Spring for Apache Kafka

Gary Russell, Artem Bilan, Biju Kunjummen, Jay Bryant

Version 2.3.1.RELEASE

Table of Contents

1. Preface
2. What’s new?
2.1. What’s New in 2.3 Since 2.2

2.1.1. Tips, Tricks and Examples

2.1.2. Kafka Client Version

2.1.3. Class/Package Changes

2.1.4. Producer and Consumer Factory Changes
2.1.5. Listener Container Changes

2.1.6. ErrorHandler Changes

2.1.7. TopicBuilder

2.1.8. Kafka Streams Changes

2.1.9. JSON Component Changes

2.1.10. ReplyingKafkaTemplate

2.1.11. AggregatingReplyingKafkaTemplate
2.1.12. Transaction Changes

2.1.13. New Delegating Serializer/Deserializer
2.1.14. New Retrying Deserializer

2.1.15. New function for recovering from deserializing errors
2.1.16. EmbeddedKafkaBroker Changes

2.1.17. ReplyingKafkaTemplate Changes

2.1.18. Header Mapper Changes

3. Introduction

3.1. Quick Tour for the Impatient

3.1.1. Compatibility

3.1.2. A Very, Very Quick Example
3.1.3. With Java Configuration

3.1.4. Even Quicker, with Spring Boot

4. Reference
4.1. Using Spring for Apache Kafka

4.1.1. Configuring Topics

4.1.2. Sending Messages
Using KafkaTemplate
Using DefaultKafkaProducerFactory
Using ReplyingKafkaTemplate
Aggregating Multiple Replies

4.1.3. Receiving Messages
Message Listeners
Message Listener Containers

N g 9 0 o OOy Oy OO U U Gl kR W W W W W W WwWwN

W NN DN N DN B R R R
S 00 0 O R O OO R R DN O

@Kafkalistener Annotation
Obtaining the Consumer group.id
Container Thread Naming
@Kafkalistener as a Meta Annotation
@Kafkalistener on a Class
@KafkalListener Lifecycle Management
@Kafkalistener @Payload Validation
Rebalancing Listeners
Forwarding Listener Results using @SendTo
Filtering Messages
Retrying Deliveries
Stateful Retry
Listener Consumer Lifecycle Events
Detecting Idle and Non-Responsive Consumers
Topic/Partition Initial Offset
Seeking to a Specific Offset
Container factory
Thread Safety
Monitoring Listener Performance
4.1.4. Transactions
Overview
Using KafkaTransactionManager
Transactional Listener Container and Exactly Once Processing
Transaction Synchronization
Using ChainedKafkaTransactionManager
KafkaTemplate Local Transactions
transactionIdPrefix
4.1.5. Wiring Spring Beans into Producer/Consumer Interceptors
4.1.6. Pausing and Resuming Listener Containers
4.1.7. Events
4.1.8. Serialization, Deserialization, and Message Conversion
Overview
JSON
Mapping Types
Delegating Serializer and Deserializer
Retrying Deserializer
Spring Messaging Message Conversion
Using ErrorHandlingDeserializer
Payload Conversion with Batch Listeners
ConversionService Customization

4.1.9. Message Headers

35
43
43
44
45
45
46
48
50
54
35
35
56
57
59
60
64
65
65
66
66
66
67
67
68
68
69
69
73
76
77
77
78
80
82
82
83
85
87
88
88

4.1.10. Null Payloads and Log Compaction of 'Tombstone' Records 92

4.1.11. Handling Exceptions 93
Listener Error Handlers 93
Container Error Handlers 95
Consumer-Aware Container Error Handlers 96
Seek To Current Container Error Handlers 96
Container Stopping Error Handlers 99
After-rollback Processor 100
Publishing Dead-letter Records 101

4.1.12. Kerberos 103

4.2. Kafka Streams Support 103

4.2.1. Basics 104

4.2.2. Spring Management 104

4.2.3. Streams JSON Serialization and Deserialization 106

4.2.4. Using KafkaStreamsBrancher 107

4.2.5. Configuration 107

4.2.6. Header Enricher 108

4.2.7. MessagingTransformer 108

4.2.8. Recovery from Deserialization Exceptions 109

4.2.9. Kafka Streams Example 110

4.3. Testing Applications 112

4.3.1. JUnit 112

4.3.2. Configuring Topics 114

4.3.3. Using the Same Brokers for Multiple Test Classes 115

4.3.4. @EmbeddedKafka Annotation 116

4.3.5. @EmbeddedKafka Annotation with JUnit5 119

4.3.6. Embedded Broker in @SpringBootTest Annotations 120
JUnit4 Class Rule 120
@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean 121

4.3.7. Hamcrest Matchers 122

4.3.8. Assert] Conditions 123

4.3.9. Example 123

5. Tips, Tricks and Examples 126
5.1. Manually Assigning All Partitions 126
5.2. Example of Transaction Synchronization 127

6. Spring Integration 131
6.1. Spring Integration for Apache Kafka 131

6.1.1. Overview 131

6.1.2. What’s new in Spring Integration for Apache Kafka (version 3.2) 131

6.1.3. Outbound Channel Adapter 131

Java Configuration 133

Java DSL Configuration 133

XML Configuration 134
6.1.4. Message-driven Channel Adapter 135
Java Configuration 136
Java DSL Configuration 136
XML Configuration 138
6.1.5. Inbound Channel Adapter 138
Java Configuration 139
Java DSL Configuration 139
XML Configuration 139
6.1.6. Outbound Gateway 140
Java Configuration 140
Java DSL Configuration 141
XML Configuration 141
6.1.7. Inbound Gateway 142
XML Configuration 143
6.1.8. Message Conversion 144
6.1.9. Null Payloads and Log Compaction 'Tombstone' Records 145
6.1.10. Calling a Spring Integration flow from a KStream 145
6.1.11. What’s New in Spring Integration for Apache Kafka 146
3.2.x 146
3.1.x 147
3.0.x 147
2.3.X 147
2.2.X 147
2.1x 147
2.0.x 147

7. Other Resources 148
Appendix A: Change History 149
A.1. Changes between 2.1 and 2.2 149
A.1.1. Kafka Client Version 149
A.1.2. Class and Package Changes 149
A.1.3. After Rollback Processing 149
A.1.4. ConcurrentKafkalistenerContainerFactory Changes 149
A.1.5. Listener Container Changes 149
A.1.6. @KafkaListener Changes 150
A.1.7. Header Mapping Changes 150
A.1.8. Embedded Kafka Changes 150
A.1.9. JsonSerializer/Deserializer Enhancements 150
A.1.10. Kafka Streams Changes 151

A.1.11. Transactional ID 151

A.2. Changes between 2.0 and 2.1 151

A.2.1. Kafka Client Version 151
A.2.2. JSON Improvements 151
A.2.3. Container Stopping Error Handlers 151
A.2.4. Pausing and Resuming Containers 152
A.2.5. Stateful Retry 152
A.2.6. Client ID 152
A.2.7. Logging Offset Commits 152
A.2.8. Default @KafkaHandler 152
A.2.9. ReplyingKafkaTemplate 152
A.2.10. ChainedKafkaTransactionManager 152
A.2.11. Migration Guide from 2.0 152
A.3. Changes Between 1.3 and 2.0 152
A.3.1. Spring Framework and Java Versions 152
A.3.2. @KafkalListener Changes 153
A.3.3. Message Listeners 153
A.3.4. Using ConsumerAwareRebalancelistener 153
A.4. Changes Between 1.2 and 1.3 153
A.4.1. Support for Transactions 153
A.4.2. Support for Headers 153
A.4.3. Creating Topics 153
A.4.4. Support for Kafka Timestamps 153
A.4.5. @Kafkalistener Changes 153
A.4.6. 0EmbeddedKafka Annotation 154
A.4.7. Kerberos Configuration 154
A.5. Changes between 1.1 and 1.2 154
A.6. Changes between 1.0 and 1.1 154
A.6.1. Kafka Client 154
A.6.2. Batch Listeners 154
A.6.3. Null Payloads 154
A.6.4. Initial Offset 154

A.6.5. Seek 154

© 2016 - 2019 by Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-
based messaging solutions. We provide a “template” as a high-level abstraction for sending

messages. We also provide support for Message-driven POJOs.

Chapter 2. What’s new?

2.1. What’s New in 2.3 Since 2.2

This section covers the changes made from version 2.2 to version 2.3.

Also see What’s new in Spring Integration for Apache Kafka (version 3.2).

2.1.1. Tips, Tricks and Examples

A new chapter Tips, Tricks and Examples has been added. Please submit GitHub issues and/or pull
requests for additional entries in that chapter.

2.1.2. Kafka Client Version

This version requires the 2.3.0 kafka-clients or higher.

2.1.3. Class/Package Changes

TopicPartitionInitialOffset is deprecated in favor of TopicPartitionOffset.

2.1.4. Producer and Consumer Factory Changes

The DefaultKafkaProducerFactory can now be configured to create a producer per thread. You can
also provide Supplier<Serializer> instances in the constructor as an alternative to either
configured classes (which require no-arg constructors), or constructing with Serializer instances,
which are then shared between all Producers. See Using DefaultKafkaProducerFactory for more
information.

The same option is available with Supplier<Deserializer> instances in DefaultKafkaConsumerFactory.
See Using KafkaMessagelListenerContainer for more information.

2.1.5. Listener Container Changes

Previously, error handlers received ListenerExecutionFailedException (with the actual listener
exception as the cause) when the listener was invoked using a listener adapter (such as
@Kafkalistener s). Exceptions thrown by native GenericMessagelListener s were passed to the error
handler unchanged. Now a ListenerExecutionFailedException is always the argument (with the
actual listener exception as the cause), which provides access to the container’s group.id property.

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. It now sets it to false automatically unless
specifically set in the consumer factory or the container’s consumer property overrides.

The ackOnError property is now false by default. See Seek To Current Container Error Handlers for
more information.

It is now possible to obtain the consumer’s group.id property in the listener method. See Obtaining

the Consumer group.id for more information.

The container has a new property recordInterceptor allowing records to be inspected or modified
before invoking the listener. A CompositeRecordInterceptor is also provided in case you need to
invoke multiple interceptors. See Message Listener Containers for more information.

The ConsumerSeekAware has new methods allowing you to perform seeks relative to the beginning,
end, or current position and to seek to the first offset greater than or equal to a time stamp. See
Seeking to a Specific Offset for more information.

A convenience class AbstractConsumerSeekAware is now provided to simplify seeking. See Seeking to a
Specific Offset for more information.

The ContainerProperties provides an idleBetweenPolls option to let the main loop in the listener
container to sleep between KafkaConsumer.poll() calls. See its JavaDocs and Using
KafkaMessagelListenerContainer for more information.

When using AckMode .MANUAL (or MANUAL _IMMEDIATE) you can now cause a redelivery by calling nack on
the Acknowledgment. See Committing Offsets for more information.

Listener performance can now be monitored using Micrometer Timer s. See Monitoring Listener
Performance for more information.

The containers now publish additional consumer lifecyle events relating to startup. See Events for
more information.

2.1.6. ErrorHandler Changes

The SeekToCurrentErrorHandler now treats certain exceptions as fatal and disables retry for those,
invoking the recoverer on first failure.

The SeekToCurrentErrorHandler and SeekToCurrentBatchErrorHandler can now be configured to apply
a BackOff (thread sleep) between delivery attempts.

See Seek To Current Container Error Handlers for more information.

The DeadlLetterPublishingRecoverer, when used in conjunction with an ErrorHandlingDeserializer2,
now sets the payload of the message sent to the dead-letter topic, to the original value that could not
be deserialized. Previously, it was null and wuser code needed to extract the
DeserializationException from the message headers. See Publishing Dead-letter Records for more
information.

2.1.7. TopicBuilder

A new class TopicBuilder is provided for more convenient creation of NewTopic @Bean s for automatic
topic provisioning. See Configuring Topics for more information.

2.1.8. Kafka Streams Changes

You can now perform additional configuration of the StreamsBuilderFactoryBean created by

@EnableKafkaStreams. See Streams Configuration for more information.

A RecoveringDeserializationExceptionHandler is now provided which allows records with
deserialization errors to be recovered. It can be wused in conjunction with a
DeadLetterPublishingRecoverer to send these records to a dead-letter topic. See Recovery from
Deserialization Exceptions for more information.

The HeaderEnricher transformer has been provided, using SpEL to generate the header values. See
Header Enricher for more information.

The MessagingTransformer has been provided. This allows a Kafka streams topology to interact with
a spring-messaging component, such as a Spring Integration flow. See MessagingTransformer and
Calling a Spring Integration flow from a KStream for more information.

2.1.9. JSON Component Changes

Now all the JSON-aware components are configured by default with a Jackson ObjectMapper
produced by the JacksonUtils.enhancedObjectMapper(). The JsonDeserializer now provides
TypeReference-based constructors for better handling of target generic container types. Also a
JacksonMimeTypeModule has been introduced for serialization of org.springframework.util.MimeType
to plain string. See its JavaDocs and Serialization, Deserialization, and Message Conversion for
more information.

A ByteArrayJsonMessageConverter has been provided as well as a new super class for all Json
converters, JsonMessageConverter. Also, a StringOrBytesSerializer is now available; it can serialize
byte[], Bytes and String values in ProducerRecord s. See Spring Messaging Message Conversion for
more information.

The JsonSerializer, JsonDeserializer and JsonSerde now have fluent APIs to make programmatic
configuration simpler. See the javadocs, Serialization, Deserialization, and Message Conversion,
and Streams JSON Serialization and Deserialization for more informaion.

2.1.10. ReplyingKafkaTemplate

When a reply times out, the future is completed exceptionally with a KafkaReplyTimeoutException
instead of a KafkaException.

Also, an overloaded sendAndReceive method is now provided that allows specifying the reply
timeout on a per message basis.

2.1.11. AggregatingReplyingKafkaTemplate

Extends the ReplyingKafkaTemplate by aggregating replies from multiple receivers. See Aggregating
Multiple Replies for more information.

2.1.12. Transaction Changes

You can now override the producer factory’s transactionIdPrefix on the KafkaTemplate and
KafkaTransactionManager. See transactionIdPrefix for more information.

2.1.13. New Delegating Serializer/Deserializer

The framework now provides a delegating Serializer and Deserializer, utilizing a header to enable
producing and consuming records with multiple key/value types. See Delegating Serializer and
Deserializer for more information.

2.1.14. New Retrying Deserializer

The framework now provides a delegating RetryingDeserializer, to retry serialization when
transient errors such as network problems might occur. See Retrying Deserializer for more
information.

2.1.15. New function for recovering from deserializing errors

ErrorHandlingDeserializer2 now uses a POJO (FailedDeserializationInfo) for passing all the
contextual information around a deserialization error. This enables the code to access to extra
information that was missing in the old BiFunction<byte[], Headers, >
failedDeserializationFunction.

2.1.16. EmbeddedKafkaBroker Changes

You can now override the default broker list property name in the annotation. See @EmbeddedKafka
Annotation or EmbeddedKafkaBroker Bean for more information.

2.1.17. ReplyingKafkaTemplate Changes

You can now customize the header names for correlation, reply topic and reply partition. See Using
ReplyingKafkaTemplate for more information.

2.1.18. Header Mapper Changes

The DefaultKafkaHeaderMapper no longer encodes simple String-valued headers as JSON. See [header-
mapping] for more information.

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka
and the underlying concepts and some code snippets that can help you get up and running as
quickly as possible.

3.1. Quick Tour for the Impatient

This is the five-minute tour to get started with Spring Kafka.

Prerequisites: You must install and run Apache Kafka. Then you must grab the spring-kafka JAR
and all of its dependencies. The easiest way to do that is to declare a dependency in your build tool.
The following example shows how to do so with Maven:

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.3.1.RELEASE</version>
</dependency>

The following example shows how to do so with Gradle:

compile 'org.springframework.kafka:spring-kafka:2.3.1.RELEASE'

3.1.1. Compatibility
This quick tour works with the following versions:

» Apache Kafka Clients 2.2.0
* Spring Framework 5.2.x
* Minimum Java version: 8
3.1.2. A Very, Very Quick Example

As the following example shows, you can use plain Java to send and receive a message:

@Test
public void testAutoCommit() throws Exception {
logger.info("Start auto");
ContainerProperties containerProps = new ContainerProperties("topicl”,
"topic2");
final CountDownLatch latch = new CountDownlLatch(4);
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

@0verride

public void onMessage(ConsumerRecord<Integer, String> message) {
logger.info("received: " + message);
latch.countDown();

3

KafkaMessagelistenerContainer<Integer, String> container =
createContainer(containerProps);

container.setBeanName("testAuto");

container.start();

Thread.sleep(1000); // wait a bit for the container to start

KafkaTemplate<Integer, String> template = createTemplate();

template.setDefaultTopic(topic1);

template.sendDefault(@, "foo");

template.sendDefault(2, "bar");

template.sendDefault(@, "baz");

template.sendDefault(2, "qux");

template.flush();

assertTrue(latch.await(60, TimeUnit.SECONDS));

container.stop();

logger.info("Stop auto");

private KafkaMessagelListenerContainer<Integer, String> createContainer(
ContainerProperties containerProps) {
Map<String, Object> props = consumerProps();
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer,
String>(props);
KafkaMessagelistenerContainer<Integer, String> container =
new KafkaMessagelListenerContainer<>(cf,
containerProps);
return container;

}

private KafkaTemplate<Integer, String> createTemplate() {
Map<String, Object> senderProps = senderProps();
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
return template;

}

private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, group);
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class);
return props;

}

private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.RETRIES_CONFIG, 0@);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
return props;

}

3.1.3. With Java Configuration

You can do the same work as appears in the previous example with Spring configuration in Java.
The following example shows how to do so:

10

@Autowired
private Listener listener;

@Autowired
private KafkaTemplate<Integer, String> template;

@Test

public void testSimple() throws Exception {
template.send("annotated1", @, "foo");
template.flush();
assertTrue(this.listener.latch1.await(10, TimeUnit.SECONDS));

}

@Configuration
@EnableKafka
public class Config {

@Bean
ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;

}

@Bean
public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
embeddedKafka.getBrokersAsString());

return props;

}

@Bean
public Listener listener() {
return new Listener();

}

@Bean
public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

11

@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
embeddedKafka.getBrokersAsString());

return props;

}

@Bean
public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

public class Listener {
private final CountDownlLatch latch1 = new CountDownLatch(1);
@Kafkalistener(id = "foo", topics = "annotated1")

public void listen1(String foo) {
this.latch1.countDown();

}

3.1.4. Even Quicker, with Spring Boot

Spring Boot can make things even simpler. The following Spring Boot application sends three
messages to a topic, receives them, and stops:

12

@SpringBootApplication
public class Application implements CommandLineRunner {

public static Logger logger = LoggerFactory.getlLogger(Application.class);

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();
}

@Autowired
private KafkaTemplate<String, String> template;

private final CountDownlLatch latch = new CountDownlLatch(3);

@0verride

public void run(String... args) throws Exception {
this.template.send("myTopic", "fool");
this.template.send("myTopic", "foo2");
this.template.send("myTopic", "foo3");
latch.await (60, TimeUnit.SECONDS);
logger.info("All received");

}

@Kafkalistener(topics = "myTopic")

public void listen(ConsumerRecord<?, ?> cr) throws Exception {
logger.info(cr.toString());
latch.countDown();

Boot takes care of most of the configuration. When we use a local broker, the only properties we
need are the following:

Example 1. application.properties

spring.kafka.consumer.group-id=foo
spring.kafka.consumer.auto-offset-reset=earliest

We need the first property because we are using group management to assign topic partitions to
consumers, so we need a group. The second property ensures the new consumer group gets the
messages we sent, because the container might start after the sends have completed.

13

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring for
Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

4.1. Using Spring for Apache Kafka

This section offers detailed explanations of the various concerns that impact using Spring for
Apache Kafka. For a quick but less detailed introduction, see Quick Tour for the Impatient.

4.1.1. Configuring Topics

If you define a KafkaAdmin bean in your application context, it can automatically add topics to the
broker. To do so, you can add a NewTopic @Bean for each topic to the application context. Version 2.3
introduced a new class TopicBuilder to make creation of such beans more convenient. The
following example shows how to do so:

14

©Bean

public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, ...);
return new KafkaAdmin(configs);

}

@Bean
public NewTopic topicl() {
return TopicBuilder.name("thing1")

.partitions(10)
.replicas(3)
.compact()
.build();

+

@Bean

public NewTopic topic2() {
return TopicBuilder.name("thing2")

.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

}

@Bean

public NewTopic topic3() {
return TopicBuilder.name("thing3")
.assignReplicas(@, Arrays.aslList(@, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")

.build();
¥
o When using Spring Boot, a KafkaAdmin bean is automatically registered so you only
need the NewTopic @Bean s.

By default, if the broker is not available, a message is logged, but the context continues to load. You
can programmatically invoke the admin’s initialize() method to try again later. If you wish this
condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable property to true. The
context then fails to initialize.

If the broker supports it (1.0.0 or higher), the admin increases the number of

o partitions if it is found that an existing topic has fewer partitions than the
NewTopic.numPartitions.

15

For more advanced features, you can use the AdminClient directly. The following example shows
how to do so:

@Autowired
private KafkaAdmin admin;

AdminClient client = AdminClient.create(admin.getConfig());

client.close();

4.1.2. Sending Messages

This section covers how to send messages.

Using KafkaTemplate

This section covers how to use KafkaTemplate to send messages.

Overview

The KafkaTemplate wraps a producer and provides convenience methods to send data to Kafka
topics. The following listing shows the relevant methods from KafkaTemplate:

16

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data);

ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp,
K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V
data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long
timestamp, K key, V data);

ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);
Map<MetricName, ? extends Metric> metrics();

List<PartitionInfo> partitionsFor(String topic);

<T> T execute(ProducerCallback<K, V, T> callback);

// Flush the producer.

void flush();

interface ProducerCallback<K, V, T> {

T doInKafka(Producer<K, V> producer);

See the Javadoc for more detail.
The sendDefault API requires that a default topic has been provided to the template.

The API takes in a timestamp as a parameter and stores this timestamp in the record. How the user-
provided timestamp is stored depends on the timestamp type configured on the Kafka topic. If the
topic is configured to use CREATE_TIME, the user specified timestamp is recorded (or generated if not
specified). If the topic is configured to use LOG_APPEND_TIME, the user-specified timestamp is ignored
and the broker adds in the local broker time.

17

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/core/KafkaTemplate.html

The metrics and partitionsFor methods delegate to the same methods on the underlying Producer.
The execute method provides direct access to the underlying Producer.

To use the template, you can configure a producer factory and provide it in the template’s
constructor. The following example shows how to do so:

@Bean
public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
// See https://kafka.apache.org/documentation/#producerconfigs for more
properties
return props;

}

@Bean
public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

You can also configure the template by using standard <bean/> definitions.
Then, to use the template, you can invoke one of its methods.

When you use the methods with a Message<?> parameter, the topic, partition, and key information is
provided in a message header that includes the following items:

» KafkaHeaders.TOPIC

e KafkaHeaders.PARTITION ID

* KafkaHeaders.MESSAGE_KEY

» KafkaHeaders.TIMESTAMP

The message payload is the data.

Optionally, you can configure the KafkaTemplate with a ProducerlListener to get an asynchronous
callback with the results of the send (success or failure) instead of waiting for the Future to
complete. The following listing shows the definition of the ProducerListener interface:

18

https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html

public interface ProducerListener<K, V> {

void onSuccess(String topic, Integer partition, K key, V value, RecordMetadata
recordMetadata);

void onError(String topic, Integer partition, K key, V value, Exception
exception);

boolean isInterestedInSuccess();

By default, the template is configured with a LoggingProducerListener, which logs errors and does
nothing when the send is successful.

onSuccess is called only if isInterestedInSuccess returns true.

For convenience, the abstract ProducerListenerAdapter is provided in case you want to implement
only one of the methods. It returns false for isInterestedInSuccess.

Notice that the send methods return a ListenableFuture<SendResult>. You can register a callback
with the listener to receive the result of the send asynchronously. The following example shows
how to do so:

ListenableFuture<SendResult<Integer, String>> future = template.send("something");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

@0verride
public void onSuccess(SendResult<Integer, String> result) {

}

@0verride
public void onFailure(Throwable ex) {

}
1

SendResult has two properties, a ProducerRecord and RecordMetadata. See the Kafka API
documentation for information about those objects.

If you wish to block the sending thread to await the result, you can invoke the future’s get()
method. You may wish to invoke flush() before waiting or, for convenience, the template has a
constructor with an autoFlush parameter that causes the template to flush() on each send. Note,

19

however, that flushing likely significantly reduces performance.

Examples

This section shows examples of sending messages to Kafka:

Example 2. Non Blocking (Async)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

ListenableFuture<SendResult<Integer, String>> future = template.send(record);
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>()

@0verride
public void onSuccess(SendResult<Integer, String> result) {
handleSuccess(data);

}
@override
public void onFailure(Throwable ex) {

handleFailure(data, record, ex);

}
b

Blocking (Sync)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

try {
template.send(record).get(10, TimeUnit.SECONDS);
handleSuccess(data);

}

catch (ExecutionException e) {
handleFailure(data, record, e.getCause());

}
catch (TimeoutException | InterruptedException e) {
handleFailure(data, record, e);

}

Using DefaultKafkaProducerFactory

As seen in Using KafkaTemplate, a ProducerFactory is used to create the producer.

20

When not using Transactions, by default, the DefaultKafkaProducerFactory creates a singleton
producer used by all clients, as recommended in the KafkaProducer javadocs. However, if you call
flush() on the template, this can cause delays for other threads using the same producer. Starting
with version 2.3, the DefaultKafkaProducerFactory has a new property producerPerThread. When set
to true, the factory will create (and cache) a separate producer for each thread, to avoid this issue.

When producerPerThread is true, user code must call closeThreadBoundProducer() on

o the factory when the producer is no longer needed. This will physically close the
producer and remove it from the ThreadlLocal. Calling reset() or destroy() will not
clean up these producers.

