Spring for Apache Kafka

Gary Russell, Artem Bilan, Biju Kunjummen, Jay Bryant

Version 2.7.5

Table of Contents

1. Preface
2. What’s new?
2.1. What’s New in 2.7 Since 2.6

2.1.1. Kafka Client Version

2.1.2. Non-Blocking Delayed Retries Using Topics
2.1.3. Listener Container Changes

2.1.4. eKafkalListener Changes

2.1.5. DeadlLetterPublishingRecover Changes
2.1.6. ChainedKafkaTransactionManager is Deprecated
2.1.7. ReplyingKafkaTemplate Changes

2.1.8. Kafka Streams Changes

2.1.9. KafkaAdmin Changes

2.1.10. MessageConverter Changes

2.1.11. Sequencing @Kafkalistener s

2.1.12. ExponentialBackOffWithMaxRetries

2.1.13. Conditional Delegating Error Handlers

3. Introduction
3.1. Quick Tour

3.1.1. Compatibility
3.1.2. Getting Started
Spring Boot Consumer App
Spring Boot Producer App
With Java Configuration (No Spring Boot)

4. Reference
4.1. Using Spring for Apache Kafka

4.1.1. Connecting to Kafka
Factory Listeners

4.1.2. Configuring Topics

4.1.3. Sending Messages
Using KafkaTemplate
Using RoutingKafkaTemplate
Using DefaultKafkaProducerFactory
Using ReplyingKafkaTemplate
Reply Type Message<?>
Aggregating Multiple Replies

4.1.4. Receiving Messages
Message Listeners
Message Listener Containers

© N9 9 9 o oo 1o o s R R R R WWwWWwW W W WD

DR R R W W W NNN R R R R
BN DM O O© Rk, O 00N DN J oo oo -

@Kafkalistener Annotation 50

Obtaining the Consumer group.id 60
Container Thread Naming 61
@Kafkalistener as a Meta Annotation 61
@Kafkalistener on a Class 62
@Kafkalistener Attribute Modification 63
@KafkalListener Lifecycle Management 64
@Kafkalistener @Payload Validation 65
Rebalancing Listeners 66
Forwarding Listener Results using @SendTo 68
Filtering Messages 72
Retrying Deliveries 73
Stateful Retry 73
Starting @Kafkalistener s in Sequence 75
4.1.5. Listener Container Properties 77
4.1.6. Application Events 81
Detecting Idle and Non-Responsive Consumers 84
4.1.7. Topic/Partition Initial Offset 86
4.1.8. Seeking to a Specific Offset 87
4.1.9. Container factory 93
4.1.10. Thread Safety 94
4.1.11. Monitoring 94
Monitoring Listener Performance 95
Monitoring KafkaTemplate Performance 95
Micrometer Native Metrics 95
4.1.12. Transactions 97
Overview 97
Using KafkaTransactionManager 98
Transaction Synchronization 98
Using Consumer-Initiated Transactions 99
KafkaTemplate Local Transactions 99
transactionIdPrefix 99
KafkaTemplate Transactional and non-Transactional Publishing 100
Transactions with Batch Listeners 100
4.1.13. Exactly Once Semantics 102
4.1.14. Wiring Spring Beans into Producer/Consumer Interceptors 103
4.1.15. Pausing and Resuming Listener Containers 107
4.1.16. Pausing and Resuming Partitions on Listener Containers 110
4.1.17. Serialization, Deserialization, and Message Conversion 110
Overview 110

String serialization 111

JSON 112

Delegating Serializer and Deserializer 117
Retrying Deserializer 118
Spring Messaging Message Conversion 118
Using ErrorHandlingDeserializer 122
Payload Conversion with Batch Listeners 123
ConversionService Customization 125
Adding custom HandlerMethodArgumentResolver to @KafkalListener 125
4.1.18. Message Headers 126
4.1.19. Null Payloads and Log Compaction of 'Tombstone' Records 130
4.1.20. Handling Exceptions 132
Listener Error Handlers 132
Container Error Handlers 134
Consumer-Aware Container Error Handlers 136
Seek To Current Container Error Handlers 136
Retrying Batch Error Handler 140
Recovering Batch Error Handler 141
Container Stopping Error Handlers 143
Conditional Delegating Error Handlers 144
After-rollback Processor 144
Delivery Attempts Header 147
Publishing Dead-letter Records 147
ExponentialBackOffWithMaxRetries Implementation 151
4.1.21. JAAS and Kerberos 152
4.2. Apache Kafka Streams Support 152
4.2.1. Basics 152
4.2.2. Spring Management 153
4.2.3. KafkaStreams Micrometer Support 156
4.2.4. Streams JSON Serialization and Deserialization 156
4.2.5. Using KafkaStreamBrancher 156
4.2.6. Configuration 157
4.2.7. Header Enricher 158
4.2.8. MessagingTransformer 158
4.2.9. Recovery from Deserialization Exceptions 159
4.2.10. Kafka Streams Example 160
4.3. Testing Applications 163
4.3.1. KafkaTestUtils 163
4.3.2. JUnit 163
4.3.3. Configuring Topics 165
4.3.4. Using the Same Brokers for Multiple Test Classes 166

4.3.5. @EmbeddedKafka Annotation 167

4.3.6. @EmbeddedKafka Annotation with JUnit5 170

4.3.7. Embedded Broker in @SpringBootTest Annotations 171
JUnit4 Class Rule 171
@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean 172

4.3.8. Hamcrest Matchers 173

4.3.9. Assert] Conditions 174

4.3.10. Example 176

4.4. Non-Blocking Retries 178

4.4.1. How The Pattern Works 178

4.4.2. Back Off Delay Precision 179
Overview and Guarantees 179
Tuning the Delay Precision 179

4.4.3. Configuration 180
Using the @RetryableTopic annotation 180
Using RetryTopicConfiguration beans 180

4.4.4. Features 182
BackOff Configuration 182
Single Topic Fixed Delay Retries 183
Global timeout 184
Exception Classifier 184
Include and Exclude Topics 185
Topics AutoCreation 185

4.4.5. Topic Naming 186
Retry Topics and DIt Suffixes 187
Appending the Topic’s Index or Delay 187
Custom naming strategies 188

4.4.6. DIt Strategies 189
DIt Processing Method 189
DIt Failure Behavior 191
Configuring No DIt 191

4.4.7. Specifying a ListenerContainerFactory 192

5. Tips, Tricks and Examples 194
5.1. Manually Assigning All Partitions 194
5.2. Examples of Kafka Transactions with Other Transaction Managers 195
5.3. Customizing the JsonSerializer and JsonDeserializer 198

6. Other Resources 199

Appendix A: Override Spring Boot Dependencies 200

Appendix B: Change History 204
B.1. Changes between 2.5 and 2.6 204

B.1.1. Kafka Client Version 204

B.1.2. Listener Container Changes 204

B.1.3. @KafkaListener Changes 204

B.1.4. ErrorHandler Changes 204
B.1.5. Producer Factory Changes 204
B.2. Changes between 2.4 and 2.5 205
B.2.1. Consumer/Producer Factory Changes 205
B.2.2. StreamsBuilderFactoryBean Changes 205
B.2.3. Kafka Client Version 205
B.2.4. Class/Package Changes 205
B.2.5. Delivery Attempts Header 205
B.2.6. @KafkaListener Changes 205
B.2.7. Listener Container Changes 206
B.2.8. KafkaTemplate Changes 206
B.2.9. Kafka String Serializer/Deserializer 206
B.2.10. JsonDeserializer 207
B.2.11. Delegating Serializer/Deserializer 207
B.2.12. Testing Changes 207
B.3. Changes between 2.3 and 2.4 207
B.3.1. Kafka Client Version 207
B.3.2. ConsumerAwareRebalanceListener 207
B.3.3. GenericErrorHandler 207
B.3.4. KafkaTemplate 207
B.3.5. AggregatingReplyingKafkaTemplate 207
B.3.6. Listener Container 208
B.3.7. @KafkaListener 208
B.3.8. Kafka Streams 208
B.4. Changes Between 2.2 and 2.3 208
B.4.1. Tips, Tricks and Examples 208
B.4.2. Kafka Client Version 208
B.4.3. Class/Package Changes 208
B.4.4. Configuration Changes 208
B.4.5. Producer and Consumer Factory Changes 209
B.4.6. Listener Container Changes 209
B.4.7. ErrorHandler Changes 210
B.4.8. TopicBuilder 210
B.4.9. Kafka Streams Changes 210
B.4.10. JSON Component Changes 211
B.4.11. ReplyingKafkaTemplate 211
B.4.12. AggregatingReplyingKafkaTemplate 211
B.4.13. Transaction Changes 211
B.4.14. New Delegating Serializer/Deserializer 211

B.4.15. New Retrying Deserializer 211

B.5. Changes Between 2.1 and 2.2 212

B.5.1. Kafka Client Version 212
B.5.2. Class and Package Changes 212
B.5.3. After Rollback Processing 212
B.5.4. ConcurrentKafkalistenerContainerFactory Changes 212
B.5.5. Listener Container Changes 212
B.5.6. @KafkaListener Changes 213
B.5.7. Header Mapping Changes 213
B.5.8. Embedded Kafka Changes 213
B.5.9. JsonSerializer/Deserializer Enhancements 213
B.5.10. Kafka Streams Changes 214
B.5.11. Transactional ID 214
B.6. Changes Between 2.0 and 2.1 214
B.6.1. Kafka Client Version 214
B.6.2. JSON Improvements 214
B.6.3. Container Stopping Error Handlers 214
B.6.4. Pausing and Resuming Containers 214
B.6.5. Stateful Retry 214
B.6.6. Client ID 215
B.6.7. Logging Offset Commits 215
B.6.8. Default @KafkaHandler 215
B.6.9. ReplyingKafkaTemplate 215
B.6.10. ChainedKafkaTransactionManager 215
B.6.11. Migration Guide from 2.0 215
B.7. Changes Between 1.3 and 2.0 215
B.7.1. Spring Framework and Java Versions 215
B.7.2. @Kafkalistener Changes 215
B.7.3. Message Listeners 215
B.7.4. Using ConsumerAwareRebalancelistener 216
B.8. Changes Between 1.2 and 1.3 216
B.8.1. Support for Transactions 216
B.8.2. Support for Headers 216
B.8.3. Creating Topics 216
B.8.4. Support for Kafka Timestamps 216
B.8.5. @KafkalListener Changes 216
B.8.6. 0EmbeddedKafka Annotation 216
B.8.7. Kerberos Configuration 216
B.9. Changes Between 1.1 and 1.2 217
B.10. Changes Between 1.0 and 1.1 217
B.10.1. Kafka Client 217

B.10.2. Batch Listeners 217

B.10.3. Null Payloads. o

B.10.4. Initial Offset
B.10.5.Seek

o This documentation is also available as HTML.

© 2016 - 2021 VMware, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

https://docs.spring.io/spring-kafka/docs/2.7.5/reference/html/index.html

Chapter 1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-
based messaging solutions. We provide a “template” as a high-level abstraction for sending

messages. We also provide support for Message-driven POJOs.

Chapter 2. What’s new?

2.1. What’s New in 2.7 Since 2.6

This section covers the changes made from version 2.6 to version 2.7. For changes in earlier
version, see Change History.

2.1.1. Kafka Client Version

This version requires the 2.7.0 kafka-clients. It is also compatible with the 2.8.0 clients, since
version 2.7.1; see Override Spring Boot Dependencies.

2.1.2. Non-Blocking Delayed Retries Using Topics

This significant new feature is added in this release. When strict ordering is not important, failed
deliveries can be sent to another topic to be consumed later. A series of such retry topics can be
configured, with increasing delays. See Non-Blocking Retries for more information.

2.1.3. Listener Container Changes

The onlyLogRecordMetadata container property is now true by default.
A new container property stopImmediate is now available.

See Listener Container Properties for more information.

Error handlers that use a BackOff between delivery attempts (e.g. SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor) will now exit the back off interval soon after the container is
stopped, rather than delaying the stop. See After-rollback Processor and Seek To Current Container
Error Handlers for more information.

Error handlers and after rollback processors that extend FailedRecordProcessor can now be
configured with one or more RetrylListener s to receive information about retry and recovery
progress.

See See After-rollback Processor, Seek To Current Container Error Handlers, and Recovering Batch
Error Handler for more information.

The RecordInterceptor now has additional methods called after the listener returns (normally, or by
throwing an exception). It also has a sub-interface ConsumerAwareRecordInterceptor. In addition,
there is now a BatchInterceptor for batch listeners. See Message Listener Containers for more
information.

2.1.4. eKafkalistener Changes

You can now validate the payload parameter of @KafkaHandler methods (class-level listeners). See
@Kafkalistener @Payload Validation for more information.

You can now set the rawRecordHeader property on the MessagingMessageConverter and

BatchMessagingMessageConverter which causes the raw ConsumerRecord to be added to the converted
Message<?>. This is useful, for example, if you wish to use a DeadlLetterPublishingRecoverer in a
listener error handler. See Listener Error Handlers for more information.

You can now modify @Kafkalistener annotations during application initialization. See
@Kafkalistener Attribute Modification for more information.

2.1.5. DeadLetterPublishingRecover Changes

Now, if both the key and value fail deserialization, the original values are published to the DLT.
Previously, the value was populated but the key DeserializationException remained in the headers.
There is a breaking API change, if you subclassed the recoverer and overrode the
createProducerRecord method.

In addition, the recoverer verifies that the partition selected by the destination resolver actually
exists before publishing to it.

See Publishing Dead-letter Records for more information.

2.1.6. ChainedKafkaTransactionManager is Deprecated

See Transactions for more information.

2.1.7. ReplyingKafkaTemplate Changes

There is now a mechanism to examine a reply and fail the future exceptionally if some condition
exists.

Support for sending and receiving spring-messaging Message<?> s has been added.

See Using ReplyingKafkaTemplate for more information.

2.1.8. Kafka Streams Changes

By default, the StreamsBuilderFactoryBean is now configured to not clean up local state. See
Configuration for more information.

2.1.9. KafkaAdmin Changes

New methods createOrModifyTopics and describeTopics have been added. KafkaAdmin.NewTopics has
been added to facilitate configuring multiple topics in a single bean. See Configuring Topics for
more information.

2.1.10. MessageConverter Changes

It is now possible to add a spring-messaging SmartMessageConverter to the MessagingMessageConverter,
allowing content negotiation based on the contentType header. See Spring Messaging Message
Conversion for more information.

2.1.11. Sequencing @Kafkalistener s

See Starting @Kafkalistener s in Sequence for more information.

2.1.12. ExponentialBackOffWithMaxRetries

A new BackOff implementation is provided, making it more convenient to configure the max retries.
See ExponentialBackOffWithMaxRetries Implementation for more information.

2.1.13. Conditional Delegating Error Handlers

These new error handlers can be configured to delegate to different error handlers, depending on
the exception type. See Conditional Delegating Error Handlers for more information.

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka
and the underlying concepts and some code snippets that can help you get up and running as
quickly as possible.

3.1. Quick Tour

Prerequisites: You must install and run Apache Kafka. Then you must put the Spring for Apache
Kafka (spring-kafka) JAR and all of its dependencies on your class path. The easiest way to do that is
to declare a dependency in your build tool.

If you are not using Spring Boot, declare the spring-kafka jar as a dependency in your project.

Maven

<dependency>
<groupld>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.7.5</version>

</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka:2.7.5"

When using Spring Boot, (and you haven’t used start.spring.io to create your
project), omit the version and Boot will automatically bring in the correct version
that is compatible with your Boot version:

Maven
<dependency>
<groupId>org.springframework.kafka</groupId>

<artifactId>spring-kafka</artifactId>
</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka'

However, the quickest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits
and Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency.

https://start.spring.io

3.1.1. Compatibility
This quick tour works with the following versions:

* Apache Kafka Clients 2.7.0 or 2.8.0 (see Override Spring Boot Dependencies).
* Spring Framework 5.3.x

* Minimum Java version: 8

3.1.2. Getting Started

The simplest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits and
Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency. Refer to the
Spring Boot documentation for more information about its opinionated auto configuration of the
infrastructure beans.

Here is a minimal consumer application.

Spring Boot Consumer App

https://start.spring.io
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-kafka

Example 1. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

(id = "myId", topics = "topicl")
public void listen(String in) {
System.out.println(in);
}

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@KafkalListener(id = "myId", topics = ["topic1"])
fun listen(value: String?) {
println(value)
}
}

fun main(args: Array<String>) = runApplication<Application>(*args)

Example 2. application.properties

spring.kafka.consumer.auto-offset-reset=earliest

The NewTopic bean causes the topic to be created on the broker; it is not needed if the topic already
exists.

Spring Boot Producer App

Example 3. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> {
template.send("topic1", "test");

b

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@Bean
fun runner(template: KafkaTemplate<String?, String?>) =
ApplicationRunner { template.send("topic1", "test") }

companion object {

@JvmStatic
fun main(args: Array<String>) = runApplication<Application>(*args)

10

With Java Configuration (No Spring Boot)

Spring for Apache Kafka is designed to be used in a Spring Application Context. For

o example, if you create the listener container yourself outside of a Spring context,
not all functions will work unless you satisfy all of the ---Aware interfaces that the
container implements.

Here is an example of an application that does not use Spring Boot; it has both a Consumer and
Producer.

11

Example 4. Without Boot
Java
public class Sender {

public static void main(String[] args) {
AnnotationConfigApplicationContext context = new
AnnotationConfigApplicationContext(Config.class);
context.qgetBean(Sender.class).send("test", 42);

}
private final KafkaTemplate<Integer, String> template;

public Sender(KafkaTemplate<Integer, String> template) {
this.template = template;

}

public void send(String toSend, int key) {
this.template.send("topic1", key, toSend);
}

}
public class Listener {

(id = "listen1", topics = "topic1")
public void listen1(String in) {
System.out.println(in);
}

public class Config {

ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalistenerContainerFactory(ConsumerFactory<Integer,
String> consumerFactory) {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerProps());

}

12

private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "group");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

IntegerDeserializer.class);

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

StringDeserializer.class);

props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
/] ...
return props;

public Sender sender(KafkaTemplate<Integer, String> template) {
return new Sender(template);

}

public Listener listener() {
return new Listener();

}

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(senderProps());

}

private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer

.class);

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer

.class);

//...
return props;

public KafkaTemplate<Integer, String> kafkaTemplate(ProducerFactory<Integer,

String> producerFactory) {

Kotlin

return new KafkaTemplate<Integer, String>(producerFactory);

}

14

class Sender(private val template: KafkaTemplate<Int, String>) {

fun send(toSend: String, key: Int) {
template.send("topic1", key, toSend)

}
}

class Listener {

@Kafkalistener(id = "listen1", topics = ["topic1"])
fun listen1(‘in‘: String) {

println(‘in')
}

}

@Configuration
@EnableKafka
class Config {

@Bean
fun kafkalistenerContainerFactory(consumerFactory: ConsumerFactory<Int,
String>) =
ConcurrentKafkalListenerContainerFactory<Int, String>().also {
it.consumerFactory = consumerFactory }

@Bean
fun consumerFactory() = DefaultKafkaConsumerFactory<Int,
String>(consumerProps)

val consumerProps = mapOf(

ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ConsumerConfig.GROUP_ID_CONFIG to "group",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG to

IntegerDeserializer::class.java,
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG to

StringDeserializer::class.java,
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to "earliest"

)

@Bean
fun sender(template: KafkaTemplate<Int, String>) = Sender(template)

@Bean
fun listener() = Listener()

@Bean

fun producerFactory() = DefaultKafkaProducerFactory<Int, String>(senderProps)

val senderProps = mapOf(
ProducerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ProducerConfig.LINGER_MS_CONFIG to 10,
ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG to
IntegerSerializer::class.java,
ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG to
StringSerializer::class.java

)

@Bean
fun kafkaTemplate(producerFactory: ProducerFactory<Int, String>) =
KafkaTemplate(producerFactory)

}

As you can see, you have to define several infrastructure beans when not using Spring Boot.

15

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring for
Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

4.1. Using Spring for Apache Kafka

This section offers detailed explanations of the various concerns that impact using Spring for
Apache Kafka. For a quick but less detailed introduction, see Quick Tour.

4.1.1. Connecting to Kafka

* KafkaAdmin - see Configuring Topics
* ProducerFactory - see Sending Messages

» ConsumerFactory - see Receiving Messages

Starting with version 2.5, each of these extends KafkaResourceFactory. This allows changing the
bootstrap servers at runtime by adding a Supplier<String> to their configuration:
setBootstrapServersSupplier(() »). This will be called for all new connections to get the list of
servers. Consumers and Producers are generally long-lived. To close existing Producers, call reset()
on the DefaultKafkaProducerFactory. To close existing Consumers, call stop() (and then start()) on
the KafkalistenerEndpointRegistry and/or stop() and start() on any other listener container beans.

For convenience, the framework also provides an ABSwitchCluster which supports two sets of
bootstrap servers; one of which is active at any time. Configure the ABSwitchCluster and add it to the
producer and consumer factories, and the KafkaAdmin, by calling setBootstrapServersSupplier().
When you want to switch, call primary() or secondary() and call reset() on the producer factory to
establish new connection(s); for consumers, stop() and start() all listener containers. When using
@KafkalListener s, stop() and start() the KafkalListenerEndpointRegistry bean.

See the Javadocs for more information.

Factory Listeners

Starting with version 2.5, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory can be
configured with a Listener to receive notifications whenever a producer or consumer is created or
closed.

16

Producer Factory Listener
interface Listener<k, V> {

default void producerAdded(String id, Producer<K, V> producer) {
}

default void producerRemoved(String id, Producer<K, V> producer) {

}

Consumer Factory Listener
interface Listener<K, V> {

default void consumerAdded(String id, Consumer<K, V> consumer) {

}

default void consumerRemoved(String id, Consumer<K, V> consumer) {

}

In each case, the id is created by appending the client-id property (obtained from the metrics()
after creation) to the factory beanName property, separated by ..

These listeners can be used, for example, to create and bind a Micrometer KafkaClientMetrics
instance when a new client is created (and close it when the client is closed).

The framework provides listeners that do exactly that; see Micrometer Native Metrics.

4.1.2. Configuring Topics

If you define a KafkaAdmin bean in your application context, it can automatically add topics to the
broker. To do so, you can add a NewTopic @Bean for each topic to the application context. Version 2.3
introduced a new class TopicBuilder to make creation of such beans more convenient. The
following example shows how to do so:

17

Java

18

public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
return new KafkaAdmin(configs);

public NewTopic topicl() {
return TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build();

public NewTopic topic2() {
return TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

public NewTopic topic3() {
return TopicBuilder.name("thing3")
.assignReplicas(®, Arrays.asList(2, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

Kotlin

@Bean
fun admin() = KafkaAdmin(mapOf(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG to
"localhost:9092"))

@Bean
fun topic1() =
TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build()

©Bean
fun topic2() =
TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

@Bean
fun topic3() =
TopicBuilder.name("thing3")

.assignReplicas(@, Arrays.asList(@, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

Starting with version 2.6, you can omit .partitions() and/or replicas() and the broker defaults will
be applied to those properties. The broker version must be at least 2.4.0 to support this feature - see
KIP-464.

19

https://cwiki.apache.org/confluence/display/KAFKA/KIP-464%3A+Defaults+for+AdminClient%23createTopic

Java

public NewTopic topic4() {
return TopicBuilder.name("defaultBoth")
.build();

public NewTopic topich() {
return TopicBuilder.name("defaultPart")
.replicas(1)
.build();

public NewTopic topic6() {
return TopicBuilder.name("defaultRepl")

.partitions(3)
.build();
}
Kotlin
@Bean

fun topic4()

TopicBuilder.name("defaultBoth").build()

@Bean
fun topich()

TopicBuilder.name("defaultPart").replicas(1).build()

@Bean
fun topic6()

TopicBuilder.name("defaultRepl").partitions(3).build()

Starting with version 2.7, you can declare multiple NewTopic s in a single KafkaAdmin.NewTopics bean
definition:

20

Java

public KafkaAdmin.NewTopics topics456() {
return new NewTopics(
TopicBuilder.name("defaultBoth")
.build(),
TopicBuilder.name("defaultPart")
.replicas(1)
.build(),
TopicBuilder.name("defaultRepl")
.partitions(3)
.build());

Kotlin

©Bean
fun topics456() = KafkaAdmin.NewTopics(
TopicBuilder.name("defaultBoth")
.build(),
TopicBuilder.name("defaultPart")
.replicas(1)
.build(),
TopicBuilder.name("defaultRepl")
.partitions(3)
.build()

o When using Spring Boot, a KafkaAdmin bean is automatically registered so you only
need the NewTopic (and/or NewTopics) @Bean s.

By default, if the broker is not available, a message is logged, but the context continues to load. You
can programmatically invoke the admin’s initialize() method to try again later. If you wish this
condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable property to true. The
context then fails to initialize.

If the broker supports it (1.0.0 or higher), the admin increases the number of
o partitions if it is found that an existing topic has fewer partitions than the
NewTopic.numPartitions.

Starting with version 2.7, the KafkaAdmin provides methods to create and examine topics at runtime.

* createOrModifyTopics

* describeTopics

For more advanced features, you can use the AdminClient directly. The following example shows

21

how to do so:

private KafkaAdmin admin;

AdminClient client = AdminClient.create(admin.getConfigurationProperties());

client.close();

4.1.3. Sending Messages

This section covers how to send messages.

Using KafkaTemplate

This section covers how to use KafkaTemplate to send messages.

Overview

The KafkaTemplate wraps a producer and provides convenience methods to send data to Kafka
topics. The following listing shows the relevant methods from KafkaTemplate:

22

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data);

ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp,
K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V
data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long
timestamp, K key, V data);

ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);
Map<MetricName, ? extends Metric> metrics();

List<PartitionInfo> partitionsFor(String topic);

<T> T execute(ProducerCallback<K, V, T> callback);

// Flush the producer.

void flush();

interface ProducerCallback<K, V, T> {

T doInKafka(Producer<K, V> producer);

See the Javadoc for more detail.
The sendDefault API requires that a default topic has been provided to the template.

The API takes in a timestamp as a parameter and stores this timestamp in the record. How the user-
provided timestamp is stored depends on the timestamp type configured on the Kafka topic. If the
topic is configured to use CREATE_TIME, the user specified timestamp is recorded (or generated if not
specified). If the topic is configured to use LOG_APPEND_TIME, the user-specified timestamp is ignored
and the broker adds in the local broker time.

23

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/core/KafkaTemplate.html

The metrics and partitionsFor methods delegate to the same methods on the underlying Producer.
The execute method provides direct access to the underlying Producer.

To use the template, you can configure a producer factory and provide it in the template’s
constructor. The following example shows how to do so:

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.
class);
// See https://kafka.apache.org/documentation/#producerconfigs for more
properties
return props;

}

public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

Starting with version 2.5, you can now override the factory’s ProducerConfig properties to create
templates with different producer configurations from the same factory.

public KafkaTemplate<String, String> stringTemplate(ProducerFactory<String,
String> pf) {
return new KafkaTemplate<>(pf);

}

public KafkaTemplate<String, byte[]> bytesTemplate(ProducerFactory<String, byte[]>
pf) {
return new KafkaTemplate<>(pf,
Collections.singletonMap(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class));

}

24

https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html

Note that a bean of type ProducerFactory<?, 7> (such as the one auto-configured by Spring Boot) can
be referenced with different narrowed generic types.

You can also configure the template by using standard <bean/> definitions.
Then, to use the template, you can invoke one of its methods.

When you use the methods with a Message<?> parameter, the topic, partition, and key information is
provided in a message header that includes the following items:

» KafkaHeaders.TOPIC

e KafkaHeaders.PARTITION ID

e KafkaHeaders.MESSAGE_KEY

» KafkaHeaders.TIMESTAMP

The message payload is the data.

Optionally, you can configure the KafkaTemplate with a ProducerListener to get an asynchronous
callback with the results of the send (success or failure) instead of waiting for the Future to
complete. The following listing shows the definition of the ProducerListener interface:

public interface ProducerlListener<K, V> {

void onSuccess(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata);

void onError(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata,
Exception exception);

By default, the template is configured with a LoggingProducerListener, which logs errors and does
nothing when the send is successful.

For convenience, default method implementations are provided in case you want to implement
only one of the methods.

Notice that the send methods return a ListenableFuture<SendResult>. You can register a callback
with the listener to receive the result of the send asynchronously. The following example shows
how to do so:

25

ListenableFuture<SendResult<Integer, String>> future = template.send("myTopic",

"something");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(Throwable ex) {

}

1)

SendResult has two properties, a ProducerRecord and RecordMetadata. See the Kafka API
documentation for information about those objects.

The Throwable in onFailure can be cast to a KafkaProducerException; its failedProducerRecord
property contains the failed record.

Starting with version 2.5, you can use a KafkaSendCallback instead of a ListenableFutureCallback,
making it easier to extract the failed ProducerRecord, avoiding the need to cast the Throwable:

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(new KafkaSendCallback<Integer, String>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(KafkaProducerException ex) {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1

You can also use a pair of lambdas:

26

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(result -> {

}, (KafkaFailureCallback<Integer, String>) ex -> {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1)

If you wish to block the sending thread to await the result, you can invoke the future’s get()
method; using the method with a timeout is recommended. You may wish to invoke flush() before
waiting or, for convenience, the template has a constructor with an autoFlush parameter that
causes the template to flush() on each send. Flushing is only needed if you have set the linger.ms
producer property and want to immediately send a partial batch.

Examples

This section shows examples of sending messages to Kafka:

27

Example 5. Non Blocking (Async)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

ListenableFuture<SendResult<Integer, String>> future = template.send(record);
future.addCallback(new KafkaSendCallback<SendResult<Integer, String>>() {

public void onSuccess(SendResult<Integer, String> result) {
handleSuccess(data);

}

public void onFailure(KafkaProducerException ex) {
handleFailure(data, record, ex);

}
1)

Blocking (Sync)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

try {
template.send(record).get(10, TimeUnit.SECONDS);
handleSuccess(data);

}

catch (ExecutionException e) {
handleFailure(data, record, e.getCause());

}

catch (TimeoutException | InterruptedException e) {
handleFailure(data, record, e);

}

Note that the cause of the ExecutionException is KafkaProducerException with
failedProducerRecord property.

Using RoutingKafkaTemplate

the

Starting with version 2.5, you can use a RoutingKafkaTemplate to select the producer at runtime,

based on the destination topic name.

28

o The routing template does not support transactions, execute, flush, or metrics

operations because the topic is not known for those operations.

The template requires a map of java.util.regex.Pattern to ProducerFactory<Object,

Object>

instances. This map should be ordered (e.g. a LinkedHashMap) because it is traversed in order; you

should add more specific patterns at the beginning.

The following simple Spring Boot application provides an example of how to use the same template

to send to different topics, each using a different value serializer.

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public RoutingKafkaTemplate routingTemplate(GenericApplicationContext context,

ProducerFactory<Object, Object> pf) {

// Clone the PF with a different Serializer, register with Spring for
shutdown

Map<String, Object> configs = new HashMap<>(pf.getConfigurationProperties

));
configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

ByteArraySerializer.class);
DefaultKafkaProducerFactory<Object, Object> bytesPF = new
DefaultKafkaProducerFactory<>(configs);
context.registerBean(DefaultKafkaProducerFactory.class, "bytesPF",
bytesPF);

Map<Pattern, ProducerFactory<Object, Object>> map = new LinkedHashMap<>();

map.put(Pattern.compile("two"), bytesPF);

map.put(Pattern.compile(".+"), pf); // Default PF with StringSerializer

return new RoutingKafkaTemplate(map);

public ApplicationRunner runner(RoutingKafkaTemplate routingTemplate) {
return args -> {
routingTemplate.send("one", "thing1");
routingTemplate.send("two", "thing2".getBytes());

b

29

The corresponding @Kafkalistener s for this example are shown in Annotation Properties.

For another technique to achieve similar results, but with the additional capability of sending
different types to the same topic, see Delegating Serializer and Deserializer.

Using DefaultKafkaProducerFactory

As seen in Using KafkaTemplate, a ProducerFactory is used to create the producer.

When not using Transactions, by default, the DefaultKafkaProducerFactory creates a singleton
producer used by all clients, as recommended in the KafkaProducer javadocs. However, if you call
flush() on the template, this can cause delays for other threads using the same producer. Starting
with version 2.3, the DefaultKafkaProducerFactory has a new property producerPerThread. When set
to true, the factory will create (and cache) a separate producer for each thread, to avoid this issue.

When producerPerThread is true, user code must call closeThreadBoundProducer() on

o the factory when the producer is no longer needed. This will physically close the
producer and remove it from the ThreadlLocal. Calling reset() or destroy() will not
clean up these producers.

Also see KafkaTemplate Transactional and non-Transactional Publishing.

When creating a DefaultKafkaProducerFactory, key and/or value Serializer classes can be picked up
from configuration by calling the constructor that only takes in a Map of properties (see example in
Using KafkaTemplate), or Serializer instances may be passed to the DefaultKafkaProducerFactory
constructor (in which case all Producer s share the same instances). Alternatively you can provide
Supplier<Serializer> s (starting with version 2.3) that will be used to obtain separate Serializer
instances for each Producer:

public ProducerFactory<Integer, CustomValue> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs(), null, () -> new
CustomValueSerializer());

}

public KafkaTemplate<Integer, CustomValue> kafkaTemplate() {
return new KafkaTemplate<Integer, CustomValue>(producerFactory());

}

Starting with version 2.5.10, you can now update the producer properties after the factory is
created. This might be useful, for example, if you have to update SSL key/trust store locations after
a credentials change. The changes will not affect existing producer instances; call reset() to close
any existing producers so that new producers will be created using the new properties. NOTE: You
cannot change a transactional producer factory to non-transactional, and vice-versa.

Two new methods are now provided:

30

void updateConfigs(Map<String, Object> updates);

void removeConfig(String configKey);

Using ReplyingKafkaTemplate

Version 2.1.3 introduced a subclass of KafkaTemplate to provide request/reply semantics. The class is
named ReplyingKafkaTemplate and has two additional methods; the following shows the method
signatures:

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record,
Duration replyTimeout);

(Also see Request/Reply with Message<?> s).

The result is a ListenableFuture that is asynchronously populated with the result (or an exception,
for a timeout). The result also has a sendFuture property, which is the result of calling
KafkaTemplate.send(). You can use this future to determine the result of the send operation.

If the first method is used, or the replyTimeout argument is null, the template’s defaultReplyTimeout
property is used (5 seconds by default).

The following Spring Boot application shows an example of how to use the feature:

31

32

public class KRequestingApplication {

public static void main(String[] args) {
SpringApplication.run(KRequestingApplication.class, args).close();
}

public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String>
template) {
return args -> {
ProducerRecord<String, String> record = new ProducerRecord<>(
"kRequests", "foo");
RequestReplyFuture<String, String, String> replyFuture = template
.sendAndReceive(record);
SendResult<String, String> sendResult = replyFuture.getSendFuture()
.get(10, TimeUnit.SECONDS);
System.out.println("Sent ok: " + sendResult.getRecordMetadata());
ConsumerRecord<String, String> consumerRecord = replyFuture.get(10,
TimeUnit.SECONDS);
System.out.println("Return value:

+ consumerRecord.value());

};

public ReplyingKafkaTemplate<String, String, String> replyingTemplate(
ProducerFactory<String, String> pf,
ConcurrentMessagelListenerContainer<String, String> repliesContainer) {

return new ReplyingKafkaTemplate<>(pf, repliesContainer);

public ConcurrentMessagelistenerContainer<String, String> repliesContainer(
ConcurrentKafkalistenerContainerFactory<String, String>
containerFactory) {

ConcurrentMessagelistenerContainer<String, String> repliesContainer =
containerFactory.createContainer("replies");

repliesContainer.getContainerProperties().setGroupId("repliesGroup”);

repliesContainer.setAutoStartup(false);

return repliesContainer;

public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)

.build();

public NewTopic kReplies() {
return TopicBuilder.name("kReplies")
.partitions(10)
.replicas(2)
.build();

Note that we can use Boot’s auto-configured container factory to create the reply container.

