository is used to illustrate some of the configuration options
when using annotations instead of XML.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 495

@EnableIntegration ❶

@IntegrationComponentScan ❷

@Configuration

public static class Config {

 @Value(${some.port})

 private int port;

 @MessagingGateway(defaultRequestChannel="toTcp") ❸

 public interface Gateway {

 String viaTcp(String in);

 }

 @Bean

 @ServiceActivator(inputChannel="toTcp") ❹

 public MessageHandler tcpOutGate(AbstractClientConnectionFactory connectionFactory) {

 TcpOutboundGateway gate = new TcpOutboundGateway();

 gate.setConnectionFactory(connectionFactory);

 gate.setOutputChannelName("resultToString");

 return gate;

 }

 @Bean ❺

 public TcpInboundGateway tcpInGate(AbstractServerConnectionFactory connectionFactory) {

 TcpInboundGateway inGate = new TcpInboundGateway();

 inGate.setConnectionFactory(connectionFactory);

 inGate.setRequestChannel(fromTcp());

 return inGate;

 }

 @Bean

 public MessageChannel fromTcp() {

 return new DirectChannel();

 }

 @MessageEndpoint

 public static class Echo { ❻

 @Transformer(inputChannel="fromTcp", outputChannel="toEcho")

 public String convert(byte[] bytes) {

 return new String(bytes);

 }

 @ServiceActivator(inputChannel="toEcho")

 public String upCase(String in) {

 return in.toUpperCase();

 }

 @Transformer(inputChannel="resultToString")

 public String convertResult(byte[] bytes) {

 return new String(bytes);

 }

 }

 @Bean

 public AbstractClientConnectionFactory clientCF() { ❼

 return new TcpNetClientConnectionFactory("localhost", this.port);

 }

 @Bean

 public AbstractServerConnectionFactory serverCF() { ❽

 return new TcpNetServerConnectionFactory(this.port);

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 496

❶ Standard Spring Integration annotation enabling the infrastructure for an integration application.

❷ Searches for @MessagingGateway interfaces.

❸ The entry point to the client-side of the flow. The calling application can @Autowired this Gateway
bean and invoke its method.

❹ Outbound endpoints consist of a MessageHandler and a consumer that wraps it. In this scenario,
the @ServiceActivator configures the endpoint according to the channel type.

❺ Inbound endpoints (in the TCP/UDP module) are all message-driven so just need to be declared
as simple @Bean s.

❻ This class provides a number of POJO methods for use in this sample flow (a @Transformer and
@ServiceActivator on the server side, and a @Transformer on the client side).

❼ The client-side connection factory.

❽ The server-side connection factory.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 497

33. Twitter Support
Spring Integration provides support for interacting with Twitter. With the Twitter adapters you can both
receive and send Twitter messages. You can also perform a Twitter search based on a schedule and
publish the search results within Messages. Since version 4.0, a search outbound gateway is provided
to perform dynamic searches.

33.1 Introduction

Twitter is a social networking and micro-blogging service that enables its users to send and read
messages known as tweets. Tweets are text-based posts of up to 140 characters displayed on the
author’s profile page and delivered to the author’s subscribers who are known as followers.

Important

Versions of Spring Integration prior to 2.1 were dependent upon the Twitter4J API, but with the
release of Spring Social 1.0 GA, Spring Integration, as of version 2.1, now builds directly upon
Spring Social’s Twitter support, instead of Twitter4J. All Twitter endpoints require the configuration
of a TwitterTemplate because even search operations require an authenticated template.

Spring Integration provides a convenient namespace configuration to define Twitter artifacts. You can
enable it by adding the following within your XML header.

xmlns:int-twitter="http://www.springframework.org/schema/integration/twitter"

xsi:schemaLocation="http://www.springframework.org/schema/integration/twitter

http://www.springframework.org/schema/integration/twitter/spring-integration-twitter.xsd"

33.2 Twitter OAuth Configuration

For authenticated operations, Twitter uses OAuth - an authentication protocol that allows users to
approve an application to act on their behalf without sharing their password. More information can be
found at http://oauth.net or in this article http://hueniverse.com/oauth from Hueniverse. Please also see
OAuth FAQ for more information about OAuth and Twitter.

In order to use OAuth authentication/authorization with Twitter you must create a new Application on the
Twitter Developers site. Follow the directions below to create a new application and obtain consumer
keys and an access token:

• Go to http://dev.twitter.com

• Click on the Register an app link and fill out all required fields on the form provided; set
Application Type to Client and depending on the nature of your application select Default
Access Type as Read & Write or Read-only and Submit the form. If everything is successful you’ll
be presented with the Consumer Key and Consumer Secret. Copy both values in a safe place.

• On the same page you should see a My Access Token button on the side bar (right). Click on it
and you’ll be presented with two more values: Access Token and Access Token Secret. Copy
these values in a safe place as well.

33.3 Twitter Template

As mentioned above, Spring Integration relies upon Spring Social, and that library provides an
implementation of the template pattern, o.s.social.twitter.api.impl.TwitterTemplate to

http://twitter4j.org
http://projects.spring.io/spring-social
http://oauth.net
http://hueniverse.com/oauth
http://dev.twitter.com/pages/oauth_faq
http://dev.twitter.com

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 498

interact with Twitter. For anonymous operations (e.g., search), you don’t have to define an instance of
TwitterTemplate explicitly, since a default instance will be created and injected into the endpoint.
However, for authenticated operations (update status, send direct message, etc.), you must configure
a TwitterTemplate as a bean and inject it explicitly into the endpoint, because the authentication
configuration is required. Below is a sample configuration of TwitterTemplate:

<bean id="twitterTemplate" class="o.s.social.twitter.api.impl.TwitterTemplate">

 <constructor-arg value="4XzBPacJQxyBzzzH"/>

 <constructor-arg value="AbRxUAvyCtqQtvxFK8w5ZMtMj20KFhB6o"/>

 <constructor-arg value="21691649-4YZY5iJEOfz2A9qCFd9SjBRGb3HLmIm4HNE"/>

 <constructor-arg value="AbRxUAvyNCtqQtxFK8w5ZMtMj20KFhB6o"/>

</bean>

Note

The values above are not real.

 As you can see from the configuration above, all we need to do is to provide OAuth `attributes` as

 constructor arguments.

The values would be those you obtained in the previous step.

The order of constructor arguments is: 1) `consumerKey`, 2) `consumerSecret`, 3) `accessToken`, and 4)

 `accessTokenSecret`.

A more practical way to manage OAuth connection attributes would be via Spring’s property placeholder
support by simply creating a property file (e.g., oauth.properties):

twitter.oauth.consumerKey=4XzBPacJQxyBzzzH

twitter.oauth.consumerSecret=AbRxUAvyCtqQtvxFK8w5ZMtMj20KFhB6o

twitter.oauth.accessToken=21691649-4YZY5iJEOfz2A9qCFd9SjBRGb3HLmIm4HNE

twitter.oauth.accessTokenSecret=AbRxUAvyNCtqQtxFK8w5ZMtMj20KFhB6o

Then, you can configure a property-placeholder to point to the above property file:

<context:property-placeholder location="classpath:oauth.properties"/>

<bean id="twitterTemplate" class="o.s.social.twitter.api.impl.TwitterTemplate">

 <constructor-arg value="${twitter.oauth.consumerKey}"/>

 <constructor-arg value="${twitter.oauth.consumerSecret}"/>

 <constructor-arg value="${twitter.oauth.accessToken}"/>

 <constructor-arg value="${twitter.oauth.accessTokenSecret}"/>

</bean>

33.4 Twitter Inbound Adapters

Twitter inbound adapters allow you to receive Twitter Messages. There are several types of twitter
messages, or tweets

Spring Integration version 2.0 and above provides support for receiving tweets as Timeline Updates,
Direct Messages, Mention Messages as well as Search Results.

Important

Every Inbound Twitter Channel Adapter is a Polling Consumer which means you have to provide
a poller configuration. Twitter defines a concept of Rate Limiting. You can read more about it here:
Rate Limiting. In a nutshell, Rate Limiting is a mechanism that Twitter uses to manage how often
an application can poll for updates. You should consider this when setting your poller intervals so
that the adapter polls in compliance with the Twitter policies.

http://support.twitter.com/articles/119138-types-of-tweets-and-where-they-appear
http://support.twitter.com/articles/119138-types-of-tweets-and-where-they-appear
https://dev.twitter.com/docs/rate-limiting/1.1

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 499

With Spring Integration prior to version 3.0, a hard-coded limit within the adapters was used to
ensure the polling interval could not be less than 15 seconds. This is no longer the case and the
poller configuration is applied directly.

Another issue that we need to worry about is handling duplicate Tweets. The same adapter (e.g.,
Search or Timeline Update) while polling on Twitter may receive the same values more than once.
For example if you keep searching on Twitter with the same search criteria you’ll end up with the
same set of tweets unless some other new tweet that matches your search criteria was posted
in between your searches. In that situation you’ll get all the tweets you had before plus the new
one. But what you really want is only the new tweet(s). Spring Integration provides an elegant
mechanism for handling these situations. The latest Tweet id will be stored in an instance of the
org.springframework.integration.metadata.MetadataStore strategy (e.g. last retrieved
tweet in this case). For more information see Section 10.5, “Metadata Store”.

Note

The key used to persist the latest twitter id is the value of the (required) id attribute of the Twitter
Inbound Channel Adapter component plus the profileId of the Twitter user.

Prior to version 4.0, the page size was hard-coded to 20. This is now configurable using the page-
size attribute (defaults to 20).

Inbound Message Channel Adapter

This adapter allows you to receive updates from everyone you follow. It’s essentially the "Timeline
Update" adapter.

<int-twitter:inbound-channel-adapter

 twitter-template="twitterTemplate"

 channel="inChannel">

 <int:poller fixed-rate="5000" max-messages-per-poll="3"/>

</int-twitter:inbound-channel-adapter>

Direct Inbound Message Channel Adapter

This adapter allows you to receive Direct Messages that were sent to you from other Twitter users.

<int-twitter:dm-inbound-channel-adapter

 twitter-template="twiterTemplate"

 channel="inboundDmChannel">

 <int-poller fixed-rate="5000" max-messages-per-poll="3"/>

</int-twitter:dm-inbound-channel-adapter>

Mentions Inbound Message Channel Adapter

This adapter allows you to receive Twitter Messages that Mention you via @user syntax.

<int-twitter:mentions-inbound-channel-adapter

 twitter-template="twiterTemplate"

 channel="inboundMentionsChannel">

 <int:poller fixed-rate="5000" max-messages-per-poll="3"/>

</int-twitter:mentions-inbound-channel-adapter>

Search Inbound Message Channel Adapter

This adapter allows you to perform searches. As you can see it is not necessary to define twitter-template
since a search can be performed anonymously, however you must define a search query.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 500

<int-twitter:search-inbound-channel-adapter

 query="#springintegration"

 channel="inboundMentionsChannel">

 <int:poller fixed-rate="5000" max-messages-per-poll="3"/>

</int-twitter:search-inbound-channel-adapter>

Refer to https://dev.twitter.com/docs/using-search to learn more about Twitter queries.

As you can see the configuration of all of these adapters is very similar to other inbound
adapters with one exception. Some may need to be injected with the twitter-template. Once
received each Twitter Message would be encapsulated in a Spring Integration Message and sent
to the channel specified by the channel attribute. Currently the Payload type of any Message is
org.springframework.integration.twitter.core.Tweet which is very similar to the object
with the same name in Spring Social. As we migrate to Spring Social we’ll be depending on their API
and some of the artifacts that are currently in use will be obsolete, however we’ve already made sure
that the impact of such migration is minimal by aligning our API with the current state (at the time of
writing) of Spring Social.

To get the text from the org.springframework.social.twitter.api.Tweet simply invoke the
getText() method.

33.5 Twitter Outbound Adapter

Twitter outbound channel adapters allow you to send Twitter Messages, or tweets.

Spring Integration version 2.0 and above supports sending Status Update Messages and Direct
Messages. Twitter outbound channel adapters will take the Message payload and send it as a Twitter
message. Currently the only supported payload type is`String`, so consider adding a transformer if the
payload of the incoming message is not a String.

Twitter Outbound Update Channel Adapter

This adapter allows you to send regular status updates by simply sending a Message to the channel
identified by the channel attribute.

<int-twitter:outbound-channel-adapter

 twitter-template="twitterTemplate"

 channel="twitterChannel"/>

The only extra configuration that is required for this adapter is the `twitter-template` reference.

Starting with version 4.0 the <int-twitter:outbound-channel-adapter> supports a tweet-
data-expression to populate the TweetData argument (Spring Social Twitter) using the message as
the root object of the expression evaluation context. The result can be a String, which will be used for
the TweetData message; a Tweet object, the text of which will be used for the TweetData message;
or an entire TweetData object. For convenience, the TweetData can be built from the expression
directly without needing a fully qualified class name:

<int-twitter:outbound-channel-adapter

 twitter-template="twitterTemplate"

 channel="twitterChannel"

 tweet-data-expression="new TweetData(payload).withMedia(headers.media).displayCoordinates(true)/>

This allows, for example, attaching an image to the tweet.

https://dev.twitter.com/docs/using-search
http://projects.spring.io/spring-social-twitter/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 501

Twitter Outbound Direct Message Channel Adapter

This adapter allows you to send Direct Twitter Messages (i.e., @user) by simply sending a Message to
the channel identified by the channel attribute.

<int-twitter:dm-outbound-channel-adapter

 twitter-template="twitterTemplate"

 channel="twitterChannel"/>

The only extra configuration that is required for this adapter is the `twitter-template` reference.

When it comes to Twitter Direct Messages, you must specify who you are sending the message to -
the target userid. The Twitter Outbound Direct Message Channel Adapter will look for a target userid
in the Message headers under the name twitter_dmTargetUserId which is also identified by the
following constant: TwitterHeaders.DM_TARGET_USER_ID. So when creating a Message all you
need to do is add a value for that header.

Message message = MessageBuilder.withPayload("hello")

 .setHeader(TwitterHeaders.DM_TARGET_USER_ID, "z_oleg").build();

The above approach works well if you are creating the Message programmatically. However it’s more
common to provide the header value within a messaging flow. The value can be provided by an upstream
<header-enricher>.

<int:header-enricher input-channel="in" output-channel="out">

 <int:header name="twitter_dmTargetUserId" value="z_oleg"/>

</int:header-enricher>

It’s quite common that the value must be determined dynamically. For those cases you can take
advantage of SpEL support within the <header-enricher>.

<int:header-enricher input-channel="in" output-channel="out">

 <int:header name="twitter_dmTargetUserId"

 expression="@twitterIdService.lookup(headers.username)"/>

</int:header-enricher>

Important

Twitter does not allow you to post duplicate Messages. This is a common problem during testing
when the same code works the first time but does not work the second time. So, make sure
to change the content of the Message each time. Another thing that works well for testing is to
append a timestamp to the end of each message.

33.6 Twitter Search Outbound Gateway

In Spring Integration, an outbound gateway is used for two-way request/response communication
with an external service. The Twitter Search Outbound Gateway allows you to issue dynamic twitter
searches. The reply message payload is a collection of Tweet objects. If the search returns no results,
the payload is an empty collection. You can limit the number of tweets and you can page through a
larger set of tweets by making multiple calls. To facilitate this, search reply messages contain a header
twitter_searchMetadata with its value being a SearchMetadata object. For more information
on the Tweet, SearchParameters and SearchMetadata classes, refer to the Spring Social Twitter
documentation.

Configuring the Outbound Gateway

http://projects.spring.io/spring-social-twitter/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 502

<int-twitter:search-outbound-gateway id="twitter"

 request-channel="in" ❶

 twitter-template="twitterTemplate" ❷

 search-args-expression="payload" ❸

 reply-channel="out" ❹

 reply-timeout="123" ❺

 order="1" ❻

 auto-startup="false" ❼

 phase="100" /> ❽

❶ The channel used to send search requests to this gateway.

❷ A reference to a TwitterTemplate with authentication configuration.

❸ A SpEL expression that evaluates to argument(s) for the search. Default: "payload" - in which
case the payload can be a String (e.g "#springintegration") and the gateway limits the query to
20 tweets, or the payload can be a SearchParameters object.
The expression can also be specified as a SpEL List. The first element (String) is the query,
the remaining elements (Numbers) are pageSize, sinceId, maxId respectively - refer to
the Spring Social Twitter documentation for more information about these parameters. When
specifying a SearchParameters object directly in the SpEL expression, you do not have to fully
qualify the class name. Some examples:
new SearchParameters(payload).count(5).sinceId(headers.sinceId)

{payload, 30}

{payload, headers.pageSize, headers.sinceId, headers.maxId}

❹ The channel to which to send the reply; if omitted, the replyChannel header is used.

❺ The timeout when sending the reply message to the reply channel; only applies if the reply channel
can block, for example a bounded queue channel that is full.

❻ When subscribed to a publish/subscribe channel, the order in which this endpoint will be invoked.

❼ SmartLifecycle method.

❽ SmartLifecycle method.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-inline-lists

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 503

34. WebFlux Support

34.1 Introduction

The WebFlux Spring Integration module (spring-integration-webflux) allows for the execution
of HTTP requests and the processing of inbound HTTP requests in Reactive manner. The
WebFlux support consists of the following gateway implementations: WebFluxInboundEndpoint,
WebFluxRequestExecutingMessageHandler. The implementation is fully based on the Spring
WebFlux and Project Reactor foundations. Also see Chapter 18, HTTP Support for more information
since many options are shared between reactive and regular HTTP components.

34.2 WebFlux Inbound Components

Starting with version 5.0, the WebFluxInboundEndpoint, WebHandler, implementation is provided.
This component is similar to the MVC-based HttpRequestHandlingEndpointSupport with which it
shares some common options via the newly extracted BaseHttpInboundEndpoint. Instead of MVC,
it is used in the Spring WebFlux Reactive environment. A simple sample for explanation:

@Configuration

@EnableWebFlux

@EnableIntegration

public class ReactiveHttpConfiguration {

 @Bean

 public WebFluxInboundEndpoint simpleInboundEndpoint() {

 WebFluxInboundEndpoint endpoint = new WebFluxInboundEndpoint();

 RequestMapping requestMapping = new RequestMapping();

 requestMapping.setPathPatterns("/test");

 endpoint.setRequestMapping(requestMapping);

 endpoint.setRequestChannelName("serviceChannel");

 return endpoint;

 }

 @ServiceActivator(inputChannel = "serviceChannel")

 String service() {

 return "It works!";

 }

}

As can be seen, the configuration is similar to the HttpRequestHandlingEndpointSupport
mentioned above, except that we use @EnableWebFlux to add the WebFlux infrastructure to our
integration application. Also, the WebFluxInboundEndpoint performs sendAndReceive operation
to the downstream flow using back-pressure, on demand based capabilities, provided by the reactive
HTTP server implementation.

Note

The reply part is non-blocking as well and based on the internal FutureReplyChannel which
is flat-mapped to a reply Mono for on demand resolution.

The WebFluxInboundEndpoint can be configured with a custom ServerCodecConfigurer,
RequestedContentTypeResolver and even a ReactiveAdapterRegistry. The latter provides
a mechanism where we can return a reply as any reactive type - Reactor Flux, RxJava Observable,
Flowable etc. This way, we can simply implement Server Sent Events scenarios with Spring Integration
components:

http://docs.spring.io/spring/docs/5.0.0.RC3/spring-framework-reference/web.html#web-reactive
https://projectreactor.io/
https://en.wikipedia.org/wiki/Server-sent_events

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 504

@Bean

public IntegrationFlow sseFlow() {

 return IntegrationFlows

 .from(WebFlux.inboundGateway("/sse")

 .requestMapping(m -> m.produces(MediaType.TEXT_EVENT_STREAM_VALUE)))

 .handle((p, h) -> Flux.just("foo", "bar", "baz"))

 .get();

}

Also see the section called “Request Mapping Support” and the section called “Cross-Origin Resource
Sharing (CORS) Support” for more possible configuration options.

34.3 WebFlux Outbound Components

The WebFluxRequestExecutingMessageHandler (starting with version 5.0) implementation is
very similar to HttpRequestExecutingMessageHandler, using a WebClient from the Spring
Framework WebFlux module. To configure it, define a bean like this:

<bean id="httpReactiveOutbound"

 class="org.springframework.integration.webflux.outbound.WebFluxRequestExecutingMessageHandler">

 <constructor-arg value="http://localhost:8080/example" />

 <property name="outputChannel" ref="responseChannel" />

</bean>

You can configure a WebClient instance to use:

<beans:bean id="webClient" class="org.springframework.web.reactive.function.client.WebClient"

 factory-method="create"/>

<bean id="httpReactiveOutbound"

 class="org.springframework.integration.webflux.outbound.WebFluxRequestExecutingMessageHandler">

 <constructor-arg value="http://localhost:8080/example" />

 <constructor-arg re="webClient" />

 <property name="outputChannel" ref="responseChannel" />

</bean>

The WebClient exchange() operation returns a Mono<ClientResponse> which is
mapped (using several Mono.map() steps) to an AbstractIntegrationMessageBuilder
as the output from the WebFluxRequestExecutingMessageHandler. Together with the
ReactiveChannel as an outputChannel, the Mono<ClientResponse> evaluation is deferred
until a downstream subscription is made. Otherwise, it is treated as an async mode and
the Mono response is adapted to an SettableListenableFuture for an asynchronous
reply from the WebFluxRequestExecutingMessageHandler. The target payload of the output
message depends on the WebFluxRequestExecutingMessageHandler configuration. The
setExpectedResponseType(Class<?>) or
setExpectedResponseTypeExpression(Expression) identifies the target type of the response
body element conversion. If the replyPayloadToFlux is set to true, the response body is converted
to a Flux with the provided expectedResponseType for each element and this Flux is sent as the
payload downstream. A splitter afterwards can be used to iterate over this Flux in a reactive manner.

In addition a BodyExtractor<?, ClientHttpResponse> can be injected into
the WebFluxRequestExecutingMessageHandler instead of expectedResponseType and
replyPayloadToFlux properties. It can be used for low-level access to the
ClientHttpResponse and more control over body and HTTP headers conversion. The
ClientHttpResponseBodyExtractor is provided out-of-the-box as identity function to produce
downstream the whole ClientHttpResponse and any other possible custom logic.

Also see Section 18.3, “Http Outbound Components” for more possible configuration options.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 505

34.4 WebFlux Namespace Support

Introduction

Spring Integration provides a webflux namespace and the corresponding schema definition. To include
it in your configuration, simply provide the following namespace declaration in your application context
configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-webflux="http://www.springframework.org/schema/integration/webflux"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/webflux

 http://www.springframework.org/schema/integration/webflux/spring-integration-webflux.xsd">

 ...

</beans>

Inbound

To configure Spring Integration WebFlux via XML you may use appropriate components from
the mentioned int-webflux namespace - inbound-channel-adapter or inbound-gateway
according request/response requirements respectively:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 506

<inbound-channel-adapter id="reactiveFullConfig" channel="requests"

 path="test1"

 auto-startup="false"

 phase="101"

 request-payload-type="byte[]"

 error-channel="errorChannel"

 payload-expression="payload"

 supported-methods="PUT"

 status-code-expression="'202'"

 header-mapper="headerMapper"

 codec-configurer="codecConfigurer"

 reactive-adapter-registry="reactiveAdapterRegistry"

 requested-content-type-resolver="requestedContentTypeResolver">

 <request-mapping headers="foo"/>

 <cross-origin origin="foo"

 method="PUT"/>

 <header name="foo" expression="'foo'"/>

</inbound-channel-adapter>

<inbound-gateway id="reactiveFullConfig" request-channel="requests"

 path="test1"

 auto-startup="false"

 phase="101"

 request-payload-type="byte[]"

 error-channel="errorChannel"

 payload-expression="payload"

 supported-methods="PUT"

 reply-timeout-status-code-expression="'504'"

 header-mapper="headerMapper"

 codec-configurer="codecConfigurer"

 reactive-adapter-registry="reactiveAdapterRegistry"

 requested-content-type-resolver="requestedContentTypeResolver">

 <request-mapping headers="foo"/>

 <cross-origin origin="foo"

 method="PUT"/>

 <header name="foo" expression="'foo'"/>

</inbound-gateway>

Outbound

If you want to execute the http request in a reactive, non-blocking way, you can use the outbound-
gateway or outbound-channel-adapter.

<int-webflux:outbound-gateway id="reactiveExample1"

 request-channel="requests"

 url="http://localhost/test"

 http-method-expression="headers.httpMethod"

 extract-request-payload="false"

 expected-response-type-expression="payload"

 charset="UTF-8"

 reply-timeout="1234"

 reply-channel="replies"/>

<int-webflux:outbound-channel-adapter id="reactiveExample2"

 url="http://localhost/example"

 http-method="GET"

 channel="requests"

 charset="UTF-8"

 extract-payload="false"

 expected-response-type="java.lang.String"

 order="3"

 auto-startup="false"/>

34.5 Configuring WebFlux Endpoints with Java

Inbound Gateway Using Java Configuration.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 507

@Bean

public WebFluxInboundEndpoint jsonInboundEndpoint() {

 WebFluxInboundEndpoint endpoint = new WebFluxInboundEndpoint();

 RequestMapping requestMapping = new RequestMapping();

 requestMapping.setPathPatterns("/persons");

 endpoint.setRequestMapping(requestMapping);

 endpoint.setRequestChannel(fluxResultChannel());

 return endpoint;

}

@Bean

public MessageChannel fluxResultChannel() {

 return new FluxMessageChannel();

}

@ServiceActivator(inputChannel = "fluxResultChannel")

Flux<Person> getPersons() {

 return Flux.just(new Person("Jane"), new Person("Jason"), new Person("John"));

}

Inbound Gateway Using the Java DSL.

@Bean

public IntegrationFlow inboundChannelAdapterFlow() {

 return IntegrationFlows

 .from(WebFlux.inboundChannelAdapter("/reactivePost")

 .requestMapping(m -> m.methods(HttpMethod.POST))

 .requestPayloadType(ResolvableType.forClassWithGenerics(Flux.class, String.class))

 .statusCodeFunction(m -> HttpStatus.ACCEPTED))

 .channel(c -> c.queue("storeChannel"))

 .get();

}

Outbound Gateway Using Java Configuration.

@ServiceActivator(inputChannel = "reactiveHttpOutRequest")

@Bean

public WebFluxRequestExecutingMessageHandler reactiveOutbound(WebClient client) {

 WebFluxRequestExecutingMessageHandler handler =

 new WebFluxRequestExecutingMessageHandler("http://localhost:8080/foo", client);

 handler.setHttpMethod(HttpMethod.POST);

 handler.setExpectedResponseType(String.class);

 return handler;

}

Outbound Gateway Using the Java DSL.

@Bean

public IntegrationFlow outboundReactive() {

 return f -> f

 .handle(WebFlux.<MultiValueMap<String, String>>outboundGateway(m ->

 UriComponentsBuilder.fromUriString("http://localhost:8080/foo")

 .queryParams(m.getPayload())

 .build()

 .toUri())

 .httpMethod(HttpMethod.GET)

 .expectedResponseType(String.class));

}

34.6 WebFlux Header Mappings

Since WebFlux components are fully based on the HTTP protocol there is no difference in the
HTTP headers mapping. See Section 18.8, “HTTP Header Mappings” for more possible options and
components to use for mapping headers.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 508

35. WebSockets Support

35.1 Introduction

Starting with version 4.1 Spring Integration has introduced WebSocket support. It is based on
architecture, infrastructure and API from the Spring Framework’s web-socket module. Therefore,
many of Spring WebSocket’s components (e.g. SubProtocolHandler or WebSocketClient)
and configuration options (e.g. @EnableWebSocketMessageBroker) can be reused within Spring
Integration. For more information, please, refer to the Spring Framework WebSocket Support chapter
in the Spring Framework reference manual.

Note

Since the Spring Framework WebSocket infrastructure is based on the Spring Messaging
foundation and provides a basic Messaging framework based on the same MessageChannel s,
MessageHandler s that Spring Integration uses, and some POJO-method annotation mappings,
Spring Integration can be directly involved in a WebSocket flow, even without WebSocket
adapters. For this purpose you can simply configure a Spring Integration @MessagingGateway
with appropriate annotations:

@MessagingGateway

@Controller

public interface WebSocketGateway {

 @MessageMapping("/greeting")

 @SendToUser("/queue/answer")

 @Gateway(requestChannel = "greetingChannel")

 String greeting(String payload);

}

35.2 Overview

Since the WebSocket protocol is streaming by definition and we can send and receive messages to/
from a WebSocket at the same time, we can simply deal with an appropriate WebSocketSession,
regardless of being on the client or server side. To encapsulate the connection management
and WebSocketSession registry, the IntegrationWebSocketContainer is provided with
ClientWebSocketContainer and ServerWebSocketContainer implementations. Thanks to the
WebSocket API and its implementation in the Spring Framework, with many extensions, the same
classes are used on the server side as well as the client side (from a Java perspective, of course).
Hence most connection and WebSocketSession registry options are the same on both sides. That
allows us to reuse many configuration items and infrastructure hooks to build WebSocket applications
on the server side as well as on the client side:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/#websocket
https://www.jcp.org/en/jsr/detail?id=356

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 509

//Client side

@Bean

public WebSocketClient webSocketClient() {

 return new SockJsClient(Collections.singletonList(new WebSocketTransport(new

 JettyWebSocketClient())));

}

@Bean

public IntegrationWebSocketContainer clientWebSocketContainer() {

 return new ClientWebSocketContainer(webSocketClient(), "ws://my.server.com/endpoint");

}

//Server side

@Bean

public IntegrationWebSocketContainer serverWebSocketContainer() {

 return new ServerWebSocketContainer("/endpoint").withSockJs();

}

The IntegrationWebSocketContainer is designed to achieve bidirectional messaging and can be
shared between Inbound and Outbound Channel Adapters (see below), can be referenced only from
one of them (when using one-way - sending or receiving - WebSocket messaging). It can be used
without any Channel Adapter, but in this case, IntegrationWebSocketContainer only plays a role
as the WebSocketSession registry.

Note

The ServerWebSocketContainer implements WebSocketConfigurer to register
an internal IntegrationWebSocketContainer.IntegrationWebSocketHandler

as an Endpoint under the provided paths and other server
WebSocket options (such as HandshakeHandler or SockJS fallback)
within the ServletWebSocketHandlerRegistry for the target vendor
WebSocket Container. This registration is achieved with an infrastructural
WebSocketIntegrationConfigurationInitializer component, which does the same as
the @EnableWebSocket annotation. This means that using just @EnableIntegration (or any
Spring Integration Namespace in the application context) you can omit the @EnableWebSocket
declaration, because all WebSocket Endpoints are detected by the Spring Integration
infrastructure.

35.3 WebSocket Inbound Channel Adapter

The WebSocketInboundChannelAdapter implements the receiving part of WebSocketSession
interaction. It must be supplied with a IntegrationWebSocketContainer, and the adapter registers
itself as a WebSocketListener to handle incoming messages and WebSocketSession events.

Note

Only one WebSocketListener can be registered in the IntegrationWebSocketContainer.

For WebSocket _sub-protocol_s, the WebSocketInboundChannelAdapter can be configured with
SubProtocolHandlerRegistry as the second constructor argument. The adapter delegates to
the SubProtocolHandlerRegistry to determine the appropriate SubProtocolHandler for the
accepted WebSocketSession and to convert WebSocketMessage to a Message according to the
sub-protocol implementation.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 510

Note

By default, the WebSocketInboundChannelAdapter relies just only on the
raw PassThruSubProtocolHandler implementation, which simply converts the
WebSocketMessage to a Message.

The WebSocketInboundChannelAdapter accepts and sends to the underlying integration flow
only Message s with SimpMessageType.MESSAGE or an empty simpMessageType header.
All other Message types are handled through the ApplicationEvent s emitted from a
SubProtocolHandler implementation (e.g. StompSubProtocolHandler).

On the server side WebSocketInboundChannelAdapter can be configured with the useBroker
= true option, if the @EnableWebSocketMessageBroker configuration is present. In this case all
non-MESSAGE Message types are delegated to the provided AbstractBrokerMessageHandler.
In addition, if the Broker Relay is configured with destination prefixes, those Messages, which match
to the Broker destinations, are routed to the AbstractBrokerMessageHandler, instead of to the
outputChannel of the WebSocketInboundChannelAdapter.

If useBroker = false and received message is of SimpMessageType.CONNECT type, the
WebSocketInboundChannelAdapter sends SimpMessageType.CONNECT_ACK message to the
WebSocketSession immediately without sending it to the channel.

Note

Spring’s WebSocket Support allows the configuration of only one Broker Relay, hence we
don’t require an AbstractBrokerMessageHandler reference, it is detected in the Application
Context.

For more configuration options see Section 35.5, “WebSockets Namespace Support”.

35.4 WebSocket Outbound Channel Adapter

The WebSocketOutboundChannelAdapter accepts Spring Integration messages from its
MessageChannel, determines the WebSocketSession id from the MessageHeaders, retrieves
the WebSocketSession from the provided IntegrationWebSocketContainer and delegates the
conversion and sending WebSocketMessage work to the appropriate SubProtocolHandler from
the provided SubProtocolHandlerRegistry.

On the client side, the WebSocketSession id message header isn’t required, because
ClientWebSocketContainer deals only with a single connection and its WebSocketSession
respectively.

To use the STOMP sub-protocol, this adapter should be configured with a
StompSubProtocolHandler. Then you can send any STOMP message type to this adapter, using
StompHeaderAccessor.create(StompCommand...) and a MessageBuilder, or just using a
HeaderEnricher (see the section called “Header Enricher”).

For more configuration options see below.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 511

35.5 WebSockets Namespace Support

Spring Integration WebSocket namespace includes several components described below. To include
it in your configuration, simply provide the following namespace declaration in your application context
configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-websocket="http://www.springframework.org/schema/integration/websocket"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/websocket

 http://www.springframework.org/schema/integration/websocket/spring-integration-websocket.xsd">

 ...

</beans>

<int-websocket:client-container>

<int-websocket:client-container

 id="" ❶

 client="" ❷

 uri="" ❸

 uri-variables="" ❹

 origin="" ❺

 send-time-limit="" ❻

 send-buffer-size-limit="" ❼

 auto-startup="" ❽

 phase=""> ❾

 <int-websocket:http-headers>

 <entry key="" value=""/>

 </int-websocket:http-headers> ❿

</int-websocket:client-container>

❶ The component bean name.

❷ The WebSocketClient bean reference.

❸ The uri or uriTemplate to the target WebSocket service. If it is used as a uriTemplate with
URI variable placeholders, the uri-variables attribute is required.

❹ Comma-separated values for the URI variable placeholders within the uri attribute value.
The values are replaced into the placeholders according to the order in the uri. See
UriComponents.expand(Object... uriVariableValues).

❺ The Origin Handshake HTTP header value.

❻ The WebSocket session send timeout limit. Defaults to 10000.

❼ The WebSocket session send message size limit. Defaults to 524288.

❽ Boolean value indicating whether this endpoint should start automatically. Defaults to false,
assuming that this container will be started from the Section 35.3, “WebSocket Inbound Channel
Adapter”.

❾ The lifecycle phase within which this endpoint should start and stop. The lower the value the earlier
this endpoint will start and the later it will stop. The default is Integer.MAX_VALUE. Values can
be negative. See SmartLifeCycle.

❿ A Map of HttpHeaders to be used with the Handshake request.

<int-websocket:server-container>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 512

<int-websocket:server-container

 id="" ❶

 path="" ❷

 handshake-handler="" ❸

 handshake-interceptors="" ❹

 decorator-factories="" ❺

 send-time-limit="" ❻

 send-buffer-size-limit="" ❼

 allowed-origins=""> ❽

 <int-websocket:sockjs

 client-library-url="" ❾

 stream-bytes-limit="" ❿

 session-cookie-needed="" 11

 heartbeat-time="" 12

 disconnect-delay="" 13

 message-cache-size="" 14

 websocket-enabled="" 15

 scheduler="" 16

 message-codec="" 17

 transport-handlers="" 18

 suppress-cors="true"="" /> 19

</int-websocket:server-container>

❶ The component bean name.

❷ A path (or comma-separated paths) that maps a particular request to a WebSocketHandler.
Exact path mapping URIs (such as "/myPath") are supported as well as ant-style path patterns
(such as /myPath/**).

❸ The HandshakeHandler bean reference. Default to DefaultHandshakeHandler.

❹ List of HandshakeInterceptor bean references.

❺ Configure one or more factories (WebSocketHandlerDecoratorFactory) to decorate the
handler used to process WebSocket messages. This may be useful for some advanced use
cases, for example to allow Spring Security to forcibly close the WebSocket session when the
corresponding HTTP session expires. See Spring Session Project for more information.

❻ See the same option on the <int-websocket:client-container>.

❼ See the same option on the <int-websocket:client-container>.

❽ Configure allowed Origin header values. Multiple origins may be specified as a comma-separated
list. This check is mostly designed for browser clients. There is noting preventing other types of
client to modify the Origin header value. When SockJS is enabled and allowed origins are restricted,
transport types that do not use Origin headers for cross origin requests (jsonp-polling, iframe-xhr-
polling, iframe-eventsource and iframe-htmlfile) are disabled. As a consequence, IE6/IE7 are not
supported and IE8/IE9 will only be supported without cookies. By default, all origins are allowed.

❾ Transports with no native cross-domain communication (e.g. "eventsource", "htmlfile") must get
a simple page from the "foreign" domain in an invisible iframe so that code in the iframe can run
from a domain local to the SockJS server. Since the iframe needs to load the SockJS javascript
client library, this property allows specifying where to load it from. By default this is set to point
to https://d1fxtkz8shb9d2.cloudfront.net/sockjs-0.3.4.min.js. However it can
also be set to point to a URL served by the application. Note that it’s possible to specify a relative
URL in which case the URL must be relative to the iframe URL. For example assuming a SockJS
endpoint mapped to "/sockjs", and resulting iframe URL "/sockjs/iframe.html", then the The relative
URL must start with "../../" to traverse up to the location above the SockJS mapping. In case of a
prefix-based Servlet mapping one more traversal may be needed.

❿ Minimum number of bytes that can be send over a single HTTP streaming request before it will be
closed. Defaults to 128K (i.e. 128*1024 bytes).

http://docs.spring.io/spring-session/docs/current/reference/html5/#websocket

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 513

11 The "cookie_needed" value in the response from the SockJs "/info" endpoint. This property
indicates whether the use of a JSESSIONID cookie is required for the application to function
correctly, e.g. for load balancing or in Java Servlet containers for the use of an HTTP session.

12 The amount of time in milliseconds when the server has not sent any messages and after which the
server should send a heartbeat frame to the client in order to keep the connection from breaking.
The default value is 25,000 (25 seconds).

13 The amount of time in milliseconds before a client is considered disconnected after not having a
receiving connection, i.e. an active connection over which the server can send data to the client.
The default value is 5000.

14 The number of server-to-client messages that a session can cache while waiting for the next HTTP
polling request from the client. The default size is 100.

15 Some load balancers don’t support websockets. Set this option to false to disable the WebSocket
transport on the server side. The default value is true.

16 The TaskScheduler bean reference; a new ThreadPoolTaskScheduler instance will be
created if no value is provided. This scheduler instance will be used for scheduling heart-beat
messages.

17 The SockJsMessageCodec bean reference to use for encoding and decoding SockJS messages.
By default Jackson2SockJsMessageCodec is used requiring the Jackson library to be present
on the classpath.

18 List of TransportHandler bean references.
19 The option to disable automatic addition of CORS headers for SockJS requests. The default value

is false.

<int-websocket:outbound-channel-adapter>

<int-websocket:outbound-channel-adapter

 id="" ❶

 channel="" ❷

 container="" ❸

 default-protocol-handler="" ❹

 protocol-handlers="" ❺

 message-converters="" ❻

 merge-with-default-converters="" ❼

 auto-startup="" ❽

 phase=""/> ❾

❶ The component bean name. If the channel attribute isn’t provided, a DirectChannel is created
and registered with the application context with this id attribute as the bean name. In this case,
the endpoint is registered with the bean name id + '.adapter'. And the MessageHandler
is registered with the bean alias id + '.handler'.

❷ Identifies the channel attached to this adapter.

❸ The reference to the IntegrationWebSocketContainer bean, which encapsulates the low-
level connection and WebSocketSession handling operations. Required.

❹ Optional reference to a SubProtocolHandler instance. It is used when the client did not request
a sub-protocol or it is a single protocol-handler. If this reference or protocol-handlers list aren’t
provided the PassThruSubProtocolHandler is used by default.

❺ List of SubProtocolHandler bean references for this Channel Adapter. If only a single
bean reference is provided and a default-protocol-handler isn’t provided, that single
SubProtocolHandler will be used as the default-protocol-handler. If this attribute or
default-protocol-handler aren’t provided, the PassThruSubProtocolHandler is used
by default.

❻ List of MessageConverter bean references for this Channel Adapter.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 514

❼ Flag to indicate if the default converters should be registered after any custom
converters. This flag is used only if message-converters are provided, otherwise
all default converters will be registered. Defaults to false. The default converters
are (in the order): StringMessageConverter, ByteArrayMessageConverter and
MappingJackson2MessageConverter if the Jackson library is present on the classpath.

❽ Boolean value indicating whether this endpoint should start automatically. Default to true.

❾ The lifecycle phase within which this endpoint should start and stop. The lower the value the earlier
this endpoint will start and the later it will stop. The default is Integer.MIN_VALUE. Values can
be negative. See SmartLifeCycle.