When creating a DefaultKafkaProducerFactory, key and/or value Serializer classes can be picked up
from configuration by calling the constructor that only takes in a Map of properties (see example in
Using KafkaTemplate), or Serializer instances may be passed to the DefaultKafkaProducerFactory
constructor (in which case all Producer s share the same instances). Alternatively you can provide
Supplier<Serializer> s (starting with version 2.3) that will be used to obtain separate Serializer
instances for each Producer:

@Bean
public ProducerFactory<Integer, CustomValue> producerFactory() {

return new DefaultKafkaProducerFactory<>(producerConfigs(), null, () -> new
CustomValueSerializer());

}

@Bean
public KafkaTemplate<Integer, CustomValue> kafkaTemplate() {
return new KafkaTemplate<Integer, CustomValue>(producerFactory());

}

Using ReplyingKafkaTemplate

Version 2.1.3 introduced a subclass of KafkaTemplate to provide request/reply semantics. The class is
named ReplyingKafkaTemplate and has one method (in addition to those in the superclass). The
following listing shows the method signatures:

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record,
Duration replyTimeout);

The result is a ListenableFuture that is asynchronously populated with the result (or an exception,
for a timeout). The result also has a sendFuture property, which is the result of calling
KafkaTemplate.send(). You can use this future to determine the result of the send operation.

21

If the first method is used, or the replyTimeout argument is null, the template’s defaultReplyTimeout
property is used (5 seconds by default).

The following Spring Boot application shows an example of how to use the feature:

22

@SpringBootApplication
public class KRequestingApplication {

public static void main(String[] args) {

SpringApplication.run(KRequestingApplication.class, args).close();
}

@Bean
public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String>
template) {
return args -> {
ProducerRecord<String, String> record = new
ProducerRecord<>("kRequests", "foo");
RequestReplyFuture<String, String, String> replyFuture =
template.sendAndReceive(record);
SendResult<String, String> sendResult =
replyFuture.getSendFuture().get(10, TimeUnit.SECONDS);
System.out.println("Sent ok: " + sendResult.getRecordMetadata());
ConsumerRecord<String, String> consumerRecord = replyFuture.get(10,
TimeUnit.SECONDS);
System.out.println("Return value:

+ consumerRecord.value());
};
}

@Bean

public ReplyingKafkaTemplate<String, String, String> replyingTemplate(
ProducerFactory<String, String> pf,
ConcurrentMessagelListenerContainer<Long, String> repliesContainer) {

return new ReplyingKafkaTemplate<>(pf, repliesContainer);

}

@Bean
public ConcurrentMessagelistenerContainer<String, String> repliesContainer(
ConcurrentKafkalistenerContainerFactory<String, String>
containerFactory) {

ConcurrentMessagelistenerContainer<String, String> repliesContainer =
containerFactory.createContainer("replies");

repliesContainer.getContainerProperties().setGroupId("repliesGroup”);

repliesContainer.setAutoStartup(false);

return repliesContainer;

}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)

23

.build();
}

@Bean
public NewTopic kReplies() {
return TopicBuilder.name("kReplies")
.partitions(10)
.replicas(2)
.build();

Note that we can use Boot’s auto-configured container factory to create the reply container.

The template sets a header (named KafkaHeaders.CORRELATION_ID by default), which must be echoed
back by the server side.

In this case, the following eKafkalListener application responds:

24

@SpringBootApplication
public class KReplyingApplication {

public static void main(String[] args) {
SpringApplication.run(KReplyingApplication.class, args);
}

@Kafkalistener(id="server", topics = "kRequests")

@SendTo // use default replyTo expression

public String listen(String in) {
System.out.println("Server received:
return in.toUpperCase();

+1n);
}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)
.build();
}

@Bean // not required if Jackson is on the classpath
public MessagingMessageConverter simpleMapperConverter() {
MessagingMessageConverter messagingMessageConverter = new
MessagingMessageConverter();
messagingMessageConverter.setHeaderMapper(new SimpleKafkaHeaderMapper());
return messagingMessageConverter;

The @Kafkalistener infrastructure echoes the correlation ID and determines the reply topic.

See Forwarding Listener Results using @SendTo for more information about sending replies. The
template uses the default header KafKaHeaders.REPLY_TOPIC to indicate the topic to which the reply
goes.

Starting with version 2.2, the template tries to detect the reply topic or partition from the
configured reply container. If the container is configured to listen to a single topic or a single
TopicPartitionOffset, it is used to set the reply headers. If the container is configured otherwise, the
user must set up the reply headers. In this case, an INFO log message is written during initialization.
The following example uses KafkaHeaders.REPLY_TOPIC:

25

record.headers().add(new RecordHeader (KafkaHeaders.REPLY_TOPIC,
"kReplies".getBytes()));

When you configure with a single reply TopicPartitionOffset, you can use the same reply topic for
multiple templates, as long as each instance listens on a different partition. When configuring with
a single reply topic, each instance must use a different group.id. In this case, all instances receive
each reply, but only the instance that sent the request finds the correlation ID. This may be useful
for auto-scaling, but with the overhead of additional network traffic and the small cost of
discarding each unwanted reply. When you use this setting, we recommend that you set the
template’s sharedReplyTopic to true, which reduces the logging level of unexpected replies to DEBUG
instead of the default ERROR.

If you have multiple client instances and you do not configure them as discussed
in the preceding paragraph, each instance needs a dedicated reply topic. An
alternative is to set the KafkaHeaders.REPLY_PARTITION and use a dedicated partition

o for each instance. The Header contains a four-byte int (big-endian). The server must
use this header to route the reply to the correct topic (eKafkalListener does this). In
this case, though, the reply container must not use Kafka’s group management
feature and must be configured to listen on a fixed partition (by using a
TopicPartitionOffset in its ContainerProperties constructor).

The DefaultKafkaHeaderMapper requires Jackson to be on the classpath (for the

o @Kafkalistener). If it is not available, the message converter has no header mapper,
so you must configure a MessagingMessageConverter with a SimpleKafkaHeaderMapper,
as shown earlier.

By default, 3 headers are used:

» KafkaHeaders.CORRELATION_ID - used to correlate the reply to a request
» KafkaHeaders.REPLY_TOPIC - used to tell the server where to reply

» KafkaHeaders.REPLY_PARTITION - (optional) used to tell the server which partition to reply to
These header names are used by the @Kafkalistener infrastructure to route the reply.

Starting with version 2.3, you can customize the header names - the template has 3 properties
correlationHeaderName, replyTopicHeaderName, and replyPartitionHeaderName. This is useful if your
server is not a Spring application (or does not use the @Kafkalistener).

Aggregating Multiple Replies

The template in Using ReplyingKafkaTemplate is strictly for a single request/reply scenario. For cases
where multiple receivers of a single message return a reply, you can use the
AggregatingReplyingKafkaTemplate. This is an implementation of the client-side of the Scatter-Gather
Enterprise Integration Pattern.

26

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

Like the ReplyingKafkaTemplate, the AggregatingReplyingKafkaTemplate constructor takes a producer
factory and a listener container to receive the replies; it has a third parameter
Predicate<Collection<ConsumerRecord<K, R>>> releaseStrategy which is consulted each time a reply
is received; when the predicate returns true, the collection of ConsumerRecord s is used to complete
the Future returned by the sendAndReceive method.

There is an additional property returnPartialOnTimeout (default false). When this is set to true,
instead of completing the future with a KafkaReplyTimeoutException, a partial result completes the
future normally (as long as at least one reply record has been received).

AggregatingReplyingKafkaTemplate<Integer, String, String> template =
new AggregatingReplyingKafkaTemplate<>(producerFactory, container,
coll -> coll.size() == releaseSize);

RequestReplyFuture<Integer, String, Collection<ConsumerRecord<Integer, String>>>
future =

template.sendAndReceive(record);
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, Collection<ConsumerRecord<Integer, String>>>
consumerRecord =

future.get(30, TimeUnit.SECONDS);

Notice that the return type is a ConsumerRecord with a value that is a collection of ConsumerRecord s.
The "outer" ConsumerRecord is not a "real" record, it is synthesized by the template, as a holder for
the actual reply records received for the request. When a normal release occurs (release strategy
returns true), the topic is set to aggregatedResults; if returnPartialOnTimeout is true, and timeout
occurs (and at least one reply record has been received), the topic is set to
partialResultsAfterTimeout. The template provides constant static variables for these "topic" names:

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a normal release by the release strategy.

*/

public static final String AGGREGATED_RESULTS_TOPIC = "aggregatedResults";

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a timeout.

*/

public static final String PARTIAL_RESULTS_AFTER_TIMEOUT_TOPIC =
"partialResultsAfterTimeout";

The real ConsumerRecord s in the Collection contain the actual topic(s) from which the replies are

27

received.

The listener container for the replies MUST be configured with AckMode.MANUAL or
AckMode .MANUAL_IMMEDIATE; the consumer property enable.auto.commit must be
false (the default since version 2.3). To avoid any possibility of losing messages,

o the template only commits offsets when there are zero requests outstanding, i.e.
when the last outstanding request is released by the release strategy. After a
rebalance, it is possible for duplicate reply deliveries; these will be ignored for any
in-flight requests; you may see error log messages when duplicate replies are
received for already released replies.

4.1.3. Receiving Messages

You can receive messages by configuring a MessagelistenerContainer and providing a message
listener or by using the @Kafkalistener annotation.

Message Listeners

When you use a message listener container, you must provide a listener to receive data. There are
currently eight supported interfaces for message listeners. The following listing shows these
interfaces:

28

public interface Messagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data);
}
public interface AcknowledgingMessagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment);

}

public interface ConsumerAwareMessagelistener<K, V> extends Messagelistener<K, V>

{®
void onMessage(ConsumerRecord<K, V> data, Consumer<?, ?> consumer);

}

public interface AcknowledgingConsumerAwareMessagelistener<K, V> extends
MessagelListener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

}
public interface BatchMessagelistener<K, V> { ®
void onMessage(List<ConsumerRecord<K, V>> data);
}
public interface BatchAcknowledgingMessagelistener<K, V> { ®

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment
acknowledgment);

}

public interface BatchConsumerAwareMessagelistener<K, V> extends
BatchMessagelListener<K, V> { @

void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, 7> consumer);

}

public interface BatchAcknowledgingConsumerAwareMessagelistener<K, V> extends
BatchMessagelistener<K, V> {

29

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods.

® Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods. Access to the Consumer object is provided.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods. Access to
the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods.

@ Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch. Access to the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods. Access to the
Consumer object is provided.

o The Consumer object is not thread-safe. You must only invoke its methods on the
thread that calls the listener.

Message Listener Containers

Two MessagelistenerContainer implementations are provided:

» KafkaMessagelListenerContainer

* ConcurrentMessagelistenerContainer

The KafkaMessagelListenerContainer receives all message from all topics or partitions on a single
thread. The ConcurrentMessagelListenerContainer delegates to one or more
KafkaMessagelListenerContainer instances to provide multi-threaded consumption.

30

Starting with version 2.2.7, you can add a RecordInterceptor to the listener container; it will be
invoked before calling the listener allowing inspection or modification of the record. If the
interceptor returns null, the listener is not called. The interceptor is not invoked when the listener
is a batch listener.

Starting with version 2.3, the CompositeRecordInterceptor can be used to invoke multiple
interceptors.

Using KafkaMessagelistenerContainer

The following constructors are available:

public KafkaMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

public KafkaMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties,
TopicPartitionOffset... topicPartitions)

Each takes a ConsumerFactory and information about topics and partitions, as well as other
configuration in a ContainerProperties object. The second constructor is used by the
ConcurrentMessagelListenerContainer (described later) to distribute TopicPartition0ffset across the
consumer instances. ContainerProperties has the following constructors:

public ContainerProperties(TopicPartitionOffset... topicPartitions)
public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

The first constructor takes an array of TopicPartitionOffset arguments to explicitly instruct the
container about which partitions to use (using the consumer assign() method) and with an optional
initial offset. A positive value is an absolute offset by default. A negative value is relative to the
current last offset within a partition by default. A constructor for TopicPartitionOffset that takes an
additional boolean argument is provided. If this is true, the initial offsets (positive or negative) are
relative to the current position for this consumer. The offsets are applied when the container is
started. The second takes an array of topics, and Kafka allocates the partitions based on the
group.id property — distributing partitions across the group. The third uses a regex Pattern to select
the topics.

To assign a Messagelistener to a container, you can use the ContainerProps.setMessagelistener
method when creating the Container. The following example shows how to do so:

31

ContainerProperties containerProps = new ContainerProperties("topic1", "topic2");
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

});
DefaultKafkaConsumerFactory<Integer, String> cf =

new DefaultKafkaConsumerFactory<>(consumerProps());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Note that when creating a DefaultKafkaConsumerFactory, using the constructor that just takes in the
properties as above means that key and value Deserializer classes are picked up from
configuration. Alternatively, Deserializer instances may be passed to the
DefaultKafkaConsumerFactory constructor for key and/or value, in which case all Consumers share
the same instances. Another option is to provide Supplier<Deserializer> s (starting with version 2.3)
that will be used to obtain separate Deserializer instances for each Consumer:

DefaultKafkaConsumerFactory<Integer, CustomValue> cf =

new DefaultKafkaConsumerFactory<>(consumerProps(), null,
() -> new CustomValueDeserializer());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelistenerContainer<>(cf, containerProps);
return container;

Refer to the Javadoc for ContainerProperties for more information about the various properties that
you can set.

Since version 2.1.1, a new property called logContainerConfig is available. When true and INFO
logging is enabled each listener container writes a log message summarizing its configuration
properties.

By default, logging of topic offset commits is performed at the DEBUG logging level. Starting with
version 2.1.2, a property in ContainerProperties called commitLoglLevel lets you specify the log level
for these messages. For example, to change the log level to INFO, you can use
containerProperties.setCommitLoglevel(LogIfLevelEnabled.Level.INFO);.

Starting with version 2.2, a new container property called missingTopicsFatal has been added
(default: true). This prevents the container from starting if any of the configured topics are not
present on the broker. It does not apply if the container is configured to listen to a topic pattern
(regex). Previously, the container threads looped within the consumer.poll() method waiting for the
topic to appear while logging many messages. Aside from the logs, there was no indication that
there was a problem. To restore the previous behavior, you can set the property to false.

32

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/ContainerProperties.html

Using ConcurrentMessagelistenerContainer

The single constructor is similar to the first KafkalistenerContainer constructor. The following
listing shows the constructor’s signature:

public ConcurrentMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a concurrency property. For example, container.setConcurrency(3) creates three
KafkaMessagelListenerContainer instances.

For the first constructor, Kafka distributes the partitions across the consumers using its group
management capabilities.

When listening to multiple topics, the default partition distribution may not be
what you expect. For example, if you have three topics with five partitions each
and you want to use concurrency=15, you see only five active consumers, each
assigned one partition from each topic, with the other 10 consumers being idle.
This is because the default Kafka PartitionAssignor is the RangeAssignor (see its
Javadoc). For this scenario, you may want to consider using the RoundRobinAssignor
instead, which distributes the partitions across all of the consumers. Then, each
consumer is assigned one topic or partition. To change the PartitionAssignor, you
can set the partition.assignment.strategy consumer property

o (ConsumerConfigs.PARTITION_ASSIGNMENT_STRATEGY_CONFIG) in the properties provided
to the DefaultKafkaConsumerFactory.

When using Spring Boot, you can assign set the strategy as follows:

spring.kafka.consumer.properties.partition.assignment.strategy=\
org.apache.kafka.clients.consumer.RoundRobinAssignor

For the second constructor, the ConcurrentMessagelListenerContainer distributes the TopicPartition
instances across the delegate KafkaMessagelListenerContainer instances.

If, say, six TopicPartition instances are provided and the concurrency is 3; each container gets two
partitions. For five TopicPartition instances, two containers get two partitions, and the third gets
one. If the concurrency is greater than the number of TopicPartitions, the concurrency is adjusted
down such that each container gets one partition.

The client.id property (if set) is appended with -n where n is the consumer
o instance that corresponds to the concurrency. This is required to provide unique

names for MBeans when JMX is enabled.

Starting with version 1.3, the MessagelistenerContainer provides access to the metrics of the

33

underlying KafkaConsumer. In the case of ConcurrentMessagelListenerContainer, the metrics() method
returns the metrics for all the target KafkaMessagelistenerContainer instances. The metrics are
grouped into the Map<MetricName, ? extends Metric> by the client-id provided for the underlying
KafkaConsumer.

Starting with version 2.3, the ContainerProperties provides an idleBetweenPolls option to let the
main loop in the listener container to sleep between KafkaConsumer.poll() calls. An actual sleep
interval is selected as the minimum from the provided option and difference between the
max.poll.interval.ms consumer config and the current records batch processing time.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is
true, Kafka auto-commits the offsets according to its configuration. If it is false, the containers
support several AckMode settings (described in the next list). The default AckMode is BATCH. Starting
with version 2.3, the framework sets enable.auto.commit to false unless explicitly set in the
configuration. Previously, the Kafka default (true) was used if the property was not set.

The consumer pol1() method returns one or more ConsumerRecords. The MessagelListener is called for
each record. The following lists describes the action taken by the container for each AckMode:

* RECORD: Commit the offset when the listener returns after processing the record.
* BATCH: Commit the offset when all the records returned by the pol1() have been processed.

* TIME: Commit the offset when all the records returned by the poll() have been processed, as
long as the ackTime since the last commit has been exceeded.

* COUNT: Commit the offset when all the records returned by the pol1l() have been processed, as
long as ackCount records have been received since the last commit.

o COUNT_TIME: Similar to TIME and COUNT, but the commit is performed if either condition is true.

» MANUAL: The message listener is responsible to acknowledge() the Acknowledgment. After that, the
same semantics as BATCH are applied.

o MANUAL_IMMEDIATE: Commit the offset immediately when the Acknowledgment.acknowledge()
method is called by the listener.

MANUAL, and MANUAL _IMMEDIATE require the listener to be an
AcknowledgingMessagelistener or a BatchAcknowledgingMessagelistener. See Message
Listeners.

Depending on the syncCommits container property, the commitSync() or commitAsync() method on the
consumer is used. syncCommits is true by default; also see setSyncCommitTimeout. See
setCommitCallback to get the results of asynchronous commits; the default callback is the
LoggingCommitCallback which logs errors (and successes at debug level).

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. Starting with version 2.3, it unconditionally
sets it to false unless specifically set in the consumer factory or the container’s consumer property
overrides.

34

The Acknowledgment has the following method:

public interface Acknowledgment {

void acknowledge();

This method gives the listener control over when offsets are committed.

Starting with version 2.3, the Acknowledgment interface has two additional methods nack(long sleep)
and nack(int index, long sleep). The first one is used with a record listener, the second with a
batch listener. Calling the wrong method for your listener type will throw an I11legalStateException.

o nack() can only be called on the consumer thread that invokes your listener.

With a record listener, when nack() is called, any pending offsets are committed, the remaing
records from the last poll are discarded, and seeks are performed on their partitions so that the
failed record and unprocessed records are redelivered on the next poll(). The consumer thread
can be paused before redelivery, by setting the sleep argument. This is similar functionality to
throwing an exception when the container is configured with a SeekToCurrentErrorHandler.

When using a batch listener, you can specify the index within the batch where the failure occurred.
When nack() is called, offsets will be committed for records before the index and seeks are
performed on the partitions for the failed and discarded records so that they will be redelivered on
the next poll(). This is an improvement over the SeekToCurrentBatchErrorHandler, which can only
seek the entire batch for redelivery.

See Seek To Current Container Error Handlers for more information.

When using partition assignment via group management, it is important to ensure
the sleep argument (plus the time spent processing records from the previous poll)
is less than the consumer max.poll.interval.ms property.

Listener Container Auto Startup

The listener containers implement SmartlLifecycle, and autoStartup is true by default. The
containers are started in a late phase (Integer.MAX-VALUE - 100). Other components that implement
SmartLifecycle, to handle data from listeners, should be started in an earlier phase. The - 100
leaves room for later phases to enable components to be auto-started after the containers.

@Kafkalistener Annotation

The @Kafkalistener annotation is used to designate a bean method as a listener for a listener
container. The bean is wrapped in a MessagingMessagelListenerAdapter configured with various
features, such as converters to convert the data, if necessary, to match the method parameters.

35

You can configure most attributes on the annotation with SpEL by using #{0} or property
placeholders (${0}). See the Javadoc for more information.

Record Listeners

The @Kafkalistener annotation provides a mechanism for simple POJO listeners. The following
example shows how to use it:

public class Listener {

@KafkalListener(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId")
public void listen(String data) {

}

This mechanism requires an @EnableKafka annotation on one of your @Configuration classes and a
listener container factory, = which is used to configure the underlying
ConcurrentMessageListenerContainer. By default, a bean with name kafkalistenerContainerFactory is
expected. The following example shows how to use ConcurrentMessagelListenerContainer:

36

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/annotation/KafkaListener.html

@Configuration
@EnableKafka
public class KafkaConfig {

@Bean
KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;

@Bean
public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
embeddedKafka.getBrokersAsString());

return props;

Notice that, to set container properties, you must use the getContainerProperties() method on the
factory. It is used as a template for the actual properties injected into the container.

Starting with version 2.1.1, you can now set the client.id property for consumers created by the
annotation. The clientIdPrefix is suffixed with -n, where n is an integer representing the container
number when using concurrency.

Starting with version 2.2, you can now override the container factory’s concurrency and autoStartup
properties by using properties on the annotation itself. The properties can be simple values,
property placeholders, or SpEL expressions. The following example shows how to do so:

37

@Kafkalistener(id = "myListener", topics = "myTopic",
autoStartup = "${listen.auto.start:true}", concurrency =

"${listen.concurrency:3}")

public void listen(String data) {

}

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their
initial offsets). The following example shows how to do so:

@Kafkalistener(id = "thing2", topicPartitions =
{ @TopicPartition(topic = "topic1", partitions = { "0", "1" }),
@TopicPartition(topic = "topic2", partitions = "@",
partitionOffsets = @PartitionOffset(partition = "1", initialOffset =

"100"))
1))

public void listen(ConsumerRecord<?, ?> record) {

}

You can specify each partition in the partitions or partition0ffsets attribute but not both.

As with most annotation properties, you can use SpEL expressions; for an example of how to
generate a large list of partitions, see Manually Assigning All Partitions.

When using manual AckMode, you can also provide the listener with the Acknowledgment. The
following example also shows how to use a different container factory.

@Kafkalistener(id = "cat", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")
public void listen(String data, Acknowledgment ack) {

ack.acknowledge();

Finally, metadata about the message is available from message headers. You can use the following
header names to retrieve the headers of the message:

e KafkaHeaders.OFFSET
» KafkaHeaders.RECEIVED _MESSAGE_KEY
e KafkaHeaders.RECEIVED _TOPIC

38

» KafkaHeaders.RECEIVED_PARTITION_ID
» KafkaHeaders.RECEIVED _TIMESTAMP
e KafkaHeaders.TIMESTAMP_TYPE

The following example shows how to use the headers:

@Kafkalistener(id = "qux", topicPattern = "myTopicl")

public void listen(@Payload String foo,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) Integer key,
@Header (KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
@Header (KafkaHeaders.RECEIVED_TOPIC) String topic,
@Header (KafkaHeaders.RECEIVED_TIMESTAMP) long ts
) {

Batch listeners

Starting with version 1.1, you can configure @Kafkalistener methods to receive the entire batch of
consumer records received from the consumer poll. To configure the listener container factory to
create batch listeners, you can set the batchListener property. The following example shows how to
do so:

@Bean
public KafkalListenerContainerFactory<?> batchFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true); // <<<<<<<<LLLLLLLLLLLLLLLLK
return factory;

The following example shows how to receive a list of payloads:

@Kafkalistener(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {

}

The topic, partition, offset, and so on are available in headers that parallel the payloads. The
following example shows how to use the headers:

39

@Kafkalistener(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> Tlist,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys,
@Header (KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,
@Header (KafkaHeaders.RECEIVED_TOPIC) List<String> topics,
@Header (KafkaHeaders.OFFSET) List<Long> offsets) {

Alternatively, you can receive a List of Message<?> objects with each offset and other details in each
message, but it must be the only parameter (aside from optional Acknowledgment, when using
manual commits, and/or Consumer<?, 7> parameters) defined on the method. The following example
shows how to do so:

@KafkalListener(id = "listMsg", topics = "myTopic", containerFactory =
"batchFactory")
public void listen14(List<Message<?>> list) {

}

@Kafkalistener(id = "listMsgAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen15(List<Message<?>> list, Acknowledgment ack) {

}

@KafkalListener(id = "listMsgAckConsumer", topics = "myTopic", containerFactory =
"batchFactory")

public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, 7>
consumer) {

}

No conversion is performed on the payloads in this case.

If the BatchMessagingMessageConverter is configured with a RecordMessageConverter, you can also add
a generic type to the Message parameter and the payloads are converted. See Payload Conversion
with Batch Listeners for more information.

You can also receive a list of ConsumerRecord<?, 7> objects, but it must be the only parameter (aside
from optional Acknowledgment, when using manual commits and Consumer<?, 7> parameters) defined
on the method. The following example shows how to do so:

40

@Kafkalistener(id = "listCRs", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list) {

}

@Kafkalistener(id = "listCRsAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment ack)

{

Starting with version 2.2, the listener can receive the complete ConsumerRecords<?, 7> object
returned by the poll() method, letting the listener access additional methods, such as partitions()
(which returns the TopicPartition instances in the list) and records(TopicPartition) (which gets
selective records). Again, this must be the only parameter (aside from optional Acknowledgment,
when using manual commits or Consumer<?, 7> parameters) on the method. The following example
shows how to do so:

@Kafkalistener(id = "pollResults", topics = "myTopic", containerFactory =
"batchFactory")
public void pollResults(ConsumerRecords<?, ?> records) {

}

If the container factory has a RecordFilterStrategy configured, it is ignored for
ConsumerRecords<?, 7> listeners, with a WARN log message emitted. Records can only
be filtered with a batch listener if the <List<?>> form of listener is used.

Annotation Properties

Starting with version 2.0, the id property (if present) is used as the Kafka consumer group.id
property, overriding the configured property in the consumer factory, if present. You can also set
groupId explicitly or set idIsGroup to false to restore the previous behavior of using the consumer
factory group.id.

You can use property placeholders or SpEL expressions within most annotation properties, as the
following example shows:

41

@Kafkalistener(topics = "${some.property}")

@Kafkalistener(topics = "#{someBean.someProperty}",
groupIld = "#{someBean.someProperty}.group")

Starting with version 2.1.2, the SpEL expressions support a special token: __Tistener. It is a pseudo
bean name that represents the current bean instance within which this annotation exists.

