Spring Integration Reference Guide

Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg Zhurakousky,
Gary Russell, Dave Syer, Josh Long, David Turanski, Gunnar Hillert, Artem Bilan,
Amol Nayak, Jay Bryant

Version 5.3.0.RELEASE

Table of Contents

Preface
1. Requirements
1.1. Compatible Java Versions
1.2. Compatible Versions of the Spring Framework
2. Code Conventions
3. Conventions in This Guide
What’s New?
4. What’s New in Spring Integration 5.3?

4.1. New Components
4.2. General Changes
4.3. AMQP Changes

4.4. HTTP Changes

4.5. Web Services Changes
4.6. TCP Changes

4.7. RSocket Changes
4.8. Zookeeper Changes
4.9. MQTT Changes
4.10. (S)FTP Changes
4.11. File Changes

Overview of Spring Integration Framework

5. Spring Integration Overview

5.1. Background

5.2. Goals and Principles

5.3. Main Components

5.4. Message Endpoints

5.5. Configuration and @EnableIntegration
5.6. Programming Considerations

5.7. Programming Tips and Tricks

5.8. POJO Method invocation

Core Messaging
6. Messaging Channels

6.1. Message Channels
6.2. Poller

6.3. Channel Adapter
6.4. Messaging Bridge

7. Message

7.1. The Message Interface
7.2. Message Headers

© © © © © ©W 00 N 09 O U b= W W w N

N 0 o O U1 w0 w W N NNDN R R R R e
=R R g W Wy OO W R U WD, O O O

7.3. Message Implementations 76

7.4. The MessageBuilder Helper Class 76
8. Message Routing 79
8.1. Routers 79
8.2. Filter 104
8.3. Splitter 108
8.4. Aggregator 112
8.5. Resequencer 135
8.6. Message Handler Chain 139
8.7. Scatter-Gather 143
8.8. Thread Barrier 147
9. Message Transformation 150
9.1. Transformer 150
9.2. Content Enricher 161
9.3. Claim Check 170
9.4. Codec 174
10. Messaging Endpoints 178
10.1. Message Endpoints 178
10.2. Endpoint Roles 192
10.3. Leadership Event Handling 194
10.4. Messaging Gateways 195
10.5. Service Activator 216
10.6. Delayer 221
10.7. Scripting Support 226
10.8. Groovy support 230
10.9. Adding Behavior to Endpoints 234
10.10. Logging Channel Adapter 258
10.11. java.util.function Interfaces Support 260
11.Java DSL 264
11.1. DSL Basics 265
11.2. Message Channels 267
11.3. Pollers 269
11.4. DSL and Endpoint Configuration 270
11.5. Transformers 271
11.6. Inbound Channel Adapters 271
11.7. Message Routers 272
11.8. Splitters 274
11.9. Aggregators and Resequencers 275
11.10. Service Activators and the .handle() method 276
11.11. Operator log() 277

11.12. Operator intercept() 277

11.13. MessageChannelSpec.wireTap() 278

11.14. Working With Message Flows 279
11.15. FunctionExpression 280
11.16. Sub-flows support 280
11.17. Using Protocol Adapters 284
11.18. IntegrationFlowAdapter 286
11.19. Dynamic and Runtime Integration Flows 289
11.20. IntegrationFlow as a Gateway 292
11.21. DSL Extensions 294
12. Kotlin DSL 296
13. System Management 298
13.1. Metrics and Management 298
13.2. JMX Support 305
13.3. Message History 315
13.4. Message Store 317
13.5. Metadata Store 321
13.6. Control Bus 323
13.7. Orderly Shutdown 324
13.8. Integration Graph 325
13.9. Integration Graph Controller 332
Integration Endpoints 335
14. Endpoint Quick Reference Table 336
15. AMQP Support 340
15.1. Inbound Channel Adapter 340
15.2. Polled Inbound Channel Adapter 348
15.3. Inbound Gateway 348
15.4. Inbound Endpoint Acknowledge Mode 352
15.5. Outbound Channel Adapter 353
15.6. Outbound Channel Adapter 353
15.7. Outbound Gateway 358
15.8. Asynchronous Outbound Gateway 363
15.9. Inbound Message Conversion 368
15.10. Outbound Message Conversion 369
15.11. Outbound User ID 370
15.12. Delayed Message Exchange 370
15.13. AMQP-backed Message Channels 371
15.14. AMQP Message Headers 374
15.15. Strict Message Ordering 377
15.16. AMQP Samples 378
16. Spring ApplicationEvent Support 380

16.1. Receiving Spring Application Events 380

16.2. Sending Spring Application Events 382

17. Feed Adapter 385
17.1. Feed Inbound Channel Adapter 385
17.2. Duplicate Entries 386
17.3. Other Options 386
17.4. Java DSL Configuration 387

18. File Support 388
18.1. Reading Files 388
18.2. Writing files 401
18.3. File Transformers 409
18.4. File Splitter 410
18.5. Remote Persistent File List Filters 414

19. FTP/FTPS Adapters 416
19.1. FTP Session Factory 416
19.2. Advanced Configuration 418
19.3. Delegating Session Factory 420
19.4. FTP Inbound Channel Adapter 421
19.5. FTP Streaming Inbound Channel Adapter 429
19.6. Inbound Channel Adapters: Polling Multiple Servers and Directories 432
19.7. Inbound Channel Adapters: Controlling Remote File Fetching 433
19.8. FTP Outbound Channel Adapter 434
19.9. FTP Outbound Gateway 440
19.10. FTP Session Caching 448
19.11. Using RemoteFileTemplate 449
19.12. Using MessageSessionCallback 450
19.13. Apache Mina FTP Server Events 451
19.14. Remote File Information 452

20. Pivotal GemFire and Apache Geode Support 453
20.1. Inbound Channel Adapter 454
20.2. Continuous Query Inbound Channel Adapter 455
20.3. Outbound Channel Adapter 456
20.4. Gemfire Message Store 457
20.5. Gemfire Lock Registry 458
20.6. Gemfire Metadata Store 459

21. HTTP Support 461
21.1. Http Inbound Components 461
21.2. HTTP Outbound Components 464
21.3. HTTP Namespace Support 465
21.4. Configuring HTTP Endpoints with Java 476
21.5. Timeout Handling 478

21.6. HTTP Proxy configuration 481

21.7. HTTP Header Mappings 482

21.8. Integration Graph Controller 483
21.9. HTTP Samples 484
22. JDBC Support 486
22.1. Inbound Channel Adapter 486
22.2. Outbound Channel Adapter 490
22.3. Outbound Gateway 493
22.4. J]DBC Message Store 494
22.5. Stored Procedures 499
22.6. JDBC Lock Registry 510
22.7. JDBC Metadata Store 511
23. JPA Support 513
23.1. Functionality 514
23.2. Supported Persistence Providers 514
23.3. Java Implementation 514
23.4. Namespace Support 515
23.5. Inbound Channel Adapter 519
23.6. Outbound Channel Adapter 524
23.7. Outbound Gateways 532
24. JMS Support 543
24.1. Inbound Channel Adapter 544
24.2. Message-driven Channel Adapter 545
24.3. Outbound Channel Adapter 547
24.4. Inbound Gateway 548
24.5. Outbound Gateway 549
24.6. Mapping Message Headers to and from JMS Message 557
24.7. Message Conversion, Marshalling, and Unmarshalling 559
24.8. JMS-backed Message Channels 559
24.9. Using JMS Message Selectors 561
24.10. JMS Samples 561
25. Mail Support 563
25.1. Mail-sending Channel Adapter 563
25.2. Mail-receiving Channel Adapter 564
25.3. Inbound Mail Message Mapping 565
25.4. Mail Namespace Support 567
25.5. Marking IMAP Messages When \Recent Is Not Supported 573
25.6. Email Message Filtering 573
25.7. Transaction Synchronization 574
25.8. Configuring channel adapters with the Java DSL 576
26. MongoDb Support 577

26.1. Connecting to MongoDb 577

26.2. MongoDB Message Store 579

26.3. MongoDB Inbound Channel Adapter 582
26.4. MongoDB Change Stream Inbound Channel Adapter 584
26.5. MongoDB Outbound Channel Adapter 585
26.6. MongoDB Outbound Gateway 586
26.7. MongoDB Reactive Channel Adapters 589
27. MQTT Support 591
27.1. Inbound (Message-driven) Channel Adapter 591
27.2. Outbound Channel Adapter 597
27.3. Events 601
28. Redis Support 602
28.1. Connecting to Redis 602
28.2. Messaging with Redis 604
28.3. Redis Message Store 610
28.4. Redis Metadata Store 611
28.5. Redis Store Inbound Channel Adapter 612
28.6. RedisStore Outbound Channel Adapter 615
28.7. Redis Outbound Command Gateway 616
28.8. Redis Queue Outbound Gateway 618
28.9. Redis Queue Inbound Gateway 619
28.10. Redis Lock Registry 621
29. Resource Support 622
29.1. Resource Inbound Channel Adapter 622
30. RMI Support 624
30.1. Outbound RMI 624
30.2. Inbound RMI 624
30.3. RMI namespace support 625
30.4. Configuring with Java Configuration 626
31. RSocket Support 627
31.1. RSocket Inbound Gateway 629
31.2. RSocket Outbound Gateway 630
31.3. RSocket Namespace Support 631
31.4. Configuring RSocket Endpoints with Java 633
32. SFTP Adapters 636
32.1. SFTP Session Factory 636
32.2. Proxy Factory Bean 639
32.3. Delegating Session Factory 639
32.4. SFTP Session Caching 640
32.5. Using RemoteFileTemplate 641
32.6. SFTP Inbound Channel Adapter 642

32.7. SFTP Streaming Inbound Channel Adapter 649

32.8. Inbound Channel Adapters: Polling Multiple Servers and Directories 652

32.9. Inbound Channel Adapters: Controlling Remote File Fetching 653
32.10. SFTP Outbound Channel Adapter 654
32.11. SFTP Outbound Gateway 659
32.12. SFTP/JSCH Logging 667
32.13. MessageSessionCallback 668
32.14. Apache Mina SFTP Server Events 668
32.15. Remote File Information 669
33. STOMP Support 671
33.1. Overview 671
33.2. STOMP Inbound Channel Adapter 672
33.3. STOMP Outbound Channel Adapter 672
33.4. STOMP Headers Mapping 672
33.5. STOMP Integration Events 673
33.6. STOMP Adapters Java Configuration 673
33.7. STOMP Namespace Support 675
34. Stream Support 678
34.1. Reading from Streams 678
34.2. Writing to Streams 680
34.3. Stream Namespace Support 680
35. Syslog Support 682
35.1. Syslog Inbound Channel Adapter 682
36. TCP and UDP Support 686
36.1. Introduction 686
36.2. UDP Adapters 687
36.3. TCP Connection Factories 691
36.4. Testing Connections 699
36.5. TCP Connection Interceptors 700
36.6. TCP Connection Events 701
36.7. TCP Adapters 702
36.8. TCP Gateways 704
36.9. TCP Message Correlation 706
36.10. About Non-blocking I/O (NIO) 709
36.11. SSL/TLS Support 713
36.12. Advanced Techniques 715
36.13. IP Configuration Attributes 720
36.14. IP Message Headers 727
36.15. Annotation-Based Configuration 728
37. WebFlux Support 731
37.1. WebFlux Inbound Components 731

37.2. WebFlux Outbound Components 733

37.3. WebFlux Namespace Support 734

37.4. Configuring WebFlux Endpoints with Java 737
37.5. WebFlux Header Mappings 739
38. WebSockets Support 740
38.1. Overview 741
38.2. WebSocket Inbound Channel Adapter 742
38.3. WebSocket Outbound Channel Adapter 743
38.4. WebSockets Namespace Support 743
38.5. Using ClientStompEncoder 749
39. Web Services Support 751
39.1. Outbound Web Service Gateways 751
39.2. Inbound Web Service Gateways 752
39.3. Web Service Namespace Support 753
39.4. Web Service Java DSL Support 754
39.5. Outbound URI Configuration 756
39.6. WS Message Headers 757
39.7. MTOM Support 760
40. XML Support - Dealing with XML Payloads 762
40.1. Namespace Support 763
40.2. Transforming XML Payloads 767
40.3. Transforming XML Messages with XPath 774
40.4. Splitting XML Messages 776
40.5. Routing XML Messages with XPath 778
40.6. XPath Header Enricher 780
40.7. Using the XPath Filter 783
40.8. #xpath SpEL Function 784
40.9. XML Validating Filter 785
41. XMPP Support 787
41.1. XMPP Connection 788
41.2. XMPP Messages 788
41.3. XMPP Presence 791
41.4. Advanced Configuration 792
41.5. XMPP Message Headers 794
41.6. XMPP Extensions 794
42. Zookeeper Support 798
42.1. Zookeeper Metadata Store 798
42.2. Zookeeper Lock Registry 799
42.3. Zookeeper Leadership Event Handling 799
Appendices 801
Appendix A: Error Handling 802

Appendix B: Spring Expression Language (SpEL) 804

B.1. SpEL Evaluation Context Customization
B.2. SpEL Functions
B.3. Property Accessors
Appendix C: Message Publishing
C.1. Message Publishing Configuration
Appendix D: Transaction Support
D.1. Understanding Transactions in Message flows
D.2. Transaction Boundaries
D.3. Transaction Synchronization
D.4. Pseudo Transactions
D.5. Reactive Transactions
Appendix E: Security in Spring Integration
E.1. Securing channels
E.2. Security Context Propagation
Appendix F: Configuration
F.1. Namespace Support
F.2. Configuring the Task Scheduler
F.3. Global Properties
F.4. Annotation Support
F.5. Messaging Meta-Annotations
F.6. Message Mapping Rules and Conventions
Appendix G: Testing support
G.1. Testing Utilities
G.2. Spring Integration and the Test Context
G.3. Integration Mocks
G.4. Other Resources
Appendix H: Spring Integration Samples
H.1. Where to Get Samples
H.2. Submitting Samples or Sample Requests
H.3. Samples Structure
H.4. Samples
Appendix I: Additional Resources
Appendix J: Change History
J.1. Changes between 5.1 and 5.2
J.2. Package and Class Changes
].3. Behavior Changes
J.4. New Components
].5. General Changes
]J.6. Changes between 5.0 and 5.1
]J.7. Changes between 4.3 and 5.0
].8. Changes between 4.2 and 4.3

804
806
808
809
809
818
818
821
821
824
824
825
825
827
830
830
832
833
835
842
847
853
854
858
860
862
863
863
864
864
866
878
879
879
879
879
879
880
882
887
894

]J.9. Changes between 4.1 and 4.2 900

J.10. Changes between 4.0 and 4.1 907
J.11. Changes between 3.0 and 4.0 911
J.12. Changes Between 2.2 and 3.0 916
J.13. Changes between 2.1 and 2.2 925
]J.14. Changes between 2.0 and 2.1 928

J.15. Changes between Versions 1.0 and 2.0 933

© 2009 - 2020 Pivotal Software, Inc. All rights reserved.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Preface

This chapter includes:

* Requirements
e Code Conventions

¢ Conventions in This Guide

Chapter 1. Requirements

This section details the compatible Java and Spring Framework versions.

1.1. Compatible Java Versions

For Spring Integration 5.2.%, the minimum compatible Java version is Java SE 8. Older versions of
Java are not supported.

1.2. Compatible Versions of the Spring Framework

Spring Integration 5.2.X requires Spring Framework 5.2 or later.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://spring.io/projects/spring-framework

Chapter 2. Code Conventions

Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context and lets Spring Integration provide broad namespace support.

In this reference guide, the int namespace prefix is used for Spring Integration’s core namespace
support. Each Spring Integration adapter type (also called a module) provides its own namespace,
which is configured by using the following convention:

The following example shows the int, int-event, and int-stream namespaces in use:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:int="http://www.springframework.org/schema/integration"
xmlns:int-webflux="http://www.springframework.org/schema/integration/webflux"
xmlns:int-stream="http://www.springframework.org/schema/integration/stream"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
https://www.springframework.org/schema/integration/spring-integration.xsd
http://www.springframework.org/schema/integration/webflux
https://www.springframework.org/schema/integration/webflux/spring-integration-
webflux.xsd
http://www.springframework.org/schema/integration/stream
https://www.springframework.org/schema/integration/stream/spring-integration-
stream.xsd">

</beans>

For a detailed explanation regarding Spring Integration’s namespace support, see Namespace
Support.

The namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, you should apply the convention that best

o suits your application. Be aware, though, that SpringSource Tool Suite™ (STS) uses
the same namespace conventions for Spring Integration as used in this reference
guide.

./configuration.pdf#configuration-namespace
./configuration.pdf#configuration-namespace

Chapter 3. Conventions in This Guide

In some cases, to aid formatting when specifying long fully qualified class names, we shorten
org.springframework to o.s and org.springframework.integration to o0.s.i, such as with
0.s.i.transaction.TransactionSynchronizationFactory.

What’s New?

For those who are already familiar with Spring Integration, this chapter provides a brief overview
of the new features of version 5.3.

If you are interested in the changes and features that were introduced in earlier versions, see the
Change History.

./history.pdf#history

Chapter 4. What’s New in Spring Integration
5.3?

If you are interested in more details, see the Issue Tracker tickets that were resolved as part of the
5.3 development process.

4.1. New Components

4.1.1. Integration Pattern

The IntegrationPattern abstraction has been introduced to indicate which enterprise integration
pattern (an IntegrationPatternType) and category a Spring Integration component belongs to. See its
JavaDocs and Integration Graph for more information about this abstraction and its use-cases.

4.1.2. ReactiveMessageHandler

The ReactiveMessageHandler is now natively supported in the framework. See
ReactiveMessageHandler for more information.

4.1.3. ReactiveMessageSourceProducer

The ReactiveMessageSourceProducer is a reactive implementation of the MessageProducerSupport to
wrap a provided MessageSource into a Flux for on demand receive() calls. See Reactive Streams
Support for more information.

4.1.4. Java DSL Extensions

A new IntegrationFlowExtension API has been introduced to allow extension of the existing Java
DSL with custom or composed EIP-operators. This also can be used to introduce customizers for any
out-of-the-box IntegrationComponentSpec extensions. See DSL Extensions for more information.

4.1.5. Kotlin DSL

The Kotlin DSL for integration flow configurations has been introduced. See Kotlin DSL Chapter for
more information.

4.1.6. ReactiveRequestHandlerAdvice

A ReactiveRequestHandlerAdvice is provided to customize Mono replies from message handlers. See
Reactive Advice for more information.

4.1.7. HandleMessageAdviceAdapter

A HandleMessageAdviceAdapter is provided to wrap any MethodInterceptor for applying on the
MessageHandler.handleMessage() instead of a default
AbstractReplyProducingMessageHandler.RequestHandler.handleRequestMessage() behavior. See

./graph.pdf#integration-graph
./reactive-streams.pdf#reactive-message-handler
./reactive-streams.pdf#reactive-streams
./reactive-streams.pdf#reactive-streams
./dsl.pdf#java-dsl-extensions
./kotlin-dsl.pdf#kotlin-dsl
./handler-advice.pdf#reactive-advice

Handling Message Advice for more information.

4.1.8. MongoDB Reactive Channel Adapters

The spring-integration-mongodb module now provides channel adapter implementations for the
Reactive MongoDb driver support in Spring Data. Also, a reactive implementation for MongoDb
change stream support is present with the MongoDbChangeStreamMessageProducer. See MongoDB
Support for more information.

