
Spring Security

Reference Documentation

Ben Alex
Luke Taylor

Spring Security: Reference Documentation
by Ben Alex and Luke Taylor

3.1.7.RELEASE

Spring Security

3.1.7.RELEASE iii

Table of Contents

Preface .. xiii

I. Getting Started .. 1

1. Introduction ... 2

1.1. What is Spring Security? ... 2

1.2. History .. 3

1.3. Release Numbering .. 4

1.4. Getting Spring Security .. 4

Project Modules ... 4

Core - spring-security-core.jar ... 5

Remoting - spring-security-remoting.jar ... 5

Web - spring-security-web.jar ... 5

Config - spring-security-config.jar ... 5

LDAP - spring-security-ldap.jar .. 5

ACL - spring-security-acl.jar ... 5

CAS - spring-security-cas.jar ... 5

OpenID - spring-security-openid.jar .. 6

Checking out the Source ... 6

2. What's new in Spring Security 3.1 .. 7

2.1. High level updates found Spring Security 3.1 .. 7

2.2. Spring Security 3.1 namespace updates ... 7

3. Security Namespace Configuration .. 9

3.1. Introduction ... 9

Design of the Namespace ... 10

3.2. Getting Started with Security Namespace Configuration ... 10

web.xml Configuration ... 10

A Minimal <http> Configuration ... 11

What does auto-config Include? ... 12

Form and Basic Login Options ... 13

Setting a Default Post-Login Destination ... 14

Logout Handling .. 14

Using other Authentication Providers .. 14

Adding a Password Encoder ... 15

3.3. Advanced Web Features ... 16

Remember-Me Authentication ... 16

Adding HTTP/HTTPS Channel Security .. 16

Session Management .. 17

Detecting Timeouts ... 17

Concurrent Session Control ... 17

Session Fixation Attack Protection .. 18

OpenID Support ... 19

Attribute Exchange ... 19

Adding in Your Own Filters ... 20

Setting a Custom AuthenticationEntryPoint ... 22

Spring Security

3.1.7.RELEASE iv

3.4. Method Security .. 22

The <global-method-security> Element ... 22

Adding Security Pointcuts using protect-pointcut 24

3.5. The Default AccessDecisionManager .. 24

Customizing the AccessDecisionManager .. 24

3.6. The Authentication Manager and the Namespace ... 25

4. Sample Applications ... 26

4.1. Tutorial Sample ... 26

4.2. Contacts .. 26

4.3. LDAP Sample ... 27

4.4. OpenID Sample ... 27

4.5. CAS Sample .. 28

4.6. JAAS Sample .. 28

4.7. Pre-Authentication Sample ... 28

5. Spring Security Community .. 29

5.1. Issue Tracking ... 29

5.2. Becoming Involved .. 29

5.3. Further Information .. 29

II. Architecture and Implementation .. 30

6. Technical Overview .. 31

6.1. Runtime Environment .. 31

6.2. Core Components .. 31

SecurityContextHolder, SecurityContext and Authentication Objects 31

Obtaining information about the current user .. 32

The UserDetailsService ... 32

GrantedAuthority .. 33

Summary .. 33

6.3. Authentication ... 33

What is authentication in Spring Security? ... 34

Setting the SecurityContextHolder Contents Directly .. 35

6.4. Authentication in a Web Application .. 36

ExceptionTranslationFilter .. 37

AuthenticationEntryPoint .. 37

Authentication Mechanism .. 37

Storing the SecurityContext between requests ... 37

6.5. Access-Control (Authorization) in Spring Security ... 38

Security and AOP Advice ... 38

Secure Objects and the AbstractSecurityInterceptor 39

What are Configuration Attributes? ... 39

RunAsManager ... 39

AfterInvocationManager .. 40

Extending the Secure Object Model ... 41

6.6. Localization ... 41

7. Core Services ... 43

Spring Security

3.1.7.RELEASE v

7.1. The AuthenticationManager, ProviderManager and

AuthenticationProviders .. 43

Erasing Credentials on Successful Authentication ... 44

DaoAuthenticationProvider ... 44

7.2. UserDetailsService Implementations .. 45

In-Memory Authentication .. 45

JdbcDaoImpl .. 46

Authority Groups .. 46

7.3. Password Encoding .. 46

What is a hash? .. 46

Adding Salt to a Hash .. 47

Hashing and Authentication ... 47

III. Web Application Security ... 49

8. The Security Filter Chain .. 50

8.1. DelegatingFilterProxy ... 50

8.2. FilterChainProxy .. 50

Bypassing the Filter Chain .. 52

8.3. Filter Ordering ... 52

8.4. Request Matching and HttpFirewall ... 53

8.5. Use with other Filter-Based Frameworks ... 54

8.6. Advanced Namespace Configuration ... 54

9. Core Security Filters ... 55

9.1. FilterSecurityInterceptor .. 55

9.2. ExceptionTranslationFilter .. 56

AuthenticationEntryPoint ... 56

AccessDeniedHandler .. 57

SavedRequests and the RequestCache Interface ... 57

9.3. SecurityContextPersistenceFilter ... 58

SecurityContextRepository ... 58

9.4. UsernamePasswordAuthenticationFilter ... 59

Application Flow on Authentication Success and Failure .. 59

10. Basic and Digest Authentication .. 61

10.1. BasicAuthenticationFilter ... 61

Configuration ... 61

10.2. DigestAuthenticationFilter .. 61

Configuration ... 63

11. Remember-Me Authentication ... 64

11.1. Overview ... 64

11.2. Simple Hash-Based Token Approach .. 64

11.3. Persistent Token Approach ... 65

11.4. Remember-Me Interfaces and Implementations .. 65

TokenBasedRememberMeServices .. 65

PersistentTokenBasedRememberMeServices .. 66

12. Session Management .. 67

12.1. SessionManagementFilter ... 67

Spring Security

3.1.7.RELEASE vi

12.2. SessionAuthenticationStrategy .. 67

12.3. Concurrency Control .. 68

Querying the SessionRegistry for currently authenticated users and their sessions