Consider the following example:

@Bean
public Listener listener1() {
return new Listener("topic1");

}

@Bean
public Listener listener2() {
return new Listener("topic2");

}

Given the beans in the previous example, we can then use the following:

public class Listener {
private final String topic;
public Listener(String topic) {

this.topic = topic;
}

@KafkalListener(topics = "#{__listener.topic}",
groupld = "#{__listener.topic}.group")
public void listen(...) {

}

public String getTopic() {
return this.topic;

}

42

If, in the unlikely event that you have an actual bean called __listener, you can change the
expression token byusing the beanRef attribute. The following example shows how to do so:

@Kafkalistener(beanRef = "__x", topics = "#{__x.topic}",

groupld = "#{__x.topic}.group")

Starting with version 2.2.4, you can specify Kafka consumer properties directly on the annotation,
these will override any properties with the same name configured in the consumer factory. You
cannot specify the group.id and client.id properties this way; they will be ignored; use the groupId
and clientIdPrefix annotation properties for those.

The properties are specified as individual strings with the normal Java Properties file format:
foo:bar, foo=bar, or foo bar.

@Kafkalistener(topics = "myTopic", groupId="group", properties= {
"max.poll.interval.ms:60000",
ConsumerConfig.MAX_POLL_RECORDS_CONFIG + "=100"

1))

Obtaining the Consumer group.id

When running the same listener code in multiple containers, it may be useful to be able to
determine which container (identified by its group.id consumer property) that a record came from.

You can call KafkaUtils.getConsumerGroupId() on the listener thread to do this. Alternatively, you
can access the group id in a method parameter.

@KafkalListener(id = "bar", topicPattern = "${topicTwo:annotated2}", exposeGroupld
= "${always:true}")
public void listener(@Payload String foo,

@Header (KafkaHeaders.GROUP_ID) String groupId) {

This is available in record listeners and batch listeners that receive a List<?> of
o records. It is not available in a batch listener that receives a ConsumerRecords<?, 7>
argument. Use the KafkaUtils mechanism in that case.
Container Thread Naming
Listener containers currently use two task executors, one to invoke the consumer and another that

is used to invoke the listener when the kafka consumer property enable.auto.commit is false. You

43

can provide custom executors by setting the consumerExecutor and listenerExecutor properties of
the container’s ContainerProperties. When using pooled executors, be sure that enough threads are
available to handle the concurrency across all the containers in which they are used. When using
the ConcurrentMessagelistenerContainer, a thread from each is used for each consumer (
concurrency).

If you do not provide a consumer executor, a SimpleAsyncTaskExecutor is used. This executor creates
threads with names similar to <beanName>-C-1 (consumer thread). For the
ConcurrentMessagelListenerContainer, the <beanName> part of the thread name becomes <beanName>-m,
where m represents the consumer instance. n increments each time the container is started. So, with
a bean name of container, threads in this container will be named container-0-C-1, container-1-C-1
etc., after the container is started the first time; container-0-C-2, container-1-C-2 etc., after a stop
and subsequent start.

@EKafkalistener as a Meta Annotation

Starting with version 2.2, you can now use @Kafkalistener as a meta annotation. The following
example shows how to do so:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Kafkalistener

public @interface MyThreeConsumersListener {

@AliasFor(annotation = Kafkalistener.class, attribute = "id")
String id();
@AliasFor(annotation = Kafkalistener.class, attribute = "topics")

String[] topics();

@AliasFor(annotation = Kafkalistener.class, attribute
String concurrency() default "3";

"concurrency")

You must alias at least one of topics, topicPattern, or topicPartitions (and, usually, id or groupld
unless you have specified a group. id in the consumer factory configuration). The following example
shows how to do so:

@MyThreeConsumersListener(id = "my.group", topics = "my.topic")
public void listen1(String in) {

}

44

@Kafkalistener on a Class

When you use @KafkalListener at the class-level, you must specify @KafkaHandler at the method level.
When messages are delivered, the converted message payload type is used to determine which
method to call. The following example shows how to do so:

@KafkalListener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String foo) {

}

@KafkaHandler
public void listen(Integer bar) {

}

@KafkaHandler (isDefault = true‘)
public void listenDefault(Object object) {

}

Starting with version 2.1.3, you can designate a @KafkaHandler method as the default method that is
invoked if there is no match on other methods. At most, one method can be so designated. When
using @KafkaHandler methods, the payload must have already been converted to the domain object
(so the match can be performed). Use a custom deserializer, the JsonDeserializer, or the
JsonMessageConverter with its TypePrecedence set to TYPE_ID. See Serialization, Deserialization, and
Message Conversion for more information.

@Kafkalistener Lifecycle Management

The listener containers created for @Kafkalistener annotations are not beans in the application
context. Instead, they are registered with an infrastructure bean of type
KafkalListenerEndpointRegistry. This bean is automatically declared by the framework and manages
the containers' lifecycles; it will auto-start any containers that have autoStartup set to true. All
containers created by all container factories must be in the same phase. See Listener Container Auto
Startup for more information. You can manage the lifecycle programmatically by using the registry.
Starting or stopping the registry will start or stop all the registered containers. Alternatively, you
can get a reference to an individual container by using its id attribute. You can set autoStartup on
the annotation, which overrides the default setting configured into the container factory. You can
get a reference to the bean from the application context, such as auto-wiring, to manage its
registered containers. The following examples show how to do so:

45

@KafkalListener(id = "myContainer", topics = "myTopic", autoStartup = "false")
public void listen(...) { ... }

@Autowired
private KafkalistenerEndpointRegistry registry;

this.registry.getListenerContainer("myContainer").start();

The registry only maintains the life cycle of containers it manages; containers declared as beans are
not managed by the registry and can be obtained from the application context. A collection of
managed containers can be obtained by calling the registry’s getListenerContainers() method.
Version 2.2.5 added a convenience method getAllListenerContainers(), which returns a collection
of all containers, including those managed by the registry and those declared as beans. The
collection returned will include any prototype beans that have been initialized, but it will not
initialize any lazy bean declarations.

@Kafkalistener @Payload Validation

Starting with version 2.2, it is now easier to add a Validator to validate @Kafkalistener @Payload
arguments. Previously, you had to configure a custom DefaultMessageHandlerMethodFactory and add
it to the registrar. Now, you can add the validator to the registrar itself. The following code shows
how to do so:

@Configuration
@EnableKafka
public class Config implements KafkalListenerConfigurer {

@0verride
public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)
{
registrar.setValidator(new MyValidator());
}
}
o When you use Spring Boot with the validation starter, a LocalValidatorFactoryBean
is auto-configured, as the following example shows:

46

@Configuration
@EnableKafka
public class Config implements KafkalListenerConfigurer {

@Autowired
private LocalValidatorFactoryBean validator;

@0verride
public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)
{
registrar.setValidator(this.validator);
}
¥

The following examples show how to validate:

47

public static class Validated(Class {

@Max(10)
private int bar;

public int getBar() {
return this.bar;

}

public void setBar(int bar) {
this.bar = bar;

}

@Kafkalistener(id="validated", topics = "annotated35", errorHandler =
"validationErrorHandler",

containerFactory = "kafkalsonListenerContainerFactory")
public void validatedlListener(@Payload @Valid Validated(Class val) {

}

@Bean
public KafkalistenerErrorHandler validationErrorHandler() {
return (m, e) -> {

};

Rebalancing Listeners

ContainerProperties has a property called consumerRebalancelistener, which takes an
implementation of the Kafka client’s ConsumerRebalancelistener interface. If this property is not
provided, the container configures a logging listener that logs rebalance events at the INFO level.
The framework also adds a sub-interface ConsumerAwareRebalancelistener. The following listing
shows the ConsumerAwareRebalancelistener interface definition:

48

public interface ConsumerAwareRebalancelistener extends ConsumerRebalancelistener

{

void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions);

void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions);

void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition>
partitions);

}

Notice that there are two callbacks when partitions are revoked. The first is called immediately. The
second is called after any pending offsets are committed. This is useful if you wish to maintain
offsets in some external repository, as the following example shows:

containerProperties.setConsumerRebalancelistener(new
ConsumerAwareRebalancelListener() {

@0verride
public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
// acknowledge any pending Acknowledgments (if using manual acks)

}

@0verride
public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {

/] ...
store(consumer.position(partition));
/] ...
}
@0verride
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
/] ...
consumer.seek(partition, offsetTracker.getOffset() + 1);
// ...
}

1

49

Forwarding Listener Results using @SendTo

Starting with version 2.0, if you also annotate a @KafkalListener with a @SendTo annotation and the
method invocation returns a result, the result is forwarded to the topic specified by the @SendTo.

The @SendTo value can have several forms:

@SendTo("someTopic") routes to the literal topic

@SendTo("#{someExpression}") routes to the topic determined by evaluating the expression once
during application context initialization.

@SendTo("!{someExpression}") routes to the topic determined by evaluating the expression at
runtime. The #root object for the evaluation has three properties:

o request: The inbound ConsumerRecord (or ConsumerRecords object for a batch listener))
o source: The org.springframework.messaging.Message<?> converted from the request.

o result: The method return result.

@SendTo (no properties): This is treated as !{source.headers['kafka_replyTopic']} (since version
2.1.3).

Starting with versions 2.1.11 and 2.2.1, property placeholders are resolved within @SendTo values.

The result of the expression evaluation must be a String that represents the topic name. The
following examples show the various ways to use @SendTo:

50

@Kafkalistener(topics = "annotated21")
@SendTo("!{request.value()}") // runtime SpEL
public String replyinglListener(String in) {

}

@Kafkalistener(topics = "${some.property:annotated22}")
@SendTo("#{myBean.replyTopic}") // config time SpEL
public Collection<String> replyingBatchListener(List<String> in) {

}

@Kafkalistener(topics = "annotated23", errorHandler = "replyErrorHandler")
@SendTo("annotated23reply") // static reply topic definition
public String replyinglListenerWithErrorHandler(String in) {

}

@Kafkalistener(topics = "annotated25")
@SendTo("annotated25reply1")
public class MultilListenerSendTo {

@KafkaHandler
public String foo(String in) {

}

@KafkaHandler

@SendTo("!{'annotated25reply2'}")

public String bar(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

Starting with version 2.2, you can add a ReplyHeadersConfigurer to the listener container factory.
This is consulted to determine which headers you want to set in the reply message. The following
example shows how to add a ReplyHeadersConfigurer:

31

@Bean

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer((k, v) -> k.equals("cat"));
return factory;

You can also add more headers if you wish. The following example shows how to do so:

@Bean

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalListenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer(new ReplyHeadersConfigurer() {

@0verride
public boolean shouldCopy(String headerName, Object headerValue) {
return false;

}

@0verride
public Map<String, Object> additionalHeaders() {
return Collections.singletonMap("qux", "fiz");

}
1

return factory;

When you use @SendTo, you must configure the ConcurrentKafkalListenerContainerFactory with a
KafkaTemplate in its replyTemplate property to perform the send.

Unless you use request/reply semantics only the simple send(topic, value) method

o is used, so you may wish to create a subclass to generate the partition or key. The
following example shows how to do so:

32

@Bean
public KafkaTemplate<String, String> myReplyingTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory()) {

@0verride
public ListenableFuture<SendResult<String, String>> send(String topic,
String data) {
return super.send(topic, partitionForData(data), keyForData(data),

data);

}
¥

}
If the listener method returns Message<?> or Collection<Message<?>>, the listener
method is responsible for setting up the message headers for the reply. For
example, when handling a request from a ReplyingKafkaTemplate, you might do the
following:

@Kafkalistener(id = "messageReturned", topics = "someTopic")
public Message<?> listen(String in,
o @Header (KafkaHeaders.REPLY_TOPIC) byte[] replyTo,
@Header (KafkaHeaders.CORRELATION_ID) byte[] correlation) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.setHeader ("someOtherHeader", "someValue")
.build();

When using request/reply semantics, the target partition can be requested by the sender.

33

You can annotate a @Kafkalistener method with @SendTo even if no result is
returned. This is to allow the configuration of an errorHandler that can forward
information about a failed message delivery to some topic. The following example
shows how to do so:

@Kafkalistener(id = "voidListenerWithReplyingErrorHandler", topics
= "someTopic",
errorHandler = "voidSendToErrorHandler")
@SendTo("failures")
public void voidlListenerWithReplyingErrorHandler(String in) {
o throw new RuntimeException("fail");
}

@Bean
public KafkalistenerErrorHandler voidSendToErrorHandler() {
return (m, e) -> {
return ... // some information about the failure and input
data

};

See Handling Exceptions for more information.

Filtering Messages

In certain scenarios, such as rebalancing, a message that has already been processed may be
redelivered. The framework cannot know whether such a message has been processed or not. That
is an application-level function. This is known as the Idempotent Receiver pattern and Spring
Integration provides an implementation of it.

The Spring for Apache Kafka project also provides some assistance by means of the
FilteringMessagelistenerAdapter class, which can wrap your Messagelistener. This class takes an
implementation of RecordFilterStrategy in which you implement the filter method to signal that a
message is a duplicate and should be discarded. This has an additional property called
ackDiscarded, which indicates whether the adapter should acknowledge the discarded record. It is
false by default.

When you use @Kafkalistener, set the RecordFilterStrategy (and optionally ackDiscarded) on the
container factory so that the listener is wrapped in the appropriate filtering adapter.

In addition, a FilteringBatchMessagelistenerAdapter is provided, for when you use a batch message
listener.

The FilteringBatchMessagelistenerAdapter is ignored if your @Kafkalistener

o receives a ConsumerRecords<?, 7> instead of List<ConsumerRecord<?, 7>>, because
ConsumerRecords is immutable.

54

https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://docs.spring.io/spring-integration/reference/html/#idempotent-receiver

Retrying Deliveries

If your listener throws an exception, the default behavior is to invoke the ErrorHandler, if
configured, or logged otherwise.

o Two error handler interfaces (ErrorHandler and BatchErrorHandler) are provided.
You must configure the appropriate type to match the message listener.

To retry deliveries, a convenient listener adapter RetryingMessagelListenerAdapter is provided.

You can configure it with a RetryTemplate and Recovery(Callback<Void> - see the spring-retry project
for information about these components. If a recovery callback is not provided, the exception is
thrown to the container after retries are exhausted. In that case, the ErrorHandler is invoked, if
configured, or logged otherwise.

When you use @Kafkalistener, you can set the RetryTemplate (and optionally recoveryCallback) on
the container factory. When you do so, the listener is wrapped in the appropriate retrying adapter.

The contents of the RetryContext passed into the RecoveryCallback depend on the type of listener.
The context always has a record attribute, which is the record for which the failure occurred. If
your listener is acknowledging or consumer aware, additional acknowledgment or consumer attributes
are available. For convenience, the RetryingMessagelistenerAdapter provides static constants for
these keys. See its Javadoc for more information.

A retry adapter is not provided for any of the batch message listeners, because the framework has
no knowledge of where in a batch the failure occurred. If you need retry capabilities when you use
a batch listener, we recommend that you use a RetryTemplate within the listener itself.

Stateful Retry

Now that the SeekToCurrentErrorHandler can be configured with a BackOff and has
the ability to retry only certain exceptions (since version 2.3), the use of stateful

o retry, via the listener adapter retry configuration, is no longer necessary. You can
provide the same functionality with appropriate configuration of the error
handler and remove all retry configuration from the listener adatper. See Seek To
Current Container Error Handlers for more information.

You should understand that the retry discussed in the preceding section suspends the consumer
thread (if a BackOffPolicy is used). There are no calls to Consumer.poll() during the retries. Kafka
has two properties to determine consumer health. The session.timeout.ms is used to determine if
the consumer is active. Since kafka-clients version 0.10.1.0, heartbeats are sent on a background
thread, so a slow consumer no longer affects that. max.poll.interval.ms (default: five minutes) is
used to determine if a consumer appears to be hung (taking too long to process records from the
last poll). If the time between poll() calls exceeds this, the broker revokes the assigned partitions
and performs a rebalance. For lengthy retry sequences, with back off, this can easily happen.

Since version 2.1.3, you can avoid this problem by using stateful retry in conjunction with a
SeekToCurrentErrorHandler. In this case, each delivery attempt throws the exception back to the
container, the error handler re-seeks the unprocessed offsets, and the same message is redelivered

55

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/adapter/AbstractRetryingMessageListenerAdapter.html

by the next poll(). This avoids the problem of exceeding the max.poll.interval.ms property (as long
as an individual delay between attempts does not exceed it). So, when you use an
ExponentialBackOffPolicy, you must ensure that the maxInterval 1is less than the
max.poll.interval.ms property. To enable stateful retryy, you can use the
RetryingMessagelistenerAdapter constructor that takes a stateful boolean argument (set it to true).
When you configure the listener container factory (for @Kafkalistener), set the factory’s
statefulRetry property to true.

Version 2.2 added recovery to the SeekToCurrentErrorHandler, such as sending a
failed record to a dead-letter topic. When using stateful retry, you must perform
the recovery in the retry RecoveryCallback and NOT in the error handler.
Otherwise, if the recovery is done in the error handler, the retry template’s state

o will never be cleared. Also, you must ensure that the maxFailures in the
SeekToCurrentErrorHandler must be at least as many as configured in the retry
policy, again to ensure that the retries are exhausted and the state cleared. Here is
an example for retry configuration when used with a SeekToCurrentErrorHandler
where factory is the ConcurrentKafkalistenerContainerFactory.

@Autowired
DeadLetterPublishingRecoverer recoverer;

factory.setRetryTemplate(new RetryTemplate()); // 3 retries by default
factory.setStatefulRetry(true);
factory.setRecoveryCallback(context -> {
recoverer.accept((ConsumerRecord<?, ?>) context.getAttribute("record"),
(Exception) context.getlastThrowable());
return null;

;i

@Bean
public SeekToCurrentErrorHandler eh() {

return new SeekToCurrentErrorHandler(new FixedBackOff(@L, 3L)); // at least 3
}

However, see the note at the beginning of this section; you can avoid using the RetryTemplate
altogether.

o If the recoverer fails (throws an exception), the record will be included in the
seeks and recovery will be attempted again during the next delivery.

Listener Consumer Lifecycle Events

The following events are published when containers are started and stopped:

36

* ConsumerStartingEvent - published when a consumer thread is first started, before it starts
polling.

» ConsumerStartedEvent - published when a consumer is about to start polling.

 ConsumerFailedToStartEvent - published if no ConsumerStartingEvent is published within the
consumerStartTimeout container property. This event might signal that the configured task
executor has insufficient threads to support the containers it is used in and their concurrency.
An error message is also logged when this condition occurs.

» IdleContainerEvent - discussed in Detecting Idle and Non-Responsive Consumers.

* NonResponsiveConsumerEvent - discussed in Detecting Idle and Non-Responsive Consumers.
* ConsumerPausedEvent - discussed in Pausing and Resuming Listener Containers.

* ConsumerResumedEvent - discussed in Pausing and Resuming Listener Containers.

* ConsumerStoppingEvent - published when a consumer begins to stop.

* ConsumerStartedEvent - published when a consumer is stopped.

Detecting Idle and Non-Responsive Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle. You
might want to take some action if no messages arrive for some period of time.

You can configure the listener container to publish a ListenerContainerIdleEvent when some time
passes with no message delivery. While the container is idle, an event is published every
idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container. The following example shows
how to do so:

@Bean
public KafkaMessagelListenerContainer(ConsumerFactory<String, String>
consumerFactory) {

ContainerProperties containerProps = new ContainerProperties("topicl1",
"topic2");

containerProps.setIdleEventInterval (60000L);
KafkaMessagelListenerContainer<String, String> container = new

KafKaMessagelistenerContainer<>(...);
return container;

The following example shows how to set the idleEventInterval for a @Kafkalistener:

57

@Bean
public ConcurrentKafkalistenerContainerFactory kafkalistenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<String, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.getContainerProperties().setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

In addition, if the broker is unreachable, the consumer pol1() method does not exit, so no messages
are received and idle events cannot be generated. To solve this issue, the container publishes a
NonResponsiveConsumerEvent if a poll does not return within 3x the pollInterval property. By default,
this check is performed once every 30 seconds in each container. You can modify this behavior by
setting the monitorInterval and noPollThreshold properties in the ContainerProperties when
configuring the listener container. Receiving such an event lets you stop the containers, thus
waking the consumer so that it can terminate.

Event Consumption

You can capture these events by implementing ApplicationlListener —either a general listener or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

The next example combines @Kafkalistener and @EventListener into a single class. You should
understand that the application listener gets events for all containers, so you may need to check the
listener ID if you want to take specific action based on which container is idle. You can also use the
@EventListener condition for this purpose.

See Events for information about event properties.

The event is normally published on the consumer thread, so it is safe to interact with the Consumer
object.

The following example uses both @KafkalListener and @EventListener:

38

public class Listener {

@KafkalListener(id = "qux", topics = "annotated")
public void listen4(@Payload String foo, Acknowledgment ack) {

@EventListener(condition = "event.listenerId.startsWith('qux-")")
public void eventHandler(ListenerContainerIdleEvent event) {

Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID. Since containers

o created for the @Kafkalistener support concurrency, the actual containers are
named id-n where the n is a unique value for each instance to support the
concurrency. That is why we use startsWith in the condition.

If you wish to use the idle event to stop the lister container, you should not call
container.stop() on the thread that calls the listener. Doing so causes delays and
o unnecessary log messages. Instead, you should hand off the event to a different
thread that can then stop the container. Also, you should not stop() the container
instance if it is a child container. You should stop the concurrent container instead.

Current Positions when Idle

Note that you can obtain the current positions when idle is detected by implementing
ConsumerSeekAware in your listener. See onIdleContainer() in “Seeking to a Specific Offset.

Topic/Partition Initial Offset

There are several ways to set the initial offset for a partition.

When manually assigning partitions, you can set the initial offset (if desired) in the configured
TopicPartitionOffset arguments (see Message Listener Containers). You can also seek to a specific
offset at any time.

When you use group management where the broker assigns partitions:

» For a new group.id, the initial offset is determined by the auto.offset.reset consumer property
(earliest or latest).

* For an existing group ID, the initial offset is the current offset for that group ID. You can,
however, seek to a specific offset during initialization (or at any time thereafter).

39

Seeking to a Specific Offset

In order to seek, your listener must implement ConsumerSeekAware, which has the following
methods:

void registerSeekCallback(ConsumerSeekCallback callback);

void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback);

void onPartitionsRevoked(Collection<TopicPartition> partitions)

void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback
callback);

The registerSeekCallback is called when the container is started and whenever partitions are
assigned. You should use this callback when seeking at some arbitrary time after initialization. You
should save a reference to the callback. If you use the same listener in multiple containers (or in a
ConcurrentMessagelistenerContainer), you should store the callback in a ThreadLocal or some other
structure keyed by the listener Thread.

When using group management, onPartitionsAssigned is called when partitions are assigned. You
can use this method, for example, for setting initial offsets for the partitions, by calling the callback.
You can also use this method to associate this thread’s callback with the assigned partitions (see the
example below). You must use the callback argument, not the one passed into registerSeekCallback.
This method is never called if you explicitly assign partitions yourself. Use the TopicPartition0ffset
in that case.

onPartitionsRevoked is called when the container is stopped or Kafka revokes assignments. You
should discard this thread’s callback and remove any associations to the revoked partitions.

The callback has the following methods:

void seek(String topic, int partition, long offset);

void seekToBeginning(String topic, int partition);

void seekToEnd(String topic, int partition);

void seekRelative(String topic, int partition, long offset, boolean toCurrent);
void seekToTimestamp(String topic, int partition, long timestamp);

void seekToTimestamp(Collection<TopicPartition> topicPartitions, long timestamp);

60

seekRelative was added in version 2.3, to perform relative seeks.

offset negative and toCurrent false - seek relative to the end of the partition.

offset positive and toCurrent false - seek relative to the beginning of the partition.

offset negative and toCurrent true - seek relative to the current position (rewind).

offset positive and toCurrent true - seek relative to the current position (fast forward).

The seekToTimestamp methods were also added in version 2.3.

When seeking to the same timestamp for multiple partitions in the onIdleContainer
or onPartitionsAssigned methods, the second method is preferred because it is

o more efficient to find the offsets for the timestamps in a single call to the
consumer’s offsetsForTimes method. When called from other locations, the
container will gather all timestamp seek requests and make one call to
offsetsForTimes.

You can also perform seek operations from onIdleContainer() when an idle container is detected.
See Detecting Idle and Non-Responsive Consumers for how to enable idle container detection.

To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback for the
appropriate thread.

Here is a trivial Spring Boot application that demonstrates how to use the callback; it sends 10
records to the topic; hitting <Enter> in the console causes all partitions to seek to the beginning.

61

62

@SpringBootApplication
public class SeekExampleApplication {

public static void main(String[] args) {
SpringApplication.run(SeekExampleApplication.class, args);
}

@Bean
public ApplicationRunner runner(Listener listener, KafkaTemplate<String,
String> template) {
return args -> {
IntStream.range(@, 10).forEach(i -> template.send(
new ProducerRecord<>("seekExample", i % 3, "foo", "bar")));
while (true) {
System.in.read();
listener.seekToStart();

b
}

@Bean
public NewTopic topic() {

return new NewTopic("seekExample", 3, (short) 1);

}
}

@Component
class Listener implements ConsumerSeekAware {

private static final Logger logger = LoggerFactory.getlLogger(Listener.class);

private final ThreadlLocal<ConsumerSeekCallback> callbackForThread = new
ThreadlLocal<>();
private final Map<TopicPartition, ConsumerSeekCallback> callbacks = new

ConcurrentHashMap<>();

@0verride
public void registerSeekCallback(ConsumerSeekCallback callback) {
this.callbackForThread.set(callback);

}

@lverride
public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
assignments.keySet().forEach(tp -> this.callbacks.put(tp,
this.callbackForThread.get()));
}

@0verride

public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
partitions.forEach(tp -> this.callbacks.remove(tp));
this.callbackForThread.remove();

}

@0verride
public void onIdleContainer(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {

}

@Kafkalistener(id = "seekExample", topics = "seekExample", concurrency = "3")

public void listen(ConsumerRecord<String, String> in) {
logger.info(in.toString());

}

public void seekToStart() {
this.callbacks.forEach((tp, callback) ->
callback.seekToBeginning(tp.topic(), tp.partition()));

}

To make things simpler, version 2.3 added the AbstractConsumerSeekAware class, which keeps track of
which callback is to be used for a topic/partition. The following example shows how to seek to the
last record processed, in each partition, each time the container goes idle. It also has methods that
allow arbitrary external calls to rewind partitions by one record.