If a non-trivial deserializer is being used for replies, consider using an ErrorHandlingDeserializer
that delegates to your configured deserializer. When so configured, the RequestReplyFuture will be
completed exceptionally and you can catch the ExecutionException, with the
DeserializationException in its cause property.

Starting with version 2.6.7, in addition to detecting DeserializationException s, the template will call
the replyErrorChecker function, if provided. If it returns an exception, the future will be completed
exceptionally.

Here is an example:

33

template.setReplyErrorChecker(record -> {
Header error = record.headers().lastHeader("serverSentAnError");
if (error != null) {
return new MyException(new String(error.value()));

}
else {

return null;
}

b

RequestReplyFuture<Integer, String, String> future = template.sendAndReceive
(record);
try {
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, String> consumerRecord = future.get(10, TimeUnit
.SECONDS);

}
catch (InterruptedException e) {

+
catch (ExecutionException e) {
if (e.getCause instanceof MyException) {

}
}

catch (TimeoutException e) {

}

The template sets a header (named KafkaHeaders.CORRELATION_ID by default), which must be echoed
back by the server side.

In this case, the following @KafkalListener application responds:

34

@SpringBootApplication
public class KReplyingApplication {

public static void main(String[] args) {
SpringApplication.run(KReplyingApplication.class, args);
}

@Kafkalistener(id="server", topics = "kRequests")

@SendTo // use default replyTo expression

public String listen(String in) {
System.out.println("Server received:
return in.toUpperCase();

+1n);
}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)
.build();
}

@Bean // not required if Jackson is on the classpath
public MessagingMessageConverter simpleMapperConverter() {
MessagingMessageConverter messagingMessageConverter = new
MessagingMessageConverter();
messagingMessageConverter.setHeaderMapper(new SimpleKafkaHeaderMapper());
return messagingMessageConverter;

The @Kafkalistener infrastructure echoes the correlation ID and determines the reply topic.

See Forwarding Listener Results using @SendTo for more information about sending replies. The
template uses the default header KafKaHeaders.REPLY_TOPIC to indicate the topic to which the reply
goes.

Starting with version 2.2, the template tries to detect the reply topic or partition from the
configured reply container. If the container is configured to listen to a single topic or a single
TopicPartitionOffset, it is used to set the reply headers. If the container is configured otherwise, the
user must set up the reply headers. In this case, an INFO log message is written during initialization.
The following example uses KafkaHeaders.REPLY_TOPIC:

35

record.headers().add(new RecordHeader (KafkaHeaders.REPLY_TOPIC, "kReplies"
.getBytes()));

When you configure with a single reply TopicPartitionOffset, you can use the same reply topic for
multiple templates, as long as each instance listens on a different partition. When configuring with
a single reply topic, each instance must use a different group.id. In this case, all instances receive
each reply, but only the instance that sent the request finds the correlation ID. This may be useful
for auto-scaling, but with the overhead of additional network traffic and the small cost of
discarding each unwanted reply. When you use this setting, we recommend that you set the
template’s sharedReplyTopic to true, which reduces the logging level of unexpected replies to DEBUG
instead of the default ERROR.

The following is an example of configuring the reply container to use the same shared reply topic:

public ConcurrentMessagelistenerContainer<String, String> replyContainer(
ConcurrentKafkalListenerContainerFactory<String, String> containerFactory)

{

ConcurrentMessagelistenerContainer<String, String> container =
containerFactory.createContainer("topic2");

container.getContainerProperties().setGroupId(UUID.randomUUID().toString());
// unique

Properties props = new Properties();

props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // so
the new group doesn't get old replies

container.getContainerProperties().setKafkaConsumerProperties(props);

return container;

If you have multiple client instances and you do not configure them as discussed
in the preceding paragraph, each instance needs a dedicated reply topic. An
alternative is to set the KafkaHeaders.REPLY_PARTITION and use a dedicated partition

o for each instance. The Header contains a four-byte int (big-endian). The server must
use this header to route the reply to the correct partition (@KafkalListener does
this). In this case, though, the reply container must not use Kafka’s group
management feature and must be configured to listen on a fixed partition (by
using a TopicPartitionOffset in its ContainerProperties constructor).

The DefaultKafkaHeaderMapper requires Jackson to be on the classpath (for the

o @KafkalListener). If it is not available, the message converter has no header mapper,
so you must configure a MessagingMessageConverter with a SimpleKafkaHeaderMapper,
as shown earlier.

36

By default, 3 headers are used:

» KafkaHeaders.CORRELATION_ID - used to correlate the reply to a request
» KafkaHeaders.REPLY_TOPIC - used to tell the server where to reply
» KafkaHeaders.REPLY_PARTITION - (optional) used to tell the server which partition to reply to

These header names are used by the @Kafkalistener infrastructure to route the reply.

Starting with version 2.3, you can customize the header names - the template has 3 properties
correlationHeaderName, replyTopicHeaderName, and replyPartitionHeaderName. This is useful if your
server is not a Spring application (or does not use the @Kafkalistener).

Request/Reply with Message<?> s

Version 2.7 added methods to the ReplyingKafkaTemplate to send and receive spring-messaging 's
Message<?> abstraction:

RequestReplyMessageFuture<K, V> sendAndReceive(Message<?> message);

<P> RequestReplyTypedMessageFuture<K, V, P> sendAndReceive(Message<?> message,
ParameterizedTypeReference<P> returnType);

These will use the template’s default replyTimeout, there are also overloaded versions that can take
a timeout in the method call.

Use the first method if the consumer’s Deserializer or the template’s MessageConverter can convert
the payload without any additional information, either via configuration or type metadata in the
reply message.

Use the second method if you need to provide type information for the return type, to assist the
message converter. This also allows the same template to receive different types, even if there is no
type metadata in the replies, such as when the server side is not a Spring application. The following
is an example of the latter:

37

Example 6. Template Bean

Java

ReplyingKafkaTemplate<String, String, String> template(
ProducerFactory<String, String> pf,
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> replyContainer =
factory.createContainer("replies");
replyContainer.getContainerProperties().setGroupId("request.replies”);
ReplyingKafkaTemplate<String, String, String> template =
new ReplyingKafkaTemplate<>(pf, replyContainer);
template.setMessageConverter(new ByteArrayJsonMessageConverter());
template.setDefaultTopic("requests");
return template;

Kotlin

@Bean
fun template(
pf: ProducerFactory<String?, String>?,
factory: ConcurrentKafkalistenerContainerFactory<String?, String?>
): ReplyingKafkaTemplate<String?, String, String?> {
val replyContainer = factory.createContainer("replies")
replyContainer.containerProperties.groupld = "request.replies"”
val template = ReplyingKafkaTemplate(pf, replyContainer)
template.messageConverter = ByteArrayJsonMessageConverter()
template.defaultTopic = "requests"
return template

38

Example 7. Using the template
Java

RequestReplyTypedMessageFuture<String, String, Thing> futurel =
template.sendAndReceive(MessageBuilder.withPayload("“getAThing").build(),
new ParameterizedTypeReference<Thing>() { });
log.info(futurel.getSendFuture().get(10, TimeUnit.SECONDS).getRecordMetadata()
.toString());
Thing thing = futurel.get(10, TimeUnit.SECONDS).getPayload();
log.info(thing.toString());

RequestReplyTypedMessageFuture<String, String, List<Thing>> future2 =
template.sendAndReceive(MessageBuilder.withPayload("getThings").build(),
new ParameterizedTypeReference<List<Thing>>() { });
log.info(future2.getSendFuture().get(10, TimeUnit.SECONDS).getRecordMetadata()
.toString());
List<Thing> things = future2.get(10, TimeUnit.SECONDS).getPayload();
things.forEach(thing1l -> log.info(thingl.toString()));

Kotlin

val futurel: RequestReplyTypedMessageFuture<String?, String?, Thing?>? =
template.sendAndReceive(MessageBuilder.withPayload("getAThing").build(),
object : ParameterizedTypeReference<Thing?>() {})
log.info(futurel1?.sendFuture?.qet(10,
TimeUnit.SECONDS)?.recordMetadata?.toString())
val thing = future1?.get(10, TimeUnit.SECONDS)?.payload
log.info(thing.toString())

val future2: RequestReplyTypedMessageFuture<String?, String?, List<Thing?>7?>?7 =
template.sendAndReceive(MessageBuilder.withPayload("getThings").build(),
object : ParameterizedTypeReference<List<Thing?>?>() {})
log.info(future2?.sendFuture?.qget(10,
TimeUnit.SECONDS)?.recordMetadata.toString())
val things = future2?.get(10, TimeUnit.SECONDS)?.payload
things?.forEach(Consumer { thing1: Thing? -> log.info(thingl.toString()) })

Reply Type Message<?>

When the @Kafkalistener returns a Message<?>, with versions before 2.5, it was necessary to
populate the reply topic and correlation id headers. In this example, we use the reply topic header
from the request:

39

(id = "requestor", topics = "request")

public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.build();

This also shows how to set a key on the reply record.

Starting with version 2.5, the framework will detect if these headers are missing and populate them
with the topic - either the topic determined from the @SendTo value or the incoming
KafkaHeaders.REPLY_TOPIC header (if present). It will also echo the incoming
KafkaHeaders.CORRELATION_ID and KafkaHeaders.REPLY_PARTITION, if present.

(id = "requestor", topics = "request")
// default REPLY_TOPIC header
public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.MESSAGE KEY, 42)
.build();

Aggregating Multiple Replies

The template in Using ReplyingKafkaTemplate is strictly for a single request/reply scenario. For cases
where multiple receivers of a single message return a reply, you can use the
AggregatingReplyingKafkaTemplate. This is an implementation of the client-side of the Scatter-Gather
Enterprise Integration Pattern.

Like the ReplyingKafkaTemplate, the AggregatingReplyingKafkaTemplate constructor takes a producer
factory and a listener container to receive the replies; it has a third parameter
BiPredicate<List<ConsumerRecord<K, R>>, Boolean> releaseStrategy which is consulted each time a
reply is received; when the predicate returns true, the collection of ConsumerRecord s is used to
complete the Future returned by the sendAndReceive method.

There is an additional property returnPartialOnTimeout (default false). When this is set to true,
instead of completing the future with a KafkaReplyTimeoutException, a partial result completes the
future normally (as long as at least one reply record has been received).

Starting with version 2.3.5, the predicate is also called after a timeout (if returnPartialOnTimeout is
true). The first argument is the current list of records; the second is true if this call is due to a
timeout. The predicate can modify the list of records.

40

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

AggregatingReplyingKafkaTemplate<Integer, String, String> template =
new AggregatingReplyingKafkaTemplate<>(producerFactory, container,
coll -> coll.size() == releaseSize);

RequestReplyFuture<Integer, String, Collection<ConsumerRecord<Integer, String>>>
future =

template.sendAndReceive(record);
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, Collection<ConsumerRecord<Integer, String>>>
consumerRecord =

future.qget(30, TimeUnit.SECONDS);

Notice that the return type is a ConsumerRecord with a value that is a collection of ConsumerRecord s.
The "outer" ConsumerRecord is not a "real" record, it is synthesized by the template, as a holder for
the actual reply records received for the request. When a normal release occurs (release strategy
returns true), the topic is set to aggregatedResults; if returnPartialOnTimeout is true, and timeout
occurs (and at least one reply record has been received), the topic is set to
partialResultsAfterTimeout. The template provides constant static variables for these "topic" names:

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a normal release by the release strategy.

*/

public static final String AGGREGATED_RESULTS_TOPIC = "aggregatedResults";

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a timeout.

*/

public static final String PARTIAL_RESULTS_AFTER_TIMEOUT_TOPIC =
"partialResultsAfterTimeout";

The real ConsumerRecord s in the Collection contain the actual topic(s) from which the replies are
received.

41

The listener container for the replies MUST be configured with AckMode.MANUAL or
AckMode .MANUAL_IMMEDIATE; the consumer property enable.auto.commit must be
false (the default since version 2.3). To avoid any possibility of losing messages,

o the template only commits offsets when there are zero requests outstanding, i.e.
when the last outstanding request is released by the release strategy. After a
rebalance, it is possible for duplicate reply deliveries; these will be ignored for any
in-flight requests; you may see error log messages when duplicate replies are
received for already released replies.

If you use an ErrorHandlingDeserializer with this aggregating template, the
framework will not automatically detect DeserializationException s. Instead, the
record (with a null value) will be returned intact, with the deserialization

o exception(s) in headers. It is recommended that applications call the utility method
ReplyingKafkaTemplate.checkDeserialization() method to determine if a
deserialization exception occurred. See its javadocs for more information. The
replyErrorChecker is also not called for this aggregating template; you should
perform the checks on each element of the reply.

4.1.4. Receiving Messages

You can receive messages by configuring a MessagelistenerContainer and providing a message
listener or by using the @Kafkalistener annotation.

Message Listeners

When you use a message listener container, you must provide a listener to receive data. There are
currently eight supported interfaces for message listeners. The following listing shows these
interfaces:

42

public interface Messagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data);
}
public interface AcknowledgingMessagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment);

}

public interface ConsumerAwareMessagelistener<K, V> extends Messagelistener<K, V>

{®
void onMessage(ConsumerRecord<K, V> data, Consumer<?, 7> consumer);

}

public interface AcknowledgingConsumerAwareMessagelistener<K, V> extends
Messagelistener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

}
public interface BatchMessagelistener<K, V> { ®
void onMessage(List<ConsumerRecord<K, V>> data);
}
public interface BatchAcknowledgingMessagelistener<K, V> { ®

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment

)
}

public interface BatchConsumerAwareMessagelistener<K, V> extends
BatchMessagelListener<K, V> { @

void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, 7> consumer);

}

public interface BatchAcknowledgingConsumerAwareMessagelistener<K, V> extends
BatchMessagelistener<K, V> {

43

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods.

® Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods. Access to the Consumer object is provided.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods. Access to
the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods.

@ Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch. Access to the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods. Access to the
Consumer object is provided.

o The Consumer object is not thread-safe. You must only invoke its methods on the
thread that calls the listener.

You should not execute any Consumer<?, 7> methods that affect the consumer’s
o positions and or committed offsets in your listener; the container needs to manage
such information.

Message Listener Containers

Two MessagelistenerContainer implementations are provided:

» KafkaMessageListenerContainer

» ConcurrentMessagelistenerContainer

44

The KafkaMessagelListenerContainer receives all message from all topics or partitions on a single
thread. The ConcurrentMessageListenerContainer delegates to one or more
KafkaMessagelListenerContainer instances to provide multi-threaded consumption.

Starting with version 2.2.7, you can add a RecordInterceptor to the listener container; it will be
invoked before calling the listener allowing inspection or modification of the record. If the
interceptor returns null, the listener is not called. Starting with version 2.7, it has additional
methods which are called after the listener exits (normally, or by throwing an exception). Also,
starting with version 2.7, there is now a BatchInterceptor, providing similar functionality for Batch
Listeners. In addition, the ConsumerAwareRecordInterceptor (and BatchInterceptor) provide access to
the Consumer<?, 7>. This might be used, for example, to access the consumer metrics in the
interceptor.

You should not execute any methods that affect the consumer’s positions and or
o committed offsets in these interceptors; the container needs to manage such
information.

The CompositeRecordInterceptor and CompositeBatchInterceptor can be used to invoke multiple
interceptors.

By default, when using transactions, the interceptor is invoked after the transaction has started.
Starting with version 2.3.4, you can set the listener container’s interceptBeforeTx property to invoke
the interceptor before the transaction has started instead.

Starting with versions 2.3.8, 2.4.6, the ConcurrentMessagelListenerContainer now supports Static
Membership when the concurrency is greater than one. The group.instance.id is suffixed with -n
with n starting at 1. This, together with an increased session.timeout.ms, can be used to reduce
rebalance events, for example, when application instances are restarted.

Using KafkaMessagelistenerContainer

The following constructor is available:

public KafkaMessagelListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It receives a ConsumerFactory and information about topics and partitions, as well as other
configuration, in a ContainerProperties object. ContainerProperties has the following constructors:

public ContainerProperties(TopicPartitionOffset... topicPartitions)
public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

45

https://kafka.apache.org/documentation/#static_membership
https://kafka.apache.org/documentation/#static_membership

The first constructor takes an array of TopicPartitionOffset arguments to explicitly instruct the
container about which partitions to use (using the consumer assign() method) and with an optional
initial offset. A positive value is an absolute offset by default. A negative value is relative to the
current last offset within a partition by default. A constructor for TopicPartition0ffset that takes an
additional boolean argument is provided. If this is true, the initial offsets (positive or negative) are
relative to the current position for this consumer. The offsets are applied when the container is
started. The second takes an array of topics, and Kafka allocates the partitions based on the
group.id property — distributing partitions across the group. The third uses a regex Pattern to select
the topics.

To assign a Messagelistener to a container, you can use the ContainerProps.setMessagelistener
method when creating the Container. The following example shows how to do so:

ContainerProperties containerProps = new ContainerProperties("topic1", "topic2");
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

Ik
DefaultKafkaConsumerFactory<Integer, String> cf =

new DefaultKafkaConsumerFactory<>(consumerProps());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Note that when creating a DefaultKafkaConsumerFactory, using the constructor that just takes in the
properties as above means that key and value Deserializer classes are picked up from
configuration. Alternatively, Deserializer instances may be passed to the
DefaultKafkaConsumerFactory constructor for key and/or value, in which case all Consumers share
the same instances. Another option is to provide Supplier<Deserializer> s (starting with version 2.3)
that will be used to obtain separate Deserializer instances for each Consumer:

DefaultKafkaConsumerFactory<Integer, CustomValue> cf =

new DefaultKafkaConsumerFactory<>(consumerProps(), null,
() -> new CustomValueDeserializer());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Refer to the Javadoc for ContainerProperties for more information about the various properties that
you can set.

Since version 2.1.1, a new property called logContainerConfig is available. When true and INFO
logging is enabled each listener container writes a log message summarizing its configuration
properties.

46

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/ContainerProperties.html

By default, logging of topic offset commits is performed at the DEBUG logging level. Starting with
version 2.1.2, a property in ContainerProperties called commitLoglLevel lets you specify the log level
for these messages. For example, to change the log level to INFO, you can use
containerProperties.setCommitLoglevel(LogIfLevelEnabled.Level.INFO);.

Starting with version 2.2, a new container property called missingTopicsFatal has been added
(default: false since 2.3.4). This prevents the container from starting if any of the configured topics
are not present on the broker. It does not apply if the container is configured to listen to a topic
pattern (regex). Previously, the container threads looped within the consumer.poll() method
waiting for the topic to appear while logging many messages. Aside from the logs, there was no
indication that there was a problem.

As of version 2.3.5, a new container property called authorizationExceptionRetryInterval has been
introduced. This causes the container to retry fetching messages after getting any
AuthorizationException from KafkaConsumer. This can happen when, for example, the configured
user is denied access to read certain topic. Defining authorizationExceptionRetryInterval should
help the application to recover as soon as proper permissions are granted.

o By default, no interval is configured - authorization errors are considered fatal,
which causes the container to stop.

Using ConcurrentMessagelistenerContainer

The single constructor is similar to the KafkalistenerContainer constructor. The following listing
shows the constructor’s signature:

public ConcurrentMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a concurrency property. For example, container.setConcurrency(3) creates three
KafkaMessagelListenerContainer instances.

For the first constructor, Kafka distributes the partitions across the consumers using its group
management capabilities.

47

When listening to multiple topics, the default partition distribution may not be
what you expect. For example, if you have three topics with five partitions each
and you want to use concurrency=15, you see only five active consumers, each
assigned one partition from each topic, with the other 10 consumers being idle.
This is because the default Kafka PartitionAssignor is the RangeAssignor (see its
Javadoc). For this scenario, you may want to consider using the RoundRobinAssignor
instead, which distributes the partitions across all of the consumers. Then, each
consumer is assigned one topic or partition. To change the PartitionAssignor, you
can set the partition.assignment.strategy consumer property

o (ConsumerConfigs.PARTITION_ASSIGNMENT_STRATEGY_CONFIG) in the properties provided
to the DefaultKafkaConsumerFactory.

When using Spring Boot, you can assign set the strategy as follows:

spring.kafka.consumer.properties.partition.assignment.strategy=\
org.apache.kafka.clients.consumer.RoundRobinAssignor

When the container properties are configured with TopicPartitionOffset s, the
ConcurrentMessagelistenerContainer distributes the TopicPartitionOffset instances across the
delegate KafkaMessagelListenerContainer instances.

If, say, six TopicPartitionOffset instances are provided and the concurrency is 3; each container gets
two partitions. For five TopicPartitionOffset instances, two containers get two partitions, and the
third gets one. If the concurrency is greater than the number of TopicPartitions, the concurrency is
adjusted down such that each container gets one partition.

The client.id property (if set) is appended with -n where n is the consumer
o instance that corresponds to the concurrency. This is required to provide unique
names for MBeans when JMX is enabled.

Starting with version 1.3, the MessagelistenerContainer provides access to the metrics of the
underlying KafkaConsumer. In the case of ConcurrentMessagelistenerContainer, the metrics() method
returns the metrics for all the target KafkaMessagelListenerContainer instances. The metrics are
grouped into the Map<MetricName, ? extends Metric> by the client-id provided for the underlying
KafkaConsumer.

Starting with version 2.3, the ContainerProperties provides an idleBetweenPolls option to let the
main loop in the listener container to sleep between KafkaConsumer.poll() calls. An actual sleep
interval is selected as the minimum from the provided option and difference between the
max.poll.interval.ms consumer config and the current records batch processing time.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is
true, Kafka auto-commits the offsets according to its configuration. If it is false, the containers
support several AckMode settings (described in the next list). The default AckMode is BATCH. Starting

48

with version 2.3, the framework sets enable.auto.commit to false unless explicitly set in the
configuration. Previously, the Kafka default (true) was used if the property was not set.

The consumer poll() method returns one or more ConsumerRecords. The MessagelListener is called for
each record. The following lists describes the action taken by the container for each AckMode (when
transactions are not being used):

* RECORD: Commit the offset when the listener returns after processing the record.

* BATCH: Commit the offset when all the records returned by the pol1() have been processed.

* TIME: Commit the offset when all the records returned by the poll() have been processed, as
long as the ackTime since the last commit has been exceeded.

* COUNT: Commit the offset when all the records returned by the poll() have been processed, as
long as ackCount records have been received since the last commit.

* COUNT_TIME: Similar to TIME and COUNT, but the commit is performed if either condition is true.

* MANUAL: The message listener is responsible to acknowledge() the Acknowledgment. After that, the
same semantics as BATCH are applied.

o MANUAL_IMMEDIATE: Commit the offset immediately when the Acknowledgment.acknowledge()
method is called by the listener.

When using transactions, the offset(s) are sent to the transaction and the semantics are equivalent
to RECORD or BATCH, depending on the listener type (record or batch).

MANUAL, and MANUAL _IMMEDIATE require the listener to be an
AcknowledgingMessagelistener or a BatchAcknowledgingMessagelistener. See Message
Listeners.

Depending on the syncCommits container property, the commitSync() or commitAsync() method on the
consumer is used. syncCommits is true by default; also see setSyncCommitTimeout. See
setCommitCallback to get the results of asynchronous commits; the default callback is the
LoggingCommitCallback which logs errors (and successes at debug level).

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. Starting with version 2.3, it unconditionally
sets it to false unless specifically set in the consumer factory or the container’s consumer property
overrides.

The Acknowledgment has the following method:

public interface Acknowledgment {

void acknowledge();

49

This method gives the listener control over when offsets are committed.

Starting with version 2.3, the Acknowledgment interface has two additional methods nack(long sleep)
and nack(int index, long sleep). The first one is used with a record listener, the second with a
batch listener. Calling the wrong method for your listener type will throw an I1legalStateException.

If you want to commit a partial batch, using nack(), When using transactions, set
o the AckMode to MANUAL; invoking nack() will send the offsets of the successfully
processed records to the transaction.

o nack() can only be called on the consumer thread that invokes your listener.

With a record listener, when nack() is called, any pending offsets are committed, the remaing
records from the last poll are discarded, and seeks are performed on their partitions so that the
failed record and unprocessed records are redelivered on the next poll(). The consumer thread
can be paused before redelivery, by setting the sleep argument. This is similar functionality to
throwing an exception when the container is configured with a SeekToCurrentErrorHandler.

When using a batch listener, you can specify the index within the batch where the failure occurred.
When nack() is called, offsets will be committed for records before the index and seeks are
performed on the partitions for the failed and discarded records so that they will be redelivered on
the next poll(). This is an improvement over the SeekToCurrentBatchErrorHandler, which can only
seek the entire batch for redelivery.

See Seek To Current Container Error Handlers for more information. Also see Retrying Batch Error
Handler.

When using partition assignment via group management, it is important to ensure
the sleep argument (plus the time spent processing records from the previous poll)
is less than the consumer max.poll.interval.ms property.

Listener Container Auto Startup

The listener containers implement SmartlLifecycle, and autoStartup is true by default. The
containers are started in a late phase (Integer.MAX-VALUE - 100). Other components that implement
SmartLifecycle, to handle data from listeners, should be started in an earlier phase. The - 100
leaves room for later phases to enable components to be auto-started after the containers.

@Kafkalistener Annotation

The @Kafkalistener annotation is used to designate a bean method as a listener for a listener
container. The bean is wrapped in a MessagingMessagelListenerAdapter configured with various
features, such as converters to convert the data, if necessary, to match the method parameters.

You can configure most attributes on the annotation with SpEL by using #{:-*} or property
placeholders (${::-}). See the Javadoc for more information.

50

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/annotation/KafkaListener.html

Record Listeners

The ©Kafkalistener annotation provides a mechanism for simple POJO listeners. The following
example shows how to use it:

public class Listener {

@Kafkalistener(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId")
public void listen(String data) {

}

This mechanism requires an @EnableKafka annotation on one of your @Configuration classes and a
listener container factory, which is used to configure the underlying
ConcurrentMessagelListenerContainer. By default, a bean with name kafkalistenerContainerFactory is
expected. The following example shows how to use ConcurrentMessagelListenerContainer:

31

public class KafkaConfig {

KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka
.getBrokersAsString());

return props;

Notice that, to set container properties, you must use the getContainerProperties() method on the
factory. It is used as a template for the actual properties injected into the container.

Starting with version 2.1.1, you can now set the client.id property for consumers created by the
annotation. The clientIdPrefix is suffixed with -n, where n is an integer representing the container
number when using concurrency.

Starting with version 2.2, you can now override the container factory’s concurrency and autoStartup
properties by using properties on the annotation itself. The properties can be simple values,
property placeholders, or SpEL expressions. The following example shows how to do so:

32

(id = "myListener", topics = "myTopic",
autoStartup = "${listen.auto.start:true}", concurrency =
"${listen.concurrency:3}")
public void listen(String data) {

}

Explicit Partition Assignment

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their
initial offsets). The following example shows how to do so:

(id = "thing2", topicPartitions =

{ (topic = "topic1", partitions = { "0", "1" }),
(topic = "topic2", partitions = "0",
partitionOffsets = (partition = "1", initialOffset =
"100"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

You can specify each partition in the partitions or partition0ffsets attribute but not both.

As with most annotation properties, you can use SpEL expressions; for an example of how to
generate a large list of partitions, see Manually Assigning All Partitions.

Starting with version 2.5.5, you can apply an initial offset to all assigned partitions:

(id = "thing3", topicPartitions =
{ (topic = "topic1", partitions = { "0", "1" },
partitionOffsets = (partition = "*", initialOffset =
"0"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

The * wildcard represents all partitions in the partitions attribute. There must only be one
@Partition0ffset with the wildcard in each @TopicPartition.

In addition, when the listener implements ConsumerSeekAware, onPartitionsAssigned is now called,

33

even when using manual assignment. This allows, for example, any arbitrary seek operations at
that time.

Starting with version 2.6.4, you can specify a comma-delimited list of partitions, or partition ranges:

(id = "pp", autoStartup = "false",
topicPartitions = (topic = "topic1",
partitions = "0-5, 7, 10-15"))
public void process(String in) {

}

The range is inclusive; the example above will assign partitions 0, 1, 2, 3, 4, 5, 7, 10, 11, 12,
13, 14, 15.

The same technique can be used when specifying initial offsets:

(id = "thing3", topicPartitions =
{ (topic = "topic1",
partitionOffsets = (partition = "0-5", initialOffset
- |l®|l))
1))

public void listen(ConsumerRecord<?, ?> record) {

}

The initial offset will be applied to all 6 partitions.

Manual Acknowledgment

When using manual AckMode, you can also provide the listener with the Acknowledgment. The
following example also shows how to use a different container factory.

(id = "cat", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")
public void listen(String data, Acknowledgment ack) {

ack.acknowledge();

Consumer Record Metadata

Finally, metadata about the record is available from message headers. You can use the following

54

header names to retrieve the headers of the message:

* KafkaHeaders.OFFSET

KafkaHeaders.RECEIVED_MESSAGE _KEY

KafkaHeaders.RECEIVED _TOPIC

KafkaHeaders.RECEIVED PARTITION_ID

KafkaHeaders.RECEIVED_TIMESTAMP

KafkaHeaders.TIMESTAMP_TYPE

Starting with version 2.5 the RECEIVED_MESSAGE_KEY is not present if the incoming record has a null
key; previously the header was populated with a null value. This change is to make the framework
consistent with spring-messaging conventions where null valued headers are not present.

The following example shows how to use the headers:

(id = "qux", topicPattern = "myTopicl")
public void listen(String foo,
(name = KafkaHeaders.RECEIVED_MESSAGE_KEY, required = false)
Integer key,
(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
(KafkaHeaders.RECEIVED_TOPIC) String topic,
(KafkaHeaders.RECEIVED_TIMESTAMP) long ts
) {

Starting with version 2.5, instead of using discrete headers, you can receive record metadata in a
ConsumerRecordMetadata parameter.

(...)

public void listen(String str, ConsumerRecordMetadata meta) {

}

This contains all the data from the ConsumerRecord except the key and value.

Batch Listeners

Starting with version 1.1, you can configure @Kafkalistener methods to receive the entire batch of
consumer records received from the consumer poll. To configure the listener container factory to
create batch listeners, you can set the batchListener property. The following example shows how to
do so:

55

public KafkalistenerContainerFactory<?, 7> batchFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true); // <<<<<<<LLLLLLLLLLLLLLLLLKL
return factory;

The following example shows how to receive a list of payloads:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {

}

The topic, partition, offset, and so on are available in headers that parallel the payloads. The
following example shows how to use the headers:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list,

(KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys,

(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,

(KafkaHeaders.RECEIVED_TOPIC) List<String> topics,

(KafkaHeaders.OFFSET) List<Long> offsets) {

Alternatively, you can receive a List of Message<?> objects with each offset and other details in each
message, but it must be the only parameter (aside from optional Acknowledgment, when using
manual commits, and/or Consumer<?, 7> parameters) defined on the method. The following example
shows how to do so:

36

@Kafkalistener(id = "listMsg", topics = "myTopic", containerFactory =
"batchFactory")
public void listen14(List<Message<?>> list) {

}

@Kafkalistener(id = "listMsgAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen15(List<Message<?>> list, Acknowledgment ack) {

}

@Kafkalistener(id = "listMsgAckConsumer", topics = "myTopic", containerFactory
"batchFactory")

public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, 7>
consumer) {

}

No conversion is performed on the payloads in this case.

@Kafkalistener(id = "listCRs", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list) {

}

@Kafkalistener(id = "listCRsAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment

{
}

Starting with version 2.2, the listener can receive the complete ConsumerRecords<?,
returned by the pol1l() method, letting the listener access additional methods, such as partitions()
(which returns the TopicPartition instances in the list) and records(TopicPartition) (which gets

If the BatchMessagingMessageConverter is configured with a RecordMessageConverter, you can also add
a generic type to the Message parameter and the payloads are converted. See Payload Conversion
with Batch Listeners for more information.

You can also receive a list of ConsumerRecord<?, 7> objects, but it must be the only parameter (aside
from optional Acknowledgment, when using manual commits and Consumer<?, 7> parameters) defined
on the method. The following example shows how to do so:

ack)

7> object

57

selective records). Again, this must be the only parameter (aside from optional Acknowledgment,

when using manual commits or Consumer<?, 7> parameters) on the method. The following example
shows how to do so:

(id = "pollResults", topics = "myTopic", containerFactory =
"batchFactory")
public void pollResults(ConsumerRecords<?, 7> records) {

}

If the container factory has a RecordFilterStrategy configured, it is ignored for
ConsumerRecords<?, 7> listeners, with a WARN log message emitted. Records can only
be filtered with a batch listener if the <List<?>> form of listener is used.

Annotation Properties

Starting with version 2.0, the id property (if present) is used as the Kafka consumer group.id
property, overriding the configured property in the consumer factory, if present. You can also set
groupId explicitly or set idIsGroup to false to restore the previous behavior of using the consumer
factory group.id.

You can use property placeholders or SpEL expressions within most annotation properties, as the
following example shows:

"${some.property}")

(topics

(topics = "#{someBean.someProperty}",
groupIld = "#{someBean.someProperty}.group")

Starting with version 2.1.2, the SpEL expressions support a special token: __Tistener. It is a pseudo
bean name that represents the current bean instance within which this annotation exists.

Consider the following example:

38

public Listener listener1() {
return new Listener("topic1");

}

public Listener listener2() {
return new Listener("topic2");

}

Given the beans in the previous example, we can then use the following:

public class Listener {
private final String topic;

public Listener(String topic) {
this.topic = topic;
}

(topics = "#{__listener.topic}",
groupId = "#{__listener.topic}.group")
public void listen(...) {

}

public String getTopic() {
return this.topic;

}

If, in the unlikely event that you have an actual bean called __listener, you can change the
expression token byusing the beanRef attribute. The following example shows how to do so:

(beanRef = "__x", topics = "#{__x.topic}",
groupld = "#{__x.topic}.group")

Starting with version 2.2.4, you can specify Kafka consumer properties directly on the annotation,
these will override any properties with the same name configured in the consumer factory. You
cannot specify the group.id and client.id properties this way; they will be ignored; use the groupId
and clientIdPrefix annotation properties for those.

39

The properties are specified as individual strings with the normal Java Properties file format:
foo:bar, foo=bar, or foo bar.

(topics = "myTopic", groupId = "group", properties = {
"max.poll.interval.ms:60000",
ConsumerConfig.MAX_POLL_RECORDS_CONFIG + "=100"

}

The following is an example of the corresponding listeners for the example in Using
RoutingKafkaTemplate.

(id = "one", topics = "one")
public void listen1(String in) {
System.out.println("1: " + in);
}

(id = "two", topics = "two",
properties =
"value.deserializer:org.apache.kafka.common.serialization.ByteArrayDeserializer")
public void listen2(byte[] in) {
System.out.println("2: " + new String(in));
¥

Obtaining the Consumer group.id

When running the same listener code in multiple containers, it may be useful to be able to
determine which container (identified by its group.id consumer property) that a record came from.

You can call KafkaUtils.getConsumerGroupId() on the listener thread to do this. Alternatively, you
can access the group id in a method parameter.

(id = "bar", topicPattern = "${topicTwo:annotated2}", exposeGroupIld
= "${always:true}")
public void listener(String foo,
(KafkaHeaders.GROUP_ID) String groupId) {

This is available in record listeners and batch listeners that receive a List<?> of
o records. It is not available in a batch listener that receives a ConsumerRecords<?, 7>
argument. Use the KafkaUtils mechanism in that case.