... 69

13. Anonymous Authentication ... 70

13.1. Overview ... 70

13.2. Configuration ... 70

13.3. AuthenticationTrustResolver .. 71

IV. Authorization ... 73

14. Authorization Architecture .. 74

14.1. Authorities ... 74

14.2. Pre-Invocation Handling ... 74

The AccessDecisionManager ... 74

Voting-Based AccessDecisionManager Implementations ... 75

RoleVoter .. 76

AuthenticatedVoter .. 76

Custom Voters ... 76

14.3. After Invocation Handling .. 77

14.4. Hierarchical Roles .. 78

15. Secure Object Implementations ... 79

15.1. AOP Alliance (MethodInvocation) Security Interceptor .. 79

Explicit MethodSecurityInterceptor Configuration .. 79

15.2. AspectJ (JoinPoint) Security Interceptor .. 79

16. Expression-Based Access Control .. 82

16.1. Overview ... 82

Common Built-In Expressions ... 82

16.2. Web Security Expressions .. 82

16.3. Method Security Expressions .. 83

@Pre and @Post Annotations ... 83

Access Control using @PreAuthorize and @PostAuthorize 83

Filtering using @PreFilter and @PostFilter .. 84

Built-In Expressions ... 84

The PermissionEvaluator interface .. 84

V. Additional Topics .. 86

17. Domain Object Security (ACLs) .. 87

17.1. Overview ... 87

17.2. Key Concepts .. 87

17.3. Getting Started ... 90

18. Pre-Authentication Scenarios ... 92

18.1. Pre-Authentication Framework Classes .. 92

AbstractPreAuthenticatedProcessingFilter .. 92

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource 93

PreAuthenticatedAuthenticationProvider .. 93

Http403ForbiddenEntryPoint ... 93

18.2. Concrete Implementations .. 93

Spring Security

3.1.7.RELEASE vii

Request-Header Authentication (Siteminder) .. 94

Siteminder Example Configuration .. 94

J2EE Container Authentication .. 94

19. LDAP Authentication ... 96

19.1. Overview ... 96

19.2. Using LDAP with Spring Security .. 96

19.3. Configuring an LDAP Server ... 96

Using an Embedded Test Server ... 97

Using Bind Authentication .. 97

Loading Authorities .. 98

19.4. Implementation Classes .. 98

LdapAuthenticator Implementations ... 98

Common Functionality .. 99

BindAuthenticator ... 99

PasswordComparisonAuthenticator .. 99

Connecting to the LDAP Server .. 99

LDAP Search Objects ... 99

FilterBasedLdapUserSearch ... 100

LdapAuthoritiesPopulator .. 100

Spring Bean Configuration .. 100

LDAP Attributes and Customized UserDetails .. 101

19.5. Active Directory Authentication .. 102

ActiveDirectoryLdapAuthenticationProvider 102

Active Directory Error Codes .. 102

20. JSP Tag Libraries ... 103

20.1. Declaring the Taglib ... 103

20.2. The authorize Tag .. 103

Disabling Tag Authorization for Testing .. 104

20.3. The authenticationTag .. 104

20.4. The accesscontrollist Tag ... 104

21. Java Authentication and Authorization Service (JAAS) Provider .. 106

21.1. Overview ... 106

21.2. AbstractJaasAuthenticationProvider ... 106

JAAS CallbackHandler ... 106

JAAS AuthorityGranter ... 106

21.3. DefaultJaasAuthenticationProvider .. 107

InMemoryConfiguration .. 107

DefaultJaasAuthenticationProvider Example Configuration ... 107

21.4. JaasAuthenticationProvider ... 108

21.5. Running as a Subject .. 109

22. CAS Authentication .. 110

22.1. Overview ... 110

22.2. How CAS Works ... 110

Spring Security and CAS Interaction Sequence .. 110

22.3. Configuration of CAS Client .. 112

Spring Security

3.1.7.RELEASE viii

Service Ticket Authentication .. 113

Single Logout ... 114

Authenticating to a Stateless Service with CAS .. 116

Configuring CAS to Obtain Proxy Granting Tickets .. 116

Calling a Stateless Service Using a Proxy Ticket .. 117

Proxy Ticket Authentication .. 117

23. X.509 Authentication .. 120

23.1. Overview ... 120

23.2. Adding X.509 Authentication to Your Web Application ... 120

23.3. Setting up SSL in Tomcat .. 121

24. Run-As Authentication Replacement .. 122

24.1. Overview ... 122

24.2. Configuration ... 122

25. Spring Security Crypto Module ... 124

25.1. Introduction ... 124

25.2. Encryptors ... 124

BytesEncryptor ... 124

TextEncryptor ... 124

25.3. Key Generators .. 125

BytesKeyGenerator ... 125

StringKeyGenerator .. 125

25.4. Password Encoding .. 125

A. Security Database Schema .. 127

A.1. User Schema ... 127

Group Authorities ... 127

A.2. Persistent Login (Remember-Me) Schema .. 128

A.3. ACL Schema .. 128

Hypersonic SQL ... 128

PostgreSQL .. 129

B. The Security Namespace .. 131

B.1. Web Application Security .. 131

<debug> ... 131

<http> ... 131

<http> Attributes ... 131

Child Elements of <http> .. 134

<access-denied-handler> .. 134

Parent Elements of <access-denied-handler> ... 134

<access-denied-handler> Attributes .. 135

<anonymous> .. 135

Parent Elements of <anonymous> .. 135

<anonymous> Attributes .. 135

<custom-filter> ... 135

Parent Elements of <custom-filter> .. 136

<custom-filter> Attributes ... 136

<expression-handler> .. 136

Spring Security

3.1.7.RELEASE ix

Parent Elements of <expression-handler> ... 136

<expression-handler> Attributes .. 136

<form-login> .. 136

Parent Elements of <form-login> .. 137

<form-login> Attributes .. 137

<http-basic> .. 138

Parent Elements of <http-basic> .. 138

<http-basic> Attributes .. 138

<http-firewall> Element .. 138

<http-firewall> Attributes ... 138

<intercept-url> ... 139

Parent Elements of <intercept-url> .. 139