63

public class SeekTolLastOnIdlelListener extends AbstractConsumerSeekAware {

@KafkalListener(id = "seekOnIdle", topics = "seekOnIdle")
public void listen(String in) {

}

@0verride
public void onIdleContainer(Map<org.apache.kafka.common.TopicPartition, Long>
assignments,
ConsumerSeekCallback callback) {

assignments.keySet().forEach(tp -> callback.seekRelative(tp.topic(),
tp.partition(), -1, true));
}

/**
* Rewind all partitions one record.
*/
public void rewindAl1OneRecord() {
getSeekCallbacks()
.forEach((tp, callback) ->
callback.seekRelative(tp.topic(), tp.partition(), -1, true));

}

/**
* Rewind one partition one record.
*/
public void rewindOnePartitionOneRecord(String topic, int partition) {
getSeekCallbackFor(new org.apache.kafka.common.TopicPartition(topic,
partition))
.seekRelative(topic, partition, -1, true);

}

Container factory

As discussed in @KafkalListener Annotation, a ConcurrentKafkalistenerContainerFactory is used to
create containers for annotated methods.

Starting with version 2.2, you <can wuse the same factory to create any
ConcurrentMessagelistenerContainer. This might be useful if you want to create several containers
with similar properties or you wish to use some externally configured factory, such as the one
provided by Spring Boot auto-configuration. Once the container is created, you can further modify
its properties, many of which are set by using container.getContainerProperties(). The following
example configures a ConcurrentMessagelListenerContainer:

64

@Bean
public ConcurrentMessagelistenerContainer<String, String>(
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> container =
factory.createContainer("topic1", "topic2");

container.setMessagelListener(m -> { ... });

return container;

}
Containers created this way are not added to the endpoint registry. They should be
o created as @Bean definitions so that they are registered with the application
context.
Thread Safety

When using a concurrent message listener container, a single listener instance is invoked on all
consumer threads. Listeners, therefore, need to be thread-safe, and it is preferable to use stateless
listeners. If it is not possible to make your listener thread-safe or adding synchronization would
significantly reduce the benefit of adding concurrency, you can use one of a few techniques:

* Use n containers with concurrency=1 with a prototype scoped MessagelListener bean so that each
container gets its own instance (this is not possible when using @Kafkalistener).

* Keep the state in ThreadLocal<?> instances.

* Have the singleton listener delegate to a bean that is declared in SimpleThreadScope (or a similar
scope).

To facilitate cleaning up thread state (for the second and third items in the preceding list), starting
with version 2.2, the listener container publishes a ConsumerStoppedEvent when each thread exits.
You can consume these events with an ApplicationListener or @EventlListener method to remove
Threadlocal<?> instances or remove() thread-scoped beans from the scope. Note that
SimpleThreadScope does not destroy beans that have a destruction interface (such as DisposableBean),
so you should destroy() the instance yourself.

By default, the application context’s event multicaster invokes event listeners on
o the calling thread. If you change the multicaster to use an async executor, thread
cleanup is not effective.

Monitoring Listener Performance

Starting with version 2.3, the listener container will automatically create and update Micrometer
Timer s for the listener, if Micrometer is detected on the class path, and a MeterRegistry is present in
the application context. The timers can be disabled by setting the ContainerProperty
micrometerEnabled to false.

65

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.listener and have the following tags:

e name : (container bean name)
e result: success or failure

» exception: none or ListenerExecutionFailedException

You can add additional tags using the ContainerProperties micrometerTags property.

o With the concurrent container, timers are created for each thread and the name tag
is suffixed with -n where n is @ to concurrency-1.

4.1.4. Transactions

This section describes how Spring for Apache Kafka supports transactions.

Overview

The 0.11.0.0 client library added support for transactions. Spring for Apache Kafka adds support in
the following ways:

» KafkaTransactionManager: Used with normal Spring transaction support (@Transactional,
TransactionTemplate etc).

* Transactional KafkaMessagelListenerContainer

 Local transactions with KafkaTemplate

Transactions are enabled by providing the DefaultKafkaProducerFactory with a transactionIdPrefix.
In that case, instead of managing a single shared Producer, the factory maintains a cache of
transactional producers. When the user calls close() on a producer, it is returned to the cache for
reuse instead of actually being closed. The transactional.id property of each producer is
transactionIdPrefix + n, where n starts with @ and is incremented for each new producer, unless the
transaction is started by a listener container with a record-based listener. In that case, the
transactional.id is <transactionIdPrefix>.<group.id>.<topic>.<partition>. This is to properly
support fencing zombies, as described here. This new behavior was added in versions 1.3.7, 2.0.6,
2.1.10, and 2.2.0. If you wish to revert to the previous behavior, you can set the
producerPerConsumerPartition property on the DefaultKafkaProducerFactory to false.

o While transactions are supported with batch listeners, zombie fencing cannot be
supported because a batch may contain records from multiple topics or partitions.

Also see transactionIdPrefix.

Using KafkaTransactionManager

The KafkaTransactionManager is an implementation of Spring Framework’s
PlatformTransactionManager. It is provided with a reference to the producer factory in its
constructor. If you provide a custom producer factory, it must support transactions. See

66

https://www.confluent.io/blog/transactions-apache-kafka/

ProducerFactory.transactionCapable().

You can use the KafkaTransactionManager with normal Spring transaction support (@Transactional,
TransactionTemplate, and others). If a transaction is active, any KafkaTemplate operations performed
within the scope of the transaction use the transaction’s Producer. The manager commits or rolls
back the transaction, depending on success or failure. You must configure the KafkaTemplate to use
the same ProducerFactory as the transaction manager.

Transactional Listener Container and Exactly Once Processing

You can provide a listener container with a KafkaAwareTransactionManager instance. When so
configured, the container starts a transaction before invoking the listener. Any KafkaTemplate
operations performed by the listener participate in the transaction. If the listener successfully
processes the record (or multiple records, when using a BatchMessagelistener), the container sends
the offsets to the transaction by using producer.sendOffsetsToTransaction()), before the transaction
manager commits the transaction. If the listener throws an exception, the transaction is rolled back
and the consumer is repositioned so that the rolled-back record(s) can be retrieved on the next poll.
See After-rollback Processor for more information and for handling records that repeatedly fail.

Transaction Synchronization

If you need to synchronize a Kafka transaction with some other transaction, configure the listener
container with the appropriate transaction manager (one that supports synchronization, such as
the DataSourceTransactionManager). Any operations performed on a transactional KafkaTemplate from
the listener participate in a single transaction. The Kafka transaction is committed (or rolled back)
immediately after the controlling transaction. Before exiting the listener, you should invoke one of
the template’s sendOffsetsToTransaction methods (unless you use a
ChainedKafkaTransactionManager). For convenience, the listener container binds its consumer group
ID to the thread, so, generally, you can use the first method. The following listing shows the two
method signatures:

void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets);

void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,
String consumerGroupId);

The following example shows how to use the first signature of the sendOffsetsToTransaction
method:

67

@Bean
KafkaMessagelistenerContainer container(ConsumerFactory<String, String> cf,
final KafkaTemplate template) {
ContainerProperties props = new ContainerProperties("foo");
props.setGroupId("group");
props.setTransactionManager(new SomeOtherTransactionManager());

props.setMessagelListener((MessageListener<String, String>) m -> {
template.send("foo", "bar");
template.send("baz", "qux");
template.sendOffsetsToTransaction(
Collections.singletonMap(new TopicPartition(m.topic(), m.partition()),
new OffsetAndMetadata(m.offset() + 1)));

};
return new KafkaMessagelListenerContainer<>(cf, props);
}
o The offset to be committed is one greater than the offset of the records processed
by the listener.
You should call this only when you use transaction synchronization. When a
o listener container 1is configured to wuse a KafkaTransactionManager or
ChainedKafkaTransactionManager, it takes care of sending the offsets to the
transaction.

See Example of Transaction Synchronization for an example application that synchronizes JDBC
and Kafka transactions.

Using ChainedKafkaTransactionManager

The ChainedKafkaTransactionManager was introduced in version 2.1.3. This is a subclass of
ChainedTransactionManager that can have exactly one KafkaTransactionManager. Since it is a
KafkaAwareTransactionManager, the container can send the offsets to the transaction in the same way
as when the container is configured with a simple KafkaTransactionManager. This provides another
mechanism for synchronizing transactions without having to send the offsets to the transaction in
the listener code. You should chain your transaction managers in the desired order and provide the
ChainedTransactionManager in the ContainerProperties.

See Example of Transaction Synchronization for an example application that synchronizes JDBC
and Kafka transactions.

KafkaTemplate Local Transactions

You can use the KafkaTemplate to execute a series of operations within a local transaction. The
following example shows how to do so:

68

boolean result = template.executeInTransaction(t -> {
t.sendDefault("thing1", "thing2");
t.sendDefault("cat", "hat");
return true;

1

The argument in the callback is the template itself (this). If the callback exits normally, the
transaction is committed. If an exception is thrown, the transaction is rolled back.

o If there is a KafkaTransactionManager (or synchronized) transaction in process, it is
not used. Instead, a new "nested" transaction is used.

transactionIdPrefix

As mentioned in the overview, the producer factory is configured with this property to build the
producer transactional.id property. There is rather a dichotomy when specifying this property in
that, when running multiple instances of the application, it must be the same on all instances to
satisfy fencing zombies (also mentioned in the overview) when producing records on a listener
container thread. However, when producing records using transactions that are not started by a
listener container, the prefix has to be different on each instance. Version 2.3, makes this simpler to
configure, especially in a Spring Boot application. In previous versions, you had to create two
producer factories and KafkaTemplate s - one for producing records on a listener container thread
and one for stand-alone transactions started by kafkaTemplate.executeInTransaction() or by a
transaction interceptor on a @Transactional method.

Now, you can override the factory’s transactionalldPrefix on the KafkaTemplate and the
KafkaTransactionManager.

When using a transaction manager and template for a listener container, you would normally leave
this to default to the producer factory’s property. This value should be the same for all application
instances. For transactions started by the template (or the transaction manager for @Transaction)
you should set the property on the template and transaction manager respectively. This property
must have a different value on each application instance.

4.1.5. Wiring Spring Beans into Producer/Consumer Interceptors

Apache Kafka provides a mechanism to add interceptors to producers and consumers. These
objects are managed by Kafka, not Spring, and so normal Spring dependency injection won’t work
for wiring in dependent Spring Beans. However, you can manually wire in those dependencies
using the interceptor config() method. The following Spring Boot application shows how to do this
by overriding boot’s default factories to add some dependent bean into the configuration
properties.

69

70

@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

@Bean
public ConsumerFactory<?, 7> kafkaConsumerFactory(KafkaProperties properties,
SomeBean someBean) {
Map<String, Object> consumerProperties =
properties.buildConsumerProperties();
consumerProperties.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyConsumerInterceptor.class.getName());
consumerProperties.put("some.bean", someBean);
return new DefaultKafkaConsumerFactory<>(consumerProperties);

}

@Bean
public ProducerFactory<?, 7> kafkaProducerFactory(KafkaProperties properties,
SomeBean someBean) {
Map<String, Object> producerProperties =
properties.buildProducerProperties();
producerProperties.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyProducerInterceptor.class.getName());
producerProperties.put("some.bean", someBean);
DefaultKafkaProducerFactory<?, 7> factory = new
DefaultKafkaProducerFactory<>(producerProperties);
String transactionIdPrefix = properties.getProducer()
.getTransactionIdPrefix();
if (transactionIdPrefix != null) {
factory.setTransactionIdPrefix(transactionIdPrefix);

}

return factory;
}
@Bean

public SomeBean someBean() {
return new SomeBean();

}

@KafkalListener(id = "kgk897", topics = "kgh897")
public void listen(String in) {
System.out.println("Received " + in);

}

@Bean
public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> template.send("kgh897", "test");

}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kgh897")
.partitions(1)
.replicas(1)
.build();

public class SomeBean {

public void someMethod(String what) {
System.out.println(what + " in my foo bean");

}

71

72

public class MyProducerInterceptor implements ProducerInterceptor<String, String>

{

private SomeBean bean;

@0verride
public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}

@override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String>
record) {
this.bean.someMethod("producer interceptor");
return record;

}

@0verride
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {

}

@0verride
public void close() {
}

public class MyConsumerInterceptor implements ConsumerInterceptor<String, String>

{

private SomeBean bean;

@0verride
public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}

@0verride
public ConsumerRecords<String, String> onConsume(ConsumerRecords<String,
String> records) {
this.bean.someMethod("consumer interceptor");
return records;

@0verride
public void onCommit(Map<TopicPartition, OffsetAndMetadata> offsets) {

}

@0verride
public void close() {
}

Result:

producer interceptor in my foo bean
consumer interceptor in my foo bean
Received test

4.1.6. Pausing and Resuming Listener Containers

Version 2.1.3 added pause() and resume() methods to listener containers. Previously, you could
pause a consumer within a ConsumerAwareMessagelistener and resume it by listening for a
ListenerContainerIdleEvent, which provides access to the Consumer object. While you could pause a
consumer in an idle container byi using an event listener, in some cases, this was not thread-safe,
since there is no guarantee that the event listener is invoked on the consumer thread. To safely
pause and resume consumers, you should use the pause and resume methods on the listener
containers. A pause() takes effect just before the next poll(); a resume() takes effect just after the
current poll() returns. When a container is paused, it continues to poll() the consumer, avoiding a
rebalance if group management is being used, but it does not retrieve any records. See the Kafka

73

documentation for more information.

Starting with version 2.1.5, you can call isPauseRequested() to see if pause() has been called.
However, the consumers might not have actually paused yet. isConsumerPaused() returns true if all
Consumer instances have actually paused.

In addition (also since 2.1.5), ConsumerPausedEvent and ConsumerResumedEvent instances are published
with the container as the source property and the TopicPartition instances involved in the
partitions property.

The following simple Spring Boot application demonstrates by using the container registry to get a
reference to a @Kafkalistener method’s container and pausing or resuming its consumers as well as
receiving the corresponding events:

74

@SpringBootApplication
public class Application implements ApplicationListener<KafkaEvent> {

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();
}

@0verride
public void onApplicationEvent(KafkaEvent event) {
System.out.println(event);

}

@Bean
public ApplicationRunner runner(KafkalListenerEndpointRegistry registry,
KafkaTemplate<String, String> template) {
return args -> {
template.send("pause.resume.topic", "thing1");
Thread.sleep(10_000);
System.out.println("pausing");
registry.getListenerContainer("pause.resume").pause();
Thread.sleep(10_000);
template.send("pause.resume.topic", "thing2");
Thread.sleep(10_000);
System.out.println("resuming");
registry.getlListenerContainer("pause.resume").resume();
Thread.sleep(10_000);
I
}

@KafkalListener(id = "pause.resume", topics = "pause.resume.topic")
public void listen(String in) {

System.out.println(in);
}

@Bean
public NewTopic topic() {
return TopicBuilder.name("pause.resume.topic")
.partitions(2)
.replicas(1)
.build();

The following listing shows the results of the preceding example:

partitions assigned: [pause.resume.topic-1, pause.resume.topic-0]

thing1

pausing

ConsumerPausedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
resuming

ConsumerResumedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
thing2

4.1.7. Events

The following events are published by listener containers and their consumers:

ListenerContainerIdleEvent: Issued when no messages have been received in idleInterval (if
configured).

NonResponsiveConsumerEvent: Issued when the consumer appears to be blocked in the poll
method.

ConsumerPausedEvent: Issued by each consumer when the container is paused.
ConsumerResumedEvent: Issued by each consumer when the container is resumed.
ConsumerStoppingEvent: Issued by each consumer just before stopping.
ConsumerStoppedEvent: Issued after the consumer is closed. See Thread Safety.

ContainerStoppedEvent: Issued when all consumers have terminated.

By default, the application context’s event multicaster invokes event listeners on

o the calling thread. If you change the multicaster to use an async executor, you
must not invoke any Consumer methods when the event contains a reference to the
consumer.

The ContainerIdleEvent has the following properties:

76

source: The listener container instance that published the event.

container: The listener container or the parent listener container, if the source container is a
child.

id: The listener ID (or container bean name).
idleTime: The time the container had been idle when the event was published.

topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

paused: Whether the container is currently paused. See Pausing and Resuming Listener
Containers for more information.

The NonResponsiveConsumerEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e id: The listener ID (or container bean name).
* timeSincelastPoll: The time just before the container last called poll().

* topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener

Containers for more information.

The ConsumerPausedEvent, ConsumerResumedEvent, and ConsumerStopping events have the following
properties:
 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partitions: The TopicPartition instances involved.
The ConsumerStoppedEvent and ContainerStoppedEvent events have the following properties:

 source: The listener container instance that published the event.
» container: The listener container or the parent listener container, if the source container is a
child.

All containers (whether a child or a parent) publish ContainerStoppedEvent. For a parent container,
the source and container properties are identical.

4.1.8. Serialization, Deserialization, and Message Conversion

Overview

Apache Kafka provides a high-level API for serializing and deserializing record values as well as
their keys. It is present with the org.apache.kafka.common.serialization.Serializer<T> and
org.apache.kafka.common.serialization.Deserializer<T> abstractions with some built-in
implementations. Meanwhile, we can specify serializer and deserializer classes by using Producer or
Consumer configuration properties. The following example shows how to do so:

77

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class);

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

For more complex or particular cases, the KafkaConsumer (and, therefore, KafkaProducer) provides
overloaded constructors to accept Serializer and Deserializer instances for keys and values,
respectively.

When you use this API, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory also
provide properties (through constructors or setter methods) to inject custom Serializer and
Deserializer instances into the target Producer or Consumer. Also, you can pass in
Supplier<Serializer> or Supplier<Deserializer> instances through constructors - these Supplier s
are called on creation of each Producer or Consumer.

JSON

Spring for Apache Kafka also provides JsonSerializer and JsonDeserializer implementations that
are based on the Jackson JSON object mapper. The JsonSerializer allows writing any Java object as
a JSON byte[]. The JsonDeserializer requires an additional Class<?> targetType argument to allow
the deserialization of a consumed byte[] to the proper target object. The following example shows
how to create a JsonDeserializer:

JsonDeserializer<Thing> thingDeserializer = new JsonDeserializer<>(Thing.class);

You can customize both JsonSerializer and JsonDeserializer with an ObjectMapper. You can also
extend them to implement some particular configuration logic in the configure(Map<String, 7>
configs, boolean isKey) method.

Starting with version 2.3, all the JSON-aware components are configured by default with a
JacksonUtils.enhancedObjectMapper() instance, which comes with the
MapperFeature.DEFAULT_VIEW_INCLUSION and DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES
features disabled. Also such an instance is supplied with well-known modules for custom data
types, such a Java time and Kotlin support. See JacksonUtils.enhancedObjectMapper() JavaDocs for
more information. This method also registers a
org.springframework.kafka.support.JacksonMimeTypeModule for org.springframework.util.MimeType
objects serialization into the plain string for inter-platform compatibility over the network. A
JacksonMimeTypeModule can be registered as a bean in the application context and it will be auto-
configured into Spring Boot ObjectMapper instance.

Also starting with version 2.3, the JsonDeserializer provides TypeReference-based constructors for

78

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper

better handling of target generic container types.

Starting with version 2.1, you can convey type information in record Headers, allowing the handling
of multiple types. In addition, you can configure the serializer and deserializer by using the
following Kafka properties:

e JsonSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the JsonSerializer (sets the addTypeInfo property).
» JsonSerializer.TYPE_MAPPINGS (default empty): See Mapping Types.

* JsonDeserializer.USE_TYPE_INFO_HEADERS (default true): You can set it to false to ignore headers
set by the serializer.

e JsonDeserializer.REMOVE _TYPE_INFO_HEADERS (default true): You can set it to false to retain
headers set by the serializer.

* JsonDeserializer.KEY_DEFAULT_TYPE: Fallback type for deserialization of keys if no header
information is present.

* JsonDeserializer.VALUE_DEFAULT_TYPE: Fallback type for deserialization of values if no header
information is present.

» JsonDeserializer.TRUSTED_PACKAGES (default java.util, java.lang): Comma-delimited list of
package patterns allowed for deserialization. * means deserialize all.

* JsonDeserializer.TYPE_MAPPINGS (default empty): See Mapping Types.

Starting with version 2.2, the type information headers (if added by the serializer) are removed by
the deserializer. You can revert to the previous behavior by setting the removeTypeHeaders property
to false, either directly on the deserializer or with the configuration property described earlier.

When constructing the serializer/deserializer programmatically for use in the producer/consumer
factory, since version 2.3, you can use the fluent API, which simplifies configuration.

The following example assumes you are using Spring Boot:

79

@Bean
public DefaultKafkaProducerFactory pf(KafkaProperties properties) {
Map<String, Object> props = properties.buildProducerProperties();

DefaultKafkaProducerFactory pf = new DefaultKafkaProducerFactory(props,

new JsonSerializer<>(MyKeyType.class)

.forKeys()
.noTypeInfo(),
new JsonSerializer<>(MyValueType.class)
.noTypeInfo());
}
@Bean

public DefaultKafkaConsumerFactory pf(KafkaProperties properties) {
Map<String, Object> props = properties.buildConsumerProperties();

DefaultKafkaConsumerFactory pf = new DefaultKafkaConsumerFactory(props,

new JsonDeserializer<>(MyKeyType.class)
.forKeys()
.ignoreTypeHeaders(),

new JsonSerializer<>(MyValueType.class)
.ignoreTypeHeaders());

Mapping Types

Starting with version 2.2, when using JSON, you can now provide type mappings by using the
properties in the preceding list. Previously, you had to customize the type mapper within the
serializer and deserializer. Mappings consist of a comma-delimited list of token:className pairs. On
outbound, the payload’s class name is mapped to the corresponding token. On inbound, the token

in the type header is mapped to the corresponding class name.

The following example creates a set of mappings:

senderProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
JsonSerializer.class);
senderProps.put(JsonSerializer.TYPE_MAPPINGS, "cat:com.mycat.(Cat,
hat:com.myhat.hat");

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
JsonDeserializer.class);
consumerProps.put(JsonDeSerializer.TYPE_MAPPINGS, "cat:com.yourcat.(at,
hat:com.yourhat.hat");

o The corresponding objects must be compatible.

If you use Spring Boot, you can provide these properties in the application.properties (or yaml)

80

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html#boot-features-kafka

file. The following example shows how to do so:

spring.kafka.producer.value-
serializer=org.springframework.kafka.support.serializer.JsonSerializer

spring.kafka.producer.properties.spring.json.type.mapping=cat:com.mycat.Cat,hat:co
m.myhat.Hat

You can perform only simple configuration with properties. For more advanced
configuration (such as using a custom ObjectMapper in the serializer and
deserializer), you should use the producer and consumer factory constructors that
accept a pre-built serializer and deserializer. The following Spring Boot example
overrides the default factories:

@Bean

public ConsumerFactory<Foo, Bar>

kafkaConsumerFactory(KafkaProperties properties,
JsonDeserializer customDeserializer) {

return new
DefaultKafkaConsumerFactory<>(properties.buildConsumerProperties(),
o customDeserializer, customDeserializer);

}

@Bean

public ProducerFactory<Foo, Bar>

kafkaProducerFactory(KafkaProperties properties,
JsonSerializer customSerializer) {

return new
DefaultKafkaProducerFactory<>(properties.buildProducerProperties(),
customSerializer, customSerializer);

}
Setters are also provided, as an alternative to using these constructors.
Starting with version 2.2, you can explicitly configure the deserializer to use the supplied target
type and ignore type information in headers by using one of the overloaded constructors that have

a boolean useHeadersIfPresent (which is true by default). The following example shows how to do
so:

81

DefaultKafkaConsumerFactory<Integer, Cat1> cf = new
DefaultKafkaConsumerFactory<>(props,
new IntegerDeserializer(), new JsonDeserializer<>(Cat1.class, false));

Delegating Serializer and Deserializer

Version 2.3 introduced the DelegatingSerializer and DelegatingDeserializer, which allow
producing and consuming records with different key and/or value types. Producers must set a
header DelegatingSerializer.SERIALIZATION_SELECTOR to a selector value that is used to select which
serializer to use; if a match is not found, an I1legalStateException is thrown.

For incoming records, the deserializer uses the same header to select the deserializer to use; if a
match is not found or the header is not present, the raw byte[] is returned.

You can configure the map of selector to Serializer / Deserializer via a constructor, or you can
configure it via Kafka producer/consumer properties with the key
DelegatingSerializer.SERIALIZATION_SELECTOR_CONFIG. For the serializer, the producer property can
be a Map<String, Object> where the key is the selector and the value is a Serializer instance, a
serializer (Class or the class name. The property can also be a String of comma-delimited map
entries, as shown below.

For the deserializer, the consumer property can be a Map<String, Object> where the key is the
selector and the value is a Deserializer instance, a deserializer Class or the class name. The
property can also be a String of comma-delimited map entries, as shown below.

To configure using properties, use the following syntax:

producerProps.put(DelegatingSerializer.SERIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Serializer,
thing2:com.example.MyThing2Serializer")

consumerProps.put(DelegatingDeserializer.SERTIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Deserializer,
thing2:com.example.MyThing2Deserializer")

Producers would then set the DelegatingSerializer.SERIALIZATION_SELECTOR header to thingl or
thing2.

Retrying Deserializer

The RetryingDeserializer uses a delegate Deserializer and RetryTemplate to retry deserialization
when the delegate might have transient errors, such a network issues, during deserialization.

82

ConsumerFactory cf = new DefaultKafkaConsumerFactory(myConsumerConfigs,
new RetryingDeserializer(myUnreliableKeyDeserializer, retryTemplate),
new RetryingDeserializer(myUnreliableValueDeserializer, retryTemplate));

Refer to the spring-retry project for configuration of the RetryTemplate with a retry policy, back off
policy, etc.