4.1.9. ReceiveMessageAdvice

A special ReceiveMessageAdvice has been introduced to proxy exactly MessageSource.receive() or
PollableChannel.receive(). See Smart Polling for more information.

4.2. General Changes

The gateway proxy now doesn’t proxy default methods by default. See Invoking default Methods
for more information.

Internal components (such as _org.springframework.integration.errorLogger) now have a shortened
name when they are represented in the integration graph. See Integration Graph for more
information.

In the aggregator, when the MessageGroupProcessor returns a Message, the
MessageBuilder.popSequenceDetails() is performed on the output message if the sequenceDetails
matches the header in the first message of the group. See Aggregator Programming Model for more
information.

A new publishSubscribeChannel() operator, based on the BroadcastCapableChannel and
BroadcastPublishSubscribeSpec, was added into Java DSL. This fluent API has its advantage when we
configure sub-flows as pub-sub subscribers for broker-backed channels like SubscribableJmsChannel,
SubscribableRedisChannel etc. See Sub-flows support for more information.

Transactional support in Spring Integration now also includes options to configure a
ReactiveTransactionManager if a MessageSource or MessageHandler implementation produces a
reactive type for payload to send. See TransactionInterceptorBuilder for more information. See also
Reactive Transactions.

A new intercept() operator to register ChannelInterceptor instances without creating explicit
channels was added into Java DSL. See Operator intercept() for more information.

The MessageStoreSelector has a new mechanism to compare an old and new value. See Idempotent
Receiver Enterprise Integration Pattern for more information.

The MessageProducerSupport base class now has a subscribeToPublisher(Publisher<? extends
Message<?>>) API to allow implementation of message-driven producer endpoints which emit
messages via reactive Publisher. See Reactive Streams Support for more information.

./handler-advice.pdf#handle-message-advice
./mongodb.pdf#mongodb
./mongodb.pdf#mongodb
./polling-consumer.pdf#smart-polling
./gateway.pdf#gateway-calling-default-methods
./gateway.pdf#gateway-calling-default-methods
./gateway.pdf#gateway-calling-default-methods
./graph.pdf#integration-graph
./aggregator.pdf#aggregator-api
./dsl.pdf#java-dsl-subflows
./transactions.pdf#reactive-transactions
./dsl.pdf#java-dsl-intercept
./handler-advice.pdf#idempotent-receiver
./handler-advice.pdf#idempotent-receiver
./reactive-streams.pdf#reactive-streams

4.3. AMQP Changes

The outbound channel adapter has a new property multiSend allowing multiple messages to be sent
within the scope of one RabbitTemplate invocation. See AMQP Outbound Channel Adapter for more
information.

The inbound channel adapter now supports a listener container with the consumerBatchEnabled
property set to true. See AMQP Inbound Channel Adapter

4.4. HTTP Changes

The encodeUri property on the AbstractHttpRequestExecutingMessageHandler has been deprecated in
favor of newly introduced encodingMode. See DefaultUriBuilderFactory.EncodingMode JavaDocs and
Controlling URI Encoding for more information. This also affects
WebFluxRequestExecutingMessageHandler, respective Java DSL and XML configuration. The same
option is added into an AbstractWebServiceOutboundGateway.

4.5. Web Services Changes

Java DSL support has been added for Web Service components. The encodeUri property on the
AbstractWebServiceOutboundGateway has been deprecated in favor of newly introduced encodingMode -
similar to HTTP changes above. See Web Services Support for more information.

4.6. TCP Changes

The FailoverClientConnectionFactory no longer fails back, by default, until the current connection
fails. See TCP Failover Client Connection Factory for more information.

The TcpOutboundGateway now supports asynchronous request/reply. See TCP Gateways for more
information.

You can now configure client connections to perform some arbitrary test on new connections. See
Testing Connections for more information.

4.7. RSocket Changes

A decodeFluxAsUnit option has been added to the RSocketInboundGateway with the meaning to decode
incoming Flux as a single unit or apply decoding for each event in it. See RSocket Inbound Gateway
for more information.

4.8. Zookeeper Changes

A LeaderInitiatorFactoryBean (as well as its XML <int-zk:leader-listener>) exposes a candidate
option for more control over a Candidate configuration. See Leadership event handling for more
information.

./amqp.pdf#amqp-outbound-channel-adapter
./amqp.pdf#amqp-inbound-channel-adapter
./http.pdf#http-uri-encoding
./ws.pdf#ws
./ip.pdf#failover-cf
./ip.pdf#tcp-gateways
./ip.pdf#testing-connections
./rsocket.pdf#rsocket-inbound
./zookeeper.pdf#zk-leadership

4.9. MQTT Changes

The inbound channel adapter can now be configured to provide user control over when a message
is acknowledged as being delivered. See Manual Acks for more information.

The outbound adapter now publishes a MqttConnectionFailedEvent when a connection can’t be
created, or is lost. Previously, only the inbound adapter did so. See MQTT Events.

4.10. (S)FTP Changes

The FileTransferringMessageHandler (for FTP and SFTP, for example) in addition to File, byte[],
String and InputStream now also supports an org.springframework.core.io.Resource. See SFTP
Support and FTP Support for more information.

4.11. File Changes

The FileSplitter doesn’t require a Jackson processor (or similar) dependency any more for the
markersJson mode. It uses a SimpleJsonSerializer for a straightforward string representation of the
FileSplitter.FileMarker instances. See FileSplitter for more information.

10

./mqtt.pdf#mqtt-ack-mode
./mqtt.pdf#mqtt-events
./sftp.pdf#sftp
./sftp.pdf#sftp
./ftp.pdf#ftp
./file.pdf#file-splitter

Overview of Spring Integration
Framework

Spring Integration provides an extension of the Spring programming model to support the well
known Enterprise Integration Patterns. It enables lightweight messaging within Spring-based
applications and supports integration with external systems through declarative adapters. Those
adapters provide a higher level of abstraction over Spring’s support for remoting, messaging, and
scheduling.

Spring Integration’s primary goal is to provide a simple model for building enterprise integration
solutions while maintaining the separation of concerns that is essential for producing
maintainable, testable code.

11

https://www.enterpriseintegrationpatterns.com/

Chapter 5. Spring Integration Overview

This chapter provides a high-level introduction to Spring Integration’s core concepts and
components. It includes some programming tips to help you make the most of Spring Integration.

5.1. Background

One of the key themes of the Spring Framework is Inversion of Control (IoC). In its broadest sense,
this means that the framework handles responsibilities on behalf of the components that are
managed within its context. The components themselves are simplified, because they are relieved
of those responsibilities. For example, dependency injection relieves the components of the
responsibility of locating or creating their dependencies. Likewise, aspect-oriented programming
relieves business components of generic cross-cutting concerns by modularizing them into reusable
aspects. In each case, the end result is a system that is easier to test, understand, maintain, and
extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model
for building enterprise applications. Developers benefit from the consistency of this model and
especially from the fact that it is based upon well established best practices, such as programming
to interfaces and favoring composition over inheritance. Spring’s simplified abstractions and
powerful support libraries boost developer productivity while simultaneously increasing the level
of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring
programming model into the messaging domain and builds upon Spring’s existing enterprise
integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain
business logic should run and where the response should be sent. It supports routing and
transformation of messages so that different transports and different data formats can be
integrated without impacting testability. In other words, the messaging and integration concerns
are handled by the framework. Business components are further isolated from the infrastructure,
and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options, including annotations, XML with namespace support, XML with generic
“bean” elements, and direct usage of the underlying API. That API is based upon well defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by
the recognition of a strong affinity between common patterns within Spring and the well known
patterns described in Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the
Spring Integration concepts and terminology.

5.2. Goals and Principles

Spring Integration is motivated by the following goals:

* Provide a simple model for implementing complex enterprise integration solutions.

12

https://www.enterpriseintegrationpatterns.com/

* Facilitate asynchronous, message-driven behavior within a Spring-based application.

* Promote intuitive, incremental adoption for existing Spring users.
Spring Integration is guided by the following principles:

* Components should be loosely coupled for modularity and testability.

* The framework should enforce separation of concerns between business logic and integration
logic.

* Extension points should be abstract in nature (but within well-defined boundaries) to promote
reuse and portability.

5.3. Main Components

From a vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for
following this best practice for the full stack of an enterprise application. Message-driven
architectures add a horizontal perspective, yet these same goals are still relevant. Just as “layered
architecture” is an extremely generic and abstract paradigm, messaging systems typically follow
the similarly abstract “pipes-and-filters” model. The “filters” represent any components capable of
producing or consuming messages, and the “pipes” transport the messages between filters so that
the components themselves remain loosely-coupled. It is important to note that these two high-level
paradigms are not mutually exclusive. The underlying messaging infrastructure that supports the
“pipes” should still be encapsulated in a layer whose contracts are defined as interfaces. Likewise,
the “filters” themselves should be managed within a layer that is logically above the application’s
service layer, interacting with those services through interfaces in much the same way that a web
tier would.

5.3.1. Message

In Spring Integration, a message is a generic wrapper for any Java object combined with metadata
used by the framework while handling that object. It consists of a payload and headers. The
payload can be of any type, and the headers hold commonly required information such as ID,
timestamp, correlation ID, and return address. Headers are also used for passing values to and
from connected transports. For example, when creating a message from a received file, the file
name may be stored in a header to be accessed by downstream components. Likewise, if a
message’s content is ultimately going to be sent by an outbound mail adapter, the various
properties (to, from, cc, subject, and others) may be configured as message header values by an
upstream component. Developers can also store any arbitrary key-value pairs in the headers.

13

Message h

Header

', &

Payload

Figure 1. Message

5.3.2. Message Channel

A message channel represents the “pipe” of a pipes-and-filters architecture. Producers send
messages to a channel, and consumers receive messages from a channel. The message channel
therefore decouples the messaging components and also provides a convenient point for
interception and monitoring of messages.

send{Message)

receive()

Producer Consumer

Message Channel
Figure 2. Message Channel

A message channel may follow either point-to-point or publish-subscribe semantics. With a point-
to-point channel, no more than one consumer can receive each message sent to the channel.
Publish-subscribe channels, on the other hand, attempt to broadcast each message to all
subscribers on the channel. Spring Integration supports both of these models.

Whereas “point-to-point” and "publish-subscribe" define the two options for how many consumers
ultimately receive each message, there is another important consideration: Should the channel
buffer messages? In Spring Integration, pollable channels are capable of buffering Messages within
a queue. The advantage of buffering is that it allows for throttling the inbound messages and
thereby prevents overloading a consumer. However, as the name suggests, this also adds some
complexity, since a consumer can only receive the messages from such a channel if a poller is
configured. On the other hand, a consumer connected to a subscribable channel is simply message-
driven. Message Channel Implementations has a detailed discussion of the variety of channel
implementations available in Spring Integration.

5.3.3. Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise
integration solutions through inversion of control. This means that you should not have to
implement consumers and producers directly, and you should not even have to build messages and
invoke send or receive operations on a message channel. Instead, you should be able to focus on
your specific domain model with an implementation based on plain objects. Then, by providing
declarative configuration, you can “connect” your domain-specific code to the messaging
infrastructure provided by Spring Integration. The components responsible for these connections

14

./channel.pdf#channel-implementations

are message endpoints. This does not mean that you should necessarily connect your existing
application code directly. Any real-world enterprise integration solution requires some amount of
code focused upon integration concerns such as routing and transformation. The important thing is
to achieve separation of concerns between the integration logic and the business logic. In other
words, as with the Model-View-Controller (MVC) paradigm for web applications, the goal should be
to provide a thin but dedicated layer that translates inbound requests into service layer invocations
and then translates service layer return values into outbound replies. The next section provides an
overview of the message endpoint types that handle these responsibilities, and, in upcoming
chapters, you can see how Spring Integration’s declarative configuration options provide a non-
invasive way to use each of these.

5.4. Message Endpoints

A Message Endpoint represents the “filter” of a pipes-and-filters architecture. As mentioned earlier,
the endpoint’s primary role is to connect application code to the messaging framework and to do so
in a non-invasive manner. In other words, the application code should ideally have no awareness
of the message objects or the message channels. This is similar to the role of a controller in the MVC
paradigm. Just as a controller handles HTTP requests, the message endpoint handles messages. Just
as controllers are mapped to URL patterns, message endpoints are mapped to message channels.
The goal is the same in both cases: isolate application code from the infrastructure. These concepts
and all of the patterns that follow are discussed at length in the Enterprise Integration Patterns
book. Here, we provide only a high-level description of the main endpoint types supported by
Spring Integration and the roles associated with those types. The chapters that follow elaborate and
provide sample code as well as configuration examples.

5.4.1. Message Transformer

A message transformer is responsible for converting a message’s content or structure and
returning the modified message. Probably the most common type of transformer is one that
converts the payload of the message from one format to another (such as from XML to
java.lang.String). Similarly, a transformer can add, remove, or modify the message’s header
values.

5.4.2. Message Filter

A message filter determines whether a message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a
property value, the presence of a header, or other conditions. If the message is accepted, it is sent to
the output channel. If not, it is dropped (or, for a more severe implementation, an Exception could
be thrown). Message filters are often used in conjunction with a publish-subscribe channel, where
multiple consumers may receive the same message and use the criteria of the filter to narrow down
the set of messages to be processed.

15

https://www.enterpriseintegrationpatterns.com/

Be careful not to confuse the generic use of “filter” within the pipes-and-filters
architectural pattern with this specific endpoint type that selectively narrows

e down the messages flowing between two channels. The pipes-and-filters concept of
a “filter” matches more closely with Spring Integration’s message endpoint: any
component that can be connected to a message channel in order to send or receive
messages.

5.4.3. Message Router

A message router is responsible for deciding what channel or channels (if any) should receive the
message next. Typically, the decision is based upon the message’s content or the metadata available
in the message headers. A message router is often used as a dynamic alternative to a statically
configured output channel on a service activator or other endpoint capable of sending reply
messages. Likewise, a message router provides a proactive alternative to the reactive message
filters used by multiple subscribers, as described earlier.

Channel A

Message

o ge Router

Channel B

Figure 3. Message Router

5.4.4. Splitter

A splitter is another type of message endpoint whose responsibility is to accept a message from its
input channel, split that message into multiple messages, and send each of those to its output
channel. This is typically used for dividing a “composite” payload object into a group of messages
containing the subdivided payloads.

5.4.5. Aggregator

Basically a mirror-image of the splitter, the aggregator is a type of message endpoint that receives
multiple messages and combines them into a single message. In fact, aggregators are often
downstream consumers in a pipeline that includes a splitter. Technically, the aggregator is more
complex than a splitter, because it is required to maintain state (the messages to be aggregated), to
decide when the complete group of messages is available, and to timeout if necessary. Furthermore,
in case of a timeout, the aggregator needs to know whether to send the partial results, discard
them, or send them to a separate channel. Spring Integration provides a CorrelationStrategy, a
ReleaseStrategy, and configurable settings for timeout, whether to send partial results upon
timeout, and a discard channel.

5.4.6. Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input message channel must be configured, and, if the service method to be invoked is capable

16

of returning a value, an output message Channel may also be provided.

o The output channel is optional, since each message may also provide its own
'Return Address' header. This same rule applies for all consumer endpoints.

The service activator invokes an operation on some service object to process the request message,
extracting the request message’s payload and converting (if the method does not expect a message-
typed parameter). Whenever the service object’s method returns a value, that return value is
likewise converted to a reply message if necessary (if it is not already a message type). That reply
message is sent to the output channel. If no output channel has been configured, the reply is sent to
the channel specified in the message’s “return address”, if available.

A request-reply service activator endpoint connects a target object’s method to input and output
Message Channels.

handle(Message) M;"'F’m
- - e - - Message
Input Activator Dutputb" Handler
Message
Channel -

Output
Channel

Figure 4. Service Activator

As discussed earlier, in Message Channel, channels can be pollable or subscribable.
o In the preceding diagram, this is depicted by the “clock” symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.7. Channel Adapter

A channel adapter is an endpoint that connects a message channel to some other system or
transport. Channel adapters may be either inbound or outbound. Typically, the channel adapter
does some mapping between the message and whatever object or resource is received from or sent
to the other system (file, HTTP Request, JMS message, and others). Depending on the transport, the
channel adapter may also populate or extract message header values. Spring Integration provides a
number of channel adapters, which are described in upcoming chapters.

€

hannel i =
H— Adapter Message 4"-
Message
Channel

Figure 5. An inbound channel adapter endpoint connects a source system to a MessageChannel.

17

Message sources can be pollable (for example, POP3) or message-driven (for
o example, IMAP Idle). In the preceding diagram, this is depicted by the “clock”
symbol and the solid arrow (poll) and the dotted arrow (message-driven).

Channel
ezt -
Message

Adapter
Channel

Figure 6. An outbound channel adapter endpoint connects a MessageChannel to a target system.

As discussed earlier in Message Channel, channels can be pollable or subscribable.
o In the preceding diagram, this is depicted by the “clock” symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.8. Endpoint Bean Names

Consuming endpoints (anything with an inputChannel) consist of two beans, the consumer and the
message handler. The consumer has a reference to the message handler and invokes it as messages
arrive.

Consider the following XML example:
<int:service-activator id = "someService" ... />

Given the preceding example, the bean names are as follows:

e Consumer: someService (the id)

e Handler: someService.handler

When using Enterprise Integration Pattern (EIP) annotations, the names depend on several factors.
Consider the following example of an annotated POJO:

public class SomeComponent {

(inputChannel = ...)
public String someMethod(...) {

}

18

Given the preceding example, the bean names are as follows:

e Consumer: someComponent.someMethod.serviceActivator

* Handler: someComponent.someMethod.serviceActivator.handler

Starting with version 5.0.4, you can modify these names by using the @EndpointId annotation, as the
following example shows:

@Component
public class SomeComponent {

@EndpointId("someService")

@ServiceActivator(inputChannel = ...)
public String someMethod(...) {

}

Given the preceding example, the bean names are as follows:

e Consumer: someService

¢ Handler: someService.handler

The @EndpointId creates names as created by the id attribute with XML configuration. Consider the
following example of an annotated bean:

@Configuration
public class SomeConfiguration {

@Bean
@ServiceActivator(inputChannel = ...)
public MessageHandler someHandler() {

}

Given the preceding example, the bean names are as follows:

* Consumer: someConfiguration.someHandler.serviceActivator

e Handler: someHandler (the @Bean name)

Starting with version 5.0.4, you can modify these names by using the @EndpointId annotation, as the

19

following example shows:

@Configuration
public class SomeConfiguration {

©Bean("someService.handler") ©)
@EndpointId("someService") @
@ServiceActivator(inputChannel = ...)
public MessageHandler someHandler() {

}

@ Handler: someService.handler (the bean name)

@ Consumer: someService (the endpoint ID)
The @EndpointId annotation creates names as created by the id attribute with XML configuration, as
long as you use the convention of appending .handler to the @Bean name.

There is one special case where a third bean is created: For architectural reasons, if a
MessageHandler @Bean does not define an AbstractReplyProducingMessageHandler, the framework
wraps the provided bean in a ReplyProducingMessageHandlerWrapper. This wrapper supports request
handler advice handling and emits the normal 'produced no reply' debug log messages. Its bean
name is the handler bean name plus .wrapper (when there is an @EndpointId — otherwise, it is the
normal generated handler name).