<intercept-url> Attributes ... 139

<jee> ... 140

Parent Elements of <jee> ... 140

<jee> Attributes ... 140

<logout> .. 140

Parent Elements of <logout> ... 140

<logout> Attributes ... 140

<openid-login> ... 141

Parent Elements of <openid-login> .. 141

<openid-login> Attributes .. 141

Child Elements of <openid-login> ... 142

<attribute-exchange> .. 142

Parent Elements of <attribute-exchange> ... 142

<attribute-exchange> Attributes .. 142

Child Elements of <attribute-exchange> .. 143

<openid-attribute> ... 143

Parent Elements of <openid-attribute> ... 143

<openid-attribute> Attributes ... 143

<port-mappings> ... 143

Parent Elements of <port-mappings> .. 143

Child Elements of <port-mappings> ... 143

<port-mapping> ... 143

Parent Elements of <port-mapping> .. 144

<port-mapping> Attributes .. 144

<remember-me> ... 144

Parent Elements of <remember-me> .. 144

<remember-me> Attributes .. 144

<request-cache> Element .. 145

Parent Elements of <request-cache> .. 145

<request-cache> Attributes ... 145

<session-management> .. 145

Parent Elements of <session-management> ... 146

<session-management> Attributes .. 146

Spring Security

3.1.7.RELEASE x

Child elements of <session-management> ... 146

<concurrency-control> .. 146

Parent Elements of <concurrency-control> ... 146

<concurrency-control> Attributes .. 147

<x509> ... 147

Parent Elements of <x509> ... 147

<x509> Attributes ... 147

<filter-chain-map> ... 148

<filter-chain-map> Attributes ... 148

Child Elements of <filter-chain-map> ... 148

<filter-chain> ... 148

Parent Elements of <filter-chain> .. 148

<filter-chain> Attributes .. 148

<filter-invocation-definition-source> ... 149

<filter-invocation-definition-source> Attributes 149

Child Elements of <filter-invocation-definition-source> 149

<filter-security-metadata-source> .. 149

<filter-security-metadata-source> Attributes .. 149

Child Elements of <filter-security-metadata-source> 150

B.2. Authentication Services ... 150

<authentication-manager> ... 150

<authentication-manager> Attributes .. 150

Child Elements of <authentication-manager> .. 151

<authentication-provider> ... 151

Parent Elements of <authentication-provider> .. 151

<authentication-provider> Attributes .. 151

Child Elements of <authentication-provider> ... 151

<jdbc-user-service> .. 152

<jdbc-user-service> Attributes ... 152

<password-encoder> ... 153

Parent Elements of <password-encoder> ... 153

<password-encoder> Attributes ... 153

Child Elements of <password-encoder> ... 153

<salt-source> ... 153

Parent Elements of <salt-source> .. 153

<salt-source> Attributes .. 153

<user-service> ... 154

<user-service> Attributes .. 154

Child Elements of <user-service> ... 154

<user> ... 154

Parent Elements of <user> ... 154

<user> Attributes ... 154

B.3. Method Security .. 155

<global-method-security> ... 155

<global-method-security> Attributes .. 155

Spring Security

3.1.7.RELEASE xi

Child Elements of <global-method-security> .. 156

<after-invocation-provider> ... 156

Parent Elements of <after-invocation-provider> .. 156

<after-invocation-provider> Attributes ... 156

<pre-post-annotation-handling> .. 157

Parent Elements of <pre-post-annotation-handling> 157

Child Elements of <pre-post-annotation-handling> 157

<invocation-attribute-factory> .. 157

Parent Elements of <invocation-attribute-factory> 157

<invocation-attribute-factory> Attributes ... 157

<post-invocation-advice> ... 157

Parent Elements of <post-invocation-advice> .. 157

<post-invocation-advice> Attributes .. 157

<pre-invocation-advice> .. 157

Parent Elements of <pre-invocation-advice> ... 158

<pre-invocation-advice> Attributes .. 158

Securing Methods using <protect-pointcut> .. 158

Parent Elements of <protect-pointcut> ... 158

<protect-pointcut> Attributes ... 158

<intercept-methods> .. 158

<intercept-methods> Attributes ... 158

Child Elements of <intercept-methods> .. 158

<method-security-metadata-source> .. 158

<method-security-metadata-source> Attributes .. 159

Child Elements of <method-security-metadata-source> 159

<protect> .. 159

Parent Elements of <protect> ... 159

<protect> Attributes .. 159

B.4. LDAP Namespace Options .. 159

Defining the LDAP Server using the <ldap-server> Element 159

<ldap-server> Attributes .. 160

<ldap-authentication-provider> .. 160

Parent Elements of <ldap-authentication-provider> 160

<ldap-authentication-provider> Attributes ... 161

Child Elements of <ldap-authentication-provider> 162

<password-compare> ... 162

Parent Elements of <password-compare> ... 162

<password-compare> Attributes ... 162

Child Elements of <password-compare> ... 162

<ldap-user-service> .. 162

<ldap-user-service> Attributes ... 163

C. Spring Security Dependencies ... 165

C.1. spring-security-core ... 165

C.2. spring-security-remoting .. 166

C.3. spring-security-web ... 166

Spring Security

3.1.7.RELEASE xii

C.4. spring-security-ldap ... 166

C.5. spring-security-config ... 167

C.6. spring-security-acl ... 167

C.7. spring-security-cas ... 168

C.8. spring-security-openid ... 168

C.9. spring-security-taglibs .. 168

Spring Security

3.1.7.RELEASE xiii

Preface
Spring Security provides a comprehensive security solution for J2EE-based enterprise software applications.