Spring Messaging Message Conversion

Although the Serializer and Deserializer API is quite simple and flexible from the low-level Kafka
Consumer and Producer perspective, you might need more flexibility at the Spring Messaging level,
when using either @eKafkalistener or Spring Integration. To let you easily convert to and from
org.springframework.messaging.Message, Spring for Apache Kafka provides a MessageConverter
abstraction with the MessagingMessageConverter implementation and its JsonMessageConverter (and
subclasses) customization. You can inject the MessageConverter into a KafkaTemplate instance directly
and by using AbstractKafkalistenerContainerFactory = bean definition for the
@Kafkalistener.containerFactory() property. The following example shows how to do so:

©Bean
public KafkalistenerContainerFactory<?> kafkaJsonlListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setMessageConverter(new JsonMessageConverter());
return factory;

}

@Kafkalistener(topics = "jsonData",
containerFactory = "kafkalsonListenerContainerFactory")
public void jsonlListener(Cat cat) {

}

When you use a @Kafkalistener, the parameter type is provided to the message converter to assist
with the conversion.

This type inference can be achieved only when the @Kafkalistener annotation is

o declared at the method level. With a class-level @KafkalListener, the payload type is
used to select which @KafkaHandler method to invoke, so it must already have been
converted before the method can be chosen.

83

https://github.com/spring-projects/spring-retry

On the consumer side, you can configure a JsonMessageConverter; it can handle
ConsumerRecord values of type byte[], Bytes and String so should be used in
conjunction with a ByteArrayDeserializer, BytesDeserializer or
StringDeserializer. (byte[] and Bytes are more efficient because they avoid an
unnecessary byte[] to String conversion). You can also configure the specific
subclass of JsonMessageConverter corresponding to the deserializer, if you so wish.

On the producer side, when you wuse Spring Integration or the
KafkaTemplate.send(Message<?> message) method (see Using KafkaTemplate), you
must configure a message converter that is compatible with the configured Kafka

o Serializer.
* StringJsonMessageConverter with StringSerializer
* BytesJsonMessageConverter with BytesSerializer
» ByteArrayJsonMessageConverter with ByteArraySerializer

Again, using byte[] or Bytes is more efficient because they avoid a String to byte[]
conversion.

For convenience, starting with version 2.3, the framework also provides a
StringOrBytesSerializer which can serialize all three value types so it can be used
with any of the message converters.

Using Spring Data Projection Interfaces

Starting with version 2.1.1, you can convert JSON to a Spring Data Projection interface instead of a
concrete type. This allows very selective, and low-coupled bindings to data, including the lookup of
values from multiple places inside the JSON document. For example the following interface can be
defined as message payload type:

interface SomeSample {

@JsonPath({ "$.username", "$.user.name" })
String getUsername();

@KafkalListener(id="projection.listener", topics = "projection")
public void projection(SomeSample in) {
String username = in.getUsername();

84

Accessor methods will be used to lookup the property name as field in the received JSON document
by default. The @JsonPath expression allows customization of the value lookup, and even to define
multiple JSON Path expressions, to lookup values from multiple places until an expression returns
an actual value.

To enable this feature, use a ProjectingMessageConverter configured with an appropriate delegate
converter (used for outbound conversion and converting non-projection interfaces). You must also
add spring-data:spring-data-commons and com.jayway.jsonpath:json-path to the class path.

When used as the parameter to a @Kafkalistener method, the interface type is automatically passed
to the converter as normal.

Using ErrorHandlingDeserializer

When a deserializer fails to deserialize a message, Spring has no way to handle the problem,
because it occurs before the poll() returns. To solve this problem, version 2.2 introduced the
ErrorHandlingDeserializer2. This deserializer delegates to a real deserializer (key or value). If the
delegate fails to deserialize the record content, the ErrorHandlingDeserializer2 returns a null value
and a DeserializationException in a header that contains the cause and the raw bytes. When you
use a record-level MessageListener, if the ConsumerRecord contains a DeserializationException header
for either the key or value, the container’s ErrorHandler is called with the failed ConsumerRecord. The
record is not passed to the listener.

Alternatively, you can configure the ErrorHandlingDeserializer2 to create a custom value by
providing a failedDeserializationFunction, which is a Function<FailedDeserializationInfo, T>.This
function is invoked to create an instance of T, which is passed to the listener in the usual fashion.
An object of type FailedDeserializationInfo, which contains all the contextual information is
provided to the function. You can find the DeserializationException (as a serialized Java object) in
headers. See the Javadoc for the ErrorHandlingDeserializer2 for more information.

o When you use a BatchMessagelListener, you must provide a
failedDeserializationFunction. Otherwise, the batch of records are not type safe.

You can use the DefaultKafkaConsumerFactory constructor that takes key and value Deserializer
objects and wire in appropriate ErrorHandlingDeserializer2 instances that you have configured
with the proper delegates. Alternatively, you can use consumer configuration properties (which are
used by the ErrorHandlingDeserializer) to instantiate the delegates. The property names are
ErrorHandlingDeserializer2.KEY_DESERIALIZER_CLASS and
ErrorHandlingDeserializer2.VALUE_DESERIALIZER_CLASS. The property value can be a class or class
name. The following example shows how to set these properties:

85

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/serializer/ErrorHandlingDeserializer2.html

... // other props
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer2.class);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer2.class);
props.put(ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS,
JsonDeserializer.class);
props.put(JsonDeserializer.KEY_DEFAULT_TYPE, "com.example.MyKey")
props.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS,
JsonDeserializer.class.getName());
props.put(JsonDeserializer.VALUE_DEFAULT_TYPE, "com.example.MyValue")
props.put(JsonDeserializer.TRUSTED_PACKAGES, "com.example")
return new DefaultKafkaConsumerFactory<>(props);

The following example uses a failedDeserializationFunction.

public class BadFoo extends Foo {
private final FailedDeserializationInfo failedDeserializationInfo;

public BadFoo(FailedDeserializationInfo failedDeserializationInfo) {
this.failedDeserializationInfo = failedDeserializationInfo;

}

public FailedDeserializationInfo getFailedDeserializationInfo() {
return this.failedDeserializationInfo;

}
}

public class FailedFooProvider implements Function<FailedDeserializationInfo, Foo>

{

@0verride
public Foo apply(FailedDeserializationInfo info) {
return new BadFoo(info);

}

The preceding example uses the following configuration:

86

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer2.class);
consumerProps.put(ErrorHandlingDeserializer2.VALUE_DESERIALIZER_CLASS,
JsonDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer2.VALUE_FUNCTION,
FailedFooProvider.class);

Payload Conversion with Batch Listeners

You can also use a JsonlMessageConverter within a BatchMessagingMessageConverter to convert batch
messages when you use a batch listener container factory. See Serialization, Deserialization, and
Message Conversion and Message Conversion for more information.

By default, the type for the conversion is inferred from the listener argument. If you configure the
JsonMessageConverter with a Defaultlackson2TypeMapper that has its TypePrecedence set to TYPE_ID
(instead of the default INFERRED), the converter uses the type information in headers (if present)
instead. This allows, for example, listener methods to be declared with interfaces instead of
concrete classes. Also, the type converter supports mapping, so the deserialization can be to a
different type than the source (as long as the data is compatible). This is also useful when you use
class-level @Kafkalistener instances where the payload must have already been converted to
determine which method to invoke. The following example creates beans that use this method:

@Bean

public KafkalListenerContainerFactory<?> kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true);
factory.setMessageConverter(new BatchMessagingMessageConverter(converter()));
return factory;

}

@Bean
public JsonMessageConverter converter() {
return new JsonMessageConverter();

}

Note that, for this to work, the method signature for the conversion target must be a container
object with a single generic parameter type, such as the following:

87

@Kafkalistener(topics = "ble1")
public void listen(List<Foo> foos, @Header(KafkaHeaders.OFFSET) List<Long>
offsets) {

Note that you can still access the batch headers.

If the batch converter has a record converter that supports it, you can also receive a list of messages
where the payloads are converted according to the generic type. The following example shows how
to do so:

@Kafkalistener(topics = "ble3", groupIld = "blc3")
public void listen1(List<Message<Foo>> foolMessages) {

}

ConversionService Customization

Starting with version 2.1.1, the org.springframework.core.convert.ConversionService used by the
default 0.s.messaging.handler.annotation.support.MessageHandlerMethodFactory to resolve
parameters for the invocation of a listener method is supplied with all beans that implement any of
the following interfaces:

» org.springframework.core.convert.converter.Converter

* org.springframework.core.convert.converter.GenericConverter

* org.springframework.format.Formatter

This lets you further customize listener deserialization without changing the default configuration
for ConsumerFactory and KafkalistenerContainerFactory.

Setting a custom MessageHandlerMethodFactory on the
KafkalListenerEndpointRegistrar through a KafkalistenerConfigurer bean disables
this feature.

4.1.9. Message Headers

The 0.11.0.0 client introduced support for headers in messages. As of version 2.0, Spring for Apache
Kafka now supports mapping these headers to and from spring-messaging MessageHeaders.

88

Previous versions mapped ConsumerRecord and ProducerRecord to spring-messaging

o Message<?>, where the value property is mapped to and from the payload and other
properties (topic, partition, and so on) were mapped to headers. This is still the
case, but additional (arbitrary) headers can now be mapped.

Apache Kafka headers have a simple API, shown in the following interface definition:

public interface Header {
String key();

byte[] value();

The KafkaHeaderMapper strategy is provided to map header entries between Kafka Headers and
MessageHeaders. Its interface definition is as follows:

public interface KafkaHeaderMapper {
void fromHeaders(MessageHeaders headers, Headers target);

void toHeaders(Headers source, Map<String, Object> target);

The DefaultKafkaHeaderMapper maps the key to the MessageHeaders header name and, in order to
support rich header types for outbound messages, JSON conversion is performed. A “special”
header (with a key of spring_json_header_types) contains a JSON map of <key>:<type>. This header is
used on the inbound side to provide appropriate conversion of each header value to the original

type.

On the inbound side, all Kafka Header instances are mapped to MessageHeaders. On the outbound
side, by default, all MessageHeaders are mapped, except id, timestamp, and the headers that map to
ConsumerRecord properties.

You can specify which headers are to be mapped for outbound messages, by providing patterns to
the mapper. The following listing shows a number of example mappings:

89

public DefaultKafkaHeaderMapper() { @

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper) { @

}

public DefaultKafkaHeaderMapper(String... patterns) { ®

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper, String... patterns) {
@

@ Uses a default Jackson ObjectMapper and maps most headers, as discussed before the
example.

@ Uses the provided Jackson ObjectMapper and maps most headers, as discussed before the
example.

® Uses a default Jackson ObjectMapper and maps headers according to the provided patterns.

@ Uses the provided Jackson ObjectMapper and maps headers according to the provided
patterns.

Patterns are rather simple and can contain a leading wildcard (), a trailing wildcard, or both
(for example, .cat.*). You can negate patterns with a leading !. The first pattern that matches a
header name (whether positive or negative) wins.

When you provide your own patterns, we recommend including !id and !timestamp, since these
headers are read-only on the inbound side.

By default, the mapper deserializes only classes in java.lang and java.util. You
can trust other (or all) packages by adding trusted packages with the

o addTrustedPackages method. If you receive messages from untrusted sources, you
may wish to add only those packages you trust. To trust all packages, you can use
mapper.addTrustedPackages("*").

o Mapping String header values in a raw form is useful when communicating with
systems that are not aware of the mapper’s JSON format.

Starting with version 2.2.5, you can specify that certain string-valued headers should not be
mapped using JSON, but to/from a raw byte[]. The AbstractkafkaHeaderMapper has new properties;
mapAllStringsOut when set to true, all string-valued headers will be converted to byte[] using the
charset property (default UTF-8). In addition, there is a property rawMappedHeaders, which is a map of

90

header name : boolean; if the map contains a header name, and the header contains a String value,
it will be mapped as a raw byte[] using the charset. This map is also used to map raw incoming
byte[] headers to String using the charset if, and only if, the boolean in the map value is true. If the
boolean is false, or the header name is not in the map with a true value, the incoming header is
simply mapped as the raw unmapped header.

The following test case illustrates this mechanism.

@Test
public void testSpecificStringConvert() {
DefaultKafkaHeaderMapper mapper = new DefaultKafkaHeaderMapper();
Map<String, Boolean> rawMappedHeaders = new HashMap<>();
rawMappedHeaders.put("thisOnesAString", true);
rawMappedHeaders.put("thisOnesBytes", false);
mapper .setRawMappedHeaders(rawMappedHeaders);
Map<String, Object> headersMap = new HashMap<>();
headersMap.put("thisOnesAString", "thing1");
headersMap.put("thisOnesBytes", "thing2");
headersMap.put("alwaysRaw", "thing3".getBytes());
MessageHeaders headers = new MessageHeaders(headersMap);
Headers target = new RecordHeaders();
mapper . fromHeaders(headers, target);
assertThat(target).containsExactlyInAnyOrder(
new RecordHeader ("thisOnesAString", "thing1".getBytes()),
new RecordHeader ("thisOnesBytes", "thing2".getBytes()),
new RecordHeader("alwaysRaw", "thing3".getBytes()));
headersMap.clear();
mapper .toHeaders(target, headersMap);
assertThat(headersMap).contains(
entry("thisOnesAString", "thingl1"),
entry("thisOnesBytes", "thing2".getBytes()),
entry("alwaysRaw", "thing3".getBytes()));

By default, the DefaultKafkaHeaderMapper is wused in the MessagingMessageConverter and
BatchMessagingMessageConverter, as long as Jackson is on the class path.

With the batch converter, the converted headers are available in the
KafkaHeaders.BATCH_CONVERTED_HEADERS as a List<Map<String, Object>> where the map in a position
of the list corresponds to the data position in the payload.

If there is no converter (either because Jackson is not present or it is explicitly set to null), the
headers from the consumer record are provided unconverted in the KafkaHeaders.NATIVE_HEADERS
header. This header is a Headers object (or a List<Headers> in the case of the batch converter), where
the position in the list corresponds to the data position in the payload).

91

Certain types are not suitable for JSON serialization, and a simple toString()
serialization might be preferred for these types. The DefaultKafkaHeaderMapper has
o a method called addToStringClasses() that lets you supply the names of classes that
should be treated this way for outbound mapping. During inbound mapping, they
are mapped as String. By default, only org.springframework.util.MimeType and
org.springframework.http.MediaType are mapped this way.

Starting with version 2.3, handling of String-valued headers is simplified. Such
headers are no longer JSON encoded, by default (i.e. they do not have enclosing "0"

o added). The type is still added to the JSON_TYPES header so the receiving system
can convert back to a String (from byte[]). The mapper can handle (decode)
headers produced by older versions (it checks for a leading "); in this way an
application using 2.3 can consume records from older versions.

To be compatible with earlier versions, set encodeStrings to true, if records

o produced by a version using 2.3 might be consumed by applications using earlier
versions. When all applications are using 2.3 or higher, you can leave the property
at its default value of false.

4.1.10. Null Payloads and Log Compaction of 'Tombstone' Records

When you use Log Compaction, you can send and receive messages with null payloads to identify
the deletion of a key.

You can also receive null values for other reasons, such as a Deserializer that might return null
when it cannot deserialize a value.

To send a null payload by using the KafkaTemplate, you can pass null into the value argument of the
send() methods. One exception to this is the send(Message<?> message) variant. Since spring-
messaging Message<?> cannot have a null payload, you can use a special payload type called
KafkaNull, and the framework sends null. For convenience, the static KafkaNull.INSTANCE is
provided.

When you use a message listener container, the received ConsumerRecord has a null value().

To configure the @Kafkalistener to handle null payloads, you must use the @Payload annotation with
required = false. If it is a tombstone message for a compacted log, you usually also need the key so
that your application can determine which key was “deleted”. The following example shows such a
configuration:

@Kafkalistener(id = "deletablelistener", topics = "myTopic")
public void listen(@Payload(required = false) String value,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) String key) {

// value == null represents key deletion

}

92

https://kafka.apache.org/documentation/#compaction

When you use a class-level @Kafkalistener with multiple @KafkaHandler methods, some additional
configuration is needed. Specifically, you need a @KafkaHandler method with a KafkaNull payload.
The following example shows how to configure one:

@KafkalListener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String cat) {

}

@KafkaHandler
public void listen(Integer hat) {

}
@KafkaHandler

public void delete(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

}

Note that the argument is null, not KafkaNull.

O See Manually Assigning All Partitions.

4.1.11. Handling Exceptions

This section describes how to handle various exceptions that may arise when you use Spring for
Apache Kafka.

Listener Error Handlers
Starting with version 2.0, the @Kafkalistener annotation has a new attribute: errorHandler.
By default, this attribute is not configured.

You can use the errorHandler to provide the bean name of a KafkalistenerErrorHandler
implementation. This functional interface has one method, as the following listing shows:

93

@Functionallnterface
public interface KafkalistenerErrorHandler {

Object handleError(Message<?> message, ListenerExecutionFailedException
exception) throws Exception;

}

You have access to the spring-messaging Message<?> object produced by the message converter and
the exception that was thrown by the listener, which is wrapped in a
ListenerExecutionFailedException. The error handler can throw the original or a new exception,
which is thrown to the container. Anything returned by the error handler is ignored.

It has a sub-interface (ConsumerAwarelListenerErrorHandler) that has access to the consumer object,
through the following method:

Object handleError(Message<?> message, ListenerExecutionFailedException exception,
Consumer<?, ?> consumer);

If your error handler implements this interface, you can, for example, adjust the offsets
accordingly. For example, to reset the offset to replay the failed message, you could do something
like the following:

@Bean
public ConsumerAwarelistenerErrorHandler listen3ErrorHandler() {
return (m, e, ¢) -> {
this.listen3Exception = e;
MessageHeaders headers = m.getHeaders();
c.seek(new org.apache.kafka.common.TopicPartition(
headers.get(KafkaHeaders.RECEIVED_TOPIC, String.class),
headers.get(KafkaHeaders.RECEIVED_PARTITION_ID, Integer.class)),
headers.get(KafkaHeaders.OFFSET, Long.class));
return null;

};

Similarly, you could do something like the following for a batch listener:

94

©Bean
public ConsumerAwareListenerErrorHandler listen10ErrorHandler() {
return (m, e, ¢) -> {

this.listen10Exception = e;

MessageHeaders headers = m.getHeaders();

List<String> topics = headers.get(KafkaHeaders.RECEIVED_TOPIC,
List.class);

List<Integer> partitions = headers.get(KafkaHeaders.RECEIVED_PARTITION_ID,
List.class);

List<Long> offsets = headers.get(KafkaHeaders.OFFSET, List.class);

Map<TopicPartition, Long> offsetsToReset = new HashMap<>();

for (int i = @; i < topics.size(); i++) {

int index = 1i;
offsetsToReset.compute(new TopicPartition(topics.get(i),
partitions.get(i)),
(k, v) -> v == null ? offsets.get(index) : Math.min(v,

offsets.get(index)));

}

offsetsToReset.forEach((k, v) -> c.seek(k, v));

return null;

};

This resets each topic/partition in the batch to the lowest offset in the batch.

o The preceding two examples are simplistic implementations, and you would
probably want more checking in the error handler.

Container Error Handlers

You can specify a global error handler to be used for all listeners in the container factory. The
following example shows how to do so:

@Bean
public KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalListenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setErrorHandler (myErrorHandler);

return factory;

95

Similarly, you can set a global batch error handler:

@Bean
public KafkalistenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setBatchErrorHandler (myBatchErrorHandler);

return factory;

By default, if an annotated listener method throws an exception, it is thrown to the container, and
the message is handled according to the container configuration.

Consumer-Aware Container Error Handlers

The container-level error handlers (ErrorHandler and BatchErrorHandler) have sub-interfaces called
ConsumerAwareErrorHandler and ConsumerAwareBatchErrorHandler. The handle method of the
ConsumerAwareErrorHandler has the following signature:

void handle(Exception thrownException, ConsumerRecord<?, ?> data, Consumer<?, 7>
consumer);

The handle method of the ConsumerAwareBatchErrorHandler has the following signature:

void handle(Exception thrownException, ConsumerRecords<?, ?> data, Consumer<?, 7>
consumer);

Similar to the @KafkalListener error handlers, you can reset the offsets as needed, based on the data
that failed.

Unlike the listener-level error handlers, however, you should set the ackOnError
o container property to false (default) when making adjustments. Otherwise, any
pending acks are applied after your repositioning.

Seek To Current Container Error Handlers

If an ErrorHandler implements RemainingRecordsErrorHandler, the error handler is provided with the
failed record and any unprocessed records retrieved by the previous poll(). Those records are not

96

passed to the listener after the handler exits. The following listing shows the
RemainingRecordsErrorHandler interface definition:

@Functionallnterface
public interface RemainingRecordsErrorHandler extends ConsumerAwareErrorHandler {

void handle(Exception thrownException, List<ConsumerRecord<?, ?>> records,
Consumer<?, ?> consumer);

This interface lets implementations seek all unprocessed topics and partitions so that the current
record (and the others remaining) are retrieved by the next poll. The SeekToCurrentErrorHandler
does exactly this.

ackOnError must be false (which is the default). Otherwise, if the container is
stopped after the seek, but before the record is reprocessed, the record will be
skipped when the container is restarted.

The container commits any pending offset commits before calling the error handler.
To configure the listener container with this handler, add it to the container factory.

For example, with the eKafkalListener container factory, you can add SeekToCurrentErrorHandler as
follows:

@Bean

public ConcurrentKafkalistenerContainerFactory<String, String>

kafkalListenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<String, String> factory = new

ConcurrentKafkalistenerContainerFactory();
factory.setConsumerFactory(consumerFactory());
factory.getContainerProperties().setAckOnError(false);
factory.getContainerProperties().setAckMode(AckMode.RECORD);
factory.setErrorHandler(new SeekToCurrentErrorHandler());
return factory;

As an example; if the poll returns six records (two from each partition 0, 1, 2) and the listener
throws an exception on the fourth record, the container acknowledges the first three messages by
committing their offsets. The SeekToCurrentErrorHandler seeks to offset 1 for partition 1 and offset 0
for partition 2. The next poll() returns the three unprocessed records.

If the AckMode was BATCH, the container commits the offsets for the first two partitions before calling
the error handler.

97

Starting with version 2.2, the SeekToCurrentErrorHandler can now recover (skip) a record that keeps
failing. By default, after ten failures, the failed record is logged (at the ERROR level). You can
configure the handler with a custom recoverer (BiConsumer) and maximum failures. Setting the
maxFailures property to a negative number causes infinite retries. The following example
configures recovery after three tries:

SeekToCurrentErrorHandler errorHandler =
new SeekToCurrentErrorHandler((record, exception) -> {
// recover after 3 failures, woth no back off - e.g. send to a dead-letter
topic
}, new FixedBackOff(oOL, 2L));

Starting with version 2.2.4, when the container is configured with AckMode.MANUAL_IMMEDIATE, the
error handler can be configured to commit the offset of recovered records; set the commitRecovered
property to true.

See also Publishing Dead-letter Records.

When using transactions, similar functionality is provided by the DefaultAfterRollbackProcessor.
See After-rollback Processor.

Starting with version 2.3, the SeekToCurrentErrorHandler considers certain exceptions to be fatal,
and retries are skipped for such exceptions; the recoverer is invoked on the first failure. The
exceptions that are considered fatal, by default, are:

* DeserializationException

* MessageConversionException

MethodArgumentResolutionException

NoSuchMethodException

(lassCastException
since these exceptions are unlikely to be resolved on a retried delivery.

You can add more exception types to the not-retryable category, or completely replace the
BinaryExceptionClassifier with your own configured classifier. See the Javadocs for
SeekToCurrentErrorHandler for more information, as well as those for the spring-retry
BinaryExceptionClassifier.

Here is an example that adds I1legalArqumentException to the not-retryable exceptions:

98

©Bean
public SeekToCurrentErrorHandler errorHandler(BiConsumer<ConsumerRecord<?, 7>,
Exception> recoverer) {
SeekToCurrentErrorHandler handler = new SeekToCurrentErrorHandler(recoverer);
handler.addNotRetryableException(IllegalArgumentException.class);
return handler;

The SeekToCurrentBatchErrorHandler seeks each partition to the first record in each partition in the
batch, so the whole batch is replayed. Also see Committing Offsets for an alternative. This error
handler does not support recovery, because the framework cannot know which message in the
batch is failing.

After seeking, an exception that wraps the ListenerExecutionFailedException is thrown. This is to
cause the transaction to roll back (if transactions are enabled).

Starting with version 2.3, a BackOff can be provided to the SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor so that the consumer thread can sleep for some configurable time
between delivery attempts. Spring Framework provides two out of the box BackOff s, FixedBackOff
and ExponentialBackOff. The maximum back off time must not exceed the max.poll.interval.ms
consumer property, to avoid a rebalance.

Previously, the configuration was "maxFailures” (which included the first delivery
attempt). When using a FixedBackOff, its maxAttempts properties represents the

o number of delivery retries (one less than the old maxFailures property). Also,
maxFailures=-1 meant retry indefinitely with the old configuration, with a BackOff
you would set the maxAttempts to Long.MAX_VALUE for a FixedBackOff and leave the
maxElapsedTime to its default in an ExponentialBackOff.

The SeekToCurrentBatchErrorHandler can also be configured with a BackOff to add a delay between
delivery attempts. Generally, you should configure the BackOff to never return STOP. However, since
this error handler has no mechanism to "recover" after retries are exhausted, if the
BackOffExecution returns STOP, the previous interval will be used for all subsequent delays. Again,
the maximum delay must be less than the max.poll.interval.ms consumer property.

o If the recoverer fails (throws an exception), the record will be included in the
seeks and recovery will be attempted again during the next delivery.

Container Stopping Error Handlers

The ContainerStoppingErrorHandler (used with record listeners) stops the container if the listener
throws an exception. When the AckMode is RECORD, offsets for already processed records are
committed. When the AckMode is any manual value, offsets for already acknowledged records are
committed. When the AckMode is BATCH, the entire batch is replayed when the container is restarted
(unless transactions are enabled — in which case, only the unprocessed records are re-fetched).

99

The ContainerStoppingBatchErrorHandler (used with batch listeners) stops the container, and the
entire batch is replayed when the container is restarted.

After the container stops, an exception that wraps the ListenerExecutionFailedException is thrown.
This is to cause the transaction to roll back (if transactions are enabled).

After-rollback Processor

When using transactions, if the listener throws an exception (and an error handler, if present,
throws an exception), the transaction is rolled back. By default, any unprocessed records (including
the failed record) are re-fetched on the next poll. This is achieved by performing seek operations in
the DefaultAfterRollbackProcessor. With a batch listener, the entire batch of records is reprocessed
(the container has no knowledge of which record in the batch failed). To modify this behavior, you
can configure the listener container with a custom AfterRollbackProcessor. For example, with a
record-based listener, you might want to keep track of the failed record and give up after some
number of attempts, perhaps by publishing it to a dead-letter topic.