<int-websocket:inbound-channel-adapter>

<int-websocket:inbound-channel-adapter

 id="" ❶

 channel="" ❷

 error-channel="" ❸

 container="" ❹

 default-protocol-handler="" ❺

 protocol-handlers="" ❻

 message-converters="" ❼

 merge-with-default-converters="" ❽

 send-timeout="" ❾

 payload-type="" ❿

 use-broker="" 11

 auto-startup="" 12

 phase=""/> 13

❶ The component bean name. If the channel attribute isn’t provided, a DirectChannel is created
and registered with the application context with this id attribute as the bean name. In this case,
the endpoint is registered with the bean name id + '.adapter'.

❷ Identifies the channel attached to this adapter.

❸ The MessageChannel bean reference to which the ErrorMessages should be sent.

❹ See the same option on the <int-websocket:outbound-channel-adapter>.

❺ See the same option on the <int-websocket:outbound-channel-adapter>.

❻ See the same option on the <int-websocket:outbound-channel-adapter>.

❼ See the same option on the <int-websocket:outbound-channel-adapter>.

❽ See the same option on the <int-websocket:outbound-channel-adapter>.

❾ Maximum amount of time in milliseconds to wait when sending a message to the channel if
the channel may block. For example, a QueueChannel can block until space is available if its
maximum capacity has been reached.

❿ Fully qualified name of the java type for the target payload to convert from the incoming
WebSocketMessage. Default to String.

11 Flag to indicate if this adapter will send non-MESSAGE WebSocketMessage s and messages with
broker destinations to the AbstractBrokerMessageHandler from the application context. The
Broker Relay configuration is required when this attribute is true. This attribute is used only
on the server side. On the client side, it is ignored. Defaults to false.

12 See the same option on the <int-websocket:outbound-channel-adapter>.
13 See the same option on the <int-websocket:outbound-channel-adapter>.

35.6 ClientStompEncoder

Starting with version 4.3.13, the ClientStompEncoder is provided as an extension of standard
StompEncoder for using on client side of the WebSocket Channel Adapters. An instance of the

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 515

ClientStompEncoder must be injected into the StompSubProtocolHandler for proper client side
message preparation. One of the problem of the default StompSubProtocolHandler that it was
designed for the server side, so it updates the SEND stompCommand header into MESSAGE as it must
be by the STOMP protocol from server side. If client doesn’t send its messages in the proper SEND web
socket frame, some STOMP brokers won’t accept them. The purpose of the ClientStompEncoder,
in this case, is to override stompCommand header to the SEND value before encoding the message to
the byte[].

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 516

36. Web Services Support

36.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both
of which build upon the Spring Web Services project: SimpleWebServiceOutboundGateway
and MarshallingWebServiceOutboundGateway. The former will accept either a String or
javax.xml.transform.Source as the message payload. The latter provides support for any
implementation of the Marshaller and Unmarshaller interfaces. Both require a Spring Web
Services DestinationProvider for determining the URI of the Web Service to be called.

 simpleGateway = new SimpleWebServiceOutboundGateway(destinationProvider);

 marshallingGateway = new MarshallingWebServiceOutboundGateway(destinationProvider, marshaller);

Note

When using the namespace support described below, you will only need to set a URI. Internally,
the parser will configure a fixed URI DestinationProvider implementation. If you do need
dynamic resolution of the URI at runtime, however, then the DestinationProvider can
provide such behavior as looking up the URI from a registry. See the Spring Web Services
DestinationProvider JavaDoc for more information about this strategy.

Starting with version 5.0 the SimpleWebServiceOutboundGateway and
MarshallingWebServiceOutboundGateway can be supplied with an external
WebServiceTemplate instance, which may be configured for any custom properties, including
checkConnectionForFault allowing your application to deal with non-conforming services.

For more detail on the inner workings, see the Spring Web Services reference guide’s chapter covering
client access as well as the chapter covering Object/XML mapping.

36.2 Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options
again: SimpleWebServiceInboundGateway and MarshallingWebServiceInboundGateway.
The former will extract a javax.xml.transform.Source from the WebServiceMessage and set
it as the message payload. The latter provides support for implementation of the Marshaller and
Unmarshaller interfaces. If the incoming web service message is a SOAP message the SOAP Action
header will be added to the headers of the`Message` that is forwarded onto the request channel.

 simpleGateway = new SimpleWebServiceInboundGateway();

 simpleGateway.setRequestChannel(forwardOntoThisChannel);

 simpleGateway.setReplyChannel(listenForResponseHere); //Optional

 marshallingGateway = new MarshallingWebServiceInboundGateway(marshaller);

 //set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoint interface, so they can be
configured with a MessageDispatcherServlet as per standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide’s
chapter covering creating a Web Service. The chapter covering Object/XML mapping is also applicable
again.

http://projects.spring.io/spring-ws/
http://docs.spring.io/spring-ws/docs/current/api/org/springframework/ws/client/support/destination/DestinationProvider.html
http://docs.spring.io/spring-ws/docs/current/reference/html/client.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html
http://docs.spring.io/spring-ws/docs/current/reference/html/server.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 517

To include the SimpleWebServiceInboundGateway and
MarshallingWebServiceInboundGateway configurations to the Spring WS infrastructure you
should add the EndpointMapping definition between MessageDispatcherServlet and the
target MessageEndpoint implementations like you do that with normal Spring WS application.
For this purpose (from Spring Integration perspective), the Spring WS provides these convenient
EndpointMapping implementations:

• o.s.ws.server.endpoint.mapping.UriEndpointMapping

• o.s.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping

• o.s.ws.soap.server.endpoint.mapping.SoapActionEndpointMapping

• o.s.ws.server.endpoint.mapping.XPathPayloadEndpointMapping

The beans for these classes must be specified in the application context referencing to the
SimpleWebServiceInboundGateway and/or MarshallingWebServiceInboundGateway bean
definitions according to the WS mapping algorithm.

Please, refer to the Endpoint mappings for the more information.

36.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws"
namespace:

<int-ws:outbound-gateway id="simpleGateway"

 request-channel="inputChannel"

 uri="http://example.org"/>

Note

Notice that this example does not provide a reply-channel. If the Web Service were to return a
non-empty response, the Message containing that response would be sent to the reply channel
provided in the request Message’s REPLY_CHANNEL header, and if that were not available a
channel resolution Exception would be thrown. If you want to send the reply to another channel
instead, then provide a reply-channel attribute on the outbound-gateway element.

Tip

When invoking a Web Service that returns an empty response after using a String payload for
the request Message, no reply Message will be sent by default. Therefore you don’t need to set a
reply-channel or have a REPLY_CHANNEL header in the request Message. If for any reason you
actually do want to receive the empty response as a Message, then provide the ignore-empty-
responses attribute with a value of false (this only applies for Strings, because using a Source
or Document object simply leads to a NULL response and will therefore never generate a reply
Message).

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<int-ws:inbound-gateway id="simpleGateway"

 request-channel="inputChannel"/>

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

http://docs.spring.io/spring-ws/docs/current/reference/html/server.html#server-endpoint-mapping

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 518

<int-ws:outbound-gateway id="marshallingGateway"

 request-channel="requestChannel"

 uri="http://example.org"

 marshaller="someMarshaller"

 unmarshaller="someUnmarshaller"/>

And for inbound:

<int-ws:inbound-gateway id="marshallingGateway"

 request-channel="requestChannel"

 marshaller="someMarshaller"

 unmarshaller="someUnmarshaller"/>

Note

Most Marshaller implementations also implement the Unmarshaller interface. When
using such a Marshaller, only the "marshaller" attribute is necessary. Even when using a
Marshaller, you may also provide a reference for the "request-callback" on the outbound
gateways.

For either outbound gateway type, a "destination-provider" attribute can be specified instead of
the "uri" (exactly one of them is required). You can then reference any Spring Web Services
DestinationProvider implementation (e.g. to lookup the URI at runtime from a registry).

For either outbound gateway type, the "message-factory" attribute can also be configured with a
reference to any Spring Web Services WebServiceMessageFactory implementation.

For the simple inbound gateway type, the "extract-payload" attribute can be set to false to forward the
entire WebServiceMessage instead of just its payload as a Message to the request channel. This
might be useful, for example, when a custom Transformer works against the WebServiceMessage
directly.

Starting with version 5.0 the web-service-template reference attribute is presented for the injection
of a WebServiceTemplate with any possible custom properties.

36.4 Outbound URI Configuration

For all URI-schemes supported by Spring Web Services (URIs and Transports) <uri-variable/>
substitution is provided:

<ws:outbound-gateway id="gateway" request-channel="input"

 uri="http://springsource.org/{foo}-{bar}">

 <ws:uri-variable name="foo" expression="payload.substring(1,7)"/>

 <ws:uri-variable name="bar" expression="headers.x"/>

</ws:outbound-gateway>

<ws:outbound-gateway request-channel="inputJms"

 uri="jms:{destination}?deliveryMode={deliveryMode}&priority={priority}"

 message-sender="jmsMessageSender">

 <ws:uri-variable name="destination" expression="headers.jmsQueue"/>

 <ws:uri-variable name="deliveryMode" expression="headers.deliveryMode"/>

 <ws:uri-variable name="priority" expression="headers.jms_priority"/>

</ws:outbound-gateway>

If a DestinationProvider is supplied, variable substitution is not supported and a configuration error
will result if variables are provided.

Controlling URI Encoding

http://docs.spring.io/spring-ws/docs/current/reference/html/client.html#client-transports

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 519

By default, the URL string is encoded (see UriComponentsBuilder) to the URI object before sending the
request. In some scenarios with a non-standard URI it is undesirable to perform the encoding. Since
version 4.1 the <ws:outbound-gateway/> provides an encode-uri attribute. To disable encoding
the URL, this attribute should be set to false (by default it is true). If you wish to partially encode
some of the URL, this can be achieved using an expression within a <uri-variable/>:

<ws:outbound-gateway url="http://somehost/%2f/fooApps?bar={param}" encode-uri="false">

 <http:uri-variable name="param"

 expression="T(org.apache.commons.httpclient.util.URIUtil)

 .encodeWithinQuery('Hello World!')"/>

</ws:outbound-gateway>

Note, encode-uri is ignored, if DestinationProvider is supplied.

36.5 WS Message Headers

The Spring Integration WebService Gateways will map the SOAP Action header automatically.
It will be copied by default to and from Spring Integration MessageHeaders using the
DefaultSoapHeaderMapper.

Of course, you can pass in your own implementation of SOAP specific header mappers, as the gateways
have respective properties to support that.

Any user-defined SOAP headers will NOT be copied to or from a SOAP Message, unless
explicitly specified by the requestHeaderNames and/or replyHeaderNames properties of the
DefaultSoapHeaderMapper.

When using the XML namespace for configuration, these properties can be set using the mapped-
request-headers and mapped-reply-headers, or a custom mapper can be provided using the
header-mapper attribute.

Tip

When mapping user-defined headers, the values can also contain simple wildcard patterns (e.g.
"foo*" or "*foo") to be matched. For example, if you need to copy all user-defined headers simply
use the wildcard character *.

Starting with version 4.1, the AbstractHeaderMapper (a DefaultSoapHeaderMapper superclass)
allows the NON_STANDARD_HEADERS token to be configured for the requestHeaderNames and/
or replyHeaderNames properties (in addition to existing STANDARD_REQUEST_HEADERS and
STANDARD_REPLY_HEADERS) to map all user-defined headers. Note, it is recommended to use the
combination like this STANDARD_REPLY_HEADERS, NON_STANDARD_HEADERS instead of a *, to avoid
mapping of request headers to the reply.

Starting with version 4.3, patterns in the header mappings can be negated by preceding the pattern
with !. Negated patterns get priority, so a list such as STANDARD_REQUEST_HEADERS,foo,ba*,!
bar,!baz,qux,!foo will NOT map foo (nor bar nor baz); the standard headers plus bad, qux will
be mapped.

Important

If you have a user defined header that begins with ! that you do wish to map, you need to escape
it with \ thus: STANDARD_REQUEST_HEADERS,\!myBangHeader and it WILL be mapped.

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/ws/DefaultSoapHeaderMapper.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 520

Inbound SOAP headers (request headers for the inbound gateway, reply-headers for the outbound
gateway) are mapped as SoapHeaderElement objects. The contents can be explored by accessing
the Source:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header>

 <auth>

 <username>user</username>

 <password>pass</password>

 </auth>

 <bar>BAR</bar>

 <baz>BAZ</baz>

 <qux>qux</qux>

 </soapenv:Header>

 <soapenv:Body>

 ...

 </soapenv:Body>

</soapenv:Envelope>

If mapped-request-headers is "auth, ba*", the auth, bar and baz headers are mapped but
qux is not.

...

SoapHeaderElement header = (SoapHeaderElement) headers.get("auth");

DOMSource source = (DOMSource) header.getSource();

NodeList nodeList = source.getNode().getChildNodes();

assertEquals("username", nodeList.item(0).getNodeName());

assertEquals("user", nodeList.item(0).getFirstChild().getNodeValue());

...

Starting with version 5.0, the DefaultSoapHeaderMapper supports user-defined headers of type
javax.xml.transform.Source and populates them as child nodes of the <soapenv:Header>:

Map<String, Object> headers = new HashMap<>();

String authXml =

 "<auth xmlns='http://test.auth.org'>"

 + "<username>user</username>"

 + "<password>pass</password>"

 + "</auth>";

headers.put("auth", new StringSource(authXml));

...

DefaultSoapHeaderMapper mapper = new DefaultSoapHeaderMapper();

mapper.setRequestHeaderNames("auth");

And in the end we have SOAP envelope as:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header>

 <auth xmlns="http://test.auth.org">

 <username>user</username>

 <password>pass</password>

 </auth>

 </soapenv:Header>

 <soapenv:Body>

 ...

 </soapenv:Body>

</soapenv:Envelope>

36.6 MTOM Support

The Marshalling Inbound and Outbound WebService Gateways support attachments directly via
built-in functionality of the marshaller, e.g. Jaxb2Marshaller provides the mtomEnabled option.
Starting with version 5.0, the Simple WebService Gateways can operate with inbound and outbound

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 521

MimeMessage s directly, which have an API to manipulate attachments. When you need to send
WebService message with attachments (either a reply from a server, or a client request) you should
use the WebServiceMessageFactory directly and send a WebServiceMessage with attachments
as a payload to the request or reply channel of the gateway:

WebServiceMessageFactory messageFactory = new SaajSoapMessageFactory(MessageFactory.newInstance());

MimeMessage webServiceMessage = (MimeMessage) messageFactory.createWebServiceMessage();

String request = "<test>foo</test>";

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

transformer.transform(new StringSource(request), webServiceMessage.getPayloadResult());

webServiceMessage.addAttachment("myAttachment", new ByteArrayResource("my_data".getBytes()), "plain/

text");

this.webServiceChannel.send(new GenericMessage<>(webServiceMessage));

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 522

37. XML Support - Dealing with XML Payloads

37.1 Introduction

Spring Integration’s XML support extends the core of Spring Integration with the following components:

• Marshalling Transformer

• Unmarshalling Transformer

• Xslt Transformer

• XPath Transformer

• XPath Splitter

• XPath Router

• XPath Header Enricher

• XPath Filter

• #xpath SpEL Function

• Validating Filter

These components are designed to make working with XML messages in Spring Integration
simple. The provided messaging components are designed to work with XML represented in
a range of formats including instances of java.lang.String, org.w3c.dom.Document and
javax.xml.transform.Source. It should be noted however that where a DOM representation is
required, for example in order to evaluate an XPath expression, the String payload will be converted
into the required type and then converted back again to String. Components that require an instance of
DocumentBuilder will create a namespace-aware instance if one is not provided. In cases where you
require greater control over document creation, you can provide an appropriately configured instance
of DocumentBuilder.

37.2 Namespace Support

All components within the Spring Integration XML module provide namespace support. In order to enable
namespace support, you need to import the respective schema for the Spring Integration XML Module.
A typical setup is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-xml="http://www.springframework.org/schema/integration/xml"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/xml

 http://www.springframework.org/schema/integration/xml/spring-integration-xml.xsd">

</beans>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 523

XPath Expressions

Many of the components within the Spring Integration XML module work with XPath Expressions. Each
of those components will either reference an XPath Expression that has been defined as top-level
element or via a nested <xpath-expression/> element.

All forms of XPath expressions result in the creation of an XPathExpression using the
Spring org.springframework.xml.xpath.XPathExpressionFactory. When creating XPath
expressions, the best XPath implementation that is available on the classpath is being used, either JAXP
1.3+ or Jaxen, whereby JAXP is preferred.

Note

Spring Integration under the covers uses the XPath functionality as provided by the Spring Web
Services project (http://www.spring.io/spring-ws). Specifically, Spring Web Services' XML module
(spring-xml-x.x.x.jar) is being used. Therefore, for a deeper understanding, please refer to the
respective documentation as well at: http://docs.spring.io/spring-ws/docs/current/reference/html/
common.html#xpath

Here is an overview of all available configuration parameters of the xpath-expression element:

<int-xml:xpath-expression expression="" ❶

 id="" ❷

 namespace-map="" ❸

 ns-prefix="" ❹

 ns-uri=""> ❺

 <map></map> ❻

</int-xml:xpath-expression>

❶ Defines an XPath expression. Required.

❷ The Identifier of the underlying bean definition. Will be an instance of
`org.springframework.xml.xpath.XPathExpression`Optional.

❸ Reference to a map containing namespaces. The key of the map defines the namespace prefix
and the value of the map sets the namespace URI. It is not valid to specify both this attribute and
the map sub element, or setting the ns-prefix and ns-uri attribute. Optional.

❹ Allows you to set the namespace prefix directly as and attribute on the XPath expression element.
If you set ns-prefix, you must also set the ns-uri attribute. Optional.

❺ Allows you to set the namespace URI directly as an attribute on the XPath expression element. If
you set ns-uri, you must also set the ns-prefix attribute. Optional.

❻ Defines a map containing namespaces. Only one map child element is allowed. The key of the
map defines the namespace prefix and the value of the map sets the namespace URI.

It is not valid to specify both this sub-element and the map attribute, or setting the ns-prefix and ns-
uri attributes. Optional.

Providing Namespaces (Optional) to XPath Expressions

For the XPath Expression Element, namespace information can be optionally provided as configuration
parameters. As such, namespaces can be defined using one of the following 3 choices:

• Reference a map using the namespace-map attribute

• Provide a map of namespaces using the map sub-element

http://www.spring.io/spring-ws
http://docs.spring.io/spring-ws/docs/current/reference/html/common.html#xpath
http://docs.spring.io/spring-ws/docs/current/reference/html/common.html#xpath

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 524

• Specifying the ns-prefix and the ns-uri attribute

All three options are mutually exclusive. Only one option can be set.

Below, please find several different usage examples on how to use XPath expressions using the XML
namespace support including the various option for setting the XML namespaces as discussed above.

<int-xml:xpath-filter id="filterReferencingXPathExpression"

 xpath-expression-ref="refToXpathExpression"/>

<int-xml:xpath-expression id="refToXpathExpression" expression="/name"/>

<int-xml:xpath-filter id="filterWithoutNamespace">

 <int-xml:xpath-expression expression="/name"/>

</int-xml:xpath-filter>

<int-xml:xpath-filter id="filterWithOneNamespace">

 <int-xml:xpath-expression expression="/ns1:name"

 ns-prefix="ns1" ns-uri="www.example.org"/>

</int-xml:xpath-filter>

<int-xml:xpath-filter id="filterWithTwoNamespaces">

 <int-xml:xpath-expression expression="/ns1:name/ns2:type">

 <map>

 <entry key="ns1" value="www.example.org/one"/>

 <entry key="ns2" value="www.example.org/two"/>

 </map>

 </int-xml:xpath-expression>

</int-xml:xpath-filter>

<int-xml:xpath-filter id="filterWithNamespaceMapReference">

 <int-xml:xpath-expression expression="/ns1:name/ns2:type"

 namespace-map="defaultNamespaces"/>

</int-xml:xpath-filter>

<util:map id="defaultNamespaces">

 <util:entry key="ns1" value="www.example.org/one"/>

 <util:entry key="ns2" value="www.example.org/two"/>

</util:map>

Using XPath Expressions with Default Namespaces

When working with default namespaces, you may run into situations that behave differently than
originally expected. Let’s assume we have the following XML document:

<?xml version="1.0" encoding="UTF-8"?>

<order>

 <orderItem>

 <isbn>0321200683</isbn>

 <quantity>2</quantity>

 </orderItem>

 <orderItem>

 <isbn>1590596439</isbn>

 <quantity>1</quantity>

 </orderItem>

</order>

This document is not declaring any namespace. Therefore, applying the following XPath Expression
will work as expected:

<int-xml:xpath-expression expression="/order/orderItem" />

You might expect that the same expression will also work for the following XML file. It looks exactly the
same as the previous example but in addition it also declares a default namespace:

http://www.example.org/orders

http://www.example.org/orders

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 525

<?xml version="1.0" encoding="UTF-8"?>

<order xmlns="http://www.example.org/orders">

 <orderItem>

 <isbn>0321200683</isbn>

 <quantity>2</quantity>

 </orderItem>

 <orderItem>

 <isbn>1590596439</isbn>

 <quantity>1</quantity>

 </orderItem>

</order>

However, the XPath Expression used previously will fail in this case.

In order to solve this issue, you must provide a namespace prefix and a namespace URI using either
the ns-prefix and ns-uri attribute or by providing a namespace-map attribute instead. The namespace
URI must match the namespace declared in your XML document, which in this example is http://
www.example.org/orders.

The namespace prefix, however, can be arbitrarily chosen. In fact, just providing an empty String will
actually work (Null is not allowed). In the case of a namespace prefix consisting of an empty String,
your Xpath Expression will use a colon (":") to indicate the default namespace. If you leave the colon
off, the XPath expression will not match. The following XPath Expression will match against the XML
document above:

<int-xml:xpath-expression expression="/:order/:orderItem"

 ns-prefix="" ns-uri="http://www.example.org/prodcuts"/>

Of course you can also provide any other arbitrarily chosen namespace prefix. The following XPath
expression using the myorder namespace prefix will match also:

<int-xml:xpath-expression expression="/myorder:order/myorder:orderItem"

 ns-prefix="myorder" ns-uri="http://www.example.org/prodcuts"/>

It is important to remember that the namespace URI is the really important piece of information to
declare, not the prefix itself. The Jaxen FAQ summarizes the point very well:

In XPath 1.0, all unprefixed names are unqualified. There is no requirement that the
prefixes used in the XPath expression are the same as the prefixes used in the
document being queried. Only the namespace URIs need to match, not the prefixes.

37.3 Transforming XML Payloads

Configuring Transformers as Beans

This section will explain the workings of the following transformers and how to configure them as beans:

• UnmarshallingTransformer

• MarshallingTransformer

• XsltPayloadTransformer

All of the provided XML transformers extend AbstractTransformer or AbstractPayloadTransformer and
therefore implement Transformer. When configuring XML transformers as beans in Spring Integration,
you would normally configure the Transformer in conjunction with a MessageTransformingHandler. This

http://www.example.org/orders
http://www.example.org/orders
http://jaxen.codehaus.org/faq.html
#xml-unmarshalling-transformer
#xml-marshalling-transformer
#xml-xslt-payload-transformers
http://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/AbstractTransformer.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/AbstractPayloadTransformer.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/Transformer.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/MessageTransformingHandler.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 526

allows the transformer to be used as an Endpoint. Finally, the namespace support will be discussed,
which allows for the simple configuration of the transformers as elements in XML.

UnmarshallingTransformer

An UnmarshallingTransformer allows an XML Source to be unmarshalled using implementations of the
Spring OXM Unmarshaller. Spring’s Object/XML Mapping support provides several implementations
supporting marshalling and unmarshalling using JAXB, Castor and JiBX amongst others. The
unmarshaller requires an instance of Source. If the message payload is not an instance of Source,
conversion will be attempted. Currently String, File and org.w3c.dom.Document payloads are
supported. Custom conversion to a Source is also supported by injecting an implementation of a
SourceFactory.

Note

If a SourceFactory is not set explicitly, the property on the UnmarshallingTransformer will
by default be set to a DomSourceFactory.

Starting with version 5.0, the UnmarshallingTransformer also supports an
org.springframework.ws.mime.MimeMessage as the incoming payload. This can be useful in
scenarios when we receive a raw WebServiceMessage via SOAP with MTOM attachments. See
Section 36.6, “MTOM Support” for more information.

<bean id="unmarshallingTransformer" class="o.s.i.xml.transformer.UnmarshallingTransformer">

 <constructor-arg>

 <bean class="org.springframework.oxm.jaxb.Jaxb2Marshaller">

 <property name="contextPath" value="org.example" />

 </bean>

 </constructor-arg>

</bean>

MarshallingTransformer

The MarshallingTransformer allows an object graph to be converted into XML using a Spring
OXM Marshaller. By default the MarshallingTransformer will return a DomResult. However,
the type of result can be controlled by configuring an alternative ResultFactory such as
StringResultFactory. In many cases it will be more convenient to transform the payload into an
alternative XML format. To achieve this, configure a ResultTransformer. Two implementations are
provided, one which converts to String and another which converts to Document.

<bean id="marshallingTransformer" class="o.s.i.xml.transformer.MarshallingTransformer">

 <constructor-arg>

 <bean class="org.springframework.oxm.jaxb.Jaxb2Marshaller">

 <property name="contextPath" value="org.example"/>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="o.s.i.xml.transformer.ResultToDocumentTransformer"/>

 </constructor-arg>

</bean>

By default, the MarshallingTransformer will pass the payload Object to the Marshaller, but if
its boolean extractPayload property is set to false, the entire Message instance will be passed to
the Marshaller instead. That may be useful for certain custom implementations of the Marshaller
interface, but typically the payload is the appropriate source Object for marshalling when delegating to
any of the various out-of-the-box Marshaller implementations.

http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/UnmarshallingTransformer.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html
http://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
http://www.castor.org/
http://jibx.sourceforge.net/
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/MarshallingTransformer.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 527

XsltPayloadTransformer

XsltPayloadTransformer transforms XML payloads using Extensible Stylesheet Language
Transformations (XSLT). The transformer’s constructor requires an instance of either Resource or
Templates to be passed in. Passing in a Templates instance allows for greater configuration of the
TransformerFactory used to create the template instance.

As with the UnmarshallingTransformer, the XsltPayloadTransformer will do the actual XSLT
transformation using instances of Source. Therefore, if the message payload is not an instance of
Source, conversion will be attempted. String and Document payloads are supported directly.

Custom conversion to a Source is also supported by injecting an implementation of a SourceFactory.

Note

If a SourceFactory is not set explicitly, the property on the XsltPayloadTransformer will
by default be set to a DomSourceFactory.

By default, the XsltPayloadTransformer will create a message with a Result payload, similar to
the XmlPayloadMarshallingTransformer. This can be customised by providing a ResultFactory
and/or a ResultTransformer.

<bean id="xsltPayloadTransformer" class="o.s.i.xml.transformer.XsltPayloadTransformer">

 <constructor-arg value="classpath:org/example/xsl/transform.xsl"/>

 <constructor-arg>

 <bean class="o.s.i.xml.transformer.ResultToDocumentTransformer"/>

 </constructor-arg>

</bean>

Starting with Spring Integration 3.0, you can now specify the transformer factory class name using a
constructor argument. This is configured using the transformer-factory-class attribute when
using the namespace.

ResultTransformers

Both the MarshallingTransformer and the XsltPayloadTransformer allow you to specify a
ResultTransformer. Thus, if the Marshalling or XSLT transformation returns a Result, than you have
the option to also use a ResultTransformer to transform the Result into another format. Spring
Integration provides 2 concrete`ResultTransformer` implementations:

• ResultToDocumentTransformer

• ResultToStringTransformer

Using ResultTransformers with the MarshallingTransformer

By default, the MarshallingTransformer will always return a Result. By specifying a
ResultTransformer, you can customize the type of payload returned.

Using ResultTransformers with the XsltPayloadTransformer

The behavior is slighly more complex for the XsltPayloadTransformer. By default, if the input payload is
an instance of String or Document the resultTransformer property is ignored.

However, if the input payload is a Source or any other type, then the resultTransformer property is
applied. Additionally, you can set the property alwaysUseResultFactory to true, which will also cause
the specified resultTransformer to being used.

http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
http://en.wikipedia.org/wiki/XSL_Transformations
http://en.wikipedia.org/wiki/XSL_Transformations
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Templates.html
#xml-unmarshalling-transformer
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/result/ResultFactory.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultTransformer.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultTransformer.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultToDocumentTransformer.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultToStringTransformer.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Source.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 528

For more information and examples, please see the section called “Namespace Configuration and
ResultTransformers”

Namespace Support for XML Transformers

Namespace support for all XML transformers is provided in the Spring Integration XML namespace, a
template for which can be seen below. The namespace support for transformers creates an instance
of either`EventDrivenConsumer` or PollingConsumer according to the type of the provided input
channel. The namespace support is designed to reduce the amount of XML configuration by allowing
the creation of an endpoint and transformer using one element.

UnmarshallingTransformer

The namespace support for the UnmarshallingTransformer is shown below. Since the namespace
is now creating an endpoint instance rather than a transformer, a poller can also be nested within the
element to control the polling of the input channel.

<int-xml:unmarshalling-transformer id="defaultUnmarshaller"

 input-channel="input" output-channel="output"

 unmarshaller="unmarshaller"/>

<int-xml:unmarshalling-transformer id="unmarshallerWithPoller"

 input-channel="input" output-channel="output"

 unmarshaller="unmarshaller">

 <int:poller fixed-rate="2000"/>

<int-xml:unmarshalling-transformer/>

MarshallingTransformer

The namespace support for the marshalling transformer requires an input-channel, output-
channel and a reference to a marshaller. The optional result-type attribute can be used to
control the type of result created. Valid values are StringResult or DomResult (the default).

<int-xml:marshalling-transformer

 input-channel="marshallingTransformerStringResultFactory"

 output-channel="output"

 marshaller="marshaller"

 result-type="StringResult" />

<int-xml:marshalling-transformer

 input-channel="marshallingTransformerWithResultTransformer"

 output-channel="output"

 marshaller="marshaller"

 result-transformer="resultTransformer" />

<bean id="resultTransformer" class="o.s.i.xml.transformer.ResultToStringTransformer"/>

Where the provided result types are not sufficient, a reference to a custom implementation of
ResultFactory can be provided as an alternative to setting the result-type attribute, using the
result-factory attribute. The attributes result-type and result-factory are mutually exclusive.

Note

Internally, the result types StringResult and DomResult are represented by the
ResultFactory s StringResultFactory and DomResultFactory respectively.

XsltPayloadTransformer

Namespace support for the XsltPayloadTransformer allows you to either pass in a Resource,
in order to create the Templates instance, or alternatively, you can pass in a precreated Templates

http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/result/StringResultFactory.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/result/DomResultFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Templates.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 529

instance as a reference. In common with the marshalling transformer, the type of the result output
can be controlled by specifying either the result-factory or result-type attribute. A result-
transformer attribute can also be used to reference an implementation of ResultTransformer
where conversion of the result is required before sending.

Important

If you specify the result-factory or the result-type attribute, then the
alwaysUseResultFactory property on the underlying XsltPayloadTransformer will be set to
true by the XsltPayloadTransformerParser.

<int-xml:xslt-transformer id="xsltTransformerWithResource"

 input-channel="withResourceIn" output-channel="output"

 xsl-resource="org/springframework/integration/xml/config/test.xsl"/>

<int-xml:xslt-transformer id="xsltTransformerWithTemplatesAndResultTransformer"

 input-channel="withTemplatesAndResultTransformerIn" output-channel="output"

 xsl-templates="templates"

 result-transformer="resultTransformer"/>

Often you may need to have access to Message data, such as the Message Headers, in order to assist
with transformation. For example, you may need to get access to certain Message Headers and pass
them on as parameters to a transformer (e.g., transformer.setParameter(..)). Spring Integration
provides two convenient ways to accomplish this, as illustrated in following example:

<int-xml:xslt-transformer id="paramHeadersCombo"

 input-channel="paramHeadersComboChannel" output-channel="output"

 xsl-resource="classpath:transformer.xslt"

 xslt-param-headers="testP*, *foo, bar, baz">

 <int-xml:xslt-param name="helloParameter" value="hello"/>

 <int-xml:xslt-param name="firstName" expression="headers.fname"/>

</int-xml:xslt-transformer>

If message header names match 1:1 to parameter names, you can simply use xslt-param-
headers attribute. There you can also use wildcards for simple pattern matching, which supports the
following simple pattern styles: "xxx*", "xxx", "*xxx" and "xxx*yyy".

You can also configure individual Xslt parameters via the <xslt-param/> sub element. There you can
use either the expression or value attribute. The expression attribute should be any valid SpEL
expression with Message being the root object of the expression evaluation context. The value
attribute, just like any value in Spring beans, allows you to specify simple scalar values. You can also
use property placeholders (e.g., ${some.value}). So as you can see, with the expression and value
attribute, Xslt parameters could now be mapped to any accessible part of the Message as well as any
literal value.

Starting with Spring Integration 3.0, you can now specify the transformer factory class name using the
transformer-factory-class attribute.

Namespace Configuration and ResultTransformers

The usage of ResultTransformers was previously introduced in the section called
“ResultTransformers”. The following example illustrates several special use-cases using XML
namespace configuration. First, we define the ResultTransformer:

<beans:bean id="resultToDoc" class="o.s.i.xml.transformer.ResultToDocumentTransformer"/>

http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/config/XsltPayloadTransformerParser.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 530

This ResultTransformer will accept either a StringResult or a DOMResult as input and converts
the input into a Document.

Now, let’s declare the transformer:

<int-xml:xslt-transformer input-channel="in" output-channel="fahrenheitChannel"

 xsl-resource="classpath:noop.xslt" result-transformer="resultToDoc"/>

If the incoming message’s payload is of type Source, then as first step the Result is determined using
the ResultFactory. As we did not specify a ResultFactory, the default DomResultFactory is
used, meaning that the transformation will yield a DomResult.

However, as we specified a ResultTransformer, it will be used and the resulting Message payload will
be of type`Document`.

Important

If the incoming message’s payload is of type String, the payload after the Xslt transformation
will be a String. Similarly, if the incoming message’s payload is of type Document, the payload
after the Xslt transformation will be a`Document`. The specified ResultTransformer will be ignored
with String or Document payloads.

If the message payload is neither a Source, String or Document, as a fallback option, it is attempted
to create a`Source` using the default SourceFactory. As we did not specify a SourceFactory explicitly
using the source-factory attribute, the default DomSourceFactory is used. If successful, the XSLT
transformation is executed as if the payload was of type Source, which we described in the previous
paragraphs.

Note

The DomSourceFactory supports the creation of a DOMSource from a either Document, File
or String payloads.

The next transformer declaration adds a result-type attribute using StringResult as its value. First,
the result-type is internally represented by the StringResultFactory. Thus, you could have also
added a reference to a StringResultFactory, using the result-factory attribute, which would haven
been the same.

<int-xml:xslt-transformer input-channel="in" output-channel="fahrenheitChannel"

 xsl-resource="classpath:noop.xslt" result-transformer="resultToDoc"

 result-type="StringResult"/>

Because we are using a ResultFactory, the alwaysUseResultFactory property of the
XsltPayloadTransformer class will be implicitly set to true. Consequently, the referenced
ResultToDocumentTransformer will be used.

Therefore, if you transform a payload of type String, the resulting payload will be of type Document.

XsltPayloadTransformer and <xsl:output method="text"/>

<xsl:output method="text"/> tells the XSLT template to only produce text content from
the input source. In this particular case there is no reason to have a DomResult. Therefore, the
XsltPayloadTransformer defaults to StringResult if the output property called method of the
underlying javax.xml.transform.Transformer returns "text". This coercion is performed
independent from the inbound payload type. Keep in mind that this [quote] smart behavior is only

http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
http://docs.oracle.com/javase/7/docs/api/javax/xml/transform/Transformer.html#getOutputProperties()

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 531

available, if the result-type or result-factory attributes aren’t provided for the respective <int-
xml:xslt-transformer> component.

37.4 Transforming XML Messages Using XPath

When it comes to message transformation XPath is a great way to transform Messages that have XML
payloads by defining XPath transformers via <xpath-transformer/> element.

Simple XPath transformation

Let’s look at the following transformer configuration:

<int-xml:xpath-transformer input-channel="inputChannel" output-channel="outputChannel"

 xpath-expression="/person/@name" />

...and Message

Message<?> message =

 MessageBuilder.withPayload("<person name='John Doe' age='42' married='true'/>").build();

After sending this message to the inputChannel the XPath transformer configured above will transform
this XML Message to a simple Message with payload of John Doe all based on the simple XPath
Expression specified in the xpath-expression attribute.

XPath also has the capability to perform simple conversion of extracted elements to a desired type.
Valid return types are defined in javax.xml.xpath.XPathConstants and follows the conversion
rules specified by the javax.xml.xpath.XPath interface.

The following constants are defined by the XPathConstants class: BOOLEAN,
DOM_OBJECT_MODEL, NODE, NODESET, NUMBER, STRING

You can configure the desired type by simply using the evaluation-type attribute of the <xpath-
transformer/> element.

<int-xml:xpath-transformer input-channel="numberInput" xpath-expression="/person/@age"

 evaluation-type="NUMBER_RESULT" output-channel="output"/>

<int-xml:xpath-transformer input-channel="booleanInput"

 xpath-expression="/person/@married = 'true'"

 evaluation-type="BOOLEAN_RESULT" output-channel="output"/>

Node Mappers

If you need to provide custom mapping for the node extracted by the XPath expression simply provide
a reference to the implementation of the org.springframework.xml.xpath.NodeMapper - an
interface used by XPathOperations implementations for mapping Node objects on a per-node basis.
To provide a reference to a NodeMapper simply use node-mapper attribute:

<int-xml:xpath-transformer input-channel="nodeMapperInput" xpath-expression="/person/@age"

 node-mapper="testNodeMapper" output-channel="output"/>

...and Sample NodeMapper implementation:

class TestNodeMapper implements NodeMapper {

 public Object mapNode(Node node, int nodeNum) throws DOMException {

 return node.getTextContent() + "-mapped";

 }

}

XML Payload Converter

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 532

You can also use an implementation of the
org.springframework.integration.xml.XmlPayloadConverter to provide more granular
transformation:

<int-xml:xpath-transformer input-channel="customConverterInput"

 output-channel="output" xpath-expression="/test/@type"

 converter="testXmlPayloadConverter" />

...and Sample XmlPayloadConverter implementation:

class TestXmlPayloadConverter implements XmlPayloadConverter {

 public Source convertToSource(Object object) {

 throw new UnsupportedOperationException();

 }

 //

 public Node convertToNode(Object object) {

 try {

 return DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(

 new InputSource(new StringReader("<test type='custom'/>")));

 }

 catch (Exception e) {

 throw new IllegalStateException(e);

 }

 }

 //

 public Document convertToDocument(Object object) {

 throw new UnsupportedOperationException();

 }

}

The DefaultXmlPayloadConverter is used if this reference is not provided, and it should be
sufficient in most cases since it can convert from Node, Document, Source, File, String,
InputStream and byte[] typed payloads. If you need to extend beyond the capabilities of that default
implementation, then an upstream Transformer is probably a better option than providing a reference
to a custom implementation of this strategy here.

37.5 Splitting XML Messages

XPathMessageSplitter supports messages with either String or Document payloads. The splitter
uses the provided XPath expression to split the payload into a number of nodes. By default this will
result in each Node instance becoming the payload of a new message. Where it is preferred that each
message be a Document the createDocuments flag can be set. Where a String payload is passed
in the payload will be converted then split before being converted back to a number of String messages.
The XPath splitter implements MessageHandler and should therefore be configured in conjunction
with an appropriate endpoint (see the namespace support below for a simpler configuration alternative).

<bean id="splittingEndpoint"

 class="org.springframework.integration.endpoint.EventDrivenConsumer">

 <constructor-arg ref="orderChannel" />

 <constructor-arg>

 <bean class="org.springframework.integration.xml.splitter.XPathMessageSplitter">

 <constructor-arg value="/order/items" />

 <property name="documentBuilder" ref="customisedDocumentBuilder" />

 <property name="outputChannel" ref="orderItemsChannel" />

 </bean>

 </constructor-arg>

</bean>

XPath splitter namespace support allows the creation of a Message Endpoint with an input channel and
output channel.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 533

<!-- Split the order into items creating a new message for each item node -->

<int-xml:xpath-splitter id="orderItemSplitter"

 input-channel="orderChannel"

 output-channel="orderItemsChannel">

 <int-xml:xpath-expression expression="/order/items"/>

</int-xml:xpath-splitter>

<!-- Split the order into items creating a new document for each item-->

<int-xml:xpath-splitter id="orderItemDocumentSplitter"

 input-channel="orderChannel"

 output-channel="orderItemsChannel"

 create-documents="true">

 <int-xml:xpath-expression expression="/order/items"/>

 <int:poller fixed-rate="2000"/>

</int-xml:xpath-splitter>

Starting with version 4.2, the XPathMessageSplitter exposes outputProperties (such as
OutputKeys.OMIT_XML_DECLARATION) property for the javax.xml.transform.Transformer
instances when a request payload isn’t of org.w3c.dom.Node type:

<util:properties id="outputProperties">

 <beans:prop key="#{T (javax.xml.transform.OutputKeys).OMIT_XML_DECLARATION}">yes</beans:prop>

</util:properties>

<xpath-splitter input-channel="input"

 output-properties="outputProperties">

 <xpath-expression expression="/orders/order"/>

</xpath-splitter>

Starting with version 4.2, the XPathMessageSplitter exposes an iterator option as a
boolean flag (defaults to true). This allows the "streaming" of split nodes in the downstream flow. With
the iterator mode, each node is transformed while iterating. When false, all entries are transformed
first, before the split nodes start being sent to the output channel (transform, send, transform, send Vs.
transform, transform, send, send). See Section 6.3, “Splitter” for more information.

37.6 Routing XML Messages Using XPath

Similar to SpEL-based routers, Spring Integration provides support for routing messages based on
XPath expressions, allowing you to create a Message Endpoint with an input channel but no output
channel. Instead, one or more output channels are determined dynamically.