As you will discover as you venture through this reference guide, we have tried to provide you a useful and

highly configurable security system.

Security is an ever-moving target, and it's important to pursue a comprehensive, system-wide approach. In

security circles we encourage you to adopt "layers of security", so that each layer tries to be as secure as

possible in its own right, with successive layers providing additional security. The "tighter" the security of

each layer, the more robust and safe your application will be. At the bottom level you'll need to deal with

issues such as transport security and system identification, in order to mitigate man-in-the-middle attacks.

Next you'll generally utilise firewalls, perhaps with VPNs or IP security to ensure only authorised systems

can attempt to connect. In corporate environments you may deploy a DMZ to separate public-facing servers

from backend database and application servers. Your operating system will also play a critical part, addressing

issues such as running processes as non-privileged users and maximising file system security. An operating

system will usually also be configured with its own firewall. Hopefully somewhere along the way you'll be

trying to prevent denial of service and brute force attacks against the system. An intrusion detection system will

also be especially useful for monitoring and responding to attacks, with such systems able to take protective

action such as blocking offending TCP/IP addresses in real-time. Moving to the higher layers, your Java Virtual

Machine will hopefully be configured to minimize the permissions granted to different Java types, and then

your application will add its own problem domain-specific security configuration. Spring Security makes this

latter area - application security - much easier.

Of course, you will need to properly address all security layers mentioned above, together with managerial

factors that encompass every layer. A non-exhaustive list of such managerial factors would include security

bulletin monitoring, patching, personnel vetting, audits, change control, engineering management systems, data

backup, disaster recovery, performance benchmarking, load monitoring, centralised logging, incident response

procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer, you will find

that there are as many different requirements as there are business problem domains. A banking application has

different needs from an ecommerce application. An ecommerce application has different needs from a corporate

sales force automation tool. These custom requirements make application security interesting, challenging and

rewarding.

Please read Part I, “Getting Started”, in its entirety to begin with. This will introduce you to the framework and

the namespace-based configuration system with which you can get up and running quite quickly. To get more

of an understanding of how Spring Security works, and some of the classes you might need to use, you should

then read Part II, “Architecture and Implementation”. The remaining parts of this guide are structured in a more

traditional reference style, designed to be read on an as-required basis. We'd also recommend that you read up as

much as possible on application security issues in general. Spring Security is not a panacea which will solve all

security issues. It is important that the application is designed with security in mind from the start. Attempting

to retrofit it is not a good idea. In particular, if you are building a web application, you should be aware of

the many potential vulnerabilities such as cross-site scripting, request-forgery and session-hijacking which you

should be taking into account from the start. The OWASP web site (http://www.owasp.org/) maintains a top

ten list of web application vulnerabilities as well as a lot of useful reference information.

Spring Security

3.1.7.RELEASE xiv

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

Finally, welcome to the Spring Security community.

Part I. Getting Started
The later parts of this guide provide an in-depth discussion of the framework architecture and implementation

classes, which you need to understand if you want to do any serious customization. In this part, we'll introduce

Spring Security 3.0, give a brief overview of the project's history and take a slightly gentler look at how to

get started using the framework. In particular, we'll look at namespace configuration which provides a much

simpler way of securing your application compared to the traditional Spring bean approach where you have to

wire up all the implementation classes individually.

We'll also take a look at the sample applications that are available. It's worth trying to run these and

experimenting with them a bit even before you read the later sections - you can dip back into them

as your understanding of the framework increases. Please also check out the project website [http://

static.springsource.org/spring-security/site/index.html] as it has useful information on building the project, plus

links to articles, videos and tutorials.

http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html

Spring Security

3.1.7.RELEASE 2

1.1 What is Spring Security?

Spring Security provides comprehensive security services for J2EE-based enterprise software applications.

There is a particular emphasis on supporting projects built using The Spring Framework, which is the leading

J2EE solution for enterprise software development. If you're not using Spring for developing enterprise

applications, we warmly encourage you to take a closer look at it. Some familiarity with Spring - and in

particular dependency injection principles - will help you get up to speed with Spring Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the security features

of J2EE's Servlet Specification or EJB Specification lack the depth required for typical enterprise application

scenarios. Whilst mentioning these standards, it's important to recognise that they are not portable at a WAR

or EAR level. Therefore, if you switch server environments, it is typically a lot of work to reconfigure your

application's security in the new target environment. Using Spring Security overcomes these problems, and

also brings you dozens of other useful, customisable security features.

As you probably know two major areas of application security are “authentication” and “authorization” (or

“access-control”). These are the two main areas that Spring Security targets. “Authentication” is the process

of establishing a principal is who they claim to be (a “principal” generally means a user, device or some other

system which can perform an action in your application). “Authorization” refers to the process of deciding

whether a principal is allowed to perform an action within your application. To arrive at the point where an

authorization decision is needed, the identity of the principal has already been established by the authentication

process. These concepts are common, and not at all specific to Spring Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of these

authentication models are either provided by third parties, or are developed by relevant standards bodies such as

the Internet Engineering Task Force. In addition, Spring Security provides its own set of authentication features.