Starting with version 2.2, the DefaultAfterRollbackProcessor can now recover (skip) a record that
keeps failing. By default, after ten failures, the failed record is logged (at the ERROR level). You can
configure the processor with a custom recoverer (BiConsumer) and maximum failures. Setting the
maxFailures property to a negative number causes infinite retries. The following example
configures recovery after three tries:

AfterRollbackProcessor<String, String> processor =
new DefaultAfterRollbackProcessor((record, exception) -> {
// recover after 3 failures, with no back off - e.g. send to a dead-letter
topic
}, new FixedBackOff(OL, 2L));

When you do not use transactions, you can achieve similar functionality by configuring a
SeekToCurrentErrorHandler. See Seek To Current Container Error Handlers.

Recovery is not possible with a batch listener, since the framework has no
knowledge about which record in the batch keeps failing. In such cases, the
application listener must handle a record that keeps failing.

See also Publishing Dead-letter Records.

Starting with version 2.2.5, the DefaultAfterRollbackProcessor can be invoked in a new transaction
(started after the failed transaction rolls back). Then, if you are wusing the
DeadLetterPublishingRecoverer to publish a failed record, the processor will send the recovered
record’s offset in the original topic/partition to the transaction. To enable this feature, set the
commitRecovered and kafkaTemplate properties on the DefaultAfterRollbackProcessor.

o If the recoverer fails (throws an exception), the record will be included in the
seeks and recovery will be attempted again during the next delivery.

100

Starting with version 2.3.1, similar to the SeekToCurrentErrorHandler, the
DefaultAfterRollbackProcessor considers certain exceptions to be fatal, and retries are skipped for
such exceptions; the recoverer is invoked on the first failure. The exceptions that are considered
fatal, by default, are:

* DeserializationException

* MessageConversionException

MethodArgumentResolutionException

NoSuchMethodException

» ClassCastException
since these exceptions are unlikely to be resolved on a retried delivery.

You can add more exception types to the not-retryable category, or completely replace the
BinaryExceptionClassifier with your own configured classifier. See the Javadocs for
DefaultAfterRollbackProcessor for more information, as well as those for the spring-retry
BinaryExceptionClassifier.

Here is an example that adds I1legalArqumentException to the not-retryable exceptions:

©Bean
public DefaultAfterRollbackProcessor errorHandler(BiConsumer<ConsumerRecord<?, 7>,
Exception> recoverer) {
DefaultAfterRollbackProcessor processor = new
DefaultAfterRollbackProcessor(recoverer);
processor.addNotRetryableException(IllegalArqgumentException.class);
return processor;

Publishing Dead-letter Records

As discussed earlier, you can configure the SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor with a record recoverer when the maximum number of failures is
reached for a record. The framework provides the DeadlLetterPublishingRecoverer, which publishes
the failed message to another topic. The recoverer requires a KafkaTemplate<Object, Object>, which
is used to send the record. You can also, optionally, configure it with a BiFunction<ConsumerRecord<?,
7>, Exception, TopicPartition>, which is called to resolve the destination topic and partition. By
default, the dead-letter record is sent to a topic named <originalTopic>.DLT (the original topic name
suffixed with .DLT) and to the same partition as the original record. Therefore, when you use the
default resolver, the dead-letter topic must have at least as many partitions as the original topic. If
the returned TopicPartition has a negative partition, the partition is not set in the ProducerRecord,
so the partition is selected by Kafka. Starting with version 2.2.4, any
ListenerExecutionFailedException (thrown, for example, when an exception is detected in a
@KafkalListener method) is enhanced with the groupId property. This allows the destination resolver
to use this, in addition to the information in the ConsumerRecord to select the dead letter topic.

101

The following example shows how to wire a custom destination resolver:

DeadLetterPublishingRecoverer recoverer = new
DeadlLetterPublishingRecoverer(template,
(r, e) > {
if (e instanceof FooException) {
return new TopicPartition(r.topic() + ".Foo.failures",
r.partition());
}
else {
return new TopicPartition(r.topic() +
r.partition());
+

'.other.failures",

b

ErrorHandler errorHandler = new SeekToCurrentErrorHandler(recoverer, new
FixedBackOff(@L, 2L));

The record sent to the dead-letter topic is enhanced with the following headers:

» KafkaHeaders.DLT_EXCEPTION_FQCN: The Exception class name.

» KafkaHeaders.DLT_EXCEPTION_STACKTRACE: The Exception stack trace.

» KafkaHeaders.DLT_EXCEPTION_MESSAGE: The Exception message.

» KafkaHeaders.DLT_ORIGINAL_TOPIC: The original topic

* KafkaHeaders.DLT_ORIGINAL_PARTITION: The original partition.

» KafkaHeaders.DLT_ORIGINAL_OFFSET: The original offset.

» KafkaHeaders.DLT_ORIGINAL_TIMESTAMP: The original timestamp.

» KafkaHeaders.DLT_ORIGINAL_TIMESTAMP_TYPE: The original timestamp type.
Starting with version 2.3, when used in conjunction with an ErrorHandlingDeserializer2, the
publisher will restore the record value(), in the dead-letter producer record, to the original value
that failed to be deserialized. Previously, the value() was null and user code had to decode the
DeserializationException from the message headers. In addition, you can provide multiple
KafkaTemplate s to the publisher; this might be needed, for example, if you want to publish the
byte[] from a DeserializationException, as well as values using a different serializer from records

that were deserialized successfully. Here is an example of configuring the publisher with
KafkaTemplate s that use a String and byte[] serializer:

102

@Bean
public DeadlLetterPublishingRecoverer publisher(KafkaTemplate<?, ?> stringTemplate,
KafkaTemplate<?, 7> bytesTemplate) {

Map<Class<?>, KafkaTemplate<?, 7>> templates = new LinkedHashMap<>();
templates.put(String.class, stringTemplate);
templates.put(byte[].class, bytesTemplate);

return new DeadlLetterPublishingRecoverer(templates);

The publisher uses the map keys to locate a template that is suitable for the value() about to be
published. A LinkedHashMap is recommended so that the keys are examined in order.

o If the recoverer fails (throws an exception), the record will be included in the
seeks and recovery will be attempted again during the next delivery.

Starting with version 2.3, the recoverer can also be used with Kafka Streams - see Recovery from
Deserialization Exceptions for more information.

4.1.12. Kerberos

Starting with version 2.0, a KafkaJaasLoginModuleInitializer class has been added to assist with
Kerberos configuration. You can add this bean, with the desired configuration, to your application
context. The following example configures such a bean:

@Bean
public KafkalaasLoginModuleInitializer jaasConfig() throws IOException {
KafkalaasLoginModuleInitializer jaasConfig = new
KafkalaasLoginModuleInitializer();
jaasConfig.setControlFlag("REQUIRED");
Map<String, String> options = new HashMap<>();
options.put("useKeyTab", "true");
options.put("storeKey", "true");
options.put("keyTab", "/etc/security/keytabs/kafka_client.keytab");
options.put("principal”, "kafka-client-1@EXAMPLE.COM");
jaasConfig.setOptions(options);
return jaasConfig;

4.2. Kafka Streams Support

Starting with version 1.1.4, Spring for Apache Kafka provides first-class support for Kafka Streams.
To use it from a Spring application, the kafka-streams jar must be present on classpath. It is an

103

https://kafka.apache.org/documentation/streams

optional dependency of the spring-kafka project and is not downloaded transitively.

4.2.1. Basics

The reference Apache Kafka Streams documentation suggests the following way of using the API:

// Use the builders to define the actual processing topology, e.g. to specify
// from which input topics to read, which stream operations (filter, map, etc.)

// should be called, and so on.

StreamsBuilder builder = ...; // when using the Kafka Streams DSL

// Use the confiquration to tell your application where the Kafka cluster is,

// which serializers/deserializers to use by default, to specify security
settings,

// and so on.

StreamsConfig config = ...;

KafkaStreams streams

new KafkaStreams(builder, config);

// Start the Kafka Streams instance
streams.start();

// Stop the Kafka Streams instance
streams.close();

So, we have two main components:

e StreamsBuilder: With an API to build KStream (or KTable) instances.

* KafkaStreams: To manage the lifecycle of those instances.

All KStream instances exposed to a KafkaStreams instance by a single StreamsBuilder
are started and stopped at the same time, even if they have different logic. In other
o words, all streams defined by a StreamsBuilder are tied with a single lifecycle
control. Once a KafkaStreams instance has been closed by streams.close(), it cannot
be restarted. Instead, a new KafkaStreams instance to restart stream processing

must be created.

4.2.2. Spring Management

To simplify using Kafka Streams from the Spring application context perspective and use the

lifecycle management through a container, the Spring for Apache Kafka
StreamsBuilderFactoryBean. This is an AbstractFactoryBean implementation to
StreamsBuilder singleton instance as a bean. The following example creates such a bean:

104

introduces
expose a

@Bean

public FactoryBean<StreamsBuilderFactoryBean>

myKStreamBuilder (KafkaStreamsConfiguration streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object rather than a StreamsConfig.

The StreamsBuilderFactoryBean also implements SmartlLifecycle to manage the lifecycle of an
internal KafkaStreams instance. Similar to the Kafka Streams API, you must define the KStream
instances before you start the KafkaStreams. That also applies for the Spring API for Kafka Stream:s.
Therefore, when you use default autoStartup = true on the StreamsBuilderFactoryBean, you must
declare KStream instances on the StreamsBuilder before the application context is refreshed. For
example, KStream can be a regular bean definition, while the Kafka Streams API is used without any
impacts. The following example shows how to do so:

@Bean

public KStream<?, ?> kStream(StreamsBuilder kStreamBuilder) {
KStream<Integer, String> stream = kStreamBuilder.stream(STREAMING_TOPIC1);
// Fluent KStream API
return stream;

If you would like to control the lifecycle manually (for example, stopping and starting by some
condition), you can reference the StreamsBuilderFactoryBean bean directly by using the factory bean
(&) prefix. Since StreamsBuilderFactoryBean use its internal KafkaStreams instance, it is safe to stop
and restart it again. A new KafkaStreams is created on each start(). You might also consider using
different StreamsBuilderFactoryBean instances, if you would like to control the lifecycles for KStream
instances separately.

You also can specify KafkaStreams.Statelistener, Thread.UncaughtExceptionHandler, and
StateRestorelistener options on the StreamsBuilderFactoryBean, which are delegated to the internal
KafkaStreams instance. Also, apart from setting those options indirectly on
StreamsBuilderFactoryBean, starting with version 2.1.5, you can use a KafkaStreamsCustomizer
callback interface to configure an inner KafkaStreams instance. Note that KafkaStreamsCustomizer
overrides the options provided by StreamsBuilderFactoryBean. If you need to perform some
KafkaStreams operations directly, you can access that internal KafkaStreams instance by using
StreamsBuilderFactoryBean.getKafkaStreams(). You can autowire StreamsBuilderFactoryBean bean by
type, but you should be sure to use the full type in the bean definition, as the following example
shows:

105

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-extension-factorybean

@Bean
public StreamsBuilderFactoryBean myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {

return new StreamsBuilderFactoryBean(streamsConfig);

}

@Autowired
private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

Alternatively, you can add @Qualifier for injection by name if you use interface bean definition. The
following example shows how to do so:

@Bean
public FactoryBean<StreamsBuilder> myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {

return new StreamsBuilderFactoryBean(streamsConfig);

}

@Autowired
@Qualifier("&myKStreamBuilder")
private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

4.2.3. Streams JSON Serialization and Deserialization

For serializing and deserializing data when reading or writing to topics or state stores in JSON
format, Spring Kafka provides a JsonSerde implementation that uses JSON, delegating to the
JsonSerializer and IJsonDeserializer described in Serialization, Deserialization, and Message
Conversion. The JsonSerde implementation provides the same configuration options through its
constructor (target type or ObjectMapper). In the following example, we use the JsonSerde to serialize
and deserialize the Cat payload of a Kafka stream (the JsonSerde can be used in a similar fashion
wherever an instance is required):

stream.through(Serdes.Integer(), new JsonSerde<>(Cat.class), "cats");

When constructing the serializer/deserializer programmatically for use in the producer/consumer
factory, since version 2.3, you can use the fluent API, which simplifies configuration.

106

stream.through(new JsonSerde<>(MyKeyType.class)
.forKeys()
.noTypelnfo(),
new JsonSerde<>(MyValueType.class)
.noTypelInfo(),
"myTypes");

4.2.4. Using KafkaStreamsBrancher

The KafkaStreamBrancher class introduces a more convenient way to build conditional branches on
top of KStream.

Consider the following example that does not use KafkaStreamBrancher:

KStream<String, String>[] branches = builder.stream("source").branch(
(key, value) -> value.contains("A"),
(key, value) -> value.contains("B"),
(key, value) -> true
ik
branches[0].to
branches[1].to
branches[2].to

IIAII

.

’
"y,
’

—~~ —~
N— N

B
uCu .

I

The following example uses KafkaStreamBrancher:

new KafkaStreamsBrancher<String, String>()
.branch((key, value) -> value.contains("A"), ks -> ks.to("A"))
.branch((key, value) -> value.contains("B"), ks -> ks.to("B"))
//default branch should not necessarily be defined in the end of the chain!
.defaultBranch(ks -> ks.to("C"))
.onTopOf (builder.stream("source"));
//onTop0f method returns the provided stream so we can continue with method
chaining

4.2.5. Configuration

To configure the Kafka Streams environment, the StreamsBuilderFactoryBean requires a
KafkaStreamsConfiguration instance. See the Apache Kafka documentation for all possible options.

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object, rather than as a StreamsConfig

107

https://kafka.apache.org/0102/documentation/#streamsconfigs

To avoid boilerplate code for most cases, especially when you develop microservices, Spring for
Apache Kafka provides the @EnableKafkaStreams annotation, which you should place on a
@Configuration class. All you need is to declare a KafkaStreamsConfiguration bean named
defaultKafkaStreamsConfig. A StreamsBuilderFactoryBean bean, named defaultKafkaStreamsBuilder, is
automatically declared in the application context. You can declare and use any additional
StreamsBuilderFactoryBean beans as well. Starting with version 2.3, you can perform additional
customization of that bean, by providing a bean that implements
StreamsBuilderFactoryBeanCustomizer. There must only be one such bean, or one must be marked
@Primary.

By default, when the factory bean is stopped, the KafkaStreams.cleanUp() method is called. Starting
with version 2.1.2, the factory bean has additional constructors, taking a CleanupConfig object that
has properties to let you control whether the cleanUp() method is called during start() or stop() or
neither.

4.2.6. Header Enricher

Version 2.3 added the HeaderEnricher implementation of Transformer. This can be used to add
headers within the stream processing; the header values are SpEL expressions; the root object of
the expression evaluation has 3 properties:

» context - the ProcessorContext, allowing access to the current record metadata
* key - the key of the current record

* value - the value of the current record
The expressions must return a byte[] or a String (which will be converted to byte[] using UTF-8).

To use the enricher within a stream:

.transform(() -> enricher)

The transformer does not change the key or value; it simply adds headers.

4.2.7. MessagingTransformer

Version 2.3 added the MessagingTransformer this allows a Kafka Streams topology to interact with a
Spring Messaging component, such as a Spring Integration flow. The transformer requires an
implementation of MessagingFunction.

108

@Functionallnterface
public interface MessagingFunction {

Message<?> exchange(Message<?> message);

Spring Integration automatically provides an implementation using its GatewayProxyFactoryBean. It
also requires a MessagingMessageConverter to convert the key, value and metadata (including
headers) to/from a Spring Messaging Message<?>. See Calling a Spring Integration flow from a
KStream for more information.

4.2.8. Recovery from Deserialization Exceptions

Version 2.3 introduced the RecoveringDeserializationExceptionHandler which can take some action
when a deserialization exception occurs. Refer to the Kafka documentation about
DeserializationExceptionHandler, of which the RecoveringDeserializationExceptionHandler is an
implementation. The RecoveringDeserializationExceptionHandler is configured with a
ConsumerRecordRecoverer implementation. The framework provides the
DeadLetterPublishingRecoverer which sends the failed record to a dead-letter topic. See Publishing
Dead-letter Records for more information about this recoverer.

To configure the recoverer, add the following properties to your streams configuration:

@Bean(name = KafkaStreamsDefaultConfiqguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();

props.put(StreamsConfig.DEFAULT_DESERIALIZATION_EXCEPTION_HANDLER_CLASS_CONFIG,
RecoveringDeserializationExceptionHandler.class);

props.put(RecoveringDeserializationExceptionHandler.KSTREAM_DESERIALIZATION_RECOVE
RER, recoverer());

return new KafkaStreamsConfiguration(props);
@Bean
public DeadlLetterPublishingRecoverer recoverer() {

return new DeadlLetterPublishingRecoverer(kafkaTemplate(),
(record, ex) -> new TopicPartition("recovererDLQ", -1));

109

Of course, the recoverer() bean can be your own implementation of ConsumerRecordRecoverer.

4.2.9. Kafka Streams Example

The following example combines all the topics we have covered in this chapter:

110

@Configuration

@EnableKafka

@EnableKafkaStreams

public static class KafkaStreamsConfig {

©Bean(name =
KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");
props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG,
Serdes.Integer().getClass().getName());
props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG,
Serdes.String().getClass().getName());
props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
WallclockTimestampExtractor.class.getName());
return new KafkaStreamsConfiguration(props);

}

@Bean
public StreamsBuilderFactoryBeanCustomizer customizer() {
return fb -> fb.setStatelListener((newState, oldState) -> {
System.out.println("State transition from " + oldState + " to " +
newState);
1)
}

@Bean
public KStream<Integer, String> kStream(StreamsBuilder kStreamBuilder) {
KStream<Integer, String> stream =
kStreamBuilder.stream("streamingTopic1");
stream
.mapValues(String::toUpperCase)
.groupByKey()
.reduce((String valuel, String value2) -> valuel + value2,
TimeWindows.of(1000),
"windowStore")
.toStream()
.map((windowedId, value) -> new KeyValue<>(windowedId.key(),

value))
.filter((i, s) -> s.length() > 40)
.to("streamingTopic2");
stream.print();
return stream;
}
+

111

4.3. Testing Applications

The spring-kafka-test jar contains some useful utilities to assist with testing your applications.

4.3.1. JUnit

0.s.kafka.test.utils.KafkaTestUtils provides some static methods to set up producer and
consumer properties. The following listing shows those method signatures:

/**

Set up test properties for an {@code <Integer, String>} consumer.
@param group the group id.

@param autoCommit the auto commit.

@param embeddedKafka a {@link EmbeddedKafkaBroker} instance.
@return the properties.

* 0% X F Xk

*/
public static Map<String, Object> consumerProps(String group, String autoCommit,
EmbeddedKafkaBroker embeddedKafka) { ... }

/**

* Set up test properties for an {@code <Integer, String>} producer.

* @param embeddedKafka a {@link EmbeddedKafkaBroker} instance.

* @return the properties.

*/

public static Map<String, Object> senderProps(EmbeddedKafkaBroker embeddedKafka) {
1t

A JUnit 4 eRule wrapper for the EmbeddedKafkaBroker is provided to create an embedded Kafka and
an embedded Zookeeper server. (See @EmbeddedKafka Annotation for information about using
@EmbeddedKafka with JUnit 5). The following listing shows the signatures of those methods:

112

* Create embedded Kafka brokers.

* @param count the number of brokers.

* @param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param topics the topics to create (2 partitions per).

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, String... topics)
{...}

/**

Create embedded Kafka brokers.

@param count the number of brokers.

@param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param partitions partitions per topic.

* @param topics the topics to create.

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, int partitions,
String... topics) { ... }

L I

The EmbeddedKafkaBroker class has a utility method that lets you consume for all the topics it created.
The following example shows how to use it:

Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false",
embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf = new
DefaultKafkaConsumerFactory<Integer, String>(

consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
embeddedKafka.consumeFromAl1EmbeddedTopics(consumer);

The KafkaTestUtils has some utility methods to fetch results from the consumer. The following
listing shows those method signatures:

113

* Poll the consumer, expecting a single record for the specified topic.

* @param consumer the consumer.

* @param topic the topic.

* @return the record.

* @throws org.junit.ComparisonFailure if exactly one record is not received.

*/

public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer,
String topic) { ... }

/**

* Poll the consumer for records.

* @param consumer the consumer.

* @return the records.

*/

public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) {

.}

The following example shows how to use KafkaTestUtils:

template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received =
KafkaTestUtils.getSingleRecord(consumer, "topic");

When the embedded Kafka and embedded Zookeeper server are started by the EmbeddedKafkaBroker,
a system property named spring.embedded.kafka.brokers is set to the address of the Kafka brokers
and a system property named spring.embedded.zookeeper.connect is set to the address of Zookeeper.
Convenient constants (EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS and
EmbeddedKafkaBroker.SPRING_EMBEDDED_ZOOKEEPER_CONNECT) are provided for this property.

With the EmbeddedKafkaBroker.brokerProperties(Map<String, String>), you can provide additional
properties for the Kafka servers. See Kafka Config for more information about possible broker
properties.

4.3.2. Configuring Topics

The following example configuration creates topics called cat and hat with five partitions, a topic
called thing1 with 10 partitions, and a topic called thing2 with 15 partitions:

114

https://kafka.apache.org/documentation/#brokerconfigs

public class MyTests {

@ClassRule
private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1,
false, 5, "cat", "hat");

@Test
public void test() {
embeddedKafkaRule.getEmbeddedKafka()
.addTopics(new NewTopic("thing1", 10, (short) 1), new
NewTopic("thing2", 15, (short) 1));

}

4.3.3. Using the Same Brokers for Multiple Test Classes

There is no built-in support for doing so, but you can use the same broker for multiple test classes
with something similar to the following:

115

public final class EmbeddedKafkaHolder {

private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1,
false);

private static boolean started;

public static EmbeddedKafkaRule getEmbeddedKafka() {
if (!started) {
try {
embeddedKafka.before();

}
catch (Exception e) {
throw new KafkaException(e);

}

started = true;

}
return embeddedKafka;

}

private EmbeddedKafkaHolder() {
super();

}

Then, in each test class, you can use something similar to the following:

static {
EmbeddedKafkaHolder.getEmbeddedKafka().addTopics(topicl, topic2);
}

private static EmbeddedKafkaRule embeddedKafka =
EmbeddedKafkaHolder.getEmbeddedKafka();

The preceding example provides no mechanism for shutting down the brokers
when all tests are complete. This could be a problem if, say, you run your tests in a

o Gradle daemon. You should not use this technique in such a situation, or you
should use something to call destroy() on the EmbeddedKafkaBroker when your tests
are complete.

4.3.4. @dEmbeddedKafka Annotation

We generally recommend that you use the rule as a @ClassRule to avoid starting and stopping the

116

broker between tests (and use a different topic for each test). Starting with version 2.0, if you use
Spring’s test application context caching, you can also declare a EmbeddedKafkaBroker bean, so a
single broker can be used across multiple test classes. For convenience, we provide a test class-level

annotation called eEmbeddedKafka to register the EmbeddedKafkaBroker bean. The following example
shows how to use it:

117

@RunWith(SpringRunner.class)
@DirtiesContext
@EmbeddedKafka(partitions = 1,
topics = {
KafkaStreamsTests.STREAMING TOPIC1,
KafkaStreamsTests.STREAMING _TOPIC2 })
public class KafkaStreamsTests {

@Autowired
private EmbeddedKafkaBroker embeddedKafka;

@Test
public void someTest() {
Map<String, Object> consumerProps =
KafkaTestUtils.consumerProps("testGroup”, "true", this.embeddedKafka);
consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
ConsumerFactory<Integer, String> cf = new
DefaultKafkaConsumerFactory<>(consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
this.embeddedKafka.consumeFromAnEmbeddedTopic(consumer,
KafkaStreamsTests.STREAMING TOPIC2);
ConsumerRecords<Integer, String> replies =
KafkaTestUtils.getRecords(consumer);
assertThat(replies.count()).isGreaterThanOrEqualTo(1);

}

@Configuration
@EnableKafkaStreams
public static class KafkaStreamsConfiguration {

@Value("${" + EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA BROKERS + "1}")
private String brokerAddresses;

@Bean(name =
KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
this.brokerAddresses);
return new KafkaStreamsConfiguration(props);

}

Starting with version 2.2.4, you can also use the @EmbeddedKafka annotation to specify the Kafka

118

ports property.

The following example sets the topics, brokerProperties, and brokerPropertiesLocation attributes of
@EmbeddedKafka support property placeholder resolutions:

@TestPropertySource(locations = "classpath:/test.properties")
@EmbeddedKafka(topics = { "any-topic", "${kafka.topics.another-topic}" },
brokerProperties = { "log.dir=${kafka.broker.logs-dir}",

"listeners=PLAINTEXT://localhost:${kafka.broker.port}",
"auto.create.topics.enable=${kafka.broker.topics-
enable:true}" }
brokerPropertiesLocation = "classpath:/broker.properties")

In the preceding example, the property placeholders ${kafka.topics.another-topic},
${kafka.broker.logs-dir}, and ${kafka.broker.port} are resolved from the Spring Environment. In
addition, the broker properties are loaded from the broker.properties classpath resource specified
by the brokerPropertiesLocation. Property placeholders are resolved for the
brokerPropertiesLocation URL and for any property placeholders found in the resource. Properties
defined by brokerProperties override properties found in brokerPropertiesLocation.

You can use the @EmbeddedKafka annotation with JUnit 4 or JUnit 5.

4.3.5. @EmbeddedKafka Annotation with JUnit5

Starting with version 2.3, there are two ways to use the @EmbeddedKafka annotation with JUnit5.
When used with the @SpringJunitConfig annotation, the embedded broker is added to the test
application context. You can auto wire the broker into your test, at the class or method level, to get
the broker address list.

When not using the spring test context, the EmbdeddedKafkaCondition creates a broker; the condition
includes a parameter resolver so you can access the broker in your test method...

@EmbeddedKafka
public class EmbeddedKafkaConditionTests {

@Test
public void test(EmbeddedKafkaBroker broker) {
String brokerList = broker.getBrokersAsString();

A stand-alone (not Spring test context) broker will be created if the class annotated with

119

@EmbeddedBroker is not also annotated (or meta annotated) with
ExtendedWith(SpringExtension.class). @SpringJunitConfig and @SpringBootTest are so meta
annotated and the context-based broker will be used when either of those annotations are also
present.