Similarly Pollable Message Sources create two beans, a SourcePollingChannelAdapter (SPCA) and a
MessageSource.

Consider the following XML configuration:
<int:inbound-channel-adapter id = "someAdapter" ... />
Given the preceding XML configuration, the bean names are as follows:

* SPCA: someAdapter (the id)

* Handler: someAdapter.source

Consider the following Java configuration of a POJO to define an @EndpointId:

20

./polling-consumer.pdf#pollable-message-source

("someAdapter™)
(channel = "channel3", poller = (fixedDelay = "5000"

)
public String pojoSource() {

}

Given the preceding Java configuration example, the bean names are as follows:

» SPCA: someAdapter

* Handler: someAdapter.source

Consider the following Java configuration of a bean to define an @EndpointID:

("someAdapter.source")
("someAdapter™)
(channel = "channel3", poller = (fixedDelay = "5000"
)

public MessageSource<?> source() {
return () -> {

};

Given the preceding example, the bean names are as follows:

* SPCA: someAdapter

* Handler: someAdapter.source (as long as you use the convention of appending .source to the
@Bean name)

5.5. Configuration and @EnableIntegration

Throughout this document, you can see references to XML namespace support for declaring
elements in a Spring Integration flow. This support is provided by a series of namespace parsers
that generate appropriate bean definitions to implement a particular component. For example,
many endpoints consist of a MessageHandler bean and a ConsumerEndpointFactoryBean into which the
handler and an input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework
automatically declares a number of beans (a task scheduler, an implicit channel creator, and
others) that are used to support the runtime environment.

21

Version 4.0 introduced the @EnableIntegration annotation, to allow the registration
of Spring Integration infrastructure beans (see the Javadoc). This annotation is

o required when only Java configuration is used — for example with Spring Boot or
Spring Integration Messaging Annotation support and Spring Integration Java DSL
with no XML integration configuration.

The @EnableIntegration annotation is also useful when you have a parent context with no Spring
Integration components and two or more child contexts that use Spring Integration. It lets these
common components be declared once only, in the parent context.

The @EnableIntegration annotation registers many infrastructure components with the application
context. In particular, it:

* Registers some built-in beans, such as errorChannel and its LoggingHandler, taskScheduler for
pollers, jsonPath SpEL-function, and others.

» Adds several BeanFactoryPostProcessor instances to enhance the BeanFactory for global and
default integration environment.

» Adds several BeanPostProcessor instances to enhance or convert and wrap particular beans for
integration purposes.

* Adds annotation processors to parse messaging annotations and registers components for them
with the application context.

The @IntegrationComponentScan annotation also permits classpath scanning. This annotation plays a
similar role as the standard Spring Framework @ComponentScan annotation, but it is restricted to
components and annotations that are specific to Spring Integration, which the standard Spring
Framework component scan mechanism cannot reach. For an example, see @MessagingGateway
Annotation.

The @EnablePublisher annotation registers a PublisherAnnotationBeanPostProcessor bean and
configures the default-publisher-channel for those @Publisher annotations that are provided
without a channel attribute. If more than one @EnablePublisher annotation is found, they must all
have the same value for the default channel. See Annotation-driven Configuration with the
@Publisher Annotation for more information.

The @GlobalChannelInterceptor annotation has been introduced to mark ChannelInterceptor beans
for global channel interception. This annotation is an analogue of the <int:channel-interceptor>
XML element (see Global Channel Interceptor Configuration). @GlobalChannellnterceptor
annotations can be placed at the class level (with a @Component stereotype annotation) or on @Bean
methods within @Configuration classes. In either case, the bean must implement ChannelInterceptor.

Starting with version 5.1, global channel interceptors apply to dynamically registered
channels —such as beans that are initialized by using beanFactory.initializeBean() or through the
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

The @IntegrationConverter annotation marks Converter, GenericConverter, or ConverterFactory beans
as candidate converters for integrationConversionService. This annotation is an analogue of the
<int:converter> XML element (see Payload Type Conversion). You can place @IntegrationConverter

22

https://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./channel.pdf#global-channel-configuration-interceptors
./endpoint.pdf#payload-type-conversion

annotations at the class level (with a @Component stereotype annotation) or on @Bean methods within
@Configuration classes.

See Annotation Support for more information about messaging annotations.

5.6. Programming Considerations

You should use plain old java objects (POJOs) whenever possible and only expose the framework in
your code when absolutely necessary. See POJO Method invocation for more information.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup:

* If your component is ApplicationContextAware, you should generally not wuse the
ApplicationContext in the setApplicationContext() method. Instead, store a reference and defer
such uses until later in the context lifecycle.

* If your component is an InitializingBean or uses @PostConstruct methods, do not send any
messages from these initialization methods. The application context is not yet initialized when
these methods are called, and sending such messages is likely to fail. If you need to send a
messages during startup, implement ApplicationlListener and wait for the
ContextRefreshedEvent. Alternatively, implement SmartLifecycle, put your bean in a late phase,
and send the messages from the start() method.

5.6.1. Considerations When Using Packaged (for example, Shaded) Jars

Spring Integration bootstraps certain features by using Spring Framework’s SpringFactories
mechanism to load several IntegrationConfigurationInitializer classes. This includes the -core jar
as well as certain others, including -http and -jmx. The information for this process is stored in a
META-INF/spring.factories file in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar by
using well known tools, such as the Apache Maven Shade Plugin.

By default, the shade plugin does not merge the spring.factories files when producing the shaded
jar.

In addition to spring.factories, other META-INF files (spring.handlers and spring.schemas) are used
for XML configuration. These files also need to be merged.

Spring Boot’s executable jar mechanism takes a different approach, in that it nests

o the jars, thus retaining each spring.factories file on the class path. So, with a
Spring Boot application, nothing more is needed if you use its default executable
jar format.

Even if you do not use Spring Boot, you can still use the tooling provided by Boot to enhance the
shade plugin by adding transformers for the above mentioned files.

You may wish to consult the current spring-boot-starter-parent pom to see the current settings that
boot uses. The following example shows how to configure the plugin:

23

./configuration.pdf#annotations
https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Example 1. pom.xml

24

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<confiquration>
<keepDependenciesWithProvidedScope>
true</keepDependenciesWithProvidedScope>
<createDependencyReducedPom>true</createDependencyReducedPom>
</configuration>
<dependencies>
<dependency> @
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>${spring.boot.version}</version>
</dependency>
</dependencies>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers> @
<transformer
implementation=
"org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.handlers</resource>
</transformer>
<transformer
implementation=
"org.springframework.boot.maven.PropertiesMergingResourceTransformer">
<resource>META-INF/spring.factories</resource>
</transformer>
<transformer
implementation=
"org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.schemas</resource>
</transformer>
<transformer
implementation=
"org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>

25

Specifically,

@ Add the spring-boot-maven-plugin as a dependency.

@ Configure the transformers.

You can add a property for ${spring.boot.version} or use an explicit version.

5.7. Programming Tips and Tricks

This section documents some of the ways to get the most from Spring Integration.

5.7.1. XML Schemas

When using XML configuration, to avoid getting false schema validation errors, you should use a
“Spring-aware” IDE, such as the Spring Tool Suite (STS), Eclipse with the Spring IDE plugins, or
Intelli] IDEA. These IDEs know how to resolve the correct XML schema from the classpath (by using
the META-INF/spring.schemas file in the jars). When using STS or Eclipse with the plugin, you must
enable Spring Project Nature on the project.

The schemas hosted on the internet for certain legacy modules (those that existed in version 1.0)
are the 1.0 versions for compatibility reasons. If your IDE uses these schemas, you are likely to see
false errors.

Each of these online schemas has a warning similar to the following:

This schema is for the 1.0 version of Spring Integration Core. We cannot update it

to the current schema because that will break any applications using 1.0.3 or

lower. For subsequent versions, the unversioned schema is resolved from the
o classpath and obtained from the jar. Please refer to github:

github.com/spring-projects/spring-integration/tree/master/spring-integration-core/
src/main/resources/org/springframework/integration/config

The affected modules are

» core (spring-integration.xsd)
o file

* http

° jms

* mail

o rmi

e security

* stream

* WS

26

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

e xml

5.7.2. Finding Class Names for Java and DSL Configuration

With XML configuration and Spring Integration Namespace support, the XML parsers hide how
target beans are declared and wired together. For Java configuration, it is important to understand
the Framework API for target end-user applications.

The first-class citizens for EIP implementation are Message, Channel, and Endpoint (see Main
Components, earlier in this chapter). Their implementations (contracts) are:

* org.springframework.messaging.Message: See Message;
* org.springframework.messaging.MessageChannel: See Message Channels;

* org.springframework.integration.endpoint.AbstractEndpoint: See Poller.

The first two are simple enough to understand how to implement, configure, and use. The last one
deserves more attention

The AbstractEndpoint is widely used throughout the Spring Framework for different component
implementations. Its main implementations are:

» EventDrivenConsumer, used when we subscribe to a SubscribableChannel to listen for messages.

* PollingConsumer, used when we poll for messages from a PollableChannel.

When you use messaging annotations or the Java DSL, you need to worry about these components,
because the Framework automatically produces them with appropriate annotations and
BeanPostProcessor implementations. When building components manually, you should use the
ConsumerEndpointFactoryBean to help determine the target AbstractEndpoint consumer
implementation to create, based on the provided inputChannel property.

On the other hand, the ConsumerEndpointFactoryBean delegates to an another first class citizen in the
Framework - org.springframework.messaging.MessageHandler. The goal of the implementation of this
interface is to handle the message consumed by the endpoint from the channel. All EIP components
in Spring Integration are MessageHandler implementations (for example, AggregatingMessageHandler,
MessageTransformingHandler, AbstractMessageSplitter, and others). The target protocol outbound
adapters (FileWritingMessageHandler, HttpRequestExecutingMessageHandler,
AbstractMqttMessageHandler, and others) are also MessageHandler implementations. When you
develop Spring Integration applications with Java configuration, you should look into the Spring
Integration module to find an appropriate MessageHandler implementation to use for the
@ServiceActivator configuration. For example, to send an XMPP message (see XMPP Support) you
should configure something like the following:

27

./message.pdf#message
./channel.pdf#channel
./polling-consumer.pdf#polling-consumer
./xmpp.pdf#xmpp

(inputChannel = "input")
public MessageHandler sendChatMessageHandler (XMPPConnection xmppConnection) {
ChatMessageSendingMessageHandler handler = new
ChatMessageSendingMessageHandler (xmppConnection);

DefaultXmppHeaderMapper xmppHeaderMapper = new DefaultXmppHeaderMapper();
xmppHeaderMapper.setRequestHeaderNames("*");
handler.setHeaderMapper (xmppHeaderMapper);

return handler;

The MessageHandler implementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided into polling and
listening behaviors. The listening (message-driven) components are simple and typically require
only one target class implementation to be ready to produce messages. Listening components can

be one-way MessageProducerSupport implementations, (such as
AbstractMqttMessageDrivenChannelAdapter = and ImapIdleChannelAdapter) or request-reply
MessagingGatewaySupport implementations (such as AmgpInboundGateway and

AbstractWebServiceInboundGateway).

Polling inbound endpoints are for those protocols that do not provide a listener API or are not
intended for such a behavior, including any file based protocol (such as FTP), any data bases
(RDBMS or NoSQL), and others.

These inbound endpoints consist of two components: the poller configuration, to initiate the polling
task periodically, and a message source class to read data from the target protocol and produce a
message for the downstream integration flow. The first class for the poller configuration is a
SourcePollingChannelAdapter. It is one more AbstractEndpoint implementation, but especially for
polling to initiate an integration flow. Typically, with the messaging annotations or Java DSL, you
should not worry about this class. The Framework produces a bean for it, based on the
@InboundChannelAdapter configuration or a Java DSL builder spec.

Message source components are more important for the target application development, and they
all implement the MessageSource interface (for example, MongoDbMessageSource and
AbstractTwitterMessageSource). With that in mind, our config for reading data from an RDBMS table
with JDBC could resemble the following:

28

(value = "fooChannel", poller = (fixedDelay="5000"))
public MessageSource<?> storedProc(DataSource dataSource) {
return new JdbcPollingChannelAdapter(dataSource, "SELECT * FROM foo where
status = 0");

}

You can find all the required inbound and outbound classes for the target protocols in the
particular Spring Integration module (in most cases, in the respective package). For example, the
spring-integration-websocket adapters are:

* 0.s.1.websocket.inbound.WebSocketInboundChannelAdapter: Implements MessageProducerSupport to
listen for frames on the socket and produce message to the channel.

* 0.s.1.websocket.outbound.WebSocketOutboundMessageHandler: The one-way
AbstractMessageHandler implementation to convert incoming messages to the appropriate frame
and send over websocket.

If you are familiar with Spring Integration XML configuration, starting with version 4.3, we provide
information in the XSD element definitions about which target classes are used to declare beans for
the adapter or gateway, as the following example shows:

<xsd:element name="outbound-async-gateway">
<xsd:annotation>
<xsd:documentation>
Configures a Consumer Endpoint for the
'0.s.i.amgp.outbound.AsyncAmgpOutboundGateway'
that will publish an AMQP Message to the provided Exchange and expect a reply
Message.
The sending thread returns immediately; the reply is sent asynchronously; uses
"AsyncRabbitTemplate.sendAndReceive()".
</xsd:documentation>
</xsd:annotation>

5.8. POJO Method invocation

As discussed in Programming Considerations, we recommend using a POJO programming style, as
the following example shows:

public String myService(String payload) { ... }

29

In this case, the framework extracts a String payload, invokes your method, and wraps the result in
a message to send to the next component in the flow (the original headers are copied to the new
message). In fact, if you use XML configuration, you do not even need the @ServiceActivator
annotation, as the following paired examples show:

<int:service-activator ... ref="myPojo" method="myService" />

public String myService(String payload) { ... }

You can omit the method attribute as long as there is no ambiguity in the public methods on the
class.

You can also obtain header information in your POJO methods, as the following example shows:

public String myService(String payload, ("foo") String fooHeader)
{...}

You can also dereference properties on the message, as the following example shows:

public String myService(("payload.foo") String foo, ("bar.baz")
String barbaz) { ... }

Because various POJO method invocations are available, versions prior to 5.0 used SpEL (Spring
Expression Language) to invoke the POJO methods. SpEL (even interpreted) is usually “fast enough”
for these operations, when compared to the actual work usually done in the methods. However,
starting with version 5.0, the
org.springframework.messaging.handler.invocation.InvocableHandlerMethod is used by default
whenever possible. This technique is usually faster to execute than interpreted SpEL and is
consistent with other Spring messaging projects. The InvocableHandlerMethod is similar to the
technique used to invoke controller methods in Spring MVC. There are certain methods that are still
always invoked when using SpEL. Examples include annotated parameters with dereferenced
properties, as discussed earlier. This is because SpEL has the capability to navigate a property path.

There may be some other corner cases that we have not considered that also do not work with
InvocableHandlerMethod instances. For this reason, we automatically fall back to using SpEL in those
cases.

If you wish, you can also set up your POJO method such that it always uses SpEL, with the

30

UseSpellInvoker annotation, as the following example shows:

@UseSpelInvoker(compilerMode = "IMMEDIATE")
public void bar(String bar) { ... }

If the compilerMode property is omitted, the spring.expression.compiler.mode system property
determines the compiler mode. See SpEL compilation for more information about compiled SpEL.

31

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-spel-compilation

Core Messaging

This section covers all aspects of the core messaging API in Spring Integration. It covers messages,
message channels, and message endpoints. It also covers many of the enterprise integration
patterns, such as filter, router, transformer, service activator , splitter, and aggregator.

This section also contains material about system management, including the control bus and
message history support.

32

Chapter 6. Messaging Channels

6.1. Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that decouples
message producers from message consumers.

6.1.1. The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows:

public interface MessageChannel {
boolean send(Message message);

boolean send(Message message, long timeout);

When sending a message, the return value is true if the message is sent successfully. If the send call
times out or is interrupted, it returns false.

PollableChannel

Since message channels may or may not buffer messages (as discussed in the Spring Integration
Overview), two sub-interfaces define the buffering (pollable) and non-buffering (subscribable)
channel behavior. The following listing shows the definition of the PollableChannel interface:

public interface PollableChannel extends MessageChannel {
Message<?> receive();

Message<?> receive(long timeout);

As with the send methods, when receiving a message, the return value is null in the case of a
timeout or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send messages directly to
their subscribed MessageHandler instances. Therefore, they do not provide receive methods for
polling. Instead, they define methods for managing those subscribers. The following listing shows
the definition of the SubscribableChannel interface:

33

./overview.pdf#overview
./overview.pdf#overview

public interface SubscribableChannel extends MessageChannel {
boolean subscribe(MessageHandler handler);

boolean unsubscribe(MessageHandler handler);

6.1.2. Message Channel Implementations

Spring Integration provides several different message channel implementations. The following
sections briefly describe each one.

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending event messages, whose primary role is
notification (as opposed to document messages, which are generally intended to be processed by a
single handler). Note that the PublishSubscribeChannel is intended for sending only. Since it
broadcasts to its subscribers directly when its send(Message) method is invoked, consumers cannot
poll for messages (it does not implement PollableChannel and therefore has no receive() method).
Instead, any subscriber must itself be a MessageHandler, and the subscriber’s handleMessage(Message)
method is invoked in turn.

Prior to version 3.0, invoking the send method on a PublishSubscribeChannel that had no subscribers
returned false. When used in conjunction with a MessagingTemplate, a MessageDeliveryException was
thrown. Starting with version 3.0, the behavior has changed such that a send is always considered
successful if at least the minimum subscribers are present (and successfully handle the message).
This behavior can be modified by setting the minSubscribers property, which defaults to 0.

If you use a TaskExecutor, only the presence of the correct number of subscribers is
used for this determination, because the actual handling of the message is
performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the PublishSubscribeChannel, the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of Integer.MAX_VALUE) as
well as a constructor that accepts the queue capacity, as the following listing shows:

public QueueChannel(int capacity)

34

A channel that has not reached its capacity limit stores messages in its internal queue, and the
send(Message<?>) method returns immediately, even if no receiver is ready to handle the message. If
the queue has reached capacity, the sender blocks until room is available in the queue.
Alternatively, if you use the send method that has an additional timeout parameter, the queue
blocks until either room is available or the timeout period elapses, whichever occurs first. Similarly,
a receive() call returns immediately if a message is available on the queue, but, if the queue is
empty, then a receive call may block until either a message is available or the timeout, if provided,
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note, however, that calls to the versions of send() and receive() with
no timeout parameter block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in-first-out (FIFO) ordering, the PriorityChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon
a priority. By default, the priority is determined by the priority header within each message.
However, for custom priority determination logic, a comparator of type Comparator<Message<?>> can
be provided to the PriorityChannel constructor.

RendezvousChannel

The RendezvousChannel enables a “direct-handoff” scenario, wherein a sender blocks until another
party invokes the channel’s receive() method. The other party blocks until the sender sends the
message. Internally, this implementation is quite similar to the QueueChannel, except that it uses a
SynchronousQueue (a zero-capacity implementation of BlockingQueue). This works well in situations
where the sender and receiver operate in different threads, but asynchronously dropping the
message in a queue is not appropriate. In other words, with a RendezvousChannel, the sender knows
that some receiver has accepted the message, whereas with a QueueChannel, the message would have
been stored to the internal queue and potentially never received.