<int-xml:xpath-router id="orderTypeRouter" input-channel="orderChannel">

 <int-xml:xpath-expression expression="/order/type"/>

</int-xml:xpath-router>

Note

For an overview of attributes that are common among Routers, please see chapter: the section
called “Common Router Parameters”

Internally XPath expressions will be evaluated as NODESET type and converted to a List<String>
representing channel names. Typically such a list will contain a single channel name. However, based on
the results of an XPath Expression, the XPath router can also take on the characteristics of a Recipient
List Router if the XPath Expression returns more then one value. In that case, the List<String> will
contain more then one channel name and consequently Messages will be sent to all channels in the list.

Thus, assuming that the XML file passed to the router configured below contains many responder
sub-elements representing channel names, the message will be sent to all of those channels.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 534

<!-- route the order to all responders-->

<int-xml:xpath-router id="responderRouter" input-channel="orderChannel">

 <int-xml:xpath-expression expression="/request/responders"/>

</int-xml:xpath-router>

If the returned values do not represent the channel names directly, additional mapping parameters
can be specified, in order to map those returned values to actual channel names. For example if the
/request/responders expression results in two values responderA and responderB but you
don’t want to couple the responder names to channel names, you may provide additional mapping
configuration such as the following:

<!-- route the order to all responders-->

<int-xml:xpath-router id="responderRouter" input-channel="orderChannel">

 <int-xml:xpath-expression expression="/request/responders"/>

 <int-xml:mapping value="responderA" channel="channelA"/>

 <int-xml:mapping value="responderB" channel="channelB"/>

</int-xml:xpath-router>

As already mentioned, the default evaluation type for XPath expressions is NODESET, which is
converted to a List<String> of channel names, therefore handling single channel scenarios as well
as multiple ones.

Nonetheless, certain XPath expressions may evaluate as String type from the very beginning. Take for
example the following XPath Expression:

name(./node())

This expression will return the name of the root node. It will resulting in an exception, if the default
evaluation type NODESET is being used.

For these scenarious, you may use the evaluate-as-string attribute, which will allow you to
manage the evaluation type. It is FALSE by default, however if set to TRUE, the String evaluation type
will be used.

Note

To provide some background information: XPath 1.0 specifies 4 data types:

• Node-sets

• Strings

• Number

• Boolean

When the XPath Router evaluates expressions using the optional evaluate-as-string
attribute, the return value is determined per the string() function as defined in the XPath
specification. This means that if the expression selects multiple nodes, it will return the string
value of the first node.

For further information, please see:

• Specification: XML Path Language (XPath) Version 1.0

• XPath specification - string() function

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/#function-string

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 535

For example if we want to route based on the name of the root node, we can use the following
configuration:

<int-xml:xpath-router id="xpathRouterAsString"

 input-channel="xpathStringChannel"

 evaluate-as-string="true">

 <int-xml:xpath-expression expression="name(./node())"/>

</int-xml:xpath-router>

XML Payload Converter

For XPath Routers, you can also specify the Converter to use when converting payloads
prior to XPath evaluation. As such, the XPath Router supports custom implementations of the
XmlPayloadConverter strategy, and when configuring an xpath-router element in XML, a
reference to such an implementation may be provided via the converter attribute.

If this reference is not explicitly provided, the DefaultXmlPayloadConverter is used. It should be
sufficient in most cases, since it can convert from Node, Document, Source, File, and String typed
payloads. If you need to extend beyond the capabilities of that default implementation, then an upstream
Transformer is generally a better option in most cases, rather than providing a reference to a custom
implementation of this strategy here.

37.7 XPath Header Enricher

The XPath Header Enricher defines a Header Enricher Message Transformer that evaluates XPath
expressions against the message payload and inserts the result of the evaluation into a message
header.

Please see below for an overview of all available configuration parameters:

<int-xml:xpath-header-enricher default-overwrite="true" ❶

 id="" ❷

 input-channel="" ❸

 output-channel="" ❹

 should-skip-nulls="true"> ❺

 <int:poller></int:poller> ❻

 <int-xml:header name="" ❼

 evaluation-type="STRING_RESULT" ❽

 header-type="int" ❾

 overwrite="true" ❿

 xpath-expression="" 11

 xpath-expression-ref=""/> 12

</int-xml:xpath-header-enricher>

❶ Specify the default boolean value for whether to overwrite existing header values. This will only take
effect for sub-elements that do not provide their own overwrite attribute. If the default- overwrite
attribute is not provided, then the specified header values will NOT overwrite any existing ones
with the same header names. Optional.

❷ Id for the underlying bean definition. Optional.

❸ The receiving Message channel of this endpoint. Optional.

❹ Channel to which enriched messages shall be send to. Optional.

❺ Specify whether null values, such as might be returned from an expression evaluation, should be
skipped. The default value is true. Set this to false if a null value should trigger removal of the
corresponding header instead.Optional.

❻ Optional.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 536

❼ The name of the header to be enriched. Mandatory.

❽ The result type expected from the XPath evaluation. This will be the type of the
header value, if there is no header-type attribute provided. The following values
are allowed: BOOLEAN_RESULT, STRING_RESULT, NUMBER_RESULT, NODE_RESULT and
NODE_LIST_RESULT. Defaults internally to XPathEvaluationType.STRING_RESULT if not
set. Optional.

❾ The fully qualified class name for the header value type. The result of XPath evaluation
will be converted to this type using the ConversionService. This allows, for example, a
NUMBER_RESULT (a double) to be converted to an Integer. The type can be declared as a
primitive (e.g. int) but the result will always be the equivalent wrapper class (e.g. Integer).
The same integration ConversionService discussed in the section called “Payload Type
Conversion” is used for the conversion, so conversion to custom types is supported, by adding a
custom converter to the service.Optional.

❿ Boolean value to indicate whether this header value should overwrite an existing header value for
the same name if already present on the input Message.

11 The XPath Expression as a String. Either this attribute or xpath-expression-ref must be
provided, but not both.

12 The XPath Expression reference. Either this attribute or xpath-expression must be provided,
but not both.

37.8 Using the XPath Filter

This component defines an XPath-based Message Filter. Under the covers this components uses a
MessageFilter that wraps an instance of AbstractXPathMessageSelector.

Note

Please also refer to the chapter on Message Filters for further details.

In order to use the XPath Filter you must as a minimum provide an XPath Expression either by
declaring the xpath-expression sub-element or by referencing an XPath Expression using the
xpath-expression-ref attribute.

If the provided XPath expression will evaluate to a boolean value, no further configuration parameters
are necessary. However, if the XPath expression will evaluate to a String, the match-value attribute
should be specified against which the evaluation result will be matched.

There are three options for the match-type:

• exact - correspond to equals on java.lang.String. The underlying implementation uses a
StringValueTestXPathMessageSelector

• case-insensitive - correspond to equals-ignore-case on java.lang.String. The underlying
implementation uses a StringValueTestXPathMessageSelector

• regex - matches operations one java.lang.String. The underlying implementation uses a
RegexTestXPathMessageSelector

When providing a match-type value of regex, the value provided with the match-value attribute must
be a valid Regular Expression.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 537

<int-xml:xpath-filter discard-channel="" ❶

 id="" ❷

 input-channel="" ❸

 match-type="exact" ❹

 match-value="" ❺

 output-channel="" ❻

 throw-exception-on-rejection="false" ❼

 xpath-expression-ref=""> ❽

 <int-xml:xpath-expression ... /> ❾

 <int:poller ... /> ❿

</int-xml:xpath-filter>

❶ Message Channel where you want rejected messages to be sent. Optional.

❷ Id for the underlying bean definition. Optional.

❸ The receiving Message channel of this endpoint. Optional.

❹ Type of match to apply between the XPath evaluation result and the match-value. Default is exact.
Optional.

❺ String value to be matched against the XPath evaluation result. If this attribute is not provided, then
the XPath evaluation MUST produce a boolean result directly. Optional.

❻ The channel to which Messages that matched the filter criterias shall be dispatched to. Optional.

❼ By default, this property is set to false and rejected Messages (Messages that did not match the
filter criteria) will be silently dropped. However, if set to true message rejection will result in an error
condition and the exception will be propagated upstream to the caller. Optional.

❽ Reference to an XPath expression instance to evaluate.

❾ This sub-element sets the XPath expression to be evaluated. If this is not defined you MUST define
the xpath-expression-ref attribute. Also, only one xpath-expression element can be set.

❿ Optional.

37.9 #xpath SpEL Function

Spring Integration, since version 3.0, provides the #xpath built-in SpEL function, which
invokes the static method XPathUtils.evaluate(...). This method delegates to an
org.springframework.xml.xpath.XPathExpression. The following shows some usage
examples:

<transformer expression="#xpath(payload, '/name')"/>

<filter expression="#xpath(payload, headers.xpath, 'boolean')"/>

<splitter expression="#xpath(payload, '//book', 'document_list')"/>

<router expression="#xpath(payload, '/person/@age', 'number')">

 <mapping channel="output1" value="16"/>

 <mapping channel="output2" value="45"/>

</router>

#xpath also supports a third optional parameter for converting the result of the xpath evaluation. It
can be one of the String constants 'string', 'boolean', 'number', 'node', 'node_list' and
'document_list' or an org.springframework.xml.xpath.NodeMapper instance. By default
the #xpath SpEL function returns a String representation of the xpath evaluation.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 538

Note

To enable the #xpath SpEL function, simply add the spring-integration-xml.jar to the
CLASSPATH; there is no need to declare any component(s) from the Spring Integration Xml
Namespace.

For more information see Appendix A, Spring Expression Language (SpEL).

37.10 XML Validating Filter

The XML Validating Filter allows you to validate incoming messages against provided schema instances.
The following schema types are supported:

• xml-schema (http://www.w3.org/2001/XMLSchema)

• relax-ng (http://relaxng.org/ns/structure/1.0)

Messages that fail validation can either be silently dropped or they can be forwarded to a definable
discard-channel. Furthermore you can configure this filter to throw an Exception in case validation
fails.

Please see below for an overview of all available configuration parameters:

<int-xml:validating-filter discard-channel="" ❶

 id="" ❷

 input-channel="" ❸

 output-channel="" ❹

 schema-location="" ❺

 schema-type="xml-schema" ❻

 throw-exception-on-rejection="false" ❼

 xml-converter="" ❽

 xml-validator=""> ❾

 <int:poller .../> ❿

</int-xml:validating-filter>

❶ Message Channel where you want rejected messages to be sent. Optional.

❷ Id for the underlying bean definition. Optional.

❸ The receiving Message channel of this endpoint. Optional.

❹ Message Channel where you want accepted messages to be sent. Optional.

❺ Sets the location of the schema to validate the Message’s payload against. Internally uses the
org.springframework.core.io.Resource interface. You can set this attribute or the xml-
validator attribute but not both. Optional.

❻ Sets the schema type. Can be either xml-schema or relax-ng. Optional.
If not set it defaults to xml-schema which internally translates to
org.springframework.xml.validation.XmlValidatorFactory#SCHEMA_W3C_XML

❼ If true a MessageRejectedException is thrown in case validation fails for the provided
Message’s payload.Optional. Defaults to false if not set.

❽ Reference to a custom
org.springframework.integration.xml.XmlPayloadConverter strategy. Optional.

❾ Reference to a custom sorg.springframework.xml.validation.XmlValidator strategy.
You can set this attribute or the schema-location attribute but not both. Optional.

❿ Optional.

http://www.w3.org/2001/XMLSchema
http://relaxng.org/ns/structure/1.0

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 539

38. XMPP Support
Spring Integration provides Channel Adapters for XMPP.

38.1 Introduction

XMPP describes a way for multiple agents to communicate with each other in a distributed system.
The canonical use case is to send and receive chat messages, though XMPP can be, and is, used for
far more applications. XMPP is used to describe a network of actors. Within that network, actors may
address each other directly, as well as broadcast status changes (e.g. "presence").

XMPP provides the messaging fabric that underlies some of the biggest Instant Messaging networks
in the world, including Google Talk (GTalk) - which is also available from within GMail - and Facebook
Chat. There are many good open-source XMPP servers available. Two popular implementations are
Openfire and ejabberd

Spring integration provides support for XMPP via XMPP adapters which support sending and receiving
both XMPP chat messages and presence changes from other entries in your roster. As with other
adapters, the XMPP adapters come with support for a convenient namespace-based configuration.
To configure the XMPP namespace, include the following elements in the headers of your XML
configuration file:

xmlns:int-xmpp="http://www.springframework.org/schema/integration/xmpp"

xsi:schemaLocation="http://www.springframework.org/schema/integration/xmpp

 http://www.springframework.org/schema/integration/xmpp/spring-integration-xmpp.xsd"

38.2 XMPP Connection

Before using inbound or outbound XMPP adapters to participate in the XMPP network, an actor must
establish its XMPP connection. This connection object could be shared by all XMPP adapters connected
to a particular account. Typically this requires - at a minimum -user, password, and host. To create
a basic XMPP connection, you can utilize the convenience of the namespace.

<int-xmpp:xmpp-connection

 id="myConnection"

 user="user"

 password="password"

 host="host"

 port="port"

 resource="theNameOfTheResource"

 subscription-mode="accept_all"/>

Note

For added convenience you can rely on the default naming convention and omit the id attribute.
The default name xmppConnection will be used for this connection bean.

If the XMPP Connection goes stale, reconnection attempts will be made with an automatic
login as long as the previous connection state was logged (authenticated). We also register a
ConnectionListener which will log connection events if the DEBUG logging level is enabled.

The subscription-mode initiates the Roster listener to deal with incoming subscriptions
from other users. This functionality isn’t always available for the target XMPP servers. For
example GCM/FCM fully disables it. To switch off the Roster listener for subscriptions you
should configure it with an empty string when using XML configuration: subscription-

http://www.xmpp.org
http://www.igniterealtime.org/projects/openfire/
http://www.ejabberd.im

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 540

mode="", or with XmppConnectionFactoryBean.setSubscriptionMode(null) when using
Java Configuration. Doing so will disable Roster at the login phase as well. See
Roster.setRosterLoadedAtLogin(Boolean) for more information.

38.3 XMPP Messages

Inbound Message Channel Adapter

The Spring Integration adapters support receiving chat messages from other users in the system. To
do this, the Inbound Message Channel Adapter "logs in" as a user on your behalf and receives the
messages sent to that user. Those messages are then forwarded to your Spring Integration client.
Configuration support for the XMPP Inbound Message Channel Adapter is provided via the inbound-
channel-adapter element.

<int-xmpp:inbound-channel-adapter id="xmppInboundAdapter"

 channel="xmppInbound"

 xmpp-connection="testConnection"

 payload-expression="getExtension('google:mobile:data').json"

 stanza-filter="stanzaFilter"

 auto-startup="true"/>

As you can see amongst the usual attributes this adapter also requires a reference to an XMPP
Connection.

It is also important to mention that the XMPP inbound adapter is an event driven adapter and a
Lifecycle implementation. When started it will register a PacketListener that will listen for
incoming XMPP Chat Messages. It forwards any received messages to the underlying adapter which will
convert them to Spring Integration Messages and send them to the specified channel. It will unregister
the PacketListener when it is stopped.

Starting with version 4.3 the ChatMessageListeningEndpoint (and its <int-xmpp:inbound-
channel-adapter>) supports a org.jivesoftware.smack.filter.StanzaFilter injection
to be registered on the provided XMPPConnection together with an internal StanzaListener
implementation. See their JavaDocs for more information.

Also with the version 4.3 the payload-expression has been
introduced for the ChatMessageListeningEndpoint. The incoming
org.jivesoftware.smack.packet.Message represents a root object of evaluation context. This
option is useful in case of Section 38.7, “XMPP Extensions”. For example, for the GCM protocol we can
extract the body using expression:

payload-expression="getExtension('google:mobile:data').json"

for the XHTML protocol:

payload-

expression="getExtension(T(org.jivesoftware.smackx.xhtmlim.packet.XHTMLExtension).NAMESPACE).bodies[0]"

To simplify the access to the Extension in the XMPP Message, the extension variable is added into
the EvaluationContext. Note, it is done only when one and only one Extension is present in the
Message. The samples above with the namespace manipulations can be simplified to something like:

 payload-expression="#extension.json"

 payload-expression="#extension.bodies[0]"

https://www.igniterealtime.org/builds/smack/docs/latest/javadoc/org/jivesoftware/smack/XMPPConnection.html#addAsyncStanzaListener%28org.jivesoftware.smack.StanzaListener,%20org.jivesoftware.smack.filter.StanzaFilter%29

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 541

Outbound Message Channel Adapter

You may also send chat messages to other users on XMPP using the Outbound Message Channel
Adapter. Configuration support for the XMPP Outbound Message Channel Adapter is provided via the
outbound-channel-adapter element.

<int-xmpp:outbound-channel-adapter id="outboundEventAdapter"

 channel="outboundEventChannel"

 xmpp-connection="testConnection"/>

The adapter expects as its input - at a minimum - a payload of type java.lang.String, and a header
value for XmppHeaders.CHAT_TO that specifies to which user the Message should be sent. To create
a message you might use the following Java code:

Message<String> xmppOutboundMsg = MessageBuilder.withPayload("Hello, XMPP!")

 .setHeader(XmppHeaders.CHAT_TO, "userhandle")

 .build();

Another mechanism of setting the header is by using the XMPP header-enricher support. Here is an
example.

<int-xmpp:header-enricher input-channel="input" output-channel="output">

 <int-xmpp:chat-to value="test1@example.org"/>

</int-xmpp:header-enricher>

Starting with version 4.3 the packet extension support has been added to
the ChatMessageSendingMessageHandler (<int-xmpp:outbound-channel-adapter>).
Alongside with the regular String and org.jivesoftware.smack.packet.Message

payload, now you can send a message with a payload as
a org.jivesoftware.smack.packet.ExtensionElement which is populated
to the org.jivesoftware.smack.packet.Message.addExtension() instead of
setBody(). For the convenience an extension-provider option has been
added for the ChatMessageSendingMessageHandler to allow to inject
org.jivesoftware.smack.provider.ExtensionElementProvider, which builds an
ExtensionElement against the payload at runtime. For this case the payload must be String in
JSON or XML format depending of the XEP protocol.

38.4 XMPP Presence

XMPP also supports broadcasting state. You can use this capability to let people who have you on their
roster see your state changes. This happens all the time with your IM clients; you change your away
status, and then set an away message, and everybody who has you on their roster sees your icon or
username change to reflect this new state, and additionally might see your new "away" message. If you
would like to receive notification, or notify others, of state changes, you can use Spring Integration’s
"presence" adapters.

Inbound Presence Message Channel Adapter

Spring Integration provides an Inbound Presence Message Channel Adapter which supports receiving
Presence events from other users in the system who happen to be on your Roster. To do this, the adapter
"logs in" as a user on your behalf, registers a RosterListener and forwards received Presence update
events as Messages to the channel identified by the channel attribute. The payload of the Message
will be a org.jivesoftware.smack.packet.Presence object (see https://www.igniterealtime.org/
builds/smack/docs/latest/javadoc/org/jivesoftware/smack/packet/Presence.html).

https://www.igniterealtime.org/builds/smack/docs/latest/javadoc/org/jivesoftware/smack/packet/Presence.html
https://www.igniterealtime.org/builds/smack/docs/latest/javadoc/org/jivesoftware/smack/packet/Presence.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 542

Configuration support for the XMPP Inbound Presence Message Channel Adapter is provided via the
presence-inbound-channel-adapter element.

<int-xmpp:presence-inbound-channel-adapter channel="outChannel"

 xmpp-connection="testConnection" auto-startup="false"/>

As you can see amongst the usual attributes this adapter also requires a reference to an XMPP
Connection. It is also important to mention that this adapter is an event driven adapter and a
Lifecycle implementation. It will register a RosterListener when started and will unregister that
RosterListener when stopped.

Outbound Presence Message Channel Adapter

Spring Integration also supports sending Presence events to be seen by other users in the
network who happen to have you on their Roster. When you send a Message to the Outbound
Presence Message Channel Adapter it extracts the payload, which is expected to be of type
org.jivesoftware.smack.packet.Presence and sends it to the XMPP Connection, thus
advertising your presence events to the rest of the network.

Configuration support for the XMPP Outbound Presence Message Channel Adapter is provided via the
presence-outbound-channel-adapter element.

<int-xmpp:presence-outbound-channel-adapter id="eventOutboundPresenceChannel"

 xmpp-connection="testConnection"/>

It can also be a Polling Consumer (if it receives Messages from a Pollable Channel) in which case you
would need to register a Poller.

<int-xmpp:presence-outbound-channel-adapter id="pollingOutboundPresenceAdapter"

 xmpp-connection="testConnection"

 channel="pollingChannel">

 <int:poller fixed-rate="1000" max-messages-per-poll="1"/>

</int-xmpp:presence-outbound-channel-adapter>

Like its inbound counterpart, it requires a reference to an XMPP Connection.

Note

If you are relying on the default naming convention for an XMPP Connection bean (described
earlier), and you have only one XMPP Connection bean configured in your Application
Context, you may omit the xmpp-connection attribute. In that case, the bean with the name
xmppConnection will be located and injected into the adapter.

38.5 Advanced Configuration

Since Spring Integration XMPP support is based on the Smack 4.0 API (http://www.igniterealtime.org/
projects/smack/), it is important to know a few details related to more complex configuration of the XMPP
Connection object.

As stated earlier the xmpp-connection namespace support is designed to simplify basic
connection configuration and only supports a few common configuration attributes. However, the
org.jivesoftware.smack.ConnectionConfiguration object defines about 20 attributes, and
there is no real value of adding namespace support for all of them. So, for more complex connection
configurations, simply configure an instance of our XmppConnectionFactoryBean as a regular bean,
and inject a org.jivesoftware.smack.ConnectionConfiguration as a constructor argument

http://www.igniterealtime.org/projects/smack/
http://www.igniterealtime.org/projects/smack/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 543

to that FactoryBean. Every property you need, can be specified directly on that ConnectionConfiguration
instance (a bean definition with the p namespace would work well). This way SSL, or any other attributes,
could be set directly. Here’s an example:

<bean id="xmppConnection" class="o.s.i.xmpp.XmppConnectionFactoryBean">

 <constructor-arg>

 <bean class="org.jivesoftware.smack.ConnectionConfiguration">

 <constructor-arg value="myServiceName"/>

 <property name="socketFactory" ref="..."/>

 </bean>

 </constructor-arg>

</bean>

<int:channel id="outboundEventChannel"/>

<int-xmpp:outbound-channel-adapter id="outboundEventAdapter"

 channel="outboundEventChannel"

 xmpp-connection="xmppConnection"/>

Another important aspect of the Smack API is static initializers. For more complex cases (e.g., registering
a SASL Mechanism), you may need to execute certain static initializers. One of those static initializers
is SASLAuthentication, which allows you to register supported SASL mechanisms. For that level
of complexity, we would recommend Spring JavaConfig-style of the XMPP Connection configuration.
Then, you can configure the entire component through Java code and execute all other necessary Java
code including static initializers at the appropriate time.

@Configuration

public class CustomConnectionConfiguration {

 @Bean

 public XMPPConnection xmppConnection() {

 SASLAuthentication.supportSASLMechanism("EXTERNAL", 0); // static initializer

 ConnectionConfiguration config = new ConnectionConfiguration("localhost", 5223);

 config.setTrustorePath("path_to_truststore.jks");

 config.setSecurityEnabled(true);

 config.setSocketFactory(SSLSocketFactory.getDefault());

 return new XMPPConnection(config);

 }

}

For more information on the JavaConfig style of Application Context configuration, refer to the following
section in the Spring Reference Manual.

38.6 XMPP Message Headers

The Spring Integration XMPP Adapters will map standard XMPP properties automatically. These
properties will be copied by default to and from Spring Integration MessageHeaders using the
DefaultXmppHeaderMapper.

Any user-defined headers will NOT be copied to or from an XMPP Message, unless explicitly specified by
the requestHeaderNames and/or replyHeaderNames properties of the DefaultXmppHeaderMapper.

Tip

When mapping user-defined headers, the values can also contain simple wildcard patterns (e.g.
"foo*" or "*foo") to be matched.

Starting with version 4.1, the AbstractHeaderMapper (a DefaultXmppHeaderMapper superclass)
allows the NON_STANDARD_HEADERS token to be configured for the requestHeaderNames property (in
addition to existing STANDARD_REQUEST_HEADERS) to map all user-defined headers.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring-integration/api/org/springframework/integration/xmpp/support/DefaultXmppHeaderMapper.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 544

Class org.springframework.xmpp.XmppHeaders identifies the default headers that will be used
by the DefaultXmppHeaderMapper:

• xmpp_from

• xmpp_subject

• xmpp_thread

• xmpp_to

• xmpp_type

Starting with version 4.3, patterns in the header mappings can be negated by preceding the pattern
with !. Negated patterns get priority, so a list such as STANDARD_REQUEST_HEADERS,foo,ba*,!
bar,!baz,qux,!foo will NOT map foo (nor bar nor baz); the standard headers plus bad, qux will
be mapped.

Important

If you have a user defined header that begins with ! that you do wish to map, you need to escape
it with \ thus: STANDARD_REQUEST_HEADERS,\!myBangHeader and it WILL be mapped.

38.7 XMPP Extensions

The XMPP protocol stands for eXstensible Messaging and Presence Protocol. The "extensible" part
is important. XMPP is based around XML, a data format that supports a concept known as namespacing.

Through namespacing, you can add bits to XMPP that are not defined in the original specifications. This
is important because the XMPP specification deliberately describes only a set of core things like:

• How a client connects to a server

• Encryption (SSL/TLS)

• Authentication

• How servers can communicate with each other to relay messages

• and a few other basic building blocks.

Once you have implemented this, you have an XMPP client and can send any kind of data you like.
But that’s not the end.

For example, perhaps you decide that you want to include formatting in a message (bold, italic, etc.)
which is not defined in the core XMPP specification. Well, you can make up a way to do that, but unless
everyone else does it the same way as you, no other software will be able interpret it (they will just
ignore namespaces they don’t understand).

So the XMPP Standards Foundation (XSF) publishes a series of extra documents, known as XMPP
Enhancement Proposals (XEPs). In general each XEP describes a particular activity (from message
formatting, to file transfers, multi-user chats and many more), and they provide a standard format for
everyone to use for that activity.

The Smack API provides many XEP implementations with its extensions and experimental
projects. And starting with Spring Integration version 4.3 any XEP can be use with the existing XMPP
channel adapters.

http://xmpp.org/extensions/xep-0001.html
http://xmpp.org/extensions/xep-0001.html
http://www.igniterealtime.org/builds/smack/docs/latest/documentation/extensions/index.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 545

To be able to process XEPs or any other custom XMPP extensions, the Smack’s ProviderManager
pre-configuration must be provided. It can be done via direct usage from the static Java code:

ProviderManager.addIQProvider("element", "namespace", new MyIQProvider());

ProviderManager.addExtensionProvider("element", "namespace", new MyExtProvider());

or via .providers configuration file in the specific instance and JVM argument:

-Dsmack.provider.file=file:///c:/my/provider/mycustom.providers

where mycustom.providers might be like this:

<?xml version="1.0"?>

<smackProviders>

<iqProvider>

 <elementName>query</elementName>

 <namespace>jabber:iq:time</namespace>

 <className>org.jivesoftware.smack.packet.Time</className>

</iqProvider>

<iqProvider>

 <elementName>query</elementName>

 <namespace>http://jabber.org/protocol/disco#items</namespace>

 <className>org.jivesoftware.smackx.provider.DiscoverItemsProvider</className>

</iqProvider>

<extensionProvider>

 <elementName>subscription</elementName>

 <namespace>http://jabber.org/protocol/pubsub</namespace>

 <className>org.jivesoftware.smackx.pubsub.provider.SubscriptionProvider</className>

</extensionProvider>

</smackProviders>

For example the most popular XMPP messaging extension is
Google Cloud Messaging (GCM). The Smack provides the particular
org.jivesoftware.smackx.gcm.provider.GcmExtensionProvider for that and registers
that by default with the smack-experimental jar in the classpath using experimental.providers
resource:

<!-- GCM JSON payload -->

<extensionProvider>

 <elementName>gcm</elementName>

 <namespace>google:mobile:data</namespace>

 <className>org.jivesoftware.smackx.gcm.provider.GcmExtensionProvider</className>

</extensionProvider>

Also the GcmPacketExtension is present for the target messaging protocol to parse incoming packets
and build outgoing:

GcmPacketExtension gcmExtension = (GcmPacketExtension)

 xmppMessage.getExtension(GcmPacketExtension.NAMESPACE);

String message = gcmExtension.getJson());

GcmPacketExtension packetExtension = new GcmPacketExtension(gcmJson);

Message smackMessage = new Message();

smackMessage.addExtension(packetExtension);

See the section called “Inbound Message Channel Adapter” and the section called “Outbound Message
Channel Adapter” above for more information.

https://developers.google.com/cloud-messaging/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 546

39. Zookeeper Support

39.1 Introduction

Zookeeper support was added to the framework in version 4.2, comprised of:

• MetadataStore

• LockRegistry

• Leadership Event Handling

39.2 Zookeeper Metadata Store

The ZookeeperMetadataStore can be used where any MetadataStore is needed, such as
peristent file list filters, etc. See Section 10.5, “Metadata Store” for more information.

<bean id="client" class="org.springframework.integration.zookeeper.config.CuratorFrameworkFactoryBean">

 <constructor-arg value="${connect.string}" />

</bean>

<bean id="meta" class="org.springframework.integration.zookeeper.metadata.ZookeeperMetadataStore">

 <constructor-arg ref="client" />

</bean>

@Bean

public MetadataStore zkStore(CuratorFramework client) {

 return new ZookeeperMetadataStore(client);

}

39.3 Zookeeper Lock Registry

The ZookeeperLockRegistry can be used where any LockRegistry is needed, such as when
using an Aggregator in a clustered environment, with a shared MessageStore.

A LocRegistry is used to "look up" a lock based on a key (the aggregator uses the correlationId).
By default, locks in the ZookeeperLockRegistry are maintained in zookeeper under the path /
SpringIntegration-LockRegistry/. You can customize the path by providing an implementation
of ZookeeperLockRegistry.KeyToPathStrategy.

public interface KeyToPathStrategy {

 String pathFor(String key);

 boolean bounded();

}

If the strategy returns true from isBounded, unused locks do not need to be harvested. For unbounded
strategies (such as the default) you will need to invoke expireUnusedOlderThan(long age) from
time to time, to remove old unused locks from memory.

39.4 Zookeeper Leadership Event Handling

To configure an application for leader election using Zookeeper in XML:

<int-zk:leader-listener client="client" path="/siNamespace" role="cluster" />

https://zookeeper.apache.org/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 547

client is a reference to a CuratorFramework bean; a CuratorFrameworkFactoryBean is
available. When a leader is elected, an OnGrantedEvent will be published for the role cluster;
any endpoints in that role will be started. When leadership is revoked, an OnRevokedEvent will be
published for the role cluster; any endpoints in that role will be stopped. See Section 8.2, “Endpoint
Roles” for more information.

In Java configuration you can create an instance of the leader initiator like this:

@Bean

public LeaderInitiatorFactoryBean leaderInitiator(CuratorFramework client) {

 return new LeaderInitiatorFactoryBean(client, "/siTest/", "cluster");

}

Part VI. Appendices
Advanced Topics and Additional Resources

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 549

Appendix A. Spring Expression
Language (SpEL)

A.1 Introduction

Many Spring Integration components can be configured using expressions. These expressions are
written in the Spring Expression Language.

In most cases, the #root object is the Message which, of course, has two properties - headers and
payload - allowing such expressions as payload, payload.foo, headers['my.header'] etc.

In some cases, additional variables are provided, for example the <int-http:inbound-gateway/>
provides #requestParams (parameters from the HTTP request) and #pathVariables (values from
path placeholders in the URI).

For all SpEL expressions, a BeanResolver is available, enabling references to any bean in the
application context. For example @myBean.foo(payload). In addition, two PropertyAccessors
are available; a MapAccessor enables accessing values in a Map using a key, and a
ReflectivePropertyAccessor which allows access to fields and or JavaBean compliant properties
(using getters and setters). This is how the Message headers and payload properties are accessible.

A.2 SpEL Evaluation Context Customization

Starting with Spring Integration 3.0, it is possible to add additional PropertyAccessor s to the SpEL
evaluation contexts used by the framework. The framework provides the JsonPropertyAccessor
which can be used (read-only) to access fields from a JsonNode, or JSON in a String. Or you can
create your own PropertyAccessor if you have specific needs.

In addition, custom functions can be added. Custom functions are static methods declared on a class.
Functions and property accessors are available in any SpEL expression used throughout the framework.

The following configuration shows how to directly configure the
IntegrationEvaluationContextFactoryBean with custom property accessors and functions.
However, for convenience, namespace support is provided for both, as described in the following
sections, and the framework will automatically configure the factory bean on your behalf.

<bean id="integrationEvaluationContext"

 class="org.springframework.integration.config.IntegrationEvaluationContextFactoryBean">

 <property name="propertyAccessors">

 <util:map>

 <entry key="foo">

 <bean class="foo.MyCustomPropertyAccessor"/>

 </entry>

 </util:map>

 </property>

 <property name="functions">

 <map>

 <entry key="barcalc" value="#{T(foo.MyFunctions).getMethod('calc', T(foo.MyBar))}"/>

 </map>

 </property>

</bean>

http://static.springsource.org/spring-framework/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 550

This factory bean definition will override the default integrationEvaluationContext bean
definition, adding the custom accessor to the list (which also includes the standard accessors mentioned
above), and one custom function.

Note that custom functions are static methods. In the above example, the custom function is a static
method calc on class MyFunctions and takes a single parameter of type MyBar.

Say you have a Message with a payload that has a type MyFoo on which you need to perform some
action to create a MyBar object from it, and you then want to invoke a custom function calc on that
object.

The standard property accessors wouldn’t know how to get a MyBar from a MyFoo so you could
write and configure a custom property accessor to do so. So, your final expression might be
"#barcalc(payload.myBar)".

The factory bean has another property typeLocator which allows you to customize the TypeLocator
used during SpEL evaluation. This might be necessary when running in some environments that use
a non-standard ClassLoader. In the following example, SpEL expressions will always use the bean
factory’s class loader:

<bean id="integrationEvaluationContext"

 class="org.springframework.integration.config.IntegrationEvaluationContextFactoryBean">

 <property name="typeLocator">

 <bean class="org.springframework.expression.spel.support.StandardTypeLocator">

 <constructor-arg value="#{beanFactory.beanClassLoader}"/>

 </bean>

 </property>

</bean>

A.3 SpEL Functions

Namespace support is provided for easy addition of SpEL custom functions. You can specify
<spel-function/> components to provide custom SpEL functions to the EvaluationContext
used throughout the framework. Instead of configuring the factory bean above, simply add one
or more of these components and the framework will automatically add them to the default
integrationEvaluationContext factory bean.

For example, assuming we have a useful static method to evaluate XPath:

<int:spel-function id="xpath"

 class="com.foo.test.XPathUtils" method="evaluate(java.lang.String, java.lang.Object)"/>

<int:transformer input-channel="in" output-channel="out"

 expression="#xpath('//foo/@bar', payload)" />

With this sample:

• The default IntegrationEvaluationContextFactoryBean bean with id
integrationEvaluationContext is registered with the application context.

• The <spel-function/> is parsed and added to the functions Map of
integrationEvaluationContext as map entry with id as the key and the static Method as the value.

• The integrationEvaluationContext factory bean creates a new StandardEvaluationContext
instance, and it is configured with the default PropertyAccessor s, BeanResolver and the custom
functions.

http://static.springsource.org/spring-framework/docs/current/spring-framework-reference/html/expressions.html#expressions-ref-functions

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 551

• That EvaluationContext instance is injected into the ExpressionEvaluatingTransformer
bean.

To provide a SpEL Function via Java Configuration, you should declare a
SpelFunctionFactoryBean bean for each function. The sample above can be configured as follows:

@Bean

public SpelFunctionFactoryBean xpath() {

 return new SpelFunctionFactoryBean(XPathUtils.class, "evaluate");

}

Note

SpEL functions declared in a parent context are also made available in any child context(s).
Each context has its own instance of the integrationEvaluationContext factory bean because
each needs a different BeanResolver, but the function declarations are inherited and can be
overridden if needed by declaring a SpEL function with the same name.

Built-in SpEL Functions

Spring Integration provides some standard functions, which are registered with the application context
automatically on start up:

#jsonPath - to evaluate a jsonPath on some provided object. This function invokes
JsonPathUtils.evaluate(...). This static method delegates to the Jayway JsonPath library. The
following shows some usage examples:

<transformer expression="#jsonPath(payload, '$.store.book[0].author')"/>

<filter expression="#jsonPath(payload,'$..book[2].isbn') matches '\d-\d{3}-\d{5}-\d'"/>

<splitter expression="#jsonPath(payload, '$.store.book')"/>

<router expression="#jsonPath(payload, headers.jsonPath)">

 <mapping channel="output1" value="reference"/>

 <mapping channel="output2" value="fiction"/>

</router>

#jsonPath also supports the third optional parameter - an array of com.jayway.jsonpath.Filter,
which could be provided by a reference to a bean or bean method, for example.

Note

Using this function requires the Jayway JsonPath library (json-path.jar) to be on the classpath;
otherwise the #jsonPath SpEL function won’t be registered.

For more information regarding JSON see JSON Transformers in Section 7.1, “Transformer”.

#xpath - to evaluate an xpath on some provided object. For more information regarding xml and xpath
see Chapter 37, XML Support - Dealing with XML Payloads.

A.4 PropertyAccessors

Namespace support is provided for the easy addition of SpEL custom PropertyAccessor
implementations. You can specify the <spel-property-accessors/> component to provide a list of
custom PropertyAccessor s to the EvaluationContext used throughout the framework. Instead

http://code.google.com/p/json-path
https://github.com/jayway/JsonPath/blob/master/json-path/src/main/java/com/jayway/jsonpath/Filter.java
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/expression/PropertyAccessor.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 552

of configuring the factory bean above, simply add one or more of these components, and the framework
will automatically add the accessors to the default integrationEvaluationContext factory bean:

<int:spel-property-accessors>

 <bean id="jsonPA" class="org.springframework.integration.json.JsonPropertyAccessor"/>

 <ref bean="fooPropertyAccessor"/>

</int:spel-property-accessors>

With this sample, two custom PropertyAccessor s will be injected to the EvaluationContext in
the order that they are declared.

To provide PropertyAccessor s via Java Configuration, you should declare a
SpelPropertyAccessorRegistrar bean with the name spelPropertyAccessorRegistrar
(IntegrationContextUtils.SPEL_PROPERTY_ACCESSOR_REGISTRAR_BEAN_NAME constant).
The sample above can be configured as follows:

@Bean

public SpelPropertyAccessorRegistrar spelPropertyAccessorRegistrar() {

 return new SpelPropertyAccessorRegistrar(new JsonPropertyAccessor())

 .add(fooPropertyAccessor());

}

Note

Custom PropertyAccessor s declared in a parent context are also made
available in any child context(s). They are placed at the end of result list
(but before the default org.springframework.context.expression.MapAccessor

and o.s.expression.spel.support.ReflectivePropertyAccessor). If a
PropertyAccessor with the same bean id is declared in a child context(s), it will override the
parent accessor. Beans declared within a <spel-property-accessors/> must have an id
attribute. The final order of usage is: the accessors in the current context, in the order in which
they are declared, followed by any from parent contexts, in order, followed by the MapAccessor
and finally the ReflectivePropertyAccessor.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 553

Appendix B. Message Publishing
The AOP Message Publishing feature allows you to construct and send a message as a by-product
of a method invocation. For example, imagine you have a component and every time the state of
this component changes you would like to be notified via a Message. The easiest way to send such
notifications would be to send a message to a dedicated channel, but how would you connect the method
invocation that changes the state of the object to a message sending process, and how should the
notification Message be structured? The AOP Message Publishing feature handles these responsibilities
with a configuration-driven approach.

B.1 Message Publishing Configuration

Spring Integration provides two approaches: XML and Annotation-driven.

Annotation-driven approach via @Publisher annotation

The annotation-driven approach allows you to annotate any method with the @Publisher annotation,
specifying a channel attribute. The Message will be constructed from the return value of the method
invocation and sent to a channel specified by the channel attribute. To further manage message
structure, you can also use a combination of both @Payload and @Header annotations.

Internally this message publishing feature of Spring Integration uses both Spring AOP by defining
PublisherAnnotationAdvisor and Spring 3.0’s Expression Language (SpEL) support, giving you
considerable flexibility and control over the structure of the Message it will publish.

The PublisherAnnotationAdvisor defines and binds the following variables:

• #return - will bind to a return value allowing you to reference it or its attributes (e.g., #return.foo where
foo is an attribute of the object bound to #return)

• #exception - will bind to an exception if one is thrown by the method invocation.

• #args - will bind to method arguments, so individual arguments could be extracted by name (e.g.,
#args.fname as in the above method)

Let’s look at a couple of examples:

@Publisher

public String defaultPayload(String fname, String lname) {

 return fname + " " + lname;

}

In the above example the Message will be constructed with the following structure:

• Message payload - will be the return type and value of the method. This is the default.

• A newly constructed message will be sent to a default publisher channel configured with an annotation
post processor (see the end of this section).

@Publisher(channel="testChannel")

public String defaultPayload(String fname, @Header("last") String lname) {

 return fname + " " + lname;

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 554

In this example everything is the same as above, except that we are not using a default publishing
channel. Instead we are specifying the publishing channel via the channel attribute of the @Publisher
annotation. We are also adding a @Header annotation which results in the Message header named
last having the same value as the lname method parameter. That header will be added to the newly
constructed Message.