60

Container Thread Naming

Listener containers currently use two task executors, one to invoke the consumer and another that
is used to invoke the listener when the kafka consumer property enable.auto.commit is false. You
can provide custom executors by setting the consumerExecutor and listenerExecutor properties of
the container’s ContainerProperties. When using pooled executors, be sure that enough threads are
available to handle the concurrency across all the containers in which they are used. When using
the ConcurrentMessagelistenerContainer, a thread from each is used for each consumer (
concurrency).

If you do not provide a consumer executor, a SimpleAsyncTaskExecutor is used. This executor creates
threads with names similar to <beanName>-C-1 (consumer thread). For the
ConcurrentMessageListenerContainer, the <beanName> part of the thread name becomes <beanName>-m,
where m represents the consumer instance. n increments each time the container is started. So, with
a bean name of container, threads in this container will be named container-0-C-1, container-1-C-1
etc., after the container is started the first time; container-0-C-2, container-1-C-2 etc., after a stop
and subsequent start.

@Kafkalistener as a Meta Annotation

Starting with version 2.2, you can now use @Kafkalistener as a meta annotation. The following
example shows how to do so:

(ElementType.METHOD)
(RetentionPolicy.RUNTIME)

public MyThreeConsumersListener {

Kafkalistener.class, attribute = "id")

(annotation
String id();

(annotation = Kafkalistener.class, attribute = "topics")

String[] topics();

(annotation = Kafkalistener.class, attribute = "concurrency")
String concurrency() default "3";

You must alias at least one of topics, topicPattern, or topicPartitions (and, usually, id or groupId
unless you have specified a group.id in the consumer factory configuration). The following example
shows how to do so:

61

@MyThreeConsumersListener(id = "my.group”, topics = "my.topic")
public void listen1(String in) {

}

@KafkalListener on a Class

When you use @KafkalListener at the class-level, you must specify @KafkaHandler at the method level.
When messages are delivered, the converted message payload type is used to determine which
method to call. The following example shows how to do so:

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String foo) {

}

@KafkaHandler
public void listen(Integer bar) {

}

@KafkaHandler (isDefault = true)
public void listenDefault(Object object) {

}

Starting with version 2.1.3, you can designate a @KafkaHandler method as the default method that is
invoked if there is no match on other methods. At most, one method can be so designated. When
using @KafkaHandler methods, the payload must have already been converted to the domain object
(so the match can be performed). Use a custom deserializer, the JsonDeserializer, or the
JsonMessageConverter with its TypePrecedence set to TYPE_ID. See Serialization, Deserialization, and
Message Conversion for more information.

Due to some limitations in the way Spring resolves method arguments, a default
o @KafkaHandler = cannot receive discrete headers; it must use the

ConsumerRecordMetadata as discussed in Consumer Record Metadata.

For example:

62

(isDefault = true)
public void listenDefault(Object object, (KafkaHeaders.RECEIVED_TOPIC)
String topic) {

}

This won’t work if the object is a String; the topic parameter will also get a reference to object.

If you need metadata about the record in a default method, use this:

(isDefault = true)
void listen(Object in, (KafkaHeaders.RECORD_METADATA)
ConsumerRecordMetadata meta) {
String topic = meta.topic();

@Kafkalistener Attribute Modification

Starting with version 2.7.2, you can now programmatically modify annotation attributes before the
container is created. To do SO, add one or more
KafkalistenerAnnotationBeanPostProcessor.AnnotationEnhancer to the application context.
AnnotationEnhancer is a BiFunction<Map<String, Object>, AnnotatedElement, Map<String, Object>
and must return a map of attributes. The attribute values can contain SpEL and/or property
placeholders; the enhancer is called before any resolution is performed. If more than one enhancer
is present, and they implement Ordered, they will be invoked in order.

o AnnotationEnhancer bean definitions must be declared static because they are
required very early in the application context’s lifecycle.

An example follows:

63

public static AnnotationEnhancer groupIdEnhancer() {
return (attrs, element) -> {
attrs.put("groupId”, attrs.get("id") + + (element instanceof Class
? ((Class<?>) element).getSimpleName()
: ((Method) element).getDeclaringClass().getSimpleName()
+ "." 4+ ((Method) element).getName()));

return attrs;

};

@Kafkalistener Lifecycle Management

The listener containers created for @Kafkalistener annotations are not beans in the application
context. Instead, they are registered with an infrastructure bean of type
KafkalListenerEndpointRegistry. This bean is automatically declared by the framework and manages
the containers' lifecycles; it will auto-start any containers that have autoStartup set to true. All
containers created by all container factories must be in the same phase. See Listener Container Auto
Startup for more information. You can manage the lifecycle programmatically by using the registry.
Starting or stopping the registry will start or stop all the registered containers. Alternatively, you
can get a reference to an individual container by using its id attribute. You can set autoStartup on
the annotation, which overrides the default setting configured into the container factory. You can
get a reference to the bean from the application context, such as auto-wiring, to manage its
registered containers. The following examples show how to do so:

(id = "myContainer", topics = "myTopic", autoStartup = "false")
public void listen(...) { ... }

private KafkalistenerEndpointRegistry registry;

this.registry.getListenerContainer("myContainer").start();

The registry only maintains the life cycle of containers it manages; containers declared as beans are
not managed by the registry and can be obtained from the application context. A collection of
managed containers can be obtained by calling the registry’s getlListenerContainers() method.
Version 2.2.5 added a convenience method getAllListenerContainers(), which returns a collection
of all containers, including those managed by the registry and those declared as beans. The
collection returned will include any prototype beans that have been initialized, but it will not

64

initialize any lazy bean declarations.

@Kafkalistener @Payload Validation

Starting with version 2.2, it is now easier to add a Validator to validate @Kafkalistener @Payload
arguments. Previously, you had to configure a custom DefaultMessageHandlerMethodFactory and add
it to the registrar. Now, you can add the validator to the registrar itself. The following code shows
how to do so:

public class Config implements KafkalListenerConfigurer {

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setValidator(new MyValidator());
}

o When you use Spring Boot with the validation starter, a LocalValidatorFactoryBean
is auto-configured, as the following example shows:

public class Config implements KafkalListenerConfigurer {

private LocalValidatorFactoryBean validator;

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setValidator(this.validator);

}

The following examples show how to validate:

65

public static class Validated(Class {

@Max(10)
private int bar;

public int getBar() {
return this.bar;

}

public void setBar(int bar) {
this.bar = bar;

}

@Kafkalistener(id="validated", topics = "annotated35", errorHandler =
"validationErrorHandler",

containerFactory = "kafkalsonListenerContainerFactory")
public void validatedlListener(@Payload @Valid Validated(Class val) {

}

@Bean
public KafkalListenerErrorHandler validationErrorHandler() {
return (m, e) -> {

};

Starting with version 2.5.11, validation now works on payloads for @KafkaHandler methods in a
class-level listener. See @KafkalListener on a Class.

Rebalancing Listeners

ContainerProperties has a property called consumerRebalancelistener, which takes an
implementation of the Kafka client’s ConsumerRebalancelistener interface. If this property is not
provided, the container configures a logging listener that logs rebalance events at the INFO level.
The framework also adds a sub-interface ConsumerAwareRebalancelistener. The following listing
shows the ConsumerAwareRebalancelistener interface definition:

66

public interface ConsumerAwareRebalancelistener extends ConsumerRebalancelistener

{

void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection
<TopicPartition> partitions);

void onPartitionsRevokedAfterCommit(Consumer<?, 7> consumer, Collection
<TopicPartition> partitions);

void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition>
partitions);

void onPartitionsLost(Consumer<?, 7> consumer, Collection<TopicPartition>
partitions);

}

Notice that there are two callbacks when partitions are revoked. The first is called immediately. The
second is called after any pending offsets are committed. This is useful if you wish to maintain
offsets in some external repository, as the following example shows:

containerProperties.setConsumerRebalancelistener(new
ConsumerAwareRebalancelistener() {

public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
// acknowledge any pending Acknowledgments (if using manual acks)

}

public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
/] ...
store(consumer.position(partition));
/] ...

public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
/] ...
consumer.seek(partition, offsetTracker.getOffset() + 1);
/] ...

b

67

Starting with version 2.4, a new method onPartitionsLost() has been added
(similar to a method with the same name in ConsumerRebalancelister). The default
implementation on ConsumerRebalancelister simply calls onPartionsRevoked. The
default implementation on ConsumerAwareRebalancelistener does nothing. When
supplying the listener container with a custom listener (of either type), it is

o important that your implementation not call onPartitionsRevoked from
onPartitionsLost. If you implement ConsumerRebalancelListener you should override
the default method. This is because the listener container will call its own
onPartitionsRevoked from its implementation of onPartitionsLost after calling the
method on your implementation. If you implementation delegates to the default
behavior, onPartitionsRevoked will be called twice each time the Consumer calls that
method on the container’s listener.

Forwarding Listener Results using @SendTo

Starting with version 2.0, if you also annotate a @KafkalListener with a @SendTo annotation and the
method invocation returns a result, the result is forwarded to the topic specified by the @SendTo.

The @SendTo value can have several forms:

» @SendTo("someTopic") routes to the literal topic

» @SendTo("#{someExpression}") routes to the topic determined by evaluating the expression once
during application context initialization.

* @SendTo("!{someExpression}") routes to the topic determined by evaluating the expression at
runtime. The #root object for the evaluation has three properties:

o request: The inbound ConsumerRecord (or ConsumerRecords object for a batch listener))
o source: The org.springframework.messaging.Message<?> converted from the request.
o result: The method return result.
* @SendTo (no properties): This is treated as !{source.headers["kafka_replyTopic']} (since version
2.1.3).

Starting with versions 2.1.11 and 2.2.1, property placeholders are resolved within @SendTo values.

The result of the expression evaluation must be a String that represents the topic name. The
following examples show the various ways to use @SendTo:

68

@Kafkalistener(topics = "annotated21")
@SendTo("!{request.value()}") // runtime SpEL
public String replyinglListener(String in) {

}

@Kafkalistener(topics = "${some.property:annotated22}")
@SendTo("#{myBean.replyTopic}") // config time SpEL
public Collection<String> replyingBatchListener(List<String> in) {

}

@Kafkalistener(topics = "annotated23", errorHandler = "replyErrorHandler")
@SendTo("annotated23reply") // static reply topic definition
public String replyinglListenerWithErrorHandler(String in) {

}

@Kafkalistener(topics = "annotated25")
@SendTo("annotated25reply1")
public class MultiListenerSendTo {

@KafkaHandler
public String foo(String in) {

}

@KafkaHandler

@SendTo("!{"'annotated25reply2'}")

public String bar(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

In order to support @SendTo, the listener container factory must be provided with a
KafkaTemplate (in its replyTemplate property), which is used to send the reply. This

o should be a KafkaTemplate and not a ReplyingKafkaTemplate which is used on the
client-side for request/reply processing. When using Spring Boot, boot will auto-
configure the template into the factory; when configuring your own factory, it
must be set as shown in the examples below.

Starting with version 2.2, you can add a ReplyHeadersConfigurer to the listener container factory.

This is consulted to determine which headers you want to set in the reply message. The following
example shows how to add a ReplyHeadersConfigurer:

69

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer((k, v) -> k.equals(“cat"));
return factory;

You can also add more headers if you wish. The following example shows how to do so:

public ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer(new ReplyHeadersConfigurer() {

public boolean shouldCopy(String headerName, Object headerValue) {
return false;

}

public Map<String, Object> additionalHeaders() {
return Collections.singletonMap("qux", "fiz");

}
1

return factory;

When you use @SendTo, you must configure the ConcurrentKafkalListenerContainerFactory with a
KafkaTemplate in its replyTemplate property to perform the send.

Unless you use request/reply semantics only the simple send(topic, value) method

o is used, so you may wish to create a subclass to generate the partition or key. The
following example shows how to do so:

70

public KafkaTemplate<String, String> myReplyingTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory()) {

public ListenableFuture<SendResult<String, String>> send(String topic,
String data) {
return super.send(topic, partitionForData(data), keyForData(data),
data);

If the listener method returns Message<?> or Collection<Message<?>>, the listener
method is responsible for setting up the message headers for the reply. For
example, when handling a request from a ReplyingKafkaTemplate, you might do the
following:

(id = "messageReturned", topics = "someTopic")
public Message<?> listen(String in, (KafkaHeaders
o .REPLY_TOPIC) byte[] replyTo,
(KafkaHeaders.CORRELATION_ID) byte[] correlation) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.setHeader ("someOtherHeader"”, "someValue")
.build();

When using request/reply semantics, the target partition can be requested by the sender.

71

You can annotate a @Kafkalistener method with @SendTo even if no result is
returned. This is to allow the configuration of an errorHandler that can forward
information about a failed message delivery to some topic. The following example
shows how to do so:

(id = "voidlListenerWithReplyingErrorHandler", topics
= "someTopic",
errorHandler = "voidSendToErrorHandler")
("failures")
public void voidListenerWithReplyingErrorHandler(String in) {
o throw new RuntimeException("fail");
}

public KafkalistenerErrorHandler voidSendToErrorHandler() {
return (m, e) -> {
return ... // some information about the failure and input
data

};

See Handling Exceptions for more information.

If a listener method returns an Iterable, by default a record for each element as
the value is sent. Starting with version 2.3.5, set the splitIterables property on

e @Kafkalistener to false and the entire result will be sent as the value of a single
ProducerRecord. This requires a suitable serializer in the reply template’s producer
configuration. However, if the reply is Iterable<Message<?>> the property is
ignored and each message is sent separately.

Filtering Messages

In certain scenarios, such as rebalancing, a message that has already been processed may be
redelivered. The framework cannot know whether such a message has been processed or not. That
is an application-level function. This is known as the Idempotent Receiver pattern and Spring
Integration provides an implementation of it.

The Spring for Apache Kafka project also provides some assistance by means of the
FilteringMessagelistenerAdapter class, which can wrap your Messagelistener. This class takes an
implementation of RecordFilterStrategy in which you implement the filter method to signal that a
message is a duplicate and should be discarded. This has an additional property called
ackDiscarded, which indicates whether the adapter should acknowledge the discarded record. It is
false by default.

When you use @Kafkalistener, set the RecordFilterStrategy (and optionally ackDiscarded) on the
container factory so that the listener is wrapped in the appropriate filtering adapter.

72

https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://docs.spring.io/spring-integration/reference/html/#idempotent-receiver

In addition, a FilteringBatchMessagelistenerAdapter is provided, for when you use a batch message
listener.

The FilteringBatchMessagelistenerAdapter is ignored if your @Kafkalistener
o receives a ConsumerRecords<?, 7> instead of List<ConsumerRecord<?, 7>>, because
ConsumerRecords is immutable.

Retrying Deliveries

If your listener throws an exception, the default behavior is to invoke the Container Error
Handlers, if configured, or logged otherwise.

NOTE: To retry deliveries, a convenient listener adapter RetryingMessagelistenerAdapter is
provided.

You can configure it with a RetryTemplate and Recovery(Callback<Void> - see the spring-retry project
for information about these components. If a recovery callback is not provided, the exception is
thrown to the container after retries are exhausted. In that case, the ErrorHandler is invoked, if
configured, or logged otherwise.

When you use @Kafkalistener, you can set the RetryTemplate (and optionally recoveryCallback) on
the container factory. When you do so, the listener is wrapped in the appropriate retrying adapter.

The contents of the RetryContext passed into the RecoveryCallback depend on the type of listener.
The context always has a record attribute, which is the record for which the failure occurred. If
your listener is acknowledging or consumer aware, additional acknowledgment or consumer attributes
are available. For convenience, the RetryingMessagelistenerAdapter provides static constants for
these keys. See its Javadoc for more information.

A retry adapter is not provided for any of the batch message listeners, because the framework has
no knowledge of where in a batch the failure occurred. If you need retry capabilities when you use
a batch listener, we recommend that you use a RetryTemplate within the listener itself.

Stateful Retry

Now that the SeekToCurrentErrorHandler can be configured with a BackOff and has
the ability to retry only certain exceptions (since version 2.3), the use of stateful

o retry, via the listener adapter retry configuration, is no longer necessary. You can
provide the same functionality with appropriate configuration of the error
handler and remove all retry configuration from the listener adapter. See Seek To
Current Container Error Handlers for more information.

You should understand that the retry discussed in the preceding section suspends the consumer
thread (if a BackOffPolicy is used). There are no calls to Consumer.poll() during the retries. Kafka
has two properties to determine consumer health. The session.timeout.ms is used to determine if
the consumer is active. Since kafka-clients version 0.10.1.0, heartbeats are sent on a background
thread, so a slow consumer no longer affects that. max.poll.interval.ms (default: five minutes) is
used to determine if a consumer appears to be hung (taking too long to process records from the
last poll). If the time between poll() calls exceeds this, the broker revokes the assigned partitions

73

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/adapter/AbstractRetryingMessageListenerAdapter.html

and performs a rebalance. For lengthy retry sequences, with back off, this can easily happen.

Since version 2.1.3, you can avoid this problem by using stateful retry in conjunction with a
SeekToCurrentErrorHandler. In this case, each delivery attempt throws the exception back to the
container, the error handler re-seeks the unprocessed offsets, and the same message is redelivered
by the next poll(). This avoids the problem of exceeding the max.poll.interval.ms property (as long
as an individual delay between attempts does not exceed it). So, when you use an
ExponentialBackOffPolicy, you must ensure that the maxInterval 1is less than the
max.poll.interval.ms property. To enable stateful retryy, you can use the
RetryingMessagelistenerAdapter constructor that takes a stateful boolean argument (set it to true).
When you configure the listener container factory (for @Kafkalistener), set the factory’s
statefulRetry property to true.

Version 2.2 added recovery to the SeekToCurrentErrorHandler, such as sending a
failed record to a dead-letter topic. When using stateful retry, you must perform
the recovery in the retry RecoveryCallback and NOT in the error handler.
Otherwise, if the recovery is done in the error handler, the retry template’s state

o will never be cleared. Also, you must ensure that the maxFailures in the
SeekToCurrentErrorHandler must be at least as many as configured in the retry
policy, again to ensure that the retries are exhausted and the state cleared. Here is
an example for retry configuration when used with a SeekToCurrentErrorHandler
where factory is the ConcurrentKafkalistenerContainerFactory.

DeadLetterPublishingRecoverer recoverer;

factory.setRetryTemplate(new RetryTemplate()); // 3 retries by default
factory.setStatefulRetry(true);
factory.setRecoveryCallback(context -> {
recoverer.accept((ConsumerRecord<?, 7>) context.getAttribute("record"),
(Exception) context.getlastThrowable());
return null;

;i

public SeekToCurrentErrorHandler eh() {
return new SeekToCurrentErrorHandler(new FixedBackOff(0L, 3L)); // at least 3
}

However, see the note at the beginning of this section; you can avoid using the RetryTemplate
altogether.

74

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the error
handler’s resetStateOnRecoveryFailure to false.

Starting with version 2.6, you can now provide the error handler with a
BiFunction<ConsumerRecord<?, 7>, Exception, BackOff> to determine the BackOff to use, based on
the failed record and/or the exception:

handler.setBackOffFunction((record, ex) -> { ... });

If the function returns null, the handler’s default BackOff will be used.

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new BackOff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

Starting @Kafkalistener s in Sequence

A common use case is to start a listener after another listener has consumed all the records in a
topic. For example, you may want to load the contents of one or more compacted topics into
memory before processing records from other topics. Starting with version 2.7.3, a new component
ContainerGroupSequencer has been introduced. It uses the @Kafkalistener containerGroup property to
group containers together and start the containers in the next group, when all the containers in the
current group have gone idle.

It is best illustrated with an example.

75

(id = "listen1", topics = "topic1", containerGroup = "g1",
concurrency = "2")
public void listen1(String in) {
}

(id = "listen2", topics = "topic2", containerGroup = "g1",
concurrency = "2")
public void listen2(String in) {
}

(id = "listen3", topics = "topic3", containerGroup = "g2",
concurrency = "2")
public void listen3(String in) {
}

(id = "listen4", topics = "topic4", containerGroup = "g2",

concurrency = "2")
public void listen4(String in) {
¥

ContainerGroupSequencer sequencer(KafkalistenerEndpointRegistry registry) {
return new ContainerGroupSequencer(registry, 5000, "g1", "g2");

}

Here, we have 4 listeners in two groups, g1 and g2.

During application context initialization, the sequencer, sets the autoStartup property of all the
containers in the provided groups to false. It also sets the idleEventInterval for any containers
(that do not already have one set) to the supplied value (5000ms in this case). Then, when the
sequencer is started by the application context, the containers in the first group are started. As
ListenerContainerIdleEvent s are received, each individual child container in each container is
stopped. When all child containers in a ConcurrentMessagelListenerContainer are stopped, the parent
container is stopped. When all containers in a group have been stopped, the containers in the next
group are started. There is no limit to the number of groups or containers in a group.

By default, the containers in the final group (92 above) are not stopped when they go idle. To modify
that behavior, set stopLastGroupWhenIdle to true on the sequencer.

As an aside; previously, containers in each group were added to a bean of type
Collection<MessagelistenerContainer> with the bean name being the containerGroup. These
collections are now deprecated in favor of beans of type ContainerGroup with a bean name that is
the group name, suffixed with .group; in the example above, there would be 2 beans g1.group and
g2.group. The Collection beans will be removed in a future release.

76

4.1.5. Listener Container Properties

Table 1. ContainerProperties Properties

Property

ackCount

adviceChain

ackMode

ackOnError

ackTime

assignment
CommitOption

authorizationExcepti
on
RetryInterval

clientId

commitCallback

commitLoglevel

consumerRebalancelis
tener

consumerStartTimout

consumerTaskExecutor

Default
1

null

BATCH

false

5000

LATEST_O
NLY
_NO_TX

null

(empty
string)

null

DEBUG
null

30s

SimpleAsyn
c

TaskExecut
or

Description

The number of records before committing pending offsets
when the ackMode is COUNT or COUNT _TIME.

A chain of Advice objects (e.g. MethodInterceptor around
advice) wrapping the message listener, invoked in order.

Controls how often offsets are committed - see Committing
Offsets.

[DEPRECATED in favor of ErrorHandler.isAckAfterHandle()]

The time in milliseconds after which pending offsets are
committed when the ackMode is TIME or COUNT _TIME.

Whether or not to commit the initial position on assignment;
by default, the initial offset will only be committed if the

ConsumerConfig.AUTO_OFFSET_RESET_CONFIG is latest and it won’t

run in a transaction even if there is a transaction manager
present. See the javadocs for
ContainerProperties.AssignmentCommitOption for more
information about the available options.

When not null, a Duration to sleep between polls when an
AuthorizationException is thrown by the Kafka client. When
null, such exceptions are considered fatal and the container
will stop.

A prefix for the client.id consumer property. Overrides the
consumer factory client.id property; in a concurrent

container, -n is added as a suffix for each consumer instance.

When present and syncCommits is false a callback invoked
after the commit completes.

The logging level for logs pertaining to committing offsets.

A rebalance listener; see Rebalancing Listeners.

The time to wait for the consumer to start before logging an
error; this might happen if, say, you use a task executor with
insufficient threads.

A task executor to run the consumer threads. The default
executor creates threads named <name>-C-n; with the
KafkaMessagelListenerContainer, the name is the bean name;
with the ConcurrentMessagelListenerContainer the name is the
bean name suffixed with -n where n is incremented for each
child container.

77

Property

deliveryAttemptHeade
c

eosMode

fixTx0ffsets

groupld

idleBetweenPolls

idleEventInterval

idlePartitionEventIn
terval

kafkaConsumerPropert
ies

logContainerConfig
messagelistener

micrometerEnabled

missingTopicsFatal

monitorInterval

noPol1Threshold

78

Default

false

BETA

false

null

null

null

None

false
null

true

false

30s

3.0

Description

See Delivery Attempts Header.

Exactly Once Semantics mode; see Exactly Once Semantics.

When consuming records produced by a transactional
producer, and the consumer is positioned at the end of a
partition, the lag can incorrectly be reported as greater than
zero, due to the pseudo record used to indicate transaction
commit/rollback and, possibly, the presence of rolled-back
records. This does not functionally affect the consumer but
some users have expressed concern that the "lag" is non-zero.
Set this property to true and the container will correct such
mis-reported offsets. The check is performed before the next
poll to avoid adding significant complexity to the commit
processing. At the time of writing, the lag will only be
corrected if the consumer is configured with
isolation.level=read_committed and max.poll.records is
greater than 1. See KAFKA-10683 for more information.

Overrides the consumer group.id property; automatically set
by the @Kafkalistener id or groupIld property.

Used to slow down deliveries by sleeping the thread between
polls. The time to process a batch of records plus this value
must be less than the max.poll.interval.ms consumer property.

When set, enables publication of ListenerContainerIdleEvent s,
see Application Events and Detecting Idle and Non-Responsive
Consumers.

When set, enables publication of
ListenerContainerIdlePartitionEvent s, see Application Events
and Detecting Idle and Non-Responsive Consumers.

Used to override any arbitrary consumer properties
configured on the consumer factory.

Set to true to log at INFO level all container properties.
The message listener.

Whether or not to maintain Micrometer timers for the
consumer threads.

When true prevents the container from starting if the
confifgured topic(s) are not present on the broker.

How often to check the state of the consumer threads for
NonResponsiveConsumerEvent s. See noPollThreshold and
pollTimeout.

Multiplied by poll1TimeQOut to determine whether to publish a
NonResponsiveConsumerEvent. See monitorInterval.

https://issues.apache.org/jira/browse/KAFKA-10683

Property

onlylLogRecord
Metadata

pollTimeout

scheduler

shutdownTimeout

stopContainerWhenFen
ced

stopImmediate

subBatchPerPartition

syncCommitTimeout

syncCommits

topics
topicPattern
topicPartitions

transactionManager

Default

false

5000

ThreadPool

TaskSchedu
ler

10000

false

false

See desc.

null

true

n/a

null

Description

Set to false to log the complete consumer record (in error,
debug logs etc) instead of just topic-partition@offset.

The timeout passed into Consumer.poll().

A scheduler on which to run the consumer monitor task.

The maximum time in ms to block the stop() method until all
consumers stop and before publishing the container stopped
event.

Stop the listener container if a ProducerFencedException is
thrown. See After-rollback Processor for more information.

When the container is stopped, stop processing after the
current record instead of after processing all the records from
the previous poll.

When using a batch listener, if this is true, the listener is called
with the results of the poll split into sub batches, one per
partition. Default false except when using transactions with
EOSMode . ALPHA - see Exactly Once Semantics.

The timeout to use when syncCommits is true. When not set, the
container will attempt to determine the
default.api.timeout.ms consumer property and use that;
otherwise it will use 60 seconds.

Whether to use sync or async commits for offsets; see
commitCallback.

The configured topics, topic pattern or explicitly assigned
topics/partitions. Mutually exclusive; at least one must be
provided; enforced by ContainerProperties constructors.

See Transactions.

Table 2. AbstractListenerContainer Properties

Property

afterRollback
Processor

applicationEventPubl
isher

batchError
Handler

Default

DefaultAft
er

Rollback
Processor

applicatio
n context

See desc.

Description

An AfterRollbackProcessor to invoke after a transaction is
rolled back.

The event publisher.

An error handler for a batch listener; defaults to a
RecoveringBatchErrorHandler or null if transactions are being
used (errors are handled by the AfterRol1lbackProcessor).

79

Property

batch
Interceptor

beanName

containerProperties

errorHandler

genericErrorHandler

groupld

intercept
BeforeTx

listenerlId

pause
Requested

record
Interceptor

topicCheck
Timeout

Default
null

bean
name

Container
Properties

See desc.

See desc.

See desc.

false

See desc.

(read
only)

null

30s

Description

Set a BatchInterceptor to call before invoking the batch
listener; does not apply to record listeners. Also see
interceptBeforeTx.

The bean name of the container; suffixed with -n for child
containers.

The container properties instance.

An error handler for a record listener; defaults to a
SeekToCurrentErrorHandler or null if transactions are being
used (errors are handled by the AfterRol1lbackProcessor).

Either a batch or record error handler - see batchErrorHandler
and errorHandler.

The containerProperties.groupld, if present, otherwise the
group.id property from the consumer factory.

Determines whether the recordInterceptor is called before or
after a transaction starts.

The bean name for user-configured containers or the id
attribute of @Kafkalistener s.

True if a consumer pause has been requested.

Set a RecordInterceptor to call before invoking the record
listener; does not apply to batch listeners. Also see
interceptBeforeTx.

When the missingTopicsFatal container property is true, how
long to wait, in seconds, for the describeTopics operation to
complete.

Table 3. KafkaMessagelistenerContainer Properties

Property

assigned
Partitions

assigned
Partitions
ByClientId

clientId
Suffix

containerPaused

Default

(read
only)

(read
only)

null

n/a

Description

The partitions currently assigned to this container (explicitly
or not).

The partitions currently assigned to this container (explicitly
or not).

Used by the concurrent container to give each child
container’s consumer a unique client.1id.

True if pause has been requested and the consumer has
actually paused.

Table 4. ConcurrentMessagelListenerContainer Properties

80

Property Default Description

alwaysClientId true Set to false to suppress adding a suffix to the client.id

Suffix consumer property, when the concurrency is only 1.

assigned (read The aggregate of partitions currently assigned to this

Partitions only) container’s child KafkaMessageListenerContainer s (explicitly or
not).

assigned (read The partitions currently assigned to this container’s child

Part1.t1ons only) KafkaMessagelistenerContainer s (explicitly or not), keyed by

ByClientId the child container’s consumer’s client.id property.

concurrency 1 The number of child KafkaMessageListenerContainer s to
manage.

containerPaused n/a True if pause has been requested and all child containers'
consumer has actually paused.

containers n/a A reference to all child KafkaMessageListenerContainer s.

4.1.6. Application Events

The following Spring application events are published by listener containers and their consumers:

* ConsumerStartingEvent - published when a consumer thread is first started, before it starts

polling.

* ConsumerStartedEvent - published when a consumer is about to start polling.

ConsumerFailedToStartEvent - published if no ConsumerStartingEvent is published within the
consumerStartTimeout container property. This event might signal that the configured task
executor has insufficient threads to support the containers it is used in and their concurrency.
An error message is also logged when this condition occurs.

ListenerContainerIdleEvent: published when no messages have been received in idleInterval (if
configured).

ListenerContainerNoLongerIdleEvent: published when a record is consumed after previously
publishing a ListenerContainerIdleEvent.

ListenerContainerPartitionIdleEvent: published when no messages have been received from
that partition in idlePartitionEventInterval (if configured).

ListenerContainerPartitionNoLongerIdleEvent: published when a record is consumed from a
partition that has previously published a ListenerContainerPartitionIdleEvent.

NonResponsiveConsumerEvent: published when the consumer appears to be blocked in the poll
method.

ConsumerPartitionPausedEvent: published by each consumer when a partition is paused.
ConsumerPartitionResumedEvent: published by each consumer when a partition is resumed.
ConsumerPausedEvent: published by each consumer when the container is paused.
ConsumerResumedEvent: published by each consumer when the container is resumed.

ConsumerStoppingEvent: published by each consumer just before stopping.

81

» ConsumerStoppedEvent: published after the consumer is closed. See Thread Safety.

» ContainerStoppedEvent: published when all consumers have stopped.

By default, the application context’s event multicaster invokes event listeners on

o the calling thread. If you change the multicaster to use an async executor, you
must not invoke any Consumer methods when the event contains a reference to the
consumer.

The ListenerContainerIdleEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e id: The listener ID (or container bean name).
 idleTime: The time the container had been idle when the event was published.

* topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener
Containers for more information.
The ListenerContainerNoLongerIdleEvent has the same properties, except idleTime and paused.

The ListenerContainerPartitionIdleEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

* id: The listener ID (or container bean name).
* idleTime: The time partition consumption had been idle when the event was published.
* topicPartition: The topic and partition that triggered the event.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether that partition consumption is currently paused for that consumer. See Pausing
and Resuming Listener Containers for more information.

The ListenerContainerPartitionNoLongerIdleEvent has the same properties, except idleTime and
paused.

The NonResponsiveConsumerEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a

82

child.
e id: The listener ID (or container bean name).
* timeSincelastPoll: The time just before the container last called pol1().

* topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener

Containers for more information.

The ConsumerPausedEvent, ConsumerResumedEvent, and ConsumerStopping events have the following
properties:
 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partitions: The TopicPartition instances involved.
The ConsumerPartitionPausedEvent, ConsumerPartitionResumedEvent events have the following
properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partition: The TopicPartition instance involved.
The ConsumerStartingEvent, ConsumerStartingEvent, ConsumerFailedToStartEvent,
ConsumerStoppedEvent and ContainerStoppedEvent events have the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a

child.

All containers (whether a child or a parent) publish ContainerStoppedEvent. For a parent container,
the source and container properties are identical.

In addition, the ConsumerStoppedEvent has the following additional property:

* reason
o NORMAL - the consumer stopped normally (container was stopped).
o ERROR - a java.lang.Error was thrown.

o FENCED - the transactional producer was fenced and the stopContainerWhenFenced container
property is true.

o AUTH - an AuthorizationException was thrown and the authorizationExceptionRetryInterval is

83

not configured.

o NO_OFFSET - there is no offset for a partition and the auto.offset.reset policy is none.

You can use this event to restart the container after such a condition:

if (event.getReason.equals(Reason.FENCED)) {
event.getSource(MessagelistenerContainer.class).start();

}

Detecting Idle and Non-Responsive Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle. You
might want to take some action if no messages arrive for some period of time.

You can configure the listener container to publish a ListenerContainerIdleEvent when some time
passes with no message delivery. While the container is idle, an event is published every
idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container. The following example shows
how to do so:

public KafkaMessagelistenerContainer(ConsumerFactory<String, String>
consumerFactory) {

ContainerProperties containerProps = new ContainerProperties("topicl”,
topic2");

containerProps.setIdleEventInterval(60000L);
KafkaMessageListenerContainer<String, String> container = new

KafKaMessagelistenerContainer<>(...);
return container;

}

The following example shows how to set the idleEventInterval for a @Kafkalistener:

84

public ConcurrentKafkalistenerContainerFactory kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<String, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.getContainerProperties().setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

In addition, if the broker is unreachable, the consumer pol1() method does not exit, so no messages
are received and idle events cannot be generated. To solve this issue, the container publishes a
NonResponsiveConsumerEvent if a poll does not return within 3x the pollTimeout property. By default,
this check is performed once every 30 seconds in each container. You can modify this behavior by
setting the monitorInterval (default 30 seconds) and noPollThreshold (default 3.0) properties in the
ContainerProperties when configuring the listener container. The noPollThreshold should be greater
than 1.0 to avoid getting spurious events due to a race condition. Receiving such an event lets you
stop the containers, thus waking the consumer so that it can stop.

Starting with version 2.6.2, if a container has published a ListenerContainerIdleEvent, it will publish
a ListenerContainerNoLongerIdleEvent when a record is subsequently received.

Event Consumption

You can capture these events by implementing ApplicationListener —either a general listener or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

The next example combines @Kafkalistener and @EventListener into a single class. You should
understand that the application listener gets events for all containers, so you may need to check the
listener ID if you want to take specific action based on which container is idle. You can also use the
@EventListener condition for this purpose.

See Application Events for information about event properties.

The event is normally published on the consumer thread, so it is safe to interact with the Consumer
object.

The following example uses both @Kafkalistener and @EventListener:

85

public class Listener {

@KafkalListener(id = "qux", topics = "annotated")
public void listen4(@Payload String foo, Acknowledgment ack) {

}

@EventListener(condition = "event.listenerId.startsWith('qux-")")
public void eventHandler(ListenerContainerIdleEvent event) {

}

Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID. Since containers

o created for the @Kafkalistener support concurrency, the actual containers are
named id-n where the n is a unique value for each instance to support the
concurrency. That is why we use startsWith in the condition.