Specifically, Spring Security currently supports authentication integration with all of these technologies:

• HTTP BASIC authentication headers (an IETF RFC-based standard)

• HTTP Digest authentication headers (an IETF RFC-based standard)

• HTTP X.509 client certificate exchange (an IETF RFC-based standard)

• LDAP (a very common approach to cross-platform authentication needs, especially in large environments)

• Form-based authentication (for simple user interface needs)

• OpenID authentication

• Authentication based on pre-established request headers (such as Computer Associates Siteminder)

• JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source single

sign-on system)

• Transparent authentication context propagation for Remote Method Invocation (RMI) and HttpInvoker (a

Spring remoting protocol)

• Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a

predetermined period of time)

• Anonymous authentication (allowing every unauthenticated call to automatically assume a particular

security identity)

• Run-as authentication (which is useful if one call should proceed with a different security identity)

• Java Authentication and Authorization Service (JAAS)

Spring Security

3.1.7.RELEASE 3

• JEE container autentication (so you can still use Container Managed Authentication if desired)

• Kerberos

• Java Open Source Single Sign On (JOSSO) *

• OpenNMS Network Management Platform *

• AppFuse *

• AndroMDA *

• Mule ESB *

• Direct Web Request (DWR) *

• Grails *

• Tapestry *

• JTrac *

• Jasypt *

• Roller *

• Elastic Path *

• Atlassian Crowd *

• Your own authentication systems (see below)

(* Denotes provided by a third party

Many independent software vendors (ISVs) adopt Spring Security because of this significant choice of flexible

authentication models. Doing so allows them to quickly integrate their solutions with whatever their end clients

need, without undertaking a lot of engineering or requiring the client to change their environment. If none

of the above authentication mechanisms suit your needs, Spring Security is an open platform and it is quite

simple to write your own authentication mechanism. Many corporate users of Spring Security need to integrate

with "legacy" systems that don't follow any particular security standards, and Spring Security is happy to "play

nicely" with such systems.

Irrespective of the authentication mechanism, Spring Security provides a deep set of authorization capabilities.

There are three main areas of interest - authorizing web requests, authorizing whether methods can be invoked,

and authorizing access to individual domain object instances. To help you understand the differences, consider

the authorization capabilities found in the Servlet Specification web pattern security, EJB Container Managed

Security and file system security respectively. Spring Security provides deep capabilities in all of these

important areas, which we'll explore later in this reference guide.

1.2 History

Spring Security began in late 2003 as “The Acegi Security System for Spring”. A question was posed on

the Spring Developers' mailing list asking whether there had been any consideration given to a Spring-based

security implementation. At the time the Spring community was relatively small (especially compared with the

size today!), and indeed Spring itself had only existed as a SourceForge project from early 2003. The response

to the question was that it was a worthwhile area, although a lack of time currently prevented its exploration.

With that in mind, a simple security implementation was built and not released. A few weeks later another

member of the Spring community inquired about security, and at the time this code was offered to them. Several

other requests followed, and by January 2004 around twenty people were using the code. These pioneering

Spring Security

3.1.7.RELEASE 4

users were joined by others who suggested a SourceForge project was in order, which was duly established

in March 2004.

In those early days, the project didn't have any of its own authentication modules. Container Managed Security

was relied upon for the authentication process, with Acegi Security instead focusing on authorization. This was

suitable at first, but as more and more users requested additional container support, the fundamental limitation

of container-specific authentication realm interfaces became clear. There was also a related issue of adding new

JARs to the container's classpath, which was a common source of end user confusion and misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later, Acegi

Security became an official Spring Framework subproject. The 1.0.0 final release was published in May 2006 -

after more than two and a half years of active use in numerous production software projects and many hundreds

of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded as

“Spring Security”.

Today Spring Security enjoys a strong and active open source community. There are thousands of messages

about Spring Security on the support forums. There is an active core of developers who work on the code itself

and an active community which also regularly share patches and support their peers.

1.3 Release Numbering

It is useful to understand how Spring Security release numbers work, as it will help you identify the effort

(or lack thereof) involved in migrating to future releases of the project. Each release uses a standard triplet of

integers: MAJOR.MINOR.PATCH. The intent is that MAJOR versions are incompatible, large-scale upgrades

of the API. MINOR versions should largely retain source and binary compatibility with older minor versions,

thought there may be some design changes and incompatible udates. PATCH level should be perfectly

compatible, forwards and backwards, with the possible exception of changes which are to fix bugs and defects.

The extent to which you are affected by changes will depend on how tightly integrated your code is. If you

are doing a lot of customization you are more likely to be affected than if you are using a simple namespace

configuration.

You should always test your application thoroughly before rolling out a new version.

1.4 Getting Spring Security

You can get hold of Spring Security in several ways. You can download a packaged distribution

from the main Spring download page [http://www.springsource.com/download/community?project=Spring

%20Security], download individual jars (and sample WAR files) from the Maven Central repository (or a

SpringSource Maven repository for snapshot and milestone releases) or, alternatively, you can build the project

from source yourself. See the project web site for more details.

Project Modules

In Spring Security 3.0, the codebase has been sub-divided into separate jars which more clearly separate

different functionaltiy areas and third-party dependencies. If you are using Maven to build your project, then

http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security

Spring Security

3.1.7.RELEASE 5

these are the modules you will add to your pom.xml. Even if you're not using Maven, we'd recommend that

you consult the pom.xml files to get an idea of third-party dependencies and versions. Alternatively, a good

idea is to examine the libraries that are included in the sample applications.

Core - spring-security-core.jar

Contains core authentication and access-contol classes and interfaces, remoting support and basic provisioning

APIs. Required by any application which uses Spring Security. Supports standalone applications, remote

clients, method (service layer) security and JDBC user provisioning. Contains the top-level packages:

• org.springframework.security.core

• org.springframework.security.access

• org.springframework.security.authentication

• org.springframework.security.provisioning

Remoting - spring-security-remoting.jar

Provides intergration with Spring Remoting. You don't need this unless you are writing a remote client which

uses Spring Remoting. The main package is org.springframework.security.remoting.

Web - spring-security-web.jar

Contains filters and related web-security infrastructure code. Anything with a servlet API dependency. You'll

need it if you require Spring Security web authentication services and URL-based access-control. The main

package is org.springframework.security.web.

Config - spring-security-config.jar

Contains the security namespace parsing code. You need it if you are using the Spring Security XML namespace

for configuration. The main package is org.springframework.security.config. None of the

classes are intended for direct use in an application.