@Publisher(channel="testChannel")

@Payload

public String defaultPayloadButExplicitAnnotation(String fname, @Header String lname) {

 return fname + " " + lname;

}

The above example is almost identical to the previous one. The only difference here is that we are using
a @Payload annotation on the method, thus explicitly specifying that the return value of the method
should be used as the payload of the Message.

@Publisher(channel="testChannel")

@Payload("#return + #args.lname")

public String setName(String fname, String lname, @Header("x") int num) {

 return fname + " " + lname;

}

Here we are expanding on the previous configuration by using the Spring Expression Language in the
@Payload annotation to further instruct the framework how the message should be constructed. In this
particular case the message will be a concatenation of the return value of the method invocation and
the lname input argument. The Message header named x will have its value determined by the num
input argument. That header will be added to the newly constructed Message.

@Publisher(channel="testChannel")

public String argumentAsPayload(@Payload String fname, @Header String lname) {

 return fname + " " + lname;

}

In the above example you see another usage of the @Payload annotation. Here we are annotating a
method argument which will become the payload of the newly constructed message.

As with most other annotation-driven features in Spring, you will need to register a post-processor
(PublisherAnnotationBeanPostProcessor).

<bean class="org.springframework.integration.aop.PublisherAnnotationBeanPostProcessor"/>

You can instead use namespace support for a more concise configuration:

<int:annotation-config default-publisher-channel="defaultChannel"/>

Similar to other Spring annotations (@Component, @Scheduled, etc.), @Publisher can also be used
as a meta-annotation. That means you can define your own annotations that will be treated in the same
way as the @Publisher itself.

@Target({ElementType.METHOD, ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

@Publisher(channel="auditChannel")

public @interface Audit {

}

Here we defined the @Audit annotation which itself is annotated with @Publisher. Also note that
you can define a channel attribute on the meta-annotation thus encapsulating the behavior of where
messages will be sent inside of this annotation. Now you can annotate any method:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 555

@Audit

public String test() {

 return "foo";

}

In the above example every invocation of the test() method will result in a Message with a payload
created from its return value. Each Message will be sent to the channel named auditChannel. One of
the benefits of this technique is that you can avoid the duplication of the same channel name across
multiple annotations. You also can provide a level of indirection between your own, potentially domain-
specific annotations and those provided by the framework.

You can also annotate the class which would mean that the properties of this annotation will be applied
on every public method of that class.

@Audit

static class BankingOperationsImpl implements BankingOperations {

 public String debit(String amount) {

 . . .

 }

 public String credit(String amount) {

 . . .

 }

}

XML-based approach via the <publishing-interceptor> element

The XML-based approach allows you to configure the same AOP-based Message Publishing
functionality with simple namespace-based configuration of a MessagePublishingInterceptor. It
certainly has some benefits over the annotation-driven approach since it allows you to use AOP pointcut
expressions, thus possibly intercepting multiple methods at once or intercepting and publishing methods
to which you don’t have the source code.

To configure Message Publishing via XML, you only need to do the following two things:

• Provide configuration for MessagePublishingInterceptor via the <publishing-

interceptor> XML element.

• Provide AOP configuration to apply the MessagePublishingInterceptor to managed objects.

<aop:config>

 <aop:advisor advice-ref="interceptor" pointcut="bean(testBean)" />

</aop:config>

<publishing-interceptor id="interceptor" default-channel="defaultChannel">

 <method pattern="echo" payload="'Echoing: ' + #return" channel="echoChannel">

 <header name="foo" value="bar"/>

 </method>

 <method pattern="repl*" payload="'Echoing: ' + #return" channel="echoChannel">

 <header name="foo" expression="'bar'.toUpperCase()"/>

 </method>

 <method pattern="echoDef*" payload="#return"/>

</publishing-interceptor>

As you can see the <publishing-interceptor> configuration looks rather similar to the Annotation-
based approach, and it also utilizes the power of the Spring 3.0 Expression Language.

In the above example the execution of the echo method of a testBean will render a Message with
the following structure:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 556

• The Message payload will be of type String with the content "Echoing: [value]" where value is the
value returned by an executed method.

• The Message will have a header with the name "foo" and value "bar".

• The Message will be sent to echoChannel.

The second method is very similar to the first. Here every method that begins with repl will render a
Message with the following structure:

• The Message payload will be the same as in the above sample

• The Message will have a header named "foo" whose value is the result of the SpEL expression
'bar'.toUpperCase() .

• The Message will be sent to echoChannel.

The second method, mapping the execution of any method that begins with echoDef of testBean,
will produce a Message with the following structure.

• The Message payload will be the value returned by an executed method.

• Since the channel attribute is not provided explicitly, the Message will be sent to the
defaultChannel defined by the publisher.

For simple mapping rules you can rely on the publisher defaults. For example:

<publishing-interceptor id="anotherInterceptor"/>

This will map the return value of every method that matches the pointcut expression to a payload and
will be sent to a default-channel. If the defaultChannel_is not specified (as above) the messages will
be sent to the global _nullChannel.

Async Publishing

One important thing to understand is that publishing occurs in the same thread as your component’s
execution. So by default in is synchronous. This means that the entire message flow would have to wait
until the publisher’s flow completes. However, quite often you want the complete opposite and that is to
use this Message publishing feature to initiate asynchronous sub-flows. For example, you might host a
service (HTTP, WS etc.) which receives a remote request.You may want to send this request internally
into a process that might take a while. However you may also want to reply to the user right away. So,
instead of sending inbound requests for processing via the output channel (the conventional way), you
can simply use output-channel or a replyChannel header to send a simple acknowledgment-like reply
back to the caller while using the Message publisher feature to initiate a complex flow.

EXAMPLE: Here is the simple service that receives a complex payload, which needs to be sent further
for processing, but it also needs to reply to the caller with a simple acknowledgment.

public String echo(Object complexPayload) {

 return "ACK";

}

So instead of hooking up the complex flow to the output channel we use the Message publishing feature
instead. We configure it to create a new Message using the input argument of the service method
(above) and send that to the localProcessChannel. And to make sure this sub-flow is asynchronous all
we need to do is send it to any type of asynchronous channel (ExecutorChannel in this example).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 557

<int:service-activator input-channel="inputChannel" output-channel="outputChannel" ref="sampleservice"/

>

<bean id="sampleservice" class="test.SampleService"/>

<aop:config>

 <aop:advisor advice-ref="interceptor" pointcut="bean(sampleservice)" />

</aop:config>

<int:publishing-interceptor id="interceptor" >

 <int:method pattern="echo" payload="#args[0]" channel="localProcessChannel">

 <int:header name="sample_header" expression="'some sample value'"/>

 </int:method>

</int:publishing-interceptor>

<int:channel id="localProcessChannel">

 <int:dispatcher task-executor="executor"/>

</int:channel>

<task:executor id="executor" pool-size="5"/>

Another way of handling this type of scenario is with a wire-tap.

Producing and publishing messages based on a scheduled trigger

In the above sections we looked at the Message publishing feature of Spring Integration which constructs
and publishes messages as by-products of Method invocations. However in those cases, you are
still responsible for invoking the method. In Spring Integration 2.0 we’ve added another related useful
feature: support for scheduled Message producers/publishers via the new "expression" attribute on the
inbound-channel-adapter element. Scheduling could be based on several triggers, any one of which
may be configured on the poller sub-element. Currently we support cron, fixed-rate, fixed-delay
as well as any custom trigger implemented by you and referenced by the trigger attribute value.

As mentioned above, support for scheduled producers/publishers is provided via the <inbound-channel-
adapter> xml element. Let’s look at couple of examples:

<int:inbound-channel-adapter id="fixedDelayProducer"

 expression="'fixedDelayTest'"

 channel="fixedDelayChannel">

 <int:poller fixed-delay="1000"/>

</int:inbound-channel-adapter>

In the above example an inbound Channel Adapter will be created which will construct a Message with
its payload being the result of the expression defined in the expression attribute. Such messages
will be created and sent every time the delay specified by the fixed-delay attribute occurs.

<int:inbound-channel-adapter id="fixedRateProducer"

 expression="'fixedRateTest'"

 channel="fixedRateChannel">

 <int:poller fixed-rate="1000"/>

</int:inbound-channel-adapter>

This example is very similar to the previous one, except that we are using the fixed-rate attribute
which will allow us to send messages at a fixed rate (measuring from the start time of each task).

<int:inbound-channel-adapter id="cronProducer"

 expression="'cronTest'"

 channel="cronChannel">

 <int:poller cron="7 6 5 4 3 ?"/>

</int:inbound-channel-adapter>

This example demonstrates how you can apply a Cron trigger with a value specified in the cron attribute.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 558

<int:inbound-channel-adapter id="headerExpressionsProducer"

 expression="'headerExpressionsTest'"

 channel="headerExpressionsChannel"

 auto-startup="false">

 <int:poller fixed-delay="5000"/>

 <int:header name="foo" expression="6 * 7"/>

 <int:header name="bar" value="x"/>

</int:inbound-channel-adapter>

Here you can see that in a way very similar to the Message publishing feature we are enriching a
newly constructed Message with extra Message headers which can take scalar values or the results
of evaluating Spring expressions.

If you need to implement your own custom trigger you can use the trigger

attribute to provide a reference to any spring configured bean which implements the
org.springframework.scheduling.Trigger interface.

<int:inbound-channel-adapter id="triggerRefProducer"

 expression="'triggerRefTest'" channel="triggerRefChannel">

 <int:poller trigger="customTrigger"/>

</int:inbound-channel-adapter>

<beans:bean id="customTrigger" class="o.s.scheduling.support.PeriodicTrigger">

 <beans:constructor-arg value="9999"/>

</beans:bean>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 559

Appendix C. Transaction Support
C.1 Understanding Transactions in Message flows

Spring Integration exposes several hooks to address transactional needs of you message flows. But to
better understand these hooks and how you can benefit from them we must first revisit the 6 mechanisms
that could be used to initiate Message flows and see how transactional needs of these flows could be
addressed within each of these mechanisms.

Here are the 6 mechanisms to initiate a Message flow and their short summary (details for each are
provided throughout this manual):

• Gateway Proxy - Your basic Messaging Gateway

• MessageChannel - Direct interactions with MessageChannel methods (e.g., channel.send(message))

• Message Publisher - the way to initiate message flow as the by-product of method invocations on
Spring beans

• Inbound Channel Adapters/Gateways - the way to initiate message flow based on connecting
third-party system with Spring Integration messaging system(e.g., [JmsMessage] # Jms Inbound
Adapter[SI Message] # SI Channel)

• Scheduler - the way to initiate message flow based on scheduling events distributed by a pre-
configured Scheduler

• Poller - similar to the Scheduler and is the way to initiate message flow based on scheduling or interval-
based events distributed by a pre-configured Poller

These 6 could be split in 2 general categories:

• Message flows initiated by a USER process - Example scenarios in this category would be invoking
a Gateway method or explicitly sending a Message to a MessageChannel. In other words, these
message flows depend on a third party process (e.g., some code that we wrote) to be initiated.

• Message flows initiated by a DAEMON process - Example scenarios in this category would be a Poller
polling a Message queue to initiate a new Message flow with the polled Message or a Scheduler
scheduling the process by creating a new Message and initiating a message flow at a predefined time.

Clearly the Gateway Proxy, MessageChannel.send(..) and MessagePublisher all belong to the 1st
category and Inbound Adapters/Gateways, Scheduler and Poller belong to the 2nd.

So, how do we address transactional needs in various scenarios within each category and is there a
need for Spring Integration to provide something explicitly with regard to transactions for a particular
scenario? Or, can Spring’s Transaction Support be leveraged instead?.

The first and most obvious goal is NOT to re-invent something that has already been invented unless
you can provide a better solution. In our case Spring itself provides first class support for transaction
management. So our goal here is not to provide something new but rather delegate/use Spring to benefit
from the existing support for transactions. In other words as a framework we must expose hooks to the
Transaction management functionality provided by Spring. But since Spring Integration configuration is
based on Spring Configuration it is not always necessary to expose these hooks as they are already
exposed via Spring natively. Remember every Spring Integration component is a Spring Bean after all.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 560

With this goal in mind let’s look at the two scenarios.

If you think about it, Message flows that are initiated by the USER process (Category 1) and obviously
configured in a Spring Application Context, are subject to transactional configuration of such processes
and therefore don’t need to be explicitly configured by Spring Integration to support transactions. The
transaction could and should be initiated through standard Transaction support provided by Spring. The
Spring Integration message flow will honor the transactional semantics of the components naturally
because it is Spring configured. For example, a Gateway or ServiceActivator method could be annotated
with @Transactional or TransactionInterceptor could be defined in an XML configuration with
a point-cut expression pointing to specific methods that should be transactional. The bottom line is that
you have full control over transaction configuration and boundaries in these scenarios.

However, things are a bit different when it comes to Message flows initiated by the DAEMON process
(Category 2). Although configured by the developer these flows do not directly involve a human or
some other process to be initiated. These are trigger-based flows that are initiated by a trigger process
(DAEMON process) based on the configuration of such process. For example, we could have a
Scheduler initiating a message flow every Friday night of every week. We can also configure a trigger
that initiates a Message flow every second, etc. So, we obviously need a way to let these trigger-based
processes know of our intention to make the resulting Message flows transactional so that a Transaction
context could be created whenever a new Message flow is initiated. In other words we need to expose
some Transaction configuration, but ONLY enough to delegate to Transaction support already provided
by Spring (as we do in other scenarios).

Spring Integration provides transactional support for Pollers. Pollers are a special type of component
because we can call receive() within that poller task against a resource that is itself transactional thus
including receive() call in the the boundaries of the Transaction allowing it to be rolled back in case of
a task failure. If we were to add the same support for channels, the added transactions would affect
all downstream components starting with that send() call. That is providing a rather wide scope for
transaction demarcation without any strong reason especially when Spring already provides several
ways to address the transactional needs of any component downstream. However the receive() method
being included in a transaction boundary is the "strong reason" for pollers.

Poller Transaction Support

Any time you configure a Poller you can provide transactional configuration via the transactional sub-
element and its attributes:

<int:poller max-messages-per-poll="1" fixed-rate="1000">

 <transactional transaction-manager="txManager"

 isolation="DEFAULT"

 propagation="REQUIRED"

 read-only="true"

 timeout="1000"/>

</poller>

As you can see this configuration looks very similar to native Spring transaction configuration. You
must still provide a reference to a Transaction manager and specify transaction attributes or rely on
defaults (e.g., if the transaction-manager attribute is not specified, it will default to the bean with the
name transactionManager). Internally the process would be wrapped in Spring’s native Transaction
where TransactionInterceptor is responsible for handling transactions. For more information on
how to configure a Transaction Manager, the types of Transaction Managers (e.g., JTA, Datasource
etc.) and other details related to transaction configuration please refer to Spring’s Reference manual
(Chapter 10 - Transaction Management).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 561

With the above configuration all Message flows initiated by this poller will be transactional. For more
information and details on a Poller’s transactional configuration please refer to section - 21.1.1. Polling
and Transactions.

Along with transactions, several more cross cutting concerns might need to be addressed when running
a Poller. To help with that, the Poller element accepts an <advice-chain> _ sub-element which allows
you to define a custom chain of Advice instances to be applied on the Poller. (see section 4.4 for more
details) In Spring Integration 2.0, the Poller went through the a refactoring effort and is now using a
proxy mechanism to address transactional concerns as well as other cross cutting concerns. One of
the significant changes evolving from this effort is that we made _<transactional> and <advice-chain>
elements mutually exclusive. The rationale behind this is that if you need more than one advice, and
one of them is Transaction advice, then you can simply include it in the <advice-chain> with the same
convenience as before but with much more control since you now have an option to position any advice
in the desired order.

<int:poller max-messages-per-poll="1" fixed-rate="10000">

 <advice-chain>

 <ref bean="txAdvice"/>

 <ref bean="someAotherAdviceBean" />

 <beans:bean class="foo.bar.SampleAdvice"/>

 </advice-chain>

</poller>

<tx:advice id="txAdvice" transaction-manager="txManager">

 <tx:attributes>

 <tx:method name="get*" read-only="true"/>

 <tx:method name="*"/>

 </tx:attributes>

</tx:advice>

As you can see from the example above, we have provided a very basic XML-based configuration of
Spring Transaction advice - "txAdvice" and included it within the <advice-chain> defined by the Poller. If
you only need to address transactional concerns of the Poller, then you can still use the <transactional>
element as a convenience.

C.2 Transaction Boundaries

Another important factor is the boundaries of Transactions within a Message flow. When a transaction is
started, the transaction context is bound to the current thread. So regardless of how many endpoints and
channels you have in your Message flow your transaction context will be preserved as long as you are
ensuring that the flow continues on the same thread. As soon as you break it by introducing a Pollable
Channel or Executor Channel or initiate a new thread manually in some service, the Transactional
boundary will be broken as well. Essentially the Transaction will END right there, and if a successful
handoff has transpired between the threads, the flow would be considered a success and a COMMIT
signal would be sent even though the flow will continue and might still result in an Exception somewhere
downstream. If such a flow were synchronous, that Exception could be thrown back to the initiator of the
Message flow who is also the initiator of the transactional context and the transaction would result in a
ROLLBACK. The middle ground is to use transactional channels at any point where a thread boundary
is being broken. For example, you can use a Queue-backed Channel that delegates to a transactional
MessageStore strategy, or you could use a JMS-backed channel.

C.3 Transaction Synchronization

In some environments, it is advantageous to synchronize operations with a transaction that
encompasses the entire flow. For example, consider a <file:inbound-channel-adapter/> at the start of a

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 562

flow, that performs a number of database updates. If the transaction commits, we might want to move
the file to a success directory, while we might want to move it to a failures directory if the transaction
rolls back.

Spring Integration 2.2 introduces the capability of synchronizing these operations with a transaction.
In addition, you can configure a PseudoTransactionManager if you don’t have a real transaction,
but still want to perform different actions on success, or failure. For more information, see Section C.4,
“Pseudo Transactions”.

Key strategy interfaces for this feature are

public interface TransactionSynchronizationFactory {

 TransactionSynchronization create(Object key);

}

public interface TransactionSynchronizationProcessor {

 void processBeforeCommit(IntegrationResourceHolder holder);

 void processAfterCommit(IntegrationResourceHolder holder);

 void processAfterRollback(IntegrationResourceHolder holder);

}

The factory is responsible for creating a TransactionSynchronization object. You can implement your
own, or use the one provided by the framework: DefaultTransactionSynchronizationFactory.
This implementation returns a TransactionSynchronization that delegates
to a default implementation of TransactionSynchronizationProcessor, the
ExpressionEvaluatingTransactionSynchronizationProcessor. This processor supports
three SpEL expressions, beforeCommitExpression, afterCommitExpression, and
afterRollbackExpression.

These actions should be self-explanatory to those familiar with transactions. In each case, the #root
variable is the original Message; in some cases, other SpEL variables are made available, depending
on the MessageSource being polled by the poller. For example, the MongoDbMessageSource
provides the #mongoTemplate variable which references the message source’s MongoTemplate; the
RedisStoreMessageSource provides the #store variable which references the RedisStore created
by the poll.

To enable the feature for a particular poller, you provide a reference to the
TransactionSynchronizationFactory on the poller’s <transactional/> element using the
synchronization-factory attribute.

Starting with version 5.0, a new PassThroughTransactionSynchronizationFactory is provided
which is applied by default to polling endpoints when no TransactionSynchronizationFactory
is configured but an advice of type TransactionInterceptor exists in the advice chain.
When using any out-of-the-box TransactionSynchronizationFactory implementation, polling
endpoints bind a polled message to the current transactional context and provide it as a
failedMessage in a MessagingException if an exception is thrown after the TX advice.
When using a custom TX advice that does not implement TransactionInterceptor, a
PassThroughTransactionSynchronizationFactory can be configured explicitly to achieve this
behavior. In either case, the MessagingException becomes the payload of the ErrorMessage that
is sent to the errorChannel and the cause is the raw exception thrown by the advice. Previously, the
ErrorMessage had a payload that was the raw exception thrown by the advice and did not provide

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/transaction/support/TransactionSynchronization.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 563

a reference to the failedMessage information, making it difficult to determine the reasons for the
transaction commit problem.

To simplify configuration of these components, namespace support for the default factory has been
provided. Configuration is best described using an example:

<int-file:inbound-channel-adapter id="inputDirPoller"

 channel="someChannel"

 directory="/foo/bar"

 filter="filter"

 comparator="testComparator">

 <int:poller fixed-rate="5000">

 <int:transactional transaction-manager="transactionManager" synchronization-

factory="syncFactory" />

 </int:poller>

</int-file:inbound-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">

 <int:after-commit expression="payload.renameTo('/success/' +

 payload.name)" channel="committedChannel" />

 <int:after-rollback expression="payload.renameTo('/failed/' +

 payload.name)" channel="rolledBackChannel" />

</int:transaction-synchronization-factory>

The result of the SpEL evaluation is sent as the payload to either the committedChannel or
rolledBackChannel (in this case, this would be Boolean.TRUE or Boolean.FALSE - the result of the
java.io.File.renameTo() method call).

If you wish to send the entire payload for further Spring Integration processing, simply use the expression
payload.

Important

It is important to understand that this is simply synchronizing the actions with a transaction, it
does not make a resource that is not inherently transactional actually transactional. Instead, the
transaction (be it JDBC or otherwise) is started before the poll, and committed/rolled back when
the flow completes, followed by the synchronized action.

It is also important to understand that if you provide a custom
TransactionSynchronizationFactory, it is responsible for creating a resource
synchronization that will cause the bound resource to be unbound automatically, when
the transaction completes. The default TransactionSynchronizationFactory does
this by returning a subclass of ResourceHolderSynchronization, with the default
shouldUnbindAtCompletion() returning true.

In addition to the after-commit and after-rollback expressions, before-commit is also supported. In that
case, if the evaluation (or downstream processing) throws an exception, the transaction will be rolled
back instead of being committed.

C.4 Pseudo Transactions

Referring to the above section, you may be thinking it would be useful to take these success or
failure actions when a flow completes, even if there is no real transactional resources (such as JDBC)
downstream of the poller. For example, consider a <file:inbound-channel-adapter/> followed by an
<ftp:outbout-channel-adapter/>. Neither of these components is transactional but we might want to move
the input file to different directories, based on the success or failure of the ftp transfer.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 564

To provide this functionality, the framework provides a PseudoTransactionManager, enabling the
above configuration even when there is no real transactional resource involved. If the flow completes
normally, the beforeCommit and afterCommit synchronizations will be called, on failure the afterRollback
will be called. Of course, because it is not a real transaction there will be no actual commit or rollback.
The pseudo transaction is simply a vehicle used to enable the synchronization features.

To use a PseudoTransactionManager, simply define it as a <bean/>, in the same way you would
configure a real transaction manager:

<bean id="transactionManager" class="o.s.i.transaction.PseudoTransactionManager" />

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 565

Appendix D. Security in Spring
Integration

D.1 Introduction

Security is one of the important functions in any modern enterprise (or cloud) application, moreover it
is critical for distributed systems, such as those built using Enterprise Integration Patterns. Messaging
independence and loosely-coupling allow target systems to communicate with each other with any type
of data in the message’s payload. We can either trust all those messages or secure our service against
"infecting" messages.

Spring Integration together with Spring Security provide a simple and comprehensive way to secure
message channels, as well as other part of the integration solution.

D.2 Securing channels

Spring Integration provides the interceptor ChannelSecurityInterceptor, which extends
AbstractSecurityInterceptor and intercepts send and receive calls on the channel. Access
decisions are then made with reference to a ChannelSecurityMetadataSource which provides the
metadata describing the send and receive access policies for certain channels. The interceptor requires
that a valid SecurityContext has been established by authenticating with Spring Security. See the
Spring Security reference documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists
of the secured channels tag which allows definition of one or more channel name patterns in
conjunction with a definition of the security configuration for send and receive. The pattern is a
java.util.regexp.Pattern.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-security="http://www.springframework.org/schema/integration/security"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:security="http://www.springframework.org/schema/security"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/security

 http://www.springframework.org/schema/integration/security/spring-integration-security.xsd">

<int-security:secured-channels>

 <int-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>

 <int-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</int-security:secured-channels>

By default the secured-channels namespace element expects a bean named authenticationManager
which implements AuthenticationManager and a bean named accessDecisionManager which
implements AccessDecisionManager. Where this is not the case references to the appropriate beans
can be configured as attributes of the secured-channels element as below.

http://projects.spring.io/spring-security/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 566

<int-security:secured-channels access-decision-manager="customAccessDecisionManager"

 authentication-manager="customAuthenticationManager">

 <int-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>

 <int-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</int-security:secured-channels>

Starting with version 4.2, the @SecuredChannel annotation is available for Java & Annotation
configuration in @Configuration classes.

With the @SecuredChannel annotation, the Java configuration variant of the XML configuration above
is:

@Configuration

@EnableIntegration

public class ContextConfiguration {

 @Bean

 @SecuredChannel(interceptor = "channelSecurityInterceptor", sendAccess = "ROLE_ADMIN")

 public SubscribableChannel adminChannel() {

 return new DirectChannel();

 }

 @Bean

 @SecuredChannel(interceptor = "channelSecurityInterceptor", receiveAccess = "ROLE_USER")

 public SubscribableChannel userChannel() {

 return new DirectChannel();

 }

 @Bean

 public ChannelSecurityInterceptor channelSecurityInterceptor(

 AuthenticationManager authenticationManager,

 AccessDecisionManager accessDecisionManager) {

 ChannelSecurityInterceptor channelSecurityInterceptor = new ChannelSecurityInterceptor();

 channelSecurityInterceptor.setAuthenticationManager(authenticationManager);

 channelSecurityInterceptor.setAccessDecisionManager(accessDecisionManager);

 return channelSecurityInterceptor;

 }

}

D.3 SecurityContext Propagation

To be sure that our interaction with the application is secure, according to its security system rules,
we should supply some security context with an authentication (principal) object. The Spring Security
project provides a flexible, canonical mechanism to authenticate our application clients over HTTP,
WebSocket or SOAP protocols (as can be done for any other integration protocol with a simple
Spring Security extension) and it provides a SecurityContext for further authorization checks on
the application objects, such as message channels. By default, the SecurityContext is tied with the
current Thread 's execution state using the (ThreadLocalSecurityContextHolderStrategy). It
is accessed by an AOP interceptor on secured methods to check if that principal of the invocation
has sufficient permissions to call that method, for example. This works well with the current thread, but
often, processing logic can be performed on another thread or even on several threads, or on to some
external system(s).

Standard thread-bound behavior is easy to configure if our application is built on the Spring Integration
components and its message channels. In this case, the secured objects may be any service activator or
transformer, secured with a MethodSecurityInterceptor in their <request-handler-advice-
chain> (see Section 8.9, “Adding Behavior to Endpoints”) or even MessageChannel (see Section D.2,
“Securing channels” above). When using DirectChannel communication, the SecurityContext
is available automatically, because the downstream flow runs on the current thread. But in case

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 567

of the QueueChannel, ExecutorChannel and PublishSubscribeChannel with an Executor,
messages are transferred from one thread to another (or several) by the nature of those channels. In
order to support such scenarios, we can either transfer an Authentication object within the message
headers and extract and authenticate it on the other side before secured object access. Or, we can
propagate the SecurityContext to the thread receiving the transferred message.

Starting with version 4.2 SecurityContext propagation has been introduced. It is implemented
as a SecurityContextPropagationChannelInterceptor, which can simply be added
to any MessageChannel or configured as a @GlobalChannelInterceptor. The logic of
this interceptor is based on the SecurityContext extraction from the current thread from
the preSend() method, and its populating to another thread from the postReceive()

(beforeHandle()) method. Actually, this interceptor is an extension of the more generic
ThreadStatePropagationChannelInterceptor, which wraps the message-to-send together
with the state-to-propagate in an internal Message<?> extension - MessageWithThreadState<S>,
- on one side and extracts the original message back and state-to-propagate on another. The
ThreadStatePropagationChannelInterceptor can be extended for any context propagation
use-case and SecurityContextPropagationChannelInterceptor is a good sample on the
matter.

Important

Since the logic of the ThreadStatePropagationChannelInterceptor is based on
message modification (it returns an internal MessageWithThreadState object to send),
you should be careful when combining this interceptor with any other which is intended to
modify messages too, e.g. through the MessageBuilder.withPayload(...)...build()
- the state-to-propagate may be lost. In most cases to overcome the
issue, it’s sufficient to order interceptors for the channel and ensure the
ThreadStatePropagationChannelInterceptor is the last one in the stack.

Propagation and population of SecurityContext is just one half of the work. Since the message
isn’t an owner of the threads in the message flow and we should be sure that we are secure
against any incoming messages, we have to clean up the SecurityContext from ThreadLocal.
The SecurityContextPropagationChannelInterceptor provides afterMessageHandled()
interceptor’s method implementation to do the clean up operation to free the Thread in the end of
invocation from that propagated principal. This means that, when the thread that processes the handed-
off message, completes the processing of the message (successfully or otherwise), the context is
cleared so that it can’t be inadvertently be used when processing another message.

Note

When working with Asynchronous Gateway, you should use an appropriate
AbstractDelegatingSecurityContextSupport implementation from Spring Security
Concurrency Support, when security context propagation should be ensured over gateway
invocation:

http://docs.spring.io/spring-security/site/docs/current/reference/html/concurrency.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 568

@Configuration

@EnableIntegration

@IntegrationComponentScan

public class ContextConfiguration {

 @Bean

 public AsyncTaskExecutor securityContextExecutor() {

 return new DelegatingSecurityContextAsyncTaskExecutor(

 new SimpleAsyncTaskExecutor());

 }

}

...

@MessagingGateway(asyncExecutor = "securityContextExecutor")

public interface SecuredGateway {

 @Gateway(requestChannel = "queueChannel")

 Future<String> send(String payload);

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 569

Appendix E. Configuration
E.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon
your particular needs and at what level you prefer to work. As with the Spring framework in general, it
is also possible to mix and match the various techniques according to the particular problem at hand.
For example, you may choose the XSD-based namespace for the majority of configuration combined
with a handful of objects that are configured with annotations. As much as possible, the two provide
consistent naming. XML elements defined by the XSD schema will match the names of annotations,
and the attributes of those XML elements will match the names of annotation properties. Direct usage
of the API is of course always an option, but we expect that most users will choose one of the higher-
level options, or a combination of the namespace-based and annotation-driven configuration.

E.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the terminology
and concepts of enterprise integration. In many cases, the element names match those of the Enterprise
Integration Patterns.

To enable Spring Integration’s core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level beans element:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

You can choose any name after "xmlns:"; int is used here for clarity, but you might prefer a shorter
abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of auto-
completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring Integration schema as the primary namespace:

<beans:beans xmlns="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other
hand, if you want to define a generic Spring "bean" within the same configuration file, then a prefix
would be required for the bean element (<beans:bean .../>). Since it is generally a good idea to
modularize the configuration files themselves based on responsibility and/or architectural layer, you
may find it appropriate to use the latter approach in the integration-focused configuration files, since
generic beans are seldom necessary within those same files. For purposes of this documentation, we
will assume the "integration" namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter
type (JMS, File, etc.) that provides namespace support defines its elements within a separate schema.

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 570

In order to use these elements, simply add the necessary namespaces with an "xmlns" entry and the
corresponding "schemaLocation" mapping. For example, the following root element shows several of
these namespace declarations:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-file="http://www.springframework.org/schema/integration/file"

 xmlns:int-jms="http://www.springframework.org/schema/integration/jms"

 xmlns:int-mail="http://www.springframework.org/schema/integration/mail"

 xmlns:int-rmi="http://www.springframework.org/schema/integration/rmi"

 xmlns:int-ws="http://www.springframework.org/schema/integration/ws"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/file

 http://www.springframework.org/schema/integration/file/spring-integration-file.xsd

 http://www.springframework.org/schema/integration/jms

 http://www.springframework.org/schema/integration/jms/spring-integration-jms.xsd

 http://www.springframework.org/schema/integration/mail

 http://www.springframework.org/schema/integration/mail/spring-integration-mail.xsd

 http://www.springframework.org/schema/integration/rmi

 http://www.springframework.org/schema/integration/rmi/spring-integration-rmi.xsd

 http://www.springframework.org/schema/integration/ws

 http://www.springframework.org/schema/integration/ws/spring-integration-ws.xsd">

 ...

</beans>

The reference manual provides specific examples of the various elements in their corresponding
chapters. Here, the main thing to recognize is the consistency of the naming for each namespace URI
and schema location.

E.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only
a couple configuration options to consider. First, you may want to control the central TaskScheduler
instance. You can do so by providing a single bean with the name "taskScheduler". This is also defined
as a constant:

IntegrationContextUtils.TASK_SCHEDULER_BEAN_NAME

By default Spring Integration relies on an instance of ThreadPoolTaskScheduler as described in
the Task Execution and Scheduling section of the Spring Framework reference manual. That default
TaskScheduler will startup automatically with a pool of 10 threads, but see Section E.5, “Global
Properties”. If you provide your own TaskScheduler instance instead, you can set the autoStartup
property to false, and/or you can provide your own pool size value.

When Polling Consumers provide an explicit task-executor reference in their configuration, the
invocation of the handler methods will happen within that executor’s thread pool and not the main
scheduler pool. However, when no task-executor is provided for an endpoint’s poller, it will be invoked
by one of the main scheduler’s threads.

Caution

Do not run long-running tasks on poller threads; use a task executor instead. If you have a lot
of polling endpoints, you can cause thread starvation, unless you increase the pool size. Also,
polling consumers have a default receiveTimeout of 1 second; since the poller thread blocks

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 571

for this time, it is recommended that a task executor be used when many such endpoints exist,
again to avoid starvation. Alternatively, reduce the receiveTimeout.

Note

An endpoint is a Polling Consumer if its input channel is one of the queue-based (i.e. pollable)
channels. Event Driven Consumers are those having input channels that have dispatchers instead
of queues (i.e. they are subscribable). Such endpoints have no poller configuration since their
handlers will be invoked directly.

Important

When running in a JEE container, you may need to use Spring’s
TimerManagerTaskScheduler as described here, instead of the default taskScheduler. To do
that, simply define a bean with the appropriate JNDI name for your environment, for example:

<bean id="taskScheduler" class="o.s.scheduling.commonj.TimerManagerTaskScheduler">

 <property name="timerManagerName" value="tm/MyTimerManager" />

 <property name="resourceRef" value="true" />

</bean>

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

E.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components.
The Message Channel plays an important role in that producers and consumers do not have to know
about each other. However, the advantages also have some drawbacks. Some things become more
complicated in a very loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or
may not be operating within the same thread as the sender. If using a simple default DirectChannel
(with the <channel> element that has no <queue> sub-element and no task-executor attribute), the
Message-handling will occur in the same thread that sends the initial message. In that case, if an
Exception is thrown, it can be caught by the sender (or it may propagate past the sender if it is an
uncaught RuntimeException). So far, everything is fine. This is the same behavior as an Exception-
throwing operation in a normal call stack.

A message flow that runs on a caller thread might be invoked via a Messaging Gateway

(see Section 8.4, “Messaging Gateways”) or a MessagingTemplate (see the section called
“MessagingTemplate”). In either case, the default behavior is to throw any exceptions to the caller. For
the Messaging Gateway, see the section called “Error Handling” for details about how the exception
is thrown and how to configure the gateway to route the errors to an error channel instead. When using
a MessagingTemplate, or sending to a MessageChannel directly, exceptions are always thrown to
the caller.

When adding asynchronous processing, things become rather more complicated. For instance, if the
channel element does provide a queue sub-element, then the component that handles the Message
will be operating in a different thread than the sender. The same is true when an ExecutorChannel
is used. The sender may have dropped the Message into the channel and moved on to other things.
There is no way for the Exception to be thrown directly back to that sender using standard Exception

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html#scheduling-task-scheduler-implementations

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 572

throwing techniques. Instead, handling errors for asynchronous processes requires an asynchronous
error-handling mechanism as well.

Spring Integration supports error handling for its components by publishing errors to a Message
Channel. Specifically, the Exception will become the payload of a Spring Integration ErrorMessage.
That Message will then be sent to a Message Channel that is resolved in a way that is similar
to the replyChannel resolution. First, if the request Message being handled at the time the
Exception occurred contains an errorChannel header (the header name is defined in the constant:
MessageHeaders.ERROR_CHANNEL), the ErrorMessage will be sent to that channel. Otherwise, the
error handler will send to a "global" channel whose bean name is "errorChannel" (this is also defined as
a constant: IntegrationContextUtils.ERROR_CHANNEL_BEAN_NAME).

A default "errorChannel" bean is created behind the scenes by the Framework. However, you can just
as easily define your own if you want to control the settings.

<int:channel id="errorChannel">

 <int:queue capacity="500"/>

</int:channel>

Note

The default "errorChannel" is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply
to Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor.
This does not apply to Exceptions thrown by a handler that is operating within the same thread as the
sender (e.g. through a DirectChannel as described above).

Note

When Exceptions occur in a scheduled poller task’s execution, those exceptions will be wrapped
in ErrorMessage s and sent to the errorChannel as well.

To enable global error handling, simply register a handler on that channel. For example, you can
configure Spring Integration’s ErrorMessageExceptionTypeRouter as the handler of an endpoint
that is subscribed to the errorChannel. That router can then spread the error messages across multiple
channels based on Exception type.

Starting with version 4.3.10, the ErrorMessagePublisher and the ErrorMessageStrategy
are provided. They can be used as general mechanism for publishing ErrorMessage s and can
be called or extended in any error handling scenarios. The ErrorMessageSendingRecoverer
extends this class as a RecoveryCallback implementation that can be used with retry, such as
the RequestHandlerRetryAdvice. The ErrorMessageStrategy is used to build an ErrorMessage
based on the provided exception and an AttributeAccessor context. It can be injected to any
MessageProducerSupport and MessagingGatewaySupport - and the requestMessage is
stored under ErrorMessageUtils.INPUT_MESSAGE_CONTEXT_KEY in the AttributeAccessor
context. The ErrorMessageStrategy can use that requestMessage as the originalMessage
property of the ErrorMessage it creates. The DefaultErrorMessageStrategy does exactly that.

E.5 Global Properties

Certain global framework properties can be overridden by providing a properties file on the classpath.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 573

The default properties can be found in /META-INF/spring.integration.default.properties
in the spring-integration-core jar. You can see them on GitHub here, but here are the current
default values:

spring.integration.channels.autoCreate=true ❶

spring.integration.channels.maxUnicastSubscribers=0x7fffffff ❷

spring.integration.channels.maxBroadcastSubscribers=0x7fffffff ❸

spring.integration.taskScheduler.poolSize=10 ❹

spring.integration.messagingTemplate.throwExceptionOnLateReply=false ❺

spring.integration.readOnly.headers= ❻

spring.integration.endpoints.noAutoStartup= ❼

spring.integration.postProcessDynamicBeans=false ❽

❶ When true, input-channel s will be automatically declared as DirectChannel s when not
explicitly found in the application context.

❷ This property provides the default number of subscribers allowed on, say, a DirectChannel. It
can be used to avoid inadvertently subscribing multiple endpoints to the same channel. This can
be overridden on individual channels with the max-subscribers attribute.

❸ This property provides the default number of subscribers allowed on, say, a
PublishSubscribeChannel. It can be used to avoid inadvertently subscribing more than the
expected number of endpoints to the same channel. This can be overridden on individual channels
with the max-subscribers attribute.

❹ The number of threads available in the default taskScheduler bean; see Section E.3,
“Configuring the Task Scheduler”.

❺ When true, messages that arrive at a gateway reply channel will throw an exception, when the
gateway is not expecting a reply - because the sending thread has timed out, or already received
a reply.

❻ A comma-separated list of message header names which should not be populated into Message
s during a header copying operation. The list is used by the DefaultMessageBuilderFactory
bean and propagated to the IntegrationMessageHeaderAccessor instances (see the section
called “MessageHeaderAccessor API”), used to build messages via MessageBuilder (see the
section called “The MessageBuilder Helper Class”). By default only MessageHeaders.ID and
MessageHeaders.TIMESTAMP are not copied during message building. Since version 4.3.2

❼ A comma-separated list of AbstractEndpoint bean names patterns (xxx*, *xxx, *xxx* or
xxx*yyy) which should not be started automatically during application startup. These endpoints
can be started later manually by their bean name via Control Bus (see Section 10.6, “Control
Bus”), by their role using the SmartLifecycleRoleController (see Section 8.2, “Endpoint
Roles”) or via simple Lifecycle bean injection. The effect of this global property can be explicitly
overridden by specifying auto-startup XML or autoStartup annotation attribute, or via call to
the AbstractEndpoint.setAutoStartup() in bean definition. Since version 4.3.12

❽ A boolean flag to indicate that BeanPostProcessor s should post-process beans registered at
runtime, e.g. message channels created via IntegrationFlowContext can be supplied with
global channel interceptors. Since version 4.3.15

These properties can be overridden by adding a file /META-INF/

spring.integration.properties to the classpath. It is not necessary to provide all the properties,
just those that you want to override.

E.6 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to
use annotations. First, Spring Integration provides the class-level @MessageEndpoint as a stereotype

https://github.com/spring-projects/spring-integration/blob/master/spring-integration-core/src/main/resources/META-INF/spring.integration.default.properties

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 574

annotation, meaning that it is itself annotated with Spring’s @Component annotation and is therefore
recognized automatically as a bean definition when using Spring component-scanning.

Even more important are the various method-level annotations that indicate the annotated method is
capable of handling a message. The following example demonstrates both:

@MessageEndpoint

public class FooService {

 @ServiceActivator

 public void processMessage(Message message) {

 ...

 }

}

Exactly what it means for the method to "handle" the Message depends on the particular annotation.
Annotations available in Spring Integration include:

• @Aggregator

• @Filter

• @Router

• @ServiceActivator

• @Splitter

• @Transformer

• @InboundChannelAdapter

• @BridgeFrom

• @BridgeTo

• @MessagingGateway

• @IntegrationComponentScan

The behavior of each is described in its own chapter or section within this reference.