Keep in mind that all of these queue-based channels are storing messages in-
memory only by default. When persistence is required, you can either provide a
'message-store' attribute within the 'queue' element to reference a persistent
MessageStore implementation or you can replace the local channel with one that is

O backed by a persistent broker, such as a JMS-backed channel or channel adapter.
The latter option lets you take advantage of any JMS provider’s implementation for
message persistence, as discussed in JMS Support. However, when buffering in a
queue is not necessary, the simplest approach is to rely upon the DirectChannel,
discussed in the next section.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel, which it then sets as the
replyChannel' header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for
a reply Message. This is very similar to the implementation used internally by many of Spring
Integration’s request-reply components.

35

./jms.pdf#jms

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described earlier. It
implements the SubscribableChannel interface instead of the PollableChannel interface, so it
dispatches messages directly to a subscriber. As a point-to-point channel, however, it differs from
the PublishSubscribeChannel in that it sends each Message to a single subscribed MessageHandler.

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on “both sides” of the channel. For
example, if a handler subscribes to a DirectChannel, then sending a Message to that channel triggers
invocation of that handler’s handleMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support
transactions that must span across the channel while still benefiting from the abstraction and loose
coupling that the channel provides. If the send call is invoked within the scope of a transaction, the
outcome of the handler’s invocation (for example, updating a database record) plays a role in
determining the ultimate result of that transaction (commit or rollback).

Since the DirectChannel is the simplest option and does not add any additional
overhead that would be required for scheduling and managing the threads of a
poller, it is the default channel type within Spring Integration. The general idea is

o to define the channels for an application, consider which of those need to provide
buffering or to throttle input, and modify those to be queue-based
PollableChannels. Likewise, if a channel needs to broadcast messages, it should not
be a DirectChannel but rather a PublishSubscribeChannel. Later, we show how each
of these channels can be configured.

The DirectChannel internally delegates to a message dispatcher to invoke its subscribed message
handlers, and that dispatcher can have a load-balancing strategy exposed by load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the message
dispatcher to help determine how messages are distributed amongst message handlers when
multiple message handlers subscribe to the same channel. As a convenience, the load-balancer
attribute exposes an enumeration of values pointing to pre-existing implementations of
LoadBalancingStrategy. round-robin (load-balances across the handlers in rotation) and none (for the
cases where one wants to explicitly disable load balancing) are the only available values. Other
strategy implementations may be added in future versions. However, since version 3.0, you can
provide your own implementation of the LoadBalancingStrategy and inject it by using the load-
balancer-ref attribute, which should point to a bean that implements LoadBalancingStrategy, as the
following example shows:

A FixedSubscriberChannel is a SubscribableChannel that only supports a single MessageHandler
subscriber that cannot be unsubscribed. This is useful for high-throughput performance use-cases
when no other subscribers are involved and no channel interceptors are needed.

36

<int:channel id="1bRefChannel">
<int:dispatcher load-balancer-ref="1b"/>
</int:channel>

<bean id="1b" class="foo.bar.SampleLoadBalancingStrategy"/>

Note that the load-balancer and load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in conjunction with a boolean failover property. If the failover
value is true (the default), the dispatcher falls back to any subsequent handlers (as necessary) when
preceding handlers throw exceptions. The order is determined by an optional order value defined
on the handlers themselves or, if no such value exists, the order in which the handlers subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler and then fall
back in the same fixed order sequence every time an error occurs, no load-balancing strategy
should be provided. In other words, the dispatcher still supports the failover boolean property
even when no load-balancing is enabled. Without load-balancing, however, the invocation of
handlers always begins with the first, according to their order. For example, this approach works
well when there is a clear definition of primary, secondary, tertiary, and so on. When using the
namespace support, the order attribute on any endpoint determines the order.

Keep in mind that load-balancing and failover apply only when a channel has

e more than one subscribed message handler. When using the namespace support,
this means that more than one endpoint shares the same channel reference
defined in the input-channel attribute.

Starting with version 5.2, when failover is true, a failure of the current handler together with the
failed message is logged under debug or info if configured respectively.

ExecutorChannel

The ExecutorChannel is a point-to-point channel that supports the same dispatcher configuration as
DirectChannel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the ExecutorChannel delegates to an instance of
TaskExecutor to perform the dispatch. This means that the send method typically does not block, but
it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions that span the sender and receiving handler.

The sender can sometimes block. For example, when using a TaskExecutor with a
rejection policy that throttles the client (such as the

é ThreadPoolExecutor.CallerRunsPolicy), the sender’s thread can execute the method
any time the thread pool is at its maximum capacity and the executor’s work
queue is full. Since that situation would only occur in a non-predictable way, you
should not rely upon it for transactions.

37

FluxMessageChannel

The FluxMessageChannel is an org.reactivestreams.Publisher implementation for "sinking" sent
messages into an internal reactor.core.publisher.Flux for on demand consumption by reactive
subscribers downstream. This channel implementation is neither a SubscribableChannel, nor a
PollableChannel, so only org.reactivestreams.Subscriber instances can be used to consume from
this channel honoring back-pressure nature of reactive streams. On the other hand, the
FluxMessageChannel implements a ReactiveStreamsSubscribableChannel with its
subscribeTo(Publisher<Message<?>>) contract allowing receiving events from reactive source
publishers, bridging a reactive stream into the integration flow. To achieve fully reactive behavior
for the whole integration flow, such a channel must be placed between all the endpoints in the flow.

See Reactive Streams Support for more information about interaction with Reactive Streams.

Scoped Channel

Spring Integration 1.0 provided a ThreadLocalChannel implementation, but that has been removed as
of 2.0. Now the more general way to handle the same requirement is to add a scope attribute to a
channel. The value of the attribute can be the name of a scope that is available within the context.
For example, in a web environment, certain scopes are available, and any custom scope
implementations can be registered with the context. The following example shows a thread-local
scope being applied to a channel, including the registration of the scope itself:

<int:channel id="threadScopedChannel" scope="thread">
<int:queue />
</int:channel>

<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="thread" value=
"org.springframework.context.support.SimpleThreadScope" />
</map>
</property>
</bean>

The channel defined in the previous example also delegates to a queue internally, but the channel is
bound to the current thread, so the contents of the queue are similarly bound. That way, the thread
that sends to the channel can later receive those same messages, but no other thread would be able
to access them. While thread-scoped channels are rarely needed, they can be useful in situations
where DirectChannel instances are being used to enforce a single thread of operation but any reply
messages should be sent to a “terminal” channel. If that terminal channel is thread-scoped, the
original sending thread can collect its replies from the terminal channel.

Now, since any channel can be scoped, you can define your own scopes in addition to thread-Local.

38

./reactive-streams.pdf#reactive-streams

6.1.3. Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive
way. Since the Message instances are sent to and received from MessageChannel instances, those
channels provide an opportunity for intercepting the send and receive operations. The
Channellnterceptor strategy interface, shown in the following listing, provides methods for each of
those operations:

public interface ChannelInterceptor {
Message<?> preSend(Message<?> message, MessageChannel channel);
void postSend(Message<?> message, MessageChannel channel, boolean sent);

void afterSendCompletion(Message<?> message, MessageChannel channel, boolean
sent, Exception ex);

boolean preReceive(MessageChannel channel);
Message<?> postReceive(Message<?> message, MessageChannel channel);

void afterReceiveCompletion(Message<?> message, MessageChannel channel,
Exception ex);

}

After implementing the interface, registering the interceptor with a channel is just a matter of
making the following call:

channel.addInterceptor(someChannellnterceptor);

The methods that return a Message instance can be used for transforming the Message or can return
'null' to prevent further processing (of course, any of the methods can throw a RuntimeException).
Also, the preReceive method can return false to prevent the receive operation from proceeding.

Keep in mind that receive() calls are only relevant for PollableChannels. In fact,
the SubscribableChannel interface does not even define a receive() method. The
reason for this is that when a Message is sent to a SubscribableChannel, it is sent
o directly to zero or more subscribers, depending on the type of channel (for
example, a PublishSubscribeChannel sends to all of its subscribers). Therefore, the
preReceive(::+), postReceive(::-), and afterReceiveCompletion(::-) interceptor
methods are invoked only when the interceptor is applied to a PollableChannel.

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple

39

https://www.enterpriseintegrationpatterns.com/WireTap.html

interceptor that sends the Message to another channel without otherwise altering the existing flow.
It can be very useful for debugging and monitoring. An example is shown in Wire Tap.

Because it is rarely necessary to implement all of the interceptor methods, the interface provides
no-op methods (methods returning void method have no code, the Message-returning methods
return the Message as-is, and the boolean method returns true).

The order of invocation for the interceptor methods depends on the type of
channel. As described earlier, the queue-based channels are the only ones where
the receive method is intercepted in the first place. Additionally, the relationship
between send and receive interception depends on the timing of the separate
sender and receiver threads. For example, if a receiver is already blocked while
waiting for a message, the order could be as follows: preSend, preReceive,

(r') postReceive, postSend. However, if a receiver polls after the sender has placed a

- message on the channel and has already returned, the order would be as follows:
preSend, postSend (some-time-elapses), preReceive, postReceive. The time that
elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen). The type of queue also
plays a role (for example, rendezvous versus priority). In short, you cannot rely on
the order beyond the fact that preSend precedes postSend and preReceive precedes
postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the Channellnterceptor provides
new methods: afterSendCompletion() and afterReceiveCompletion(). They are invoked after send()'
and 'receive() calls, regardless of any exception that is raised, which allow for resource cleanup.
Note that the channel invokes these methods on the ChannelInterceptor list in the reverse order of
the initial preSend() and preReceive() calls.

Starting with version 5.1, global channel interceptors now apply to dynamically registered channels
- such as through beans that are initialized by wusing beanFactory.initializeBean() or
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

Also, starting with version 5.1, ChannelInterceptor.postReceive() is no longer called when no
message is received; it is no longer necessary to check for a null Message<?>. Previously, the method
was called. If you have an interceptor that relies on the previous behavior, implement
afterReceiveCompleted() instead, since that method is invoked, regardless of whether a message is
received or not.

Starting with version 5.2, the ChannelInterceptorAware is deprecated in favor of
o InterceptableChannel from the Spring Messaging module, which it extends now for
backward compatibility.

6.1.4. MessagingTemplate

When the endpoints and their various configuration options are introduced, Spring Integration
provides a foundation for messaging components that enables non-invasive invocation of your
application code from the messaging system. However, it is sometimes necessary to invoke the

40

messaging system from your application code. For convenience when implementing such use cases,
Spring Integration provides a MessagingTemplate that supports a variety of operations across the
message channels, including request and reply scenarios. For example, it is possible to send a
request and wait for a reply, as follows:

MessagingTemplate template = new MessagingTemplate();

Message reply = template.sendAndReceive(someChannel, new GenericMessage("test"));

In the preceding example, a temporary anonymous channel would be created internally by the
template. The 'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and
other exchange types are also supported. The following listing shows the signatures for such
methods:

public boolean send(final MessageChannel channel, final Message<?> message) { ...

}

public Message<?> sendAndReceive(final MessageChannel channel, final Message<?>
request) { ...
}

public Message<?> receive(final PollableChannel<?> channel) { ...

}

A less invasive approach that lets you invoke simple interfaces with payload or
o header values instead of Message instances is described in Enter the
GatewayProxyFactoryBean.

6.1.5. Configuring Message Channels

To create a message channel instance, you can use the <channel/> element, as follows:
<int:channel id="exampleChannel"/>

The equivalent Java configuration declares a DirectChannel @Bean:

41

./gateway.pdf#gateway-proxy
./gateway.pdf#gateway-proxy

@Bean
public MessageChannel exampleChannel() {
return new DirectChannel();

}

The default channel type is point-to-point. To create a publish-subscribe channel, use the <publish-
subscribe-channel/> element, as follows:

<int:publish-subscribe-channel id="exampleChannel"/>

The Java configuration is:

@Bean
public MessageChannel exampleChannel() {
return new PublishSubscribeChannel();

}

When you use the <channel/> element without any sub-elements, it creates a DirectChannel instance
(a SubscribableChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the
pollable channel types (as described in Message Channel Implementations). The following sections
shows examples of each channel type.

DirectChannel Configuration

As mentioned earlier, DirectChannel is the default type. The following listing shows who to define
one:

<int:channel id="directChannel"/>

In Java Configuration:

42

public MessageChannel directChannel() {
return new DirectChannel();

}

A default channel has a round-robin load-balancer and also has failover enabled (see DirectChannel
for more detail). To disable one or both of these, add a <dispatcher/> sub-element and configure the
attributes as follows:

<int:channel id="failFastChannel">
<int:dispatcher failover="false"/>
</channel>

<int:channel id="channelWithFixedOrderSequenceFailover">
<int:dispatcher load-balancer="none"/>
</int:channel>

In Java Configuration:

public MessageChannel failFastChannel() {
DirectChannel channel = new DirectChannel();
channel.setFailover(false);
return channel;

public MessageChannel failFastChannel() {
return new DirectChannel(null);

}

Datatype Channel Configuration

Sometimes, a consumer can process only a particular type of payload, forcing you to ensure the
payload type of the input messages. The first thing that comes to mind may be to use a message
filter. However, all that message filter can do is filter out messages that are not compliant with the
requirements of the consumer. Another way would be to use a content-based router and route
messages with non-compliant data-types to specific transformers to enforce transformation and
conversion to the required data type. This would work, but a simpler way to accomplish the same
thing is to apply the Datatype Channel pattern. You can use separate datatype channels for each
specific payload data type.

43

https://www.enterpriseintegrationpatterns.com/DatatypeChannel.html

To create a datatype channel that accepts only messages that contain a certain payload type,
provide the data type’s fully-qualified class name in the channel element’s datatype attribute, as the
following example shows:

<int:channel id="numberChannel" datatype="java.lang.Number"/>

In Java Configuration:

public MessageChannel numberChannel() {
DirectChannel channel = new DirectChannel();
channel.setDatatypes(Number.class);
return channel;

Note that the type check passes for any type that is assignable to the channel’s datatype. In other
words, the numberChannel in the preceding example would accept messages whose payload is
java.lang.Integer or java.lang.Double. Multiple types can be provided as a comma-delimited list, as
the following example shows:

<int:channel id="stringOrNumberChannel" datatype=
"java.lang.String,java.lang.Number"/>

So the mumberChannel' in the preceding example accepts only messages with a data type of
java.lang.Number. But what happens if the payload of the message is not of the required type? It
depends on whether you have defined a bean named integrationConversionService that is an
instance of Spring’s Conversion Service. If not, then an Exception would be thrown immediately.
However, if you have defined an integrationConversionService bean, it is used in an attempt to
convert the message’s payload to the acceptable type.

You can even register custom converters. For example, suppose you send a message with a String
payload to the 'numberChannel’ we configured above. You might handle the message as follows:

MessageChannel inChannel = context.getBean("numberChannel”, MessageChannel.class);
inChannel.send(new GenericMessage<String>("5"));

Typically this would be a perfectly legal operation. However, since we use Datatype Channel, the
result of such operation would generate an exception similar to the following:

44

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Exception in thread "main"
org.springframework.integration.MessageDeliveryException:

Channel 'numberChannel’

expected one of the following datataypes [class java.lang.Number],
but received [class java.lang.String]

The exception happens because we require the payload type to be a Number, but we sent a String. So
we need something to convert a String to a Number. For that, we can implement a converter similar

to the following example:

public static class StringToIntegerConverter implements Converter<String, Integer>

{
public Integer convert(String source) {
return Integer.parselnt(source);

}

Then we can register it as a converter with the Integration Conversion Service, as the following
example shows:

<int:converter ref="strToInt"/>

<bean id="strToInt" class=
"org.springframework.integration.util.Demo.StringToIntegerConverter"/>

With Java Configuration you must use an @IntegrationConverter next to a @Bean annotation:

public StringToIntegerConverter strTolnt {
return new StringToIntegerConverter();

}

Or on the StringToIntegerConverter class when it is marked with the @Component annotation for auto-
scanning.

When the 'converter' element is parsed, it creates the integrationConversionService bean if one is
not already defined. With that converter in place, the send operation would now be successful,

45

because the datatype channel uses that converter to convert the String payload to an Integer.
For more information regarding payload type conversion, see Payload Type Conversion.

Beginning with version 4.0, the integrationConversionService is invoked by the
DefaultDatatypeChannelMessageConverter, which looks up the conversion service in the application
context. To use a different conversion technique, you can specify the message-converter attribute on
the channel. This must be a reference to a MessageConverter implementation. Only the fromMessage
method is used. It provides the converter with access to the message headers (in case the
conversion might need information from the headers, such as content-type). The method can
return only the converted payload or a full Message object. If the latter, the converter must be
careful to copy all the headers from the inbound message.

Alternatively, you can declare a <bean/> of type MessageConverter with an ID of
datatypeChannelMessageConverter, and that converter is used by all channels with a datatype.

QueueChannel Configuration

To create a QueueChannel, use the <queue/> sub-element. You may specify the channel’s capacity as
follows:

<int:channel id="queueChannel">
<queue capacity="25"/>
</int:channel>

If you do not provide a value for the 'capacity' attribute on this <queue/> sub-
o element, the resulting queue is unbounded. To avoid issues such as running out of
memory, we highly recommend that you set an explicit value for a bounded queue.

With Java Configuration:

public PollableChannel queueChannel() {
return new QueueChannel(25);

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer messages but does so in-memory only by
default, it also introduces a possibility that messages could be lost in the event of a system failure.
To mitigate this risk, a QueueChannel may be backed by a persistent implementation of the
MessageGroupStore strategy interface. For more details on MessageGroupStore and MessageStore, see
Message Store.

46

./endpoint.pdf#payload-type-conversion
./message-store.pdf#message-store

o The capacity attribute is not allowed when the message-store attribute is used.

When a QueueChannel receives a Message, it adds the message to the message store. When a Message is
polled from a QueueChannel, it is removed from the message store.

By default, a QueueChannel stores its messages in an in-memory queue, which can lead to the lost
message scenario mentioned earlier. However, Spring Integration provides persistent stores, such
as the JdbcChannelMessageStore.

You can configure a message store for any QueueChannel by adding the message-store attribute, as the
following example shows:

<int:channel id="dbBackedChannel">
<int:queue message-store="channelStore"/>
</int:channel>

<bean id="channelStore" class="o0.s.i.jdbc.store.JdbcChannelMessageStore">
<property name="dataSource" ref="dataSource"/>
<property name="channelMessageStoreQueryProvider" ref="queryProvider"/>
</bean>

(See samples below for Java Configuration options.)

The Spring Integration JDBC module also provides a schema Data Definition Language (DDL) for a
number of popular databases. These schemas are located in the
org.springframework.integration.jdbc.store.channel package of that module (spring-integration-
jdbe).

One important feature is that, with any transactional persistent store (such as
JdbcChannelMessageStore), as long as the poller has a transaction configured, a

o message removed from the store can be permanently removed only if the
transaction completes successfully. Otherwise the transaction rolls back, and the
Message is not lost.

Many other implementations of the message store are available as the growing number of Spring
projects related to “NoSQL” data stores come to provide underlying support for these stores. You
can also provide your own implementation of the MessageGroupStore interface if you cannot find
one that meets your particular needs.