LDAP - spring-security-ldap.jar

LDAP authentication and provisioning code. Required if you need to use LDAP authentication or manage

LDAP user entries. The top-level package is org.springframework.security.ldap.

ACL - spring-security-acl.jar

Specialized domain object ACL implementation. Used to apply security to specific domain object instances

within your application. The top-level package is org.springframework.security.acls.

CAS - spring-security-cas.jar

Spring Security's CAS client integration. If you want to use Spring Security web authentication with a CAS

single sign-on server. The top-level package is org.springframework.security.cas.

Spring Security

3.1.7.RELEASE 6

OpenID - spring-security-openid.jar

OpenID web authentication support. Used to authenticate users against an external OpenID server.

org.springframework.security.openid. Requires OpenID4Java.

Checking out the Source

Since Spring Security is an Open Source project, we'd strongly encourage you to check out the source code

using git. This will give you full access to all the sample applications and you can build the most up to date

version of the project easily. Having the source for a project is also a huge help in debugging. Exception stack

traces are no longer obscure black-box issues but you can get straight to the line that's causing the problem

and work out what's happening. The source is the ultimate documentation for a project and often the simplest

place to find out how something actually works.

To obtain the source for the project, use the following git command:

 git clone git://git.springsource.org/spring-security/spring-security.git

This will give you access to the entire project history (including all releases and branches) on your local

machine.

Spring Security

3.1.7.RELEASE 7

This section contains summary of the updates found in Spring Security

3.1. A detailed list of changes can be found in the project's

JIRA [https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D

+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C

+11174%29+order+by+priority%2C+type&runQuery=true&clear=true]

2.1 High level updates found Spring Security 3.1

Below you can find a high level summary of updates to Spring Security 3.1.

• Support for multiple http elements

• Support for stateless authentication

• DebugFilter provides additional debugging information

• Improved Active Directory LDAP support (i.e. ActiveDirectoryLdapAuthenticationProvider)

• Added Basic Crypto Module.

• The namespace is fully documented in the reference appendix.

• Added dependencies section to the reference appendix

• Support HttpOnly Flag for Cookies in Servlet 3.0 environments

• InMemoryUserDetailsManager provides in memory implementation of UserDetailsManager

• Support for hasPermission expression on the authorize JSP tag

• Support for disabling UI security (for testing purposes)

• Support erasing credentials after successful authentication

• Support clearing cookies on logout

• Spring Security Google App Engine example application

• Support for CAS proxy tickets

• Support for arbitrary implementations of JAAS Configuration

• Support nested switching of users for SwitchUserFilter

2.2 Spring Security 3.1 namespace updates

Below you can find a summary of updates to the Spring Security 3.1 namespace.

• Added support for multiple <http> elements and support for determining which one to use with http@pattern,

http@request-matcher, and http@security. Further information can be found in Namespace Configuration

section of the reference.

https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true
https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true
https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true
https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true

Spring Security

3.1.7.RELEASE 8

• Added stateless option for http@create-session

• Added support for http@authentication-manager-ref and global-method-security@authentication-manager-

ref.

• Added http@name

• Added http@request-matcher-ref and filter-chain@request-matcher-ref

• Added <debug>

• Added Support for setting the AuthenticationDetailsSource using the namespace.

See form-login@authentication-details-source-ref, openid-login@authentication-details-source-ref, http-

basic@authentication-details-source-ref, and x509@authentication-details-source-ref.

• Added support for http/expression-handler. This allows <expression-handler> to be used for web access

expressions.

• Added authentication-manager@erase-credentials

• Added http-basic@entry-point-ref

• Added logout@delete-cookies

• Added remember-me@authentication-success-handler-ref

• Added <metadata-source-ref>

• Added global-method-security@metadata-source-ref

• Added global-method-security@mode

• Added <attribute-exchange>

• Added remember-me@use-secure-cookie

• Added http@jaas-api-provision

• Added form-login@username-parameter and form-login@password-parameter

Spring Security

3.1.7.RELEASE 9

3.1 Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It allows you to

supplement the traditional Spring beans application context syntax with elements from additional XML schema.

You can find more information in the Spring Reference Documentation [http://static.springsource.org/spring/

docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html]. A namespace element

can be used simply to allow a more concise way of configuring an individual bean or, more powerfully, to define

an alternative configuration syntax which more closely matches the problem domain and hides the underlying

complexity from the user. A simple element may conceal the fact that multiple beans and processing steps are

being added to the application context. For example, adding the following element from the security namespace

to an application context will start up an embedded LDAP server for testing use within the application:

 <security:ldap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common

alternative configuration requirements are supported by attributes on the ldap-server element and the user

is isolated from worrying about which beans they need to create and what the bean property names are. 1. Use

of a good XML editor while editing the application context file should provide information on the attributes

and elements that are available. We would recommend that you try out the SpringSource Tool Suite [http://

www.springsource.com/products/sts] as it has special features for working with standard Spring namespaces.

To start using the security namespace in your application context, you need to have the spring-security-

config jar on your classpath. Then all you need to do is add the schema declaration to your application

context file:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:security="http://www.springframework.org/schema/security"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security-3.1.xsd">

 ...

</beans>

In many of the examples you will see (and in the sample) applications, we will often use "security" as the default

namespace rather than "beans", which means we can omit the prefix on all the security namespace elements,

making the content easier to read. You may also want to do this if you have your application context divided

up into separate files and have most of your security configuration in one of them. Your security application

context file would then start like this

<beans:beans xmlns="http://www.springframework.org/schema/security"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

1You can find out more about the use of the ldap-server element in the chapter on LDAP.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://www.springsource.com/products/sts
http://www.springsource.com/products/sts
http://www.springsource.com/products/sts

Spring Security

3.1.7.RELEASE 10

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security-3.1.xsd">

 ...