Note

If you are using XML configuration in combination with annotations, the @MessageEndpoint
annotation is not required. If you want to configure a POJO reference from the "ref" attribute
of a <service-activator/> element, it is sufficient to provide the method-level annotations.
In that case, the annotation prevents ambiguity even when no "method" attribute exists on the
<service-activator/> element.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message’s payload type.

public class FooService {

 @ServiceActivator

 public void bar(Foo foo) {

 ...

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 575

When the method parameter should be mapped from a value in the MessageHeaders, another option
is to use the parameter-level @Header annotation. In general, methods annotated with the Spring
Integration annotations can either accept the Message itself, the message payload, or a header value
(with @Header) as the parameter. In fact, the method can accept a combination, such as:

public class FooService {

 @ServiceActivator

 public void bar(String payload, @Header("x") int valueX, @Header("y") int valueY) {

 ...

 }

}

There is also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

 @ServiceActivator

 public void bar(String payload, @Headers Map<String, Object> headerMap) {

 ...

 }

}

Note

The value of the annotation can also be a SpEL expression (e.g.,
someHeader.toUpperCase()) which is useful when you wish to manipulate the header value
before injecting it. It also provides an optional required property which specifies whether the
attribute value must be available within the headers. The default value for required is true.

For several of these annotations, when a Message-handling method returns a non-null value, the
endpoint will attempt to send a reply. This is consistent across both configuration options (namespace
and annotations) in that such an endpoint’s output channel will be used if available, and the
REPLY_CHANNEL message header value will be used as a fallback.

Tip

The combination of output channels on endpoints and the reply channel message header enables
a pipeline approach where multiple components have an output channel, and the final component
simply allows the reply message to be forwarded to the reply channel as specified in the original
request message. In other words, the final component depends on the information provided by
the original sender and can dynamically support any number of clients as a result. This is an
example of Return Address.

In addition to the examples shown here, these annotations also support inputChannel and
outputChannel properties.

@Service

public class FooService {

 @ServiceActivator(inputChannel="input", outputChannel="output")

 public void bar(String payload, @Headers Map<String, Object> headerMap) {

 ...

 }

}

http://eaipatterns.com/ReturnAddress.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 576

The processing of these annotations creates the same beans (AbstractEndpoint s and
MessageHandler s (or MessageSource s for the inbound channel adapter - see below) as with
similar xml components. The bean names are generated with this pattern: [componentName].
[methodName].[decapitalizedAnnotationClassShortName] (e.g for the sample above -
fooService.bar.serviceActivator) for the AbstractEndpoint and the same name with
an additional .handler (.source) suffix for the MessageHandler (MessageSource) bean. The
MessageHandler s (MessageSource s) are also eligible to be tracked by Section 10.3, “Message
History”.

Starting with version 4.0, all Messaging Annotations provide SmartLifecycle options - autoStartup
and phase to allow endpoint lifecycle control on application context initialization. They default to true
and 0 respectively. To change the state of an endpoint (e.g` start()/stop()) obtain a reference
to the endpoint bean using the `BeanFactory (or autowiring) and invoke the method(s),
or send a command message to the Control Bus (Section 10.6, “Control Bus”). For these purposes
you should use the beanName mentioned above.

@Poller

Before Spring Integration 4.0, the above Messaging Annotations required that the inputChannel
was a reference to a SubscribableChannel. For PollableChannel s there was need to
use a <int:bridge/>, to configure a <int:poller/> to make the composite endpoint - a
PollingConsumer. Starting with version 4.0, the @Poller annotation has been introduced to allow
the configuration of poller attributes directly on the above Messaging Annotations:

public class AnnotationService {

 @Transformer(inputChannel = "input", outputChannel = "output",

 poller = @Poller(maxMessagesPerPoll = "${poller.maxMessagesPerPoll}", fixedDelay =

 "${poller.fixedDelay}"))

 public String handle(String payload) {

 ...

 }

}

This annotation provides only simple PollerMetadata options. The @Poller's attributes
maxMessagesPerPoll, fixedDelay, fixedRate and cron can be configured with property-
placeholders. If it is necessary to provide more polling options (e.g. transaction, advice-chain, error-
handler etc.), the PollerMetadata should be configured as a generic bean with its bean name used
for @Poller's value attribute. In this case, no other attributes are allowed (they would be specified
on the PollerMetadata bean). Note, if inputChannel is PollableChannel and no @Poller is
configured, the default PollerMetadata will be used, if it is present in the application context. To
declare the default poller using @Configuration, use:

@Bean(name = PollerMetadata.DEFAULT_POLLER)

public PollerMetadata defaultPoller() {

 PollerMetadata pollerMetadata = new PollerMetadata();

 pollerMetadata.setTrigger(new PeriodicTrigger(10));

 return pollerMetadata;

}

With this endpoint using the default poller:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 577

public class AnnotationService {

 @Transformer(inputChannel = "aPollableChannel", outputChannel = "output")

 public String handle(String payload) {

 ...

 }

}

To use a named poller, use:

@Bean

public PollerMetadata myPoller() {

 PollerMetadata pollerMetadata = new PollerMetadata();

 pollerMetadata.setTrigger(new PeriodicTrigger(1000));

 return pollerMetadata;

}

With this endpoint using the default poller:

public class AnnotationService {

 @Transformer(inputChannel = "aPollableChannel", outputChannel = "output"

 poller = @Poller("myPoller"))

 public String handle(String payload) {

 ...

 }

}

Starting with version 4.3.3, the @Poller annotation now has the errorChannel attribute for easier
configuration of the underlying MessagePublishingErrorHandler. This attribute play the same role
as error-channel in the <poller> xml component. See the section called “Endpoint Namespace
Support” for more information.

@InboundChannelAdapter

Starting with version 4.0, the @InboundChannelAdapter method annotation is available.
This produces a SourcePollingChannelAdapter integration component based on a
MethodInvokingMessageSource for the annotated method. This annotation is an analogue of
<int:inbound-channel-adapter> XML component and has the same restrictions: the method
cannot have parameters, and the return type must not be void. It has two attributes: value - the
required MessageChannel bean name and poller - an optional @Poller annotation, as described
above. If there is need to provide some MessageHeaders, use a Message<?> return type and build
the Message<?> within the method using a MessageBuilder to configure its MessageHeaders.

@InboundChannelAdapter("counterChannel")

public Integer count() {

 return this.counter.incrementAndGet();

}

@InboundChannelAdapter(value = "fooChannel", poller = @Poller(fixed-rate = "5000"))

public String foo() {

 return "foo";

}

Starting with version 4.3 the channel alias for the value annotation attribute has been introduced
for better source code readability. Also the target MessageChannel bean is resolved in the
SourcePollingChannelAdapter by the provided name (outputChannelName options) on the
first receive() call, not during initialization phase. It allows the late binding logic, when the target
MessageChannel bean from the consumer perspective is created and registered a bit later than the
@InboundChannelAdapter parsing phase.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 578

The first example requires that the default poller has been declared elsewhere in the application context.

@MessagingGateway

See the section called “@MessagingGateway Annotation”.

@IntegrationComponentScan

The standard Spring Framework @ComponentScan annotation doesn’t scan interfaces for
stereotype @Component annotations. To overcome this limitation and allow the configuration
of @MessagingGateway (see the section called “@MessagingGateway Annotation”), the
@IntegrationComponentScan mechanism has been introduced. This annotation must be placed
along with a @Configuration annotation, and customized for the scanning options, such as
basePackages and basePackageClasses. In this case all discovered interfaces annotated with
@MessagingGateway will be parsed and registered as a GatewayProxyFactoryBean s. All other
class-based components are parsed by the standard @ComponentScan. In future, more scanning logic
may be added to the @IntegrationComponentScan.

Messaging Meta-Annotations

Starting with version 4.0, all Messaging Annotations can be configured as meta-annotations and all
user-defined Messaging Annotations can define the same attributes to override their default values. In
addition, meta-annotations can be configured hierarchically:

@Target({ElementType.METHOD, ElementType.ANNOTATION_TYPE})

@Retention(RetentionPolicy.RUNTIME)

@ServiceActivator(inputChannel = "annInput", outputChannel = "annOutput")

public @interface MyServiceActivator {

 String[] adviceChain = { "annAdvice" };

}

@Target({ElementType.METHOD, ElementType.ANNOTATION_TYPE})

@Retention(RetentionPolicy.RUNTIME)

@MyServiceActivator

public @interface MyServiceActivator1 {

 String inputChannel();

 String outputChannel();

}

...

@MyServiceActivator1(inputChannel = "inputChannel", outputChannel = "outputChannel")

public Object service(Object payload) {

 ...

}

This allows users to set defaults for various attributes and enables isolation of framework Java
dependencies to user annotations, avoiding their use in user classes. If the framework finds a method
with a user annotation that has a framework meta-annotation, it is treated as if the method was annotated
directly with the framework annotation.

Annotations on @Beans

Starting with version 4.0, Messaging Annotations can be configured on @Bean

method definitions in @Configuration classes, to produce Message Endpoints based
on the beans, not methods. It is useful when @Bean definitions are "out of
the box" MessageHandler s (AggregatingMessageHandler, DefaultMessageSplitter

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 579

etc.), Transformer s (JsonToObjectTransformer, ClaimCheckOutTransformer etc.),
MessageSource s (FileReadingMessageSource, RedisStoreMessageSource etc.):

@Configuration

@EnableIntegration

public class MyFlowConfiguration {

 @Bean

 @InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay = "1000"))

 public MessageSource<String> consoleSource() {

 return CharacterStreamReadingMessageSource.stdin();

 }

 @Bean

 @Transformer(inputChannel = "inputChannel", outputChannel = "httpChannel")

 public ObjectToMapTransformer toMapTransformer() {

 return new ObjectToMapTransformer();

 }

 @Bean

 @ServiceActivator(inputChannel = "httpChannel")

 public MessageHandler httpHandler() {

 HttpRequestExecutingMessageHandler handler = new HttpRequestExecutingMessageHandler("http://foo/

service");

 handler.setExpectedResponseType(String.class);

 handler.setOutputChannelName("outputChannel");

 return handler;

 }

 @Bean

 @ServiceActivator(inputChannel = "outputChannel")

 public LoggingHandler loggingHandler() {

 return new LoggingHandler("info");

 }

}

Starting with version 5.0, a support is also provided for a @Bean annotated with the
InboundChannelAdapter that return java.util.function.Supplier which can produce either
a POJO or a Message:

@Configuration

@EnableIntegration

public class MyFlowConfiguration {

 @Bean

 @InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay = "1000"))

 public Supplier<String> pojoSupplier() {

 return () -> "foo";

 }

 @Bean

 @InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay = "1000"))

 public Supplier<Message<String>> messageSupplier() {

 return () -> new GenericMessage<>("foo");

 }

The meta-annotation rules work on @Bean methods as well (@MyServiceActivator above can be
applied to a @Bean definition).

Note

When using these annotations on consumer @Bean definitions, if the bean definition returns
an appropriate MessageHandler (depending on the annotation type), attributes such as
outputChannel, requiresReply, order etc, must be set on the MessageHandler

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 580

@Bean definition itself. The only annotation attributes used are adviceChain, autoStartup,
inputChannel, phase, poller, all other attributes are for the handler.

Note

The bean names are generated with this algorithm: * The MessageHandler (MessageSource)
@Bean gets its own standard name from the method name or name attribute on the @Bean. This
works like there is no Messaging Annotation on the @Bean method. * The AbstractEndpoint
bean name is generated with the pattern: [configurationComponentName].

[methodName].[decapitalizedAnnotationClassShortName]. For example the
endpoint (SourcePollingChannelAdapter) for the consoleSource() definition above gets
a bean name like: myFlowConfiguration.consoleSource.inboundChannelAdapter.

Important

When using these annotations on @Bean definitions, the inputChannel must reference a
declared bean; channels are not automatically declared in this case.

Note

With Java & Annotation configuration we can use any @Conditional (e.g. @Profile) definition
on the @Bean method level, meaning to skip the bean registration by some condition reason:

@Bean

@ServiceActivator(inputChannel = "skippedChannel")

@Profile("foo")

public MessageHandler skipped() {

 return System.out::println;

}

Together with the existing Spring Container logic, the Messaging Endpoint bean, based on the
@ServiceActivator annotation, won’t be registered as well.

Creating a Bridge with Annotations

Starting with version 4.0, the Messaging Annotation and Java configuration provides @BridgeFrom
and @BridgeTo @Bean method annotations to mark MessageChannel beans in @Configuration
classes. This is just for completeness, providing a convenient mechanism to declare a BridgeHandler
and its Message Endpoint configuration:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 581

@Bean

public PollableChannel bridgeFromInput() {

 return new QueueChannel();

}

@Bean

@BridgeFrom(value = "bridgeFromInput", poller = @Poller(fixedDelay = "1000"))

public MessageChannel bridgeFromOutput() {

 return new DirectChannel();

}

@Bean

public QueueChannel bridgeToOutput() {

 return new QueueChannel();

}

@Bean

@BridgeTo("bridgeToOutput")

public MessageChannel bridgeToInput() {

 return new DirectChannel();

}

These annotations can be used as meta-annotations as well.

Advising Annotated Endpoints

See the section called “Advising Endpoints Using Annotations”.

E.7 Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments
without providing extra configuration by relying on some default rules as well as defining certain
conventions.

Simple Scenarios

Single un-annotated parameter (object or primitive) which is not a Map/Properties with non-void return
type;

public String foo(Object o);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value
will be incorporated as a Payload of the returned Message

Single un-annotated parameter (object or primitive) which is not a Map/Properties with Message return
type;

public Message foo(Object o);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value is
a newly constructed Message that will be sent to the next destination.

_Single parameter which is a Message or its subclass with arbitrary object/primitive return type; _

public int foo(Message msg);

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 582

Details:

Input parameter is Message itself. The return value will become a payload of the Message that will be
sent to the next destination.

Single parameter which is a Message or its subclass with Message or its subclass as a return type;

public Message foo(Message msg);

Details:

Input parameter is Message itself. The return value is a newly constructed Message that will be sent
to the next destination.

Single parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map m);

Details:

This one is a bit interesting. Although at first it might seem like an easy mapping straight to Message
Headers, the preference is always given to a Message Payload. This means that if Message Payload
is of type Map, this input argument will represent Message Payload. However if Message Payload is
not of type Map, then no conversion via Conversion Service will be attempted and the input argument
will be mapped to Message Headers.

Two parameters where one of them is arbitrary non-Map/Properties type object/primitive and another
is Map/Properties type object (regardless of the return)

public Message foo(Map h, <T> t);

Details:

This combination contains two input parameters where one of them is of type Map. Naturally the non-
Map parameters (regardless of the order) will be mapped to a Message Payload and the Map/Properties
(regardless of the order) will be mapped to Message Headers giving you a nice POJO way of interacting
with Message structure.

No parameters (regardless of the return)

public String foo();

Details:

This Message Handler method will be invoked based on the Message sent to the input channel this
handler is hooked up to, however no Message data will be mapped, thus making Message act as event/
trigger to invoke such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Details:

Same as above, but no output

Annotation based mappings

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 583

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods.
There wil be many pointers to annotation based mapping throughout this manual, however here are
couple of examples:

public String foo(@Payload String s, @Header("foo") String b)

Very simple and explicit way of mapping Messages to method. As you’ll see later on, without an
annotation this signature would result in an ambiguous condition. However by explicitly mapping the
first argument to a Message Payload and the second argument to a value of the foo Message Header,
we have avoided any ambiguity.

public String foo(@Payload String s, @RequestParam("foo") String b)

Looks almost identical to the previous example, however @RequestMapping or any other non-Spring
Integration mapping annotation is irrelevant and therefore will be ignored leaving the second parameter
unmapped. Although the second parameter could easily be mapped to a Payload, there can only be
one Payload. Therefore this method mapping is ambiguous.

public String foo(String s, @Header("foo") String b)

The same as above. The only difference is that the first argument will be mapped to the Message
Payload implicitly.

public String foo(@Headers Map m, @Header("foo") Map f, @Header("bar") String bar)

Yet another signature that would definitely be treated as ambiguous without annotations because it has
more than 2 arguments. Furthermore, two of them are Maps. However, with annotation-based mapping,
the ambiguity is easily avoided. In this example the first argument is mapped to all the Message Headers,
while the second and third argument map to the values of Message Headers foo and bar. The payload
is not being mapped to any argument.

Complex Scenarios

Multiple parameters:

Multiple parameters could create a lot of ambiguity with regards to determining the appropriate
mappings. The general advice is to annotate your method parameters with @Payload and/or
@Header/@Headers. Below are some of the examples of ambiguous conditions which result in an
Exception being raised.

public String foo(String s, int i)

• the two parameters are equal in weight, therefore there is no way to determine which one is a payload.

public String foo(String s, Map m, String b)

• almost the same as above. Although the Map could be easily mapped to Message Headers, there is
no way to determine what to do with the two Strings.

public String foo(Map m, Map f)

• although one might argue that one Map could be mapped to Message Payload and another one
to Message Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second
Headers)

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 584

Tip

Basically any method signature with more than one method argument which is not (Map, <T>),
and those parameters are not annotated, will result in an ambiguous condition thus triggering an
Exception.

Multiple methods:

Message Handlers with multiple methods are mapped based on the same rules that are described
above, however some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo {

 public String foo(String str, Map m);

 public String foo(Map m);

}

As you can see, the Message could be mapped to either method. The first method would be invoked
where Message Payload could be mapped to str and Message Headers could be mapped to m. The
second method could easily also be a candidate where only Message Headers are mapped to m.
To make meters worse both methods have the same name which at first might look very ambiguous
considering the following configuration:

<int:service-activator input-channel="input" output-channel="output" method="foo">

 <bean class="org.bar.Foo"/>

</int:service-activator>

At this point it would be important to understand Spring Integration mapping Conventions where at the
very core, mappings are based on Payload first and everything else next. In other words the method
whose argument could be mapped to a Payload will take precedence over all other methods.

On the other hand let’s look at slightly different example:

public class Foo {

 public String foo(String str, Map m);

 public String foo(String str);

}

If you look at it you can probably see a truly ambiguous condition. In this example since both methods
have signatures that could be mapped to a Message Payload. They also have the same name. Such
handler methods will trigger an Exception. However if the method names were different you could
influence the mapping with a method attribute (see below):

public class Foo {

 public String foo(String str, Map m);

 public String bar(String str);

}

<int:service-activator input-channel="input" output-channel="output" method="bar">

 <bean class="org.bar.Foo"/>

</int:service-activator>

Now there is no ambiguity since the configuration explicitly maps to the bar method which has no name
conflicts.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 585

Appendix F. Testing support
Spring Integration provides a number of utilities and annotations to help when testing your application.
Test support is presented by two modules: spring-integration-test-support which contains
core items and shared utilities, and spring-integration-test which provides mocking and
application context configuration components for integration tests.

spring-integration-test-support (spring-integration-test in versions before 5.0)
provides basic, standalone utilities, rules and matchers for unit testing (it also has no dependencies on
Spring Integration itself, and is used internally in Framework tests). spring-integration-test is
aimed to help with integration testing and provides a comprehensive high level API to mock integration
components and verify behavior of individual components, including whole integration flows or just parts
thereof. A thorough treatment of testing in the enterprise is beyond the scope of this reference manual.
See the Test-Driven Development in Enterprise Integration Projects paper, by Gregor Hohpe and Wendy
Istvanick, for a source of ideas and principles for testing your target integration solution.

F.1 Introduction

The Spring Integration Test Framework and test utilities are fully based on existing JUnit, Hamcrest and
Mockito libraries. The Application Context interaction is based on the Spring Test Framework. Please,
refer to the documentation for those projects for further information.

Thanks to the canonical implementation of the EIP in Spring Integration Framework and its first class
citizens like MessageChannel, Endpoint and MessageHandler abstractions and supported out-of-
the-box loose coupling principles, we can implement integration solutions of any complexity. With the
Spring Integration API for the flow definitions, we can improve, modify or even replace some part of the
flow without impacting (mostly) other components in the integration solution. Testing such an integration
solution is still a challenge, from an end-to-end perspective, as well as with an in-isolation approach.
There are several existing tools which help to test or mock some integration protocols and they work
very well with Spring Integration Channel Adapters; examples include:

• Spring MockMVC and its MockRestServiceServer for HTTP;

• Some RDBMS vendors provide embedded data bases for JDBC or JPA support;

• ActiveMQ can be embedded for testing JMS or STOMP protocols;

• There are tools for embedded MongoDB and Redis;

• Tomcat and Jetty have embedded libraries to test real HTTP, Web Services or WebSockets;

• The FtpServer and SshServer from the Apache Mina project can be used for testing (S)FTP
protocols;

• Gemfire and Hazelcast can be run as real data grid nodes in the tests;

• The Curator Framework provides a TestingServer for Zookeeper interaction;

• Apache Kafka provides admin tools to embed a Kafka Broker in the tests.

Most of these tools and libraries are used in Spring Integration tests and from the GitHub repository, in
the test directory of each module, you can discover ideas how to build your own tests for integration
solutions.

http://www.enterpriseintegrationpatterns.com/docs/TestDrivenEAI.pdf
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/htmlsingle/#testing
https://github.com/spring-projects/spring-integration

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 586

The rest of this chapter describes the testing tools and utilities provided by the Spring Integration
Framework.

F.2 Testing Utilities

The spring-integration-test-support module provides utilities and helpers for unit testing.

TestUtils

The TestUtils class is mostly used for properties assertions in JUnit tests:

@Test

public void loadBalancerRef() {

 MessageChannel channel = channels.get("lbRefChannel");

 LoadBalancingStrategy lbStrategy = TestUtils.getPropertyValue(channel,

 "dispatcher.loadBalancingStrategy", LoadBalancingStrategy.class);

 assertTrue(lbStrategy instanceof SampleLoadBalancingStrategy);

}

TestUtils.getPropertyValue() is based on Spring’s DirectFieldAccessor and provides the
ability to get a value from the target private property. As you see by the example above it also supports
nested properties access, using dotted notation.

The createTestApplicationContext() factory method produce a TestApplicationContext
instance with the supplied Spring Integration environment.

See the JavaDocs of other TestUtils methods for more information about this class.

SocketUtils

The SocketUtils provides several methods to select a random port(s) for exposing server-side
components without conflicts:

<bean id="socketUtils" class="org.springframework.integration.test.util.SocketUtils" />

<int-syslog:inbound-channel-adapter id="syslog"

 channel="sysLogs"

 port="#{socketUtils.findAvailableUdpSocket(1514)}" />

<int:channel id="sysLogs">

 <int:queue/>

</int:channel>

Which is used from the unit test as:

@Autowired @Qualifier("syslog.adapter")

private UdpSyslogReceivingChannelAdapter adapter;

@Autowired

private PollableChannel sysLogs;

...

@Test

public void testSimplestUdp() throws Exception {

 int port = TestUtils.getPropertyValue(adapter1, "udpAdapter.port", Integer.class);

 byte[] buf = "<157>JUL 26 22:08:35 WEBERN TESTING[70729]: TEST SYSLOG MESSAGE".getBytes("UTF-8");

 DatagramPacket packet = new DatagramPacket(buf, buf.length,

 new InetSocketAddress("localhost", port));

 DatagramSocket socket = new DatagramSocket();

 socket.send(packet);

 socket.close();

 Message<?> message = foo.receive(10000);

 assertNotNull(message);

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 587

Note

This tecnique is not foolproof; some other process could be allocated the "free" port before your
test opens it. It is generally more preferable to use a server port 0 and let the operating system
select the port for you, then discover the selected port in your test. We have converted most
framework tests to use this preferred technique.

OnlyOnceTrigger

The OnlyOnceTrigger is useful for polling endpoints when it is good to produce only one test message
and verify the behavior without impacting of unexpected other period messages:

<bean id="testTrigger" class="org.springframework.integration.test.util.OnlyOnceTrigger" />

<int:poller id="jpaPoller" trigger="testTrigger">

 <int:transactional transaction-manager="transactionManager" />

</int:poller>

@Autowired

@Qualifier("jpaPoller")

PollerMetadata poller;

@Autowired

OnlyOnceTrigger testTrigger;

...

@Test

@DirtiesContext

public void testWithEntityClass() throws Exception {

 this.testTrigger.reset();

 ...

 JpaPollingChannelAdapter jpaPollingChannelAdapter = new JpaPollingChannelAdapter(jpaExecutor);

 SourcePollingChannelAdapter adapter = JpaTestUtils.getSourcePollingChannelAdapter(

 jpaPollingChannelAdapter, this.outputChannel, this.poller, this.context,

 this.getClass().getClassLoader());

 adapter.start();

 ...

}

Support Components

The org.springframework.integration.test.support package contains various abstract
classes which should be implemented in target tests. See their JavaDocs for more information.

Hamcrest and Mockito Matchers

The org.springframework.integration.test.matcher package contains several Matcher
implementations to assert Message and its properties in unit tests:

import static org.springframework.integration.test.matcher.PayloadMatcher.hasPayload;

...

@Test

public void transform_withFilePayload_convertedToByteArray() throws Exception {

 Message<?> result = this.transformer.transform(message);

 assertThat(result, is(notNullValue()));

 assertThat(result, hasPayload(is(instanceOf(byte[].class))));

 assertThat(result, hasPayload(SAMPLE_CONTENT.getBytes(DEFAULT_ENCODING)));

}

The MockitoMessageMatchers factory can be used for mocks stubbing and verifications:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 588

static final Date SOME_PAYLOAD = new Date();

static final String SOME_HEADER_VALUE = "bar";

static final String SOME_HEADER_KEY = "test.foo";

...

Message<?> message = MessageBuilder.withPayload(SOME_PAYLOAD)

 .setHeader(SOME_HEADER_KEY, SOME_HEADER_VALUE)

 .build();

MessageHandler handler = mock(MessageHandler.class);

handler.handleMessage(message);

verify(handler).handleMessage(messageWithPayload(SOME_PAYLOAD));

verify(handler).handleMessage(messageWithPayload(is(instanceOf(Date.class))));

...

MessageChannel channel = mock(MessageChannel.class);

when(channel.send(messageWithHeaderEntry(SOME_HEADER_KEY, is(instanceOf(Short.class)))))

 .thenReturn(true);

assertThat(channel.send(message), is(false));

Additional utilities will eventually be added or migrated. For example RemoteFileTestSupport
implementations for the (S)FTP tests can be moved from the test directory of those particular modules
to this spring-integration-test-support artifact.

F.3 Spring Integration and test context

Typically, tests for Spring applications use the Spring Test Framework and since Spring
Integration is based on the Spring Framework foundation, everything we can do with
the Spring Test Framework is applied as well when testing integration flows. The
org.springframework.integration.test.context package provides some components for
enhancing the test context for integration needs. First of all we configure our test class with a
@SpringIntegrationTest annotation to enable the Spring Integration Test Framework:

@RunWith(SpringRunner.class)

@SpringIntegrationTest(noAutoStartup = {"inboundChannelAdapter", "*Source*"})

public class MyIntegrationTests {

 @Autowired

 private MockIntegrationContext mockIntegrationContext;

}

The @SpringIntegrationTest annotation populates a MockIntegrationContext bean which
can be autowired to the test class to access its methods. With the provided noAutoStartup option,
the Spring Integration Test Framework prevents endpoints that are normally autoStartup=true from
starting. The endpoints are matched to the provided patterns, which support the following simple pattern
styles: xxx*, *xxx, *xxx* and xxx*yyy.

This is useful, when we would like to not have real connections to the target systems from
Inbound Channel Adapters, for example an AMQP Inbound Gateway, JDBC Polling Channel Adapter,
WebSocket Message Producer in client mode etc.

The MockIntegrationContext is aimed to be used in the target test-cases for modifications to beans
in the real application context, for example those endpoints that have autoStartup overridden to false
can be replaced with mocks:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 589

@Test

public void testMockMessageSource() {

 MessageSource<String> messageSource = () -> new GenericMessage<>("foo");

 this.mockIntegrationContext.substituteMessageSourceFor("mySourceEndpoint", messageSource);

 Message<?> receive = this.results.receive(10_000);

 assertNotNull(receive);

}

See their JavaDocs for more information.

F.4 Integration Mocks

The org.springframework.integration.test.mock package offers tools and utilities for
mocking, stubbing and verification of activity on Spring Integration components. The mocking
functionality is fully based and compatible with the well known Mockito Framework. (The current Mockito
transitive dependency is of version 2.5.x.)

MockIntegration

The MockIntegration factory provides an API to build mocks for Spring Integration beans
which are parts of the integration flow - MessageSource, MessageProducer, MessageHandler,
MessageChannel. The target mocks can be used during configuration phase:

<int:inbound-channel-adapter id="inboundChannelAdapter" channel="results">

 <bean class="org.springframework.integration.test.mock.MockIntegration" factory-

method="mockMessageSource">

 <constructor-arg value="a"/>

 <constructor-arg>

 <array>

 <value>b</value>

 <value>c</value>

 </array>

 </constructor-arg>

 </bean>

</int:inbound-channel-adapter>

@InboundChannelAdapter(channel = "results")

@Bean

public MessageSource<Integer> testingMessageSource() {

 return MockIntegration.mockMessageSource(1, 2, 3);

}

...

StandardIntegrationFlow flow = IntegrationFlows

 .from(MockIntegration.mockMessageSource("foo", "bar", "baz"))

 .<String, String>transform(String::toUpperCase)

 .channel(out)

 .get();

IntegrationFlowRegistration registration = this.integrationFlowContext.registration(flow)

 .register();

as well as in the target test method to replace the real endpoints before performing verifications and
assertions. For this purpose, the aforementioned MockIntegrationContext should be used from
the test:

this.mockIntegrationContext.substituteMessageSourceFor("mySourceEndpoint",

 MockIntegration.mockMessageSource("foo", "bar", "baz"));

Message<?> receive = this.results.receive(10_000);

assertNotNull(receive);

assertEquals("FOO", receive.getPayload());

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 590

Unlike the Mockito MessageSource mock object, the MockMessageHandler is just a regular
AbstractMessageProducingHandler extension with a chain API to stub handling for incoming
messages. The MockMessageHandler provides handleNext(Consumer<Message<?>>) to
specify a one-way stub for the next request message; used to mock message handlers that
don’t produce replies. The handleNextAndReply(Function<Message<?>, ?>) is provided for
performing the same stub logic for the next request message and producing a reply for it. They can be
chained to simulate any arbitrary request-reply scenarios for all expected request messages variants.
These consumers and functions are applied to the incoming messages, one at a time from the stack,
until the last, which is then used for all remaining messages. The behavior is similar to the Mockito
Answer or doReturn() API.

In addition, a Mockito ArgumentCaptor<Message<?>> can be supplied to the
MockMessageHandler in a constructor argument. Each request message for the
MockMessageHandler is captured by that ArgumentCaptor. During the test, its getValue()/
getAllValues() can be used to verify and assert those request messages.

The MockIntegrationContext provides an substituteMessageHandlerFor() API for
replacing the actual configured MessageHandler with a MockMessageHandler, in the particular
endpoint in the application context under test.

A typical usage might be:

ArgumentCaptor<Message<?>> messageArgumentCaptor = ArgumentCaptor.forClass(Message.class);

MessageHandler mockMessageHandler =

 mockMessageHandler(messageArgumentCaptor)

 .handleNextAndReply(m -> m.getPayload().toString().toUpperCase());

this.mockIntegrationContext.substituteMessageHandlerFor("myService.serviceActivator",

 mockMessageHandler);

GenericMessage<String> message = new GenericMessage<>("foo");

this.myChannel.send(message);

Message<?> received = this.results.receive(10000);

assertNotNull(received);

assertEquals("FOO", received.getPayload());

assertSame(message, messageArgumentCaptor.getValue());

See MockIntegration and MockMessageHandler JavaDocs for more information.

F.5 Other Resources

As well as exploring the test cases in the framework itself, the spring-integration-samples repository
has some sample apps specifically around testing, such as testing-examples and advanced-
testing-examples. In some cases, the samples themselves have comprehensive end-to-end tests,
such as the file-split-ftp sample.

https://github.com/spring-projects/spring-integration-samples

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 591

Appendix G. Spring Integration
Samples
G.1 Introduction

As of Spring Integration 2.0, the samples are no longer included with the Spring Integration distribution.
Instead we have switched to a much simpler collaborative model that should promote better community
participation and, ideally, more contributions. Samples now have a dedicated Git repository and a
dedicated JIRA Issue Tracking system. Sample development will also have its own lifecycle which is not
dependent on the lifecycle of the framework releases, although the repository will still be tagged with
each major release for compatibility reasons.

The great benefit to the community is that we can now add more samples and make them available
to you right away without waiting for the next release. Having its own JIRA that is not tied to the the
actual framework is also a great benefit. You now have a dedicated place to suggest samples as well
as report issues with existing samples. Or, _ you may want to submit a sample to us_ as an attachment
through the JIRA or, better, through the collaborative model that Git promotes. If we believe your sample
adds value, we would be more then glad to add it to the samples repository, properly crediting you as
the author.

G.2 Where to get Samples

The Spring Integration Samples project is hosted on GitHub. You can find the repository at:

https://github.com/SpringSource/spring-integration-samples

In order to check out or clone (Git parlance) the samples, please make sure you have a Git client
installed on your system. There are several GUI-based products available for many platforms, e.g. EGit
for the Eclipse IDE. A simple Google search will help you find them. Of course you can also just use
the command line interface for <http://git-scm.com/,Git>.

Note

If you need more information on how to install and/or use Git, please visit: http://git-scm.com/.

In order to checkout (clone in Git terms) the Spring Integration samples repository using the Git
command line tool, issue the following commands:

$ git clone https://github.com/SpringSource/spring-integration-samples.git

That is all you need to do in order to clone the entire samples repository into a directory named spring-
integration-samples within the working directory where you issued that git command. Since the samples
repository is a live repository, you might want to perform periodic pulls (updates) to get new samples,
as well as updates to the existing samples. In order to do so issue the following git pull command:

$ git pull

G.3 Submitting Samples or Sample Requests

How can I contribute my own Samples?

https://github.com/SpringSource/spring-integration-samples/
https://github.com/SpringSource/spring-integration-samples
http://eclipse.org/egit/
http://git-scm.com/,Git>
http://git-scm.com/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 592

Github is for social coding: if you want to submit your own code examples to the Spring Integration
Samples project, we encourage contributions through pull requests from forks of this repository. If you
want to contribute code this way, please reference, if possible, ahttps://jira.springframework.org/browse/
INTSAMPLES[JIRA Ticket] that provides some details regarding the provided sample.

Sign the contributor license agreement

Very important: before we can accept your Spring Integration sample, we will need you to sign
the SpringSource contributor license agreement (CLA). Signing the contributor’s agreement does
not grant anyone commit rights to the main repository, but it does mean that we can accept your
contributions, and you will get an author credit if we do. In order to read and sign the CLA, please
go to:

https://support.springsource.com/spring_committer_signup

From the Project drop down, please select Spring Integration. The Project Lead is Gary Russell.

Code Contribution Process

For the actual code contribution process, please read the the Contributor Guidelines for Spring
Integration, they apply for this project as well:

https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.md

This process ensures that every commit gets peer-reviewed. As a matter of fact, the core committers
follow the exact same rules. We are gratefully looking forward to your Spring Integration Samples!

Sample Requests

As mentioned earlier, the Spring Integration Samples project has a dedicated JIRA Issue tracking
system. To submit new sample requests, please visit our JIRA Issue Tracking system:

https://jira.springframework.org/browse/INTSAMPLES.

G.4 Samples Structure

Starting with Spring Integration 2.0, the structure of the samples changed as well. With plans for more
samples we realized that some samples have different goals than others. While they all share the
common goal of showing you how to apply and work with the Spring Integration framework, they also
differ in areas where some samples are meant to concentrate on a technical use case while others focus
on a business use case, and some samples are all about showcasing various techniques that could be
applied to address certain scenarios (both technical and business). The new categorization of samples
will allow us to better organize them based on the problem each sample addresses while giving you a
simpler way of finding the right sample for your needs.

Currently there are 4 categories. Within the samples repository each category has its own directory
which is named after the category name:

BASIC (samples/basic)

This is a good place to get started. The samples here are technically motivated and demonstrate the
bare minimum with regard to configuration and code. These should help you to get started quickly by
introducing you to the basic concepts, API and configuration of Spring Integration as well as Enterprise

http://help.github.com/send-pull-requests/
http://help.github.com/fork-a-repo/
https://support.springsource.com/spring_committer_signup
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.md
https://jira.springframework.org/browse/INTSAMPLES

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 593

Integration Patterns (EIP). For example, if you are looking for an answer on how to implement and wire
a Service Activator to a Message Channel or how to use a Messaging Gateway as a facade to your
message exchange, or how to get started with using MAIL or TCP/UDP modules etc., this would be the
right place to find a good sample. The bottom line is this is a good place to get started.

INTERMEDIATE (samples/intermediate)

This category targets developers who are already familiar with the Spring Integration framework (past
getting started), but need some more guidance while resolving the more advanced technical problems
one might deal with after switching to a Messaging architecture. For example, if you are looking for an
answer on how to handle errors in various message exchange scenarios or how to properly configure
the Aggregator for the situations where some messages might not ever arrive for aggregation, or any
other issue that goes beyond a basic implementation and configuration of a particular component and
addresses what else types of problems, this would be the right place to find these type of samples.

ADVANCED (samples/advanced)

This category targets developers who are very familiar with the Spring Integration framework but
are looking to extend it to address a specific custom need by using Spring Integration’s public API.
For example, if you are looking for samples showing you how to implement a custom Channel or
Consumer (event-based or polling-based), or you are trying to figure out what is the most appropriate
way to implement a custom Bean parser on top of the Spring Integration Bean parser hierarchy when
implementing your own namespace and schema for a custom component, this would be the right place
to look. Here you can also find samples that will help you with Adapter development. Spring Integration
comes with an extensive library of adapters to allow you to connect remote systems with the Spring
Integration messaging framework. However you might have a need to integrate with a system for which
the core framework does not provide an adapter. So, you may decide to implement your own (and
potentially contribute it). This category would include samples showing you how.

APPLICATIONS (samples/applications)

This category targets developers and architects who have a good understanding of Message-driven
architecture and EIP, and an above average understanding of Spring and Spring Integration who are
looking for samples that address a particular business problem. In other words the emphasis of samples
in this category is business use cases and how they can be solved with a Message-Driven Architecture
and Spring Integration in particular. For example, if you are interested to see how a Loan Broker or
Travel Agent process could be implemented and automated via Spring Integration, this would be the
right place to find these types of samples.

Important

Remember: Spring Integration is a community driven framework, therefore community
participation is IMPORTANT. That includes Samples; so, if you can’t find what you are looking
for, let us know!

G.5 Samples

Currently Spring Integration comes with quite a few samples and you can only expect more. To help
you better navigate through them, each sample comes with its own readme.txt file which covers
several details about the sample (e.g., what EIP patterns it addresses, what problem it is trying to solve,
how to run sample etc.). However, certain samples require a more detailed and sometimes graphical
explanation. In this section you’ll find details on samples that we believe require special attention.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 594

Loan Broker

In this section, we will review the Loan Broker sample application that is included in the Spring
Integration samples. This sample is inspired by one of the samples featured in Gregor Hohpe and Bobby
Woolf’s book, Enterprise Integration Patterns.

The diagram below represents the entire process

Figure G.1. Loan Broker Sample

Now lets look at this process in more detail

At the core of an EIP architecture are the very simple yet powerful concepts of Pipes and Filters, and
of course: Messages. Endpoints (Filters) are connected with one another via Channels (Pipes). The
producing endpoint sends Message to the Channel, and the Message is retrieved by the Consuming
endpoint. This architecture is meant to define various mechanisms that describe HOW information
is exchanged between the endpoints, without any awareness of WHAT those endpoints are or what
information they are exchanging. Thus, it provides for a very loosely coupled and flexible collaboration
model while also decoupling Integration concerns from Business concerns. EIP extends this architecture
by further defining:

• The types of pipes (Point-to-Point Channel, Publish-Subscribe Channel, Channel Adapter, etc.)

• The core filters and patterns around how filters collaborate with pipes (Message Router, Splitters and
Aggregators, various Message Transformation patterns, etc.)

The details and variations of this use case are very nicely described in Chapter 9 of the EIP Book, but
here is the brief summary; A Consumer while shopping for the best Loan Quote(s) subscribes to the
services of a Loan Broker, which handles details such as:

• Consumer pre-screening (e.g., obtain and review the consumer’s Credit history)

• Determine the most appropriate Banks (e.g., based on consumer’s credit history/score)

http://www.eaipatterns.com

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 595

• Send a Loan quote request to each selected Bank

• Collect responses from each Bank

• Filter responses and determine the best quote(s), based on consumer’s requirements.

• Pass the Loan quote(s) back to the consumer.

Obviously the real process of obtaining a loan quote is a bit more complex, but since our goal here is to
demonstrate how Enterprise Integration Patterns are realized and implemented within SI, the use case
has been simplified to concentrate only on the Integration aspects of the process. It is not an attempt
to give you an advice in consumer finances.

As you can see, by hiring a Loan Broker, the consumer is isolated from the details of the Loan Broker’s
operations, and each Loan Broker’s operations may defer from one another to maintain competitive
advantage, so whatever we assemble/implement must be flexible so any changes could be introduced
quickly and painlessly. Speaking of change, the Loan Broker sample does not actually talk to any
imaginary Banks or Credit bureaus. Those services are stubbed out. Our goal here is to assemble,
orchestrate and test the integration aspect of the process as a whole. Only then can we start thinking
about wiring such process to the real services. At that time the assembled process and its configuration
will not change regardless of the number of Banks a particular Loan Broker is dealing with, or the type
of communication media (or protocols) used (JMS, WS, TCP, etc.) to communicate with these Banks.