Since version 4.0, we recommend that QueueChannel instances be configured to use a
ChannelMessageStore, if possible. These are generally optimized for this use, as compared to a
general message store. If the ChannelMessageStore is a ChannelPriorityMessageStore, the messages are
received in FIFO within priority order. The notion of priority is determined by the message store
implementation. For example, the following example shows the Java configuration for the
MongoDB Channel Message Store:

47

./mongodb.pdf#mongodb-priority-channel-message-store

public BasicMessageGroupStore mongoDbChannelMessageStore(MongoDbFactory
mongoDbFactory) {

MongoDbChannelMessageStore store = new MongoDbChannelMessageStore
(mongoDbFactory);

store.setPriorityEnabled(true);

return store;

public PollableChannel priorityQueue(BasicMessageGroupStore
mongoDbChannelMessageStore) {

return new PriorityChannel(new MessageGroupQueue(mongoDbChannelMessageStore,
"priorityQueue"));

}

o Pay attention to the MessageGroupQueue class. That is a BlockingQueue
implementation to use the MessageGroupStore operations.

The same implementation with Java DSL might look like the following example:

public IntegrationFlow priorityFlow(PriorityCapableChannelMessageStore
mongoDbChannelMessageStore) {
return IntegrationFlows.from((Channels c¢) ->
c.priority("priorityChannel”, mongoDbChannelMessageStore, "priorityGroup”

)
.get();
Another option to customize the QueueChannel environment is provided by the ref attribute of the

<int:queue> sub-element or its particular constructor. This attribute supplies the reference to any

java.util.Queue implementation. For example, a Hazelcast distributed IQueue can be configured as
follows:

48

https://hazelcast.com/use-cases/imdg/imdg-messaging/

public HazelcastInstance hazelcastInstance() {
return Hazelcast.newHazelcastInstance(new Config()
.setProperty("hazelcast.logging.type",

"10g4j"));
}

public PollableChannel distributedQueue() {
return new QueueChannel(hazelcastInstance()
.getQueue("springIntegrationQueue"));

PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the <publish-subscribe-channel/> element. When using this
element, you can also specify the task-executor used for publishing messages (if none is specified, it
publishes in the sender’s thread), as follows:

<int:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

With Java Configuration:

public MessageChannel pubsubChannel() {
return new PublishSubscribeChannel(someExecutor());

}

If you provide a resequencer or aggregator downstream from a PublishSubscribeChannel, you can
set the 'apply-sequence’ property on the channel to true. Doing so indicates that the channel should
set the sequence-size and sequence-number message headers as well as the correlation ID prior to
passing along the messages. For example, if there are five subscribers, the sequence-size would be
set to 5, and the messages would have sequence-number header values ranging from 1 to 5.

Along with the Executor, you can also configure an ErrorHandler. By default, the
PublishSubscribeChannel uses a MessagePublishingErrorHandler implementation to send an error to
the MessageChannel from the errorChannel header or into the global errorChannel instance. If an
Executor is not configured, the ErrorHandler is ignored and exceptions are thrown directly to the
caller’s thread.

If you provide a Resequencer or Aggregator downstream from a PublishSubscribeChannel, you can set
the 'apply-sequence' property on the channel to true. Doing so indicates that the channel should set

49

the sequence-size and sequence-number message headers as well as the correlation ID prior to
passing along the messages. For example, if there are five subscribers, the sequence-size would be
set to 5, and the messages would have sequence-number header values ranging from 1 to 5.

The following example shows how to set the apply-sequence header to true:

<int:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

public MessageChannel pubsubChannel() {
PublishSubscribeChannel channel = new PublishSubscribeChannel();
channel.setApplySequence(false);
return channel;

The apply-sequence value is false by default so that a publish-subscribe channel
can send the exact same message instances to multiple outbound channels. Since

o Spring Integration enforces immutability of the payload and header references,
when the flag is set to true, the channel creates new Message instances with the
same payload reference but different header values.

ExecutorChannel

To create an ExecutorChannel, add the <dispatcher> sub-element with a task-executor attribute. The
attribute’s value can reference any TaskExecutor within the context. For example, doing so enables
configuration of a thread pool for dispatching messages to subscribed handlers. As mentioned
earlier, doing so breaks the single-threaded execution context between sender and receiver so that
any active transaction context is not shared by the invocation of the handler (that is, the handler
may throw an Exception, but the send invocation has already returned successfully). The following
example shows how to use the dispatcher element and specify an executor in the task-executor
attribute:

<int:channel id="executorChannel">
<int:dispatcher task-executor="someExecutor"/>
</int:channel>

In Java Configuration you must use an ExecutorChannel bean definition:

50

@Bean
public MessageChannel executorChannel() {
return new ExecutorChannel(someExecutor());

}

The 1load-balancer and failover options are also both available on the
<dispatcher/> sub-element, as described earlier in DirectChannel Configuration.
The same defaults apply. Consequently, the channel has a round-robin load-
balancing strategy with failover enabled unless explicit configuration is provided
for one or both of those attributes, as the following example shows:

<int:channel id="executorChannelWithoutFailover">
<int:dispatcher task-executor="someExecutor" failover="false"/>
</int:channel>

PriorityChannel Configuration

To create a PriorityChannel, use the <priority-queue/> sub-element, as the following example
shows:

<int:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel>

In JavaConfiguration:

@Bean
public PollableChannel priorityChannel() {
return new PriorityChannel(20);

}

By default, the channel consults the priority header of the message. However, you can instead
provide a custom Comparator reference. Also, note that the PriorityChannel (like the other types)
does support the datatype attribute. As with the QueueChannel, it also supports a capacity attribute.
The following example demonstrates all of these:

31

<int:channel id="priorityChannel" datatype="example.Widget">
<int:priority-queue comparator="widgetComparator"
capacity="10"/>
</int:channel>

@Bean

public PollableChannel priorityChannel() {
PriorityChannel channel = new PriorityChannel(20, widgetComparator());
channel.setDatatypes(example.Widget.class);
return channel;

Since version 4.0, the priority-channel child element supports the message-store option (comparator
and capacity are not allowed in that case). The message store must be a
PriorityCapableChannelMessageStore. Implementations of the PriorityCapableChannelMessageStore
are currently provided for Redis, JDBC, and MongoDB. See QueueChannel Configuration and Message
Store for more information. You can find sample configuration in Backing Message Channels.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described earlier, and its queue does not
accept any capacity value, since it is a zero-capacity direct handoff queue. The following example
shows how to declare a RendezvousChannel:

<int:channel id="rendezvousChannel"/>
<int:rendezvous-queue/>
</int:channel>

@Bean
public PollableChannel rendezvousChannel() {
return new RendezvousChannel();

}

Scoped Channel Configuration

Any channel can be configured with a scope attribute, as the following example shows:

32

./message-store.pdf#message-store
./message-store.pdf#message-store
./jdbc.pdf#jdbc-message-store-channels

<int:channel id="threadlLocalChannel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors, as described in Channel Interceptors. The
<interceptors/> sub-element can be added to a <channel/> (or the more specific element types). You
can provide the ref attribute to reference any Spring-managed object that implements the
Channellnterceptor interface, as the following example shows:

<int:channel id="exampleChannel">
<int:interceptors>
<ref bean="trafficMonitoringInterceptor"/>
</int:interceptors>
</int:channel>

In general, we recommend defining the interceptor implementations in a separate location, since
they usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel interceptors provide a clean and concise way of applying cross-cutting behavior per
individual channel. If the same behavior should be applied on multiple channels, configuring the
same set of interceptors for each channel would not be the most efficient way. To avoid repeated
configuration while also enabling interceptors to apply to multiple channels, Spring Integration
provides global interceptors. Consider the following pair of examples:

<int:channel-interceptor pattern="input*, thing2*, thing1, !cat*" order="3">
<bean class="thing1.thing2SampleInterceptor"/>
</int:channel-interceptor>

<int:channel-interceptor ref="myInterceptor" pattern="input*, thing2*, thing1,
lcat*" order="3"/>

<bean id="myInterceptor" class="thingl.thing2SampleInterceptor"/>

Each <channel-interceptor/> element lets you define a global interceptor, which is applied on all
channels that match any patterns defined by the pattern attribute. In the preceding case, the global
interceptor is applied on the 'thingl' channel and all other channels that begin with 'thing2' or
'input’ but not to channels starting with 'thing3' (since version 5.0).

33

The addition of this syntax to the pattern causes one possible (though perhaps
unlikely) problem. If you have a bean named !thing1 and you included a pattern of

A 'thing1 in your channel interceptor’s pattern patterns, it no longer matches. The
pattern now matches all beans not named thing1. In this case, you can escape the !
in the pattern with \. The pattern \!thing1 matches a bean named !thingT.

The order attribute lets you manage where this interceptor is injected when there are multiple
interceptors on a given channel. For example, channel 'inputChannel' could have individual
interceptors configured locally (see below), as the following example shows:

<int:channel id="inputChannel™>
<int:interceptors>
<int:wire-tap channel="logger"/>
</int:interceptors>
</int:channel>

A reasonable question is “how is a global interceptor injected in relation to other interceptors
configured locally or through other global interceptor definitions?” The current implementation
provides a simple mechanism for defining the order of interceptor execution. A positive number in
the order attribute ensures interceptor injection after any existing interceptors, while a negative
number ensures that the interceptor is injected before existing interceptors. This means that, in the
preceding example, the global interceptor is injected after (since its order is greater than 0) the
'wire-tap' interceptor configured locally. If there were another global interceptor with a matching
pattern, its order would be determined by comparing the values of both interceptors' order
attributes. To inject a global interceptor before the existing interceptors, use a negative value for
the order attribute.

o Note that both the order and pattern attributes are optional. The default value for
order will be 0 and for pattern, the default is ™*' (to match all channels).

Starting with version 4.3.15, you can configure the spring.integration.postProcessDynamicBeans =
true property to apply any global interceptors to dynamically created MessageChannel beans. See
Global Properties for more information.

Wire Tap

As mentioned earlier, Spring Integration provides a simple wire tap interceptor. You can configure
a wire tap on any channel within an <interceptors/> element. Doing so is especially useful for
debugging and can be used in conjunction with Spring Integration’s logging channel adapter as
follows:

54

./configuration.pdf#global-properties

<int:channel id="in">
<int:interceptors>
<int:wire-tap channel="logger"/>
</int:interceptors>
</int:channel>

<int:logging-channel-adapter id="logger" level="DEBUG"/>

The 'logging-channel-adapter' also accepts an 'expression’ attribute so that you can
evaluate a SpEL expression against the 'payload’ and 'headers' variables.
Alternatively, to log the full message toString() result, provide a value of true for

O the 'log-full-message’ attribute. By default, it is false so that only the payload is
logged. Setting it to true enables logging of all headers in addition to the payload.
The ‘'expression’ option provides the most flexibility (for example,
expression="payload.user.name").

One of the common misconceptions about the wire tap and other similar components (Message
Publishing Configuration) is that they are automatically asynchronous in nature. By default, wire
tap as a component is not invoked asynchronously. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the message channel. What makes certain
parts of the message flow synchronous or asynchronous is the type of Message Channel that has
been configured within that flow. That is one of the primary benefits of the message channel
abstraction. From the inception of the framework, we have always emphasized the need and the
value of the message channel as a first-class citizen of the framework. It is not just an internal,
implicit realization of the EIP pattern. It is fully exposed as a configurable component to the end
user. So, the wire tap component is only responsible for performing the following tasks:

* Intercept a message flow by tapping into a channel (for example, channelA)
* Grab each message

» Send the message to another channel (for example, channelB)

It is essentially a variation of the bridge pattern, but it is encapsulated within a channel definition
(and hence easier to enable and disable without disrupting a flow). Also, unlike the bridge, it
basically forks another message flow. Is that flow synchronous or asynchronous? The answer
depends on the type of message channel that 'channelB' is. We have the following options: direct
channel, pollable channel, and executor channel. The last two break the thread boundary, making
communication over such channels asynchronous, because the dispatching of the message from
that channel to its subscribed handlers happens on a different thread than the one used to send the
message to that channel. That is what is going to make your wire-tap flow synchronous or
asynchronous. It is consistent with other components within the framework (such as message
publisher) and adds a level of consistency and simplicity by sparing you from worrying in advance
(other than writing thread-safe code) about whether a particular piece of code should be
implemented as synchronous or asynchronous. The actual wiring of two pieces of code (say,
component A and component B) over a message channel is what makes their collaboration
synchronous or asynchronous. You may even want to change from synchronous to asynchronous in

55

./message-publishing.pdf#message-publishing-config
./message-publishing.pdf#message-publishing-config

the future, and message channel lets you to do it swiftly without ever touching the code.

One final point regarding the wire tap is that, despite the rationale provided above for not being
asynchronous by default, you should keep in mind that it is usually desirable to hand off the
message as soon as possible. Therefore, it would be quite common to use an asynchronous channel
option as the wire tap’s outbound channel. However we doe not enforce asynchronous behavior by
default. There are a number of use cases that would break if we did, including that you might not
want to break a transactional boundary. Perhaps you use the wire tap pattern for auditing
purposes, and you do want the audit messages to be sent within the original transaction. As an
example, you might connect the wire tap to a JMS outbound channel adapter. That way, you get the
best of both worlds: 1) the sending of a JMS Message can occur within the transaction while 2) it is
still a “fire-and-forget” action, thereby preventing any noticeable delay in the main message flow.

Starting with version 4.0, it is important to avoid circular references when an
interceptor (such as the WireTap class) references a channel. You need to exclude
such channels from those being intercepted by the current interceptor. This can be
done with appropriate patterns or programmatically. If you have a custom

o Channellnterceptor that references a channel, consider implementing
VetoCapableInterceptor. That way, the framework asks the interceptor if it is OK to
intercept each channel that is a candidate, based on the supplied pattern. You can
also add runtime protection in the interceptor methods to ensure that the channel
is not one that is referenced by the interceptor. The WireTap uses both of these
techniques.

Starting with version 4.3, the WireTap has additional constructors that take a channelName instead of a
MessageChannel instance. This can be convenient for Java configuration and when channel auto-
creation logic is being used. The target MessageChannel bean is resolved from the provided
channelName later, on the first interaction with the interceptor.

o Channel resolution requires a BeanFactory, so the wire tap instance must be a
Spring-managed bean.

This late-binding approach also allows simplification of typical wire-tapping patterns with Java DSL
configuration, as the following example shows:

public PollableChannel myChannel() {
return MessageChannels.queue()
.wireTap("loggingFlow.input")
.get();

public IntegrationFlow loggingFlow() {
return f -> f.log();
¥

36

https://docs.spring.io/autorepo/docs/spring-integration/current/api/org/springframework/integration/channel/interceptor/WireTap.html
https://docs.spring.io/autorepo/docs/spring-integration/current/api/org/springframework/integration/channel/interceptor/WireTap.html

Conditional Wire Taps

Wire taps can be made conditional by using the selector or selector-expression attributes. The
selector references a MessageSelector bean, which can determine at runtime whether the message
should go to the tap channel. Similarly, the selector-expression is a boolean SpEL expression that
performs the same purpose: If the expression evaluates to true, the message is sent to the tap
channel.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the Global Channel Interceptor
Configuration. To do so, configure a top level wire-tap element. Now, in addition to the normal wire-
tap namespace support, the pattern and order attributes are supported and work in exactly the
same way as they do for the channel-interceptor. The following example shows how to configure a
global wire tap:

<int:wire-tap pattern="input*, thing2*, thing1" order="3" channel="wiretapChannel

Il/>
A global wire tap provides a convenient way to configure a single-channel wire tap
@ externally without modifying the existing channel configuration. To do so, set the
- pattern attribute to the target channel name. For example, you can use this

technique to configure a test case to verify messages on a channel.

6.1.6. Special Channels

If namespace support is enabled, two special channels are defined within the application context by
default: errorChannel and nullChannel. The 'mullChannel' acts like /dev/null, logging any message
sent to it at the DEBUG level and returning immediately. Any time you face channel resolution errors
for a reply that you do not care about, you can set the affected component’s output-channel
attribute to mullChannel' (the name, nullChannel, is reserved within the application context). The
‘errorChannel’ is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Error Handling.

See also Message Channels in the Java DSL chapter for more information about message channel
and interceptors.

6.2. Poller
This section describes how polling works in Spring Integration.

6.2.1. Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following instances:

57

./error-handling.pdf#error-handling
./dsl.pdf#java-dsl-channels

* PollingConsumer

e EventDrivenConsumer

The actual implementation depends on the type of channel to which these endpoints connect. A
channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface produces an instance of
EventDrivenConsumer. On the other hand, a channel adapter connected to a channel that implements
the org.springframework.messaging.PollableChannel interface (such as a QueueChannel) produces an
instance of PollingConsumer.

Polling consumers let Spring Integration components actively poll for Messages rather than process
messages in an event-driven manner.

They represent a critical cross-cutting concern in many messaging scenarios. In Spring Integration,
polling consumers are based on the pattern with the same name, which is described in the book
Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf. You can find a description of
the pattern on the book’s website.

6.2.2. Pollable Message Source

Spring Integration offers a second variation of the polling consumer pattern. When inbound
channel adapters are used, these adapters are often wrapped by a SourcePollingChannelAdapter. For
example, when retrieving messages from a remote FTP Server location, the adapter described in
FTP Inbound Channel Adapter is configured with a poller to periodically retrieve messages. So,
when components are configured with pollers, the resulting instances are of one of the following

types:

* PollingConsumer

* SourcePollingChannelAdapter

This means that pollers are used in both inbound and outbound messaging scenarios. Here are
some use cases in which pollers are used:

 Polling certain external systems, such as FTP Servers, Databases, and Web Services
* Polling internal (pollable) message channels

 Polling internal services (such as repeatedly executing methods on a Java class)

38

https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
https://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
https://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html
https://www.enterpriseintegrationpatterns.com/PollingConsumer.html
./ftp.pdf#ftp-inbound
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html

AOP advice classes can be applied to pollers, in an advice-chain, such as a
transaction advice to start a transaction. Starting with version 4.1, a Pol1SkipAdvice
is provided. Pollers use triggers to determine the time of the next poll. The
Pol1SkipAdvice can be used to suppress (skip) a poll, perhaps because there is some
downstream condition that would prevent the message being processed. To use

o this advice, you have to provide it with an implementation of a Pol1SkipStrategy.
Starting with version 4.2.5, a SimplePol1SkipStrategy is provided. To use it, you can
add an instance as a bean to the application context, inject it into a Pol1SkipAdvice,
and add that to the poller’s advice chain. To skip polling, call skipPolls(). To
resume polling, call reset(). Version 4.2 added more flexibility in this area. See
Conditional Pollers for Message Sources.

This chapter is meant to only give a high-level overview of polling consumers and how they fit into
the concept of message channels (see Message Channels) and channel adapters (see Channel
Adapter). For more information regarding messaging endpoints in general and polling consumers
in particular, see Message Endpoints.

6.2.3. Deferred Acknowledgment Pollable Message Source

Starting with version 5.0.1, certain modules provide MessageSource implementations that support
deferring acknowledgment until the downstream flow completes (or hands off the message to
another thread). This is currently limited to the AmgpMessageSource and the KafkaMessageSource
provided by the spring-integration-kafka extension project.