If you wish to use the idle event to stop the lister container, you should not call
container.stop() on the thread that calls the listener. Doing so causes delays and
o unnecessary log messages. Instead, you should hand off the event to a different
thread that can then stop the container. Also, you should not stop() the container
instance if it is a child container. You should stop the concurrent container instead.

Current Positions when Idle

Note that you can obtain the current positions when idle is detected by implementing
ConsumerSeekAware in your listener. See onIdleContainer() in Seeking to a Specific Offset.

4.1.7. Topic/Partition Initial Offset

There are several ways to set the initial offset for a partition.

When manually assigning partitions, you can set the initial offset (if desired) in the configured
TopicPartitionOffset arguments (see Message Listener Containers). You can also seek to a specific
offset at any time.

When you use group management where the broker assigns partitions:

» For a new group.id, the initial offset is determined by the auto.offset.reset consumer property
(earliest or latest).

* For an existing group ID, the initial offset is the current offset for that group ID. You can,
however, seek to a specific offset during initialization (or at any time thereafter).

86

4.1.8. Seeking to a Specific Offset

In order to seek, your listener must implement ConsumerSeekAware, which has the following
methods:

void registerSeekCallback(ConsumerSeekCallback callback);

void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback);

void onPartitionsRevoked(Collection<TopicPartition> partitions)

void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback
callback);

The registerSeekCallback is called when the container is started and whenever partitions are
assigned. You should use this callback when seeking at some arbitrary time after initialization. You
should save a reference to the callback. If you use the same listener in multiple containers (or in a
ConcurrentMessagelListenerContainer), you should store the callback in a ThreadLocal or some other
structure keyed by the listener Thread.

When using group management, onPartitionsAssigned is called when partitions are assigned. You
can use this method, for example, for setting initial offsets for the partitions, by calling the callback.
You can also use this method to associate this thread’s callback with the assigned partitions (see the
example below). You must use the callback argument, not the one passed into registerSeekCallback.
Starting with version 2.5.5, this method is called, even when using manual partition assignment.

onPartitionsRevoked is called when the container is stopped or Kafka revokes assignments. You
should discard this thread’s callback and remove any associations to the revoked partitions.

The callback has the following methods:

87

void seek(String topic, int partition, long offset);

void seekToBeginning(String topic, int partition);

void seekToBeginning(Collection=<TopicPartitions> partitions);

void seekToEnd(String topic, int partition);

void seekToEnd(Collection=<TopicPartitions> partitions);

void seekRelative(String topic, int partition, long offset, boolean toCurrent);
void seekToTimestamp(String topic, int partition, long timestamp);

void seekToTimestamp(Collection<TopicPartition> topicPartitions, long timestamp);

seekRelative was added in version 2.3, to perform relative seeks.

» offset negative and toCurrent false - seek relative to the end of the partition.
» offset positive and toCurrent false - seek relative to the beginning of the partition.
» offset negative and toCurrent true - seek relative to the current position (rewind).

» offset positive and toCurrent true - seek relative to the current position (fast forward).

The seekToTimestamp methods were also added in version 2.3.

When seeking to the same timestamp for multiple partitions in the onIdleContainer
or onPartitionsAssigned methods, the second method is preferred because it is

o more efficient to find the offsets for the timestamps in a single call to the
consumer’s offsetsForTimes method. When called from other locations, the
container will gather all timestamp seek requests and make one call to
offsetsForTimes.

You can also perform seek operations from onIdleContainer() when an idle container is detected.
See Detecting Idle and Non-Responsive Consumers for how to enable idle container detection.

The seekToBeginning method that accepts a collection is useful, for example, when

o processing a compacted topic and you wish to seek to the beginning every time the
application is started:

88

public class MyListener implements ConsumerSeekAware {

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {

callback.seekToBeginning(assignments.keySet());
}

To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback for the
appropriate thread.

Here is a trivial Spring Boot application that demonstrates how to use the callback; it sends 10
records to the topic; hitting <Enter> in the console causes all partitions to seek to the beginning.

89

90

public class SeekExampleApplication {

public static void main(String[] args) {
SpringApplication.run(SeekExampleApplication.class, args);
}

public ApplicationRunner runner(Listener listener, KafkaTemplate<String,
String> template) {
return args -> {

IntStream.range(@, 10).forEach(i -> template.send(
new ProducerRecord<>("seekExample", i % 3, "foo", "bar")));

while (true) {
System.in.read();
listener.seekToStart();

public NewTopic topic() {
return new NewTopic("seekExample", 3, (short) 1);

}

class Listener implements ConsumerSeekAware {

private static final Logger logger = LoggerFactory.getlLogger(Listener.class);

private final ThreadlLocal<ConsumerSeekCallback> callbackForThread = new
ThreadlLocal<>();
private final Map<TopicPartition, ConsumerSeekCallback> callbacks = new

ConcurrentHashMap<>();

public void registerSeekCallback(ConsumerSeekCallback callback) {
this.callbackForThread.set(callback);

}

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
assignments.keySet().forEach(tp -> this.callbacks.put(tp, this
.callbackForThread.qget()));
}

public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
partitions.forEach(tp -> this.callbacks.remove(tp));
this.callbackForThread.remove();

public void onIdleContainer(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
}

(id = "seekExample", topics = "seekExample", concurrency = "3")
public void listen(ConsumerRecord<String, String> in) {
logger.info(in.toString());
}

public void seekToStart() {
this.callbacks.forEach((tp, callback) -> callback.seekToBeginning(tp.
topic(), tp.partition()));
}

To make things simpler, version 2.3 added the AbstractConsumerSeekAware class, which keeps track of
which callback is to be used for a topic/partition. The following example shows how to seek to the
last record processed, in each partition, each time the container goes idle. It also has methods that
allow arbitrary external calls to rewind partitions by one record.

91

public class SeekTolLastOnIdlelListener extends AbstractConsumerSeekAware {

(id = "seekOnIdle", topics = "seekOnIdle")
public void listen(String in) {

}

public void onIdleContainer(Map<org.apache.kafka.common.TopicPartition, Long>
assignments,
ConsumerSeekCallback callback) {

assignments.keySet().forEach(tp -> callback.seekRelative(tp.topic(),
tp.partition(), -1, true));
}

/**
* Rewind all partitions one record.
*
/
public void rewindAl1OneRecord() {
getSeekCallbacks()
.forEach((tp, callback) ->
callback.seekRelative(tp.topic(), tp.partition(), -1, true));

}

/**
* Rewind one partition one record.
*/
public void rewindOnePartitionOneRecord(String topic, int partition) {
getSeekCallbackFor(new org.apache.kafka.common.TopicPartition(topic,
partition))
.seekRelative(topic, partition, -1, true);

}

Version 2.6 added convenience methods to the abstract class:

» seekToBeginning() - seeks all assigned partitions to the beginning
* seekToEnd() - seeks all assigned partitions to the end

* seekToTimestamp(long time) - seeks all assigned partitions to the offset represented by that
timestamp.

Example:

92

public class MyListener extends AbstractConsumerSeekAware {

(...)
void listn(...) {

public class SomeQtherBean {

MyListener listener;

void someMethod() {
this.listener.seekToTimestamp(System.currentTimeMillis - 60_000);

4.1.9. Container factory

As discussed in @KafkalListener Annotation, a ConcurrentKafkalistenerContainerFactory is used to
create containers for annotated methods.

Starting with version 2.2, you can wuse the same factory to create any
ConcurrentMessagelistenerContainer. This might be useful if you want to create several containers
with similar properties or you wish to use some externally configured factory, such as the one
provided by Spring Boot auto-configuration. Once the container is created, you can further modify
its properties, many of which are set by using container.getContainerProperties(). The following
example configures a ConcurrentMessagelListenerContainer:

public ConcurrentMessagelistenerContainer<String, String>(
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> container =
factory.createContainer("topic1", "topic2");

container.setMessagelListener(m -> { ... });

return container;

93

Containers created this way are not added to the endpoint registry. They should be
o created as @Bean definitions so that they are registered with the application
context.

Starting with version 2.3.4, you can add a ContainerCustomizer to the factory to further configure
each container after it has been created and configured.

public KafkalistenerContainerFactory<?, 7> kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setContainerCustomizer(container -> { /* customize the container */ }

)i
return factory;
}
4.1.10. Thread Safety

When using a concurrent message listener container, a single listener instance is invoked on all
consumer threads. Listeners, therefore, need to be thread-safe, and it is preferable to use stateless
listeners. If it is not possible to make your listener thread-safe or adding synchronization would
significantly reduce the benefit of adding concurrency, you can use one of a few techniques:

* Use n containers with concurrency=1 with a prototype scoped MessagelListener bean so that each
container gets its own instance (this is not possible when using @KafkalListener).

* Keep the state in ThreadlLocal<?> instances.

* Have the singleton listener delegate to a bean that is declared in SimpleThreadScope (or a similar
scope).

To facilitate cleaning up thread state (for the second and third items in the preceding list), starting
with version 2.2, the listener container publishes a ConsumerStoppedEvent when each thread exits.
You can consume these events with an ApplicationListener or @EventlListener method to remove
ThreadlLocal<?> instances or remove() thread-scoped beans from the scope. Note that
SimpleThreadScope does not destroy beans that have a destruction interface (such as DisposableBean),
so you should destroy() the instance yourself.

By default, the application context’s event multicaster invokes event listeners on
o the calling thread. If you change the multicaster to use an async executor, thread
cleanup is not effective.

4.1.11. Monitoring

94

Monitoring Listener Performance

Starting with version 2.3, the listener container will automatically create and update Micrometer
Timer s for the listener, if Micrometer is detected on the class path, and a single MeterRegistry is
present in the application context. The timers can be disabled by setting the ContainerProperty
micrometerEnabled to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.listener and have the following tags:

e name : (container bean name)
e result: success or failure

» exception:none or ListenerExecutionFailedException

You can add additional tags using the ContainerProperties micrometerTags property.

o With the concurrent container, timers are created for each thread and the name tag
is suffixed with -n where n is @ to concurrency-1.

Monitoring KafkaTemplate Performance

Starting with version 2.5, the template will automatically create and update Micrometer Timer s for
send operations, if Micrometer is detected on the class path, and a single MeterRegistry is present in
the application context. The timers can be disabled by setting the template’s micrometerEnabled
property to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.template and have the following tags:

* name : (template bean name)
e result: success or failure

* exception : none or the exception class name for failures

You can add additional tags using the template’s micrometerTags property.

Micrometer Native Metrics

Starting with version 2.5, the framework provides Factory Listeners to manage a Micrometer
KafkaClientMetrics instance whenever producers and consumers are created and closed.

To enable this feature, simply add the listeners to your producer and consumer factories:

95

public ConsumerFactory<String, String> myConsumerFactory() {
Map<String, Object> configs = consumerConfigs();

DefaultKafkaConsumerFactory<String, String> cf = new
DefaultKafkaConsumerFactory<>(configs);

cf.addListener(new MicrometerConsumerListener<String, String>(meterRegistry(),
Collections.singletonlList(new ImmutableTag("customTag",
"customTagValue"))));

return cf;

public ProducerFactory<String, String> myProducerFactory() {
Map<String, Object> configs = producerConfigs();
configs.put(ProducerConfig.CLIENT_ID_CONFIG, "myClientId");

DefaultKafkaProducerFactory<String, String> pf = new
DefaultKafkaProducerFactory<>(configs);

pf.addListener(new MicrometerProducerListener<String, String>(meterRegistry(),
Collections.singletonlList(new ImmutableTag("customTag",
"customTagValue"))));

return pf;

The consumer/producer id passed to the listener is added to the meter’s tags with tag name
spring.id.

An example of obtaining one of the Kafka metrics

double count = this.meterRegistry.get("kafka.producer.node.incoming.byte.total")
.tag("customTag", "customTagValue")
.tag("spring.id", "myProducerFactory.myClientId-1")
.functionCounter ()
.count()

A similar listener is provided for the StreamsBuilderFactoryBean - see KafkaStreams Micrometer
Support.

96

4.1.12. Transactions

This section describes how Spring for Apache Kafka supports transactions.

Overview

The 0.11.0.0 client library added support for transactions. Spring for Apache Kafka adds support in
the following ways:

* KafkaTransactionManager: Used with normal Spring transaction support (@Transactional,
TransactionTemplate etc).

» Transactional KafkaMessagelListenerContainer
 Local transactions with KafkaTemplate

* Transaction synchronization with other transaction managers

Transactions are enabled by providing the DefaultKafkaProducerFactory with a transactionIdPrefix.
In that case, instead of managing a single shared Producer, the factory maintains a cache of
transactional producers. When the user calls close() on a producer, it is returned to the cache for
reuse instead of actually being closed. The transactional.id property of each producer is
transactionIdPrefix + n, where n starts with @ and is incremented for each new producer, unless the
transaction is started by a listener container with a record-based listener. In that case, the
transactional.id is <transactionIdPrefix>.<group.id>.<topic>.<partition>. This is to properly
support fencing zombies, as described here. This new behavior was added in versions 1.3.7, 2.0.6,
2.1.10, and 2.2.0. If you wish to revert to the previous behavior, you can set the
producerPerConsumerPartition property on the DefaultKafkaProducerFactory to false.

While transactions are supported with batch listeners, by default, zombie fencing
is not supported because a batch may contain records from multiple topics or
partitions. However, starting with version 2.3.2, zombie fencing is supported if you
set the container property subBatchPerPartition to true. In that case, the batch

o listener is invoked once per partition received from the last poll, as if each poll
only returned records for a single partition. This is true by default since version
2.5 when transactions are enabled with EOSMode.ALPHA; set it to false if you are
using transactions but are not concerned about zombie fencing. Also see Exactly
Once Semantics.

Also see transactionIdPrefix.

With Spring Boot, it is only necessary to set the spring.kafka.producer.transaction-id-prefix
property - Boot will automatically configure a KafkaTransactionManager bean and wire it into the
listener container.

97

https://www.confluent.io/blog/transactions-apache-kafka/

Starting with version 2.5.8, you can now configure the maxAge property on the
producer factory. This is useful when using transactional producers that might lay

o idle for the broker’s transactional.id.expiration.ms. With current kafka-clients,
this can cause a ProducerFencedException without a rebalance. By setting the maxAge
to less than transactional.id.expiration.ms, the factory will refresh the producer if
it is past it’s max age.

Using KafkaTransactionManager

The KafkaTransactionManager is an implementation of Spring Framework’s
PlatformTransactionManager. It is provided with a reference to the producer factory in its
constructor. If you provide a custom producer factory, it must support transactions. See
ProducerFactory.transactionCapable().

You can use the KafkaTransactionManager with normal Spring transaction support (@Transactional,
TransactionTemplate, and others). If a transaction is active, any KafkaTemplate operations performed
within the scope of the transaction use the transaction’s Producer. The manager commits or rolls
back the transaction, depending on success or failure. You must configure the KafkaTemplate to use
the same ProducerFactory as the transaction manager.

Transaction Synchronization

This section refers to producer-only transactions (transactions not started by a listener container);
see Using Consumer-Initiated Transactions for information about chaining transactions when the
container starts the transaction.

If you want to send records to kafka and perform some database updates, you can use normal
Spring transaction management with, say, a DataSourceTransactionManager.

public void process(List<Thing> things) {
things.forEach(thing -> this.kafkaTemplate.send("topic", thing));
updateDb(things);

The interceptor for the @Transactional annotation starts the transaction and the KafkaTemplate will
synchronize a transaction with that transaction manager; each send will participate in that
transaction. When the method exits, the database transaction will commit followed by the Kafka
transaction. If you wish the commits to be performed in the reverse order (Kafka first), use nested
@Transactional methods, with the outer method configured to use the DataSourceTransactionManager,
and the inner method configured to use the KafkaTransactionManager.

See Examples of Kafka Transactions with Other Transaction Managers for examples of an
application that synchronizes JDBC and Kafka transactions in Kafka-first or DB-first configurations.

98

Using Consumer-Initiated Transactions

The ChainedKafkaTransactionManager is now deprecated, since version 2.7; see the javadocs for its
super class ChainedTransactionManager for more information. Instead, use a KafkaTransactionManager
in the container to start the Kafka transaction and annotate the listener method with
@Transactional to start the other transaction.

See Examples of Kafka Transactions with Other Transaction Managers for an example application
that chains JDBC and Kafka transactions.

KafkaTemplate Local Transactions

You can use the KafkaTemplate to execute a series of operations within a local transaction. The
following example shows how to do so:

boolean result = template.executeInTransaction(t -> {
t.sendDefault("thing1", "thing2");
t.sendDefault("cat", "hat");
return true;

1

The argument in the callback is the template itself (this). If the callback exits normally, the
transaction is committed. If an exception is thrown, the transaction is rolled back.

o If there is a KafkaTransactionManager (or synchronized) transaction in process, it is
not used. Instead, a new "nested" transaction is used.

transactionIdPrefix

As mentioned in the overview, the producer factory is configured with this property to build the
producer transactional.id property. There is a dichotomy when specifying this property in that,
when running multiple instances of the application with EOSMode.ALPHA, it must be the same on all
instances to satisfy fencing zombies (also mentioned in the overview) when producing records on a
listener container thread. However, when producing records using transactions that are not started
by a listener container, the prefix has to be different on each instance. Version 2.3, makes this
simpler to configure, especially in a Spring Boot application. In previous versions, you had to create
two producer factories and KafkaTemplate s - one for producing records on a listener container
thread and one for stand-alone transactions started by kafkaTemplate.executeInTransaction() or by
a transaction interceptor on a @Transactional method.

Now, you can override the factory’s transactionalldPrefix on the KafkaTemplate and the
KafkaTransactionManager.

When using a transaction manager and template for a listener container, you would normally leave
this to default to the producer factory’s property. This value should be the same for all application
instances when using EOSMode.ALPHA. With EOSMode.BETA it is no longer necessary to use the same
transactional.id, even for consumer-initiated transactions; in fact, it must be unique on each

99

instance the same as producer-initiated transactions. For transactions started by the template (or
the transaction manager for @Transaction) you should set the property on the template and
transaction manager respectively. This property must have a different value on each application
instance.

This problem (different rules for transactional.id) has been eliminated when EOSMode.BETA is being
used (with broker versions >= 2.5); see Exactly Once Semantics.

KafkaTemplate Transactional and non-Transactional Publishing

Normally, when a KafkaTemplate is transactional (configured with a transaction-capable producer
factory), transactions are required. The transaction can be started by a TransactionTemplate, a
@Transactional method, calling executeInTransaction, or by a listener container, when configured
with a KafkaTransactionManager. Any attempt to use the template outside the scope of a transaction
results in the template throwing an I1legalStateException. Starting with version 2.4.3, you can set
the template’s allowNonTransactional property to true. In that case, the template will allow the
operation to run without a transaction, by calling the ProducerFactory 's
createNonTransactionalProducer () method; the producer will be cached, or thread-bound, as normal
for reuse. See Using DefaultKafkaProducerFactory.

Transactions with Batch Listeners

When a listener fails while transactions are being used, the AfterRollbackProcessor is invoked to
take some action after the rollback occurs. When using the default AfterRollbackProcessor with a
record listener, seeks are performed so that the failed record will be redelivered. With a batch
listener, however, the whole batch will be redelivered because the framework doesn’t know which
record in the batch failed. See After-rollback Processor for more information.

When using a batch listener, version 2.4.2 introduced an alternative mechanism to deal with
failures while processing a batch; the BatchToRecordAdapter. When a container factory with
batchListener set to true is configured with a BatchToRecordAdapter, the listener is invoked with one
record at a time. This enables error handling within the batch, while still making it possible to stop
processing the entire batch, depending on the exception type. A default BatchToRecordAdapter is
provided, that can be configured with a standard ConsumerRecordRecoverer such as the
DeadLetterPublishingRecoverer. The following test case configuration snippet illustrates how to use
this feature:

100

public static class TestListener {
final List<String> values = new ArraylList<>();

(id = "batchRecordAdapter"”, topics = "test")
public void listen(String data) {
values.add(data);
if ("bar".equals(data)) {
throw new RuntimeException("reject partial");

}

public static class Config {

ConsumerRecord<?, 7> failed;

public TestlListener test() {
return new TestlListener();

}

public ConsumerFactory<?, 7> consumerFactory() {
return mock(ConsumerFactory.class);

}

public ConcurrentKafkalistenerContainerFactory<String, String>

kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory factory = new

ConcurrentKafkalistenerContainerFactory();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true);

factory.setBatchToRecordAdapter(new DefaultBatchToRecordAdapter<>((record,

ex) > |
this.failed = record;

)i

return factory;

101

4.1.13. Exactly Once Semantics

You can provide a listener container with a KafkaAwareTransactionManager instance. When so
configured, the container starts a transaction before invoking the listener. Any KafkaTemplate
operations performed by the listener participate in the transaction. If the listener successfully
processes the record (or multiple records, when using a BatchMessagelListener), the container sends
the offset(s) to the transaction by wusing producer.send0ffsetsToTransaction()), before the
transaction manager commits the transaction. If the listener throws an exception, the transaction is
rolled back and the consumer is repositioned so that the rolled-back record(s) can be retrieved on
the next poll. See After-rollback Processor for more information and for handling records that
repeatedly fail.

Using transactions enables Exactly Once Semantics (EOS).

This means that, for a read»>process-write sequence, it is guaranteed that the sequence is completed
exactly once. (The read and process are have at least once semantics).

Spring for Apache Kafka version 2.5 and later supports two EOS modes:

* ALPHA - aka transactional.id fencing (since version 0.11.0.0)

* BETA - aka fetch-offset-request fencing (since version 2.5)

With mode ALPHA, the producer is "fenced" if another instance with the same transactional.id is
started. Spring manages this by using a Producer for each group.id/topic/partition; when a
rebalance occurs a new instance will use the same transactional.id and the old producer is fenced.

With mode BETA, it is not necessary to have a producer for each group.id/topic/partition because
consumer metadata is sent along with the offsets to the transaction and the broker can determine if
the producer is fenced using that information instead.

Starting with version 2.6, the default EOSMode is BETA.

To configure the container to use mode ALPHA, set the container property EOSMode to ALPHA, to revert
to the previous behavior.

With BETA, your brokers must be version 2.5 or later, however with kafka-clients
version 2.6, the producer will automatically fall back to ALPHA if the broker does

o not support BETA. The DefaultKafkaProducerFactory is configured to enable that
behavior. If your brokers are earlier than 2.5, be sure to leave the
DefaultKafkaProducerFactory producerPerConsumerPartition set to true and, if you
are using a batch listener, you should set subBatchPerPartition to true.

When your brokers are upgraded to 2.5 or later, the producer will automatically switch to using
mode BETA, but the number of producers will remain as before. You can then do a rolling upgrade of
your application with producerPerConsumerPartition set to false to reduce the number of producers;
you should also no longer set the subBatchPerPartition container property.

If your brokers are already 2.5 or newer, you should set the DefaultKafkaProducerFactory
producerPerConsumerPartition property to false, to reduce the number of producers needed.

102

o When using EOSMode.BETA with producerPerConsumerPartition=false the
transactional.id must be unique across all application instances.

When using BETA mode, it is no longer necessary to set the subBatchPerPartition to true; it will
default to false when the EOSMode is BETA.

Refer to KIP-447 for more information.

4.1.14. Wiring Spring Beans into Producer/Consumer Interceptors

Apache Kafka provides a mechanism to add interceptors to producers and consumers. These
objects are managed by Kafka, not Spring, and so normal Spring dependency injection won’t work
for wiring in dependent Spring Beans. However, you can manually wire in those dependencies
using the interceptor config() method. The following Spring Boot application shows how to do this
by overriding boot’s default factories to add some dependent bean into the configuration
properties.

103

https://cwiki.apache.org/confluence/display/KAFKA/KIP-447%3A+Producer+scalability+for+exactly+once+semantics

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public ConsumerFactory<?, 7> kafkaConsumerFactory(KafkaProperties properties,

SomeBean someBean) {

Map<String, Object> consumerProperties = properties
.buildConsumerProperties();

consumerProperties.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyConsumerInterceptor.class.getName());

consumerProperties.put("some.bean", someBean);

return new DefaultKafkaConsumerFactory<>(consumerProperties);

public ProducerFactory<?, 7> kafkaProducerFactory(KafkaProperties properties,
SomeBean someBean) {
Map<String, Object> producerProperties = properties
.buildProducerProperties();
producerProperties.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyProducerInterceptor.class.getName());
producerProperties.put("some.bean", someBean);
DefaultKafkaProducerFactory<?, 7> factory = new
DefaultKafkaProducerFactory<>(producerProperties);
String transactionIdPrefix = properties.getProducer()
.getTransactionIdPrefix();
if (transactionIdPrefix != null) {
factory.setTransactionIdPrefix(transactionIdPrefix);

}

return factory;

public SomeBean someBean() {
return new SomeBean();

}

(id = "kgk897", topics = "kgh897")
public void listen(String in) {
System.out.println("Received " + in);

}

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> template.send("kgh897", "test");

104

}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kgh897")
.partitions(1)
.replicas(1)
.build();

public class SomeBean {

public void someMethod(String what) {
System.out.println(what + " in my foo bean");

}

105

public class MyProducerInterceptor implements ProducerInterceptor<String, String>

{

private SomeBean bean;

@0verride
public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}
@override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String>
record) {
this.bean.someMethod("producer interceptor");
return record;
}
@override
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
}
@override
public void close() {
}

106

public class MyConsumerInterceptor implements ConsumerInterceptor<String, String>

{

private SomeBean bean;

public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}

public ConsumerRecords<String, String> onConsume(ConsumerRecords<String,
String> records) {
this.bean.someMethod("consumer interceptor");
return records;

public void onCommit(Map<TopicPartition, OffsetAndMetadata> offsets) {
}

public void close() {
}

Result:

producer interceptor in my foo bean
consumer interceptor in my foo bean
Received test

4.1.15. Pausing and Resuming Listener Containers

Version 2.1.3 added pause() and resume() methods to listener containers. Previously, you could
pause a consumer within a ConsumerAwareMessagelistener and resume it by listening for a
ListenerContainerIdleEvent, which provides access to the Consumer object. While you could pause a
consumer in an idle container by using an event listener, in some cases, this was not thread-safe,
since there is no guarantee that the event listener is invoked on the consumer thread. To safely
pause and resume consumers, you should use the pause and resume methods on the listener
containers. A pause() takes effect just before the next poll(); a resume() takes effect just after the
current poll() returns. When a container is paused, it continues to poll() the consumer, avoiding a
rebalance if group management is being used, but it does not retrieve any records. See the Kafka

107

documentation for more information.

Starting with version 2.1.5, you can call isPauseRequested() to see if pause() has been called.
However, the consumers might not have actually paused yet. isConsumerPaused() returns true if all
Consumer instances have actually paused.

In addition (also since 2.1.5), ConsumerPausedEvent and ConsumerResumedEvent instances are published
with the container as the source property and the TopicPartition instances involved in the
partitions property.

The following simple Spring Boot application demonstrates by using the container registry to get a
reference to a @Kafkalistener method’s container and pausing or resuming its consumers as well as
receiving the corresponding events:

108

@SpringBootApplication
public class Application implements ApplicationlListener<KafkaEvent> {

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();

}

@0verride

public void onApplicationEvent(KafkaEvent event) {
System.out.println(event);

}

@Bean
public ApplicationRunner runner(KafkalListenerEndpointRegistry registry,
KafkaTemplate<String, String> template) {
return args -> {
template.send("pause.resume.topic", "thing1");
Thread.sleep(10_000);
System.out.println("pausing");
registry.getListenerContainer("pause.resume").pause();
Thread.sleep(10_000);
template.send("pause.resume.topic", "thing2");
Thread.sleep(10_000);
System.out.println("resuming");
registry.getlListenerContainer("pause.resume").resume();
Thread.sleep(10_000);
I
}

@Kafkalistener(id = "pause.resume", topics = "pause.resume.topic")
public void listen(String in) {

System.out.println(in);
}

@Bean
public NewTopic topic() {
return TopicBuilder.name("pause.resume.topic")
.partitions(2)
.replicas(1)
.build();

The following listing shows the results of the preceding example:

109

partitions assigned: [pause.resume.topic-1, pause.resume.topic-0]

thing1

pausing

ConsumerPausedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
resuming

ConsumerResumedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
thing2

4.1.16. Pausing and Resuming Partitions on Listener Containers

Since version 2.7 you can pause and resume the consumption of specific partitions assigned to that
consumer by using the pausePartition(TopicPartition topicPartition) and
resumePartition(TopicPartition topicPartition) methods in the listener containers. The pausing
and resuming takes place respectively before and after the poll() similar to the pause() and
resume() methods. The isPartitionPauseRequested() method returns true if pause for that partition
has been requested. The isPartitionPaused() method returns true if that partition has effectively
been paused.

Also since version 2.7 ConsumerPartitionPausedEvent and ConsumerPartitionResumedEvent instances
are published with the container as the source property and the TopicPartition instance.

4.1.17. Serialization, Deserialization, and Message Conversion

Overview

Apache Kafka provides a high-level API for serializing and deserializing record values as well as
their keys. It is present with the org.apache.kafka.common.serialization.Serializer<T> and
org.apache.kafka.common.serialization.Deserializer<T> abstractions with some built-in
implementations. Meanwhile, we can specify serializer and deserializer classes by using Producer or
Consumer configuration properties. The following example shows how to do so:

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class
)i

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.
class);

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

For more complex or particular cases, the KafkaConsumer (and, therefore, KafkaProducer) provides
overloaded constructors to accept Serializer and Deserializer instances for keys and values,
respectively.

When you use this API, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory also

110

provide properties (through constructors or setter methods) to inject custom Serializer and
Deserializer instances into the target Producer or Consumer. Also, you can pass in
Supplier<Serializer> or Supplier<Deserializer> instances through constructors - these Supplier s
are called on creation of each Producer or Consumer.

String serialization

Since version 2.5, Spring for Apache Kafka provides ToStringSerializer and
ParseStringDeserializer classes that use String representation of entities. They rely on methods
toString and some Function<String> or BiFunction<String, Headers> to parse the String and
populate properties of an instance. Usually, this would invoke some static method on the class, such
as parse:

ToStringSerializer<Thing> thingSerializer = new ToStringSerializer<>();

//...

ParseStringDeserializer<Thing> deserializer = new ParseStringDeserializer<>(Thing
1iparse);

By default, the ToStringSerializer is configured to convey type information about the serialized
entity in the record Headers. You can disable this by setting the addTypeInfo property to false. This
information can be used by ParseStringDeserializer on the receiving side.

* ToStringSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the ToStringSerializer (sets the addTypeInfo property).

ParseStringDeserializer<Object> deserializer = new ParseStringDeserializer<>((str,
headers) -> {
byte[] header = headers.lastHeader(ToStringSerializer.VALUE_TYPE).value();
String entityType = new String(header);

if (entityType.contains("Thing")) {
return Thing.parse(str);

}
else {

// ...parsing logic
}

1)

You can configure the Charset used to convert String to/from byte[] with the default being UTF-8.

You can configure the deserializer with the name of the parser method using ConsumerConfig
properties:

* ParseStringDeserializer.KEY_PARSER

111

o ParseStringDeserializer.VALUE_PARSER

The properties must contain the fully qualified name of the class followed by the method name,
separated by a period .. The method must be static and have a signature of either (String, Headers)
or (String).

A ToFromStringSerde is also provided, for use with Kafka Streams.

JSON

Spring for Apache Kafka also provides JsonSerializer and JsonDeserializer implementations that
are based on the Jackson JSON object mapper. The JsonSerializer allows writing any Java object as
a JSON byte[]. The JsonDeserializer requires an additional Class<?> targetType argument to allow
the deserialization of a consumed byte[] to the proper target object. The following example shows
how to create a JsonDeserializer:

JsonDeserializer<Thing> thingDeserializer = new JsonDeserializer<>(Thing.class);

You can customize both JsonSerializer and JsonDeserializer with an ObjectMapper. You can also
extend them to implement some particular configuration logic in the configure(Map<String, 7>
configs, boolean isKey) method.

Starting with version 2.3, all the JSON-aware components are configured by default with a
JacksonUtils.enhancedObjectMapper() instance, which comes with the
MapperFeature.DEFAULT_VIEW_INCLUSION and DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES
features disabled. Also such an instance is supplied with well-known modules for custom data
types, such a Java time and Kotlin support. See JacksonUtils.enhancedObjectMapper() JavaDocs for
more information. This method also registers a
org.springframework.kafka.support.JacksonMimeTypeModule for org.springframework.util.MimeType
objects serialization into the plain string for inter-platform compatibility over the network. A
JacksonMimeTypeModule can be registered as a bean in the application context and it will be auto-
configured into Spring Boot ObjectMapper instance.

Also starting with version 2.3, the JsonDeserializer provides TypeReference-based constructors for
better handling of target generic container types.

Starting with version 2.1, you can convey type information in record Headers, allowing the handling
of multiple types. In addition, you can configure the serializer and deserializer by using the
following Kafka properties. They have no effect if you have provided Serializer and Deserializer
instances for KafkaConsumer and KafkaProducer, respectively.

Configuration Properties

* JsonSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the JsonSerializer (sets the addTypeInfo property).

» JsonSerializer.TYPE_MAPPINGS (default empty): See Mapping Types.

» JsonDeserializer.USE_TYPE_INFO_HEADERS (default true): You can set it to false to ignore headers

112

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper

set by the serializer.

e JsonDeserializer.REMOVE _TYPE_INFO_HEADERS (default true): You can set it to false to retain
headers set by the serializer.

» JsonDeserializer.KEY_DEFAULT_TYPE: Fallback type for deserialization of keys if no header
information is present.

» JsonDeserializer.VALUE_DEFAULT_TYPE: Fallback type for deserialization of values if no header
information is present.

» JsonDeserializer.TRUSTED_PACKAGES (default java.util, java.lang): Comma-delimited list of
package patterns allowed for deserialization. * means deserialize all.

* JsonDeserializer.TYPE_MAPPINGS (default empty): See Mapping Types.

* JsonDeserializer.KEY_TYPE_METHOD (default empty): See Using Methods to Determine Types.

» JsonDeserializer.VALUE_TYPE_METHOD (default empty): See Using Methods to Determine Types.
Starting with version 2.2, the type information headers (if added by the serializer) are removed by

the deserializer. You can revert to the previous behavior by setting the removeTypeHeaders property
to false, either directly on the deserializer or with the configuration property described earlier.

See also Customizing the JsonSerializer and JsonDeserializer.

Mapping Types

Starting with version 2.2, when using JSON, you can now provide type mappings by using the
properties in the preceding list. Previously, you had to customize the type mapper within the
serializer and deserializer. Mappings consist of a comma-delimited list of token:className pairs. On
outbound, the payload’s class name is mapped to the corresponding token. On inbound, the token
in the type header is mapped to the corresponding class name.

The following example creates a set of mappings:

senderProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.
class);

senderProps.put(JsonSerializer.TYPE_MAPPINGS, "cat:com.mycat.(Cat,
hat:com.myhat.hat");

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
JsonDeserializer.class);

consumerProps.put(JsonDeSerializer.TYPE_MAPPINGS, "cat:com.yourcat.(Cat,
hat:com.yourhat.hat");

o The corresponding objects must be compatible.