DESIGN

As you analyze the 6 requirements above you’ll quickly see that they all fall into the category of
Integration concerns. For example, in the consumer pre-screening step we need to gather additional
information about the consumer and the consumer’s desires and enrich the loan request with additional
meta information. We then have to filter such information to select the most appropriate list of Banks,
and so on. Enrich, filter, select – these are all integration concerns for which EIP defines a solution in
the form of patterns. SI provides an implementation of these patterns.

Figure G.2. Messaging Gateway

The Messaging Gateway pattern provides a simple mechanism to access messaging systems, including
our Loan Broker. In SI you define the Gateway as a Plain Old Java Interface (no need to provide
an implementation), configure it via the XML <gateway> element or via annotation and use it as any
other Spring bean. SI will take care of delegating and mapping method invocations to the Messaging
infrastructure by generating a Message (payload is mapped to an input parameter of the method) and
sending it to the designated channel.

<int:gateway id="loanBrokerGateway"

 default-request-channel="loanBrokerPreProcessingChannel"

 service-interface="org.springframework.integration.samples.loanbroker.LoanBrokerGateway">

 <int:method name="getBestLoanQuote">

 <int:header name="RESPONSE_TYPE" value="BEST"/>

 </int:method>

</int:gateway>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 596

Our current Gateway provides two methods that could be invoked. One that will return the best
single quote and another one that will return all quotes. Somehow downstream we need to know
what type of reply the caller is looking for. The best way to achieve this in Messaging architecture
is to enrich the content of the message with some meta-data describing your intentions. Content
Enricher is one of the patterns that addresses this and although Spring Integration does provide a
separate configuration element to enrich Message Headers with arbitrary data (we’ll see it later), as
a convenience, since_Gateway_ element is responsible to construct the initial Message it provides
embedded capability to enrich the newly created Message with arbitrary Message Headers. In our
example we are adding header RESPONSE_TYPE with value BEST' whenever the getBestQuote()
method is invoked. For other method we are not adding any header. Now we can check downstream
for an existence of this header and based on its presence and its value we can determine what type
of reply the caller is looking for.

Based on the use case we also know there are some pre-screening steps that needs to be performed
such as getting and evaluating the consumer’s credit score, simply because some premiere Banks will
only typically accept quote requests from consumers that meet a minimum credit score requirement. So
it would be nice if the Message would be enriched with such information before it is forwarded to the
Banks. It would also be nice if when several processes needs to be completed to provide such meta-
information, those processes could be grouped in a single unit. In our use case we need to determine
credit score and based on the credit score and some rule select a list of Message Channels (Bank
Channels) we will sent quote request to.

Composed Message Processor

The Composed Message Processor pattern describes rules around building endpoints that maintain
control over message flow which consists of multiple message processors. In Spring Integration
Composed Message Processor pattern is implemented via <chain> element.

Figure G.3. Chain

As you can see from the above configuration we have a chain with inner header-enricher element which
will further enrich the content of the Message with the header CREDIT_SCORE and value that will be
determined by the call to a credit service (simple POJO spring bean identified by creditBureau name)
and then it will delegate to the Message Router

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 597

Figure G.4. Message Router

There are several implementations of the Message Routing pattern available in Spring Integration. Here
we are using a router that will determine a list of channels based on evaluating an expression (Spring
Expression Language) which will look at the credit score that was determined is the previous step and
will select the list of channels from the Map bean with id banks whose values are premier or secondary
based o the value of credit score. Once the list of Channels is selected, the Message will be routed
to those Channels.

Now, one last thing the Loan Broker needs to to is to receive the loan quotes form the banks, aggregate
them by consumer (we don’t want to show quotes from one consumer to another), assemble the
response based on the consumer’s selection criteria (single best quote or all quotes) and reply back
to the consumer.

Figure G.5. Message Aggregator

An Aggregator pattern describes an endpoint which groups related Messages into a single Message.
Criteria and rules can be provided to determine an aggregation and correlation strategy. SI provides
several implementations of the Aggregator pattern as well as a convenient name-space based
configuration.

<int:aggregator id="quotesAggregator"

 input-channel="quotesAggregationChannel"

 method="aggregateQuotes">

 <beans:bean class="org.springframework.integration.samples.loanbroker.LoanQuoteAggregator"/>

</int:aggregator>

Our Loan Broker defines a quotesAggregator bean via the <aggregator> element which provides a
default aggregation and correlation strategy. The default correlation strategy correlates messages based
on the correlationId header (see Correlation Identifier pattern). What’s interesting is that we never
provided the value for this header. It was set earlier by the router automatically, when it generated a
separate Message for each Bank channel.

Once the Messages are correlated they are released to the actual Aggregator implementation. Although
default Aggregator is provided by SI, its strategy (gather the list of payloads from all Messages and
construct a new Message with this List as payload) does not satisfy our requirement. The reason is that

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 598

our consumer might require a single best quote or all quotes. To communicate the consumer’s intention,
earlier in the process we set the RESPONSE_TYPE header. Now we have to evaluate this header and
return either all the quotes (the default aggregation strategy would work) or the best quote (the default
aggregation strategy will not work because we have to determine which loan quote is the best).

Obviously selecting the best quote could be based on complex criteria and would influence the
complexity of the aggregator implementation and configuration, but for now we are making it simple. If
consumer wants the best quote we will select a quote with the lowest interest rate. To accomplish that
the LoanQuoteAggregator.java will sort all the quotes and return the first one. The LoanQuote.java
implements Comparable which compares quotes based on the rate attribute. Once the response
Message is created it is sent to the default-reply-channel of the Messaging Gateway (thus the consumer)
which started the process. Our consumer got the Loan Quote!

Conclusion

As you can see a rather complex process was assembled based on POJO (read existing, legacy), light
weight, embeddable messaging framework (Spring Integration) with a loosely coupled programming
model intended to simplify integration of heterogeneous systems without requiring a heavy-weight ESB-
like engine or proprietary development and deployment environment, because as a developer you
should not be porting your Swing or console-based application to an ESB-like server or implementing
proprietary interfaces just because you have an integration concern.

This and other samples in this section are built on top of Enterprise Integration Patterns and can
be considered "building blocks" for YOUR solution; they are not intended to be complete solutions.
Integration concerns exist in all types of application (whether server based or not). It should not require
change in design, testing and deployment strategy if such applications need to be integrated.

The Cafe Sample

In this section, we will review a Cafe sample application that is included in the Spring
Integration samples. This sample is inspired by another sample featured in Gregor Hohpe’s http://
www.eaipatterns.com/ramblings.html[Ramblings].

The domain is that of a Cafe, and the basic flow is depicted in the following diagram:

Figure G.6. Cafe Sample

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 599

The Order object may contain multiple OrderItems. Once the order is placed, a Splitter will break the
composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the OrderItem object’s isIced property). The
Barista prepares each drink, but hot and cold drink preparation are handled by two distinct methods:
prepareHotDrink and prepareColdDrink. The prepared drinks are then sent to the Waiter where they
are aggregated into a Delivery object.

Here is the XML configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:int-stream="http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/stream

 http://www.springframework.org/schema/integration/stream/spring-integration-stream.xsd">

 <int:gateway id="cafe" service-interface="o.s.i.samples.cafe.Cafe"/>

 <int:channel id="orders"/>

 <int:splitter input-channel="orders" ref="orderSplitter"

 method="split" output-channel="drinks"/>

 <int:channel id="drinks"/>

 <int:router input-channel="drinks"

 ref="drinkRouter" method="resolveOrderItemChannel"/>

 <int:channel id="coldDrinks"><int:queue capacity="10"/></int:channel>

 <int:service-activator input-channel="coldDrinks" ref="barista"

 method="prepareColdDrink" output-channel="preparedDrinks"/>

 <int:channel id="hotDrinks"><int:queue capacity="10"/></int:channel>

 <int:service-activator input-channel="hotDrinks" ref="barista"

 method="prepareHotDrink" output-channel="preparedDrinks"/>

 <int:channel id="preparedDrinks"/>

 <int:aggregator input-channel="preparedDrinks" ref="waiter"

 method="prepareDelivery" output-channel="deliveries"/>

 <int-stream:stdout-channel-adapter id="deliveries"/>

 <beans:bean id="orderSplitter"

 class="org.springframework.integration.samples.cafe.xml.OrderSplitter"/>

 <beans:bean id="drinkRouter"

 class="org.springframework.integration.samples.cafe.xml.DrinkRouter"/>

 <beans:bean id="barista" class="o.s.i.samples.cafe.xml.Barista"/>

 <beans:bean id="waiter" class="o.s.i.samples.cafe.xml.Waiter"/>

 <int:poller id="poller" default="true" fixed-rate="1000"/>

</beans:beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint
will manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent
that add the "auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are
simple POJOs with strongly typed method arguments. For example, here is the Splitter:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 600

public class OrderSplitter {

 public List<OrderItem> split(Order order) {

 return order.getItems();

 }

}

In the case of the Router, the return value does not have to be a MessageChannel instance (although
it can be). As you see in this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {

 public String resolveOrderItemChannel(OrderItem orderItem) {

 return (orderItem.isIced()) ? "coldDrinks" : "hotDrinks";

 }

}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Barista instance but different methods: prepareHotDrink or prepareColdDrink
corresponding to the two channels where order items have been routed.

public class Barista {

 private long hotDrinkDelay = 5000;

 private long coldDrinkDelay = 1000;

 private AtomicInteger hotDrinkCounter = new AtomicInteger();

 private AtomicInteger coldDrinkCounter = new AtomicInteger();

 public void setHotDrinkDelay(long hotDrinkDelay) {

 this.hotDrinkDelay = hotDrinkDelay;

 }

 public void setColdDrinkDelay(long coldDrinkDelay) {

 this.coldDrinkDelay = coldDrinkDelay;

 }

 public Drink prepareHotDrink(OrderItem orderItem) {

 try {

 Thread.sleep(this.hotDrinkDelay);

 System.out.println(Thread.currentThread().getName()

 + " prepared hot drink #" + hotDrinkCounter.incrementAndGet()

 + " for order #" + orderItem.getOrder().getNumber()

 + ": " + orderItem);

 return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),

 orderItem.isIced(), orderItem.getShots());

 }

 catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 return null;

 }

 }

 public Drink prepareColdDrink(OrderItem orderItem) {

 try {

 Thread.sleep(this.coldDrinkDelay);

 System.out.println(Thread.currentThread().getName()

 + " prepared cold drink #" + coldDrinkCounter.incrementAndGet()

 + " for order #" + orderItem.getOrder().getNumber() + ": "

 + orderItem);

 return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),

 orderItem.isIced(), orderItem.getShots());

 }

 catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 return null;

 }

 }

}

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 601

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks
take 5 times as long to prepare). This simulates work being completed at different rates. When the
CafeDemo main method runs, it will loop 100 times sending a single hot drink and a single cold drink
each time. It actually sends the messages by invoking the placeOrder method on the Cafe interface.
Above, you will see that the <gateway> element is specified in the configuration file. This triggers the
creation of a proxy that implements the given service-interface and connects it to a channel. The channel
name is provided on the @Gateway annotation of the Cafe interface.

public interface Cafe {

 @Gateway(requestChannel="orders")

 void placeOrder(Order order);

}

Finally, have a look at the main() method of the CafeDemo itself.

public static void main(String[] args) {

 AbstractApplicationContext context = null;

 if (args.length > 0) {

 context = new FileSystemXmlApplicationContext(args);

 }

 else {

 context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo.class);

 }

 Cafe cafe = context.getBean("cafe", Cafe.class);

 for (int i = 1; i <= 100; i++) {

 Order order = new Order(i);

 order.addItem(DrinkType.LATTE, 2, false);

 order.addItem(DrinkType.MOCHA, 3, true);

 cafe.placeOrder(order);

 }

}

Tip

To run this sample as well as 8 others, refer to the README.txt within the "samples" directory
of the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds.
However, by configuring a poller with a concurrent task executor, you can dramatically change the
results. For example, you could use a thread pool executor with 5 workers for the hot drink barista while
keeping the cold drink barista as it is:

<int:service-activator input-channel="hotDrinks"

 ref="barista"

 method="prepareHotDrink"

 output-channel="preparedDrinks"/>

 <int:service-activator input-channel="hotDrinks"

 ref="barista"

 method="prepareHotDrink"

 output-channel="preparedDrinks">

 <int:poller task-executor="pool" fixed-rate="1000"/>

 </int:service-activator>

 <task:executor id="pool" pool-size="5"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 602

Also, notice that the worker thread name is displayed with each invocation. You will see that the hot
drinks are prepared by the task-executor threads. If you provide a much shorter poller interval (such as
100 milliseconds), then you will notice that occasionally it throttles the input by forcing the task-scheduler
(the caller) to invoke the operation.

Note

In addition to experimenting with the poller’s concurrency settings, you can also add the
transactional sub-element and then refer to any PlatformTransactionManager instance within the
context.

The XML Messaging Sample

The xml messaging sample in basic/xml illustrates how to use some of the provided components
which deal with xml payloads. The sample uses the idea of processing an order for books represented
as xml.

NOTE:This sample shows that the namespace prefix can be whatever you want; while we usually use,
int-xml for integration XML components, the sample uses si-xml.

First the order is split into a number of messages, each one representing a single order item using the
XPath splitter component.

<si-xml:xpath-splitter id="orderItemSplitter" input-channel="ordersChannel"

 output-channel="stockCheckerChannel" create-documents="true">

 <si-xml:xpath-expression expression="/orderNs:order/orderNs:orderItem"

 namespace-map="orderNamespaceMap" />

 </si-xml:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item
document is enriched with information from the stock checker about order item stock level. This enriched
order item message is then used to route the message. In the case where the order item is in stock the
message is routed to the warehouse.

<si-xml:xpath-router id="instockRouter" input-channel="orderRoutingChannel" resolution-required="true">

 <si-xml:xpath-expression expression="/orderNs:orderItem/@in-stock" namespace-map="orderNamespaceMap"

 />

 <si-xml:mapping value="true" channel="warehouseDispatchChannel"/>

 <si-xml:mapping value="false" channel="outOfStockChannel"/>

</si-xml:xpath-router>

Where the order item is not in stock the message is transformed using xslt into a format suitable for
sending to the supplier.

<si-xml:xslt-transformer input-channel="outOfStockChannel"

 output-channel="resupplyOrderChannel"

 xsl-resource="classpath:org/springframework/integration/samples/xml/bigBooksSupplierTransformer.xsl"/>

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 603

Appendix H. Additional Resources
H.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at http://
spring.io. That site serves as a hub of information and is the best place to find up-to-date announcements
about the project as well as links to articles, blogs, and new sample applications.

http://projects.spring.io/spring-integration/
http://spring.io
http://spring.io

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 604

Appendix I. Change History
I.1 Changes between 4.2 and 4.3

Please be sure to also see the Migration Guide for important changes that might affect your applications.
Migration guides for all versions back to 2.1 can be found on the Wiki.

I.2 New Components

AMQP Async Outbound Gateway

See Section 12.8, “Async Outbound Gateway”.

MessageGroupFactory

The new MessageGroupFactory strategy has been introduced to allow a control over MessageGroup
instances in MessageGroupStore logic. The SimpleMessageGroupFactory is provided for the
SimpleMessageGroup with the GroupType.HASH_SET as the default factory for the standard
MessageGroupStore implementations. See Section 10.4, “Message Store” for more information.

PersistentMessageGroup

The PersistentMessageGroup, - lazy-load proxy, - implementation is provided for persistent
MessageGroupStore s, which return this instance for the getMessageGroup() when their
lazyLoadMessageGroups is true (defaults). See Section 10.4, “Message Store” for more
information.

FTP/SFTP Streaming Inbound Channel Adapters

New inbound channel adapters are provided that return an InputStream for each file allowing you
to retrieve remote files without writing them to the local file system See Section 16.5, “FTP Streaming
Inbound Channel Adapter” and Section 28.8, “SFTP Streaming Inbound Channel Adapter” for more
information.

Stream Transformer

A new StreamTransformer is provided to transform an InputStream payload to either a byte[]
or String. See the section called “Stream Transformer” for more information.

Integration Graph

A new IntegrationGraphServer together with the IntegrationGraphController REST
service are provided to expose the runtime model of a Spring Integration application as a graph. See
Section 10.8, “Integration Graph” for more information.

JDBC Lock Registry

A new JdbcLockRegistry is provided for distributed locks shared through the data base table. See
Section 19.6, “JDBC Lock Registry” for more information.

https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.2-to-4.3-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 605

Leader Initiator for Lock Registry

A new LeaderInitiator implementation is provided based on the LockRegistry strategy. See
Section 8.3, “Leadership Event Handling” for more information.

I.3 General Changes

Core Changes

Outbound Gateway within Chain

Previously, it was possible to specify a reply-channel on an outbound gateway within a chain. It
was completely ignored; the gateway’s reply goes to the next chain element, or to the chain’s output
channel if the gateway is the last element. This condition is now detected and disallowed. If you have
such configuration, simply remove the reply-channel.

Async Service Activator

An option to make the Service Asynchronous has been added. See the section called “Asynchronous
Service Activator” for more information.

Messaging Annotation Support changes

The Messaging Annotation Support doesn’t require any more @MessageEndpoint (or any other
@Component) annotation declaration on the class level. To restore the previous behaviour
specify the spring.integration.messagingAnnotations.require.componentAnnotation
of spring.integration.properties as true. See Section E.5, “Global Properties” and
Section E.6, “Annotation Support” for more information.

Mail Changes

Customizable User Flag

The customizable userFlag added in 4.2.2 to provide customization of the flag used to denote that
the mail has been seen is now available using the XML namespace. See Section 22.5, “Marking IMAP
Messages When \Recent is Not Supported” for more information.

Mail Message Mapping

There is now an option to map inbound mail messages with the MessageHeaders containing the mail
headers and the payload containing the email content. Previously, the payload was always the raw
MimeMessage. See Section 22.3, “Inbound Mail Message Mapping” for more information.

JMS Changes

Header Mapper

The DefaultJmsHeaderMapper now maps the standard correlationId header as a message
property by invoking its toString() method. See Section 21.6, “Mapping Message Headers to/from
JMS Message” for more information.

Async Gateway

The JMS Outbound gateway now has an async property. See the section called “Async Gateway” for
more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 606

Aggregator Changes

There is a change in behavior when a POJO aggregator releases a collection of Message<?> objects;
this is rare but if your application does that, you will need to make a small change to your POJO. See
this Important note for more information.

TCP/UDP Changes

Events

A new TcpConnectionServerListeningEvent is emitted when a server connection factory is
started. See Section 32.5, “TCP Connection Events” for more information.

The destination-expression and socket-expression are now available for the <int-
ip:udp-outbound-channel-adapter>. See Section 32.2, “UDP Adapters” for more information.

Stream Deserializers

The various deserializers that can’t allocate the final buffer until the whole message has been assembled
now support pooling of the raw buffer into which the data is received, rather than creating and discarding
a buffer for each message. See Section 32.3, “TCP Connection Factories” for more information.

TCP Message Mapper

The message mapper now, optionally, sets a configured content type header. See Section 32.13, “IP
Message Headers” for more information.

File Changes

Destination Directory Creation

The generated file name for the FileWritingMessageHandler can represent sub-path to save the
desired directory structure for file in the target directory. See the section called “Generating File Names”
for more information.

The FileReadingMessageSource now hides the WatchService directory scanning logic in the
inner class. The use-watch-service and watch-events options are provided to enable such
a behaviour. The top level WatchServiceDirectoryScanner has been deprecated because of
inconsistency around API. See the section called “WatchServiceDirectoryScanner” for more information.

Buffer Size

When writing files, you can now specify the buffer size to use.

Appending and Flushing

You can now avoid flushing files when appending and use a number of strategies to flush the data
during idle periods. See the section called “Flushing Files When using APPEND_NO_FLUSH” for more
information.

Preserving Timestamps

The outbound channel adapter can now be configured to set the destination file’s lastmodified
timestamp. See the section called “File Timestamps” for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 607

Splitter Changes

The FileSplitter will now automatically close an (S)FTP session when the file is completely read.
This applies when the outbound gateway returns an InputStream or the new (S)FTP streaming
channel adapters are being used. Also a new markers-json options has been introduced to convert
FileSplitter.FileMarker to JSON String for relaxed downstream network interaction. See
Section 15.5, “File Splitter” for more information.

File Filters

A new ChainFileListFilter is provided as an alternative to CompositeFileListFilter. See
Section 15.2, “Reading Files” for more information.

AMQP Changes

Content Type Message Converter

The outbound endpoints now support a RabbitTemplate configured with a
ContentTypeDelegatingMessageConverter such that the converter can be chosen based on the
message content type. See Section 12.9, “Outbound Message Conversion” for more information.

Headers for Delayed Message Handling

Spring AMQP 1.6 adds support for Delayed Message Exchanges. Header mapping now supports the
headers (amqp_delay and amqp_receivedDelay) used by this feature.

AMQP-Backed Channels

AMQP-backed channels now support message mapping. See Section 12.12, “AMQP Backed Message
Channels” for more information.

Redis Changes

List Push/Pop Direction

Previously, the queue channel adapters always used the Redis List in a fixed direction, pushing to
the left end and reading from the right end. It is now possible to configure the reading and writing
direction using rightPop and leftPush options for the RedisQueueMessageDrivenEndpoint
and RedisQueueOutboundChannelAdapter respectively. See the section called “Redis Queue
Inbound Channel Adapter” and the section called “Redis Queue Outbound Channel Adapter” for more
information.

Queue Inbound Gateway Default Serializer

The default serializer in the inbound gateway has been changed to a
JdkSerializationRedisSerializer for compatibility with the outbound gateway. See
Section 25.10, “Redis Queue Inbound Gateway” for more information.

HTTP Changes

Previously, with requests that had a body (such as POST) that had no content-type header, the body
was ignored. With this release, the content type of such requests is considered to be application/
octet-stream as recommended by RFC 2616. See Section 18.2, “Http Inbound Components” for
more information.

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 608

SFTP Changes

Factory Bean

A new factory bean is provided to simplify the configuration of Jsch proxies for SFTP. See Section 28.3,
“Proxy Factory Bean” for more information.

chmod

The SFTP outbound gateway (for put and mput commands) and the SFTP outbound channel
adapter now support the chmod attribute to change the remote file permissions after uploading. See
Section 28.10, “SFTP Outbound Channel Adapter” and Section 28.11, “SFTP Outbound Gateway” for
more information.

FTP Changes

Session Changes

The FtpSession now supports null for the list() and listNames() method, since it is
possible by the underlying FTP Client. With that the FtpOutboundGateway can now be configured
without remoteDirectory expression. And the <int-ftp:inbound-channel-adapter> can be
configured without remote-directory/remote-directory-expression. See Chapter 16, FTP/
FTPS Adapters for more information.

Router Changes

The ErrorMessageExceptionTypeRouter supports now the Exception superclass mappings
to avoid duplication for the same channel in case of several inheritors. For this purpose the
ErrorMessageExceptionTypeRouter loads mapping classes during initialization to fail-fast for a
ClassNotFoundException.

See Section 6.1, “Routers” for more information.

Header Mapping

General

AMQP, WS and XMPP header mappings (e.g. request-header-mapping, reply-header-
mapping) now support negated patterns. See Section 12.13, “AMQP Message Headers”, Section 36.5,
“WS Message Headers”, and Section 38.6, “XMPP Message Headers” for more information.

AMQP Header Mapping

Previously, only standard AMQP headers were mapped by default; users had to explicitly enable
mapping of user-defined headers. With this release all headers are mapped by default. In addition, the
inbound amqp_deliveryMode header is no longer mapped by default. See Section 12.13, “AMQP
Message Headers” for more information.

Groovy Scripts

Groovy scripts can now be configured with the compile-static hint or any other
CompilerConfiguration options. See the section called “Groovy configuration” for more
information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 609

@InboundChannelAdapter

The @InboundChannelAdapter has now an alias channel attribute for regular value. In addition the
target SourcePollingChannelAdapter components can now resolve the target outputChannel
bean from its provided name (outputChannelName options) in late-binding manner. See Section E.6,
“Annotation Support” for more information.

XMPP changes

The XMPP Extensions (XEP) are now supported by the XMPP channel adapters. See Section 38.7,
“XMPP Extensions” for more information.

WireTap Late Binding

The WireTap ChannelInterceptor now can accept a channelName which is resolved to the target
MessageChannel later, during the first active interceptor operation. See the section called “Wire Tap”
for more information.

ChannelMessageStoreQueryProvider

The ChannelMessageStoreQueryProvider now supports H2 database. See the section called
“Backing Message Channels” for more information.

WebSocket Changes

The ServerWebSocketContainer now exposes allowedOrigins option and
SockJsServiceOptions a suppressCors option. See Chapter 35, WebSockets Support for more
information.

I.4 Changes between 4.1 and 4.2

Please be sure to also see the Migration Guide for important changes that might affect your applications.
Migration guides for all versions back to 2.1 can be found on the Wiki.

I.5 New Components

Major Management/JMX Rework

A new MetricsFactory strategy interface has been introduced. This, together with other changes in
the JMX and management infrastructure provides much more control over management configuration
and runtime performance.

However, this has some important implications for (some) user environments.

For complete details, see Section 10.1, “Metrics and Management” and the section called “JMX
Improvements”.

MongoDB Metadata Store

The MongoDbMetadataStore is now available. For more information, see the section called
“MongoDB Metadata Store”.

https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.1-to-4.2-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 610

SecuredChannel Annotation

The @SecuredChannel annotation has been introduced, replacing the deprecated
ChannelSecurityInterceptorFactoryBean. For more information, see Appendix D, Security in
Spring Integration.

SecurityContext Propagation

The SecurityContextPropagationChannelInterceptor has been introduced for the
SecurityContext propagation from one message flow’s Thread to another. For more information,
see Appendix D, Security in Spring Integration.

FileSplitter

The FileSplitter, which splits text files into lines, was added in 4.1.2. It now has full support in the
int-file: namespace; see Section 15.5, “File Splitter” for more information.

Zookeeper Support

Zookeeper support has been added to the framework to assist when running on a clustered/multi-host
environment.

• ZookeeperMetadataStore

• ZookeeperLockRegistry

• Zookeeper Leadership

See Chapter 39, Zookeeper Support for more information.

Thread Barrier

A new thread <int:barrier/> component is available allowing a thread to be suspended until some
asynchronous event occurs.

See Section 6.8, “Thread Barrier” for more information.

STOMP Support

STOMP support has been added to the framework as inbound and outbound channel adapters pair.
See Chapter 29, STOMP Support for more information.

Codec

A new Codec abstraction has been introduced, to encode/decode objects to/from byte[]. An
implementation that uses Kryo is provided. Codec-based transformers and message converters are
also provided.

See Section 7.4, “Codec” for more information.

Message PreparedStatement Setter

A new MessagePreparedStatementSetter functional interface callback is available for
the JdbcMessageHandler (<int-jdbc:outbound-gateway> and <int-jdbc:outbound-

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 611

channel-adapter>) as an alternative to the SqlParameterSourceFactory to populate
parameters on the PreparedStatement with the requestMessage context.

See Section 19.2, “Outbound Channel Adapter” for more information.

I.6 General Changes

Wire Tap

As an alternative to the existing selector attribute, the <wire-tap/> now supports the selector-
expression attribute.

File Changes

See Chapter 15, File Support for more information about these changes.

Appending New Lines

The <int-file:outbound-channel-adapter> and <int-file:outbound-gateway> now
support an append-new-line attribute. If set to true, a new line is appended to the file after a
message is written. The default attribute value is false.

Ignoring Hidden Files

The ignore-hidden attribute has been introduced for the <int-file:inbound-channel-
adapter> to pick up or not the hidden files from the source directory. It is true by default.

Writing InputStream Payloads

The FileWritingMessageHandler now also accepts InputStream as a valid message payload
type.

HeadDirectoryScanner

The HeadDirectoryScanner can now be used with other FileListFilter s.

Last Modified Filter

The LastModifiedFileListFilter has been added.

WatchService Directory Scanner

The WatchServiceDirectoryScanner is now available.

Persistent File List Filter Changes

The AbstractPersistentFileListFilter has a new property flushOnUpdate which,
when set to true, will flush() the metadata store if it implements Flushable (e.g. the
PropertiesPersistingMetadataStore).

Class Package Change

The ScatterGatherHandler class has been moved from the
org.springframework.integration.handler to the
org.springframework.integration.scattergather.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 612

TCP Changes

TCP Serializers

The TCP Serializers no longer flush() the OutputStream; this is now done by the
TcpNxxConnection classes. If you are using the serializers directly within user code, you may have
to flush() the OutputStream.

Server Socket Exceptions

TcpConnectionServerExceptionEvent s are now published whenever an unexpected exception
occurs on a TCP server socket (also added to 4.1.3, 4.0.7). See Section 32.5, “TCP Connection Events”
for more information.

TCP Server Port

If a TCP server socket factory is configured to listen on a random port, the actual port chosen by the
OS can now be obtained using getPort(). getServerSocketAddress() is also available.

See Section 32.3, “TCP Connection Factories” for more information.

TCP Gateway Remote Timeout

The TcpOutboundGateway now supports remote-timeout-expression as an alternative to the
existing remote-timeout attribute. This allows setting the timeout based on each message.

Also, the remote-timeout no longer defaults to the same value as reply-timeout which has a
completely different meaning.

See Table 32.7, “TCP Outbound Gateway Attributes” for more information.

TCP SSLSession Available for Header Mapping

TcpConnection s now support getSslSession() to enable users to extract information from the
session to add to message headers.

See Section 32.13, “IP Message Headers” for more information.

TCP Events

New events are now published whenever a correlation exception occurs - for example sending a
message to a non-existent socket.

The TcpConnectionEventListeningMessageProducer is deprecated; use the generic event
adapter instead.

See Section 32.5, “TCP Connection Events” for more information.

@InboundChannelAdapter

Previously, the @Poller on an inbound channel adapter defaulted the maxMessagesPerPoll attribute
to -1 (infinity). This was inconsistent with the XML configuration of <inbound-channel-adapter/>
s, which defaults to 1. The annotation now defaults this attribute to 1.

API Changes

o.s.integration.util.FunctionIterator now requires a
o.s.integration.util.Function instead of a reactor.function.Function. This was done

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 613

to remove an unnecessary hard dependency on Reactor. Any uses of this iterator will need to change
the import.

Of course, Reactor is still supported for functionality such as the Promise gateway; the dependency
was removed for those users who don’t need it.

JMS Changes

Reply Listener Lazy Initialization

It is now possible to configure the reply listener in JMS outbound gateways to be initialized on-demand
and stopped after an idle period, instead of being controlled by the gateway’s lifecycle.

See Section 21.5, “Outbound Gateway” for more information.

Conversion Errors in Message-Driven Endpoints

The error-channel now is used for the conversion errors, which have caused a transaction rollback
and message redelivery previously.

See Section 21.2, “Message-Driven Channel Adapter” and Section 21.4, “Inbound Gateway” for more
information.

Default Acknowledge Mode

When using an implicitly defined DefaultMessageListenerContainer, the default acknowledge
is now transacted. transacted is recommended when using this container, to avoid message
loss. This default now applies to the message-driven inbound adapter and the inbound gateway, it was
already the default for jms-backed channels.

See Section 21.2, “Message-Driven Channel Adapter” and Section 21.4, “Inbound Gateway” for more
information.

Shared Subscriptions

Namespace support for shared subscriptions (JMS 2.0) has been added to message-driven endpoints
and the <int-jms:publish-subscribe-channel>. Previously, you had to wire up listener
containers as <bean/> s to use shared connections.

See Chapter 21, JMS Support for more information.

Conditional Pollers

Much more flexibility is now provided for dynamic polling.

See the section called “Conditional Pollers for Message Sources” for more information.

AMQP Changes

Publisher Confirms

The <int-amqp:outbound-gateway> now supports confirm-correlation-expression and
confirm-(n)ack-channel attributes with similar purpose as for <int-amqp:outbound-

channel-adapter>.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 614

Correlation Data

For both the outbound channel adapter and gateway, if the correlation data is a Message<?>, it will be
the basis of the message on the ack/nack channel, with the additional header(s) added. Previously, any
correlation data (including Message<?>) was returned as the payload of the ack/nack message.

The Inbound Gateway properties

The <int-amqp:inbound-gateway> now exposes the amqp-template attribute to allow more
control over an external bean for the reply RabbitTemplate or even provide your own AmqpTemplate
implementation. In addition the default-reply-to is exposed to be used if request message doesn’t
have replyTo property.

See Chapter 12, AMQP Support for more information.

XPath Splitter Improvements

The XPathMessageSplitter (<int-xml:xpath-splitter>) now allows the configuration of
output-properties for the internal javax.xml.transform.Transformer and supports an
Iterator mode (defaults to true) for the xpath evaluation org.w3c.dom.NodeList result.

See Section 37.5, “Splitting XML Messages” for more information.

HTTP Changes

CORS

The HTTP Inbound Endpoints (<int-http:inbound-channel-adapter> and <int-

http:inbound-gateway>) now allow the configuration of Cross-Origin Resource Sharing (CORS).

See the section called “Cross-Origin Resource Sharing (CORS) Support” for more information.

Inbound Gateway Timeout

The HTTP inbound gateway can be configured as to what status code to return when a request times
out. The default is now 500 Internal Server Error instead of 200 OK.

See the section called “Response StatusCode” for more information.

Form Data

Documentation is provided for when proxying multipart/form-data requests. See Chapter 18,
HTTP Support for more information.

Gateway Changes

Gateway Methods can Return CompletableFuture<?>

When using Java 8, gateway methods can now return CompletableFuture<?>. See the section
called “CompletableFuture” for more information.

MessagingGateway Annotation

The request and reply timeout properties are now String instead of Long to allow configuration with
property placeholders or SpEL. See the section called “@MessagingGateway Annotation”.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 615

Aggregator Changes

Aggregator Performance

This release includes some performance improvements for aggregating components (aggregator,
resequencer, etc), by more efficiently removing messages from groups when they are released.
New methods (removeMessagesFromGroup) have been added to the message store. Set the
removeBatchSize property (default 100) to adjust the number of messages deleted in each operation.
Currently, JDBC, Redis and MongoDB message stores support this property.

Output Message Group Processor

When using a ref or inner bean for the aggregator, it is now possible to bind a
MessageGroupProcessor directly. In addition, a SimpleMessageGroupProcessor is provided
that simply returns the collection of messages in the group. When an output processor produces
a collection of Message<?>, the aggregator releases those messages individually. Configuring the
SimpleMessageGroupProcessor makes the aggregator a message barrier, were messages are
held up until they all arrive, and are then released individually. See Section 6.4, “Aggregator” for more
information.

(S)FTP Changes

Inbound channel adapters

You can now specify a remote-directory-expression on the inbound channel adapters, to
determine the directory at runtime. See Chapter 16, FTP/FTPS Adapters and Chapter 28, SFTP
Adapters for more information.

Gateway Partial Results

When use FTP/SFTP outbound gateways to operate on multiple files (mget, mput), it is possible
for an exception to occur after part of the request is completed. If such a condition occurs,
a PartialSuccessException is thrown containing the partial results. See Section 16.8, “FTP
Outbound Gateway” and Section 28.11, “SFTP Outbound Gateway” for more information.

Delegating Session Factory

A delegating session factory is now available, enabling the selection of a particular session factory based
on some thread context value.

See Section 16.3, “Delegating Session Factory” and Section 28.4, “Delegating Session Factory” for
more information.

Default Sftp Session Factory

Previously, the DefaultSftpSessionFactory unconditionally allowed connections to unknown
hosts. This is now configurable (default false).

The factory now requires a configured knownHosts file unless the allowUnknownKeys property is
true (default false).

See the section called “Configuration Properties” for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 616

Message Session Callback

The MessageSessionCallback<F, T> has been introduced to perform any custom Session
operation(s) with the requestMessage context in the <int-(s)ftp:outbound-gateway/>.

See Section 16.11, “MessageSessionCallback” and Section 28.13, “MessageSessionCallback” for more
information.

Websocket Changes

WebSocketHandlerDecoratorFactory support has been added to the
ServerWebSocketContainer to allow chained customization for the internal WebSocketHandler.
See Section 35.5, “WebSockets Namespace Support” for more information.

Application Event Adapters changes

The ApplicationEvent adapters can now operate with payload as event directly allow omitting
custom ApplicationEvent extensions. The publish-payload boolean attribute has been
introduced on the <int-event:outbound-channel-adapter> for this purpose. See Chapter 13,
Spring ApplicationEvent Support for more information.

I.7 Changes between 4.0 and 4.1

Please be sure to also see the Migration Guide for important changes that might affect your applications.
Migration guides for all versions back to 2.1 can be found on the Wiki.

New Components

Promise<?> Gateway

A Reactor Promise return type is now supported for Messaging Gateway methods. See the section
called “Asynchronous Gateway”.

WebSocket support

The WebSocket module is now available. It is fully based on the Spring WebSocket and
Spring Messaging modules and provides an <inbound-channel-adapter> and an <outbound-
channel-adapter>. See Chapter 35, WebSockets Support for more information.

Scatter-Gather EIP pattern

The Scatter-Gather EIP pattern is now implemented. See Section 6.7, “Scatter-Gather” for more
information.

Routing Slip Pattern

The Routing Slip EIP pattern implementation is now provided. See the section called “Routing Slip” for
more information.

Idempotent Receiver Pattern

The Idempotent Receiver EIP implementation is now provided via the <idempotent-receiver>
component in XML, or the IdempotentReceiverInterceptor and IdempotentReceiver
annotation when using Java Configuration. See the section called “Idempotent Receiver Enterprise
Integration Pattern” and their JavaDocs for more information.

https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.0-to-4.1-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 617

BoonJsonObjectMapper

The Boon JsonObjectMapper is now provided for the JSON transformers. See Section 7.1,
“Transformer” for more information.

Redis Queue Gateways

The <redis-queue-inbound-gateway> and <redis-queue-outbound-gateway> components
are now provided. See Section 25.10, “Redis Queue Inbound Gateway” and Section 25.9, “Redis Queue
Outbound Gateway”.

PollSkipAdvice

The PollSkipAdvice is now provided to be used within <advice-chain> of the <poller> to
determine if the current poll should be suppressed (skipped) by some condition implemented with
PollSkipStrategy. See Section 4.2, “Poller” for more information.

General Changes

AMQP Inbound Endpoints, Channel

Elements that utilize a message listener container (inbound endpoints, channel) now support the
missing-queues-fatal attribute. See Chapter 12, AMQP Support for more information.

AMQP Outbound Endpoints

The AMQP outbound endpoints support a new property lazy-connect (default true). When true, the
connection to the broker is not established until the first message arrives (assuming there are no inbound
endpoints, which always attempt to establish the connection during startup). When set the false an
attempt to establish the connection is made during application startup. See Chapter 12, AMQP Support
for more information.

SimpleMessageStore

The SimpleMessageStore no longer makes a copy of the group when calling getMessageGroup().
See Caution with SimpleMessageStore for more information.

Web Service Outbound Gateway: encode-uri

The <ws:outbound-gateway/> now provides an encode-uri attribute to allow disabling the
encoding of the URI object before sending the request.

Http Inbound Channel Adapter and StatusCode

The <http:inbound-channel-adapter> can now be configured with a status-code-

expression to override the default 200 OK status. See Section 18.4, “HTTP Namespace Support”
for more information.

MQTT Adapter Changes

The MQTT channel adapters can now be configured to connect to multiple servers, for example, to
support High Availability (HA). See Chapter 24, MQTT Support for more information.

The MQTT message-driven channel adapter now supports specifying the QoS setting for each
subscription. See Section 24.2, “Inbound (message-driven) Channel Adapter” for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 618

The MQTT outbound channel adapter now supports asynchronous sends, avoiding blocking until
delivery is confirmed. See Section 24.3, “Outbound Channel Adapter” for more information.

It is now possible to programmatically subscribe to and unsubscribe from topics at runtime. See
Section 24.2, “Inbound (message-driven) Channel Adapter” for more information.

FTP/SFTP Adapter Changes

The FTP and SFTP outbound channel adapters now support appending to remote files, as well as taking
specific actions when a remote file already exists. The remote file templates now also support this as
well as rmdir() and exists(). In addition, the remote file templates provide access to the underlying
client object enabling access to low-level APIs.

See Chapter 16, FTP/FTPS Adapters and Chapter 28, SFTP Adapters for more information.

Splitter and Iterator

Splitter components now support an Iterator as the result object for producing output messages.
See Section 6.3, “Splitter” for more information.

Aggregator

Aggregator s now support a new attribute expire-groups-upon-timeout. See the section called
“Configuring an Aggregator” for more information.

Content Enricher Improvements

An null-result-expression attribute has been added, which is evaluated and returned if
<enricher> returns null. It can be added in <header> and <property>. See Section 7.2, “Content
Enricher” for more information.

An error-channel attribute has been added, which is used to handle an error flow if Exception
occurs downstream of the request-channel. This enable you to return an alternative object to use
for enrichment. See Section 7.2, “Content Enricher” for more information.

Header Channel Registry

The <header-enricher/>'s <header-channels-to-string/> element can now override the
header channel registry’s default time for retaining channel mappings. See the section called “Header
Channel Registry” for more information.

Orderly Shutdown

Improvements have been made to the orderly shutdown algorithm. See Section 10.7, “Orderly
Shutdown” for more information.

Management for RecipientListRouter

The RecipientListRouter provides now several management operations to configure recipients at
runtime. With that the <recipient-list-router> can now be configured without any <recipient>
from the start. See the section called “RecipientListRouterManagement” for more information.