</beans:beans>

We'll assume this syntax is being used from now on in this chapter.

Design of the Namespace

The namespace is designed to capture the most common uses of the framework and provide a simplified and

concise syntax for enabling them within an application. The design is based around the large-scale dependencies

within the framework, and can be divided up into the following areas:

• Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to apply the

framework authentication mechanisms, to secure URLs, render login and error pages and much more.

• Business Object (Method) Security - options for securing the service layer.

• AuthenticationManager - handles authentication requests from other parts of the framework.

• AccessDecisionManager - provides access decisions for web and method security. A default one will be

registered, but you can also choose to use a custom one, declared using normal Spring bean syntax.

• AuthenticationProviders - mechanisms against which the authentication manager authenticates users. The

namespace provides supports for several standard options and also a means of adding custom beans declared

using a traditional syntax.

• UserDetailsService - closely related to authentication providers, but often also required by other beans.

We'll see how to configure these in the following sections.

3.2 Getting Started with Security Namespace Configuration

In this section, we'll look at how you can build up a namespace configuration to use some of the main features

of the framework. Let's assume you initially want to get up and running as quickly as possible and add

authentication support and access control to an existing web application, with a few test logins. Then we'll look

at how to change over to authenticating against a database or other security repository. In later sections we'll

introduce more advanced namespace configuration options.

web.xml Configuration

The first thing you need to do is add the following filter declaration to your web.xml file:

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

Spring Security

3.1.7.RELEASE 11

</filter-mapping>

This provides a hook into the Spring Security web infrastructure. DelegatingFilterProxy is a

Spring Framework class which delegates to a filter implementation which is defined as a Spring bean in

your application context. In this case, the bean is named “springSecurityFilterChain”, which is an internal

infrastructure bean created by the namespace to handle web security. Note that you should not use this bean

name yourself. Once you've added this to your web.xml, you're ready to start editing your application context

file. Web security services are configured using the <http> element.

A Minimal <http> Configuration

All you need to enable web security to begin with is

 <http auto-config='true'>

 <intercept-url pattern="/**" access="ROLE_USER" />

 </http>

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER

to access them. The <http> element is the parent for all web-related namespace functionality. The

<intercept-url> element defines a pattern which is matched against the URLs of incoming requests

using an ant path style syntax2. You can also use regular-expression matching as an alternative (see the

namespace appendix for more details). The access attribute defines the access requirements for requests

matching the given pattern. With the default configuration, this is typically a comma-separated list of roles,

one of which a user must have to be allowed to make the request. The prefix “ROLE_” is a marker which

indicates that a simple comparison with the user's authorities should be made. In other words, a normal role-

based check should be used. Access-control in Spring Security is not limited to the use of simple roles (hence

the use of the prefix to differentiate between different types of security attributes). We'll see later how the

interpretation can vary3.

Note

You can use multiple <intercept-url> elements to define different access requirements for

different sets of URLs, but they will be evaluated in the order listed and the first match will be used.

So you must put the most specific matches at the top. You can also add a method attribute to limit

the match to a particular HTTP method (GET, POST, PUT etc.). If a request matches multiple patterns,

the method-specific match will take precedence regardless of ordering.

To add some users, you can define a set of test data directly in the namespace:

 <authentication-manager>

 <authentication-provider>

 <user-service>

 <user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />

2See the section on Request Matching in the Web Application Infrastructure chapter for more details on how matches are actually

performed.
3The interpretation of the comma-separated values in the access attribute depends on the implementation of the AccessDecisionManager

which is used. In Spring Security 3.0, the attribute can also be populated with an EL expression.

Spring Security

3.1.7.RELEASE 12

 <user name="bob" password="bobspassword" authorities="ROLE_USER" />

 </user-service>

 </authentication-provider>

 </authentication-manager>

If you are familiar with pre-namespace versions of the framework, you can probably already guess

roughly what's going on here. The <http> element is responsible for creating a FilterChainProxy

and the filter beans which it uses. Common problems like incorrect filter ordering are no longer an issue

as the filter positions are predefined.

The <authentication-provider> element creates a DaoAuthenticationProvider bean

and the <user-service> element creates an InMemoryDaoImpl. All authentication-

provider elements must be children of the <authentication-manager> element, which creates

a ProviderManager and registers the authentication providers with it. You can find more detailed

information on the beans that are created in the namespace appendix. It's worth cross-checking this if

you want to start understanding what the important classes in the framework are and how they are used,

particularly if you want to customise things later.

The configuration above defines two users, their passwords and their roles within the application (which

will be used for access control). It is also possible to load user information from a standard properties file

using the properties attribute on user-service. See the section on in-memory authentication for

more details on the file format. Using the <authentication-provider> element means that the user

information will be used by the authentication manager to process authentication requests. You can have

multiple <authentication-provider> elements to define different authentication sources and each

will be consulted in turn.

At this point you should be able to start up your application and you will be required to log in to proceed.

Try it out, or try experimenting with the “tutorial” sample application that comes with the project. The above

configuration actually adds quite a few services to the application because we have used the auto-config

attribute. For example, form-based login processing is automatically enabled.

What does auto-config Include?

The auto-config attribute, as we have used it above, is just a shorthand syntax for:

 <http>

 <form-login />

 <http-basic />

 <logout />

 </http>

These other elements are responsible for setting up form-login, basic authentication and logout handling

services respectively 4. They each have attributes which can be used to alter their behaviour. In anything other

4In versions prior to 3.0, this list also included remember-me functionality. This could cause some confusing errors with some

configurations and was removed in 3.0. In 3.0, the addition of an AnonymousAuthenticationFilter is part of the default <http>

configuration, so the <anonymous /> element is added regardless of whether auto-config is enabled.

Spring Security

3.1.7.RELEASE 13

than very basic scenarios, it is probably better to omit the auto-config attribute and configure what you

require explicitly in the interest of clarity.