When there is a Spring test application context available, the topics and broker

o properties can contain property placeholders, which will be resolved as long as the
property is defined somewhere. If there is no Spring context available, these
placeholders won’t be resolved.

4.3.6. Embedded Broker in @SpringBootTest Annotations

Spring Initializr now automatically adds the spring-kafka-test dependency in test scope to the
project configuration.

If your application uses the Kafka binder in spring-cloud-stream and if you want to
use an embedded broker for tests, you must remove the spring-cloud-stream-test-
support dependency, because it replaces the real binder with a test binder for test
cases. If you wish some tests to use the test binder and some to use the embedded
broker, tests that use the real binder need to disable the test binder by excluding
the binder auto configuration in the test class. The following example shows how
to do so:

o @RunWith(SpringRunner.class)
@SpringBootTest(properties = "spring.autoconfigure.exclude="

+
"org.springframework.cloud.stream.test.binder.TestSupportBinderAuto
Configuration")
public class MyApplicationTests {

}

There are several ways to use an embedded broker in a Spring Boot application test.
They include:

* JUnit4 Class Rule

¢ @EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

JUnit4 Class Rule

The following example shows how to use a JUnit4 class rule to create an embedded broker:

120

https://start.spring.io/

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyApplicationTests {

@ClassRule
public static EmbeddedKafkaRule broker = new EmbeddedKafkaRule(1,
false, "someTopic")
.brokerListProperty("spring.kafka.bootstrap-servers");

}

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

Notice that, since this is a Spring Boot application, we override the broker list property to set Boot’s
property.

@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

The following example shows how to use an @EmbeddedKafka Annotation to create an embedded
broker:

@RunWith(SpringRunner.class)
@EmbeddedKafka(topics = "someTopic",

bootstrapServersProperty = "spring.kafka.bootstrap-servers")
public class MyApplicationTests {

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

121

4.3.7. Hamcrest Matchers

The o.s.kafka.test.hamcrest.KafkaMatchers provides the following matchers:

/**

* @param key the key

* @param <K> the type.

* @return a Matcher that matches the key in a consumer record.

*/

public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... }

/**

* @param value the value.

* @param <V> the type.

* @return a Matcher that matches the value in a consumer record.

*/

public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... }

/**

* @param partition the partition.

* @return a Matcher that matches the partition in a consumer record.

*/

public static Matcher<ConsumerRecord<?, ?>> hasPartition(int partition) { ... }

/**
* Matcher testing the timestamp of a {@link ConsumerRecord} assuming the topic
has been set with
* {@link org.apache.kafka.common.record.TimestampType#CREATE_TIME CreateTime}.
*
* @param ts timestamp of the consumer record.
* @return a Matcher that matches the timestamp in a consumer record.
*/
public static Matcher<ConsumerRecord<?, 7>> hasTimestamp(long ts) {
return hasTimestamp(TimestampType.CREATE_TIME, ts);
}

/**
* Matcher testing the timestamp of a {@link ConsumerRecord}
* @param type timestamp type of the record
* @param ts timestamp of the consumer record.
* @return a Matcher that matches the timestamp in a consumer record.
*/
public static Matcher<ConsumerRecord<?, ?>> hasTimestamp(TimestampType type, long
ts) {
return new ConsumerRecordTimestampMatcher(type, ts);

}

122

4.3.8. Assert] Conditions

You can use the following Assert] conditions:

/**

* @param key the key

* @param <K> the type.

* @return a Condition that matches the key in a consumer record.

*/

public static <K> Condition<ConsumerRecord<K, 7>> key(K key) { ... }

/*'k

* @param value the value.

* @param <V> the type.

* @return a Condition that matches the value in a consumer record.

*/

public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... }

/**

* @param partition the partition.

* @return a Condition that matches the partition in a consumer record.

*/

public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... }

/**
* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(long value) {
return new ConsumerRecordTimestampCondition(TimestampType.CREATE_TIME, value);

}

/**

* @param type the type of timestamp
* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(TimestampType type, long
value) {
return new ConsumerRecordTimestampCondition(type, value);

}

4.3.9. Example

The following example brings together most of the topics covered in this chapter:

123

124

public class KafkaTemplateTests {
private static final String TEMPLATE_TOPIC = "templateTopic";

@ClassRule
public static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1, true,
TEMPLATE _TOPIC);

@Test
public void testTemplate() throws Exception {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT",
"false",
embeddedKafka.getEmbeddedKafka());
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer,
String>(consumerProps);
ContainerProperties containerProperties = new
ContainerProperties(TEMPLATE_TOPIC);
KafkaMessagelListenerContainer<Integer, String> container =
new KafkaMessagelListenerContainer<>(cf,
containerProperties);
final BlockingQueue<ConsumerRecord<Integer, String>> records = new
LinkedBlockingQueue<>();
container.setupMessagelistener(new Messagelistener<Integer, String>() {

@0verride

public void onMessage(ConsumerRecord<Integer, String> record) {
System.out.println(record);
records.add(record);

1)

container.setBeanName("templateTests");
container.start();
ContainerTestUtils.waitForAssignment(container,

embeddedKafka.getEmbeddedKafka().getPartitionsPerTopic());
Map<String, Object> senderProps =

KafkaTestUtils.senderProps(embeddedKafka.getEmbeddedKafka().getBrokersAsString());
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer,
String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
template.setDefaultTopic(TEMPLATE_TOPIC);
template.sendDefault("foo");
assertThat(records.pol1(10, TimeUnit.SECONDS), hasValue("foo"));
template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10,
TimeUnit.SECONDS);

assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("bar"));
template.send(TEMPLATE_TOPIC, @, 2, "baz");
received = records.poll1(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("baz"));

The preceding example uses the Hamcrest matchers. With Assert], the final part looks like the
following code:

assertThat(records.pol1(10, TimeUnit.SECONDS)).has(value("foo"));
template.sendDefault(@, 2, "bar");

ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("bar"));
template.send(TEMPLATE_TOPIC, @, 2, "baz");

received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("baz"));

125

Chapter 5. Tips, Tricks and Examples

5.1. Manually Assigning All Partitions

Let’s say you want to always read all records from all partitions (such as when using a compacted
topic to load a distributed cache), it can be useful to manually assign the partitions and not use
Kafka’s group management. Doing so can be unwieldy when there are many partitions, because
you have to list the partitions. It’s also an issue if the number of partitions changes over time,
because you would have to recompile your application each time the partition count changes.

The following is an example of how to use the power of a SpEL expression to create the partition
list dynamically when the application starts:

@Kafkalistener(topicPartitions = @TopicPartition(topic = "compacted",

partitions =
"#{efinder.partitions('compacted')}"))
public void listen(@Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) String key, String
payload) {

}

@Bean
public PartitionFinder finder(ConsumerFactory<String, String> consumerFactory) {
return new PartitionFinder(consumerFactory);

¥
public static class PartitionFinder {
private final ConsumerFactory<String, String> consumerFactory;

public PartitionFinder(ConsumerFactory<String, String> consumerFactory) {
this.consumerFactory = consumerFactory;

}

public String[] partitions(String topic) {
try (Consumer<String, String> consumer = consumerFactory.createConsumer())

{
return consumer.partitionsFor(topic).stream()
.map(pi -> "" + pi.partition())
.toArray(String[]::new);
}
}
}

Using this in conjunction with ConsumerConfig.AUTO_OFFSET_RESET_CONFIG=earliest will load all

126

records each time the application is started. You should also set the container’s AckMode to MANUAL to
prevent the container from committing offsets for a null consumer group.

5.2. Example of Transaction Synchronization

The following Spring Boot application is an example of synchronizing database and Kafka
transactions.

127

@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

@Bean
public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> template.executeInTransaction(t -> t.send("topicl",
"test"));

}

@Bean

public ChainedKafkaTransactionManager<Object, Object> chainedTm(
KafkaTransactionManager<String, String> ktm,
DataSourceTransactionManager dstm) {

return new ChainedKafkaTransactionManager<>(ktm, dstm);

}

@Bean
public DataSourceTransactionManager dstm(DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);

}

@Bean
public ConcurrentKafkalistenerContainerFactory<?, 7>
kafkalListenerContainerFactory(
ConcurrentKafkalistenerContainerFactoryConfigurer configurer,
ConsumerFactory<Object, Object> kafkaConsumerFactory,
ChainedKafkaTransactionManager<Object, Object> chainedTM) {

ConcurrentKafkalistenerContainerFactory<Object, Object> factory =

new ConcurrentKafkalistenerContainerFactory<>();
configurer.configure(factory, kafkaConsumerFactory);
factory.getContainerProperties().setTransactionManager(chainedTM);
return factory;

}

@Component
public static class Listener {

private final JdbcTemplate jdbcTemplate;
private final KafkaTemplate<String, String> kafkaTemplate;

public Listener(JdbcTemplate jdbcTemplate, KafkaTemplate<String, String>
kafkaTemplate) {

128

this.jdbcTemplate = jdbcTemplate;
this.kafkaTemplate = kafkaTemplate;
}

@Kafkalistener(id = "groupl1", topics = "topicl")
public void listen1(String in) {
this.kafkaTemplate.send("topic2", in.toUpperCase());
this.jdbcTemplate.execute("insert into mytable (data) values ('" + in
+")");
}

@Kafkalistener(id = "group2", topics = "topic2")

public void listen2(String in) {
System.out.println(in);

}

}

@Bean
public NewTopic topicl() {

return TopicBuilder.name("topic1").build();
}

@Bean
public NewTopic topic2() {

return TopicBuilder.name("topic2").build();
}

spring.datasource.url=jdbc:mysql://localhost/integration?serverTimezone=UTC
spring.datasource.username=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.enable-auto-commit=false
spring.kafka.consumer.properties.isolation.level=read_committed
spring.kafka.producer.transaction-id-prefix=tx-
#logging.level.org.springframework.transaction=trace

#logging.level.org.springframework.kafka.transaction=debug
#logging.level.org.springframework.jdbc=debug

129

create table mytable (data varchar(20));

130

Chapter 6. Spring Integration

This part of the reference guide shows how to use the spring-integration-kafka module of Spring
Integration.

6.1. Spring Integration for Apache Kafka

6.1.1. Overview

This documentation pertains to versions 2.0.0 and above. For documentation for earlier releases,
see the 1.3.x README.

Spring Integration Kafka is an extension module to the Spring Integration Project.

Spring Integration Kafka is now based on the Spring for Apache Kafka project. It provides the
following components:

* Outbound Channel Adapter

* Message-driven Channel Adapter

Inbound Channel Adapter
* Outbound Gateway

* Inbound Gateway

6.1.2. What’s new in Spring Integration for Apache Kafka (version 3.2)

* The pollable KafkaMessageSource now implements Pausable so the consumer can be paused and
resumed. You must continue to poll the adapter while paused, to avoid a topic/partition
rebalance. See the discussion about max.poll.records for more information.

* XML configuration is now supported for the gateways and polled inbound channel adapter (in
addition to the existing XML support for the other adapters).

» The pollable message source can now be configured to fetch multiple records at-a-time.

6.1.3. Outbound Channel Adapter

The Outbound channel adapter is used to publish messages from a Spring Integration channel to
Kafka topics. The channel is defined in the application context and then wired into the application
that sends messages to Kafka. Sender applications can publish to Kafka by using Spring Integration
messages, which are internally converted to Kafka messages by the outbound channel adapter, as
follows:

* The payload of the Spring Integration message is used to populate the payload of the Kafka
message.

* By default, the kafka_messageKey header of the Spring Integration message is used to populate
the key of the Kafka message.

131

https://github.com/spring-projects/spring-integration-kafka/blob/1.3.x/README.md
https://spring.io/projects/spring-integration
https://projects.spring.io/spring-kafka/

You can customize the target topic and partition for publishing the message through the
kafka_topic and kafka_partitionId headers, respectively.

In addition, the <int-kafka:outbound-channel-adapter> provides the ability to extract the key, target
topic, and target partition by applying SpEL expressions on the outbound message. To that end, it
supports three mutually exclusive pairs of attributes:

* topic and topic-expression
* message-key and message-key-expression

* partition-id and partition-id-expression

These let you specify topic, message-key, and partition-id, respectively, as static values on the
adapter or to dynamically evaluate their values at runtime against the request message.

The KafkaHeaders interface (provided by spring-kafka) contains constants used for
interacting with headers. The messageKey and topic default headers now require a
kafka_ prefix. When migrating from an earlier version that used the old headers,
o you need to specify message-key-expression="headers['messageKey']" and topic-
expression="headers['topic']" on the <int-kafka:outbound-channel-adapter>.
Alternatively, you can change the headers upstream to the new headers from
KafkaHeaders by using a <header-enricher> or a MessageBuilder. If you use constant
values, you can also configure them on the adapter by using topic and message-key.

NOTE : If the adapter is configured with a topic or message key (either with a constant or
expression), those are used and the corresponding header is ignored. If you wish the header to
override the configuration, you need to configure it in an expression, such as the following:

topic-expression="headers['topic'] !'= null ? headers['topic'] : 'myTopic""

The adapter requires a KafkaTemplate, which, in turn, requires a suitably configured
KafkaProducerFactory.

If a send-failure-channel (sendFailureChannel) is provided and a send failure (sync or async) is
received, an ErrorMessage is sent to the channel. The payload is a KafkaSendFailureException with
failedMessage, record (the ProducerRecord) and cause properties. You can override the
DefaultErrorMessageStrategy by setting the error-message-strategy property.

If a send-success-channel (sendSuccessChannel) is provided, a message with a payload of type
org.apache.kafka.clients.producer.RecordMetadata is sent after a successful send.

132

If your application uses transactions and the same channel adapter is used to
publish messages where the transaction is started by a listener container, as well
as publishing where there is no existing transaction, you must configure a

o transactionIdPrefix on the KafkaTemplate to override the prefix used by the
container or transaction manager. The prefix used by container-initiated
transactions (the producer factory or transaction manager property) must be the
same on all application instances. The prefix used for producer-only transactions
must be unique on all application instances.

Java Configuration

The following example shows how to configure the Kafka outbound channel adapter with Java:

@Bean

@ServiceActivator(inputChannel = "toKafka")

public MessageHandler handler() throws Exception {
KafkaProducerMessageHandler<String, String> handler =

new KafkaProducerMessageHandler<>(kafkaTemplate());

handler.setTopicExpression(new LiteralExpression("someTopic"));
handler.setMessageKeyExpression(new LiteralExpression("someKey"));
handler.setSuccessChannel(successes());
handler.setFailureChannel(failures());
return handler;

}

@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());

}

@Bean

public ProducerFactory<String, String> producerFactory() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
// set more properties
return new DefaultKafkaProducerFactory<>(props);

Java DSL Configuration

The following example shows how to configure the Kafka outbound channel adapter Spring
Integration Java DSL:

133

@Bean
public ProducerFactory<Integer, String> producerFactory() {

return new
DefaultKafkaProducerFactory<>(KafkaTestUtils.producerProps(embeddedKafka));
}

@Bean
public IntegrationFlow sendToKafkaFlow() {
return f -> f
.<String>split(p -> Stream.generate(() -> p).limit(101).iterator(),
null)
.publishSubscribeChannel(c -> ¢
.subscribe(sf -> sf.handle(
kafkaMessageHandler (producerFactory(), TEST_TOPIC1)

.timestampExpression("T(Long).valueOf('1487694048633")"),
e -> e.id("kafkaProducer1")))
.subscribe(sf -> sf.handle(
kafkaMessageHandler (producerFactory(), TEST_TOPIC2)
.timestamp(m -> 1487694048644L),
e -> e.id("kafkaProducer2")))
)i
}

@Bean
public DefaultKafkaHeaderMapper mapper() {
return new DefaultKafkaHeaderMapper();

}

private KafkaProducerMessageHandlerSpec<Integer, String, 7> kafkaMessageHandler(
ProducerFactory<Integer, String> producerFactory, String topic) {
return Kafka

.outboundChannelAdapter (producerFactory)

.messageKey(m -> m
.getHeaders()
.get(IntegrationMessageHeaderAccessor.SEQUENCE_NUMBER))

.headerMapper (mapper())

.partitionId(m -> 10)

.topicExpression("headers[kafka_topic] ?: + topic + "'")

.configureKafkaTemplate(t -> t.id("kafkaTemplate:" + topic));

XML Configuration

The following example shows how to configure the Kafka outbound channel adapter with XML:

134

<int-kafka:outbound-channel-adapter id="kafkaOutboundChannelAdapter"
kafka-template="template"
auto-startup="false"
channel="1inputToKafka"
topic="foo"
sync="false"
message-key-expression=""bar""
send-failure-channel="failures"
send-success-channel="successes"
error-message-strategy="ems"
partition-id-expression="2">

</int-kafka:outbound-channel-adapter>

<bean id="template" class="org.springframework.kafka.core.KafkaTemplate">
<constructor-arg>
<bean class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
. <!-- more producer properties -->
</map>
</constructor-arg>
</bean>
</constructor-arg>
</bean>

6.1.4. Message-driven Channel Adapter

The KafkaMessageDrivenChannelAdapter (<int-kafka:message-driven-channel-adapter>) uses a spring-
kafka KafkaMessagelistenerContainer or ConcurrentListenerContainer.

Starting with spring-integration-kafka version 2.1, the mode attribute is available. It can accept
values of record or batch (default: record). For record mode, each message payload is converted
from a single ConsumerRecord. For batch mode, the payload is a list of objects that are converted from
all the ConsumerRecord instances returned by the consumer poll. As with the batched @Kafkalistener,
the KafkaHeaders.RECEIVED_MESSAGE_KEY, KafkaHeaders.RECEIVED_PARTITION_ID,
KafkaHeaders.RECEIVED_TOPIC, and KafkaHeaders.OFFSET headers are also lists, with positions
corresponding to the position in the payload.

Received messages have certain headers populated. See the KafkaHeaders class for more
information.

The Consumer object (in the kafka_consumer header) is not thread-safe. You must
invoke its methods only on the thread that calls the listener within the adapter. If

you hand off the message to another thread, you must not call its methods.

When a retry-template is provided, delivery failures are retried according to its retry policy. An

135

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/KafkaHeaders.html
https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/KafkaHeaders.html

error-channel is not allowed in this case. You can use the recovery-callback to handle the error
when retries are exhausted. In most cases, this is an ErrorMessageSendingRecoverer that sends the
ErrorMessage to a channel.

When building an ErrorMessage (for use in the error-channel or recovery-callback), you can
customize the error message by setting the error-message-strategy property. By default, a
RawRecordHeaderErrorMessageStrategy is used, to provide access to the converted message as well as
the raw ConsumerRecord.

Java Configuration

The following example shows how to configure a message-driven channel adapter with Java:

@Bean
public KafkaMessageDrivenChannelAdapter<String, String>
adapter(KafkaMessageListenerContainer<String, String> container) {
KafkaMessageDrivenChannelAdapter<String, String>
kafkaMessageDrivenChannelAdapter =
new KafkaMessageDrivenChannelAdapter<>(container,
ListenerMode.record);
kafkaMessageDrivenChannelAdapter.setOutputChannel(received());
return kafkaMessageDrivenChannelAdapter;

}

@Bean
public KafkaMessagelListenerContainer<String, String> container() throws Exception

{
ContainerProperties properties = new ContainerProperties(this.topic);
// set more properties
return new KafkaMessagelListenerContainer<>(consumerFactory(), properties);

}

@Bean

public ConsumerFactory<String, String> consumerFactory() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
// set more properties
return new DefaultKafkaConsumerFactory<>(props);

Java DSL Configuration

The following example shows how to configure a message-driven channel adapter with the Spring
Integration Java DSL:

136

©Bean
public IntegrationFlow topicilListenerFromKafkaFlow() {
return IntegrationFlows
.from(Kafka.messageDrivenChannelAdapter(consumerFactory(),
KafkaMessageDrivenChannelAdapter.ListenerMode.record,
TEST_TOPIC1)
.configureListenerContainer(c ->

c.ackMode(AbstractMessagelistenerContainer.AckMode.MANUAL)
.id("topiclListenerContainer"))
.recoveryCallback(new
ErrorMessageSendingRecoverer(errorChannel(),
new RawRecordHeaderErrorMessageStrategy()))
.retryTemplate(new RetryTemplate())
.filterInRetry(true))
.filter(Message.class, m ->
m.getHeaders().qget(KafkaHeaders.RECEIVED_MESSAGE_KEY,
Integer.class) < 101,
f -> f.throwExceptionOnRejection(true))
.<String, String>transform(String::toUpperCase)
.channel(c -> c.queue("listeningFromKafkaResults1"))
-get();

Starting with Spring for Apache Kafka version 2.2 (Spring Integration Kafka 3.1), you can also use
the container factory that 1is wused for @Kafkalistener annotations to create
ConcurrentMessagelistenerContainer instances for other purposes. See Container factory for an
example.

With the Java DSL, the container does not have to be configured as a @Bean, because the DSL
registers the container as a bean. The following example shows how to do so:

@Bean
public IntegrationFlow topic2ListenerFromKafkaFlow() {
return IntegrationFlows

.from(Kafka.messageDrivenChannelAdapter(kafkalListenerContainerFactory().createCont
ainer (TEST_TOPIC2),
KafkaMessageDrivenChannelAdapter.ListenerMode.record)
.id("topic2Adapter"))

get();

Notice that, in this case, the adapter is given an id (topic2Adapter). The container is registered in the

137

application context with a name of topic2Adapter.container. If the adapter does not have an id
property, the container’s bean name is the container’s fully qualified class name plus #n, where n is
incremented for each container.

XML Configuration

The following example shows how to configure a message-driven channel adapter with XML:

<int-kafka:message-driven-channel-adapter
id="kafkalListener"
listener-container="container1"
auto-startup="false"
phase="100"
send-timeout="5000"
mode="record"
retry-template="template"
recovery-callback="callback"
error-message-strategy="ems"
channel="someChannel"
error-channel="errorChannel" />

<bean id="container1"
class="org.springframework.kafka.listener.KafkaMessagelListenerContainer">
<constructor-arg>
<bean class="org.springframework.kafka.core.DefaultKafkaConsumerFactory">
<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
</map>
</constructor-arg>
</bean>
</constructor-arg>
<constructor-arg>
<bean
class="org.springframework.kafka.listener.config.ContainerProperties">
<constructor-arg name="topics" value="foo" />
</bean>
</constructor-arg>

</bean>

6.1.5. Inbound Channel Adapter

Introduced in version 3.0.1, the KafkaMessageSource provides a pollable channel adapter
implementation.

138

Java Configuration

@InboundChannelAdapter(channel = "fromKafka", poller = @Poller(fixedDelay =
"5000"))

@Bean

public KafkaMessageSource<String, String> source(ConsumerFactory<String, String>

cf) {

KafkaMessageSource<String, String> source = new KafkaMessageSource<>(cf,
"myTopic");

source.setGroupId("myGroupId");

source.setClientId("myClientId");

return source;

Refer to the javadocs for available properties.

By default, max.poll.records must be either explicitly set in the consumer factory, or it will be
forced to 1 if the consumer factory is a DefaultKafkaConsumerFactory. Starting with version 3.2, you
can set the property allowMultiFetch to true to override this behavior.

You must poll the consumer within max.poll.interval.ms to avoid a rebalance. If
o you set allowMultiFetch to true you must process all the retrieved records, and poll
again, within max.poll.interval.ms

Messages emitted by this adapter contain a header kafka_remainingRecords with a count of records
remaining from the previous poll.

Java DSL Configuration

©Bean
public IntegrationFlow flow(ConsumerFactory<String, String> cf) <
return IntegrationFlows.from(Kafka.inboundChannelAdapter(cf, "myTopic")
.groupId("myDs1lGroupId"), e -> e.poller(Pollers.fixedDelay(5000)))
.handle(System.out::println)
.get();

XML Configuration

139

<int-kafka:inbound-channel-adapter
id="adapter1"
consumer -factory="consumerFactory"
ack-factory="ackFactory"
topics="topic1"
channel="1nbound"
client-id="client"
group-id="group"
message-converter="converter"
payload-type="java.lang.String"
raw-header="true"
auto-startup="false"
rebalance-listener="rebal">

<int:poller fixed-delay="5000"/>
</int-kafka:inbound-channel-adapter>

6.1.6. Outbound Gateway

The outbound gateway is for request/reply operations. It differs from most Spring Integration
gateways in that the sending thread does not block in the gateway and the reply is processed on the
reply listener container thread. If your code invokes the gateway behind a synchronous Messaging
Gateway, the user thread blocks there until the reply is received (or a timeout occurs).

The gateway does not accept requests until the reply container has been assigned

o its topics and partitions. It is suggested that you add a ConsumerRebalancelistener to
the template’s reply container properties and wait for the onPartitionsAssigned
call before sending messages to the gateway.

Java Configuration

The following example shows how to configure a gateway with Java:

@Bean
@ServiceActivator(inputChannel = "kafkaRequests", outputChannel = "kafkaReplies")
public KafkaProducerMessageHandler<String, String> outGateway(
ReplyingKafkaTemplate<String, String, String> kafkaTemplate) {
return new KafkaProducerMessageHandler<>(kafkaTemplate);

Refer to the javadocs for available properties.

Notice that the same class as the outbound channel adapter is used, the only difference being that
the Kafka template passed into the constructor is a ReplyingKafkaTemplate. See Using
ReplyingKafkaTemplate for more information.

140

https://docs.spring.io/spring-integration/reference/html/messaging-endpoints-chapter.html#gateway
https://docs.spring.io/spring-integration/reference/html/messaging-endpoints-chapter.html#gateway

The outbound topic, partition, key, and so on are determined in the same way as the outbound
adapter. The reply topic is determined as follows:

1. A message header named KafkaHeaders.REPLY_TOPIC (if present, it must have a String or byte[]
value) is validated against the template’s reply container’s subscribed topics.

2. If the template’s replyContainer is subscribed to only one topic, it is used.

You can also specify a KafkaHeaders.REPLY_PARTITION header to determine a specific partition to be
used for replies. Again, this is validated against the template’s reply container’s subscriptions.