With these message sources, the IntegrationMessageHeaderAccessor.ACKNOWLEDGMENT_CALLBACK header
(see MessageHeaderAccessor API) is added to the message. When used with pollable message sources,
the value of the header is an instance of AcknowledgmentCallback, as the following example shows:

39

./channel.pdf#channel
./channel-adapter.pdf#channel-adapter
./channel-adapter.pdf#channel-adapter
./endpoint.pdf#endpoint
https://github.com/spring-projects/spring-integration-kafka
./message.pdf#message-header-accessor
./message.pdf#message-header-accessor

@Functionallnterface
public interface AcknowledgmentCallback {

void acknowledge(Status status);
boolean isAcknowledged();

void noAutoAck();

default boolean isAutoAck();
enum Status {

/**

* Mark the message as accepted.
*/

ACCEPT,

/**

* Mark the message as rejected.
*/

REJECT,

/**

* Reject the message and requeue so that it will be redelivered.
*/
REQUEUE

Not all message sources (for example, Kafka) support the REJECT status. It is treated the same as
ACCEPT.

Applications can acknowledge a message at any time, as the following example shows:

Message<?> received = source.receive();

StaticMessageHeaderAccessor.getAcknowledgmentCallback(received)
.acknowledge(Status.ACCEPT);

If the MessageSource is wired into a SourcePollingChannelAdapter, when the poller thread returns to
the adapter after the downstream flow completes, the adapter checks whether the acknowledgment
has already been acknowledged and, if not, sets its status to ACCEPT it (or REJECT if the flow throws
an exception). The status values are defined in the AcknowledgmentCallback.Status enumeration.

60

https://docs.spring.io/spring-integration/api/org/springframework/integration/support/AcknowledgmentCallback.Status.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/support/AcknowledgmentCallback.Status.html

Spring Integration provides MessageSourcePollingTemplate to perform ad-hoc polling of a
MessageSource. This, too, takes care of setting ACCEPT or REJECT on the AcknowledgmentCallback when
the MessageHandler callback returns (or throws an exception). The following example shows how to
poll with the MessageSourcePollingTemplate:

MessageSourcePollingTemplate template =
new MessageSourcePollingTemplate(this.source);
template.poll(h -> {

1

In both cases (SourcePollingChannelAdapter and MessageSourcePollingTemplate), you can disable auto
ack/mack by calling noAutoAck() on the callback. You might do this if you hand off the message to
another thread and wish to acknowledge later. Not all implementations support this (for example,
Apache Kafka does not, because the offset commit has to be performed on the same thread).

6.2.4. Conditional Pollers for Message Sources

This section covers how to use conditional pollers.

Background

Advice objects, in an advice-chain on a poller, advise the whole polling task (both message retrieval
and processing). These “around advice” methods do not have access to any context for the
poll—only the poll itself. This is fine for requirements such as making a task transactional or
skipping a poll due to some external condition, as discussed earlier. What if we wish to take some
action depending on the result of the receive part of the poll or if we want to adjust the poller
depending on conditions? For those instances, Spring Integration offers “Smart” Polling.

“Smart” Polling

Version 5.3 introduced the ReceiveMessageAdvice interface. (The AbstractMessageSourceAdvice has
been deprecated in favor of default methods in the MessageSourceMutator.) Any Advice objects in the
advice-chain that implement this interface are applied only to the receive operation -
MessageSource.receive() and PollableChannel.receive(timeout). Therefore they can be applied only
for the SourcePollingChannelAdapter or PollingConsumer. Such classes implement the following
methods:

» beforeReceive(Object source) This method is called before the Object.receive() method. It lets
you examine and reconfigure the source. Returning false cancels this poll (similar to the
Pol1SkipAdvice mentioned earlier).

o Message<?> afterReceive(Message<?> result, Object source) This method is called after the
receive() method. Again, you can reconfigure the source or take any action (perhaps depending
on the result, which can be null if there was no message created by the source). You can even
return a different message

61

Thread safety

If an advice mutates the the, you should not configure the poller with a

o TaskExecutor. If an advice mutates the source, such mutations are not thread safe
and could cause unexpected results, especially with high frequency pollers. If you
need to process poll results concurrently, consider using a downstream
ExecutorChannel instead of adding an executor to the poller.

Advice Chain Ordering

You should understand how the advice chain is processed during initialization.
Advice objects that do not implement ReceiveMessageAdvice are applied to the
whole poll process and are all invoked first, in order, before any

o ReceiveMessageAdvice. Then ReceiveMessageAdvice objects are invoked in order
around the source receive() method. If you have, for example, Advice objects a, b,
c, d, where b and d are ReceiveMessageAdvice, the objects are applied in the
following order: a, c¢, b, d. Also, if a source is already a Proxy, the
ReceiveMessageAdvice is invoked after any existing Advice objects. If you wish to
change the order, you must wire up the proxy yourself.

SimpleActiveldleReceiveMessageAdvice

(The previous SimpleActiveldleMessageSourceAdvice for only MessageSource is deprecated.) This
advice is a simple implementation of ReceiveMessageAdvice. When used in conjunction with a
DynamicPeriodicTrigger, it adjusts the polling frequency, depending on whether or not the previous
poll resulted in a message or not. The poller must also have a reference to the same
DynamicPeriodicTrigger.

Important: Async Handoff

SimpleActiveldleReceiveMessageAdvice modifies the trigger based on the receive()

o result. This works only if the advice is called on the poller thread. It does not work
if the poller has a task-executor. To use this advice where you wish to use async
operations after the result of a poll, do the async handoff later, perhaps by using
an ExecutorChannel.

CompoundTriggerAdvice

This advice allows the selection of one of two triggers based on whether a poll returns a message or
not. Consider a poller that uses a CronTrigger. CronTrigger instances are immutable, so they cannot
be altered once constructed. Consider a use case where we want to use a cron expression to trigger
a poll once each hour but, if no message is received, poll once per minute and, when a message is
retrieved, revert to using the cron expression.

The advice (and poller) use a CompoundTrigger for this purpose. The trigger’s primary trigger can be a
CronTrigger. When the advice detects that no message is received, it adds the secondary trigger to
the CompoundTrigger. When the CompoundTrigger instance’s nextExecutionTime method is invoked, it
delegates to the secondary trigger, if present. Otherwise, it delegates to the primary trigger.

The poller must also have a reference to the same CompoundTrigger.

62

The following example shows the configuration for the hourly cron expression with a fallback to
every minute:

<int:inbound-channel-adapter channel="nullChannel" auto-startup="false">
<bean class="org.springframework.integration.endpoint.PollerAdviceTests.Source" />
<int:poller trigger="compoundTrigger">
<int:advice-chain>
<bean class="org.springframework.integration.aop.CompoundTriggerAdvice">
<constructor-arg ref="compoundTrigger"/>
<constructor-arg ref="secondary"/>
</bean>
</int:advice-chain>
</int:poller>
</int:inbound-channel-adapter>

<bean id="compoundTrigger" class="

org.springframework.integration.util.CompoundTrigger">
<constructor-arg ref="primary" />

</bean>

<bean id="primary" class="org.springframework.scheduling.support.CronTrigger">
<constructor-arg value="0 @ * * * *" /> <l-- top of every hour -->
</bean>

<bean id="secondary" class="org.springframework.scheduling.support.PeriodicTrigger">
<constructor-arg value="60000" />
</bean>

Important: Async Handoff

CompoundTriggerAdvice modifies the trigger based on the receive() result. This

o works only if the advice is called on the poller thread. It does not work if the poller
has a task-executor. To use this advice where you wish to use async operations
after the result of a poll, do the async handoff later, perhaps by using an
ExecutorChannel

MessageSource-only Advices

Some advices might be applied only for the MessageSource.receive() and they don’t make sense for
PollableChannel. For this purpose a MessageSourceMutator interface (an extension of the
ReceiveMessageAdvice) is still present. With default methods it fully replaces already deprecated
AbstractMessageSourceAdvice and should be wused in those implementations where only
MessageSource proxying is expected. See Inbound Channel Adapters: Polling Multiple Servers and
Directories for more information.

6.3. Channel Adapter

A channel adapter is a message endpoint that enables connecting a single sender or receiver to a
message channel. Spring Integration provides a number of adapters to support various transports,

63

./ftp.pdf#ftp-rotating-server-advice
./ftp.pdf#ftp-rotating-server-advice

such as JMS, file, HTTP, web services, mail, and more. Upcoming chapters of this reference guide
discuss each adapter. However, this chapter focuses on the simple but flexible method-invoking
channel adapter support. There are both inbound and outbound adapters, and each may be
configured with XML elements provided in the core namespace. These provide an easy way to
extend Spring Integration, as long as you have a method that can be invoked as either a source or a
destination.

6.3.1. Configuring An Inbound Channel Adapter

An inbound-channel-adapter element can invoke any method on a Spring-managed object and send
a non-null return value to a MessageChannel after converting the method’s output to a Message. When
the adapter’s subscription is activated, a poller tries to receive messages from the source. The poller
is scheduled with the TaskScheduler according to the provided configuration. To configure the
polling interval or cron expression for an individual channel adapter, you can provide a 'poller'
element with one of the scheduling attributes, such as 'fixed-rate' or 'cron'. The following example
defines two inbound-channel-adapter instances:

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">
<int:poller fixed-rate="5000"/>
</int:inbound-channel-adapter>

<int:inbound-channel-adapter ref="source2" method="method2" channel="channel2">

<int:poller cron="30 * 9-17 * * MON-FRI"/>
</int:channel-adapter>

See also Channel Adapter Expressions and Scripts.

o If no poller is provided, then a single default poller must be registered within the
context. See Endpoint Namespace Support for more detail.

64

./endpoint.pdf#endpoint-namespace

Important: Poller Configuration

Some inbound-channel-adapter types are backed by a SourcePollingChannelAdapter,
which means they contain a poller configuration that polls the MessageSource (to
invoke a custom method that produces the value that becomes a Message payload)
based on the configuration specified in the Poller. The following example shows
the configuration of two pollers:

<int:poller max-messages-per-poll="1" fixed-rate="1000"/>

<int:poller max-messages-per-poll="10" fixed-rate="1000"/>

In the the first configuration, the polling task is invoked once per poll, and, during
each task (poll), the method (which results in the production of the message) is
invoked once, based on the max-messages-per-poll attribute value. In the second
configuration, the polling task is invoked 10 times per poll or until it returns null,
thus possibly producing ten messages per poll while each poll happens at one-
second intervals. However, what happens if the configuration looks like the
following example:

<int:poller fixed-rate="1000"/>

Note that there is no max-messages-per-poll specified. As we cover later, the
identical poller configuration in the PollingConsumer (for example, service-
activator, filter, router, and others) would have a default value of -1 for max-
messages-per-poll, which means “execute the polling task non-stop unless the
polling method returns null (perhaps because there are no more messages in the
QueueChannel)” and then sleep for one second.

However, in the SourcePollingChannelAdapter, it is a bit different. The default value
for max-messages-per-poll is 1, unless you explicitly set it to a negative value (such
as -1). This makes sure that the poller can react to lifecycle events (such as start
and stop) and prevents it from potentially spinning in an infinite loop if the
implementation of the custom method of the MessageSource has a potential to never
return null and happens to be non-interruptible.

However, if you are sure that your method can return null and you need to poll for
as many sources as available per each poll, you should explicitly set max-messages-
per-poll to a negative value, as the following example shows:

<int:poller max-messages-per-poll="-1" fixed-rate="1000"/>

65

6.3.2. Configuring An Outbound Channel Adapter

An outbound-channel-adapter element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of messages sent to that channel. The following
example shows how to define an outbound channel adapter:

<int:outbound-channel-adapter channel="channell1" ref="target" method="handle"/>

<beans:bean id="target" class="org.MyPojo"/>

If the channel being adapted is a PollableChannel, you must provide a poller sub-element, as the
following example shows:

<int:outbound-channel-adapter channel="channel2" ref="target" method="handle">
<int:poller fixed-rate="3000" />
</int:outbound-channel-adapter>

<beans:bean id="target" class="org.MyPojo"/>

You should use a ref attribute if the POJO consumer implementation can be reused in other
<outbound-channel-adapter> definitions. However, if the consumer implementation is referenced by
only a single definition of the <outbound-channel-adapter>, you can define it as an inner bean, as the
following example shows:

<int:outbound-channel-adapter channel="channel" method="handle">
<beans:bean class="org.Foo0"/>
</int:outbound-channel-adapter>

Using both the ref attribute and an inner handler definition in the same
o <outbound-channel-adapter> configuration is not allowed, as it creates an
ambiguous condition. Such a configuration results in an exception being thrown.

Any channel adapter can be created without a channel reference, in which case it implicitly creates
an instance of DirectChannel. The created channel’s name matches the id attribute of the <inbound-

channel-adapter> or <outbound-channel-adapter> element. Therefore, if channel is not provided, id is
required.

6.3.3. Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <inbound-channel-adapter> and <outbound-
channel-adapter> also provide support for SpEL expression evaluation. To use SpEL, provide the

66

expression string in the 'expression' attribute instead of providing the 'ref' and 'method’ attributes
that are used for method-invocation on a bean. When an expression is evaluated, it follows the
same contract as method-invocation where: the expression for an <inbound-channel-adapter>
generates a message any time the evaluation result is a non-null value, while the expression for an
<outbound-channel-adapter> must be the equivalent of a void-returning method invocation.

Starting with Spring Integration 3.0, an <int:inbound-channel-adapter/> can also be configured with
a SpEL <expression/> (or even with a <script/>) sub-element, for when more sophistication is
required than can be achieved with the simple 'expression' attribute. If you provide a script as a
Resource by using the location attribute, you can also set refresh-check-delay, which allows the
resource to be periodically refreshed. If you want the script to be checked on each poll, you would
need to coordinate this setting with the poller’s trigger, as the following example shows:

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">
<int:poller max-messages-per-poll="1" fixed-delay="5000"/>
<script:script lang="ruby" location="Foo.rb" refresh-check-delay="5000"/>
</int:inbound-channel-adapter>

See also the cacheSeconds property on the ReloadableResourceBundleExpressionSource when using the
<expression/> sub-element. For more information regarding expressions, see Spring Expression
Language (SpEL). For scripts, see Groovy support and Scripting Support.

The <int:inbound-channel-adapter/> is endpoint starts a message flow by
periodically triggering to poll some underlying MessageSource. Since, at the time of
polling, there is no message object, expressions and scripts do not have access to a

o root Message, so there are no payload or headers properties that are available in
most other messaging SpEL expressions. The script can generate and return a
complete Message object with headers and payload or only a payload, which is
added to a message with basic headers.

6.4. Messaging Bridge

A messaging bridge is a relatively trivial endpoint that connects two message channels or channel
adapters. For example, you may want to connect a PollableChannel to a SubscribableChannel so that
the subscribing endpoints do not have to worry about any polling configuration. Instead, the
messaging bridge provides the polling configuration.

By providing an intermediary poller between two channels, you can use a messaging bridge to
throttle inbound messages. The poller’s trigger determines the rate at which messages arrive on the
second channel, and the poller’s maxMessagesPerPoll property enforces a limit on the throughput.

Another valid use for a messaging bridge is to connect two different systems. In such a scenario,
Spring Integration’s role is limited to making the connection between these systems and managing
a poller, if necessary. It is probably more common to have at least a transformer between the two
systems, to translate between their formats. In that case, the channels can be provided as the 'input-
channel' and 'output-channel' of a transformer endpoint. If data format translation is not required,

67

./spel.pdf#spel
./spel.pdf#spel
./groovy.pdf#groovy
./scripting.pdf#scripting

the messaging bridge may indeed be sufficient.

6.4.1. Configuring a Bridge with XML

You can use the <bridge> element is used to create a messaging bridge between two message
channels or channel adapters. To do so, provide the input-channel and output-channel attributes, as
the following example shows:

<int:bridge input-channel="1input" output-channel="output"/>

As mentioned above, a common use case for the messaging bridge is to connect a PollableChannel to
a SubscribableChannel. When performing this role, the messaging bridge may also serve as a
throttler:

<int:bridge input-channel="pollable" output-channel="subscribable">
<int:poller max-messages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

You can use a similar mechanism to connecting channel adapters. The following example shows a
simple “echo” between the stdin and stdout adapters from Spring Integration’s stream namespace:

<int-stream:stdin-channel-adapter id="stdin"/>
<int-stream:stdout-channel-adapter id="stdout"/>

<int:bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Similar configurations work for other (potentially more useful) Channel Adapter bridges, such as
file-to-JMS or mail-to-file. Upcoming chapters cover the various channel adapters.

If no 'output-channel' is defined on a bridge, the reply channel provided by the
inbound message is used, if available. If neither an output nor a reply channel is
available, an exception is thrown.

6.4.2. Configuring a Bridge with Java Configuration

The following example shows how to configure a bridge in Java by using the @BridgeFrom
annotation:

68

public PollableChannel polled() {
return new QueueChannel();

}

(value = "polled", poller = (fixedDelay = "5000",
maxMessagesPerPoll = "10"))
public SubscribableChannel direct() {
return new DirectChannel();

}

The following example shows how to configure a bridge in Java by using the @BridgeTo annotation:

(value = "direct", poller = (fixedDelay = "5000", maxMessagesPerPoll =
||10|l))
public PollableChannel polled() {
return new QueueChannel();

}

public SubscribableChannel direct() {
return new DirectChannel();

}

Alternately, you can use a BridgeHandler, as the following example shows:

(inputChannel = "polled",
poller = (fixedRate = "5000", maxMessagesPerPoll = "10"))
public BridgeHandler bridge() {
BridgeHandler bridge = new BridgeHandler();
bridge.setOutputChannelName("direct");
return bridge;

6.4.3. Configuring a Bridge with the Java DSL

You can use the Java Domain Specific Language (DSL) to configure a bridge, as the following
example shows:

69

70

@Bean
public IntegrationFlow bridgeFlow() {
return IntegrationFlows.from("polled")
.bridge(e -> e.poller(Pollers.fixedDelay(5000).maxMessagesPerPol1(10)))
.channel("direct")
.get();

Chapter 7. Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message instance includes headers containing user-extensible properties as key-
value pairs.

7.1. The Message Interface

The following listing shows the definition of the Message interface:

public interface Message<T> {
T getPayload();

MessageHeaders getHeaders();

The Message interface is a core part of the API. By encapsulating the data in a generic wrapper, the
messaging system can pass it around without any knowledge of the data’s type. As an application
evolves to support new types or when the types themselves are modified or extended, the
messaging system is not affected. On the other hand, when some component in the messaging
system does require access to information about the Message, such metadata can typically be stored
to and retrieved from the metadata in the message headers.

7.2. Message Headers

Just as Spring Integration lets any Object be used as the payload of a Message, it also supports any
Object types as header values. In fact, the MessageHeaders class implements the java.util.Map_
interface, as the following class definition shows:

public final class MessageHeaders implements Map<String, Object>, Serializable {

}

Even though the MessageHeaders class implements Map, it is effectively a read-only
implementation. Any attempt to put a value in the Map results in an
UnsupportedOperationException. The same applies for remove and clear. Since

o messages may be passed to multiple consumers, the structure of the Map cannot be
modified. Likewise, the message’s payload Object can not be set after the initial
creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

71

As an implementation of Map, the headers can be retrieved by calling get(..) with the name of the
header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. The following
example shows each of these three options:

Object someValue = message.getHeaders().get("someKey");
CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

Long timestamp = message.getHeaders().getTimestamp();

The following table describes the pre-defined message headers:

Table 1. Pre-defined Message Headers
Header Name Header Type Usage

MessageHeaders.ID java.util.UUID An identifier for this message instance. Changes each
time a message is mutated.

MessageHeaders. java.lang.Llong The time the message was created. Changes each time
TIMESTAMP a message is mutated.