AbstractHeaderMapper: NON_STANDARD_HEADERS token

The AbstractHeaderMapper implementations now provides the additional
NON_STANDARD_HEADERS token to map any user-defined headers, which aren’t mapped by default.
See Section 12.13, “AMQP Message Headers” for more information.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 619

AMQP Channels: template-channel-transacted

The new template-channel-transacted attribute has been introduced for AMQP
MessageChannel s. See Section 12.12, “AMQP Backed Message Channels” for more information.

Syslog Adapter

The default syslog message converter now has an option to retain the original message in the
payload, while still setting the headers. See Section 31.2, “Syslog <inbound-channel-adapter>” for more
information.

Async Gateway

In addition to the Promise return type mentioned above, gateway methods may now return a
ListenableFuture, introduced in Spring Framework 4.0. You can also disable the async processing
in the gateway, allowing a downstream flow to directly return a Future. See the section called
“Asynchronous Gateway”.

Aggregator Advice Chain

Aggregator s and Resequencer s now support an <expire-advice-chain/> and <expire-
transactional/> sub-elements to advise the forceComplete operation. See the section called
“Configuring an Aggregator” for more information.

Outbound Channel Adapter and Scripts

The <int:outbound-channel-adapter/> now supports the <script/> sub-element. The
underlying script must have a void return type or return null. See Section 8.8, “Groovy support” and
Section 8.7, “Scripting support”.

Resequencer Changes

When a message group in a resequencer is timed out (using group-timeout or a
MessageGroupStoreReaper), late arriving messages will now be discarded immediately by default.
See Section 6.5, “Resequencer”.

Optional POJO method parameter

Now Spring Integration consistently handles the Java 8’s Optional type. See the section called
“Configuring Service Activator”.

QueueChannel: backed Queue type

The QueueChannel backed Queue type has been changed from BlockingQueue to the more
generic Queue. It allows the use of any external Queue implementation, for example Reactor’s
PersistentQueue. See the section called “QueueChannel Configuration”.

ChannelInterceptor Changes

The ChannelInterceptor now supports additional afterSendCompletion() and
afterReceiveCompletion() methods. See the section called “Channel Interceptors”.

IMAP PEEK

Since version 4.1.1 there is a change of behavior if you explicitly set the javamail property mail.
[protocol].peek to false (where [protocol] is imap or imaps). See Important: IMAP PEEK.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 620

I.8 Changes between 3.0 and 4.0

Please be sure to also see the Migration Guide for important changes that might affect your applications.
Migration guides for all versions back to 2.1 can be found on the Wiki.

New Components

MQTT Channel Adapters

The MQTT channel adapters (previously available in the Spring Integration Extensions repository) are
now available as part of the normal Spring Integration distribution. See Chapter 24, MQTT Support

@EnableIntegration

The @EnableIntegration annotation has been added, to permit declaration of standard Spring
Integration beans when using @Configuration classes. See Section E.6, “Annotation Support” for
more information.

@IntegrationComponentScan

The @IntegrationComponentScan annotation has been added, to permit classpath scanning for
Spring Integration specific components. See Section E.6, “Annotation Support” for more information.

@EnableMessageHistory

Message history can now be enabled with the @EnableMessageHistory annotation in a
@Configuration class; in addition the message history settings can be modified by a JMX MBean.
In addition auto-created MessageHandler s for annotated endpoints (e.g. @ServiceActivator,
@Splitter etc.) now are also trackable by MessageHistory. For more information, see Section 10.3,
“Message History”.

@MessagingGateway

Messaging gateway interfaces can now be configured with the @MessagingGateway annotation. It
is an analogue of the <int:gateway/> xml element. For more information, see the section called
“@MessagingGateway Annotation”.

Spring Boot @EnableAutoConfiguration

As well as the @EnableIntegration annotation mentioned above, a a hook has been
introduced to allow the Spring Integration infrastructure beans to be configured using Spring
Boot’s @EnableAutoConfiguration. For more information seehttp://docs.spring.io/spring-boot/
docs/current/reference/html/using-boot-auto-configuration.html[Spring Boot - AutoConfigure].

@GlobalChannelInterceptor

As well as the @EnableIntegration annotation mentioned above, the
@GlobalChannelInterceptor annotation has bean introduced. For more information, see
Section E.6, “Annotation Support”.

@IntegrationConverter

The @IntegrationConverter annotation has bean introduced, as an analogue of
<int:converter/> component. For more information, see Section E.6, “Annotation Support”.

https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-3.0-to-4.0-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 621

@EnablePublisher

The @EnablePublisher annotation has been added, to allow the specification of a default-
publisher-channel for @Publisher annotations. See Section E.6, “Annotation Support” for more
information.

Redis Channel Message Stores

A new Redis MessageGroupStore, that is optimized for use when backing a QueueChannel for
persistence, is now provided. For more information, see the section called “Redis Channel Message
Stores”.

A new Redis ChannelPriorityMessageStore is now provided. This can be used to retrieve
messages by priority. For more information, see the section called “Redis Channel Message Stores”.

MongodDB Channel Message Store

MongoDB support now provides the MongoDbChannelMessageStore - a channel specific
MessageStore implementation. With priorityEnabled = true, it can be used in
<int:priority-queue> s to achieve priority order polling of persisted messages. For more
information see the section called “MongoDB Channel Message Store”.

@EnableIntegrationMBeanExport

The IntegrationMBeanExporter can now be enabled with the
@EnableIntegrationMBeanExport annotation in a @Configuration class. For more information,
see the section called “MBean Exporter”.

ChannelSecurityInterceptorFactoryBean

Configuration of Spring Security for message channels using @Configuration classes is now
supported by using a ChannelSecurityInterceptorFactoryBean. For more information, see
Appendix D, Security in Spring Integration.

Redis Command Gateway

The Redis support now provides the <outbound-gateway> component to perform generic Redis
commands using the RedisConnection#execute method. For more information, see Section 25.8,
“Redis Outbound Command Gateway”.

RedisLockRegistry and GemfireLockRegistry

The RedisLockRegistry and GemfireLockRegistry are now available supporting global locks
visible to multiple application instances/servers. These can be used with aggregating message handlers
across multiple application instances such that group release will occur on only one instance. For
more information, see Section 25.11, “Redis Lock Registry”, Section 17.6, “Gemfire Lock Registry” and
Section 6.4, “Aggregator”.

@Poller

Annotation-based messaging configuration can now have a poller attribute. This means that methods
annotated with (@ServiceActivator, @Aggregator etc.) can now use an inputChannel that is a
reference to a PollableChannel. For more information, see Section E.6, “Annotation Support”.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 622

@InboundChannelAdapter and SmartLifecycle for Annotated Endpoints

The @InboundChannelAdapter method annotation is now available. It is an analogue of the
<int:inbound-channel-adapter> XML component. In addition, all Messaging Annotations now
provide SmartLifecycle options. For more information, see Section E.6, “Annotation Support”.

Twitter Search Outbound Gateway

A new twitter endpoint <int-twitter-search-outbound-gateway/> has been added. Unlike
the search inbound adapter which polls using the same search query each time, the outbound
gateway allows on-demand customized queries. For more information, see Section 33.6, “Twitter Search
Outbound Gateway”.

Gemfire Metadata Store

The GemfireMetadataStore is provided, allowing it to be used, for example, in a
AbstractPersistentAcceptOnceFileListFilter implementation in a multiple application
instance/server environment. For more information, see Section 10.5, “Metadata Store”, Section 15.2,
“Reading Files”, Section 16.4, “FTP Inbound Channel Adapter” and Section 28.7, “SFTP Inbound
Channel Adapter”.

@BridgeFrom and @BridgeTo Annotations

Annotation and Java configuration has introduced @BridgeFrom and @BridgeTo @Bean method
annotations to mark MessageChannel beans in @Configuration classes. For more information, see
Section E.6, “Annotation Support”.

Meta Messaging Annotations

Messaging Annotations (@ServiceActivator, @Router, @MessagingGateway etc.) can now be
configured as meta-annotations for user-defined Messaging Annotations. In addition the user-defined
annotations can have the same attributes (inputChannel, @Poller, autoStartup etc.). For more
information, see Section E.6, “Annotation Support”.

General Changes

Requires Spring Framework 4.0

Core messaging abstractions (Message, MessageChannel etc) have moved to the Spring Framework
spring-messaging module. Users who reference these classes directly in their code will need to
make changes as described in the first section of the Migration Guide.

Header Type for XPath Header Enricher

The header-type attribute has been introduced for the header sub-element of the <int-
xml:xpath-header-enricher>. This attribute provides the target type for the header value to which
the result of the XPath expression evaluation will be converted. For more information see Section 37.7,
“XPath Header Enricher”.

Object To Json Transformer: Node Result

The result-type attribute has been introduced for the <int:object-to-json-transformer>.
This attribute provides the target type for the result of object mapping to JSON. It supports STRING
(default) and NODE. For more information see the section called “JSON Transformers”.

https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-3.0-to-4.0-Migration-Guide

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 623

JMS Header Mapping

The DefaultJmsHeaderMapper now maps an incoming JMSPriority header to the Spring
Integration priority header. Previously priority was only considered for outbound messages. For
more information see Section 21.6, “Mapping Message Headers to/from JMS Message”.

JMS Outbound Channel Adapter

The JMS outbound channel adapter now supports the session-transacted attribute (default false).
Previously, you had to inject a customized JmsTemplate to use transactions. See Section 21.3,
“Outbound Channel Adapter”.

JMS Inbound Channel Adapter

The JMS inbound channel adapter now supports the session-transacted attribute (default false).
Previously, you had to inject a customized JmsTemplate to use transactions (the adapter allowed
transacted in the acknowledgeMode which was incorrect, and didn’t work; this value is no longer
allowed). See Section 21.1, “Inbound Channel Adapter”.

Datatype Channels

You can now specify a MessageConverter to be used when converting (if necessary) payloads to
one of the accepted datatype s in a Datatype channel. For more information see the section called
“Datatype Channel Configuration”.

Simpler Retry Advice Configuration

Simplified namespace support has been added to configure a RequestHandlerRetryAdvice. For
more information see the section called “Configuring the Retry Advice”.

Correlation Endpoint: Time-based Release Strategy

The mutually exclusive group-timeout and group-timeout-expression attributes have been
added to the <int:aggregator> and <int:resequencer>. These attributes allow forced
completion of a partial MessageGroup, if the ReleaseStrategy does not release a group and
no further messages arrive within the time specified. For more information see the section called
“Configuring an Aggregator”.

Redis Metadata Store

The RedisMetadataStore now implements ConcurrentMetadataStore, allowing it to be used,
for example, in a AbstractPersistentAcceptOnceFileListFilter implementation in a multiple
application instance/server environment. For more information, see Section 25.5, “Redis Metadata
Store”, Section 15.2, “Reading Files”, Section 16.4, “FTP Inbound Channel Adapter” and Section 28.7,
“SFTP Inbound Channel Adapter”.

JdbcChannelMessageStore and PriorityChannel

The JdbcChannelMessageStore now implements PriorityCapableChannelMessageStore,
allowing it to be used as a message-store reference for priority-queue s. For more information,
see the section called “Backing Message Channels”.

AMQP Endpoints Delivery Mode

Spring AMQP, by default, creates persistent messages on the broker. This behavior can be overridden
by setting the amqp_deliveryMode header and/or customizing the mappers. A convenient default-

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 624

delivery-mode attribute has now been added to the adapters to provide easier configuration of
this important setting. For more information, see Section 12.6, “Outbound Channel Adapter” and
Section 12.7, “Outbound Gateway”.

FTP Timeouts

The DefaultFtpSessionFactory now exposes the connectTimeout, defaultTimeout and
dataTimeout properties, avoiding the need to subclass the factory just to set these common properties.
The postProcess* methods are still available for more advanced configuration. See Section 16.2,
“FTP Session Factory” for more information.

Twitter: StatusUpdatingMessageHandler

The StatusUpdatingMessageHandler (<int-twitter:outbound-channel-adapter>)
now supports the tweet-data-expression attribute to build a
org.springframework.social.twitter.api.TweetData object for updating the timeline status
allowing, for example, attaching an image. See the section called “Twitter Outbound Update Channel
Adapter” for more information.

JPA Retrieving Gateway: id-expression

The id-expression attribute has been introduced for <int-jpa:retrieving-outbound-
gateway> to perform EntityManager.find(Class entityClass, Object primaryKey). See
the section called “Retrieving Outbound Gateway” for more information.

TCP Deserialization Events

When one of the standard deserializers encounters a problem decoding the input stream to a message,
it will now emit a TcpDeserializationExceptionEvent, allowing applications to examine the data
at the point the exception occurred. See Section 32.5, “TCP Connection Events” for more information.

Messaging Annotations on @Bean Definitions

Messaging Annotations (@ServiceActivator, @Router, @InboundChannelAdapter etc.) can
now be configured on @Bean definitions in @Configuration classes. For more information, see
Section E.6, “Annotation Support”.

I.9 Changes Between 2.2 and 3.0

New Components

HTTP Request Mapping

The HTTP module now provides powerful Request Mapping support for Inbound Endpoints. Class
UriPathHandlerMapping was replaced by IntegrationRequestMappingHandlerMapping,
which is registered under the bean name integrationRequestMappingHandlerMapping
in the application context. Upon parsing of the HTTP Inbound Endpoint, a new
IntegrationRequestMappingHandlerMapping bean is either registered or an existing bean
is being reused. To achieve flexible Request Mapping configuration, Spring Integration provides
the <request-mapping/> sub-element for the <http:inbound-channel-adapter/> and the
<http:inbound-gateway/>. Both HTTP Inbound Endpoints are now fully based on the Request
Mapping infrastructure that was introduced with Spring MVC 3.1. For example, multiple paths are
supported on a single inbound endpoint. For more information see Section 18.4, “HTTP Namespace
Support”.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 625

Spring Expression Language (SpEL) Configuration

A new IntegrationEvaluationContextFactoryBean is provided to allow configuration of custom
PropertyAccessor s and functions for use in SpEL expressions throughout the framework. For more
information see Appendix A, Spring Expression Language (SpEL).

SpEL Functions Support

To customize the SpEL EvaluationContext with static Method functions, the new <spel-
function/> component is introduced. Two built-in functions are also provided (#jsonPath and
#xpath). For more information see Section A.3, “SpEL Functions”.

SpEL PropertyAccessors Support

To customize the SpEL EvaluationContext with PropertyAccessor implementations the new
<spel-property-accessors/> component is introduced. For more information see Section A.4,
“PropertyAccessors”.

Redis: New Components

A new Redis-based MetadataStore implementation has been added. The RedisMetadataStore can
be used to maintain state of a MetadataStore across application restarts. This new MetadataStore
implementation can be used with adapters such as:

• Twitter Inbound Adapters

• Feed Inbound Channel Adapter

New queue-based components have been added. The <int-redis:queue-inbound-channel-
adapter/> and the <int-redis:queue-outbound-channel-adapter/> components are
provided to perform right pop and left push operations on a Redis List, respectively.

For more information see Chapter 25, Redis Support.

Header Channel Registry

It is now possible to instruct the framework to store reply and error channels in a registry for later
resolution. This is useful for cases where the replyChannel or errorChannel might be lost; for
example when serializing a message. See the section called “Header Enricher” for more information.

MongoDB support: New ConfigurableMongoDbMessageStore

In addition to the existing eMongoDbMessageStore, a new ConfigurableMongoDbMessageStore
has been introduced. This provides a more robust and flexible implementation of MessageStore for
MongoDB. It does not have backward compatibility, with the existing store, but it is recommended to
use it for new applications. Existing applications can use it, but messages in the old store will not be
available. See Chapter 23, MongoDb Support for more information.

Syslog Support

Building on the 2.2 SyslogToMapTransformer Spring Integration 3.0 now introduces UDP and TCP
inbound channel adapters especially tailored for receiving SYSLOG messages. For more information,
see Chapter 31, Syslog Support.

Tail Support

File 'tail’ing inbound channel adapters are now provided to generate messages when lines are added
to the end of text files; see the section called “'Tail’ing Files”.

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/store/MetadataStore.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 626

JMX Support

• A new <int-jmx:tree-polling-channel-adapter/> is provided; this adapter queries the JMX
MBean tree and sends a message with a payload that is the graph of objects that matches the query.
By default the MBeans are mapped to primitives and simple Objects like Map, List and arrays -
permitting simple transformation, for example, to JSON.

• The IntegrationMBeanExporter now allows the configuration of a custom
ObjectNamingStrategy using the naming-strategy attribute.

For more information, see Section 10.2, “JMX Support”.

TCP/IP Connection Events and Connection Management

TcpConnection s now emit ApplicationEvent s (specifically TcpConnectionEvent s) when
connections are opened, closed, or an exception occurs. This allows applications to be informed of
changes to TCP connections using the normal Spring ApplicationListener mechanism.

AbstractTcpConnection has been renamed TcpConnectionSupport; custom connections
that are subclasses of this class, can use its methods to publish
events. Similarly, AbstractTcpConnectionInterceptor has been renamed to
TcpConnectionInterceptorSupport.

In addition, a new <int-ip:tcp-connection-event-inbound-channel-adapter/> is
provided; by default, this adapter sends all TcpConnectionEvent s to a Channel.

Further, the TCP Connection Factories, now provide a new method getOpenConnectionIds(),
which returns a list of identifiers for all open connections; this allows applications, for example, to
broadcast to all open connections.

Finally, the connection factories also provide a new method closeConnection(String

connectionId) which allows applications to explicitly close a connection using its ID.

For more information see Section 32.5, “TCP Connection Events”.

Inbound Channel Adapter Script Support

The <int:inbound-channel-adapter/> now supports <expression/> and <script/> sub-
elements to create a MessageSource; see the section called “Channel Adapter Expressions and
Scripts”.

Content Enricher: Headers Enrichment Support

The Content Enricher now provides configuration for <header/> sub-elements, to enrich the outbound
Message with headers based on the reply Message from the underlying message flow. For more
information see the section called “Payload Enricher”.

General Changes

Message ID Generation

Previously, message ids were generated using the JDK UUID.randomUUID() method. With this
release, the default mechanism has been changed to use a more efficient algorithm which is significantly
faster. In addition, the ability to change the strategy used to generate message ids has been added. For
more information see the section called “Message ID Generation”.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 627

<gateway> Changes

• It is now possible to set common headers across all gateway methods, and more options are provided
for adding, to the message, information about which method was invoked.

• It is now possible to entirely customize the way that gateway method calls are mapped to messages.

• The GatewayMethodMetadata is now public class and it makes possible flexibly to configure the
GatewayProxyFactoryBean programmatically from Java code.

For more information see Section 8.4, “Messaging Gateways”.

HTTP Endpoint Changes

• Outbound Endpoint encode-uri - <http:outbound-gateway/> and <http:outbound-
channel-adapter/> now provide an encode-uri attribute to allow disabling the encoding of the
URI object before sending the request.

• Inbound Endpoint merge-with-default-converters - <http:inbound-gateway/> and
<http:inbound-channel-adapter/> now have a merge-with-default-converters

attribute to include the list of default HttpMessageConverter s after the custom message
converters.

• If-(Un)Modified-Since HTTP Headers - previously, If-Modified-Since and If-Unmodified-
Since HTTP headers were incorrectly processed within from/to HTTP headers
mapping in the DefaultHttpHeaderMapper. Now, in addition correcting that issue,
DefaultHttpHeaderMapper provides date parsing from formatted strings for any HTTP headers
that accept date-time values.

• Inbound Endpoint Expression Variables - In addition to the existing #requestParams and
#pathVariables, the <http:inbound-gateway/> and <http:inbound-channel-adapter/>
now support additional useful variables: #matrixVariables, #requestAttributes, #requestHeaders and
#cookies. These variables are available in both payload and header expressions.

• Outbound Endpoint uri-variables-expression - HTTP Outbound Endpoints now support the uri-
variables-expression attribute to specify an Expression to evaluate a Map for all URI variable
placeholders within URL template. This allows selection of a different map of expressions based on
the outgoing message.

For more information see Chapter 18, HTTP Support.

Jackson Support (JSON)

• A new abstraction for JSON conversion has been introduced. Implementations for Jackson 1.x and
Jackson 2 are currently provided, with the version being determined by presence on the classpath.
Previously, only Jackson 1.x was supported.

• The ObjectToJsonTransformer and JsonToObjectTransformer now emit/consume headers
containing type information.

For more information, see JSON Transformers in Section 7.1, “Transformer”.

Chain Elements id Attribute

Previously, the id attribute for elements within a <chain> was ignored and, in some cases, disallowed.
Now, the id attribute is allowed for all elements within a <chain>. The bean names of chain elements

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 628

is a combination of the surrounding chain’s id and the id of the element itself. For example: fooChain
$child.fooTransformer.handler. For more information see Section 6.6, “Message Handler Chain”.

Aggregator empty-group-min-timeout property

The AbstractCorrelatingMessageHandler provides a new property empty-group-min-
timeout to allow empty group expiry to run on a longer schedule than expiring partial groups. Empty
groups will not be removed from the MessageStore until they have not been modified for at least this
number of milliseconds. For more information see the section called “Configuring an Aggregator”.

Persistent File List Filters (file, (S)FTP)

New FileListFilter s that use a persistent MetadataStore are now available. These can be used
to prevent duplicate files after a system restart. See Section 15.2, “Reading Files”, Section 16.4, “FTP
Inbound Channel Adapter”, and Section 28.7, “SFTP Inbound Channel Adapter” for more information.

Scripting Support: Variables Changes

A new variables attribute has been introduced for scripting components. In addition, variable bindings
are now allowed for inline scripts. See Section 8.8, “Groovy support” and Section 8.7, “Scripting support”
for more information.

Direct Channel Load Balancing configuration

Previously, when configuring LoadBalancingStrategy on the channel’s dispatcher sub-element,
the only available option was to use a pre-defined enumeration of values which did not allow one to
set a custom implementation of the LoadBalancingStrategy. You can now use load-balancer-
ref to provide a reference to a custom implementation of the LoadBalancingStrategy. For more
information see the section called “DirectChannel”.

PublishSubscribeChannel Behavior

Previously, sending to a <publish-subscribe-channel/> that had no subscribers would return a false
result. If used in conjunction with a MessagingTemplate, this would result in an exception being
thrown. Now, the PublishSubscribeChannel has a property minSubscribers (default 0). If the
message is sent to at least the minimum number of subscribers, the send is deemed to be successful
(even if zero). If an application is expecting to get an exception under these conditions, set the minimum
subscribers to at least 1.

FTP, SFTP and FTPS Changes

The FTP, SFTP and FTPS endpoints no longer cache sessions by default

The deprecated cached-sessions attribute has been removed from all endpoints. Previously, the
embedded caching mechanism controlled by this attribute’s value didn’t provide a way to limit the size
of the cache, which could grow indefinitely. The CachingConnectionFactory was introduced in
release 2.1 and it became the preferred (and is now the only) way to cache sessions.

The CachingConnectionFactory now provides a new method resetCache(). This immediately
closes idle sessions and causes in-use sessions to be closed as and when they are returned to the
cache.

The DefaultSftpSessionFactory (in conjunction with a CachingSessionFactory) now
supports multiplexing channels over a single SSH connection (SFTP Only).

FTP, SFTP and FTPS Inbound Adapters

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 629

Previously, there was no way to override the default filter used to process files retrieved
from a remote server. The filter attribute determines which files are retrieved but the
FileReadingMessageSource uses an AcceptOnceFileListFilter. This means that if a new
copy of a file is retrieved, with the same name as a previously copied file, no message was sent from
the adapter.

With this release, a new attribute local-filter allows you to override the default filter, for example
with an AcceptAllFileListFilter, or some other custom filter.

For users that wish the behavior of the AcceptOnceFileListFilter to be maintained across JVM
executions, a custom filter that retains state, perhaps on the file system, can now be configured.

Inbound Channel Adapters now support the preserve-timestamp attribute, which sets the local file
modified timestamp to the timestamp from the server (default false).

FTP, SFTP and FTPS Gateways

• The gateways now support the mv command, enabling the renaming of remote files.

• The gateways now support recursive ls and mget commands, enabling the retrieval of a remote file
tree.

• The gateways now support put and mput commands, enabling sending file(s) to the remote server.

• The local-filename-generator-expression attribute is now supported, enabling the naming
of local files during retrieval. By default, the same name as the remote file is used.

• The local-directory-expression attribute is now supported, enabling the naming of local
directories during retrieval based on the remote directory.

Remote File Template

A new higher-level abstraction (RemoteFileTemplate) is provided over the Session

implementations used by the FTP and SFTP modules. While it is used internally by endpoints, this
abstraction can also be used programmatically and, like all Spring *Template implementations, reliably
closes the underlying session while allowing low level access to the session when needed.

For more information, see Chapter 16, FTP/FTPS Adapters and Chapter 28, SFTP Adapters.

requires-reply Attribute for Outbound Gateways

All Outbound Gateways (e.g. <jdbc:outbound-gateway/> or <jms:outbound-gateway/>) are
designed for request-reply scenarios. A response is expected from the external service and will be
published to the reply-channel, or the replyChannel message header. However, there are some
cases where the external system might not always return a result, e.g. a <jdbc:outbound-gateway/
>, when a SELECT ends with an empty ResultSet or, say, a Web Service is One-Way. An option is
therefore needed to configure whether or not a reply is required. For this purpose, the requires-reply
attribute has been introduced for Outbound Gateway components. In most cases, the default value for
requires-reply is true and, if there is not any result, a ReplyRequiredException will be thrown.
Changing the value to false means that, if an external service doesn’t return anything, the message-
flow will end at that point, similar to an Outbound Channel Adapter.

Note

The WebService outbound gateway has an additional attribute ignore-empty-responses; this
is used to treat an empty String response as if no response was received. It is true by default but

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 630

can be set to false to allow the application to receive an empty String in the reply message payload.
When the attribute is true an empty string is treated as no response for the purposes of the
requires-reply attribute. requires-reply is false by default for the WebService outbound gateway.

Note, the requiresReply property was previously present in the
AbstractReplyProducingMessageHandler but set to false, and there wasn’t any way to
configure it on Outbound Gateways using the XML namespace.

Important

Previously, a gateway receiving no reply would silently end the flow (with a DEBUG log message);
with this change an exception will now be thrown by default by most gateways. To revert to the
previous behavior, set requires-reply to false.

AMQP Outbound Gateway Header Mapping

Previously, the <int-amqp:outbound-gateway/> mapped headers before invoking the message
converter, and the converter could overwrite headers such as content-type. The outbound adapter
maps the headers after the conversion, which means headers like content-type from the outbound
Message (if present) are used.

Starting with this release, the gateway now maps the headers after the message conversion, consistent
with the adapter. If your application relies on the previous behavior (where the converter’s headers
overrode the mapped headers), you either need to filter those headers (before the message reaches
the gateway) or set them appropriately. The headers affected by the SimpleMessageConverter are
content-type and content-encoding. Custom message converters may set other headers.

Stored Procedure Components Improvements

For more complex database-specific types, not supported by the standard
CallableStatement.getObject method, 2 new additional attributes were introduced to the <sql-
parameter-definition/> element with OUT-direction:

type-name

return-type

The row-mapper attribute of the Stored Procedure Inbound Channel Adapter <returning-
resultset/> sub-element now supports a reference to a RowMapper bean definition. Previously, it
contained just a class name (which is still supported).

For more information see Section 19.5, “Stored Procedures”.

Web Service Outbound URI Configuration

Web Service Outbound Gateway uri attribute now supports <uri-variable/> substitution for all URI-
schemes supported by Spring Web Services. For more information see Section 36.4, “Outbound URI
Configuration”.

Redis Adapter Changes

The Redis Inbound Channel Adapter can now use a null value for serializer property, with the
raw data being the message payload.

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 631

The Redis Outbound Channel Adapter now has the topic-expression property to determine the
Redis topic against the Message at runtime.

The Redis Inbound Channel Adapter, in addition to the existing topics attribute, now has the topic-
patterns attribute.

For more information, see Chapter 25, Redis Support.

Advising Filters

Previously, when a <filter/> had a <request-handler-advice-chain/>, the discard action was all performed
within the scope of the advice chain (including any downstream flow on the discard-channel). The
filter element now has an attribute discard-within-advice (default true), to allow the discard
action to be performed after the advice chain completes. See the section called “Advising Filters”.

Advising Endpoints using Annotations

Request Handler Advice Chains can now be configured using annotations. See the section called
“Advising Endpoints Using Annotations”.

ObjectToStringTransformer Improvements

This transformer now correctly transforms byte[] and char[] payloads to String. For more
information see Section 7.1, “Transformer”.

JPA Support Changes

Payloads to persist or merge can now be of type http://docs.oracle.com/javase/7/docs/
api/java/lang/Iterable.html[java.lang.Iterable].

In that case, each object returned by the Iterable is treated as an entity and persisted or merged
using the underlying EntityManager. NULL values returned by the iterator are ignored.

The JPA adapters now have additional attributes to optionally flush and clear entities from the associated
persistence context after performing persistence operations.

Retrieving gateways had no mechanism to specify the first record to be retrieved which is a common
use case. The retrieving gateways now support specifying this parameter using a first-result
and first-result-expression attributes to the gateway definition. the section called “Retrieving
Outbound Gateway”.

The JPA retrieving gateway and inbound adapter now have an attribute to specify the maximum number
of results in a result set as an expression. In addition, the max-results attribute has been introduced to
replace max-number-of-results, which has been deprecated. max-results and max-results-
expression are used to provide the maximum number of results, or an expression to compute the
maximum number of results, respectively, in the result set.

For more information see Chapter 20, JPA Support.

Delayer: delay expression

Previously, the <delayer> provided a delay-header-name attribute to determine the delay value at
runtime. In complex cases it was necessary to precede the <delayer> with a <header-enricher>.
Spring Integration 3.0 introduced the expression attribute and expression sub-element for dynamic
delay determination. The delay-header-name attribute is now deprecated because the header
evaluation can be specified in the expression. In addition, the ignore-expression-failures

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 632

was introduced to control the behavior when an expression evaluation fails. For more information see
Section 8.6, “Delayer”.

JDBC Message Store Improvements

Spring Integration 3.0 adds a new set of DDL scripts for MySQL version 5.6.4 and higher. Now MySQL
supports fractional seconds and is thus improving the FIFO ordering when polling from a MySQL-based
Message Store. For more information, please see the section called “The Generic JDBC Message
Store”.

IMAP Idle Connection Exceptions

Previously, if an IMAP idle connection failed, it was logged but there was no mechanism to inform
an application. Such exceptions now generate ApplicationEvent s. Applications can obtain
these events using an <int-event:inbound-channel-adapter> or any ApplicationListener
configured to receive an ImapIdleExceptionEvent or one of its super classes.

Message Headers and TCP

The TCP connection factories now enable the configuration of a flexible mechanism to transfer selected
headers (as well as the payload) over TCP. A new TcpMessageMapper enables the selection of the
headers, and an appropriate (de)serializer needs to be configured to write the resulting Map to the
TCP stream. A MapJsonSerializer is provided as a convenient mechanism to transfer headers and
payload over TCP. For more information see the section called “Transferring Headers”.

JMS Message Driven Channel Adapter

Previously, when configuring a <message-driven-channel-adapter/>, if you wished to use a
specific TaskExecutor, it was necessary to declare a container bean and provide it to the adapter
using the container attribute. The task-executor is now provided, allowing it to be set directly on
the adapter. This is in addition to several other container attributes that were already available.

RMI Inbound Gateway

The RMI Inbound Gateway now supports an error-channel attribute. See Section 27.3, “Inbound
RMI”.

XsltPayloadTransformer

You can now specify the transformer factory class name using the transformer-factory-class
attribute. See the section called “XsltPayloadTransformer”

I.10 Changes between 2.1 and 2.2

New Components

RedisStore Inbound and Outbound Channel Adapters

Spring Integration now has RedisStore Inbound and Outbound Channel Adapters allowing you to write
and read Message payloads to/from Redis collection(s). For more information please see Section 25.7,
“RedisStore Outbound Channel Adapter” and Section 25.6, “RedisStore Inbound Channel Adapter”.

MongoDB Inbound and Outbound Channel Adapters

Spring Integration now has MongoDB Inbound and Outbound Channel Adapters allowing you to write
and read Message payloads to/from a MongoDB document store. For more information please see

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 633

Section 23.5, “MongoDB Outbound Channel Adapter” and Section 23.4, “MongoDB Inbound Channel
Adapter”.

JPA Endpoints

Spring Integration now includes components for the Java Persistence API (JPA) for retrieving and
persisting JPA entity objects. The JPA Adapter includes the following components:

• Inbound Channel Adapter

• Outbound Channel Adapter

• Updating Outbound Gateway

• Retrieving Outbound Gateway

For more information please see Chapter 20, JPA Support

General Changes

Spring 3.1 Used by Default

Spring Integration now uses Spring 3.1.

Adding Behavior to Endpoints

The ability to add an <advice-chain/> to a poller has been available for some time. However, the behavior
added by this affects the entire integration flow. It did not address the ability to add, say, retry, to an
individual endpoint. The 2.2. release introduces the <request-handler-advice-chain/> to many endpoints.

In addition, 3 standard Advice classes have been provided for this purpose:

• MessageHandlerRetryAdvice

• MessageHandlerCircuitBreakerAdvice

• ExpressionEvaluatingMessageHandlerAdvice

For more information, see Section 8.9, “Adding Behavior to Endpoints”.

Transaction Synchronization and Pseudo Transactions

Pollers can now participate in Spring’s Transaction Synchronization feature. This allows for
synchronizing such operations as renaming files by an inbound channel adapter depending on whether
the transaction commits, or rolls back.

In addition, these features can be enabled when there is not a real transaction present, by means of
a PseudoTransactionManager.

For more information see Section C.3, “Transaction Synchronization”.

File Adapter - Improved File Overwrite/Append Handling

When using the File Oubound Channel Adapter or the File Outbound Gateway, a new mode property
was added. Prior to Spring Integration 2.2, target files were replaced when they existed. Now you can
specify the following options:

• REPLACE (Default)

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 634

• APPEND

• FAIL

• IGNORE

For more information please see the section called “Dealing with Existing Destination Files”.

Reply-Timeout added to more Outbound Gateways

The XML Namespace support adds the reply-timeout attribute to the following Outbound Gateways:

• Amqp Outbound Gateway

• File Outbound Gateway

• Ftp Outbound Gateway

• Sftp Outbound Gateway

• Ws Outbound Gateway

Spring-AMQP 1.1

Spring Integration now uses Spring AMQP 1.1. This enables several features to be used within a Spring
Integration application, including…

• A fixed reply queue for the outbound gateway

• HA (mirrored) queues

• Publisher Confirms

• Returned Messages

• Support for Dead Letter Exchanges/Dead Letter Queues

JDBC Support - Stored Procedures Components

SpEL Support

When using the Stored Procedure components of the Spring Integration JDBC Adapter, you can
now provide Stored Procedure Names or Stored Function Names using Spring Expression Language
(SpEL).

This allows you to specify the Stored Procedures to be invoked at runtime. For example, you can provide
Stored Procedure names that you would like to execute via Message Headers. For more information
please see Section 19.5, “Stored Procedures”.

JMX Support

The Stored Procedure components now provide basic JMX support, exposing some of their properties
as MBeans:

• Stored Procedure Name

• Stored Procedure Name Expression

• JdbcCallOperations Cache Statistics

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 635

JDBC Support - Outbound Gateway

When using the JDBC Outbound Gateway, the update query is no longer mandatory. You can now
provide solely a select query using the request message as a source of parameters.

JDBC Support - Channel-specific Message Store Implementation

A new Message Channel-specific Message Store Implementation has been added, providing a more
scalable solution using database-specific SQL queries. For more information please see: the section
called “Backing Message Channels”.

Orderly Shutdown

A method stopActiveComponents() has been added to the IntegrationMBeanExporter. This allows
a Spring Integration application to be shut down in an orderly manner, disallowing new inbound
messages to certain adapters and waiting for some time to allow in-flight messages to complete.

JMS Oubound Gateway Improvements

The JMS Outbound Gateway can now be configured to use a MessageListener container to receive
replies. This can improve performance of the gateway.

object-to-json-transformer

The ObjectToJsonTransformer now sets the content-type header to application/json by default. For
more information see Section 7.1, “Transformer”.

HTTP Support

Java serialization over HTTP is no longer enabled by default. Previously, when setting a expected-
response-type to a Serializable object, the Accept header was not properly set up. The
SerializingHttpMessageConverter has now been updated to set the Accept header to
application/x-java-serialized-object. However, because this could cause incompatibility
with existing applications, it was decided to no longer automatically add this converter to the HTTP
endpoints.

If you wish to use Java serialization, you will need to add the SerializingHttpMessageConverter
to the appropriate endpoints, using the message-converters attribute, when using XML
configuration, or using the setMessageConverters() method.

Alternatively, you may wish to consider using JSON instead which is enabled by simply having Jackson
on the classpath.

I.11 Changes between 2.0 and 2.1

New Components

JSR-223 Scripting Support

In Spring Integration 2.0, support for Groovy was added. With Spring Integration 2.1 we expanded
support for additional languages substantially by implementing support for JSR-223 (Scripting for the
Java™ Platform). Now you have the ability to use any scripting language that supports JSR-223
including:

• Javascript

http://groovy.codehaus.org/
http://www.jcp.org/en/jsr/detail?id=223

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 636

• Ruby/JRuby

• Python/Jython

• Groovy

For further details please see Section 8.7, “Scripting support”.

GemFire Support

Spring Integration provides support for GemFire by providing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and MessageStore
and MessageGroupStore implementations. Spring integration leverages the Spring Gemfire project,
providing a thin wrapper over its components.

For further details please see Chapter 17, GemFire Support.

AMQP Support

Spring Integration 2.1 adds several Channel Adapters for receiving and sending messages
using thehttp://www.amqp.org/[Advanced Message Queuing Protocol] (AMQP). Furthermore, Spring
Integration also provides a point-to-point Message Channel, as well as a publish/subscribe Message
Channel that are backed by AMQP Exchanges and Queues.

For further details please see Chapter 12, AMQP Support.

MongoDB Support

As of version 2.1 Spring Integration provides support for MongoDB by providing a MongoDB-based
MessageStore.

For further details please see Chapter 23, MongoDb Support.

Redis Support

As of version 2.1 Spring Integration supports Redis, an advanced key-value store, by providing a Redis-
based MessageStore as well as Publish-Subscribe Messaging adapters.

For further details please see Chapter 25, Redis Support.

Support for Spring’s Resource abstraction

As of version 2.1, we’ve introduced a new Resource Inbound Channel Adapter that builds upon
Spring’s Resource abstraction to support greater flexibility across a variety of actual types of underlying
resources, such as a file, a URL, or a class path resource. Therefore, it’s similar to but more generic
than the File Inbound Channel Adapter.

For further details please see Section 26.2, “Resource Inbound Channel Adapter”.

Stored Procedure Components

With Spring Integration 2.1, the JDBC Module also provides Stored Procedure support by adding several
new components, including inbound/outbound channel adapters and an Outbound Gateway. The Stored
Procedure support leverages Spring’shttp://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/
springframework/jdbc/core/simple/SimpleJdbcCall.html[SimpleJdbcCall] class and consequently
supports stored procedures for:

• Apache Derby

http://www.vmware.com/products/application-platform/vfabric-gemfire/overview.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageStore.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html
http://www.springsource.org/spring-gemfire
http://www.mongodb.org/
http://redis.io/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 637

• DB2

• MySQL

• Microsoft SQL Server

• Oracle

• PostgreSQL

• Sybase

The Stored Procedure components also support Sql Functions for the following databases:

• MySQL

• Microsoft SQL Server

• Oracle

• PostgreSQL

For further details please see Section 19.5, “Stored Procedures”.

XPath and XML Validating Filter

Spring Integration 2.1 provides a new XPath-based Message Filter, that is part of the XML module.
The XPath Filter allows you to filter messages using provided XPath Expressions. Furthermore,
documentation was added for the XML Validating Filter.

For more details please see Section 37.8, “Using the XPath Filter” and Section 37.10, “XML Validating
Filter”.

Payload Enricher

Since Spring Integration 2.1, the Payload Enricher is provided. A Payload Enricher
defines an endpoint that typically passes ahttp://static.springsource.org/spring-integration/api/org/
springframework/integration/Message.html[Message] to the exposed request channel and then expects
a reply message. The reply message then becomes the root object for evaluation of expressions to
enrich the target payload.

For further details please see the section called “Payload Enricher”.

FTP and SFTP Outbound Gateways

Spring Integration 2.1 provides two new Outbound Gateways in order to interact with remote File
Transfer Protocol (FTP) or Secure File Transfer Protocol (SFT) servers. These two gateways allow you
to directly execute a limited set of remote commands.

For instance, you can use these Outbound Gateways to list, retrieve and delete remote files and have
the Spring Integration message flow continue with the remote server’s response.

For further details please see Section 16.8, “FTP Outbound Gateway” and Section 28.11, “SFTP
Outbound Gateway”.

FTP Session Caching

As of version 2.1, we have exposed more flexibility with regards to session management for remote file
adapters (e.g., FTP, SFTP etc).

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 638

Specifically, the cache-sessions attribute, which is available via the XML namespace support, is now
deprecated. Alternatively, we added the sessionCacheSize and sessionWaitTimeout attributes
on the CachingSessionFactory.

For further details please see Section 16.9, “FTP Session Caching” and Section 28.5, “SFTP Session
Caching”.

Framework Refactoring

Standardizing Router Configuration

Router parameters have been standardized across all router implementations with Spring Integration
2.1 providing a more consistent user experience.

With Spring Integration 2.1 the ignore-channel-name-resolution-failures attribute has been
removed in favor of consolidating its behavior with the resolution-required attribute. Also, the
resolution-required attribute now defaults to true.

Starting with Spring Integration 2.1, routers will no longer silently drop any messages, if no default output
channel was defined. This means, that by default routers now require at least one resolved channel (if
no default-output-channel was set) and by default will throw a MessageDeliveryException
if no channel was determined (or an attempt to send was not successful).