Java DSL Configuration

The following example shows how to configure an outbound gateway with the Java DSL:

@Bean
public IntegrationFlow outboundGateFlow(
ReplyingKafkaTemplate<String, String, String> kafkaTemplate) {

return IntegrationFlows.from("kafkaRequests")
.handle(Kafka.outboundGateway(kafkaTemplate))
.channel("kafkaReplies")
.get();

Alternatively, you can also use a configuration similar to the following bean:

@Bean
public IntegrationFlow outboundGateFlow() {
return IntegrationFlows.from("kafkaRequests")
.handle(Kafka.outboundGateway(producerFactory(), replyContainer())
.configureKafkaTemplate(t -> t.replyTimeout(30_000)))
.channel("kafkaReplies")
.get();

XML Configuration

141

<int-kafka:outbound-gateway
id="allProps"
error-message-strategy="ems'
kafka-template="template"
message-key-expression=""key""
order="23"
partition-id-expression="2"
reply-channel="replies"
reply-timeout="43"
request-channel="requests"
requires-reply="false"
send-success-channel="successes"
send-failure-channel="failures"
send-timeout-expression="44"
sync="true"
timestamp-expression="T(System).currentTimeMillis()"
topic-expression=""topic'"/>

6.1.7. Inbound Gateway
The inbound gateway is for request/reply operations.

The following example shows how to configure an inbound gateway with Java:

@Bean

public KafkaInboundGateway<Integer, String, String> inboundGateway(
AbstractMessagelistenerContainer<Integer, String>container,
KafkaTemplate<Integer, String> replyTemplate) {

KafkaInboundGateway<Integer, String, String> gateway =
new KafkaInboundGateway<>(container, replyTemplate);

gateway.setRequestChannel(requests);

gateway.setReplyChannel(replies);

gateway.setReplyTimeout(30_000);

return gateway;

Refer to the javadocs for available properties.

The following example shows how to configure a simple upper case converter with the Java DSL:

142

@Bean
public IntegrationFlow serverGateway(
ConcurrentMessagelistenerContainer<Integer, String> container,
KafkaTemplate<Integer, String> replyTemplate) {
return IntegrationFlows
.from(Kafka.inboundGateway(container, template)
.replyTimeout(30_000))
.<String, String>transform(String::toUpperCase)
.get();

Alternatively, you could configure an upper-case converter by using code similar to the following:

@Bean
public IntegrationFlow serverGateway() {
return IntegrationFlows
.from(Kafka.inboundGateway(consumerFactory(), containerProperties(),
producerFactory())
.replyTimeout(30_000))
.<String, String>transform(String::toUpperCase)

.get();

Starting with Spring for Apache Kafka version 2.2 (Spring Integration Kafka 3.1), you can also use
the container factory that is wused for @Kafkalistener annotations to create
ConcurrentMessagelistenerContainer instances for other purposes. See Container factory and
Message-driven Channel Adapter for examples.

XML Configuration

143

<int-kafka:inbound-gateway
id="gateway1"
listener-container="container1"
kafka-template="template"
auto-startup="false"
phase="100"
request-timeout="5000"
request-channel="nul1Channel"
reply-channel="errorChannel"
reply-timeout="43"
message-converter="messageConverter"
payload-type="java.lang.String"
error-message-strategy="ems"
retry-template="retryTemplate"
recovery-callback="recoveryCallback"/>

See the XML schema for a description of each property.

6.1.8. Message Conversion

A StringlsonMessageConverter is provided. See Serialization, Deserialization, and Message
Conversion for more information.

When using this converter with a message-driven channel adapter, you can specify the type to
which you want the incoming payload to be converted. This is achieved by setting the payload-type
attribute (payloadType property) on the adapter. The following example shows how to do so in XML
configuration:

<int-kafka:message-driven-channel-adapter
id="kafkalListener"
listener-container="container1"
auto-startup="false"
phase="100"
send-timeout="5000"
channel="nul1Channel"
message-converter="messageConverter"
payload-type="com.example.Foo"
error-channel="errorChannel" />

<bean id="messageConverter"

class="org.springframework.kafka.support.converter.MessagingMessageConverter"/>

The following example shows how to set the payload-type attribute (payloadType property) on the
adapter in Java configuration:

144

@Bean
public KafkaMessageDrivenChannelAdapter<String, String>
adapter(KafkaMessageListenerContainer<String, String> container) {
KafkaMessageDrivenChannelAdapter<String, String>
kafkaMessageDrivenChannelAdapter =
new KafkaMessageDrivenChannelAdapter<>(container,
ListenerMode.record);
kafkaMessageDrivenChannelAdapter.setOutputChannel(received());
kafkaMessageDrivenChannelAdapter.setMessageConverter(converter());
kafkaMessageDrivenChannelAdapter.setPayloadType(Foo.class);
return kafkaMessageDrivenChannelAdapter;

6.1.9. Null Payloads and Log Compaction '"Tombstone' Records

Spring Messaging Message<?> objects cannot have null payloads. When you use the Kafka endpoints,
null payloads (also known as tombstone records) are represented by a payload of type KafkaNull.
See Null Payloads and Log Compaction of "Tombstone' Records for more information.

Starting with version 3.1 of Spring Integration Kafka, such records can now be received by Spring
Integration POJO methods with a true null value instead. To do so, mark the parameter with
@Payload(required = false). The following example shows how to do so:

@ServiceActivator(inputChannel = "fromSomeKafkaInboundEndpoint")
public void in(@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) String key,
@Payload(required = false) Customer customer) {
// customer is null if a tombstone record

6.1.10. Calling a Spring Integration flow from a KStream

You can use a MessagingTransformer to invoke an integration flow from a KStream:

145

©Bean
public KStream<byte[], byte[]> kStream(StreamsBuilder kStreamBuilder,
MessagingTransformer<byte[], byte[], byte[]> transformer) transformer) {
KStream<byte[], byte[]> stream = kStreamBuilder.stream(STREAMING_TOPIC1);
stream.mapValues((ValueMapper<byte[], byte[]>) String::toUpperCase)

.transform(() -> transformer)
.to(streamingTopic2);

stream.print(Printed.toSysOut());

return stream;

}

@Bean

@DependsOn("flow")

public MessagingTransformer<byte[], byte[], String> transformer(
MessagingFunction function) {

MessagingMessageConverter converter = new MessagingMessageConverter();
converter.setHeaderMapper(new SimpleKafkaHeaderMapper("*"));
return new MessagingTransformer<>(function, converter);

}

@Bean
public IntegrationFlow flow() {
return IntegrationFlows.from(MessagingFunction.class)

.get();

When an integration flow starts with an interface, the proxy that is created has the name of the
flow bean, appended with ".gateway" so this bean name can be used a a @Qualifier if needed.

6.1.11. What’s New in Spring Integration for Apache Kafka

See the Spring for Apache Kafka Project Page for a matrix of compatible spring-kafka and kafka-
clients versions.

3.2.x

* The KafkaMessageSource 's Consumer can now be paused and resumed.
* XML configuration for gateways and the pollable source.
* The KafkaMessageSource can now be configured to fetch multiple records on each pol1().

* The MessagingTransformer allows you to invoke a Spring Integration flow from a Kafka streams
topology.

146

https://projects.spring.io/spring-kafka/

3.1.x
» Update to spring-kafka 2.2.x and kafka-clients 2.0.0
» Support tombstones in EIP POJO Methods

3.0.x

» Update to spring-kafka 2.1.x and kafka-clients 1.0.0

» Support ConsumerAwareMessagelistener (Consumer is available in a message header)

Update to Spring Integration 5.0 and Java 8
* Moved Java DSL to the main project
* Added inbound and outbound gateways (3.0.2)

2.3.x

The 2.3.x branch introduced the following changes:

» Update to spring-kafka 1.3.x, including support for transactions and header mapping provided
by kafka-clients 0.11.0.0

» Support for record timestamps

2.2.X

The 2.2.x branch introduced the following changes:

» Update to spring-kafka 1.2.x

2.1.x

The 2.1.x branch introduced the following changes:

» Update to spring-kafka 1.1.x, including support of batch payloads

» Support sync outbound requests in XML configuration

» Support payload-type for inbound channel adapters

 Support for enhanced error handling for the inbound channel adapter (2.1.1)

» Support for send success and failure messages (2.1.2)

2.0.x

The 2.0.x version was the first version to be based on Spring for Apache Kafka and the Java clients.
Earlier versions used the scala clients directly.

147

Chapter 7. Other Resources

In addition to this reference documentation, we recommend a number of other resources that may
help you learn about Spring and Apache Kafka.

* Apache Kafka Project Home Page

» Spring for Apache Kafka Home Page

» Spring for Apache Kafka GitHub Repository

» Spring Integration Kafka Extension GitHub Repository

148

https://kafka.apache.org/
https://projects.spring.io/spring-kafka/
https://github.com/spring-projects/spring-kafka
https://github.com/spring-projects/spring-integration-kafka

Appendix A: Change History

A.1. Changes between 2.1 and 2.2

A.1.1. Kafka Client Version

This version requires the 2.0.0 kafka-clients or higher.

A.1.2. Class and Package Changes

The ContainerProperties class has been moved from org.springframework.kafka.listener.config to
org.springframework.kafka.listener.

The AckMode enum has been moved from AbstractMessagelListenerContainer to ContainerProperties.

The setBatchErrorHandler() and setErrorHandler() methods have been moved from
ContainerProperties to both AbstractMessagelistenerContainer and
AbstractKafkalistenerContainerFactory.

A.1.3. After Rollback Processing

A new AfterRollbackProcessor strategy is provided. See After-rollback Processor for more
information.

A.1.4. ConcurrentKafkalistenerContainerFactory Changes

You can now use the ConcurrentKafkalistenerContainerFactory to create and configure any
ConcurrentMessagelistenerContainer, not only those for @Kafkalistener annotations. See Container
factory for more information.

A.1.5. Listener Container Changes

A new container property (missingTopicsFatal) has been added. See Using
KafkaMessagelListenerContainer for more information.

A ConsumerStoppedEvent is now emitted when a consumer terminates. See Thread Safety for more
information.

Batch listeners can optionally receive the complete ConsumerRecords<?, 7> object instead of a
List<ConsumerRecord<?, 7>.See Batch listeners for more information.

The DefaultAfterRollbackProcessor and SeekToCurrentErrorHandler can now recover (skip) records
that keep failing, and, by default, does so after 10 failures. They can be configured to publish failed
records to a dead-letter topic.

Starting with version 2.2.4, the consumer’s group ID can be used while selecting the dead letter
topic name.

See After-rollback Processor, Seek To Current Container Error Handlers, and Publishing Dead-letter

149

Records for more information.
The ConsumerStoppingEvent has been added. See Events for more information.

The SeekToCurrentErrorHandler can now be configured to commit the offset of a recovered record
when the container is configured with AckMode.MANUAL_IMMEDIATE (since 2.2.4). See Seek To Current
Container Error Handlers for more information.

A.1.6. @KafkaListener Changes

You can now override the concurrency and autoStartup properties of the listener container factory
by setting properties on the annotation. You can now add configuration to determine which
headers (if any) are copied to a reply message. See @KafkalListener Annotation for more information.

You can now use @Kafkalistener as a meta-annotation on your own annotations. See @Kafkalistener
as a Meta Annotation for more information.

It is now easier to configure a Validator for @Payload validation. See @KafkalListener @Payload
Validation for more information.

You can now specify kafka consumer properties directly on the annotation; these will override any
properties with the same name defined in the consumer factory (since version 2.2.4). See
Annotation Properties for more information.

A.1.7. Header Mapping Changes

Headers of type MimeType and MediaType are now mapped as simple strings in the RecordHeader value.
Previously, they were mapped as JSON and only MimeType was decoded. MediaType could not be
decoded. They are now simple strings for interoperability.

Also, the DefaultKafkaHeaderMapper has a new addToStringClasses method, allowing the specification
of types that should be mapped by using toString() instead of JSON. See Message Headers for more
information.

A.1.8. Embedded Kafka Changes

The KafkaEmbedded class and its KafkaRule interface have been deprecated in favor of the
EmbeddedKafkaBroker and its JUnit 4 EmbeddedKafkaRule wrapper. The @EmbeddedKafka annotation now
populates an EmbeddedKafkaBroker bean instead of the deprecated KafkaEmbedded. This change allows
the use of @EmbeddedKafka in JUnit 5 tests. The @EmbeddedKafka annotation now has the attribute ports
to specify the port that populates the EmbeddedKafkaBroker. See Testing Applications for more
information.

A.1.9. JsonSerializer/Deserializer Enhancements
You can now provide type mapping information by using producer and consumer properties.

New constructors are available on the deserializer to allow overriding the type header information
with the supplied target type.

150

The JsonDeserializer now removes any type information headers by default.

You can now configure the JsonDeserializer to ignore type information headers by using a Kafka
property (since 2.2.3).

See Serialization, Deserialization, and Message Conversion for more information.

A.1.10. Kafka Streams Changes

The streams configuration bean must now be a KafkaStreamsConfiguration object instead of a
StreamsConfig object.

The StreamsBuilderFactoryBean has been moved from package licore to config.

The KafkaStreamBrancher has been introduced for better end-user experience when conditional
branches are built on top of KStream instance.

See Kafka Streams Support and Configuration for more information.

A.1.11. Transactional ID

When a transaction is started by the listener container, the transactional.id is now the
transactionIdPrefix appended with <group.id>.<topic>.<partition>. This change allows proper
fencing of zombies, as described here.

A.2. Changes between 2.0 and 2.1

A.2.1. Kafka Client Version

This version requires the 1.0.0 kafka-clients or higher.

o The 1.1.x client is supported with version 2.1.5, but you need to override
dependencies as described in [deps-for-11x].

The 1.1.x client is supported natively in version 2.2.

A.2.2. JSON Improvements

The StringJsonMessageConverter and JsonSerializer now add type information in Headers, letting the
converter and JsonDeserializer create specific types on reception, based on the message itself
rather than a fixed configured type. See Serialization, Deserialization, and Message Conversion for
more information.

A.2.3. Container Stopping Error Handlers

Container error handlers are now provided for both record and batch listeners that treat any
exceptions thrown by the listener as fatal/ They stop the container. See Handling Exceptions for
more information.

151

https://www.confluent.io/blog/transactions-apache-kafka/

A.2.4. Pausing and Resuming Containers

The listener containers now have pause() and resume() methods (since version 2.1.3). See Pausing
and Resuming Listener Containers for more information.

A.2.5. Stateful Retry

Starting with version 2.1.3, you can configure stateful retry. See Stateful Retry for more
information.

A.2.6. Client ID

Starting with version 2.1.1, you can now set the client.id prefix on @KafkalListener. Previously, to
customize the client ID, you needed a separate consumer factory (and container factory) per
listener. The prefix is suffixed with -n to provide unique client IDs when you use concurrency.

A.2.7. Logging Offset Commits

By default, logging of topic offset commits is performed with the DEBUG logging level. Starting with
version 2.1.2, a new property in ContainerProperties called commitLoglevel lets you specify the log
level for these messages. See Using KafkaMessagelListenerContainer for more information.

A.2.8. Default @KafkaHandler

Starting with version 2.1.3, you can designate one of the @KafkaHandler annotations on a class-level
@KafkalListener as the default. See @Kafkalistener on a Class for more information.

A.2.9. ReplyingKafkaTemplate

Starting with version 2.1.3, a subclass of KafkaTemplate is provided to support request/reply
semantics. See Using ReplyingKafkaTemplate for more information.

A.2.10. ChainedKafkaTransactionManager

Version 2.1.3 introduced the ChainedKafkaTransactionManager. See Using
ChainedKafkaTransactionManager for more information.

A.2.11. Migration Guide from 2.0

See the 2.0 to 2.1 Migration guide.

A.3. Changes Between 1.3 and 2.0

A.3.1. Spring Framework and Java Versions

The Spring for Apache Kafka project now requires Spring Framework 5.0 and Java 8.

152

https://github.com/spring-projects/spring-kafka/wiki/Spring-for-Apache-Kafka-2.0-to-2.1-Migration-Guide

A.3.2. @KafkalListener Changes

You can now annotate @Kafkalistener methods (and classes and @KafkaHandler methods) with
@SendTo. If the method returns a result, it is forwarded to the specified topic. See Forwarding
Listener Results using @SendTo for more information.

A.3.3. Message Listeners

Message listeners can now be aware of the Consumer object. See Message Listeners for more
information.

A.3.4. Using ConsumerAwareRebalancelistener

Rebalance listeners can now access the Consumer object during rebalance notifications. See
Rebalancing Listeners for more information.

A.4. Changes Between 1.2 and 1.3

A.4.1. Support for Transactions

The 0.11.0.0 client library added support for transactions. The KafkaTransactionManager and other
support for transactions have been added. See Transactions for more information.

A.4.2. Support for Headers

The 0.11.0.0 client library added support for message headers. These can now be mapped to and
from spring-messaging MessageHeaders. See Message Headers for more information.

A.4.3. Creating Topics

The 0.11.0.0 client library provides an AdminClient, which you can use to create topics. The
KafkaAdmin uses this client to automatically add topics defined as @Bean instances.

A.4.4. Support for Kafka Timestamps

KafkaTemplate now supports an API to add records with timestamps. New KafkaHeaders have been
introduced regarding timestamp support. Also, new KafkaConditions.timestamp() and
KafkaMatchers.hasTimestamp() testing utilities have been added. See Using KafkaTemplate,
@Kafkalistener Annotation, and Testing Applications for more details.

A.4.5. @Kafkalistener Changes

You can now configure a KafkalistenerErrorHandler to handle exceptions. See Handling Exceptions
for more information.

By default, the @KafkalListener id property is now used as the group.id property, overriding the
property configured in the consumer factory (if present). Further, you can explicitly configure the
groupld on the annotation. Previously, you would have needed a separate container factory (and

153

consumer factory) to use different group.id values for listeners. To restore the previous behavior of
using the factory configured group.id, set the idIsGroup property on the annotation to false.

A.4.6. @EmbeddedKafka Annotation

For convenience, a test class-level @EmbeddedKaftka annotation is provided, to register KafkaEmbedded
as a bean. See Testing Applications for more information.

A.4.7. Kerberos Configuration

Support for configuring Kerberos is now provided. See Kerberos for more information.

A.5. Changes between 1.1 and 1.2

This version uses the 0.10.2.x client.

A.6. Changes between 1.0 and 1.1

A.6.1. Kafka Client

This version uses the Apache Kafka 0.10.x.x client.

A.6.2. Batch Listeners

Listeners can be configured to receive the entire batch of messages returned by the consumer.poll()
operation, rather than one at a time.

A.6.3. Null Payloads

Null payloads are used to “delete” keys when you use log compaction.

A.6.4. Initial Offset

When explicitly assigning partitions, you can now configure the initial offset relative to the current
position for the consumer group, rather than absolute or relative to the current end.

A.6.5. Seek

You can now seek the position of each topic or partition. You can use this to set the initial position
during initialization when group management is in use and Kafka assigns the partitions. You can
also seek when an idle container is detected or at any arbitrary point in your application’s
execution. See Seeking to a Specific Offset for more information.

154

	Spring for Apache Kafka
	Table of Contents
	Chapter 1. Preface
	Chapter 2. What’s new?
	2.1. What’s New in 2.3 Since 2.2
	2.1.1. Tips, Tricks and Examples
	2.1.2. Kafka Client Version
	2.1.3. Class/Package Changes
	2.1.4. Producer and Consumer Factory Changes
	2.1.5. Listener Container Changes
	2.1.6. ErrorHandler Changes
	2.1.7. TopicBuilder
	2.1.8. Kafka Streams Changes
	2.1.9. JSON Component Changes
	2.1.10. ReplyingKafkaTemplate
	2.1.11. AggregatingReplyingKafkaTemplate
	2.1.12. Transaction Changes
	2.1.13. New Delegating Serializer/Deserializer
	2.1.14. New Retrying Deserializer
	2.1.15. New function for recovering from deserializing errors
	2.1.16. EmbeddedKafkaBroker Changes
	2.1.17. ReplyingKafkaTemplate Changes
	2.1.18. Header Mapper Changes

	Chapter 3. Introduction
	3.1. Quick Tour for the Impatient
	3.1.1. Compatibility
	3.1.2. A Very, Very Quick Example
	3.1.3. With Java Configuration
	3.1.4. Even Quicker, with Spring Boot

	Chapter 4. Reference
	4.1. Using Spring for Apache Kafka
	4.1.1. Configuring Topics
	4.1.2. Sending Messages
	Using KafkaTemplate
	Using DefaultKafkaProducerFactory
	Using ReplyingKafkaTemplate
	Aggregating Multiple Replies

	4.1.3. Receiving Messages
	Message Listeners
	Message Listener Containers
	@KafkaListener Annotation
	Obtaining the Consumer group.id
	Container Thread Naming
	@KafkaListener as a Meta Annotation
	@KafkaListener on a Class
	@KafkaListener Lifecycle Management
	@KafkaListener @Payload Validation
	Rebalancing Listeners
	Forwarding Listener Results using @SendTo
	Filtering Messages
	Retrying Deliveries
	Stateful Retry
	Listener Consumer Lifecycle Events
	Detecting Idle and Non-Responsive Consumers
	Topic/Partition Initial Offset
	Seeking to a Specific Offset
	Container factory
	Thread Safety
	Monitoring Listener Performance

	4.1.4. Transactions
	Overview
	Using KafkaTransactionManager
	Transactional Listener Container and Exactly Once Processing
	Transaction Synchronization
	Using ChainedKafkaTransactionManager
	KafkaTemplate Local Transactions
	transactionIdPrefix

	4.1.5. Wiring Spring Beans into Producer/Consumer Interceptors
	4.1.6. Pausing and Resuming Listener Containers
	4.1.7. Events
	4.1.8. Serialization, Deserialization, and Message Conversion
	Overview
	JSON
	Mapping Types
	Delegating Serializer and Deserializer
	Retrying Deserializer
	Spring Messaging Message Conversion
	Using ErrorHandlingDeserializer
	Payload Conversion with Batch Listeners
	ConversionService Customization

	4.1.9. Message Headers
	4.1.10. Null Payloads and Log Compaction of 'Tombstone' Records
	4.1.11. Handling Exceptions
	Listener Error Handlers
	Container Error Handlers
	Consumer-Aware Container Error Handlers
	Seek To Current Container Error Handlers
	Container Stopping Error Handlers
	After-rollback Processor
	Publishing Dead-letter Records

	4.1.12. Kerberos

	4.2. Kafka Streams Support
	4.2.1. Basics
	4.2.2. Spring Management
	4.2.3. Streams JSON Serialization and Deserialization
	4.2.4. Using KafkaStreamsBrancher
	4.2.5. Configuration
	4.2.6. Header Enricher
	4.2.7. MessagingTransformer
	4.2.8. Recovery from Deserialization Exceptions
	4.2.9. Kafka Streams Example

	4.3. Testing Applications
	4.3.1. JUnit
	4.3.2. Configuring Topics
	4.3.3. Using the Same Brokers for Multiple Test Classes
	4.3.4. @EmbeddedKafka Annotation
	4.3.5. @EmbeddedKafka Annotation with JUnit5
	4.3.6. Embedded Broker in @SpringBootTest Annotations
	JUnit4 Class Rule
	@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

	4.3.7. Hamcrest Matchers
	4.3.8. AssertJ Conditions
	4.3.9. Example

	Chapter 5. Tips, Tricks and Examples
	5.1. Manually Assigning All Partitions
	5.2. Example of Transaction Synchronization

	Chapter 6. Spring Integration
	6.1. Spring Integration for Apache Kafka
	6.1.1. Overview
	6.1.2. What’s new in Spring Integration for Apache Kafka (version 3.2)
	6.1.3. Outbound Channel Adapter
	Java Configuration
	Java DSL Configuration
	XML Configuration

	6.1.4. Message-driven Channel Adapter
	Java Configuration
	Java DSL Configuration
	XML Configuration

	6.1.5. Inbound Channel Adapter
	Java Configuration
	Java DSL Configuration
	XML Configuration

	6.1.6. Outbound Gateway
	Java Configuration
	Java DSL Configuration
	XML Configuration

	6.1.7. Inbound Gateway
	XML Configuration

	6.1.8. Message Conversion
	6.1.9. Null Payloads and Log Compaction 'Tombstone' Records
	6.1.10. Calling a Spring Integration flow from a KStream
	6.1.11. What’s New in Spring Integration for Apache Kafka
	3.2.x
	3.1.x
	3.0.x
	2.3.x
	2.2.x
	2.1.x
	2.0.x

	Chapter 7. Other Resources
	Appendix A: Change History
	A.1. Changes between 2.1 and 2.2
	A.1.1. Kafka Client Version
	A.1.2. Class and Package Changes
	A.1.3. After Rollback Processing
	A.1.4. ConcurrentKafkaListenerContainerFactory Changes
	A.1.5. Listener Container Changes
	A.1.6. @KafkaListener Changes
	A.1.7. Header Mapping Changes
	A.1.8. Embedded Kafka Changes
	A.1.9. JsonSerializer/Deserializer Enhancements
	A.1.10. Kafka Streams Changes
	A.1.11. Transactional ID

	A.2. Changes between 2.0 and 2.1
	A.2.1. Kafka Client Version
	A.2.2. JSON Improvements
	A.2.3. Container Stopping Error Handlers
	A.2.4. Pausing and Resuming Containers
	A.2.5. Stateful Retry
	A.2.6. Client ID
	A.2.7. Logging Offset Commits
	A.2.8. Default @KafkaHandler
	A.2.9. ReplyingKafkaTemplate
	A.2.10. ChainedKafkaTransactionManager
	A.2.11. Migration Guide from 2.0

	A.3. Changes Between 1.3 and 2.0
	A.3.1. Spring Framework and Java Versions
	A.3.2. @KafkaListener Changes
	A.3.3. Message Listeners
	A.3.4. Using ConsumerAwareRebalanceListener

	A.4. Changes Between 1.2 and 1.3
	A.4.1. Support for Transactions
	A.4.2. Support for Headers
	A.4.3. Creating Topics
	A.4.4. Support for Kafka Timestamps
	A.4.5. @KafkaListener Changes
	A.4.6. @EmbeddedKafka Annotation
	A.4.7. Kerberos Configuration

	A.5. Changes between 1.1 and 1.2
	A.6. Changes between 1.0 and 1.1
	A.6.1. Kafka Client
	A.6.2. Batch Listeners
	A.6.3. Null Payloads
	A.6.4. Initial Offset
	A.6.5. Seek