MessageHeaders. java.lang.0Object A channel to which a reply (if any) is sent when no
REPLY_CHANNEL (String or explicit output channel is configured and there is no

MessageChannel) ROUTING_SLIP or the ROUTING_SLIP is exhausted. If the
value is a String, it must represent a bean name or
have been generated by a ChannelRegistry.

MessageHeaders. java.lang.0bject A channel to which errors are sent. If the value is a
ERROR_CHANNEL (String or String, it must represent a bean name or have been
MessageChannel)

generated by a ChannelRegistry.

Many inbound and outbound adapter implementations also provide or expect certain headers, and
you can configure additional user-defined headers. Constants for these headers can be found in
those modules where such headers exist — for example. AmgpHeaders, JmsHeaders, and so on.

7.2.1. MessageHeaderAccessor API

Starting with Spring Framework 4.0 and Spring Integration 4.0, the core messaging abstraction has
been moved to the spring-messaging module, and the MessageHeaderAccessor API has been
introduced to provide additional abstraction over messaging implementations. All (core) Spring
Integration-specific =~ message headers constants are now declared in the
IntegrationMessageHeaderAccessor class. The following table describes the pre-defined message
headers:

Table 2. Pre-defined Message Headers

72

Header Name

IntegrationMessageHeaderAccessor

CORRELATION_ID

IntegrationMessageHeaderAccessor

SEQUENCE _NUMBER

IntegrationMessageHeaderAccessor

SEQUENCE_SIZE

IntegrationMessageHeaderAccessor

EXPIRATION_DATE

IntegrationMessageHeaderAccessor

PRIORITY

IntegrationMessageHeaderAccessor

DUPLICATE_MESSAGE

IntegrationMessageHeaderAccessor

CLOSEABLE_RESOURCE

IntegrationMessageHeaderAccessor

DELIVERY_ATTEMPT

IntegrationMessageHeaderAccessor

ACKNOWLEDGMENT_CALLBACK

Convenient typed getters for

Header Type
java.lang.0Object

java.lang.Integer

java.lang.Integer

java.lang.long

java.lang.Integer

java.lang.Boolean

java.io.Closeable

java.lang.
AtomicInteger

0.s.1.support.

Acknowledgment
Callback
some of these

Usage

Used to correlate two or more
messages.

Usually a sequence number with a
group of messages with a

SEQUENCE _SIZE but can also be used in
a <resequencer/> to resequence an
unbounded group of messages.

The number of messages within a
group of correlated messages.

Indicates when a message is expired.
Not used by the framework directly
but can be set with a header enricher
and used in a <filter/> that is
configured with an
UnexpiredMessageSelector.

Message priority — for example,
within a PriorityChannel.

True if a message was detected as a
duplicate by an idempotent receiver
interceptor. See Idempotent Receiver
Enterprise Integration Pattern.

This header is present if the message
is associated with a Closeable that
should be closed when message
processing is complete. An example
is the Session associated with a
streamed file transfer using FTP,
SFTP, and so on.

If a message-driven channel adapter
supports the configuration of a
RetryTemplate, this header contains
the current delivery attempt.

If an inbound endpoint supports it, a
call back to accept, reject, or requeue
a message. See Deferred
Acknowledgment Pollable Message
Source and MQTT Manual Acks.
headers are the

provided on

IntegrationMessageHeaderAccessor class, as the following example shows:

73

./handler-advice.pdf#idempotent-receiver
./handler-advice.pdf#idempotent-receiver
./polling-consumer.pdf#deferred-acks-message-source
./polling-consumer.pdf#deferred-acks-message-source
./polling-consumer.pdf#deferred-acks-message-source
./mqtt.pdf#mqtt-ack-mode

IntegrationMessageHeaderAccessor accessor = new IntegrationMessageHeaderAccessor
(message);

int sequenceNumber = accessor.getSequenceNumber();

Object correlationId = accessor.getCorrelationId();

The following table describes headers that also appear in the IntegrationMessageHeaderAccessor but
are generally not used by user code (that is, they are generally used by internal parts of Spring
Integration — their inclusion here is for completeness):

Table 3. Pre-defined Message Headers

Header Name Header Type Usage

IntegrationMessageHeaderAccessor java.util. A stack of correlation data used
List<List<Object>> when nested correlation is needed

(for example, splitter>:-
s>splitter>--»aggregator~---

SEQUENCE_DETAILS

~aggregator).
IntegrationMessageHeaderAccessor java.util. See Routing Slip.
. Map<List<Object>,
ROUTING_SLIP Integer>

7.2.2. Message ID Generation

When a message transitions through an application, each time it is mutated (for example, by a
transformer) a new message ID is assigned. The message ID is a UUID. Beginning with Spring
Integration 3.0, the default strategy used for IS generation is more efficient than the previous
java.util.UUID.randomUUID() implementation. It uses simple random numbers based on a secure
random seed instead of creating a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements
org.springframework.util.IdGenerator in the application context.

Only one UUID generation strategy can be used in a classloader. This means that, if
two or more application contexts run in the same classloader, they share the same
strategy. If one of the contexts changes the strategy, it is used by all contexts. If two

o or more contexts in the same classloader declare a bean of type
org.springframework.util.IdGenerator, they must all be an instance of the same
class. Otherwise, the context attempting to replace a custom strategy fails to
initialize. If the strategy is the same, but parameterized, the strategy in the first
context to be initialized is used.

In addition to the default strategy, two additional IdGenerators are provided.
org.springframework.util.JdkIdGenerator uses the previous UUID.randomUUID() mechanism. You can
use o.s.1.support.IdGenerators.SimpleIncrementingldGenerator when a UUID is not really needed
and a simple incrementing value is sufficient.

74

./router.pdf#routing-slip

7.2.3. Read-only Headers

The MessageHeaders.ID and MessageHeaders.TIMESTAMP are read-only headers and cannot be
overridden.

Since version 4.3.2, the MessageBuilder provides the readOnlyHeaders(String--- readOnlyHeaders) API
to customize a list of headers that should not be copied from an upstream Message. Only the
MessageHeaders.ID and MessageHeaders.TIMESTAMP are read only by default. The global
spring.integration.readOnly.headers property (see Global Properties) is provided to customize
DefaultMessageBuilderFactory for framework components. This can be useful when you would like
do not populate some out-of-the-box headers, such as contentType by the ObjectToJsonTransformer
(see JSON Transformers).

When you try to build a new message using MessageBuilder, this kind of header is ignored and a
particular INFO message is emitted to logs.

Starting with version 5.0, Messaging Gateway, Header Enricher, Content Enricher and Header Filter
do not let you configure the MessageHeaders.ID and MessageHeaders.TIMESTAMP header names when
DefaultMessageBuilderFactory is used, and they throw BeanInitializationException.

7.2.4. Header Propagation

When messages are processed (and modified) by message-producing endpoints (such as a service
activator), in general, inbound headers are propagated to the outbound message. One exception to
this is a transformer, when a complete message is returned to the framework. In that case, the user
code is responsible for the entire outbound message. When a transformer just returns the payload,
the inbound headers are propagated. Also, a header is only propagated if it does not already exist in
the outbound message, letting you change header values as needed.

Starting with version 4.3.10, you can configure message handlers (that modify messages and
produce output) to suppress the propagation of specific headers. To configure the header(s) you do
not want to be copied, call the setNotPropagatedHeaders() or addNotPropagatedHeaders() methods on
the MessageProducingMessageHandler abstract class.

You can also globally suppress propagation of specific message headers by setting the
readOnlyHeaders property in META-INF/spring.integration.properties to a comma-delimited list of
headers.

Starting with version 5.0, the setNotPropagatedHeaders() implementation on the
AbstractMessageProducingHandler applies simple patterns (xxx*, xxx, *xxx, or xxx*yyy) to allow
filtering headers with a common suffix or prefix. See PatternMatchUtils Javadoc for more
information. When one of the patterns is * (asterisk), no headers are propagated. All other patterns
are ignored. In that case, the service activator behaves the same way as a transformer and any
required headers must be supplied in the Message returned from the service method. The
notPropagatedHeaders() option is available in the ConsumerEndpointSpec for the Java DSL It is also
available for XML configuration of the <service-activator> component as a not-propagated-headers
attribute.

75

./configuration.pdf#global-properties
./transformer.pdf#json-transformers
./gateway.pdf#gateway
./content-enrichment.pdf#header-enricher
./content-enrichment.pdf#payload-enricher
./transformer.pdf#header-filter
./service-activator.pdf#service-activator
./service-activator.pdf#service-activator
./transformer.pdf#transformer
https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html

o Header propagation suppression does not apply to those endpoints that do not
modify the message, such as bridges and routers.

7.3. Message Implementations

The base implementation of the Message interface is GenericMessage<T>, and it provides two
constructors, shown in the following listing:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

When a Message is created, a random unique ID is generated. The constructor that accepts a Map of
headers copies the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions.
This implementation takes a Throwable object as its payload, as the following example shows:

ErrorMessage message = new ErrorMessage(someThrowable);

Throwable t = message.getPayload();

Note that this implementation takes advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

7.4. The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
provides no setters. The reason for this is that a Message cannot be modified after its initial creation.
Therefore, when a Message instance is sent to multiple consumers (for example, through a publish-
subscribe Channel), if one of those consumers needs to send a reply with a different payload type, it
must create a new Message. As a result, the other consumers are not affected by those changes. Keep
in mind that multiple consumers may access the same payload instance or header value, and
whether such an instance is itself immutable is a decision left to you. In other words, the contract
for Message instances is similar to that of an unmodifiable Collection, and the MessageHeaders map
further exemplifies that. Even though the MessageHeaders class implements java.util.Map, any
attempt to invoke a put operation (or 'remove' or 'clear’) on a MessageHeaders instance results in an
UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage
constructor, Spring Integration does provide a far more convenient way to construct Messages:

76

./bridge.pdf#bridge
./router.pdf#router

MessageBuilder. The MessageBuilder provides two factory methods for creating Message instances
from either an existing Message or with a payload Object. When building from an existing Message,
the headers and payload of that Message are copied to the new Message, as the following example
shows:

Message<String> messagel = MessageBuilder.withPayload("test")
.setHeader ("foo", "bar")
.build();

Message<String> message2 = MessageBuilder.fromMessage(messagel).build();

assertEquals("test", message2.getPayload());
assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an
existing Message, you can use one of the 'copy' methods, as the following example shows:

Message<String> message3 = MessageBuilder.withPayload("test3")
.copyHeaders(messagel.getHeaders())
.build();

Message<String> message4 = MessageBuilder.withPayload("test4")
.setHeader ("foo", 123)
.copyHeadersIfAbsent(messagel.getHeaders())

.build();

assertEquals("bar", message3.getHeaders().get("foo"));
assertEquals(123, messaged.getHeaders().get("foo"));

Note that the copyHeadersIfAbsent method does not overwrite existing values. Also, in the preceding
example, you can see how to set any user-defined header with setHeader. Finally, there are set
methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

You can also use MessageBuilder to set the priority of messages, as the following example shows:

77

The priority header is considered only when using a PriorityChannel (as described in the next

Message<Integer> importantMessage = MessageBuilder.withPayload(99)
.setPriority(5)
.build();

assertEquals(5, importantMessage.getHeaders().getPriority());

Message<Integer> lessImportantMessage = MessageBuilder.fromMessage(importantMessage)
.setHeaderIfAbsent(IntegrationMessageHeaderAccessor.PRIORITY, 2)
.build();

assertEquals(2, lessImportantMessage.getHeaders().getPriority());

chapter). It is defined as a java.lang.Integer.

78

Chapter 8. Message Routing

This chapter covers the details of using Spring Integration to route messages.

8.1. Routers
This section covers how routers work. It includes the following topics:

* Overview

* Common Router Parameters

* Router Implementations

* Configuring a Generic Router

* Routers and the Spring Expression Language (SpEL)

* Dynamic Routers

8.1.1. Overview

Routers are a crucial element in many messaging architectures. They consume messages from a
message channel and forward each consumed message to one or more different message channels
depending on a set of conditions.

Spring Integration provides the following routers:

» Payload Type Router

e Header Value Router

Recipient List Router

XPath Router (part of the XML module)

* Error Message Exception Type Router

(Generic) Router

Router implementations share many configuration parameters. However, certain differences exist
between routers. Furthermore, the availability of configuration parameters depends on whether
routers are used inside or outside of a chain. In order to provide a quick overview, all available
attributes are listed in the two following tables .

The following table shows the configuration parameters available for a router outside of a chain:

Table 4. Routers Outside of a Chain

Attribute router header xpath payload recipient exception
value router type list route type
router router router

apply-sequence 1_./ ‘_./ _-/ _-/ 1_-/ 1_-/

79

./xml.pdf#xml-xpath-routing

Attribute router header xpath payload recipient exception
value router type list route type
router router router

default-output-channel

&
&
A
&
&

resolution-required

ignore-send-failures

timeout

id

auto-startup

input-channel

order

__,__,_,_,_.,\,,__,\
AR R\
R R
NIEVEUEUE SN
UENENEE U

method

ref

B Y S Y W W N W N N N

expression
header-name ‘.//
evaluate-as-string

xpath-expression-ref

converter

The following table shows the configuration parameters available for a router inside of a chain:

Table 5. Routers Inside of a Chain

80

Attribute

apply-sequence

default-output-channel

resolution-required
ignore-send-failures
timeout

id

auto-startup
input-channel

order

method

ref

expression

header-name

evaluate-as-string

xpath-expression-ref

converter

router

e
e
e

e

e

v

header
value
router

e
e
e
v
e

xpath
router

e
e
e
e
e

payload

type
router

e
e
e
e
e

recipient
list router

e
e
e
e
e

exception

type
router

e
e
e
e
e

81

As of Spring Integration 2.1, router parameters have been more standardized
across all router implementations. Consequently, a few minor changes may break
older Spring Integration based applications.

Since Spring Integration 2.1, the ignore-channel-name-resolution-failures attribute
is removed in favor of consolidating its behavior with the resolution-required
attribute. Also, the resolution-required attribute now defaults to true.

o Prior to these changes, the resolution-required attribute defaulted to false,
causing messages to be silently dropped when no channel was resolved and no
default-output-channel was set. The new behavior requires at least one resolved
channel and, by default, throws a MessageDeliveryException if no channel was
determined (or an attempt to send was not successful).

If you do desire to drop messages silently, you can set default-output-
channel="nullChannel".

8.1.2. Common Router Parameters

This section describes the parameters common to all router parameters (the parameters with all
their boxes ticked in the two tables shown earlier in this chapter).

Inside and Outside of a Chain

The following parameters are valid for all routers inside and outside of chains.

apply-sequence

This attribute specifies whether sequence number and size headers should be added to each
message. This optional attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel where messages should be sent if
channel resolution fails to return any channels. If no default output channel is provided, the
router throws an exception. If you would like to silently drop those messages instead, set the
default output channel attribute value to nul1Channel.

o A message is sent only to the default-output-channel if resolution-required is
false and the channel is not resolved.

resolution-required

This attribute specifies whether channel names must always be successfully resolved to channel
instances that exist. If set to true, a MessagingException is raised when the channel cannot be
resolved. Setting this attribute to false causes any unresovable channels to be ignored. This
optional attribute defaults to true.

0 A Message is sent only to the default-output-channel, if specified, when
resolution-required is false and the channel is not resolved.

82

ignore-send-failures

If set to true, failures to send to a message channel is ignored. If set to false, a
MessageDeliveryException is thrown instead, and, if the router resolves more than one channel,
any subsequent channels do not receive the message.

The exact behavior of this attribute depends on the type of the Channel to which the messages
are sent. For example, when using direct channels (single threaded), send failures can be caused
by exceptions thrown by components much further downstream. However, when sending
messages to a simple queue channel (asynchronous), the likelihood of an exception to be thrown
is rather remote.

While most routers route to a single channel, they can return more than one
channel name. The recipient-list-router, for instance, does exactly that. If you
set this attribute to true on a router that only routes to a single channel, any
caused exception is swallowed, which usually makes little sense. In that case, it

0 would be better to catch the exception in an error flow at the flow entry point.
Therefore, setting the ignore-send-failures attribute to true usually makes
more sense when the router implementation returns more than one channel
name, because the other channel(s) following the one that fails would still
receive the message.

This attribute defaults to false.

timeout

The timeout attribute specifies the maximum amount of time in milliseconds to wait when
sending messages to the target Message Channels. By default, the send operation blocks
indefinitely.

Top-Level (Outside of a Chain)

The following parameters are valid only across all top-level routers that are outside of chains.

id
Identifies the underlying Spring bean definition, which, in the case of routers, is an instance of

EventDrivenConsumer or PollingConsumer, depending on whether the router’s input-channel is a
SubscribableChannel or a PollableChannel, respectively. This is an optional attribute.

auto-startup

This “lifecycle” attribute signaled whether this component should be started during startup of
the application context. This optional attribute defaults to true.

input-channel

The receiving message channel of this endpoint.

order

This attribute defines the order for invocation when this endpoint is connected as a subscriber
to a channel. This is particularly relevant when that channel uses a failover dispatching strategy.
It has no effect when this endpoint itself is a polling consumer for a channel with a queue.

83

8.1.3. Router Implementations

Since content-based routing often requires some domain-specific logic, most use cases require
Spring Integration’s options for delegating to POJOs by using either the XML namespace support or
annotations. Both of these are discussed later. However, we first present a couple of
implementations that fulfill common requirements.

PayloadTypeRouter

A PayloadTypeRouter sends messages to the channel defined by payload-type mappings, as the
following example shows:

<bean id="payloadTypeRouter"
class="org.springframework.integration.router.PayloadTypeRouter">
<property name="channelMapping">
<map>
<entry key="java.lang.String" value-ref="stringChannel"/>
<entry key="java.lang.Integer" value-ref="integerChannel"/>
</map>
</property>
</bean>

Configuration of the PayloadTypeRouter is also supported by the namespace provided by Spring
Integration (see Namespace Support), which essentially simplifies configuration by combining the
<router/> configuration and its corresponding implementation (defined by using a <bean/> element)
into a single and more concise configuration element. The following example shows a
PayloadTypeRouter configuration that is equivalent to the one above but uses the namespace
support:

<int:payload-type-router input-channel="routingChannel">
<int:mapping type="java.lang.String" channel="stringChannel" />
<int:mapping type="java.lang.Integer" channel="integerChannel" />
</int:payload-type-router>

The following example shows the equivalent router configured in Java:

84

./configuration.pdf#configuration-namespace

(inputChannel = "routingChannel")

public PayloadTypeRouter router() {
PayloadTypeRouter router = new PayloadTypeRouter();
router.setChannelMapping(String.class.getName(), "stringChannel");

router.setChannelMapping(Integer.class.getName(), "integerChannel");
return router;

When using the Java DSL, there are two options.

First, you can define the router object as shown in the preceding example:

public IntegrationFlow routerFlow1() {
return IntegrationFlows.from("routingChannel™)
.route(router())
.get();
}

public PayloadTypeRouter router() {
PayloadTypeRouter router = new PayloadTypeRouter();
router.setChannelMapping(String.class.getName(), "stringChannel");

router.setChannelMapping(Integer.class.getName(), "integerChannel");
return router;

Note that the router can be, but does not have to be, a @Bean. The flow registers it if it is not a @Bean.