If you use Spring Boot, you can provide these properties in the application.properties (or yaml)
file. The following example shows how to do so:

113

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html#boot-features-kafka

spring.kafka.producer.value-
serializer=org.springframework.kafka.support.serializer.JsonSerializer
spring.kafka.producer.properties.spring.json.type.mapping=cat:com.mycat.Cat,hat:co
m.myhat.Hat

You can perform only simple configuration with properties. For more advanced
configuration (such as using a custom ObjectMapper in the serializer and
deserializer), you should use the producer and consumer factory constructors that
accept a pre-built serializer and deserializer. The following Spring Boot example
overrides the default factories:

public ConsumerFactory<Foo, Bar> kafkaConsumerFactory
(KafkaProperties properties,
JsonDeserializer customDeserializer) {

return new DefaultKafkaConsumerFactory<>(properties

.buildConsumerProperties(),
o customDeserializer, customDeserializer);

}

public ProducerFactory<Foo, Bar> kafkaProducerFactory
(KafkaProperties properties,
JsonSerializer customSerializer) {

return new DefaultKafkaProducerFactory<>(properties
.buildProducerProperties(),
customSerializer, customSerializer);

}

Setters are also provided, as an alternative to using these constructors.

Starting with version 2.2, you can explicitly configure the deserializer to use the supplied target
type and ignore type information in headers by using one of the overloaded constructors that have
a boolean useHeadersIfPresent (which is true by default). The following example shows how to do
so:

DefaultKafkaConsumerFactory<Integer, Cat1> cf = new DefaultKafkaConsumerFactory<>
(props,
new IntegerDeserializer(), new JsonDeserializer<>(Cat1.class, false));

114

Using Methods to Determine Types

Starting with version 2.5, you can now configure the deserializer, via properties, to invoke a
method to determine the target type. If present, this will override any of the other techniques
discussed above. This can be useful if the data is published by an application that does not use the
Spring serializer and you need to deserialize to different types depending on the data, or other
headers. Set these properties to the method name - a fully qualified class name followed by the
method name, separated by a period .. The method must be declared as public static, have one of
three signatures (String topic, byte[] data, Headers headers), (byte[] data, Headers headers) or
(byte[] data) and return a Jackson JavaType.

* JsonDeserializer.KEY_TYPE_METHOD : spring.json.key.type.method
» JsonDeserializer.VALUE_TYPE_METHOD : spring.json.value.type.method

You can use arbitrary headers or inspect the data to determine the type.

Example

JavaType thing1Type = TypeFactory.defaultInstance().constructType(Thingl.class);

JavaType thing2Type = TypeFactory.defaultInstance().constructType(Thing2.class);
public static JavaType thingOneOrThingTwo(byte[] data, Headers headers) {
// {"thisIsAFieldInThing1":"value", ...
if (data[21] == '"1") {
return thing1Type;

}
else {

return thing2Type;
}

For more sophisticated data inspection consider using JsonPath or similar but, the simpler the test
to determine the type, the more efficient the process will be.

The following is an example of creating the deserializer programmatically (when providing the
consumer factory with the deserializer in the constructor):

115

JsonDeserializer<Object> deser = new JsonDeserializer<>()
.trustedPackages("*")
.typeResolver(SomeClass::thing1Thing2JavaTypeForTopic);

public static JavaType thing1Thing2JavaTypeForTopic(String topic, byte[] data,
Headers headers) {

}

Programmatic Construction

When constructing the serializer/deserializer programmatically for use in the producer/consumer
factory, since version 2.3, you can use the fluent API, which simplifies configuration.

The following example assumes you are using Spring Boot:

public DefaultKafkaProducerFactory pf(KafkaProperties properties) {
Map<String, Object> props = properties.buildProducerProperties();
DefaultKafkaProducerFactory pf = new DefaultKafkaProducerFactory(props,
new JsonSerializer<>(MyKeyType.class)
.forKeys()
.noTypeInfo(),
new JsonSerializer<>(MyValueType.class)
.noTypeInfo());

public DefaultKafkaConsumerFactory pf(KafkaProperties properties) {
Map<String, Object> props = properties.buildConsumerProperties();
DefaultKafkaConsumerFactory pf = new DefaultKafkaConsumerFactory(props,
new JsonDeserializer<>(MyKeyType.class)
.forKeys()
.ignoreTypeHeaders(),
new JsonDeserializer<>(MyValueType.class)
.ignoreTypeHeaders());

To provide type mapping programmatically, similar to Using Methods to Determine Types, use the
typeFunction property.

116

Example

JsonDeserializer<Object> deser = new JsonDeserializer<>()
.trustedPackages("*")
.typeFunction(MyUtils::thingOneOrThingTwo);

Delegating Serializer and Deserializer

Version 2.3 introduced the DelegatingSerializer and DelegatingDeserializer, which allow
producing and consuming records with different key and/or value types. Producers must set a
header DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR to a selector value that is used to select
which serializer to use for the value and DelegatingSerializer.KEY_SERIALIZATION_SELECTOR for the
key; if a match is not found, an I11legalStateException is thrown.

For incoming records, the deserializer uses the same headers to select the deserializer to use; if a
match is not found or the header is not present, the raw byte[] is returned.

You can configure the map of selector to Serializer / Deserializer via a constructor, or you can
configure it via Kafka producer/consumer properties with the keys
DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR_CONFIG and
DelegatingSerializer.KEY_SERIALIZATION_SELECTOR_CONFIG. For the serializer, the producer property
can be a Map<String, Object> where the key is the selector and the value is a Serializer instance, a
serializer (Class or the class name. The property can also be a String of comma-delimited map
entries, as shown below.

For the deserializer, the consumer property can be a Map<String, Object> where the key is the
selector and the value is a Deserializer instance, a deserializer Class or the class name. The
property can also be a String of comma-delimited map entries, as shown below.

To configure using properties, use the following syntax:

producerProps.put(DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Serializer, thing2:com.example.MyThing2Serializer

")

consumerProps.put(DelegatingDeserializer.VALUE_SERIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Deserializer,
thing2:com.example.MyThing2Deserializer")

Producers would then set the DelegatingSerializer.VALUE_SERTALIZATION_SELECTOR header to thingT
or thing2.

This technique supports sending different types to the same topic (or different topics).

117

Starting with version 2.5.1, it is not necessary to set the selector header, if the type
(key or value) is one of the standard types supported by Serdes (Long, Integer, etc).

o Instead, the serializer will set the header to the class name of the type. It is not
necessary to configure serializers or deserializers for these types, they will be
created (once) dynamically.

For another technique to send different types to different topics, see Using RoutingKafkaTemplate.

Retrying Deserializer

The RetryingDeserializer uses a delegate Deserializer and RetryTemplate to retry deserialization
when the delegate might have transient errors, such a network issues, during deserialization.

ConsumerFactory cf = new DefaultKafkaConsumerFactory(myConsumerConfigs,
new RetryingDeserializer(myUnreliableKeyDeserializer, retryTemplate),
new RetryingDeserializer(myUnreliableValueDeserializer, retryTemplate));

Refer to the spring-retry project for configuration of the RetryTemplate with a retry policy, back off
policy, etc.

Spring Messaging Message Conversion

Although the Serializer and Deserializer API is quite simple and flexible from the low-level Kafka
Consumer and Producer perspective, you might need more flexibility at the Spring Messaging level,
when using either @Kafkalistener or Spring Integration’s Apache Kafka Support. To let you easily
convert to and from org.springframework.messaging.Message, Spring for Apache Kafka provides a
MessageConverter abstraction with the MessagingMessageConverter implementation and its
JsonMessageConverter (and subclasses) customization. You can inject the MessageConverter into a
KafkaTemplate instance directly and by using AbstractKafkalistenerContainerFactory bean definition
for the @Kafkalistener.containerFactory() property. The following example shows how to do so:

118

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#kafka

public KafkalistenerContainerFactory<?, 7> kafkalsonListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setMessageConverter(new JsonMessageConverter());
return factory;

(topics = "jsonData",
containerFactory = "kafkalsonListenerContainerFactory")
public void jsonListener(Cat cat) {

}

When using Spring Boot, simply define the converter as a @Bean and Spring Boot auto configuration
will wire it into the auto-configured template and container factory.

When you use a @Kafkalistener, the parameter type is provided to the message converter to assist
with the conversion.

This type inference can be achieved only when the @Kafkalistener annotation is

o declared at the method level. With a class-level @Kafkalistener, the payload type is
used to select which @KafkaHandler method to invoke, so it must already have been
converted before the method can be chosen.

119

On the consumer side, you can configure a JsonMessageConverter; it can handle
ConsumerRecord values of type byte[], Bytes and String so should be used in
conjunction with a ByteArrayDeserializer, BytesDeserializer or
StringDeserializer. (byte[] and Bytes are more efficient because they avoid an
unnecessary byte[] to String conversion). You can also configure the specific
subclass of JsonMessageConverter corresponding to the deserializer, if you so wish.

On the producer side, when you wuse Spring Integration or the
KafkaTemplate.send(Message<?> message) method (see Using KafkaTemplate), you
must configure a message converter that is compatible with the configured Kafka

o Serializer.

* StringJsonMessageConverter with StringSerializer
* BytesJsonMessageConverter with BytesSerializer

» ByteArrayJsonMessageConverter with ByteArraySerializer

Again, using byte[] or Bytes is more efficient because they avoid a String to byte[]
conversion.

For convenience, starting with version 2.3, the framework also provides a
StringOrBytesSerializer which can serialize all three value types so it can be used
with any of the message converters.

Starting with version 2.7.1, message payload conversion can be delegated to a spring-messaging
SmartMessageConverter; this enables conversion, for example, to be based on the
MessageHeaders.CONTENT_TYPE header.

The KafkaMessageConverter.fromMessage() method 1is called for outbound
conversion to a ProducerRecord with the message payload in the
ProducerRecord.value() property. The KafkaMessageConverter.toMessage() method is
called for inbound conversion from ConsumerRecord with the payload being the
ConsumerRecord.value() property. The SmartMessageConverter.toMessage() method is

o called to create a new outbound Message<?> from the Message passed
to fromMessage() " (usually by KafkaTemplate.send(Message<?> msg)). Similarly, in
the KafkaMessageConverter.toMessage() method, after the converter has created a
new Message<?> from the ConsumerRecord, the SmartMessageConverter.fromMessage()
method is called and then the final inbound message is created with the newly
converted payload. In either case, if the SmartMessageConverter returns null, the
original message is used.

When the default converter is used in the KafkaTemplate and listener container factory, you
configure the SmartMessageConverter by calling setMessagingConverter() on the template and via the
contentMessageConverter property on @Kafkalistener methods.

Examples:

120

template.setMessagingConverter (mySmartConverter);

(id = "withSmartConverter", topics = "someTopic",
contentTypeConverter = "mySmartConverter")
public void smart(Thing thing) {

}

Using Spring Data Projection Interfaces

Starting with version 2.1.1, you can convert JSON to a Spring Data Projection interface instead of a
concrete type. This allows very selective, and low-coupled bindings to data, including the lookup of
values from multiple places inside the JSON document. For example the following interface can be
defined as message payload type:

interface SomeSample {

({ "$.username", "$.user.name" })
String getUsername();

(id="projection.listener", topics = "projection")
public void projection(SomeSample in) {
String username = in.getUsername();

Accessor methods will be used to lookup the property name as field in the received JSON document
by default. The @JsonPath expression allows customization of the value lookup, and even to define
multiple JSON Path expressions, to lookup values from multiple places until an expression returns
an actual value.

To enable this feature, use a ProjectingMessageConverter configured with an appropriate delegate
converter (used for outbound conversion and converting non-projection interfaces). You must also
add spring-data:spring-data-commons and com.jayway.jsonpath:json-path to the class path.

When used as the parameter to a @Kafkalistener method, the interface type is automatically passed
to the converter as normal.

121

Using ErrorHandlingDeserializer

When a deserializer fails to deserialize a message, Spring has no way to handle the problem,
because it occurs before the poll() returns. To solve this problem, the ErrorHandlingDeserializer
has been introduced. This deserializer delegates to a real deserializer (key or value). If the delegate
fails to deserialize the record content, the ErrorHandlingDeserializer returns a null value and a
DeserializationException in a header that contains the cause and the raw bytes. When you use a
record-level Messagelistener, if the ConsumerRecord contains a DeserializationException header for
either the key or value, the container’s ErrorHandler is called with the failed ConsumerRecord. The
record is not passed to the listener.

Alternatively, you can configure the ErrorHandlingDeserializer to create a custom value by
providing a failedDeserializationFunction, which is a Function<FailedDeserializationInfo, T>.This
function is invoked to create an instance of T, which is passed to the listener in the usual fashion.
An object of type FailedDeserializationInfo, which contains all the contextual information is
provided to the function. You can find the DeserializationException (as a serialized Java object) in
headers. See the Javadoc for the ErrorHandlingDeserializer for more information.

° When you use a BatchMessagelListener, you must provide a
failedDeserializationFunction. Otherwise, the batch of records are not type safe.

You can use the DefaultKafkaConsumerFactory constructor that takes key and value Deserializer
objects and wire in appropriate ErrorHandlingDeserializer instances that you have configured with
the proper delegates. Alternatively, you can use consumer configuration properties (which are used
by the ErrorHandlingDeserializer) to instantiate the delegates. The property names are
ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS and
ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS. The property value can be a class or class
name. The following example shows how to set these properties:

... // other props

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer.class);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, ErrorHandlingDeserializer
.class);

props.put(ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS, JsonDeserializer.
class);

props.put(JsonDeserializer.KEY_DEFAULT_TYPE, "com.example.MyKey")
props.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS, JsonDeserializer
.class.getName());

props.put(JsonDeserializer.VALUE_DEFAULT_TYPE, "com.example.MyValue")
props.put(JsonDeserializer.TRUSTED_PACKAGES, "com.example")

return new DefaultKafkaConsumerFactory<>(props);

The following example uses a failedDeserializationFunction.

122

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/serializer/ErrorHandlingDeserializer.html

public class BadFoo extends Foo {
private final FailedDeserializationInfo failedDeserializationInfo;

public BadFoo(FailedDeserializationInfo failedDeserializationInfo) {
this.failedDeserializationInfo = failedDeserializationInfo;

}

public FailedDeserializationInfo getFailedDeserializationInfo() {
return this.failedDeserializationInfo;

}
}

public class FailedFooProvider implements Function<FailedDeserializationInfo, Foo>

{

public Foo apply(FailedDeserializationInfo info) {
return new BadFoo(info);

}

The preceding example uses the following configuration:

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS,
JsonDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer.VALUE_FUNCTION, FailedFooProvider
.class);

Payload Conversion with Batch Listeners

You can also use a JsonlMessageConverter within a BatchMessagingMessageConverter to convert batch
messages when you use a batch listener container factory. See Serialization, Deserialization, and
Message Conversion and Spring Messaging Message Conversion for more information.

By default, the type for the conversion is inferred from the listener argument. If you configure the
JsonMessageConverter with a Defaultlackson2TypeMapper that has its TypePrecedence set to TYPE_ID
(instead of the default INFERRED), the converter uses the type information in headers (if present)
instead. This allows, for example, listener methods to be declared with interfaces instead of

123

concrete classes. Also, the type converter supports mapping, so the deserialization can be to a
different type than the source (as long as the data is compatible). This is also useful when you use
class-level @Kafkalistener instances where the payload must have already been converted to
determine which method to invoke. The following example creates beans that use this method:

public KafkalListenerContainerFactory<?, 7> kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true);
factory.setMessageConverter(new BatchMessagingMessageConverter(converter()));
return factory;

public JsonMessageConverter converter() {
return new JsonMessageConverter();

}

Note that, for this to work, the method signature for the conversion target must be a container
object with a single generic parameter type, such as the following:

(topics = "ble1")
public void listen(List<Foo> foos, (KafkaHeaders.OFFSET) List<Long>
offsets) {

}

Note that you can still access the batch headers.

If the batch converter has a record converter that supports it, you can also receive a list of messages
where the payloads are converted according to the generic type. The following example shows how
to do so:

(topics = "ble3", groupld = "blc3")
public void listen1(List<Message<Foo>> foolMessages) {

}

124

ConversionService Customization

Starting with version 2.1.1, the org.springframework.core.convert.ConversionService used by the
default 0.s.messaging.handler.annotation.support.MessageHandlerMethodFactory to resolve
parameters for the invocation of a listener method is supplied with all beans that implement any of
the following interfaces:

* org.springframework.core.convert.converter.Converter

* org.springframework.core.convert.converter.GenericConverter

* org.springframework.format.Formatter

This lets you further customize listener deserialization without changing the default configuration
for ConsumerFactory and KafkalistenerContainerFactory.

Setting a custom MessageHandlerMethodFactory on the
KafkalListenerEndpointRegistrar through a KafkalistenerConfigurer bean disables
this feature.

Adding custom HandlerMethodArgumentResolver to @Kafkalistener

Starting with version 2.4.2 you are able to add your own HandlerMethodArgumentResolver and resolve
custom method parameters. All you need is to implement KafkalListenerConfigurer and use method
setCustomMethodArgumentResolvers() from class KafkalListenerEndpointRegistrar.

125

class CustomKafkaConfig implements KafkalistenerConfigurer {

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setCustomMethodArgumentResolvers(
new HandlerMethodArgumentResolver() {

public boolean supportsParameter(MethodParameter parameter) {
return CustomMethodArgument.class.isAssignableFrom(parameter
.getParameterType());

}

public Object resolveArgument(MethodParameter parameter, Message<
7> message) {
return new CustomMethodArgument(
message.getHeaders().get(KafkaHeaders.RECEIVED_TOPIC,
String.class)

You can also completely replace the framework’s argument resolution by adding a custom
MessageHandlerMethodFactory to the KafkalListenerEndpointRegistrar bean. If you do this, and your
application needs to handle tombstone records, with a null value() (e.g. from a compacted topic),
you should add a KafkaNullAwarePayloadArgumentResolver to the factory; it must be the last resolver
because it supports all types and can match arguments without a @Payload annotation. If you are
using a DefaultMessageHandlerMethodFactory, set this resolver as the last custom resolver; the factory
will ensure that this resolver will be used before the standard PayloadMethodArgumentResolver,
which has no knowledge of KafkaNull payloads.

See also Null Payloads and Log Compaction of 'Tombstone' Records.

4.1.18. Message Headers

The 0.11.0.0 client introduced support for headers in messages. As of version 2.0, Spring for Apache
Kafka now supports mapping these headers to and from spring-messaging MessageHeaders.

126

Previous versions mapped ConsumerRecord and ProducerRecord to spring-messaging

o Message<?>, where the value property is mapped to and from the payload and other
properties (topic, partition, and so on) were mapped to headers. This is still the
case, but additional (arbitrary) headers can now be mapped.

Apache Kafka headers have a simple API, shown in the following interface definition:

public interface Header {
String key();

byte[] value();

The KafkaHeaderMapper strategy is provided to map header entries between Kafka Headers and
MessageHeaders. Its interface definition is as follows:

public interface KafkaHeaderMapper {
void fromHeaders(MessageHeaders headers, Headers target);

void toHeaders(Headers source, Map<String, Object> target);

The DefaultKafkaHeaderMapper maps the key to the MessageHeaders header name and, in order to
support rich header types for outbound messages, JSON conversion is performed. A “special”
header (with a key of spring_json_header_types) contains a JSON map of <key>:<type>. This header is
used on the inbound side to provide appropriate conversion of each header value to the original

type.

On the inbound side, all Kafka Header instances are mapped to MessageHeaders. On the outbound
side, by default, all MessageHeaders are mapped, except id, timestamp, and the headers that map to
ConsumerRecord properties.

You can specify which headers are to be mapped for outbound messages, by providing patterns to
the mapper. The following listing shows a number of example mappings:

127

public DefaultKafkaHeaderMapper() { @®

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper) { @

}

public DefaultKafkaHeaderMapper(String... patterns) { ®

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper, String... patterns) {
@

@ Uses a default Jackson ObjectMapper and maps most headers, as discussed before the
example.

@ Uses the provided Jackson ObjectMapper and maps most headers, as discussed before the
example.

® Uses a default Jackson ObjectMapper and maps headers according to the provided patterns.

@ Uses the provided Jackson ObjectMapper and maps headers according to the provided
patterns.

Patterns are rather simple and can contain a leading wildcard (), a trailing wildcard, or both
(for example, .cat.*). You can negate patterns with a leading !. The first pattern that matches a
header name (whether positive or negative) wins.

When you provide your own patterns, we recommend including !id and !timestamp, since these
headers are read-only on the inbound side.

By default, the mapper deserializes only classes in java.lang and java.util. You
can trust other (or all) packages by adding trusted packages with the

o addTrustedPackages method. If you receive messages from untrusted sources, you
may wish to add only those packages you trust. To trust all packages, you can use
mapper.addTrustedPackages("*").

o Mapping String header values in a raw form is useful when communicating with
systems that are not aware of the mapper’s JSON format.

Starting with version 2.2.5, you can specify that certain string-valued headers should not be
mapped using JSON, but to/from a raw byte[]. The AbstractkafkaHeaderMapper has new properties;
mapAllStringsOut when set to true, all string-valued headers will be converted to byte[] using the
charset property (default UTF-8). In addition, there is a property rawMappedHeaders, which is a map of

128

header name : boolean; if the map contains a header name, and the header contains a String value,
it will be mapped as a raw byte[] using the charset. This map is also used to map raw incoming
byte[] headers to String using the charset if, and only if, the boolean in the map value is true. If the
boolean is false, or the header name is not in the map with a true value, the incoming header is
simply mapped as the raw unmapped header.

The following test case illustrates this mechanism.

public void testSpecificStringConvert() {
DefaultKafkaHeaderMapper mapper = new DefaultKafkaHeaderMapper();
Map<String, Boolean> rawMappedHeaders = new HashMap<>();
rawMappedHeaders.put("thisOnesAString", true);
rawMappedHeaders.put("thisOnesBytes", false);
mapper .setRawMappedHeaders(rawMappedHeaders);
Map<String, Object> headersMap = new HashMap<>();
headersMap.put("thisOnesAString", "thing1");
headersMap.put("thisOnesBytes", "thing2");
headersMap.put("alwaysRaw", "thing3".getBytes());
MessageHeaders headers = new MessageHeaders(headersMap);
Headers target = new RecordHeaders();
mapper . fromHeaders(headers, target);
assertThat(target).containsExactlyInAnyOrder(
new RecordHeader ("thisOnesAString", "thing1".getBytes()),
new RecordHeader ("thisOnesBytes", "thing2".getBytes()),
new RecordHeader("alwaysRaw", "thing3".getBytes()));
headersMap.clear();
mapper .toHeaders(target, headersMap);
assertThat(headersMap).contains(
entry("thisOnesAString", "thing1"),
entry("thisOnesBytes", "thing2".getBytes()),
entry("alwaysRaw", "thing3".getBytes()));

By default, the DefaultKafkaHeaderMapper is wused in the MessagingMessageConverter and
BatchMessagingMessageConverter, as long as Jackson is on the class path.

With the batch converter, the converted headers are available in the
KafkaHeaders.BATCH_CONVERTED_HEADERS as a List<Map<String, Object>> where the map in a position
of the list corresponds to the data position in the payload.

If there is no converter (either because Jackson is not present or it is explicitly set to null), the
headers from the consumer record are provided unconverted in the KafkaHeaders.NATIVE_HEADERS
header. This header is a Headers object (or a List<Headers> in the case of the batch converter), where
the position in the list corresponds to the data position in the payload).

129

Certain types are not suitable for JSON serialization, and a simple toString()
serialization might be preferred for these types. The DefaultKafkaHeaderMapper has
o a method called addToStringClasses() that lets you supply the names of classes that
should be treated this way for outbound mapping. During inbound mapping, they
are mapped as String. By default, only org.springframework.util.MimeType and
org.springframework.http.MediaType are mapped this way.

Starting with version 2.3, handling of String-valued headers is simplified. Such
headers are no longer JSON encoded, by default (i.e. they do not have enclosing "+

o " added). The type is still added to the JSON_TYPES header so the receiving system
can convert back to a String (from byte[]). The mapper can handle (decode)
headers produced by older versions (it checks for a leading "); in this way an
application using 2.3 can consume records from older versions.

To be compatible with earlier versions, set encodeStrings to true, if records

o produced by a version using 2.3 might be consumed by applications using earlier
versions. When all applications are using 2.3 or higher, you can leave the property
at its default value of false.

MessagingMessageConverter converter() {
MessagingMessageConverter converter = new MessagingMessageConverter();
DefaultKafkaHeaderMapper mapper = new DefaultKafkaHeaderMapper();
mapper.setEncodeStrings(true);
converter.setHeaderMapper (mapper);
return converter;

If using Spring Boot, it will auto configure this converter bean into the auto-configured
KafkaTemplate; otherwise you should add this converter to the template.

4.1.19. Null Payloads and Log Compaction of 'Tombstone' Records

When you use Log Compaction, you can send and receive messages with null payloads to identify
the deletion of a key.

You can also receive null values for other reasons, such as a Deserializer that might return null
when it cannot deserialize a value.

To send a null payload by using the KafkaTemplate, you can pass null into the value argument of the
send() methods. One exception to this is the send(Message<?> message) variant. Since spring-
messaging Message<?> cannot have a null payload, you can use a special payload type called
KafkaNull, and the framework sends null. For convenience, the static KafkaNull.INSTANCE is
provided.

130

https://kafka.apache.org/documentation/#compaction

When you use a message listener container, the received ConsumerRecord has a null value().

To configure the @KafkalListener to handle null payloads, you must use the @Payload annotation with
required = false. If it is a tombstone message for a compacted log, you usually also need the key so
that your application can determine which key was “deleted”. The following example shows such a
configuration:

@Kafkalistener(id = "deletablelListener", topics = "myTopic")
public void listen(@Payload(required = false) String value, @Header(KafkaHeaders
.RECEIVED_MESSAGE_KEY) String key) {

// value == null represents key deletion

}

When you use a class-level eKafkalistener with multiple @KafkaHandler methods, some additional
configuration is needed. Specifically, you need a @KafkaHandler method with a KafkaNull payload.
The following example shows how to configure one:

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String cat) {

}

@KafkaHandler
public void listen(Integer hat) {

}

@KafkaHandler
public void delete(@Payload(required = false) KafkaNull nul, @Header
(KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

}

Note that the argument is null, not KafkaNull.

@ See Manually Assigning All Partitions.

131

This feature requires the use of a KafkaNullAwarePayloadArgumentResolver which the

o framework will configure when using the default MessageHandlerMethodFactory.
When wusing a custom MessageHandlerMethodFactory, see Adding custom
HandlerMethodArgumentResolver to @Kafkalistener.

4.1.20. Handling Exceptions

This section describes how to handle various exceptions that may arise when you use Spring for
Apache Kafka.

Listener Error Handlers

Starting with version 2.0, the @Kafkalistener annotation has a new attribute: errorHandler.

You can use the errorHandler to provide the bean name of a KafkalistenerErrorHandler
implementation. This functional interface has one method, as the following listing shows:

public interface KafkalistenerErrorHandler {

Object handleError(Message<?> message, ListenerExecutionFailedException
exception) throws Exception;

}

You have access to the spring-messaging Message<?> object produced by the message converter and
the exception that was thrown by the listener, which is wrapped in a
ListenerExecutionFailedException. The error handler can throw the original or a new exception,
which is thrown to the container. Anything returned by the error handler is ignored.

Starting with version 2.7, you can set the rawRecordHeader property on the
MessagingMessageConverter and BatchMessagingMessageConverter which causes the raw
ConsumerRecord to be added to the converted Message<?> in the KafkaHeaders.RAW_DATA header. This is
useful, for example, if you wish to use a DeadlLetterPublishingRecoverer in a listener error handler.
It might be used in a request/reply scenario where you wish to send a failure result to the sender,
after some number of retries, after capturing the failed record in a dead letter topic.

132

KafkalListenerErrorHandler eh(DeadlLetterPublishingRecoverer recoverer) {
return (msg, ex) -> {
if (msg.getHeaders().get(KafkaHeaders.DELIVERY_ATTEMPT, Integer.class) >
9) {
recoverer.accept(msg.getHeaders().get(KafkaHeaders.RAW_DATA,
ConsumerRecord.class), ex);
return "FAILED";
}
throw ex;

+;

It has a sub-interface (ConsumerAwarelListenerErrorHandler) that has access to the consumer object,
through the following method:

Object handleError(Message<?> message, ListenerExecutionFailedException exception,
Consumer<?, ?> consumer);

If your error handler implements this interface, you can, for example, adjust the offsets
accordingly. For example, to reset the offset to replay the failed message, you could do something
like the following:

public ConsumerAwarelListenerErrorHandler listen3ErrorHandler() {
return (m, e, ¢) -> {

this.listen3Exception = e;

MessageHeaders headers = m.getHeaders();

c.seek(new org.apache.kafka.common.TopicPartition(
headers.get(KafkaHeaders.RECEIVED_TOPIC, String.class),
headers.get(KafkaHeaders.RECEIVED_PARTITION_ID, Integer.class)),
headers.get(KafkaHeaders.OFFSET, Long.class));

return null;

};

Similarly, you could do something like the following for a batch listener:

133

public ConsumerAwareListenerErrorHandler listen10ErrorHandler() {
return (m, e, ¢) -> {
this.listen10Exception = e;
MessageHeaders headers = m.getHeaders();
List<String> topics = headers.get(KafkaHeaders.RECEIVED_TOPIC, List.class

)i
List<Integer> partitions = headers.get(KafkaHeaders.RECEIVED_PARTITION_ID,
List.class);
List<Long> offsets = headers.get(KafkaHeaders.OFFSET, List.class);
Map<TopicPartition, Long> offsetsToReset = new HashMap<>();
for (int i = 0; i < topics.size(); i++) {
int index = 1i;
offsetsToReset.compute(new TopicPartition(topics.qget(i), partitions
.get(1)),
(k, v) -> v == null ? offsets.get(index) : Math.min(v,
offsets.get(index)));

}
offsetsToReset.forEach((k, v) -> c.seek(k, v));
return null;

};

This resets each topic/partition in the batch to the lowest offset in the batch.

o The preceding two examples are simplistic implementations, and you would
probably want more checking in the error handler.

Container Error Handlers

Two error handler interfaces (ErrorHandler and BatchErrorHandler) are provided. You must
configure the appropriate type to match the message listener.

Starting with version 2.5, the default error handlers, when transactions are not
being used, are the SeekToCurrentErrorHandler and RecoveringBatchErrorHandler

o with default configuration. See Seek To Current Container Error Handlers and
Recovering Batch Error Handler. To restore the previous behavior, use the
LoggingErrorHandler and BatchLoggingErrorHandler instead.

When transactions are being used, no error handlers are configured, by default, so that the
exception will roll back the transaction. Error handling for transactional containers are handled by
the AfterRollbackProcessor. If you provide a custom error handler when using transactions, it must
throw an exception if you want the transaction rolled back.

Starting with version 2.3.2, these interfaces have a default method isAckAfterHandle() which is
called by the container to determine whether the offset(s) should be committed if the error handler
returns without throwing an exception. Starting with version 2.4, this returns true by default.

134

Typically, the error handlers provided by the framework will throw an exception when the error is
not "handled" (e.g. after performing a seek operation). By default, such exceptions are logged by the
container at ERROR level. Starting with version 2.5, all the framework error handlers extend

KafkaExceptionLoglLevelAware which allows you to control the level at which these exceptions are
logged.

/**

* Set the level at which the exception thrown by this handler is logged.
* @param loglLevel the level (default ERROR).

*

/
public void setlLoglevel(KafkaException.Level loglLevel) {

}

You can specify a global error handler to be used for all listeners in the container factory. The
following example shows how to do so:

public KafkalistenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setErrorHandler(myErrorHandler);

return factory;

Similarly, you can set a global batch error handler:

public KafkalistenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setBatchErrorHandler (myBatchErrorHandler);

return factory;

135

By default, if an annotated listener method throws an exception, it is thrown to the container, and
the message is handled according to the container configuration.

If you are using Spring Boot, you simply need to add the error handler as a @Bean and boot will add
it to the auto-configured factory.

Consumer-Aware Container Error Handlers

The container-level error handlers (ErrorHandler and BatchErrorHandler) have sub-interfaces called
ConsumerAwareErrorHandler and ConsumerAwareBatchErrorHandler. The handle method of the
ConsumerAwareErrorHandler has the following signature:

void handle(Exception thrownException, ConsumerRecord<?, 7> data, Consumer<?, 7>
consumer);

The handle method of the ConsumerAwareBatchErrorHandler has the following signature:

void handle(Exception thrownException, ConsumerRecords<?, ?> data, Consumer<?, 7>
consumer);

Similar to the @KafkalListener error handlers, you can reset the offsets as needed, based on the data
that failed.

Unlike the listener-level error handlers, however, you should set the ackOnError
o container property to false (default) when making adjustments. Otherwise, any
pending acks are applied after your repositioning.

Seek To Current Container Error Handlers

If an ErrorHandler implements RemainingRecordsErrorHandler, the error handler is provided with the
failed record and any unprocessed records retrieved by the previous poll(). Those records are not
passed to the listener after the handler exits. The following listing shows the
RemainingRecordsErrorHandler interface definition:

public interface RemainingRecordsErrorHandler extends ConsumerAwareErrorHandler {

void handle(Exception thrownException, List<ConsumerRecord<?, ?>> records,
Consumer<?, ?> consumer);

136

This interface lets implementations seek all unprocessed topics and partitions so that the current
record (and the others remaining) are retrieved by the next poll. The SeekToCurrentErrorHandler
does exactly this.

ackOnError must be false (which is the default). Otherwise, if the container is
stopped after the seek, but before the record is reprocessed, the record will be
skipped when the container is restarted.

This is now the default error handler for record listeners.
The container commits any pending offset commits before calling the error handler.
To configure the listener container with this handler, add it to the container factory.

For example, with the @Kafkalistener container factory, you can add SeekToCurrentErrorHandler as
follows:

public ConcurrentKafkalistenerContainerFactory<String, String>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<String, String> factory = new
ConcurrentKafkalistenerContainerFactory();
factory.setConsumerFactory(consumerFactory());
factory.getContainerProperties().setAckOnError(false);
factory.getContainerProperties().setAckMode(AckMode.RECORD);
factory.setErrorHandler(new SeekToCurrentErrorHandler(new FixedBackOff(1000L,

20)));

return factory;

}

This will retry a delivery up to 2 times (3 delivery attempts) with a back off of 1 second, instead of
the default configuration (FixedBackOff(@L, 9)). Failures are simply logged after retries are
exhausted.

As an example; if the poll returns six records (two from each partition 0, 1, 2) and the listener
throws an exception on the fourth record, the container acknowledges the first three messages by
committing their offsets. The SeekToCurrentErrorHandler seeks to offset 1 for partition 1 and offset 0
for partition 2. The next pol1() returns the three unprocessed records.

If the AckMode was BATCH, the container commits the offsets for the first two partitions before calling
the error handler.

Starting with version 2.2, the SeekToCurrentErrorHandler can now recover (skip) a record that keeps
failing. By default, after ten failures, the failed record is logged (at the ERROR level). You can
configure the handler with a custom recoverer (BiConsumer) and maximum failures. Using a
FixedBackOff with FixedBackOff.UNLIMITED_ATTEMPTS causes (effectively) infinite retries. The
following example configures recovery after three tries:

137

SeekToCurrentErrorHandler errorHandler =
new SeekToCurrentErrorHandler((record, exception) -> {
// recover after 3 failures, woth no back off - e.g. send to a dead-letter
topic
}, new FixedBackOff(0OL, 2L));

Starting with version 2.2.4, when the container is configured with AckMode.MANUAL_IMMEDIATE, the
error handler can be configured to commit the offset of recovered records; set the commitRecovered
property to true.

See also Publishing Dead-letter Records.

When using transactions, similar functionality is provided by the DefaultAfterRollbackProcessor.
See After-rollback Processor.

Starting with version 2.3, the SeekToCurrentErrorHandler considers certain exceptions to be fatal,
and retries are skipped for such exceptions; the recoverer is invoked on the first failure. The
exceptions that are considered fatal, by default, are:

* DeserializationException

* MessageConversionException

» ConversionException

MethodArgumentResolutionException

NoSuchMethodException

(lassCastException
since these exceptions are unlikely to be resolved on a retried delivery.