If, however, you do desire to drop messages silently, simply set default-output-

channel="nullChannel".

Important

With the standardization of Router parameters and the consolidation of the parameters described
above, there is the possibility of breaking older Spring Integration based applications.

For further details please see Section 6.1, “Routers”

XML Schemas updated to 2.1

Spring Integration 2.1 ships with an updated XML Schema (version 2.1), providing many improvements,
e.g. the Router standardizations discussed above.

From now on, users must always declare the latest XML schema (currently version 2.1). Alternatively,
they can use the version-less schema. Generally, the best option is to use version-less namespaces,
as these will automatically use the latest available version of Spring Integration.

Declaring a version-less Spring Integration namespace:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xsi:schemaLocation="http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

...

</beans>

Declaring a Spring Integration namespace using an explicit version:

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 639

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xsi:schemaLocation="http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.2.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

...

</beans>

The old 1.0 and 2.0 schemas are still there, but if an Application Context still references one of those
deprecated schemas, the validator will fail on initialization.

Source Control Management and Build Infrastructure

Source Code now hosted on Github

Since version 2.0, the Spring Integration project uses Git for version control. In order to increase
community visibility even further, the project was moved from SpringSource hosted Git repositories to
Github. The Spring Integration Git repository is located at:null

For the project we also improved the process of providing code contributions and we ensure that every
commit is peer-reviewed. In fact, core committers now follow the same process as contributors. For
more details please see:

null

Improved Source Code Visibility with Sonar

In an effort to provide better source code visibility and consequently to monitor the quality of Spring
Integration’s source code, an instance of Sonar was setup and metrics are gathered nightly and made
avaiblable at:

null

New Samples

For the 2.1 release of Spring Integration we also expanded the Spring Integration Samples project and
added many new samples, e.g. samples covering AMQP support, the new payload enricher, a sample
illustrating techniques for testing Spring Integration flow fragments, as well as an example for executing
Stored Procedures against Oracle. For details please visit:

null

I.12 Changes between 1.0 and 2.0

For a detailed migration guide in regards to upgrading an existing application that uses Spring Integration
older than version 2.0, please see:

null

Spring 3 support

Spring Integration 2.0 is built on top of Spring 3.0.5 and makes many of its features available to our users.

http://git-scm.com/
http://www.github.com/
http://www.sonarsource.org/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 640

Support for the Spring Expression Language (SpEL)

You can now use SpEL expressions within the transformer, router, filter, splitter, aggregator, service-
activator, header-enricher, and many more elements of the Spring Integration core namespace as well
as various adapters. There are many samples provided throughout this manual.

ConversionService and Converter

You can now benefit from Conversion Service support provided with Spring while configuring many
Spring Integration components such as Datatype Channel. See the section called “Message Channel
Implementations” as well the section called “Introduction”. Also, the SpEL support mentioned in the
previous point also relies upon the ConversionService. Therefore, you can register Converters once,
and take advantage of them anywhere you are using SpEL expressions.

TaskScheduler and Trigger

Spring 3.0 defines two new strategies related to scheduling: TaskScheduler and Trigger Spring
Integration (which uses a lot of scheduling) now builds upon these. In fact, Spring Integration 1.0 had
originally defined some of the components (e.g. CronTrigger) that have now been migrated into Spring
3.0’s core API. Now, you can benefit from reusing the same components within the entire Application
Context (not just Spring Integration configuration). Configuration of Spring Integration Pollers has been
greatly simplified as well by providing attributes for directly configuring rates, delays, cron expressions,
and trigger references. See Section 4.3, “Channel Adapter” for sample configurations.

RestTemplate and HttpMessageConverter

Our outbound HTTP adapters now delegate to Spring’s RestTemplate for executing the HTTP request
and handling its response. This also means that you can reuse any custom HttpMessageConverter
implementations. See Section 18.3, “Http Outbound Components” for more details.

Enterprise Integration Pattern Additions

Also in 2.0 we have added support for even more of the patterns described in Hohpe and Woolf’s
Enterprise Integration Patterns book.

Message History

We now provide support for the Message History pattern allowing you to keep track of all traversed
components, including the name of each channel and endpoint as well as the timestamp of that traversal.
See Section 10.3, “Message History” for more details.

Message Store

We now provide support for the Message Store pattern. The Message Store provides a strategy for
persisting messages on behalf of any process whose scope extends beyond a single transaction, such
as the Aggregator and Resequencer. Many sections of this document provide samples on how to use
a Message Store as it affects several areas of Spring Integration. See Section 10.4, “Message Store”,
Section 7.3, “Claim Check”, Section 4.1, “Message Channels”, Section 6.4, “Aggregator”, Chapter 19,
JDBC Support, and Section 6.5, “Resequencer” for more details

Claim Check

We have added an implementation of the Claim Check pattern. The idea behind the Claim Check pattern
is that you can exchange a Message payload for a "claim ticket" and vice-versa. This allows you to

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/
http://www.eaipatterns.com/MessageHistory.html
http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 641

reduce bandwidth and/or avoid potential security issues when sending Messages across channels. See
Section 7.3, “Claim Check” for more details.

Control Bus

We have provided implementations of the Control Bus pattern which allows you to use messaging
to manage and monitor endpoints and channels. The implementations include both a SpEL-based
approach and one that executes Groovy scripts. See Section 10.6, “Control Bus” and the section called
“Control Bus” for more details.

New Channel Adapters and Gateways

We have added several new Channel Adapters and Messaging Gateways in Spring Integration 2.0.

TCP/UDP Adapters

We have added Channel Adapters for receiving and sending messages over the TCP and UDP internet
protocols. See Chapter 32, TCP and UDP Support for more details. Also, you can checkout the following
blog: TCP/UDP support

Twitter Adapters

Twitter adapters provides support for sending and receiving Twitter Status updates as well as Direct
Messages. You can also perform Twitter Searches with an inbound Channel Adapter. See Chapter 33,
Twitter Support for more details.

XMPP Adapters

The new XMPP adapters support both Chat Messages and Presence events. See Chapter 38, XMPP
Support for more details.

FTP/FTPS Adapters

Inbound and outbound File transfer support over FTP/FTPS is now available. See Chapter 16, FTP/
FTPS Adapters for more details.

SFTP Adapters

Inbound and outbound File transfer support over SFTP is now available. See Chapter 28, SFTP
Adapters for more details.

Feed Adapters

We have also added Channel Adapters for receiving news feeds (ATOM/RSS). See Chapter 14, Feed
Adapter for more details.

Other Additions

Groovy Support

With Spring Integration 2.0 we’ve added Groovy support allowing you to use Groovy scripting language
to provide integration and/or business logic. See Section 8.8, “Groovy support” for more details.

Map Transformers

These symmetrical transformers convert payload objects to and from a Map. See Section 7.1,
“Transformer” for more details.

http://www.eaipatterns.com/ControlBus.html
http://blog.springsource.com/2010/03/29/using-udp-and-tcp-adapters-in-spring-integration-2-0-m3/

Spring Integration Reference Manual

5.0.3.RELEASE Spring Integration 642

JSON Transformers

These symmetrical transformers convert payload objects to and from JSON. See Section 7.1,
“Transformer” for more details.

Serialization Transformers

These symmetrical transformers convert payload objects to and from byte arrays. They also support the
Serializer and Deserializer strategy interfaces that have been added as of Spring 3.0.5. See Section 7.1,
“Transformer” for more details.

Framework Refactoring

The core API went through some significant refactoring to make it simpler and more usable. Although
we anticipate that the impact to the end user should be minimal, please read through this document to
find what was changed. Especially, visit the section called “Dynamic Routers” , Section 8.4, “Messaging
Gateways”, Section 18.3, “Http Outbound Components”, Section 5.1, “Message”, and Section 6.4,
“Aggregator” for more details. If you are depending directly on some of the core components (Message,
MessageHeaders, MessageChannel, MessageBuilder, etc.), you will notice that you need to update any
import statements. We restructured some packaging to provide the flexibility we needed for extending
the domain model while avoiding any cyclical dependencies (it is a policy of the framework to avoid
such "tangles").

New Source Control Management and Build Infrastructure

With Spring Integration 2.0 we have switched our build environment to use Git for source control. To
access our repository simply follow this URL: http://git.springsource.org/spring-integration. We have also
switched our build system to Gradle.

New Spring Integration Samples

With Spring Integration 2.0 we have decoupled the samples from our main release distribution. Please
read this blog to get more info New Spring Integration Samples We have also created many new
samples, including samples for every new Adapter.

Spring Tool Suite Visual Editor for Spring Integration

There is an amazing new visual editor for Spring Integration included within the latest version of
SpringSource Tool Suite. If you are not already using STS, please download it here:

Spring Tool Suite

http://git.springsource.org/spring-integration
http://gradle.org/
http://blog.springsource.com/2010/09/29/new-spring-integration-samples/
https://spring.io/tools/sts

	Spring Integration Reference Manual
	Table of Contents
	Part I. Preface
	Requirements
	1 Compatible Java Versions
	2 Compatible Versions of the Spring Framework
	3 Code Conventions

	1. Conventions in this Book

	Part II. What’s new?
	2. What’s new in Spring Integration 5.0?
	2.1 New Components
	Java DSL
	Testing Support
	MongoDB Outbound Gateway
	WebFlux Gateways and Channel Adapters
	Content Type Conversion
	ErrorMessagePublisher and ErrorMessageStrategy
	JDBC Metadata Store

	2.2 General Changes
	Core Changes
	Gateway Changes
	Aggregator Performance Changes
	Splitter Changes
	JMS Changes
	Mail Changes
	Feed Changes
	File Changes
	(S)FTP Changes
	Integration Properties
	Stream Changes
	Barrier Changes
	AMQP Changes
	HTTP Changes
	MQTT Changes
	STOMP Changes
	Web Services Changes
	Redis Changes
	TCP Changes
	Gemfire Changes
	Jdbc Changes
	Metrics Changes

	Part III. Overview of Spring Integration Framework
	3. Spring Integration Overview
	3.1 Background
	3.2 Goals and Principles
	3.3 Main Components
	Message
	Message Channel
	Message Endpoint

	3.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	3.5 Configuration and @EnableIntegration
	3.6 Programming Considerations
	3.7 Considerations When using Packaged (e.g. Shaded) Jars
	3.8 Programming Tips and Tricks
	XML Schemas
	Finding Class Names for Java and DSL Configuration

	3.9 POJO Method invocation

	Part IV. Core Messaging
	4. Messaging Channels
	4.1 Message Channels
	The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ExecutorChannel
	Scoped Channel

	Channel Interceptors
	MessagingTemplate
	Configuring Message Channels
	DirectChannel Configuration
	Datatype Channel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	ExecutorChannel
	PriorityChannel Configuration
	RendezvousChannel Configuration
	Scoped Channel Configuration
	Channel Interceptor Configuration
	Global Channel Interceptor Configuration
	Wire Tap
	Conditional Wire Taps
	Global Wire Tap Configuration

	Special Channels

	4.2 Poller
	Polling Consumer
	Pollable Message Source
	Deferred Acknowledgment Pollable Message Source
	Conditional Pollers for Message Sources
	Background
	"Smart" Polling
	SimpleActiveIdleMessageSourceAdvice
	CompoundTriggerAdvice

	4.3 Channel Adapter
	Configuring An Inbound Channel Adapter
	Configuring An Outbound Channel Adapter
	Channel Adapter Expressions and Scripts

	4.4 Messaging Bridge
	Introduction
	Configuring a Bridge with XML
	Configuring a Bridge with Java Configuration
	Configuring a Bridge with the Java DSL

	5. Message Construction
	5.1 Message
	The Message Interface
	Message Headers
	MessageHeaderAccessor API
	Message ID Generation
	Read-only Headers
	Header Propagation

	Message Implementations
	The MessageBuilder Helper Class

	6. Message Routing
	6.1 Routers
	Overview
	Common Router Parameters
	Inside and Outside of a Chain
	Top-Level (Outside of a Chain)

	Router Implementations
	PayloadTypeRouter
	HeaderValueRouter
	RecipientListRouter
	RecipientListRouterManagement
	XPath Router
	Routing and Error handling

	Configuring a Generic Router
	Configuring a Content Based Router with XML
	Configuring a Router with Annotations

	Dynamic Routers
	Manage Router Mappings using the Control Bus
	Manage Router Mappings using JMX
	Routing Slip
	Process Manager Enterprise Integration Pattern

	6.2 Filter
	Introduction
	Configuring Filter
	Configuring a Filter with XML
	Configuring a Filter with Annotations

	6.3 Splitter
	Introduction
	Programming model
	Configuring Splitter
	Configuring a Splitter using XML
	Configuring a Splitter with Annotations

	6.4 Aggregator
	Introduction
	Functionality
	Programming model
	AggregatingMessageHandler
	ReleaseStrategy
	Aggregating Large Groups
	CorrelationStrategy
	LockRegistry

	Configuring an Aggregator
	Configuring an Aggregator with XML
	Aggregators and Spring Expression Language (SpEL)
	Aggregator and Group Timeout

	Configuring an Aggregator with Annotations

	Managing State in an Aggregator: MessageGroupStore

	6.5 Resequencer
	Introduction
	Functionality
	Configuring a Resequencer

	6.6 Message Handler Chain
	Introduction
	Configuring a Chain

	6.7 Scatter-Gather
	Introduction
	Functionality
	Configuring a Scatter-Gather Endpoint

	6.8 Thread Barrier

	7. Message Transformation
	7.1 Transformer
	Introduction
	Configuring Transformer
	Configuring Transformer with XML
	Common Transformers
	Object-to-String Transformer
	Object-to-Map and Map-to-Object Transformers
	Stream Transformer
	JSON Transformers

	Configuring a Transformer with Annotations

	Header Filter
	Codec-Based Transformers

	7.2 Content Enricher
	Introduction
	Header Enricher
	Configuring a Header Enricher with Java Configuration
	Configuring a Header Enricher with the Java DSL
	Header Channel Registry

	Payload Enricher
	Configuration
	Examples

	7.3 Claim Check
	Introduction
	Incoming Claim Check Transformer
	Outgoing Claim Check Transformer
	A word on Message Store

	7.4 Codec
	Introduction
	EncodingPayloadTransformer
	DecodingTransformer
	CodecMessageConverter
	Kryo
	Customizing Kryo
	Using a Custom Kryo Serializer
	Implementing KryoSerializable
	Using DefaultSerializer Annotation

	8. Messaging Endpoints
	8.1 Message Endpoints
	Message Handler
	Event Driven Consumer
	Polling Consumer
	Endpoint Namespace Support
	Change Polling Rate at Runtime
	Payload Type Conversion
	Content Type Conversion
	Asynchronous polling
	Endpoint Inner Beans

	8.2 Endpoint Roles
	8.3 Leadership Event Handling
	8.4 Messaging Gateways
	Enter the GatewayProxyFactoryBean
	Gateway XML Namespace Support
	Setting the Default Reply Channel
	Gateway Configuration with Annotations and/or XML
	Mapping Method Arguments to a Message
	@MessagingGateway Annotation
	Invoking No-Argument Methods
	Error Handling
	Gateway Timeouts
	Asynchronous Gateway
	Introduction
	ListenableFuture
	AsyncTaskExecutor
	CompletableFuture
	Reactor Mono

	Gateway behavior when no response arrives

	8.5 Service Activator
	Introduction
	Configuring Service Activator
	Asynchronous Service Activator

	8.6 Delayer
	Introduction
	Configuring a Delayer
	Delayer and a Message Store

	8.7 Scripting support
	Script configuration

	8.8 Groovy support
	Groovy configuration
	Control Bus

	8.9 Adding Behavior to Endpoints
	Introduction
	Provided Advice Classes
	Retry Advice
	Configuring the Retry Advice

	Circuit Breaker Advice
	Expression Evaluating Advice

	Custom Advice Classes
	Other Advice Chain Elements
	Handle Message Advice
	Transaction Support
	Advising Filters
	Advising Endpoints Using Annotations
	Ordering Advices within an Advice Chain
	Advised Handler Properties
	Idempotent Receiver Enterprise Integration Pattern

	8.10 Logging Channel Adapter
	Configuring with Java Configuration
	Configuring with the Java DSL

	9. Java DSL
	9.1 Example Configurations
	9.2 Introduction
	9.3 DSL Basics
	9.4 Message Channels
	9.5 Pollers
	9.6 DSL and Endpoint Configuration
	9.7 Transformers
	9.8 Inbound Channel Adapters
	9.9 Message Routers
	9.10 Splitters
	9.11 Aggregators and Resequencers
	9.12 ServiceActivators (.handle())
	9.13 Operator log()
	9.14 MessageChannelSpec.wireTap()
	9.15 Working With Message Flows
	9.16 FunctionExpression
	9.17 Sub Flows support
	9.18 Using Protocol Adapters
	9.19 IntegrationFlowAdapter
	9.20 Dynamic and runtime Integration Flows
	9.21 IntegrationFlow as Gateway

	10. System Management
	10.1 Metrics and Management
	Configuring Metrics Capture
	Micrometer Integration
	MessageChannel Metric Features
	MessageHandler Metric Features
	Time-Based Average Estimates
	Metrics Factory

	10.2 JMX Support
	Notification Listening Channel Adapter
	Notification Publishing Channel Adapter
	Attribute Polling Channel Adapter
	Tree Polling Channel Adapter
	Operation Invoking Channel Adapter
	Operation Invoking Outbound Gateway
	MBean Exporter
	MBean ObjectNames
	JMX Improvements
	Orderly Shutdown Managed Operation

	10.3 Message History
	Message History Configuration

	10.4 Message Store
	MessageGroupFactory
	Persistence MessageGroupStore and Lazy-Load

	10.5 Metadata Store
	Idempotent Receiver and Metadata Store
	MetadataStoreListener

	10.6 Control Bus
	10.7 Orderly Shutdown
	10.8 Integration Graph
	Graph Runtime Model

	10.9 Integration Graph Controller

	Part V. Integration Endpoints
	11. Endpoint Quick Reference Table
	12. AMQP Support
	12.1 Introduction
	12.2 Inbound Channel Adapter
	Configuring with Java Configuration
	Configuring with the Java DSL

	12.3 Polled Inbound Channel Adapter
	12.4 Inbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL

	12.5 Inbound Endpoint Acknowledge Mode
	12.6 Outbound Channel Adapter
	Configuring with Java Configuration
	Configuring with the Java DSL

	12.7 Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL

	12.8 Async Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL

	12.9 Outbound Message Conversion
	12.10 Outbound User Id
	12.11 Delayed Message Exchange
	12.12 AMQP Backed Message Channels
	Configuring with Java Configuration
	Configuring with the Java DSL

	12.13 AMQP Message Headers
	12.14 AMQP Samples

	13. Spring ApplicationEvent Support
	13.1 Receiving Spring Application Events
	13.2 Sending Spring Application Events

	14. Feed Adapter
	14.1 Introduction
	14.2 Feed Inbound Channel Adapter
	14.3 Java DSL and Annotation configuration

	15. File Support
	15.1 Introduction
	15.2 Reading Files
	Namespace Support
	WatchServiceDirectoryScanner
	Limiting Memory Consumption
	Configuring with Java Configuration
	Configuring with the Java DSL
	'Tail’ing Files
	Dealing With Incomplete Data

	15.3 Writing files
	Generating File Names
	Specifying the Output Directory
	Dealing with Existing Destination Files
	Flushing Files When using APPEND_NO_FLUSH
	File Timestamps
	File Permissions
	File Outbound Channel Adapter
	Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL

	15.4 File Transformers
	15.5 File Splitter
	Configuring with Java Configuration
	Configuring with the Java DSL

	16. FTP/FTPS Adapters
	16.1 Introduction
	16.2 FTP Session Factory
	Default Factories
	FTPS and Shared SSLSession

	16.3 Delegating Session Factory
	16.4 FTP Inbound Channel Adapter
	Recovering from Failures
	Configuring with Java Configuration
	Configuring with the Java DSL
	Dealing With Incomplete Data

	16.5 FTP Streaming Inbound Channel Adapter
	Configuring with Java Configuration

	16.6 Inbound Channel Adapters: Controlling Remote File Fetching
	16.7 FTP Outbound Channel Adapter
	Configuring with Java Configuration
	Configuring with the Java DSL

	16.8 FTP Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL
	Outbound Gateway Partial Success (mget and mput)

	16.9 FTP Session Caching
	16.10 RemoteFileTemplate
	16.11 MessageSessionCallback

	17. GemFire Support
	17.1 Introduction
	17.2 Inbound Channel Adapter
	17.3 Continuous Query Inbound Channel Adapter
	17.4 Outbound Channel Adapter
	17.5 Gemfire Message Store
	17.6 Gemfire Lock Registry
	17.7 Gemfire Metadata Store

	18. HTTP Support
	18.1 Introduction
	18.2 Http Inbound Components
	18.3 Http Outbound Components
	HttpRequestExecutingMessageHandler

	18.4 HTTP Namespace Support
	Introduction
	Inbound
	Request Mapping Support
	Cross-Origin Resource Sharing (CORS) Support
	Response StatusCode
	URI Template Variables and Expressions
	Outbound
	Mapping URI Variables
	Controlling URI Encoding

	18.5 Configuring HTTP Endpoints with Java
	18.6 Timeout Handling
	18.7 HTTP Proxy configuration
	18.8 HTTP Header Mappings
	18.9 Integration Graph Controller
	18.10 HTTP Samples
	Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway (server)

	19. JDBC Support
	19.1 Inbound Channel Adapter
	Polling and Transactions
	Max-rows-per-poll versus Max-messages-per-poll

	19.2 Outbound Channel Adapter
	19.3 Outbound Gateway
	19.4 JDBC Message Store
	Initializing the Database
	The Generic JDBC Message Store
	Backing Message Channels
	Partitioning a Message Store

	19.5 Stored Procedures
	Supported Databases
	Configuration
	Common Configuration Attributes
	Common Configuration Sub-Elements
	Defining Parameter Sources
	Stored Procedure Inbound Channel Adapter
	Stored Procedure Outbound Channel Adapter
	Stored Procedure Outbound Gateway
	Examples

	19.6 JDBC Lock Registry
	19.7 JDBC Metadata Store

	20. JPA Support
	20.1 Supported Persistence Providers
	20.2 Java Implementation
	20.3 Namespace Support
	Common XML Namespace Configuration Attributes
	Providing JPA Query Parameters
	Transaction Handling

	20.4 Inbound Channel Adapter
	Configuration Parameter Reference
	Configuring with Java Configuration
	Configuring with the Java DSL

	20.5 Outbound Channel Adapter
	Using an Entity Class
	Using JPA Query Language (JPA QL)
	Using Native Queries
	Using Named Queries
	Configuration Parameter Reference
	Configuring with Java Configuration
	Configuring with the Java DSL

	20.6 Outbound Gateways
	Common Configuration Parameters
	Updating Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL
	Retrieving Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL
	JPA Outbound Gateway Samples

	21. JMS Support
	21.1 Inbound Channel Adapter
	Transactions

	21.2 Message-Driven Channel Adapter
	Inbound Conversion Errors

	21.3 Outbound Channel Adapter
	Transactions

	21.4 Inbound Gateway
	21.5 Outbound Gateway
	Gateway Reply Correlation
	Async Gateway
	Attribute Reference

	21.6 Mapping Message Headers to/from JMS Message
	21.7 Message Conversion, Marshalling and Unmarshalling
	21.8 JMS Backed Message Channels
	21.9 Using JMS Message Selectors
	21.10 JMS Samples

	22. Mail Support
	22.1 Mail-Sending Channel Adapter
	22.2 Mail-Receiving Channel Adapter
	22.3 Inbound Mail Message Mapping
	22.4 Mail Namespace Support
	22.5 Marking IMAP Messages When \Recent is Not Supported
	22.6 Email Message Filtering
	22.7 Transaction Synchronization

	23. MongoDb Support
	23.1 Introduction
	23.2 Connecting to MongoDb
	23.3 MongoDB Message Store
	MongoDB Channel Message Store
	MongoDB Metadata Store

	23.4 MongoDB Inbound Channel Adapter
	23.5 MongoDB Outbound Channel Adapter
	23.6 MongoDB Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL

	24. MQTT Support
	24.1 Introduction
	24.2 Inbound (message-driven) Channel Adapter
	Adding/Removing Topics at Runtime
	Configuring with Java Configuration

	24.3 Outbound Channel Adapter
	Configuring with Java Configuration

	25. Redis Support
	25.1 Introduction
	25.2 Connecting to Redis
	25.3 Messaging with Redis
	Redis Publish/Subscribe channel
	Redis Inbound Channel Adapter
	Redis Outbound Channel Adapter
	Redis Queue Inbound Channel Adapter
	Redis Queue Outbound Channel Adapter
	Redis Application Events

	25.4 Redis Message Store
	Redis Channel Message Stores

	25.5 Redis Metadata Store
	25.6 RedisStore Inbound Channel Adapter
	25.7 RedisStore Outbound Channel Adapter
	25.8 Redis Outbound Command Gateway
	25.9 Redis Queue Outbound Gateway
	25.10 Redis Queue Inbound Gateway
	25.11 Redis Lock Registry

	26. Resource Support
	26.1 Introduction
	26.2 Resource Inbound Channel Adapter

	27. RMI Support
	27.1 Introduction
	27.2 Outbound RMI
	27.3 Inbound RMI
	27.4 RMI namespace support
	27.5 Configuring with Java Configuration

	28. SFTP Adapters
	28.1 Introduction
	28.2 SFTP Session Factory
	Configuration Properties

	28.3 Proxy Factory Bean
	28.4 Delegating Session Factory
	28.5 SFTP Session Caching
	28.6 RemoteFileTemplate
	28.7 SFTP Inbound Channel Adapter
	Recovering from Failures
	Configuring with Java Configuration
	Configuring with the Java DSL
	Dealing With Incomplete Data

	28.8 SFTP Streaming Inbound Channel Adapter
	Configuring with Java Configuration

	28.9 Inbound Channel Adapters: Controlling Remote File Fetching
	28.10 SFTP Outbound Channel Adapter
	Configuring with Java Configuration
	Configuring with the Java DSL

	28.11 SFTP Outbound Gateway
	Configuring with Java Configuration
	Configuring with the Java DSL
	Outbound Gateway Partial Success (mget and mput)

	28.12 SFTP/JSCH Logging
	28.13 MessageSessionCallback

	29. STOMP Support
	29.1 Introduction
	29.2 Overview
	29.3 STOMP Inbound Channel Adapter
	29.4 STOMP Outbound Channel Adapter
	29.5 STOMP Headers Mapping
	29.6 STOMP Integration Events
	29.7 STOMP Adapters Java Configuration
	29.8 STOMP Namespace Support

	30. Stream Support
	30.1 Introduction
	30.2 Reading from streams
	30.3 Writing to streams
	30.4 Stream namespace support

	31. Syslog Support
	31.1 Introduction
	31.2 Syslog <inbound-channel-adapter>
	Example Configuration

	32. TCP and UDP Support
	32.1 Introduction
	32.2 UDP Adapters
	Outbound (XML Configuration)
	Outbound (Java Configuration)
	Outbound (Java DSL Configuration)
	Inbound (XML Configuration)
	Inbound (Java Configuration)
	Inbound (Java DSL Configuration)
	Server Listening Events
	Advanced Outbound Configuration

	32.3 TCP Connection Factories
	TCP Caching Client Connection Factory
	TCP Failover Client Connection Factory
	TCP Thread Affinity Connection Factory

	32.4 TCP Connection Interceptors
	32.5 TCP Connection Events
	32.6 TCP Adapters
	32.7 TCP Gateways
	32.8 TCP Message Correlation
	Overview
	Gateways
	Collaborating Outbound and Inbound Channel Adapters
	Transferring Headers

	32.9 A Note About NIO
	Thread Pool Task Executor with CALLER_RUNS Policy

	32.10 SSL/TLS Support
	Overview
	Getting Started

	32.11 Advanced Techniques
	Strategy Interfaces
	Example: Enabling SSL Client Authentication

	32.12 IP Configuration Attributes
	32.13 IP Message Headers
	32.14 Annotation-Based Configuration

	33. Twitter Support
	33.1 Introduction
	33.2 Twitter OAuth Configuration
	33.3 Twitter Template
	33.4 Twitter Inbound Adapters
	Inbound Message Channel Adapter
	Direct Inbound Message Channel Adapter
	Mentions Inbound Message Channel Adapter
	Search Inbound Message Channel Adapter

	33.5 Twitter Outbound Adapter
	Twitter Outbound Update Channel Adapter
	Twitter Outbound Direct Message Channel Adapter

	33.6 Twitter Search Outbound Gateway

	34. WebFlux Support
	34.1 Introduction
	34.2 WebFlux Inbound Components
	34.3 WebFlux Outbound Components
	34.4 WebFlux Namespace Support
	Introduction
	Inbound
	Outbound

	34.5 Configuring WebFlux Endpoints with Java
	34.6 WebFlux Header Mappings

	35. WebSockets Support
	35.1 Introduction
	35.2 Overview
	35.3 WebSocket Inbound Channel Adapter
	35.4 WebSocket Outbound Channel Adapter
	35.5 WebSockets Namespace Support
	35.6 ClientStompEncoder

	36. Web Services Support
	36.1 Outbound Web Service Gateways
	36.2 Inbound Web Service Gateways
	36.3 Web Service Namespace Support
	36.4 Outbound URI Configuration
	36.5 WS Message Headers
	36.6 MTOM Support

	37. XML Support - Dealing with XML Payloads
	37.1 Introduction
	37.2 Namespace Support
	XPath Expressions
	Providing Namespaces (Optional) to XPath Expressions
	Using XPath Expressions with Default Namespaces

	37.3 Transforming XML Payloads
	Configuring Transformers as Beans
	UnmarshallingTransformer
	MarshallingTransformer
	XsltPayloadTransformer
	ResultTransformers

	Namespace Support for XML Transformers
	Namespace Configuration and ResultTransformers

	37.4 Transforming XML Messages Using XPath
	37.5 Splitting XML Messages
	37.6 Routing XML Messages Using XPath
	XML Payload Converter

	37.7 XPath Header Enricher
	37.8 Using the XPath Filter
	37.9 #xpath SpEL Function
	37.10 XML Validating Filter

	38. XMPP Support
	38.1 Introduction
	38.2 XMPP Connection
	38.3 XMPP Messages
	Inbound Message Channel Adapter
	Outbound Message Channel Adapter

	38.4 XMPP Presence
	Inbound Presence Message Channel Adapter
	Outbound Presence Message Channel Adapter

	38.5 Advanced Configuration
	38.6 XMPP Message Headers
	38.7 XMPP Extensions

	39. Zookeeper Support
	39.1 Introduction
	39.2 Zookeeper Metadata Store
	39.3 Zookeeper Lock Registry
	39.4 Zookeeper Leadership Event Handling

	Part VI. Appendices
	Appendix A. Spring Expression Language (SpEL)
	A.1 Introduction
	A.2 SpEL Evaluation Context Customization
	A.3 SpEL Functions
	A.4 PropertyAccessors

	Appendix B. Message Publishing
	B.1 Message Publishing Configuration
	Annotation-driven approach via @Publisher annotation
	XML-based approach via the <publishing-interceptor> element
	Producing and publishing messages based on a scheduled trigger

	Appendix C. Transaction Support
	C.1 Understanding Transactions in Message flows
	Poller Transaction Support

	C.2 Transaction Boundaries
	C.3 Transaction Synchronization
	C.4 Pseudo Transactions

	Appendix D. Security in Spring Integration
	D.1 Introduction
	D.2 Securing channels
	D.3 SecurityContext Propagation

	Appendix E. Configuration
	E.1 Introduction
	E.2 Namespace Support
	E.3 Configuring the Task Scheduler
	E.4 Error Handling
	E.5 Global Properties
	E.6 Annotation Support
	Messaging Meta-Annotations
	Annotations on @Beans
	Creating a Bridge with Annotations
	Advising Annotated Endpoints

	E.7 Message Mapping rules and conventions
	Simple Scenarios
	Complex Scenarios

	Appendix F. Testing support
	F.1 Introduction
	F.2 Testing Utilities
	TestUtils
	SocketUtils
	OnlyOnceTrigger
	Support Components
	Hamcrest and Mockito Matchers

	F.3 Spring Integration and test context
	F.4 Integration Mocks
	MockIntegration

	F.5 Other Resources

	Appendix G. Spring Integration Samples
	G.1 Introduction
	G.2 Where to get Samples
	G.3 Submitting Samples or Sample Requests
	G.4 Samples Structure
	G.5 Samples
	Loan Broker
	The Cafe Sample
	The XML Messaging Sample

	Appendix H. Additional Resources
	H.1 Spring Integration Home

	Appendix I. Change History
	I.1 Changes between 4.2 and 4.3
	I.2 New Components
	AMQP Async Outbound Gateway
	MessageGroupFactory
	PersistentMessageGroup
	FTP/SFTP Streaming Inbound Channel Adapters
	Stream Transformer
	Integration Graph
	JDBC Lock Registry
	Leader Initiator for Lock Registry

	I.3 General Changes
	Core Changes
	Outbound Gateway within Chain
	Async Service Activator
	Messaging Annotation Support changes

	Mail Changes
	Customizable User Flag
	Mail Message Mapping

	JMS Changes
	Header Mapper
	Async Gateway

	Aggregator Changes
	TCP/UDP Changes
	Events
	Stream Deserializers
	TCP Message Mapper

	File Changes
	Destination Directory Creation
	Buffer Size
	Appending and Flushing
	Preserving Timestamps
	Splitter Changes
	File Filters

	AMQP Changes
	Content Type Message Converter
	Headers for Delayed Message Handling
	AMQP-Backed Channels

	Redis Changes
	List Push/Pop Direction
	Queue Inbound Gateway Default Serializer

	HTTP Changes
	SFTP Changes
	Factory Bean
	chmod

	FTP Changes
	Session Changes

	Router Changes
	Header Mapping
	General
	AMQP Header Mapping

	Groovy Scripts
	@InboundChannelAdapter
	XMPP changes
	WireTap Late Binding
	ChannelMessageStoreQueryProvider
	WebSocket Changes

	I.4 Changes between 4.1 and 4.2
	I.5 New Components
	Major Management/JMX Rework
	MongoDB Metadata Store
	SecuredChannel Annotation
	SecurityContext Propagation
	FileSplitter
	Zookeeper Support
	Thread Barrier
	STOMP Support
	Codec
	Message PreparedStatement Setter

	I.6 General Changes
	Wire Tap
	File Changes
	Appending New Lines
	Ignoring Hidden Files
	Writing InputStream Payloads
	HeadDirectoryScanner
	Last Modified Filter
	WatchService Directory Scanner
	Persistent File List Filter Changes

	Class Package Change
	TCP Changes
	TCP Serializers
	Server Socket Exceptions
	TCP Server Port
	TCP Gateway Remote Timeout
	TCP SSLSession Available for Header Mapping
	TCP Events

	@InboundChannelAdapter
	API Changes
	JMS Changes
	Reply Listener Lazy Initialization
	Conversion Errors in Message-Driven Endpoints
	Default Acknowledge Mode
	Shared Subscriptions

	Conditional Pollers
	AMQP Changes
	Publisher Confirms
	Correlation Data
	The Inbound Gateway properties

	XPath Splitter Improvements
	HTTP Changes
	CORS
	Inbound Gateway Timeout
	Form Data

	Gateway Changes
	Gateway Methods can Return CompletableFuture<?>
	MessagingGateway Annotation

	Aggregator Changes
	Aggregator Performance
	Output Message Group Processor

	(S)FTP Changes
	Inbound channel adapters
	Gateway Partial Results
	Delegating Session Factory
	Default Sftp Session Factory
	Message Session Callback

	Websocket Changes
	Application Event Adapters changes

	I.7 Changes between 4.0 and 4.1
	New Components
	Promise<?> Gateway
	WebSocket support
	Scatter-Gather EIP pattern
	Routing Slip Pattern
	Idempotent Receiver Pattern
	BoonJsonObjectMapper
	Redis Queue Gateways
	PollSkipAdvice

	General Changes
	AMQP Inbound Endpoints, Channel
	AMQP Outbound Endpoints
	SimpleMessageStore
	Web Service Outbound Gateway: encode-uri
	Http Inbound Channel Adapter and StatusCode
	MQTT Adapter Changes
	FTP/SFTP Adapter Changes
	Splitter and Iterator
	Aggregator
	Content Enricher Improvements
	Header Channel Registry
	Orderly Shutdown
	Management for RecipientListRouter
	AbstractHeaderMapper: NON_STANDARD_HEADERS token
	AMQP Channels: template-channel-transacted
	Syslog Adapter
	Async Gateway
	Aggregator Advice Chain
	Outbound Channel Adapter and Scripts
	Resequencer Changes
	Optional POJO method parameter
	QueueChannel: backed Queue type
	ChannelInterceptor Changes
	IMAP PEEK

	I.8 Changes between 3.0 and 4.0
	New Components
	MQTT Channel Adapters
	@EnableIntegration
	@IntegrationComponentScan
	@EnableMessageHistory
	@MessagingGateway
	Spring Boot @EnableAutoConfiguration
	@GlobalChannelInterceptor
	@IntegrationConverter
	@EnablePublisher
	Redis Channel Message Stores
	MongodDB Channel Message Store
	@EnableIntegrationMBeanExport
	ChannelSecurityInterceptorFactoryBean
	Redis Command Gateway
	RedisLockRegistry and GemfireLockRegistry
	@Poller
	@InboundChannelAdapter and SmartLifecycle for Annotated Endpoints
	Twitter Search Outbound Gateway
	Gemfire Metadata Store
	@BridgeFrom and @BridgeTo Annotations
	Meta Messaging Annotations

	General Changes
	Requires Spring Framework 4.0
	Header Type for XPath Header Enricher
	Object To Json Transformer: Node Result
	JMS Header Mapping
	JMS Outbound Channel Adapter
	JMS Inbound Channel Adapter
	Datatype Channels
	Simpler Retry Advice Configuration
	Correlation Endpoint: Time-based Release Strategy
	Redis Metadata Store
	JdbcChannelMessageStore and PriorityChannel
	AMQP Endpoints Delivery Mode
	FTP Timeouts
	Twitter: StatusUpdatingMessageHandler
	JPA Retrieving Gateway: id-expression
	TCP Deserialization Events
	Messaging Annotations on @Bean Definitions

	I.9 Changes Between 2.2 and 3.0
	New Components
	HTTP Request Mapping
	Spring Expression Language (SpEL) Configuration
	SpEL Functions Support
	SpEL PropertyAccessors Support
	Redis: New Components
	Header Channel Registry
	MongoDB support: New ConfigurableMongoDbMessageStore
	Syslog Support
	Tail Support
	JMX Support
	TCP/IP Connection Events and Connection Management
	Inbound Channel Adapter Script Support
	Content Enricher: Headers Enrichment Support

	General Changes
	Message ID Generation
	<gateway> Changes
	HTTP Endpoint Changes
	Jackson Support (JSON)
	Chain Elements id Attribute
	Aggregator empty-group-min-timeout property
	Persistent File List Filters (file, (S)FTP)
	Scripting Support: Variables Changes
	Direct Channel Load Balancing configuration
	PublishSubscribeChannel Behavior
	FTP, SFTP and FTPS Changes
	requires-reply Attribute for Outbound Gateways
	AMQP Outbound Gateway Header Mapping
	Stored Procedure Components Improvements
	Web Service Outbound URI Configuration
	Redis Adapter Changes
	Advising Filters
	Advising Endpoints using Annotations
	ObjectToStringTransformer Improvements
	JPA Support Changes
	Delayer: delay expression
	JDBC Message Store Improvements
	IMAP Idle Connection Exceptions
	Message Headers and TCP
	JMS Message Driven Channel Adapter
	RMI Inbound Gateway
	XsltPayloadTransformer

	I.10 Changes between 2.1 and 2.2
	New Components
	RedisStore Inbound and Outbound Channel Adapters
	MongoDB Inbound and Outbound Channel Adapters
	JPA Endpoints

	General Changes
	Spring 3.1 Used by Default
	Adding Behavior to Endpoints
	Transaction Synchronization and Pseudo Transactions
	File Adapter - Improved File Overwrite/Append Handling
	Reply-Timeout added to more Outbound Gateways
	Spring-AMQP 1.1
	JDBC Support - Stored Procedures Components
	JDBC Support - Outbound Gateway
	JDBC Support - Channel-specific Message Store Implementation
	Orderly Shutdown
	JMS Oubound Gateway Improvements
	object-to-json-transformer
	HTTP Support

	I.11 Changes between 2.0 and 2.1
	New Components
	JSR-223 Scripting Support
	GemFire Support
	AMQP Support
	MongoDB Support
	Redis Support
	Support for Spring’s Resource abstraction
	Stored Procedure Components
	XPath and XML Validating Filter
	Payload Enricher
	FTP and SFTP Outbound Gateways
	FTP Session Caching

	Framework Refactoring
	Standardizing Router Configuration
	XML Schemas updated to 2.1

	Source Control Management and Build Infrastructure
	Source Code now hosted on Github
	Improved Source Code Visibility with Sonar

	New Samples

	I.12 Changes between 1.0 and 2.0
	Spring 3 support
	Support for the Spring Expression Language (SpEL)
	ConversionService and Converter
	TaskScheduler and Trigger
	RestTemplate and HttpMessageConverter

	Enterprise Integration Pattern Additions
	Message History
	Message Store
	Claim Check
	Control Bus

	New Channel Adapters and Gateways
	TCP/UDP Adapters
	Twitter Adapters
	XMPP Adapters
	FTP/FTPS Adapters
	SFTP Adapters
	Feed Adapters

	Other Additions
	Groovy Support
	Map Transformers
	JSON Transformers
	Serialization Transformers

	Framework Refactoring
	New Source Control Management and Build Infrastructure
	New Spring Integration Samples
	Spring Tool Suite Visual Editor for Spring Integration