Second, you can define the routing function within the DSL flow itself, as the following example
shows:

public IntegrationFlow routerFlow2() {
return IntegrationFlows.from("routingChannel™)

.<0bject, Class<?>>route(Object::getClass, m -> m
.channelMapping(String.class, "stringChannel")
.channelMapping(Integer.class, "integerChannel"))

.get();

HeaderValueRouter

A HeaderValueRouter sends Messages to the channel based on the individual header value mappings.

85

When a HeaderValueRouter is created, it is initialized with the name of the header to be evaluated.
The value of the header could be one of two things:

* An arbitrary value

¢ A channel name

If it is an arbitrary value, additional mappings for these header values to channel names are
required. Otherwise, no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
HeaderValueRouter. The following example demonstrates configuration for the HeaderValueRouter
when mapping of header values to channels is required:

<int:header-value-router input-channel="routingChannel" header-name="testHeader">
<int:mapping value="someHeaderValue" channel="channelA" />
<int:mapping value="someOtherHeaderValue" channel="channelB" />
</int:header-value-router>

During the resolution process, the router defined in the preceding example may encounter channel
resolution failures, causing an exception. If you want to suppress such exceptions and send
unresolved messages to the default output channel (identified with the default-output-channel
attribute) set resolution-required to false.

Normally, messages for which the header value is not explicitly mapped to a channel are sent to the
default-output-channel. However, when the header value is mapped to a channel name but the
channel cannot be resolved, setting the resolution-required attribute to false results in routing
such messages to the default-output-channel.

As of Spring Integration 2.1, the attribute was changed from ignore-channel-name-
o resolution-failures to resolution-required. Attribute resolution-required defaults
to true.

The following example shows the equivalent router configured in Java:

@ServiceActivator(inputChannel = "routingChannel")

@Bean

public HeaderValueRouter router() {
HeaderValueRouter router = new HeaderValueRouter("testHeader");
router.setChannelMapping("someHeaderValue", "channelA");
router.setChannelMapping("someOtherHeaderValue", "channelB");
return router;

When using the Java DSL, there are two options. First, you can define the router object as shown in

86

the preceding example:

public IntegrationFlow routerFlow1() {
return IntegrationFlows.from("routingChannel™)
.route(router())

.get();
}

public HeaderValueRouter router() {
HeaderValueRouter router = new HeaderValueRouter("testHeader");
router.setChannelMapping("someHeaderValue", "channelA");

router.setChannelMapping("someOtherHeaderValue", "channelB");
return router;

Note that the router can be, but does not have to be, a @Bean. The flow registers it if it is not a @Bean.

Second, you can define the routing function within the DSL flow itself, as the following example
shows:

public IntegrationFlow routerFlow2() {
return IntegrationFlows.from("routingChannel™)

.<Message<?>, String>route(m -> m.getHeaders().get("testHeader",
String.class), m ->m

.channelMapping("someHeaderValue", "channelA")
.channelMapping("someOtherHeaderValue", "channelB"),
e -> e.id("headerValueRouter"))

.get();

Configuration where mapping of header values to channel names is not required, because header
values themselves represent channel names. The following example shows a router that does not
require mapping of header values to channel names:

<int:header-value-router input-channel="routingChannel" header-name="testHeader"/>

87

Since Spring Integration 2.1, the behavior of resolving channels is more explicit.

For example, if you omit the default-output-channel attribute, the router was

unable to resolve at least one valid channel, and any channel name resolution

failures were ignored by setting resolution-required to false, then a
o MessageDeliveryException is thrown.

Basically, by default, the router must be able to route messages successfully to at
least one channel. If you really want to drop messages, you must also have
default-output-channel set to nullChannel.

RecipientListRouter

A RecipientlListRouter sends each received message to a statically defined list of message channels.
The following example creates a RecipientListRouter:

<bean id="recipientListRouter"
class="org.springframework.integration.router.RecipientListRouter">
<property name="channels">
<list>
<ref bean="channell"/>
<ref bean="channel2"/>
<ref bean="channel3"/>
</list>
</property>
</bean>

Spring Integration also provides namespace support for the RecipientlListRouter configuration (see
Namespace Support) as the following example shows:

<int:recipient-list-router id="customRouter" input-channel="routingChannel"
timeout="1234"
ignore-send-failures="true"
apply-sequence="true">
<int:recipient channel="channel1"/>
<int:recipient channel="channel2"/>
</int:recipient-list-router>

The following example shows the equivalent router configured in Java:

88

./configuration.pdf#configuration-namespace

(inputChannel = "routingChannel")

public RecipientlListRouter router() {
RecipientListRouter router = new RecipientListRouter();
router.setSendTimeout(1_234L);
router.setIgnoreSendFailures(true);
router.setApplySequence(true);
router.addRecipient("channell");
router.addRecipient("channel2");
router.addRecipient("channel3");
return router;

The following example shows the equivalent router configured by using the Java DSL:

public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel™)

.routeToRecipients(r -> r
.applySequence(true)
.ignoreSendFailures(true)
.recipient("channel1")
.recipient("channel2")
.recipient("channel3")
.sendTimeout(1_234L))

.get();

The 'apply-sequence' flag here has the same effect as it does for a publish-

o subscribe-channel, and, as with a publish-subscribe-channel, it is disabled by
default on the recipient-list-router. See PublishSubscribeChannel Configuration
for more information.

Another convenient option when configuring a RecipientListRouter is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. Doing so is similar to using
a filter at the beginning of a 'chain’' to act as a “selective consumer”. However, in this case, it is all
combined rather concisely into the router’s configuration, as the following example shows:

<int:recipient-list-router id="customRouter" input-channel="routingChannel">
<int:recipient channel="channell1" selector-expression="payload.equals('foo"')"/>
<int:recipient channel="channel2" selector-expression="headers.containsKey('bar")

"s

</int:recipient-list-router>

89

./channel.pdf#channel-configuration-pubsubchannel
./channel.pdf#channel-configuration-pubsubchannel

In the preceding configuration, a SpEL expression identified by the selector-expression attribute is
evaluated to determine whether this recipient should be included in the recipient list for a given
input message. The evaluation result of the expression must be a boolean. If this attribute is not
defined, the channel is always among the list of recipients.

RecipientListRouterManagement

Starting with version 4.1, the RecipientlListRouter provides several operations to manipulate
recipients dynamically at runtime. These management operations are presented by
RecipientListRouterManagement through the @ManagedResource annotation. They are available by
using Control Bus as well as by using JMX, as the following example shows:

<control-bus input-channel="controlBus"/>

<recipient-list-router id="simpleRouter" input-channel="routingChannelA">
<recipient channel="channel1"/>
</recipient-list-router>

<channel id="channel2"/>

messagingTemplate.convertAndSend(controlBus,
"0'simpleRouter.handler'.addRecipient('channel2')");

From the application start up the simpleRouter, has only one channell recipient. But after the
addRecipient command, channel? recipient is added. It is a “registering an interest in something that
is part of the message” use case, when we may be interested in messages from the router at some
time period, so we are subscribing to the the recipient-list-router and, at some point, decide to
unsubscribe.

Because of the runtime management operation for the <recipient-list-router>, it can be
configured without any <recipient> from the start. In this case, the behavior of RecipientListRouter
is the same when there is no one matching recipient for the message. If defaultOutputChannel is
configured, the message is sent there. Otherwise the MessageDeliveryException is thrown.

XPath Router

The XPath Router is part of the XML Module. See Routing XML Messages with XPath.

Routing and Error Handling

Spring Integration also provides a special type-based router called ErrorMessageExceptionTypeRouter
for routing error messages (defined as messages whose payload is a Throwable instance).
ErrorMessageExceptionTypeRouter is similar to the PayloadTypeRouter. In fact, they are almost
identical. The only difference is that, while PayloadTypeRouter navigates the instance hierarchy of a
payload instance (for example, payload.getClass().getSuperclass()) to find the most specific type
and channel mappings, the ErrorMessageExceptionTypeRouter navigates the hierarchy of 'exception

90

./control-bus.pdf#control-bus
./xml.pdf#xml-xpath-routing

causes' (for example, payload.getCause()) to find the most specific Throwable type or channel
mappings and uses mappingClass.isInstance(cause) to match the cause to the class or any super
class.

The channel mapping order in this case matters. So, if there is a requirement to get
o mapping for an IllegalArgumentException, but not a RuntimeException, the last one
must be configured on router first.

o Since version 4.3 the ErrorMessageExceptionTypeRouter loads all mapping classes
during the initialization phase to fail-fast for a ClassNotFoundException.

The following example shows a sample configuration for ErrorMessageExceptionTypeRouter:

<int:exception-type-router input-channel="inputChannel"
default-output-channel="defaultChannel">
<int:mapping exception-type="java.lang.I1legalArgumentException”
channel="i1legalChannel"/>
<int:mapping exception-type="java.lang.NullPointerException"
channel="npeChannel"/>
</int:exception-type-router>

<int:channel id="illegalChannel" />
<int:channel id="npeChannel" />

8.1.4. Configuring a Generic Router

Spring Integration provides a generic router. You can use it for general-purpose routing (as opposed
to the other routers provided by Spring Integration, each of which has some form of specialization).

Configuring a Content-based Router with XML

The router element provides a way to connect a router to an input channel and also accepts the
optional default-output-channel attribute. The ref attribute references the bean name of a custom
router implementation (which must extend AbstractMessageRouter). The following example shows
three generic routers:

91

<int:router ref="payloadTypeRouter" input-channel="input1"
default-output-channel="defaultOutput1"/>

<int:router ref="recipientListRouter" input-channel="input2"
default-output-channel="defaultOutput2"/>

<int:router ref="customRouter" input-channel="1input3"
default-output-channel="defaultOutput3"/>

<beans:bean id="customRouterBean" class="org.foo.MyCustomRouter"/>

Alternatively, ref may point to a POJO that contains the @Router annotation (shown later), or you
can combine the ref with an explicit method name. Specifying a method applies the same behavior
described in the @Router annotation section, later in this document. The following example defines a
router that points to a POJO in its ref attribute:

<int:router input-channel="input" ref="somePojo" method="someMethod"/>

We generally recommend using a ref attribute if the custom router implementation is referenced in
other <router> definitions. However if the custom router implementation should be scoped to a
single definition of the <router>, you can provide an inner bean definition, as the following
example shows:

<int:router method="someMethod" input-channel="1input3"
default-output-channel="defaultOutput3">
<beans:bean class="org.foo.MyCustomRouter"/>
</int:router>

Using both the ref attribute and an inner handler definition in the same <router>
o configuration is not allowed. Doing so creates an ambiguous condition and throws
an exception.

If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as routers provided by the framework itself), the configuration is optimized
to reference the router directly. In this case, each ref attribute must refer to a

o separate bean instance (or a prototype-scoped bean) or use the inner <bean/>
configuration type. However, this optimization applies only if you do not provide
any router-specific attributes in the router XML definition. If you inadvertently
reference the same message handler from multiple beans, you get a configuration
exception.

92

The following example shows the equivalent router configured in Java:

(inputChannel = "routingChannel")
public AbstractMessageRouter myCustomRouter() {
return new AbstractMessageRouter() {

protected Collection<MessageChannel> determineTargetChannels(Message<?>
message) {
return // determine channel(s) for message

}

The following example shows the equivalent router configured by using the Java DSL:

public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel™)
.route(myCustomRouter())
.get();
}

public AbstractMessageRouter myCustomRouter() {
return new AbstractMessageRouter() {

protected Collection<MessageChannel> determineTargetChannels(Message<?>
message) {
return // determine channel(s) for message

}

Alternately, you can route on data from the message payload, as the following example shows:

93

@Bean
public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel")
.route(String.class, p -> p.contains("foo") ? "fooChannel" :
"barChannel")
.get();
}

8.1.5. Routers and the Spring Expression Language (SpEL)

Sometimes, the routing logic may be simple, and writing a separate class for it and configuring it as
a bean may seem like overkill. As of Spring Integration 2.0, we offer an alternative that lets you use
SpEL to implement simple computations that previously required a custom POJO router.

e For more information about the Spring Expression Language, see the relevant
chapter in the Spring Framework Reference Guide:

Generally, a SpEL expression is evaluated and its result is mapped to a channel, as the following
example shows:

<int:router input-channel="inChannel" expression="payload.paymentType">
<int:mapping value="CASH" channel="cashPaymentChannel"/>
<int:mapping value="CREDIT" channel="authorizePaymentChannel"/>
<int:mapping value="DEBIT" channel="authorizePaymentChannel"/>
</int:router>

The following example shows the equivalent router configured in Java:

@Router (inputChannel = "routingChannel")

@Bean

public ExpressionEvaluatingRouter router() {
ExpressionEvaluatingRouter router = new ExpressionEvaluatingRouter(

"payload.paymentType");
router.setChannelMapping("CASH", "cashPaymentChannel");
router.setChannelMapping("CREDIT", "authorizePaymentChannel");
router.setChannelMapping("DEBIT", "authorizePaymentChannel");
return router;

The following example shows the equivalent router configured in the Java DSL:

94

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel")
.route("payload.paymentType", r -> r
.channelMapping("CASH", "cashPaymentChannel")
.channelMapping("CREDIT", "authorizePaymentChannel")
.channelMapping("DEBIT", "authorizePaymentChannel"))
.get();

To simplify things even more, the SpEL expression may evaluate to a channel name, as the
following expression shows:

<int:router input-channel="inChannel" expression="payload + 'Channel'"/>

In the preceding configuration, the result channel is computed by the SpEL expression, which
concatenates the value of the payload with the literal String, 'Channel'.

Another virtue of SpEL for configuring routers is that an expression can return a Collection,
effectively making every <router> a recipient list router. Whenever the expression returns multiple
channel values, the message is forwarded to each channel. The following example shows such an
expression:

<int:router input-channel="inChannel" expression="headers.channels"/>

In the above configuration, if the message includes a header with a name of 'channels’ and the
value of that header is a List of channel names, the message is sent to each channel in the list. You
may also find collection projection and collection selection expressions useful when you need to
select multiple channels. For further information, see:

* Collection Projection

¢ Collection Selection

Configuring a Router with Annotations

When using @Router to annotate a method, the method may return either a MessageChannel or a
String type. In the latter case, the endpoint resolves the channel name as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a
collection is returned, the reply message is sent to multiple channels. To summarize, the following
method signatures are all valid:

95

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-collection-projection
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-collection-selection

public MessageChannel route(Message message) {...}

public List<MessageChannel> route(Message message) {...}

public String route(Foo payload) {...}

public List<String> route(Foo payload) {...}

In addition to payload-based routing, a message may be routed based on metadata available within
the message header as either a property or an attribute. In this case, a method annotated with
@Router may include a parameter annotated with @Header, which is mapped to a header value as the
following example shows and documented in Annotation Support:

public List<String> route(("orderStatus") OrderStatus status)
o For routing of XML-based Messages, including XPath support, see XML Support -
Dealing with XML Payloads.

See also Message Routers in the Java DSL chapter for more information about router configuration.

8.1.6. Dynamic Routers

Spring Integration provides quite a few different router configurations for common content-based
routing use cases as well as the option of implementing custom routers as POJOs. For example,
PayloadTypeRouter provides a simple way to configure a router that computes channels based on the
payload type of the incoming message while HeaderValueRouter provides the same convenience in
configuring a router that computes channels by evaluating the value of a particular message
Header. There are also expression-based (SpEL) routers, in which the channel is determined based
on evaluating an expression. All of these type of routers exhibit some dynamic characteristics.

However, these routers all require static configuration. Even in the case of expression-based
routers, the expression itself is defined as part of the router configuration, which means that the
same expression operating on the same value always results in the computation of the same
channel. This is acceptable in most cases, since such routes are well defined and therefore
predictable. But there are times when we need to change router configurations dynamically so that
message flows may be routed to a different channel.

For example, you might want to bring down some part of your system for maintenance and
temporarily re-reroute messages to a different message flow. As another example, you may want to

96

./configuration.pdf#annotations
./xml.pdf#xml
./xml.pdf#xml
./dsl.pdf#java-dsl-routers

introduce more granularity to your message flow by adding another route to handle a more
concrete type of java.lang.Number (in the case of PayloadTypeRouter).

Unfortunately, with static router configuration to accomplish either of those goals, you would have
to bring down your entire application, change the configuration of the router (change routes), and
bring the application back up. This is obviously not a solution anyone wants.

The dynamic router pattern describes the mechanisms by which you can change or configure
routers dynamically without bringing down the system or individual routers.

Before we get into the specifics of how Spring Integration supports dynamic routing, we need to
consider the typical flow of a router:

1. Compute a channel identifier, which is a value calculated by the router once it receives the
message. Typically, it is a String or an instance of the actual MessageChannel.

2. Resolve the channel identifier to a channel name. We describe specifics of this process later in
this section.

3. Resolve the channel name to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual
instance of the MessageChannel, because the MessageChannel is the final product of any router’s job.
However, if the first step results in a channel identifier that is not an instance of MessageChannel,
you have quite a few possible ways to influence the process of deriving the MessageChannel.
Consider the following example of a payload type router:

<int:payload-type-router input-channel="routingChannel">
<int:mapping type="java.lang.String" channel="channell" />
<int:mapping type="java.lang.Integer" channel="channel2" />
</int:payload-type-router>

Within the context of a payload type router, the three steps mentioned earlier would be realized as
follows:

1. Compute a channel identifier that is the fully qualified name of the payload type (for example,
java.lang.String).

2. Resolve the channel identifier to a channel name, where the result of the previous step is used
to select the appropriate value from the payload type mapping defined in the mapping element.

3. Resolve the channel name to the actual instance of the MessageChannel as a reference to a bean
within the application context (which is hopefully a MessageChannel) identified by the result of
the previous step.

In other words, each step feeds the next step until the process completes.

Now consider an example of a header value router:

97

https://www.enterpriseintegrationpatterns.com/DynamicRouter.html

<int:header-value-router input-channel="inputChannel" header-name="testHeader">
<int:mapping value="foo" channel="fooChannel" />
<int:mapping value="bar" channel="barChannel" />

</int:header-value-router>

Now we can consider how the three steps work for a header value router:

1. Compute a channel identifier that is the value of the header identified by the header-name
attribute.

2. Resolve the channel identifier a to channel name, where the result of the previous step is used
to select the appropriate value from the general mapping defined in the mapping element.

3. Resolve the channel name to the actual instance of the MessageChannel as a reference to a bean
within the application context (which is hopefully a MessageChannel) identified by the result of
the previous step.

The preceding two configurations of two different router types look almost identical. However, if
you look at the alternate configuration of the HeaderValueRouter we clearly see that there is no
mapping sub element, as the following listing shows:

<int:header-value-router input-channel="inputChannel” header-name="testHeader">

However, the configuration is still perfectly valid. So the natural question is what about the
mapping in the second step?

The second step is now optional. If mapping is not defined, then the channel identifier value
computed in the first step is automatically treated as the channel name, which is now resolved to the
actual MessageChannel, as in the third step. What it also means is that the second step is one of the
key steps to providing dynamic characteristics to the routers, since it introduces a process that lets
you change the way channel identifier resolves to the channel name, thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For example, in the preceding configuration, assume that the testHeader value is 'kermit’, which is
now a channel identifier (the first step). Since there is no mapping in this router, resolving this
channel identifier to a channel name (the second step) is impossible and this channel identifier is
now treated as the channel name. However, what if there was a mapping but for a different value?
The end result would still be the same, because, if a new value cannot be determined through the
process of resolving the channel identifier to a channel name, the channel