You can add more exception types to the not-retryable category, or completely replace the map of
classified exceptions. See the Javadocs for SeekToCurrentErrorHandler.setClassifications() for
more information, as well as those for the spring-retry BinaryExceptionClassifier.

Here is an example that adds I1legalArqumentException to the not-retryable exceptions:

@Bean

public SeekToCurrentErrorHandler errorHandler(ConsumerRecordRecoverer recoverer) {
SeekToCurrentErrorHandler handler = new SeekToCurrentErrorHandler(recoverer);
handler.addNotRetryableException(IllegalArgumentException.class);
return handler;

Starting with version 2.7, the error handler can be configured with one or more RetrylListener s,
receiving notifications of retry and recovery progress.

138

public interface RetrylListener {

void failedDelivery(ConsumerRecord<?, 7> record, Exception ex, int
deliveryAttempt);

default void recovered(ConsumerRecord<?, 7> record, Exception ex) {

}

default void recoveryFailed(ConsumerRecord<?, ?> record, Exception original,
Exception failure) {

}

See the javadocs for more information.

The SeekToCurrentBatchErrorHandler seeks each partition to the first record in each partition in the
batch, so the whole batch is replayed. Also see Committing Offsets for an alternative. Also see
Retrying Batch Error Handler. This error handler does not support recovery, because the
framework cannot know which message in the batch is failing.

After seeking, an exception that wraps the ListenerExecutionFailedException is thrown. This is to
cause the transaction to roll back (if transactions are enabled).

Starting with version 2.3, a BackOff can be provided to the SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor so that the consumer thread can sleep for some configurable time
between delivery attempts. Spring Framework provides two out of the box BackOff s, FixedBackOff
and ExponentialBackOff. The maximum back off time must not exceed the max.poll.interval.ms
consumer property, to avoid a rebalance.

Previously, the configuration was "maxFailures" (which included the first delivery
attempt). When using a FixedBackOff, its maxAttempts property represents the

o number of delivery retries (one less than the old maxFailures property). Also,
maxFailures=-1 meant retry indefinitely with the old configuration, with a BackOff
you would set the maxAttempts to Long.MAX_VALUE for a FixedBackOff and leave the
maxElapsedTime to its default in an ExponentialBackOff.

The SeekToCurrentBatchErrorHandler can also be configured with a BackOff to add a delay between
delivery attempts. Generally, you should configure the BackOff to never return STOP. However, since
this error handler has no mechanism to "recover" after retries are exhausted, if the
BackOffExecution returns STOP, the previous interval will be used for all subsequent delays. Again,
the maximum delay must be less than the max.poll.interval.ms consumer property. Also see
Retrying Batch Error Handler.

139

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the error
handler’s resetStateOnRecoveryFailure to false.

Starting with version 2.3.2, after a record has been recovered, its offset will be committed (if one of
the container AckMode s is configured). To revert to the previous behavior, set the error handler’s
ackAfterHandle property to false.

Starting with version 2.6, you can now provide the error handler with a
BiFunction<ConsumerRecord<?, 7>, Exception, BackOff> to determine the BackOff to use, based on
the failed record and/or the exception:

handler.setBackOffFunction((record, ex) -> { ... });

If the function returns null, the handler’s default BackOff will be used.

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new BackOff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

Also see Delivery Attempts Header.

Starting with version 2.7, while waiting for a BackOff interval, the error handler will loop with a
short sleep until the desired delay, while checking to see if the container has been stopped, allowing
the sleep to exit soon after the stop() rather than causing a delay.

Retrying Batch Error Handler

As discussed above, the SeekToCurrentBatchErrorHandler has no mechanism to recover after a
certain number of failures. One reason for this is there is no guarantee that, when a batch is
redelivered, the batch has the same number of records and/or the redelivered records are in the
same order. It is impossible, therefore, to maintain retry state for a batch. The
RetryingBatchErrorHandler takes a different approach. If a batch listener throws an exception, and
this error handler is configured, the retries are performed from the in-memory batch of records. In
order to avoid a rebalance during an extended retry sequence, the error handler pauses the
consumer, polls it before sleeping for the back off, for each retry, and calls the listener again.
If/when retries are exhausted, the ConsumerRecordRecoverer is called for each record in the batch. If
the recoverer throws an exception, or the thread is interrupted during its sleep, a
SeekToCurrentErrorHandler is invoked so that the batch of records will be redelivered on the next
poll. Before exiting, regardless of the outcome, the consumer is resumed.

o This error handler cannot be used with transactions.

140

Starting with version 2.7, while waiting for a BackOff interval, the error handler will loop with a
short sleep until the desired delay is reached, while checking to see if the container has been
stopped, allowing the sleep to exit soon after the stop() rather than causing a delay.

Also see Recovering Batch Error Handler.

Recovering Batch Error Handler

As an alternative to the Retrying Batch Error Handler, version 2.5 introduced the
RecoveringBatchErrorHandler.

This is now the default error handler for batch listeners. The default configuration retries 9 times
(10 delivery attempts) with no back off between deliveries.

This error handler works in conjunction with the listener throwing a BatchListenerFailedException
providing the index in the batch where the failure occurred (or the failed record itself). If the
listener throws a different exception, or the index is out of range, the error handler falls back to
invoking a SeekToCurrentBatchErrorHandler and the whole batch is retried, with no recovery
available. The sequence of events is:

¢ Commit the offsets of the records before the index.

* If retries are not exhausted, perform seeks so that all the remaining records (including the
failed record) will be redelivered.

* If retries are exhausted, attempt recovery of the failed record (default log only) and perform
seeks so that the remaining records (excluding the failed record) will be redelivered. The
recovered record’s offset is committed

 Ifretries are exhausted and recovery fails, seeks are performed as if retries are not exhausted.

The default recoverer logs the failed record after retries are exhausted. You can use a custom
recoverer, or one provided by the framework such as the DeadLetterPublishingRecoverer.

In all cases, a BackOff can be configured to enable a delay between delivery attempts.

Example:

public RecoveringBatchErrorHandler batchErrorHandler(KafkaTemplate<String, String>
template) {
DeadlLetterPublishingRecoverer recoverer =
new DeadlLetterPublishingRecoverer(template);
RecoveringBatchErrorHandler errorHandler =
new RecoveringBatchErrorHandler(recoverer, new FixedBackOff(2L, 5000)

141

(id = "recovering", topics = "someTopic")
public void listen(List<ConsumerRecord<String, String>> records) {
records.forEach(record -> {

try {
process(record);

}
catch (Exception e) {
throw new BatchListenerFailedException("Failed to process", record);

}
1

For example; say 10 records are in the original batch and no more records are added to the topic
during the retries, and the failed record is at index 4 in the list. After the first delivery fails, the
offsets for the first 4 records will be committed; the remaing 6 will be redelivered after 5 seconds.
Most likely (but not necessarily) the failed record will be at index 0 in the redelivery. If it fails again,
it will be retried one more time and, if it again fails, it will be sent to a dead letter topic.

When using a POJO batch listener (e.g. List<Thing>), and you don’t have the full consumer record to
add to the exception, you can just add the index of the record that failed:

(id = "recovering", topics = "someTopic")
public void listen(List<Thing> things) {
for (int i = 0; i < records.size(); i++) {
try {
process(things.get(i));
}
catch (Exception e) {
throw new BatchListenerFailedException("Failed to process", 1);

}

o This error handler cannot be used with transactions

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the error
handler’s resetStateOnRecoveryFailure to false.

Starting with version 2.6, you can now provide the error handler with a
BiFunction<ConsumerRecord<?, 7>, Exception, BackOff> to determine the BackOff to use, based on

142

the failed record and/or the exception:

handler.setBackOffFunction((record, ex) -> { ... });

If the function returns null, the handler’s default BackOff will be used.

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new Back0ff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

Starting with version 2.7, while waiting for a BackOff interval, the error handler will loop with a
short sleep until the desired delay is reached, while checking to see if the container has been
stopped, allowing the sleep to exit soon after the stop() rather than causing a delay.

Starting with version 2.7, the error handler can be configured with one or more RetrylListener s,
receiving notifications of retry and recovery progress.

public interface RetrylListener {

void failedDelivery(ConsumerRecord<?, 7> record, Exception ex, int
deliveryAttempt);

default void recovered(ConsumerRecord<?, ?> record, Exception ex) {

}

default void recoveryFailed(ConsumerRecord<?, ?> record, Exception original,
Exception failure) {

}

See the javadocs for more information.

Container Stopping Error Handlers

The ContainerStoppingErrorHandler (used with record listeners) stops the container if the listener
throws an exception. When the AckMode is RECORD, offsets for already processed records are
committed. When the AckMode is any manual value, offsets for already acknowledged records are
committed. When the AckMode is BATCH, the entire batch is replayed when the container is restarted
(unless transactions are enabled — in which case, only the unprocessed records are re-fetched).

The ContainerStoppingBatchErrorHandler (used with batch listeners) stops the container, and the
entire batch is replayed when the container is restarted.

143

After the container stops, an exception that wraps the ListenerExecutionFailedException is thrown.
This is to cause the transaction to roll back (if transactions are enabled).

Conditional Delegating Error Handlers

Introduced in version 2.7.4, the ConditionalDelegatingErrorHandler can delegate to different error
handlers, depending on the exception type. For example, you may wish to invoke a
SeekToCurrentErrorHandler for most exceptions, or a ContainerStoppingErrorHandler for others.

Similarly, the ConditionalDelegatingBatchErrorHandler is provided.

After-rollback Processor

When using transactions, if the listener throws an exception (and an error handler, if present,
throws an exception), the transaction is rolled back. By default, any unprocessed records (including
the failed record) are re-fetched on the next poll. This is achieved by performing seek operations in
the DefaultAfterRollbackProcessor. With a batch listener, the entire batch of records is reprocessed
(the container has no knowledge of which record in the batch failed). To modify this behavior, you
can configure the listener container with a custom AfterRollbackProcessor. For example, with a
record-based listener, you might want to keep track of the failed record and give up after some
number of attempts, perhaps by publishing it to a dead-letter topic.

Starting with version 2.2, the DefaultAfterRollbackProcessor can now recover (skip) a record that
keeps failing. By default, after ten failures, the failed record is logged (at the ERROR level). You can
configure the processor with a custom recoverer (BiConsumer) and maximum failures. Setting the
maxFailures property to a negative number causes infinite retries. The following example
configures recovery after three tries:

AfterRollbackProcessor<String, String> processor =
new DefaultAfterRollbackProcessor((record, exception) -> {
// recover after 3 failures, with no back off - e.g. send to a dead-letter
topic
}, new FixedBackOff(0L, 2L));

When you do not use transactions, you can achieve similar functionality by configuring a
SeekToCurrentErrorHandler. See Seek To Current Container Error Handlers.

Recovery is not possible with a batch listener, since the framework has no
knowledge about which record in the batch keeps failing. In such cases, the
application listener must handle a record that keeps failing.

See also Publishing Dead-letter Records.

Starting with version 2.2.5, the DefaultAfterRollbackProcessor can be invoked in a new transaction
(started after the failed transaction rolls back). Then, if you are wusing the
DeadLetterPublishingRecoverer to publish a failed record, the processor will send the recovered
record’s offset in the original topic/partition to the transaction. To enable this feature, set the

144

commitRecovered and kafkaTemplate properties on the DefaultAfterRollbackProcessor.

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the
processor’s resetStateOnRecoveryFailure property to false.

Starting with version 2.6, you can now provide the processor with a BiFunction<ConsumerRecord<?,
7>, Exception, BackOff> to determine the BackOff to use, based on the failed record and/or the
exception:

handler.setBackOffFunction((record, ex) -> { ... });

If the function returns null, the processor’s default BackOff will be used.

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new Back0ff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

Starting with version 2.3.1, similar to the SeekToCurrentErrorHandler, the
DefaultAfterRollbackProcessor considers certain exceptions to be fatal, and retries are skipped for
such exceptions; the recoverer is invoked on the first failure. The exceptions that are considered
fatal, by default, are:

» DeserializationException

* MessageConversionException

» ConversionException

MethodArqgumentResolutionException

NoSuchMethodException

ClassCastException
since these exceptions are unlikely to be resolved on a retried delivery.

You can add more exception types to the not-retryable category, or completely replace the map of
classified exceptions. See the Javadocs for DefaultAfterRollbackProcessor.setClassifications() for
more information, as well as those for the spring-retry BinaryExceptionClassifier.

Here is an example that adds I1legalArgumentException to the not-retryable exceptions:

145

public DefaultAfterRollbackProcessor errorHandler(BiConsumer<ConsumerRecord<?, 7>,
Exception> recoverer) {

DefaultAfterRollbackProcessor processor = new DefaultAfterRollbackProcessor
(recoverer);

processor.addNotRetryableException(IllegalArgumentException.class);
return processor;

Also see Delivery Attempts Header.

With current kafka-clients, the container cannot detect whether a
ProducerFencedException is caused by a rebalance or if the producer’s
transactional.id has been revoked due to a timeout or expiry. Because, in most
cases, it is caused by a rebalance, the container does not call the
AfterRollbackProcessor (because it’s not appropriate to seek the partitions because
we no longer are assigned them). If you ensure the timeout is large enough to

o process each transaction and periodically perform an "empty" transaction (e.g. via
a ListenerContainerIdleEvent) you can avoid fencing due to timeout and expiry. Or,
you can set the stopContainerWhenFenced container property to true and the
container will stop, avoiding the loss of records. You can consume a
ConsumerStoppedEvent and check the Reason property for FENCED to detect this
condition. Since the event also has a reference to the container, you can restart the
container using this event.

Starting with version 2.7, while waiting for a BackOff interval, the error handler will loop with a
short sleep until the desired delay is reached, while checking to see if the container has been
stopped, allowing the sleep to exit soon after the stop() rather than causing a delay.

Starting with version 2.7, the processor can be configured with one or more RetrylListener s,
receiving notifications of retry and recovery progress.

146

public interface RetrylListener {

void failedDelivery(ConsumerRecord<?, 7> record, Exception ex, int
deliveryAttempt);

default void recovered(ConsumerRecord<?, 7> record, Exception ex) {

}

default void recoveryFailed(ConsumerRecord<?, ?> record, Exception original,
Exception failure) {

}

See the javadocs for more information.

Delivery Attempts Header

The following applies to record listeners only, not batch listeners.

Starting with version 2.5, when using an ErrorHandler or AfterRollbackProcessor that implements
DeliveryAttemptAware, it is possible to enable the addition of the KafkaHeaders.DELIVERY_ATTEMPT
header (kafka_deliveryAttempt) to the record. The value of this header is an incrementing integer
starting at 1. When receiving a raw ConsumerRecord<?, ?7>the integer isin a byte[4].

int delivery = ByteBuffer.wrap(record.headers()
.lastHeader (KafkaHeaders.DELIVERY_ATTEMPT).value())
.getInt()

When using @Kafkalistener with the DefaultKafkaHeaderMapper or SimpleKafkaHeaderMapper, it can be
obtained by adding @Header (KafkaHeaders.DELIVERY_ATTEMPT) int delivery as a parameter to the
listener method.

To enable population of this header, set the container property deliveryAttemptHeader to true. It is
disabled by default to avoid the (small) overhead of looking up the state for each record and adding
the header.

The SeekToCurrentErrorHandler and DefaultAfterRollbackProcessor support this feature.

Publishing Dead-letter Records

As discussed earlier, you can configure the SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor (as well as the RecoveringBatchErrorHandler) with a record recoverer
when the maximum number of failures is reached for a record. The framework provides the

147

DeadLetterPublishingRecoverer, which publishes the failed message to another topic. The recoverer
requires a KafkaTemplate<Object, Object>, which is used to send the record. You can also, optionally,
configure it with a BiFunction<ConsumerRecord<?, 7>, Exception, TopicPartition>, which is called to
resolve the destination topic and partition.

By default, the dead-letter record is sent to a topic named <originalTopic>.DLT (the

o original topic name suffixed with .DLT) and to the same partition as the original
record. Therefore, when you use the default resolver, the dead-letter topic must
have at least as many partitions as the original topic.

If the returned TopicPartition has a negative partition, the partition is not set in the ProducerRecord,
so the partition is selected by Kafka. Starting with version 2.24, any
ListenerExecutionFailedException (thrown, for example, when an exception is detected in a
@KafkalListener method) is enhanced with the groupId property. This allows the destination resolver
to use this, in addition to the information in the ConsumerRecord to select the dead letter topic.

The following example shows how to wire a custom destination resolver:

DeadLetterPublishingRecoverer recoverer = new DeadlLetterPublishingRecoverer

(template,
(r, e) > {
if (e instanceof FooException) {
return new TopicPartition(r.topic() + ".Foo.failures", r.
partition());
}
else {
return new TopicPartition(r.topic() + ".other.failures", r
.partition());
+
b

ErrorHandler errorHandler = new SeekToCurrentErrorHandler(recoverer, new
FixedBackOff(0L, 2L));

The record sent to the dead-letter topic is enhanced with the following headers:

* KafkaHeaders.DLT_EXCEPTION_FQCN: The Exception class name.
» KafkaHeaders.DLT_EXCEPTION_STACKTRACE: The Exception stack trace.
» KafkaHeaders.DLT_EXCEPTION_MESSAGE: The Exception message.

* KafkaHeaders.DLT_KEY_EXCEPTION_FQCN: The Exception class name (key deserialization errors
only).

» KafkaHeaders.DLT_KEY_EXCEPTION_STACKTRACE: The Exception stack trace (key deserialization
errors only).

» KafkaHeaders.DLT_KEY_EXCEPTION_MESSAGE: The Exception message (key deserialization errors
only).

148

KafkaHeaders.DLT_ORIGINAL_TOPIC: The original topic.

KafkaHeaders.DLT_ORIGINAL_PARTITION: The original partition.
» KafkaHeaders.DLT_ORIGINAL_OFFSET: The original offset.

KafkaHeaders.DLT_ORIGINAL_TIMESTAMP: The original timestamp.

KafkaHeaders.DLT_ORIGINAL_TIMESTAMP_TYPE: The original timestamp type.
There are two mechanisms to add more headers.

1. Subclass the recoverer and override createProducerRecord() - call super.createProducerRecord()
and add more headers.

2. Provide a BiFunction to receive the consumer record and exception, returning a Headers object;
headers from there will be copied to the final producer record. Use setHeadersFunction() to set
the BiFunction.

The second is simpler to implement but the first has more information available, including the
already assembled standard headers.

Starting with version 2.3, when used in conjunction with an ErrorHandlingDeserializer, the
publisher will restore the record value(), in the dead-letter producer record, to the original value
that failed to be deserialized. Previously, the value() was null and user code had to decode the
DeserializationException from the message headers. In addition, you can provide multiple
KafkaTemplate s to the publisher; this might be needed, for example, if you want to publish the
byte[] from a DeserializationException, as well as values using a different serializer from records
that were deserialized successfully. Here is an example of configuring the publisher with
KafkaTemplate s that use a String and byte[] serializer:

public DeadlLetterPublishingRecoverer publisher(KafkaTemplate<?, ?> stringTemplate,
KafkaTemplate<?, ?> bytesTemplate) {

Map<Class<?>, KafkaTemplate<?, 7>> templates = new LinkedHashMap<>();
templates.put(String.class, stringTemplate);
templates.put(byte[].class, bytesTemplate);

return new DeadlLetterPublishingRecoverer(templates);

The publisher uses the map keys to locate a template that is suitable for the value() about to be
published. A LinkedHashMap is recommended so that the keys are examined in order.

When publishing null values, when there are multiple templates, the recoverer will look for a
template for the Void class; if none is present, the first template from the values().iterator() will
be used.

Since 2.7 you can use the setFaillfSendResultIsError method so that an exception is thrown when
message publishing fails. You can also set a timeout for the verification of the sender success with

149

setWaitForSendResultTimeout.

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the error
handler’s resetStateOnRecoveryFailure property to false.

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new Back0ff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

Starting with version 2.3, the recoverer can also be used with Kafka Streams - see Recovery from
Deserialization Exceptions for more information.

The ErrorHandlingDeserializer adds the deserialization exception(s) in headers
ErrorHandlingDeserializer.VALUE_DESERIALIZER_EXCEPTION_HEADER and
ErrorHandlingDeserializer.KEY_DESERIALIZER_EXCEPTION_HEADER (using java serialization). By default,
these headers are not retained in the message published to the dead letter topic. Starting with
version 2.7, if both the key and value fail deserialization, the original values of both are populated
in the record sent to the DLT.

If incoming records are dependent on each other, but may arrive out of order, it may be useful to
republish a failed record to the tail of the original topic (for some number of times), instead of
sending it directly to the dead letter topic. See this Stack Overflow Question for an example.

The following error handler configuration will do exactly that:

150

https://stackoverflow.com/questions/64646996

public ErrorHandler eh(KafkaOperations<String, String> template) {
return new SeekToCurrentErrorHandler(new DeadLetterPublishingRecoverer
(template,
(rec, ex) -> {
org.apache.kafka.common.header.Header retries = rec.headers()
.lastHeader("retries");
if (retries == null) {
retries = new RecordHeader("retries", new byte[] { 1 });
rec.headers().add(retries);

}

else {
retries.value()[0]++;

}

return retries.value()[0] > 5
? new TopicPartition("topic.DLT", rec.partition())
: new TopicPartition("topic", rec.partition());
}), new FixedBackOff(0L, 0L));

Starting with version 2.7, the recoverer checks that the partition selected by the destination
resolver actually exists. If the partition is not present, the partition in the ProducerRecord is set to
null, allowing the KafkaProducer to select the partition. You can disable this check by setting the
verifyPartition property to false.

ExponentialBackOffWithMaxRetries Implementation

Spring Framework provides a number of BackOff implementations. By default, the
ExponentialBackOff will retry indefinitely; to give up after some number of retry attempts requires
calculating the maxElapsedTime. Since version 2.7.3, Spring for Apache Kafka provides the
ExponentialBackOffWithMaxRetries which is a subclass that receives the maxRetries property and
automatically calculates the maxElapsedTime, which is a little more convenient.

SeekToCurrentErrorHandler handler() {
ExponentialBackOffWithMaxRetries bo = new ExponentialBackOffWithMaxRetries(6);
bo.setInitialInterval(1_000L);
bo.setMultiplier(2.0);
bo.setMaxInterval(10_000L);
return new SeekToCurrentErrorHandler(myRecoverer, bo);

This will retry after 1, 2, 4, 8, 10, 10 seconds, before calling the recoverer.

151

4.1.21. JAAS and Kerberos

Starting with version 2.0, a KafkaJaasLoginModuleInitializer class has been added to assist with
Kerberos configuration. You can add this bean, with the desired configuration, to your application
context. The following example configures such a bean:

public KafkalaasLoginModuleInitializer jaasConfig() throws IOException {
KafkaJaasLoginModuleInitializer jaasConfig = new
KafkalaasLoginModuleInitializer();
jaasConfig.setControlFlag("REQUIRED");
Map<String, String> options = new HashMap<>();
options.put("useKeyTab", "true");
options.put("storeKey", "true");
options.put("keyTab", "/etc/security/keytabs/kafka_client.keytab");
options.put("principal”, "kafka-client-1@EXAMPLE.COM");
jaasConfig.setOptions(options);
return jaasConfig;

4.2. Apache Kafka Streams Support

Starting with version 1.1.4, Spring for Apache Kafka provides first-class support for Kafka Streams.
To use it from a Spring application, the kafka-streams jar must be present on classpath. It is an
optional dependency of the Spring for Apache Kafka project and is not downloaded transitively.

4.2.1. Basics

The reference Apache Kafka Streams documentation suggests the following way of using the API:

152

https://kafka.apache.org/documentation/streams

// Use the builders to define the actual processing topology, e.g. to specify
// from which input topics to read, which stream operations (filter, map, etc.)
// should be called, and so on.

StreamsBuilder builder = ...; // when using the Kafka Streams DSL

// Use the configuration to tell your application where the Kafka cluster is,
// which serializers/deserializers to use by default, to specify security
settings,

// and so on.

StreamsConfig config = ...;

KafkaStreams streams = new KafkaStreams(builder, config);

// Start the Kafka Streams instance
streams.start();

// Stop the Kafka Streams instance
streams.close();

So, we have two main components:

e StreamsBuilder: With an API to build KStream (or KTable) instances.

» KafkaStreams: To manage the lifecycle of those instances.

All KStream instances exposed to a KafkaStreams instance by a single StreamsBuilder
are started and stopped at the same time, even if they have different logic. In other

o words, all streams defined by a StreamsBuilder are tied with a single lifecycle
control. Once a KafkaStreams instance has been closed by streams.close(), it cannot
be restarted. Instead, a new KafkaStreams instance to restart stream processing
must be created.

4.2.2. Spring Management

To simplify using Kafka Streams from the Spring application context perspective and use the
lifecycle management through a container, the Spring for Apache Kafka introduces
StreamsBuilderFactoryBean. This is an AbstractFactoryBean implementation to expose a
StreamsBuilder singleton instance as a bean. The following example creates such a bean:

153

public FactoryBean<StreamsBuilder> myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object rather than a StreamsConfig.

The StreamsBuilderFactoryBean also implements SmartlLifecycle to manage the lifecycle of an
internal KafkaStreams instance. Similar to the Kafka Streams API, you must define the KStream
instances before you start the KafkaStreams. That also applies for the Spring API for Kafka Stream:s.
Therefore, when you use default autoStartup = true on the StreamsBuilderFactoryBean, you must
declare KStream instances on the StreamsBuilder before the application context is refreshed. For
example, KStream can be a regular bean definition, while the Kafka Streams API is used without any
impacts. The following example shows how to do so:

public KStream<?, ?> kStream(StreamsBuilder kStreamBuilder) {
KStream<Integer, String> stream = kStreamBuilder.stream(STREAMING_TOPIC1);
// Fluent KStream API
return stream;

If you would like to control the lifecycle manually (for example, stopping and starting by some
condition), you can reference the StreamsBuilderFactoryBean bean directly by using the factory bean
(&) prefix. Since StreamsBuilderFactoryBean use its internal KafkaStreams instance, it is safe to stop
and restart it again. A new KafkaStreams is created on each start(). You might also consider using
different StreamsBuilderFactoryBean instances, if you would like to control the lifecycles for KStream
instances separately.

You also can specify KafkaStreams.Statelistener, Thread.UncaughtExceptionHandler, and
StateRestorelistener options on the StreamsBuilderFactoryBean, which are delegated to the internal
KafkaStreams instance. Also, apart from setting those options indirectly on
StreamsBuilderFactoryBean, starting with version 2.1.5, you can use a KafkaStreamsCustomizer
callback interface to configure an inner KafkaStreams instance. Note that KafkaStreamsCustomizer
overrides the options provided by StreamsBuilderFactoryBean. If you need to perform some
KafkaStreams operations directly, you can access that internal KafkaStreams instance by using
StreamsBuilderFactoryBean.getKafkaStreams(). You can autowire StreamsBuilderFactoryBean bean by
type, but you should be sure to use the full type in the bean definition, as the following example
shows:

154

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-extension-factorybean

public StreamsBuilderFactoryBean myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

Alternatively, you can add @Qualifier for injection by name if you use interface bean definition. The
following example shows how to do so:

public FactoryBean<StreamsBuilder> myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

("&myKStreamBuilder")
private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

Starting with version 2.4.1, the factory bean has a new property infrastructureCustomizer with type
KafkaStreamsInfrastructureCustomizer; this allows customization of the StreamsBuilder (e.g. to add a
state store) and/or the Topology before the stream is created.

public interface KafkaStreamsInfrastructureCustomizer {
void configureBuilder(StreamsBuilder builder);

void configureTopology(Topology topology);

Default no-op implementations are provided to avoid having to implement both methods if one is
not required.

A CompositeKafkaStreamsInfrastructureCustomizer is provided, for when you need to apply multiple
customizers.

155

4.2.3. KafkaStreams Micrometer Support

Introduced in version 2.5.3, you can configure a KafkaStreamsMicrometerListener to automatically
register micrometer meters for the KafkaStreams object managed by the factory bean:

streamsBuilderFactoryBean.setListener(new KafkaStreamsMicrometerListener
(meterRegistry,
Collections.singletonlList(new ImmutableTag("customTag", "customTagValue")

)));

4.2.4. Streams JSON Serialization and Deserialization

For serializing and deserializing data when reading or writing to topics or state stores in JSON
format, Spring for Apache Kafka provides a JsonSerde implementation that uses JSON, delegating to
the JsonSerializer and JsonDeserializer described in Serialization, Deserialization, and Message
Conversion. The JsonSerde implementation provides the same configuration options through its
constructor (target type or ObjectMapper). In the following example, we use the JsonSerde to serialize
and deserialize the Cat payload of a Kafka stream (the JsonSerde can be used in a similar fashion
wherever an instance is required):

stream.through(Serdes.Integer(), new JsonSerde<>((Cat.class), "cats");

When constructing the serializer/deserializer programmatically for use in the producer/consumer
factory, since version 2.3, you can use the fluent API, which simplifies configuration.

stream.through(new JsonSerde<>(MyKeyType.class)
.forKeys()
.noTypelnfo(),
new JsonSerde<>(MyValueType.class)
.noTypelInfo(),
"myTypes");

4.2.5. Using KafkaStreamBrancher

The KafkaStreamBrancher class introduces a more convenient way to build conditional branches on
top of KStream.

Consider the following example that does not use KafkaStreamBrancher:

156

KStream<String, String>[] branches = builder.stream("source").branch(
(key, value) -> value.contains("A"),
(key, value) -> value.contains("B"),
(key, value) -> true
)i
branches[0].to("A")
branches[1].to("B");
branches[2].to("C")

The following example uses KafkaStreamBrancher:

new KafkaStreamBrancher<String, String>()
.branch((key, value) -> value.contains("A"), ks -> ks.to("A"))
.branch((key, value) -> value.contains("B"), ks -> ks.to("B"))
//default branch should not necessarily be defined in the end of the chain!
.defaultBranch(ks -> ks.to("C"))
.onTopOf(builder.stream("source"));
//onTop0f method returns the provided stream so we can continue with method
chaining

4.2.6. Configuration

To configure the Kafka Streams environment, the StreamsBuilderFactoryBean requires a
KafkaStreamsConfiguration instance. See the Apache Kafka documentation for all possible options.

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object, rather than as a StreamsConfig

To avoid boilerplate code for most cases, especially when you develop microservices, Spring for
Apache Kafka provides the @EnableKafkaStreams annotation, which you should place on a
@Configuration class. All you need is to declare a KafkaStreamsConfiguration bean named
defaultKafkaStreamsConfig. A StreamsBuilderFactoryBean bean, named defaultKafkaStreamsBuilder, is
automatically declared in the application context. You can declare and use any additional
StreamsBuilderFactoryBean beans as well. You can perform additional customization of that bean, by
providing a bean that implements StreamsBuilderFactoryBeanConfigurer. If there are multiple such
beans, they will be applied according to their Ordered.order property.

By default, when the factory bean is stopped, the KafkaStreams.cleanUp() method is called. Starting
with version 2.1.2, the factory bean has additional constructors, taking a CleanupConfig object that
has properties to let you control whether the cleanUp() method is called during start() or stop() or
neither. Starting with version 2.7, the default is to never clean up local state.

157

https://kafka.apache.org/0102/documentation/#streamsconfigs

4.2.7. Header Enricher

Version 2.3 added the HeaderEnricher implementation of Transformer. This can be used to add
headers within the stream processing; the header values are SpEL expressions; the root object of
the expression evaluation has 3 properties:

» context - the ProcessorContext, allowing access to the current record metadata

* key - the key of the current record

e value - the value of the current record
The expressions must return a byte[] or a String (which will be converted to byte[] using UTF-8).

To use the enricher within a stream:
.transform(() -> enricher)

The transformer does not change the key or value; it simply adds headers.

o If your stream is multi-threaded, you need a new instance for each record.

.transform(() -> new HeaderEnricher<..., ...>(expressionMap))
Here is a simple example, adding one literal header and one variable:

Map<String, Expression> headers = new HashMap<>();
headers.put("header1", new LiteralExpression("valuel"));
SpelExpressionParser parser = new SpelExpressionParser();
headers.put("header2", parser.parseExpression("context.timestamp() + ' @' +
context.offset()"));
HeaderEnricher<String, String> enricher = new HeaderEnricher<>(headers);
KStream<String, String> stream = builder.stream(INPUT);
stream

.transform(() -> enricher)

.to(OUTPUT);

4.2.8. MessagingTransformer

Version 2.3 added the MessagingTransformer this allows a Kafka Streams topology to interact with a
Spring Messaging component, such as a Spring Integration flow. The transformer requires an
implementation of MessagingFunction.

158

public interface MessagingFunction {

Message<?> exchange(Message<?> message);

Spring Integration automatically provides an implementation using its GatewayProxyFactoryBean. It
also requires a MessagingMessageConverter to convert the key, value and metadata (including
headers) to/from a Spring Messaging Message<?>. See [Calling a Spring Integration Flow from a
KStream] for more information.

4.2.9. Recovery from Deserialization Exceptions

Version 2.3 introduced the RecoveringDeserializationExceptionHandler which can take some action
when a deserialization exception occurs. Refer to the Kafka documentation about
DeserializationExceptionHandler, of which the RecoveringDeserializationExceptionHandler is an
implementation. The RecoveringDeserializationExceptionHandler is configured with a
ConsumerRecordRecoverer implementation. The framework provides the
DeadLetterPublishingRecoverer which sends the failed record to a dead-letter topic. See Publishing
Dead-letter Records for more information about this recoverer.

To configure the recoverer, add the following properties to your streams configuration:

(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();

props.put(StreamsConfig.
DEFAULT_DESERTIALIZATION_EXCEPTION_HANDLER_CLASS_CONFIG,
RecoveringDeserializationExceptionHandler.class);
props.put(RecoveringDeserializationExceptionHandler
.KSTREAM_DESERIALIZATION_RECOVERER, recoverer());

return new KafkaStreamsConfiguration(props);

public DeadlLetterPublishingRecoverer recoverer() {
return new DeadLetterPublishingRecoverer(kafkaTemplate(),
(record, ex) -> new TopicPartition("recovererDLQ", -1));

Of course, the recoverer() bean can be your own implementation of ConsumerRecordRecoverer.

159

https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration
https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration

4.2.10. Kafka Streams Example

The following example combines all the topics we have covered in this chapter:

160

161

162

public static class KafkaStreamsConfig {

(name = KafkaStreamsDefaultConfiguration.
DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {

Map<String, Object> props = new HashMap<>();

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");

props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.Integer()
.getClass().getName());

props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String()
.getClass().getName());

props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
WallclockTimestampExtractor.class.getName());

return new KafkaStreamsConfiguration(props);

}

public StreamsBuilderFactoryBeanConfigurer configurer() {
return fb -> fb.setStatelListener((newState, oldState) -> {
System.out.println("State transition from " + oldState + " to " +
newState);
b
}

public KStream<Integer, String> kStream(StreamsBuilder kStreamBuilder) {
KStream<Integer, String> stream = kStreamBuilder.stream("streamingTopic1"
)i
stream
.mapValues((ValueMapper<String, String>) String::toUpperCase)
.groupByKey()
.windowedBy(TimeWindows.of(Duration.ofMillis(1000)))
.reduce((String valuel, String value2) -> valuel + value2,
Named.as("windowStore"))
.toStream()
.map((windowedId, value) -> new KeyValue<>(windowedId.key(),
value))
.filter((i, s) -> s.length() > 40)
.to("streamingTopic2");

stream.print(Printed.toSysOut());

return stream;

4.3. Testing Applications

The spring-kafka-test jar contains some useful utilities to assist with testing your applications.

4.3.1. KafkaTestUtils

0.s.kafka.test.utils.KafkaTestUtils provides a number of static helper methods to consume
records, retrieve various record offsets, and others. Refer to its Javadocs for complete details.

4.3.2. JUnit

0.s.kafka.test.utils.KafkaTestUtils also provides some static methods to set up producer and
consumer properties. The following listing shows those method signatures:

/**

* Set up test properties for an {@code <Integer, String>} consumer.

* @param group the group id.

* @param autoCommit the auto commit.

* @param embeddedKafka a {@link EmbeddedKafkaBroker} instance.

* @return the properties.

*/

public static Map<String, Object> consumerProps(String group, String autoCommit,
EmbeddedKafkaBroker embeddedKafka) { ... }

/**

* Set up test properties for an {@code <Integer, String>} producer.

* @param embeddedKafka a {@link EmbeddedKafkaBroker} instance.

* @return the properties.

*/

public static Map<String, Object> producerProps(EmbeddedKafkaBroker embeddedKafka)
{...}

Starting with version 2.5, the consumerProps method sets the
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to earliest. This is because, in most

o cases, you want the consumer to consume any messages sent in a test case. The
ConsumerConfig default is 1atest which means that messages already sent by a test,
before the consumer starts, will not receive those records. To revert to the
previous behavior, set the property to latest after calling the method.

A JUnit 4 eRule wrapper for the EmbeddedKafkaBroker is provided to create an embedded Kafka and

an embedded Zookeeper server. (See @EmbeddedKafka Annotation for information about using
@EmbeddedKafka with JUnit 5). The following listing shows the signatures of those methods:

163

https://docs.spring.io/spring-kafka/docs/current/api/org/springframework/kafka/test/utils/KafkaTestUtils.html

/**

* Create embedded Kafka brokers.

* @param count the number of brokers.

* @param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param topics the topics to create (2 partitions per).

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, String... topics)
{ ...}

/**

* Create embedded Kafka brokers.

* @param count the number of brokers.

* @param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param partitions partitions per topic.

* @param topics the topics to create.

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, int partitions,
String... topics) { ... }

The EmbeddedKafkaBroker class has a utility method that lets you consume for all the topics it created.
The following example shows how to use it:

Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false",
embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory
<Integer, String>(

consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
embeddedKafka.consumeFromAl1EmbeddedTopics(consumer);

The KafkaTestUtils has some utility methods to fetch results from the consumer. The following
listing shows those method signatures:

164

/**
* Poll the consumer, expecting a single record for the specified topic.

* @param consumer the consumer.

* @param topic the topic.

* @return the record.

* @throws org.junit.ComparisonFailure if exactly one record is not received.

*/

public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer,
String topic) { ... }

/**

* Poll the consumer for records.

* @param consumer the consumer.

* @return the records.

*/

public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) {

.}

The following example shows how to use KafkaTestUtils:

template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received = KafkaTestUtils.getSingleRecord(
consumer, "topic");

When the embedded Kafka and embedded Zookeeper server are started by the EmbeddedKafkaBroker,
a system property named spring.embedded.kafka.brokers is set to the address of the Kafka brokers
and a system property named spring.embedded.zookeeper.connect is set to the address of Zookeeper.
Convenient constants (EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS and
EmbeddedKafkaBroker.SPRING_EMBEDDED_ZOOKEEPER_CONNECT) are provided for this property.

With the EmbeddedKafkaBroker.brokerProperties(Map<String, String>), you can provide additional
properties for the Kafka servers. See Kafka Config for more information about possible broker
properties.

4.3.3. Configuring Topics

The following example configuration creates topics called cat and hat with five partitions, a topic
called thing1 with 10 partitions, and a topic called thing2 with 15 partitions:

165

https://kafka.apache.org/documentation/#brokerconfigs

public class MyTests {

private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1,
false, 5, "cat", "hat");

public void test() {
embeddedKafkaRule.getEmbeddedKafka()
.addTopics(new NewTopic("thing1", 10, (short) 1), new NewTopic(
"thing2", 15, (short) 1));

}

By default, addTopics will throw an exception when problems arise (such as adding a topic that
already exists). Version 2.6 added a new version of that method that returns a Map<String,
Exception>; the key is the topic name and the value is null for success, or an Exception for a failure.

4.3.4. Using the Same Brokers for Multiple Test Classes

There is no built-in support for doing so, but you can use the same broker for multiple test classes
with something similar to the following:

166

public final class EmbeddedKafkaHolder {

private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1,
false);

private static boolean started;

public static EmbeddedKafkaRule getEmbeddedKafka() {
if (!started) {
try {
embeddedKafka.before();

}
catch (Exception e) {
throw new KafkaException(e);

}

started = true;

}
return embeddedKafka;

}

private EmbeddedKafkaHolder() {
super();

}

Then, in each test class, you can use something similar to the following:

static {
EmbeddedKafkaHolder.getEmbeddedKafka().addTopics(topicl, topic2);
}

private static EmbeddedKafkaRule embeddedKafka = EmbeddedKafkaHolder
.getEmbeddedKafka();

The preceding example provides no mechanism for shutting down the brokers
when all tests are complete. This could be a problem if, say, you run your tests in a

o Gradle daemon. You should not use this technique in such a situation, or you
should use something to call destroy() on the EmbeddedKafkaBroker when your tests
are complete.

4.3.5. @dEmbeddedKafka Annotation

We generally recommend that you use the rule as a @ClassRule to avoid starting and stopping the

167

broker between tests (and use a different topic for each test). Starting with version 2.0, if you use
Spring’s test application context caching, you can also declare a EmbeddedKafkaBroker bean, so a
single broker can be used across multiple test classes. For convenience, we provide a test class-level

annotation called eEmbeddedKafka to register the EmbeddedKafkaBroker bean. The following example
shows how to use it:

168

(SpringRunner.class)

(partitions = 1,
topics = {
KafkaStreamsTests.STREAMING TOPICT,
KafkaStreamsTests.STREAMING _TOPIC2 })
public class KafkaStreamsTests {

private EmbeddedKafkaBroker embeddedKafka;

public void someTest() {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps(
"testGroup", "true", this.embeddedKafka);
consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
ConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<>
(consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
this.embeddedKafka.consumeFromAnEmbeddedTopic(consumer, KafkaStreamsTests
.STREAMING_TOPIC2);
ConsumerRecords<Integer, String> replies = KafkaTestUtils.getRecords
(consumer);
assertThat(replies.count()).isGreaterThanOrEqualTo(1);
}

public static class KafkaStreamsConfiguration {

("${" + EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS + "}")
private String brokerAddresses;

(name = KafkaStreamsDefaultConfiguration
.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {

Map<String, Object> props = new HashMap<>();

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");

props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, this.
brokerAddresses);

return new KafkaStreamsConfiguration(props);

}

Starting with version 2.2.4, you can also use the @EmbeddedKafka annotation to specify the Kafka

169

ports property.

The following example sets the topics, brokerProperties, and brokerPropertiesLocation attributes of
@EmbeddedKafka support property placeholder resolutions:

@TestPropertySource(locations = "classpath:/test.properties")
@EmbeddedKafka(topics = { "any-topic", "${kafka.topics.another-topic}" },
brokerProperties = { "log.dir=${kafka.broker.logs-dir}",
"listeners=PLAINTEXT://localhost:${kafka.broker.port}

n
I

"auto.create.topics.enable=${kafka.broker.topics-
enable:true}" },
brokerPropertiesLocation = "classpath:/broker.properties")

In the preceding example, the property placeholders ${kafka.topics.another-topic},
${kafka.broker.logs-dir}, and ${kafka.broker.port} are resolved from the Spring Environment. In
addition, the broker properties are loaded from the broker.properties classpath resource specified
by the brokerPropertiesLocation. Property placeholders are resolved for the
brokerPropertiesLocation URL and for any property placeholders found in the resource. Properties
defined by brokerProperties override properties found in brokerPropertiesLocation.

You can use the @EmbeddedKafka annotation with JUnit 4 or JUnit 5.

4.3.6. @EmbeddedKafka Annotation with JUnit5

Starting with version 2.3, there are two ways to use the @EmbeddedKafka annotation with JUnit5.
When used with the @SpringJunitConfig annotation, the embedded broker is added to the test
application context. You can auto wire the broker into your test, at the class or method level, to get
the broker address list.

When not using the spring test context, the EmbdeddedKafkaCondition creates a broker; the condition
includes a parameter resolver so you can access the broker in your test method...

@EmbeddedKafka
public class EmbeddedKafkaConditionTests {

@Test
public void test(EmbeddedKafkaBroker broker) {
String brokerList = broker.getBrokersAsString();

A stand-alone (not Spring test context) broker will be created if the class annotated with

170

@EmbeddedBroker is not also annotated (or meta annotated) with
ExtendedWith(SpringExtension.class). @SpringJunitConfig and @SpringBootTest are so meta
annotated and the context-based broker will be used when either of those annotations are also
present.

When there is a Spring test application context available, the topics and broker

o properties can contain property placeholders, which will be resolved as long as the
property is defined somewhere. If there is no Spring context available, these
placeholders won’t be resolved.

4.3.7. Embedded Broker in @SpringBootTest Annotations

Spring Initializr now automatically adds the spring-kafka-test dependency in test scope to the
project configuration.

If your application uses the Kafka binder in spring-cloud-stream and if you want to
use an embedded broker for tests, you must remove the spring-cloud-stream-test-
support dependency, because it replaces the real binder with a test binder for test
cases. If you wish some tests to use the test binder and some to use the embedded
broker, tests that use the real binder need to disable the test binder by excluding
the binder auto configuration in the test class. The following example shows how
to do so:

o (SpringRunner.class)

(properties = "spring.autoconfigure.exclude="

+
"org.springframework.cloud.stream.test.binder.TestSupportBinderAuto
Configuration")
public class MyApplicationTests {

}

There are several ways to use an embedded broker in a Spring Boot application test.
They include:

* JUnit4 Class Rule

¢ @EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

JUnit4 Class Rule

The following example shows how to use a JUnit4 class rule to create an embedded broker:

171

https://start.spring.io/

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyApplicationTests {

@ClassRule
public static EmbeddedKafkaRule broker = new EmbeddedKafkaRule(1,
false, "someTopic")
.brokerListProperty("spring.kafka.bootstrap-servers");

}

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

Notice that, since this is a Spring Boot application, we override the broker list property to set Boot’s
property.

@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

The following example shows how to use an @EmbeddedKafka Annotation to create an embedded
broker:

@RunWith(SpringRunner.class)
@EmbeddedKafka(topics = "someTopic",

bootstrapServersProperty = "spring.kafka.bootstrap-servers")
public class MyApplicationTests {

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

172

4.3.8. Hamcrest Matchers

The o.s.kafka.test.hamcrest.KafkaMatchers provides the following matchers:

/**

*

*

*

@param key the key
@param <K> the type.
@return a Matcher that matches the key in a consumer record.

*/
public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... }

/**

*

*

*

@param value the value.
@param <V> the type.
@return a Matcher that matches the value in a consumer record.

*/
public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... }

/**

public static Matcher<ConsumerRecord<?, ?>> hasPartition(int partition) { ... }

*

*

@param partition the partition.
@return a Matcher that matches the partition in a consumer record.

*/

/**

* Matcher testing the timestamp of a {@link ConsumerRecord} assuming the topic

has been set with

}

*

*

*

*

{@link org.apache.kafka.common.record.TimestampType#CREATE_TIME CreateTime}.

@param ts timestamp of the consumer record.
@return a Matcher that matches the timestamp in a consumer record.

*/
public static Matcher<ConsumerRecord<?, 7>> hasTimestamp(long ts) {

return hasTimestamp(TimestampType.CREATE_TIME, ts);

/**

public static Matcher<ConsumerRecord<?, 7?>> hasTimestamp(TimestampType type, long

*

*

*

*

Matcher testing the timestamp of a {@link ConsumerRecord}

@param type timestamp type of the record

@param ts timestamp of the consumer record.

@return a Matcher that matches the timestamp in a consumer record.

*/

ts) {

}

return new ConsumerRecordTimestampMatcher(type, ts);

173

4.3.9. Assert] Conditions

You can use the following Assert] conditions:

174

/**

* @param key the key

* @param <K> the type.

* @return a Condition that matches the key in a consumer record.

*/

public static <K> Condition<ConsumerRecord<K, 7>> key(K key) { ... }

/**

* @param value the value.

* @param <V> the type.

* @return a Condition that matches the value in a consumer record.

*/

public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... }

/**

* @param key the key.

* @param value the value.

@param <K> the key type.

@param <V> the value type.

* @return a Condition that matches the key in a consumer record.
* @since 2.2.12

*/

*
*

public static <K, V> Condition<ConsumerRecord<K, V>> keyValue(K key, V value) { .

.}

/**

* @param partition the partition.

* @return a Condition that matches the partition in a consumer record.

*/

public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... }

/**
* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(long value) {
return new ConsumerRecordTimestampCondition(TimestampType.CREATE_TIME, value);

}

/**

* @param type the type of timestamp
* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(TimestampType type, long
value) {
return new ConsumerRecordTimestampCondition(type, value);

}

175

4.3.10. Example

The following example brings together most of the topics covered in this chapter:

176

public class KafkaTemplateTests {

private static final String TEMPLATE_TOPIC = "templateTopic";

public static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1, true,
TEMPLATE _TOPIC);

public void testTemplate() throws Exception {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT",
"false",
embeddedKafka.getEmbeddedKafka());
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer, String>
(consumerProps);
ContainerProperties containerProperties = new ContainerProperties
(TEMPLATE_TOPIC);
KafkaMessagelListenerContainer<Integer, String> container =
new KafkaMessagelListenerContainer<>(cf,
containerProperties);
final BlockingQueue<ConsumerRecord<Integer, String>> records = new
LinkedBlockingQueue<>();
container.setupMessagelistener(new Messagelistener<Integer, String>() {

public void onMessage(ConsumerRecord<Integer, String> record) {
System.out.println(record);
records.add(record);

b
container.setBeanName("templateTests");
container.start();
ContainerTestUtils.waitForAssignment(container,
embeddedKafka.getEmbeddedKafka().
getPartitionsPerTopic());
Map<String, Object> producerProps =
KafkaTestUtils.producerProps(embeddedKafka
.getEmbeddedKafka());
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>
(producerProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
template.setDefaultTopic(TEMPLATE_TOPIC);
template.sendDefault("foo");
assertThat(records.poll(10, TimeUnit.SECONDS), hasValue("foo"));
template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit

177

.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("bar"));
template.send(TEMPLATE_TOPIC, @, 2, "baz");
received = records.poll(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("baz"));

The preceding example uses the Hamcrest matchers. With Assert], the final part looks like the
following code:

assertThat(records.poll1(10, TimeUnit.SECONDS)).has(value("foo"));
template.sendDefault(@, 2, "bar");

ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
// using individual assertions

assertThat(received).has(key(2));
assertThat(received).has(value("bar"));
assertThat(received).has(partition(0));
template.send(TEMPLATE_TOPIC, @, 2, "baz");

received = records.poll(10, TimeUnit.SECONDS);

// using all0f()

assertThat(received).has(all0f(keyValue(2, "baz"), partition(0)));

4.4. Non-Blocking Retries

This is an experimental feature and the usual rule of no breaking API changes does
not apply to this feature until the experimental designation is removed. Users are

o encouraged to try out the feature and provide feedback via GitHub Issues or
GitHub discussions. This is regarding the API only; the feature is considered to be
complete, and robust.

Achieving non-blocking retry / dlt functionality with Kafka usually requires setting up extra topics
and creating and configuring the corresponding listeners. Since 2.7 Spring for Apache Kafka offers
support for that via the @RetryableTopic annotation and RetryTopicConfiguration class to simplify
that bootstrapping.

4.4.1. How The Pattern Works

If message processing fails, the message is forwarded to a retry topic with a back off timestamp.
The retry topic consumer then checks the timestamp and if it’s not due it pauses the consumption

178

for that topic’s partition. When it is due the partition consumption is resumed, and the message is
consumed again. If the message processing fails again the message will be forwarded to the next
retry topic, and the pattern is repeated until a successful processing occurs, or the attempts are
exhausted, and the message is sent to the Dead Letter Topic (if configured).

To illustrate, if you have a "main-topic" topic, and want to setup non-blocking retry with an
exponential backoff of 1000ms with a multiplier of 2 and 4 max attempts, it will create the main-
topic-retry-1000, main-topic-retry-2000, main-topic-retry-4000 and main-topic-dlt topics and
configure the respective consumers. The framework also takes care of creating the topics and
setting up and configuring the listeners.

o By using this strategy you lose Kafka’s ordering guarantees for that topic.
o You can set the AckMode mode you prefer, but RECORD is suggested.

o At this time this functionality doesn’t support class level @Kafkalistener
annotations

4.4.2. Back Off Delay Precision

Overview and Guarantees

All message processing and backing off is handled by the consumer thread, and, as such, delay
precision is guaranteed on a best-effort basis. If one message’s processing takes longer than the
next message’s back off period for that consumer, the next message’s delay will be higher than
expected. Also, for short delays (about 1s or less), the maintenance work the thread has to do, such
as committing offsets, may delay the message processing execution. The precision can also be
affected if the retry topic’s consumer is handling more than one partition, because we rely on
waking up the consumer from polling and having full pollTimeouts to make timing adjustments.

That being said, for consumers handling a single partition the message’s processing should happen
under 100ms after it’s exact due time for most situations.

o It is guaranteed that a message will never be processed before its due time.

Tuning the Delay Precision

The message’s processing delay precision relies on two ContainerProperties:
ContainerProperties.pollTimeout and ContainerProperties.idlePartitionEventInterval. Both
properties will be automatically set in the retry topic and dit’s ListenerContainerFactory to one
quarter of the smallest delay value for that topic, with a minimum value of 250ms and a maximum
value of 5000ms. These values will only be set if the property has its default values - if you change
either value yourself your change will not be overridden. This way you can tune the precision and
performance for the retry topics if you need to.

179

You can have separate ListenerContainerFactory instances for the main and retry

o topics - this way you can have different settings to better suit your needs, such as
having a higher polling timeout setting for the main topics and a lower one for the
retry topics.

4.4.3. Configuration

Using the @RetryableTopic annotation

To configure the retry topic and dlt for a @Kafkalistener annotated method, you just have to add the
@RetryableTopic annotation to it and Spring for Apache Kafka will bootstrap all the necessary topics
and consumers with the default configurations.

(kafkaTemplate = "myRetryableTopicKafkaTemplate")
(topics = "my-annotated-topic", groupId = "myGroupId")
public void processMessage(MyPojo message) {
// ... message processing

}

You can specify a method in the same class to process the dlt messages by annotating it with the
@D1tHandler annotation. If no DItHandler method is provided a default consumer is created which
only logs the consumption.

public void processMessage(MyPojo message) {
// ... message processing, persistence, etc

}

If you don’t specify a kafkaTemplate name a bean with name
retryTopicDefaultKafkaTemplate will be looked up. If no bean is found an exception
is thrown.

Using RetryTopicConfiguration beans

You can also configure the non-blocking retry support by creating RetryTopicConfiguration beans in
a @Configuration annotated class.

180

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, Object>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.create(template);

This will create retry topics and a dlt, as well as the corresponding consumers, for all topics in
methods annotated with '@KafkaListener' using the default configurations. The KafkaTemplate
instance is required for message forwarding.

To achieve more fine-grained control over how to handle non-blocking retrials for each topic, more
than one RetryTopicConfiguration bean can be provided.

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.fixedBackoff(3000)
.maxAttempts(5)
.includeTopics("my-topic", "my-other-topic")
.create(template);

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<String,
MyOtherPojo> template) {
return RetryTopicConfigurationBuilder
.newInstance()
.exponentialBackoff (1000, 2, 5000)
.maxAttempts(4)
.excludeTopics("my-topic", "my-other-topic")
.retryOn(MyException.class)
.create(template);

The retry topics' and dlt’s consumers will be assigned to a consumer group with a
group id that is the combination of the one with you provide in the groupld

o parameter of the @Kafkalistener annotation with the topic’s suffix. If you don’t
provide any they’ll all belong to the same group, and rebalance on a retry topic
will cause an unnecessary rebalance on the main topic.

181

4.4.4. Features

Most of the features are available both for the @RetryableTopic annotation and the
RetryTopicConfiguration beans.

BackOff Configuration

The BackOff configuration relies on the BackOffPolicy interface from the Spring Retry project.
It includes:

* Fixed Back Off

* Exponential Back Off

* Random Exponential Back Off
* Uniform Random Back Off

No Back Off

e Custom Back Off

(attempts = 5,
backoff = (delay = 1000, multiplier = 2, maxDelay = 5000))
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.fixedBackoff(3000)
.maxAttempts(4)
.build();

You can also provide a custom implementation of Spring Retry’s SleepingBackOffPolicy:

182

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.customBackOff(new MyCustomBackOffPolicy())
.maxAttempts(5)
.build();

o The default backoff policy is FixedBackOffPolicy with a maximum of 3 attempts
and 1000ms intervals.

o The first attempt counts against the maxAttempts, so if you provide a maxAttempts
value of 4 there’ll be the original attempt plus 3 retries.

Single Topic Fixed Delay Retries

If you’re using fixed delay policies such as FixedBackOffPolicy or NoBackOffPolicy you can use a
single topic to accomplish the non-blocking retries. This topic will be suffixed with the provided or
default suffix, and will not have either the index or the delay values appended.

(backoff = (2000), fixedDelayTopicStrategy =
FixedDelayStrategy.SINGLE_TOPIC)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.fixedBackoff(3000)
.maxAttempts(5)
.useSingleTopicForFixedDelays()
.build();

183

o The default behavior is creating separate retry topics for each attempt, appended
with their index value: retry-0, retry-1, ...

Global timeout

You can set the global timeout for the retrying process. If that time is reached, the next time the
consumer throws an exception the message goes straight to the DLT, or just ends the processing if
no DLT is available.

(backoff = (2000), timeout = 5000)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.fixedBackoff(2000)
.timeoutAfter (5000)
.build();

o The default is having no timeout set, which can also be achieved by providing -1 as
the timout value.

Exception Classifier

You can specify which exceptions you want to retry on and which not to. You can also set it to
traverse the causes to lookup nested exceptions.

(include = {MyRetryException.class, MyOtherRetryException.class},
traversingCauses = true)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
throw new RuntimeException(new MyRetryException()); // Will retry
¥

184

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyOtherPojo>
template) {
return RetryTopicConfigurationBuilder

.newInstance()
.notRetryOn(MyDontRetryException.class)
.create(template);
}
o The default behavior is retrying on all exceptions and not traversing causes.

Include and Exclude Topics

You can decide which topics will and will not be handled by a RetryTopicConfiguration bean via the
.IncludeTopic(String topic), .includeTopics(Collection<String> topics) .excludeTopic(String topic) and
.excludeTopics(Collection<String> topics) methods.

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.includeTopics(List.of ("my-included-topic", "my-other-included-topic"
)

.create(template);

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.excludeTopic("my-excluded-topic")
.create(template);

o The default behavior is to include all topics.

Topics AutoCreation

Unless otherwise specified the framework will auto create the required topics using NewTopic beans
that are consumed by the KafkaAdmin bean. You can specify the number of partitions and the
replication factor with which the topics will be created, and you can turn this feature off.

185

o Note that if you’re not using Spring Boot you’ll have to provide a KafkaAdmin bean
in order to use this feature.

(numPartitions = 2, replicationFactor = 3)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

(autoCreateTopics = false)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.autoCreateTopicsWith(2, 3)
.create(template);

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder

.newInstance()
.doNotAutoCreateRetryTopics()
.create(template);
}
o By default the topics are autocreated with one partition and a replication factor of
one.
4.4.5. Topic Naming

Retry topics and DLT are named by suffixing the main topic with a provided or default value,
appended by either the delay or index for that topic.

Examples:
"my-topic" - "my-topic-retry-0", "my-topic-retry-1", ..., "my-topic-dlt"

"my-other-topic" - "my-topic-myRetrySuffix-1000", "my-topic-myRetrySuffix-2000", ..., "my-topic-

186

myDItSuffix".

Retry Topics and DIt Suffixes

You can specify the suffixes that will be used by the retry and dlt topics.

(retryTopicSuffix = "-my-retry-suffix", dltTopicSuffix = "-my-dlt
-suffix")
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyOtherPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.retryTopicSuffix("-my-retry-suffix")
.d1tTopicSuffix("-my-dlt-suffix")
.create(template);

o The default suffixes are "-retry" and "-dlt", for retry topics and dlt respectively.

Appending the Topic’s Index or Delay

You can either append the topic’s index or delay values after the suffix.

(topicSuffixingStrategy = TopicSuffixingStrategy
.SUFFIX_WITH_INDEX_VALUE)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

187

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {

return RetryTopicConfigurationBuilder
.newInstance()
.suffixTopicsWithIndexValues()
.create(template);

The default behavior is to suffix with the delay values, except for fixed delay

o configurations with multiple topics, in which case the topics are suffixed with the
topic’s index.

Custom naming strategies

More complex naming strategies can be accomplished by registering a bean that implements
RetryTopicNamesProviderFactory. The default implementation is
SuffixingRetryTopicNamesProviderFactory and a different implementation can be registered in the
following way:

public RetryTopicNamesProviderFactory myRetryNamingProviderFactory() {
return new CustomRetryTopicNamesProviderFactory();

}

As an example the following implementation, in addition to the standard suffix, adds a prefix to
retry/dl topics names:

188

public class CustomRetryTopicNamesProviderFactory implements
RetryTopicNamesProviderFactory {

public RetryTopicNamesProvider createRetryTopicNamesProvider(
DestinationTopic.Properties properties) {

if(properties.isMainEndpoint()) {
return new SuffixingRetryTopicNamesProvider(properties);

}
else {
return new SuffixingRetryTopicNamesProvider(properties) {
public String getTopicName(String topic) {
return "my-prefix-" + super.getTopicName(topic);
}
b
}
}
}
4.4.6. DIt Strategies

The framework provides a few strategies for working with DLTs. You can provide a method for DLT
processing, use the default logging method, or have no DLT at all. Also you can choose what
happens if DLT processing fails.

DIt Processing Method

You can specify the method used to process the DIt for the topic, as well as the behavior if that
processing fails.

To do that you can use the @D1tHandler annotation in a method of the class with the @RetryableTopic
annotation(s). Note that the same method will be used for all the @RetryableTopic annotated
methods within that class.

189

(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public void processMessage(MyPojo message) {
// ... message processing, persistence, etc

}

The DLT handler method can also be provided through the
RetryTopicConfigurationBuilder.dltHandlerMethod(Class, String) method, passing as arguments the
class and method name that should process the DLT’s messages. If a bean instance of the provided
class is found in the application context that bean is used for DIt processing, otherwise an instance
is created with full dependency injection support.

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.d1tProcessor (MyCustomD1tProcessor.class, "processDltMessage")
.create(template);

public class MyCustomDltProcessor {
private final MyDependency myDependency;

public MyCustomD1tProcessor(MyDependency myDependency) {
this.myDependency = myDependency;

}
public void processDltMessage(MyPojo message) {
// ... message processing, persistence, etc
}
}
o If no DLT handler is provided, the default
RetryTopicConfigurer.LoggingDltListenerHandlerMethod is used.

190

DIt Failure Behavior

Should the DIt processing fail, there are two possible behaviors available: ALWAYS_RETRY_ON_ERROR
and FAIL_ON_ERROR.

In the former the message is forwarded back to the dlt topic so it doesn’t block other dlt messages'
processing. In the latter the consumer ends the execution without forwarding the message.

(d1tProcessingFailureStrategy =
D1tStrategy.FAIL_ON_ERROR)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.d1tProcessor (MyCustomD1tProcessor.class, "processDltMessage")
.doNotRetryOnD1tFailure()
.create(template);

e The default behavior is to ALWAYS_RETRY_ON_ERROR.

Configuring No DIt

The framework also provides the possibility of not configuring a DLT for the topic. In this case after
retrials are exhausted the processing simply ends.

191

(d1ltProcessingFailureStrategy =
D1tStrateqy.NO_DLT)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.doNotConfigureD1t()
.create(template);

4.4.7. Specifying a ListenerContainerFactory

By default the RetryTopic configuration will use the provided factory from the @Kafkalistener
annotation, but you can specify a different one to be used to create the retry topic and dlt listener
containers.

The provided factory will be configured for the retry topic functionality, so you
o should not use the same factory for both retrying and non-retrying topics. You can

however share the same factory between many retry topic configurations.

For the @RetryableTopic annotation you can provide the factory’s bean name, and using the
RetryTopicConfiguration bean you can either provide the bean name or the instance itself.

192

@RetryableTopic(listenerContainerFactory = "my-retry-topic-factory")
@Kafkalistener(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {

// ... message processing

}

@Bean
public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template,

ConcurrentKafkalListenerContainerFactory<Integer, MyPojo> factory) {

return RetryTopicConfigurationBuilder

.newInstance()
.listenerFactory(factory)
.create(template);

}

@Bean

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.listenerFactory("my-retry-topic-factory")
.create(template);

193

Chapter 5. Tips, Tricks and Examples

5.1. Manually Assigning All Partitions

Let’s say you want to always read all records from all partitions (such as when using a compacted
topic to load a distributed cache), it can be useful to manually assign the partitions and not use
Kafka’s group management. Doing so can be unwieldy when there are many partitions, because
you have to list the partitions. It’s also an issue if the number of partitions changes over time,
because you would have to recompile your application each time the partition count changes.

The following is an example of how to use the power of a SpEL expression to create the partition
list dynamically when the application starts:

(topicPartitions = (topic = "compacted",
partitions = "#{@finder.partitions('compacted')}"),
partitionOffsets = (partition = "*", initialOffset =
"0")))
public void listen((KafkaHeaders.RECEIVED_MESSAGE_KEY) String key, String
payload) {
+

public PartitionFinder finder(ConsumerFactory<String, String> consumerFactory) {
return new PartitionFinder(consumerFactory);

}
public static class PartitionFinder {
private final ConsumerFactory<String, String> consumerFactory;

public PartitionFinder(ConsumerFactory<String, String> consumerFactory) {
this.consumerFactory = consumerFactory;

}

public String[] partitions(String topic) {
try (Consumer<String, String> consumer = consumerFactory.createConsumer())

{
return consumer.partitionsFor(topic).stream()
.map(pi -> "" + pi.partition())
.toArray(String[]::new);
}
}
+

194

Using this in conjunction with ConsumerConfig.AUTO_OFFSET_RESET_CONFIG=earliest will load all
records each time the application is started. You should also set the container’s AckMode to MANUAL to
prevent the container from committing offsets for a null consumer group. Howewever, starting
with version 2.5.5, as shown above, you can apply an initial offset to all partitions; see Explicit
Partition Assignment for more information.

5.2. Examples of Kafka Transactions with Other
Transaction Managers

The following Spring Boot application is an example of chaining database and Kafka transactions.
The listener container starts the Kafka transaction and the @Transactional annotation starts the DB
transaction. The DB transaction is committed first; if the Kafka transaction fails to commit, the
record will be redelivered so the DB update should be idempotent.

195

196

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> template.executeInTransaction(t -> t.send("topic1", "test"
));
}

public DataSourceTransactionManager dstm(DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);

}

public static class Listener {
private final JdbcTemplate jdbcTemplate;
private final KafkaTemplate<String, String> kafkaTemplate;

public Listener(JdbcTemplate jdbcTemplate, KafkaTemplate<String, String>
kafkaTemplate) {
this.jdbcTemplate = jdbcTemplate;
this.kafkaTemplate = kafkaTemplate;

(id = "group1", topics = "topicl")
("dstm")
public void listen1(String in) {
this.kafkaTemplate.send("topic2", in.toUpperCase());
this.jdbcTemplate.execute("insert into mytable (data) values (

"t i
£
}

(id = "group2", topics = "topic2")
public void listen2(String in) {
System.out.println(in);
}

public NewTopic topic1() {
return TopicBuilder.name("topic1").build();

public NewTopic topic2() {
return TopicBuilder.name("topic2").build();
}

spring.datasource.url=jdbc:mysql://localhost/integration?serverTimezone=UTC
spring.datasource.username=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.enable-auto-commit=false
spring.kafka.consumer.properties.isolation.level=read_committed

spring.kafka.producer.transaction-id-prefix=tx-

#logging.level.org.springframework.transaction=trace
#logging.level.org.springframework.kafka.transaction=debug
#1ogging.level.org.springframework.jdbc=debug

create table mytable (data varchar(20));

For producer-only transactions, transaction synchronization works:

("dstm")
public void someMethod(String in) {
this.kafkaTemplate.send("topic2", in.toUpperCase());
this.jdbcTemplate.execute("insert into mytable (data) values (

L]

+ _in+ lll)ll);

The KafkaTemplate will synchronize its transaction with the DB transaction and the commit/rollback
occurs after the database.

If you wish to commit the Kafka transaction first, and only commit the DB transaction if the Kafka
transaction is successful, use nested @Transactional methods:

197

("dstm")
public void someMethod(String in) {
this.jdbcTemplate.execute("insert into mytable (data) values (
sendToKafka(in);

+ _in+ |ll)ll);

("kafkaTransactionManager")
public void sendToKafka(String in) {
this.kafkaTemplate.send("topic2", in.toUpperCase());

}

5.3. Customizing the JsonSerializer and
JsonDeserializer

The serializer and deserializer support a number of cusomizations using properties, see JSON for
more information. The kafka-clients code, not Spring, instantiates these objects, unless you inject
them directly into the consumer and producer factories. If you wish to configure the (de)serializer
using properties, but wish to use, say, a custom ObjectMapper, simply create a subclass and pass the
custom mapper into the super constructor. For example:

public class CustomJsonSerializer extends JsonSerializer<Object> {

public CustomJsonSerializer() {
super (customizedObjectMapper());

}

private static ObjectMapper customizedObjectMapper() {
ObjectMapper mapper = JacksonUtils.enhancedObjectMapper();
mapper.disable(SerializationFeature .WRITE_DATES_AS_TIMESTAMPS);

return mapper;

198

Chapter 6. Other Resources

In addition to this reference documentation, we recommend a number of other resources that may
help you learn about Spring and Apache Kafka.

* Apache Kafka Project Home Page

» Spring for Apache Kafka Home Page

» Spring for Apache Kafka GitHub Repository

» Spring Integration Kafka Extension GitHub Repository

199

https://kafka.apache.org/
https://projects.spring.io/spring-kafka/
https://github.com/spring-projects/spring-kafka
https://github.com/spring-projects/spring-integration-kafka

Appendix A: Override Spring Boot
Dependencies

When using Spring for Apache Kafka in a Spring Boot application, the Apache Kafka dependency
versions are determined by Spring Boot’s dependency management. If you wish to use a different
version of kafka-clients or kafka-streams, such as 2.8.0, you need to override all of the associated
dependencies. This is especially true when using the embedded Kafka broker in spring-kafka-test.

o Backwards compatibility is not supported for all Boot versions; Spring for Apache
Kafka 2.7 has been tested with Spring Boot 2.4 and 2.5.

200

201

Maven

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.7.5</version>

</dependency>

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka-test</artifactId>
<version>2.7.5</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.apache.kafka</groupld>
<artifactId>kafka-clients</artifactId>
<version>{kafka-version}</version>
</dependency>

<!-- optional - only needed when using kafka-streams -->

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>{kafka-version}</version>

</dependency>

<dependency>
<groupId>org.apache.kafka</groupld>
<artifactId>kafka-clients</artifactId>
<version>{kafka-version}</version>
<classifier>test</classifier>
<scope>test</scope>

</dependency>

<dependency>
<groupIld>org.apache.kafka</groupIld>
<artifactId>kafka_2.13</artifactId>
<version>{kafka-version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupIld>org.apache.kafka</groupIld>
<artifactId>kafka_2.13</artifactId>
<version>{kafka-version}</version>
<classifier>test</classifier>
<scope>test</scope>

</dependency>

202

Gradle

dependencies {

implementation 'org.springframework.kafka:spring-kafka:2.7.5"

implementation "org.apache.kafka:kafka-clients:$kafkaVersion"

implementation "org.apache.kafka:kafka-streams:$kafkaVersion" // optional -

only needed when using
testImplementation
testImplementation
testImplementation
testImplementation

kafka-streams
‘org.springframework.kafka:spring-kafka-test:2.7.5'
"org.apache.kafka:kafka-clients:$kafkaVersion:test"
"org.apache.kafka:kafka_2.13:$kafkaVersion"
"org.apache.kafka:kafka_2.13:fkafkaVersion:test"

The test scope dependencies are only needed if you are using the embedded Kafka broker in tests.

203

Appendix B: Change History

B.1. Changes between 2.5 and 2.6

B.1.1. Kafka Client Version

This version requires the 2.6.0 kafka-clients.

B.1.2. Listener Container Changes

The default EOSMode is now BETA. See Exactly Once Semantics for more information.

Various error handlers (that extend FailedRecordProcessor) and the DefaultAfterRollbackProcessor
now reset the BackOff if recovery fails. In addition, you can now select the BackOff to use based on
the failed record and/or exception. See Seek To Current Container Error Handlers, Recovering Batch
Error Handler, Publishing Dead-letter Records and After-rollback Processor for more information.

You can now configure an adviceChain in the container properties. See Listener Container
Properties for more information.

When the container is configured to publish ListenerContainerIdleEvent s, it now publishes a
ListenerContainerNoLongerIdleEvent when a record is received after publishing an idle event. See
Application Events and Detecting Idle and Non-Responsive Consumers for more information.

B.1.3. @KafkaListener Changes

When using manual partition assignment, you can now specify a wildcard for determining which
partitions should be reset to the initial offset. In addition, if the listener implements
ConsumerSeekAware, onPartitionsAssigned() is called after the manual assignment. (Also added in
version 2.5.5). See Explicit Partition Assignment for more information.

Convenience methods have been added to AbstractConsumerSeekAware to make seeking easier. See
Seeking to a Specific Offset for more information.

B.1.4. ErrorHandler Changes

Subclasses of FailedRecordProcessor (e.g. SeekToCurrentErrorHandler, DefaultAfterRollbackProcessor,
RecoveringBatchErrorHandler) can now be configured to reset the retry state if the exception is a
different type to that which occurred previously with this record. See Seek To Current Container
Error Handlers, After-rollback Processor, Recovering Batch Error Handler for more information.

B.1.5. Producer Factory Changes

You can now set a maximum age for producers after which they will be closed and recreated. See
Transactions for more information.

You can now update the configuration map after the DefaultKafkaProducerFactory has been created.
This might be useful, for example, if you have to update SSL key/trust store locations after a

204

credentials change. See Using DefaultKafkaProducerFactory for more information.

B.2. Changes between 2.4 and 2.5

This section covers the changes made from version 2.4 to version 2.5. For changes in earlier
version, see Change History.

B.2.1. Consumer/Producer Factory Changes

The default consumer and producer factories can now invoke a callback whenever a consumer or
producer is created or closed. Implementations for native Micrometer metrics are provided. See
Factory Listeners for more information.

You can now change bootstrap server properties at runtime, enabling failover to another Kafka
cluster. See Connecting to Kafka for more information.

B.2.2. StreamsBuilderFactoryBean Changes

The factory bean can now invoke a callback whenever a KafkaStreams created or destroyed. An
Implementation for native Micrometer metrics is provided. See KafkaStreams Micrometer Support
for more information.

B.2.3. Kafka Client Version

This version requires the 2.5.0 kafka-clients.

B.2.4. Class/Package Changes

SeekUtils has been moved from the o.s.k.support package to o.s.k.listener.

B.2.5. Delivery Attempts Header

There is now an option to to add a header which tracks delivery attempts when using certain error
handlers and after rollback processors. See Delivery Attempts Header for more information.

B.2.6. @KafkaListener Changes

Default reply headers will now be populated automatically if needed when a @KafkalListener return
type is Message<?>. See Reply Type Message<?> for more information.

The KafkaHeaders.RECEIVED_MESSAGE _KEY is no longer populated with a null value when the incoming
record has a null key; the header is omitted altogether.

@Kafkalistener methods can now specify a ConsumerRecordMetadata parameter instead of using
discrete headers for metadata such as topic, partition, etc. See Consumer Record Metadata for more
information.

205

B.2.7. Listener Container Changes

The assignmentCommitOption container property is now LATEST_ONLY_NO_TX by default. See Listener
Container Properties for more information.

The subBatchPerPartition container property is now true by default when using transactions. See
Transactions for more information.

A new RecoveringBatchErrorHandler is now provided. See Recovering Batch Error Handler for more
information.

Static group membership is now supported. See Message Listener Containers for more information.

When incremental/cooperative rebalancing is configured, if offsets fail to commit with a non-fatal
RebalanceInProgressException, the container will attempt to re-commit the offsets for the partitions
that remain assigned to this instance after the rebalance is completed.

The default error handler is now the SeekToCurrentErrorHandler for record listeners and
RecoveringBatchErrorHandler for batch listeners. See Container Error Handlers for more
information.

You can now control the level at which exceptions intentionally thrown by standard error handlers
are logged. See Container Error Handlers for more information.

The getAssignmentsByClientId() method has been added, making it easier to determine which
consumers in a concurrent container are assigned which partition(s). See Listener Container
Properties for more information.

You can now suppress logging entire ConsumerRecord s in error, debug logs etc. See
onlyLogRecordMetadata in Listener Container Properties.

B.2.8. KafkaTemplate Changes

The KafkaTemplate can now maintain micrometer timers. See Monitoring for more information.

The KafkaTemplate can now be configured with ProducerConfig properties to override those in the
producer factory. See Using KafkaTemplate for more information.

A RoutingKafkaTemplate has now been provided. See Using RoutingKafkaTemplate for more
information.

You can now use KafkaSendCallback instead of ListenerFutureCallback to get a narrower exception,
making it easier to extract the failed ProducerRecord. See Using KafkaTemplate for more information.

B.2.9. Kafka String Serializer/Deserializer

New ToStringSerializer/StringDeserializer s as well as an associated SerDe are now provided. See
String serialization for more information.

206

B.2.10. JsonDeserializer

The JsonDeserializer now has more flexibility to determine the deserialization type. See Using
Methods to Determine Types for more information.

B.2.11. Delegating Serializer/Deserializer

The DelegatingSerializer can now handle "standard" types, when the outbound record has no
header. See Delegating Serializer and Deserializer for more information.

B.2.12. Testing Changes

The KafkaTestUtils.consumerProps() helper record now sets
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to earliest by default. See JUnit for more information.

B.3. Changes between 2.3 and 2.4

B.3.1. Kafka Client Version

This version requires the 2.4.0 kafka-clients or higher and supports the new incremental
rebalancing feature.

B.3.2. ConsumerAwareRebalanceListener

Like ConsumerRebalancelistener, this interface now has an additional method onPartitionsLost.
Refer to the Apache Kafka documentation for more information.

Unlike the ConsumerRebalancelistener, The default implementation does mnot call
onPartitionsRevoked. Instead, the listener container will call that method after it has called
onPartitionsLost; you should not, therefore, do the same when implementing
ConsumerAwareRebalancelistener.

See the IMPORTANT note at the end of Rebalancing Listeners for more information.

B.3.3. GenericErrorHandler

The isAckAfterHandle() default implementation now returns true by default.

B.3.4. KafkaTemplate

The KafkaTemplate now supports non-transactional publishing alongside transactional. See
KafkaTemplate Transactional and non-Transactional Publishing for more information.

B.3.5. AggregatingReplyingKafkaTemplate

The releaseStrategy is now a BiConsumer. It is now called after a timeout (as well as when records
arrive); the second parameter is true in the case of a call after a timeout.

See Aggregating Multiple Replies for more information.

207

B.3.6. Listener Container

The ContainerProperties provides an authorizationExceptionRetryInterval option to let the listener
container to retry after any AuthorizationException is thrown by the KafkaConsumer. See its JavaDocs
and Using KafkaMessagelListenerContainer for more information.

B.3.7. @KafkaListener

The @Kafkalistener annotation has a new property splitIterables; default true. When a replying
listener returns an Iterable this property controls whether the return result is sent as a single
record or a record for each element is sent. See Forwarding Listener Results using @SendTo for more
information

Batch listeners can now be configured with a BatchToRecordAdapter; this allows, for example, the
batch to be processed in a transaction while the listener gets one record at a time. With the default
implementation, a ConsumerRecordRecoverer can be used to handle errors within the batch, without
stopping the processing of the entire batch - this might be useful when using transactions. See
Transactions with Batch Listeners for more information.

B.3.8. Kafka Streams

The StreamsBuilderFactoryBean accepts a new property KafkaStreamsInfrastructureCustomizer. This
allows configuration of the builder and/or topology before the stream is created. See Spring
Management for more information.

B.4. Changes Between 2.2 and 2.3

This section covers the changes made from version 2.2 to version 2.3.

B.4.1. Tips, Tricks and Examples

A new chapter Tips, Tricks and Examples has been added. Please submit GitHub issues and/or pull
requests for additional entries in that chapter.

B.4.2. Kafka Client Version

This version requires the 2.3.0 kafka-clients or higher.

B.4.3. Class/Package Changes

TopicPartitionInitialOffset is deprecated in favor of TopicPartitionOffset.

B.4.4. Configuration Changes

Starting with version 2.3.4, the missingTopicsFatal container property is false by default. When this
is true, the application fails to start if the broker is down; many users were affected by this change;
given that Kafka is a high-availability platform, we did not anticipate that starting an application
with no active brokers would be a common use case.

208

B.4.5. Producer and Consumer Factory Changes

The DefaultKafkaProducerFactory can now be configured to create a producer per thread. You can
also provide Supplier<Serializer> instances in the constructor as an alternative to either
configured classes (which require no-arg constructors), or constructing with Serializer instances,
which are then shared between all Producers. See Using DefaultKafkaProducerFactory for more
information.

The same option is available with Supplier<Deserializer> instances in DefaultKafkaConsumerFactory.
See Using KafkaMessagelListenerContainer for more information.

B.4.6. Listener Container Changes

Previously, error handlers received ListenerExecutionFailedException (with the actual listener
exception as the cause) when the listener was invoked using a listener adapter (such as
@KafkalListener s). Exceptions thrown by native GenericMessagelistener s were passed to the error
handler unchanged. Now a ListenerExecutionFailedException is always the argument (with the
actual listener exception as the cause), which provides access to the container’s group.id property.

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. It now sets it to false automatically unless
specifically set in the consumer factory or the container’s consumer property overrides.

The ackOnError property is now false by default. See Seek To Current Container Error Handlers for
more information.

It is now possible to obtain the consumer’s group.id property in the listener method. See Obtaining
the Consumer group.id for more information.

The container has a new property recordInterceptor allowing records to be inspected or modified
before invoking the listener. A CompositeRecordInterceptor is also provided in case you need to
invoke multiple interceptors. See Message Listener Containers for more information.

The ConsumerSeekAware has new methods allowing you to perform seeks relative to the beginning,
end, or current position and to seek to the first offset greater than or equal to a time stamp. See
Seeking to a Specific Offset for more information.

A convenience class AbstractConsumerSeekAware is now provided to simplify seeking. See Seeking to a
Specific Offset for more information.

The ContainerProperties provides an idleBetweenPolls option to let the main loop in the listener
container to sleep between KafkaConsumer.poll() calls. See its JavaDocs and Using
KafkaMessagelListenerContainer for more information.

When using AckMode .MANUAL (or MANUAL _IMMEDIATE) you can now cause a redelivery by calling nack on
the Acknowledgment. See Committing Offsets for more information.

Listener performance can now be monitored using Micrometer Timer s. See Monitoring for more
information.

The containers now publish additional consumer lifecycle events relating to startup. See

209

Application Events for more information.

Transactional batch listeners can now support zombie fencing. See Transactions for more
information.

The listener container factory can now be configured with a ContainerCustomizer to further
configure each container after it has been created and configured. See Container factory for more
information.

B.4.7. ErrorHandler Changes

The SeekToCurrentErrorHandler now treats certain exceptions as fatal and disables retry for those,
invoking the recoverer on first failure.

The SeekToCurrentErrorHandler and SeekToCurrentBatchErrorHandler can now be configured to apply
a BackOff (thread sleep) between delivery attempts.

Starting with version 2.3.2, recovered records' offsets will be committed when the error handler
returns after recovering a failed record.

See Seek To Current Container Error Handlers for more information.

The DeadLetterPublishingRecoverer, when used in conjunction with an ErrorHandlingDeserializer,
now sets the payload of the message sent to the dead-letter topic, to the original value that could not
be deserialized. Previously, it was null and wuser code needed to extract the
DeserializationException from the message headers. See Publishing Dead-letter Records for more
information.

B.4.8. TopicBuilder

A new class TopicBuilder is provided for more convenient creation of NewTopic @Bean s for automatic
topic provisioning. See Configuring Topics for more information.

B.4.9. Kafka Streams Changes

You can now perform additional configuration of the StreamsBuilderFactoryBean created by
@EnableKafkaStreams. See Streams Configuration for more information.

A RecoveringDeserializationExceptionHandler is now provided which allows records with
deserialization errors to be recovered. It can be wused in conjunction with a
DeadLetterPublishingRecoverer to send these records to a dead-letter topic. See Recovery from
Deserialization Exceptions for more information.

The HeaderEnricher transformer has been provided, using SpEL to generate the header values. See
Header Enricher for more information.

The MessagingTransformer has been provided. This allows a Kafka streams topology to interact with
a spring-messaging component, such as a Spring Integration flow. See MessagingTransformer and See
[Calling a Spring Integration Flow from a KStream] for more information.

210

https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration
https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration

B.4.10. JSON Component Changes

Now all the JSON-aware components are configured by default with a Jackson ObjectMapper
produced by the JacksonUtils.enhancedObjectMapper(). The JsonDeserializer now provides
TypeReference-based constructors for better handling of target generic container types. Also a
JacksonMimeTypeModule has been introduced for serialization of org.springframework.util.MimeType
to plain string. See its JavaDocs and Serialization, Deserialization, and Message Conversion for
more information.

A ByteArrayJsonMessageConverter has been provided as well as a new super class for all Json
converters, JsonMessageConverter. Also, a String0OrBytesSerializer is now available; it can serialize
byte[], Bytes and String values in ProducerRecord s. See Spring Messaging Message Conversion for
more information.

The JsonSerializer, JsonDeserializer and JsonSerde now have fluent APIs to make programmatic
configuration simpler. See the javadocs, Serialization, Deserialization, and Message Conversion,
and Streams JSON Serialization and Deserialization for more informaion.

B.4.11. ReplyingKafkaTemplate

When a reply times out, the future is completed exceptionally with a KafkaReplyTimeoutException
instead of a KafkaException.

Also, an overloaded sendAndReceive method is now provided that allows specifying the reply
timeout on a per message basis.

B.4.12. AggregatingReplyingKafkaTemplate

Extends the ReplyingKafkaTemplate by aggregating replies from multiple receivers. See Aggregating
Multiple Replies for more information.

B.4.13. Transaction Changes

You can now override the producer factory’s transactionIdPrefix on the KafkaTemplate and
KafkaTransactionManager. See transactionIdPrefix for more information.

B.4.14. New Delegating Serializer/Deserializer

The framework now provides a delegating Serializer and Deserializer, utilizing a header to enable
producing and consuming records with multiple key/value types. See Delegating Serializer and
Deserializer for more information.

B.4.15. New Retrying Deserializer

The framework now provides a delegating RetryingDeserializer, to retry serialization when
transient errors such as network problems might occur. See Retrying Deserializer for more
information.

211

B.5. Changes Between 2.1 and 2.2

B.5.1. Kafka Client Version

This version requires the 2.0.0 kafka-clients or higher.

B.5.2. Class and Package Changes

The ContainerProperties class has been moved from org.springframework.kafka.listener.config to
org.springframework.kafka.listener.

The AckMode enum has been moved from AbstractMessagelistenerContainer to ContainerProperties.

The setBatchErrorHandler() and setErrorHandler() methods have been moved from
ContainerProperties to both AbstractMessagelistenerContainer and
AbstractKafkalistenerContainerFactory.

B.5.3. After Rollback Processing

A new AfterRollbackProcessor strategy is provided. See After-rollback Processor for more
information.

B.5.4. ConcurrentKafkalistenerContainerFactory Changes

You can now use the ConcurrentKafkalistenerContainerFactory to create and configure any
ConcurrentMessagelListenerContainer, not only those for @Kafkalistener annotations. See Container
factory for more information.

B.5.5. Listener Container Changes

A new container property (missingTopicsFatal) has been added. See Using
KafkaMessagelListenerContainer for more information.

A ConsumerStoppedEvent is now emitted when a consumer stops. See Thread Safety for more
information.

Batch listeners can optionally receive the complete ConsumerRecords<?, 7> object instead of a
List<ConsumerRecord<?, ?>.See Batch Listeners for more information.

The DefaultAfterRollbackProcessor and SeekToCurrentErrorHandler can now recover (skip) records
that keep failing, and, by default, does so after 10 failures. They can be configured to publish failed
records to a dead-letter topic.

Starting with version 2.2.4, the consumer’s group ID can be used while selecting the dead letter
topic name.

See After-rollback Processor, Seek To Current Container Error Handlers, and Publishing Dead-letter
Records for more information.

The ConsumerStoppingEvent has been added. See Application Events for more information.

212

The SeekToCurrentErrorHandler can now be configured to commit the offset of a recovered record
when the container is configured with AckMode.MANUAL_IMMEDIATE (since 2.2.4). See Seek To Current
Container Error Handlers for more information.

B.5.6. @KafkaListener Changes

You can now override the concurrency and autoStartup properties of the listener container factory
by setting properties on the annotation. You can now add configuration to determine which
headers (if any) are copied to a reply message. See @KafkalListener Annotation for more information.

You can now use @Kafkalistener as a meta-annotation on your own annotations. See @Kafkalistener
as a Meta Annotation for more information.

It is now easier to configure a Validator for @Payload validation. See @Kafkalistener @Payload
Validation for more information.

You can now specify kafka consumer properties directly on the annotation; these will override any
properties with the same name defined in the consumer factory (since version 2.2.4). See
Annotation Properties for more information.

B.5.7. Header Mapping Changes

Headers of type MimeType and MediaType are now mapped as simple strings in the RecordHeader value.
Previously, they were mapped as JSON and only MimeType was decoded. MediaType could not be
decoded. They are now simple strings for interoperability.

Also, the DefaultKafkaHeaderMapper has a new addToStringClasses method, allowing the specification
of types that should be mapped by using toString() instead of JSON. See Message Headers for more
information.

B.5.8. Embedded Kafka Changes

The KafkaEmbedded class and its KafkaRule interface have been deprecated in favor of the
EmbeddedKafkaBroker and its JUnit 4 EmbeddedKafkaRule wrapper. The @EmbeddedKafka annotation now
populates an EmbeddedKafkaBroker bean instead of the deprecated KafkaEmbedded. This change allows
the use of @EmbeddedKafka in JUnit 5 tests. The @EmbeddedKafka annotation now has the attribute ports
to specify the port that populates the EmbeddedKafkaBroker. See Testing Applications for more
information.

B.5.9. JsonSerializer/Deserializer Enhancements
You can now provide type mapping information by using producer and consumer properties.

New constructors are available on the deserializer to allow overriding the type header information
with the supplied target type.

The JsonDeserializer now removes any type information headers by default.
You can now configure the JsonDeserializer to ignore type information headers by using a Kafka

property (since 2.2.3).

213

See Serialization, Deserialization, and Message Conversion for more information.

B.5.10. Kafka Streams Changes

The streams configuration bean must now be a KafkaStreamsConfiguration object instead of a
StreamsConfig object.

The StreamsBuilderFactoryBean has been moved from package --core to :*-config.

The KafkaStreamBrancher has been introduced for better end-user experience when conditional
branches are built on top of KStream instance.

See Apache Kafka Streams Support and Configuration for more information.

B.5.11. Transactional ID

When a transaction is started by the listener container, the transactional.id is now the
transactionIdPrefix appended with <group.id>.<topic>.<partition>. This change allows proper
fencing of zombies, as described here.

B.6. Changes Between 2.0 and 2.1

B.6.1. Kafka Client Version
This version requires the 1.0.0 kafka-clients or higher.

The 1.1.x client is supported natively in version 2.2.

B.6.2. JSON Improvements

The StringJsonMessageConverter and JsonSerializer now add type information in Headers, letting the
converter and JsonDeserializer create specific types on reception, based on the message itself
rather than a fixed configured type. See Serialization, Deserialization, and Message Conversion for
more information.

B.6.3. Container Stopping Error Handlers

Container error handlers are now provided for both record and batch listeners that treat any
exceptions thrown by the listener as fatal/ They stop the container. See Handling Exceptions for
more information.

B.6.4. Pausing and Resuming Containers

The listener containers now have pause() and resume() methods (since version 2.1.3). See Pausing
and Resuming Listener Containers for more information.

B.6.5. Stateful Retry

Starting with version 2.1.3, you can configure stateful retry. See Stateful Retry for more

214

https://www.confluent.io/blog/transactions-apache-kafka/

information.

B.6.6. Client ID

Starting with version 2.1.1, you can now set the client.id prefix on @Kafkalistener. Previously, to
customize the client ID, you needed a separate consumer factory (and container factory) per
listener. The prefix is suffixed with -n to provide unique client IDs when you use concurrency.

B.6.7. Logging Offset Commits

By default, logging of topic offset commits is performed with the DEBUG logging level. Starting with
version 2.1.2, a new property in ContainerProperties called commitLoglevel lets you specify the log
level for these messages. See Using KafkaMessagelListenerContainer for more information.

B.6.8. Default @KafkaHandler

Starting with version 2.1.3, you can designate one of the @KafkaHandler annotations on a class-level
@Kafkalistener as the default. See @KafkalListener on a Class for more information.

B.6.9. ReplyingKafkaTemplate

Starting with version 2.1.3, a subclass of KafkaTemplate is provided to support request/reply
semantics. See Using ReplyingKafkaTemplate for more information.

B.6.10. ChainedKafkaTransactionManager

Version 2.1.3 introduced the ChainedKafkaTransactionManager. (It is now deprecated).

B.6.11. Migration Guide from 2.0

See the 2.0 to 2.1 Migration guide.

B.7. Changes Between 1.3 and 2.0

B.7.1. Spring Framework and Java Versions

The Spring for Apache Kafka project now requires Spring Framework 5.0 and Java 8.

B.7.2. @KafkalListener Changes

You can now annotate @Kafkalistener methods (and classes and @KafkaHandler methods) with
@SendTo. If the method returns a result, it is forwarded to the specified topic. See Forwarding
Listener Results using @SendTo for more information.

B.7.3. Message Listeners

Message listeners can now be aware of the Consumer object. See Message Listeners for more
information.

215

https://github.com/spring-projects/spring-kafka/wiki/Spring-for-Apache-Kafka-2.0-to-2.1-Migration-Guide

B.7.4. Using ConsumerAwareRebalancelistener

Rebalance listeners can now access the Consumer object during rebalance notifications. See
Rebalancing Listeners for more information.

B.8. Changes Between 1.2 and 1.3

B.8.1. Support for Transactions

The 0.11.0.0 client library added support for transactions. The KafkaTransactionManager and other
support for transactions have been added. See Transactions for more information.

B.8.2. Support for Headers

The 0.11.0.0 client library added support for message headers. These can now be mapped to and
from spring-messaging MessageHeaders. See Message Headers for more information.

B.8.3. Creating Topics

The 0.11.0.0 client library provides an AdminClient, which you can use to create topics. The
KafkaAdmin uses this client to automatically add topics defined as @Bean instances.

B.8.4. Support for Kafka Timestamps

KafkaTemplate now supports an API to add records with timestamps. New KafkaHeaders have been
introduced regarding timestamp support. Also, new KafkaConditions.timestamp() and
KafkaMatchers.hasTimestamp() testing utilities have been added. See Using KafkaTemplate,
@Kafkalistener Annotation, and Testing Applications for more details.

B.8.5. @KafkalListener Changes

You can now configure a KafkalListenerErrorHandler to handle exceptions. See Handling Exceptions
for more information.

By default, the @Kafkalistener id property is now used as the group.id property, overriding the
property configured in the consumer factory (if present). Further, you can explicitly configure the
groupId on the annotation. Previously, you would have needed a separate container factory (and
consumer factory) to use different group.id values for listeners. To restore the previous behavior of
using the factory configured group.id, set the idIsGroup property on the annotation to false.

B.8.6. @EmbeddedKafka Annotation

For convenience, a test class-level @EmbeddedKafka annotation is provided, to register KafkaEmbedded
as a bean. See Testing Applications for more information.

B.8.7. Kerberos Configuration

Support for configuring Kerberos is now provided. See JAAS and Kerberos for more information.

216

B.9. Changes Between 1.1 and 1.2

This version uses the 0.10.2.x client.

B.10. Changes Between 1.0 and 1.1

B.10.1. Kafka Client

This version uses the Apache Kafka 0.10.x.xX client.

B.10.2. Batch Listeners

Listeners can be configured to receive the entire batch of messages returned by the consumer.poll()
operation, rather than one at a time.

B.10.3. Null Payloads

Null payloads are used to “delete” keys when you use log compaction.

B.10.4. Initial Offset

When explicitly assigning partitions, you can now configure the initial offset relative to the current
position for the consumer group, rather than absolute or relative to the current end.

B.10.5. Seek

You can now seek the position of each topic or partition. You can use this to set the initial position
during initialization when group management is in use and Kafka assigns the partitions. You can
also seek when an idle container is detected or at any arbitrary point in your application’s
execution. See Seeking to a Specific Offset for more information.

217

	Spring for Apache Kafka
	Table of Contents
	Chapter 1. Preface
	Chapter 2. What’s new?
	2.1. What’s New in 2.7 Since 2.6
	2.1.1. Kafka Client Version
	2.1.2. Non-Blocking Delayed Retries Using Topics
	2.1.3. Listener Container Changes
	2.1.4. @KafkaListener Changes
	2.1.5. DeadLetterPublishingRecover Changes
	2.1.6. ChainedKafkaTransactionManager is Deprecated
	2.1.7. ReplyingKafkaTemplate Changes
	2.1.8. Kafka Streams Changes
	2.1.9. KafkaAdmin Changes
	2.1.10. MessageConverter Changes
	2.1.11. Sequencing @KafkaListener s
	2.1.12. ExponentialBackOffWithMaxRetries
	2.1.13. Conditional Delegating Error Handlers

	Chapter 3. Introduction
	3.1. Quick Tour
	3.1.1. Compatibility
	3.1.2. Getting Started
	Spring Boot Consumer App
	Spring Boot Producer App
	With Java Configuration (No Spring Boot)

	Chapter 4. Reference
	4.1. Using Spring for Apache Kafka
	4.1.1. Connecting to Kafka
	Factory Listeners

	4.1.2. Configuring Topics
	4.1.3. Sending Messages
	Using KafkaTemplate
	Using RoutingKafkaTemplate
	Using DefaultKafkaProducerFactory
	Using ReplyingKafkaTemplate
	Reply Type Message<?>
	Aggregating Multiple Replies

	4.1.4. Receiving Messages
	Message Listeners
	Message Listener Containers
	@KafkaListener Annotation
	Obtaining the Consumer group.id
	Container Thread Naming
	@KafkaListener as a Meta Annotation
	@KafkaListener on a Class
	@KafkaListener Attribute Modification
	@KafkaListener Lifecycle Management
	@KafkaListener @Payload Validation
	Rebalancing Listeners
	Forwarding Listener Results using @SendTo
	Filtering Messages
	Retrying Deliveries
	Stateful Retry
	Starting @KafkaListener s in Sequence

	4.1.5. Listener Container Properties
	4.1.6. Application Events
	Detecting Idle and Non-Responsive Consumers

	4.1.7. Topic/Partition Initial Offset
	4.1.8. Seeking to a Specific Offset
	4.1.9. Container factory
	4.1.10. Thread Safety
	4.1.11. Monitoring
	Monitoring Listener Performance
	Monitoring KafkaTemplate Performance
	Micrometer Native Metrics

	4.1.12. Transactions
	Overview
	Using KafkaTransactionManager
	Transaction Synchronization
	Using Consumer-Initiated Transactions
	KafkaTemplate Local Transactions
	transactionIdPrefix
	KafkaTemplate Transactional and non-Transactional Publishing
	Transactions with Batch Listeners

	4.1.13. Exactly Once Semantics
	4.1.14. Wiring Spring Beans into Producer/Consumer Interceptors
	4.1.15. Pausing and Resuming Listener Containers
	4.1.16. Pausing and Resuming Partitions on Listener Containers
	4.1.17. Serialization, Deserialization, and Message Conversion
	Overview
	String serialization
	JSON
	Delegating Serializer and Deserializer
	Retrying Deserializer
	Spring Messaging Message Conversion
	Using ErrorHandlingDeserializer
	Payload Conversion with Batch Listeners
	ConversionService Customization
	Adding custom HandlerMethodArgumentResolver to @KafkaListener

	4.1.18. Message Headers
	4.1.19. Null Payloads and Log Compaction of 'Tombstone' Records
	4.1.20. Handling Exceptions
	Listener Error Handlers
	Container Error Handlers
	Consumer-Aware Container Error Handlers
	Seek To Current Container Error Handlers
	Retrying Batch Error Handler
	Recovering Batch Error Handler
	Container Stopping Error Handlers
	Conditional Delegating Error Handlers
	After-rollback Processor
	Delivery Attempts Header
	Publishing Dead-letter Records
	ExponentialBackOffWithMaxRetries Implementation

	4.1.21. JAAS and Kerberos

	4.2. Apache Kafka Streams Support
	4.2.1. Basics
	4.2.2. Spring Management
	4.2.3. KafkaStreams Micrometer Support
	4.2.4. Streams JSON Serialization and Deserialization
	4.2.5. Using KafkaStreamBrancher
	4.2.6. Configuration
	4.2.7. Header Enricher
	4.2.8. MessagingTransformer
	4.2.9. Recovery from Deserialization Exceptions
	4.2.10. Kafka Streams Example

	4.3. Testing Applications
	4.3.1. KafkaTestUtils
	4.3.2. JUnit
	4.3.3. Configuring Topics
	4.3.4. Using the Same Brokers for Multiple Test Classes
	4.3.5. @EmbeddedKafka Annotation
	4.3.6. @EmbeddedKafka Annotation with JUnit5
	4.3.7. Embedded Broker in @SpringBootTest Annotations
	JUnit4 Class Rule
	@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

	4.3.8. Hamcrest Matchers
	4.3.9. AssertJ Conditions
	4.3.10. Example

	4.4. Non-Blocking Retries
	4.4.1. How The Pattern Works
	4.4.2. Back Off Delay Precision
	Overview and Guarantees
	Tuning the Delay Precision

	4.4.3. Configuration
	Using the @RetryableTopic annotation
	Using RetryTopicConfiguration beans

	4.4.4. Features
	BackOff Configuration
	Single Topic Fixed Delay Retries
	Global timeout
	Exception Classifier
	Include and Exclude Topics
	Topics AutoCreation

	4.4.5. Topic Naming
	Retry Topics and Dlt Suffixes
	Appending the Topic’s Index or Delay
	Custom naming strategies

	4.4.6. Dlt Strategies
	Dlt Processing Method
	Dlt Failure Behavior
	Configuring No Dlt

	4.4.7. Specifying a ListenerContainerFactory

	Chapter 5. Tips, Tricks and Examples
	5.1. Manually Assigning All Partitions
	5.2. Examples of Kafka Transactions with Other Transaction Managers
	5.3. Customizing the JsonSerializer and JsonDeserializer

	Chapter 6. Other Resources
	Appendix A: Override Spring Boot Dependencies
	Appendix B: Change History
	B.1. Changes between 2.5 and 2.6
	B.1.1. Kafka Client Version
	B.1.2. Listener Container Changes
	B.1.3. @KafkaListener Changes
	B.1.4. ErrorHandler Changes
	B.1.5. Producer Factory Changes

	B.2. Changes between 2.4 and 2.5
	B.2.1. Consumer/Producer Factory Changes
	B.2.2. StreamsBuilderFactoryBean Changes
	B.2.3. Kafka Client Version
	B.2.4. Class/Package Changes
	B.2.5. Delivery Attempts Header
	B.2.6. @KafkaListener Changes
	B.2.7. Listener Container Changes
	B.2.8. KafkaTemplate Changes
	B.2.9. Kafka String Serializer/Deserializer
	B.2.10. JsonDeserializer
	B.2.11. Delegating Serializer/Deserializer
	B.2.12. Testing Changes

	B.3. Changes between 2.3 and 2.4
	B.3.1. Kafka Client Version
	B.3.2. ConsumerAwareRebalanceListener
	B.3.3. GenericErrorHandler
	B.3.4. KafkaTemplate
	B.3.5. AggregatingReplyingKafkaTemplate
	B.3.6. Listener Container
	B.3.7. @KafkaListener
	B.3.8. Kafka Streams

	B.4. Changes Between 2.2 and 2.3
	B.4.1. Tips, Tricks and Examples
	B.4.2. Kafka Client Version
	B.4.3. Class/Package Changes
	B.4.4. Configuration Changes
	B.4.5. Producer and Consumer Factory Changes
	B.4.6. Listener Container Changes
	B.4.7. ErrorHandler Changes
	B.4.8. TopicBuilder
	B.4.9. Kafka Streams Changes
	B.4.10. JSON Component Changes
	B.4.11. ReplyingKafkaTemplate
	B.4.12. AggregatingReplyingKafkaTemplate
	B.4.13. Transaction Changes
	B.4.14. New Delegating Serializer/Deserializer
	B.4.15. New Retrying Deserializer

	B.5. Changes Between 2.1 and 2.2
	B.5.1. Kafka Client Version
	B.5.2. Class and Package Changes
	B.5.3. After Rollback Processing
	B.5.4. ConcurrentKafkaListenerContainerFactory Changes
	B.5.5. Listener Container Changes
	B.5.6. @KafkaListener Changes
	B.5.7. Header Mapping Changes
	B.5.8. Embedded Kafka Changes
	B.5.9. JsonSerializer/Deserializer Enhancements
	B.5.10. Kafka Streams Changes
	B.5.11. Transactional ID

	B.6. Changes Between 2.0 and 2.1
	B.6.1. Kafka Client Version
	B.6.2. JSON Improvements
	B.6.3. Container Stopping Error Handlers
	B.6.4. Pausing and Resuming Containers
	B.6.5. Stateful Retry
	B.6.6. Client ID
	B.6.7. Logging Offset Commits
	B.6.8. Default @KafkaHandler
	B.6.9. ReplyingKafkaTemplate
	B.6.10. ChainedKafkaTransactionManager
	B.6.11. Migration Guide from 2.0

	B.7. Changes Between 1.3 and 2.0
	B.7.1. Spring Framework and Java Versions
	B.7.2. @KafkaListener Changes
	B.7.3. Message Listeners
	B.7.4. Using ConsumerAwareRebalanceListener

	B.8. Changes Between 1.2 and 1.3
	B.8.1. Support for Transactions
	B.8.2. Support for Headers
	B.8.3. Creating Topics
	B.8.4. Support for Kafka Timestamps
	B.8.5. @KafkaListener Changes
	B.8.6. @EmbeddedKafka Annotation
	B.8.7. Kerberos Configuration

	B.9. Changes Between 1.1 and 1.2
	B.10. Changes Between 1.0 and 1.1
	B.10.1. Kafka Client
	B.10.2. Batch Listeners
	B.10.3. Null Payloads
	B.10.4. Initial Offset
	B.10.5. Seek