Form and Basic Login Options

You might be wondering where the login form came from when you were prompted to log in, since we made

no mention of any HTML files or JSPs. In fact, since we didn't explicitly set a URL for the login page, Spring

Security generates one automatically, based on the features that are enabled and using standard values for the

URL which processes the submitted login, the default target URL the user will be sent to after loggin in and

so on. However, the namespace offers plenty of support to allow you to customize these options. For example,

if you want to supply your own login page, you could use:

 <http auto-config='true'>

 <intercept-url pattern="/login.jsp*" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <intercept-url pattern="/**" access="ROLE_USER" />

 <form-login login-page='/login.jsp'/>

 </http>

Note that you can still use auto-config. The form-login element just overrides the default settings.

Also note that we've added an extra intercept-url element to say that any requests for the login page

should be available to anonymous users 5. Otherwise the request would be matched by the pattern /** and

it wouldn't be possible to access the login page itself! This is a common configuration error and will result in

an infinite loop in the application. Spring Security will emit a warning in the log if your login page appears to

be secured. It is also possible to have all requests matching a particular pattern bypass the security filter chain

completely, by defining a separate http element for the pattern like this:

 <http pattern="/css/**" security="none"/>

 <http pattern="/login.jsp*" security="none"/>

 <http auto-config='true'>

 <intercept-url pattern="/**" access="ROLE_USER" />

 <form-login login-page='/login.jsp'/>

 </http>

From Spring Security 3.1 it is now possible to use multiple http elements to define separate security filter

chain configurations for different request patterns. If the pattern attribute is omitted from an http element,

it matches all requests. Creating an unsecured pattern is a simple example of this syntax, where the pattern is

mapped to an empty filter chain 6. We'll look at this new syntax in more detail in the chapter on the Security

Filter Chain.

It's important to realise that these unsecured requests will be completely oblivious to any Spring

Security web-related configuration or additional attributes such as requires-channel, so you will

5See the chapter on anonymous authentication and also the AuthenticatedVoter class for more details on how the value

IS_AUTHENTICATED_ANONYMOUSLY is processed.
6The use of multiple <http> elements is an important feature, allowing the namespace to simultaneously support both stateful and stateless

paths within the same application, for example. The previous syntax, using the attribute filters="none" on an intercept-url

element is incompatible with this change and is no longer supported in 3.1.

Spring Security

3.1.7.RELEASE 14

not be able to access information on the current user or call secured methods during the request. Use

access='IS_AUTHENTICATED_ANONYMOUSLY' as an alternative if you still want the security filter

chain to be applied.

If you want to use basic authentication instead of form login, then change the configuration to

 <http auto-config='true'>

 <intercept-url pattern="/**" access="ROLE_USER" />

 <http-basic />

 </http>

Basic authentication will then take precedence and will be used to prompt for a login when a user attempts to

access a protected resource. Form login is still available in this configuration if you wish to use it, for example

through a login form embedded in another web page.

Setting a Default Post-Login Destination

If a form login isn't prompted by an attempt to access a protected resource, the default-target-url

option comes into play. This is the URL the user will be taken to after successfully logging in, and defaults

to "/". You can also configure things so that the user always ends up at this page (regardless of whether the

login was "on-demand" or they explicitly chose to log in) by setting the always-use-default-target

attribute to "true". This is useful if your application always requires that the user starts at a "home" page, for

example:

 <http pattern="/login.htm*" security="none"/>

 <http>

 <intercept-url pattern='/**' access='ROLE_USER' />

 <form-login login-page='/login.htm' default-target-url='/home.htm'

 always-use-default-target='true' />

 </http>

For even more control over the destination, you can use the authentication-success-handler-

ref attribute as an alternative to default-target-url. The referenced bean should be an instance of

AuthenticationSuccessHandler. You'll find more on this in the Core Filters chapter and also in the

namespace appendix, as well as information on how to customize the flow when authentication fails.

Logout Handling

The logout element adds support for logging out by navigating to a particular URL. The default logout URL

is /j_spring_security_logout, but you can set it to something else using the logout-url attribute.

More information on other available attributes may be found in the namespace appendix.

Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to the application

context file. Most likely you will want to store your user information in something like a database or an LDAP

server. LDAP namespace configuration is dealt with in the LDAP chapter, so we won't cover it here. If you

Spring Security

3.1.7.RELEASE 15

have a custom implementation of Spring Security's UserDetailsService, called "myUserDetailsService"

in your application context, then you can authenticate against this using

 <authentication-manager>

 <authentication-provider user-service-ref='myUserDetailsService'/>

 </authentication-manager>

If you want to use a database, then you can use

 <authentication-manager>

 <authentication-provider>

 <jdbc-user-service data-source-ref="securityDataSource"/>

 </authentication-provider>

 </authentication-manager>

Where “securityDataSource” is the name of a DataSource bean in the application context, pointing at a

database containing the standard Spring Security user data tables. Alternatively, you could configure a Spring

Security JdbcDaoImpl bean and point at that using the user-service-ref attribute:

 <authentication-manager>

 <authentication-provider user-service-ref='myUserDetailsService'/>

 </authentication-manager>

 <beans:bean id="myUserDetailsService"

 class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">

 <beans:property name="dataSource" ref="dataSource"/>

 </beans:bean>

You can also use standard AuthenticationProvider beans as follows

 <authentication-manager>

 <authentication-provider ref='myAuthenticationProvider'/>

 </authentication-manager>

where myAuthenticationProvider is the name of a bean in your application context which implements

AuthenticationProvider. You can use multiple authentication-provider elements, in which

case the providers will be queried in the order they are declared. See Section 3.6, “The Authentication Manager

and the Namespace” for more on information on how the Spring Security AuthenticationManager is

configured using the namespace.

Adding a Password Encoder

Often your password data will be encoded using a hashing algorithm. This is supported by the <password-

encoder> element. With SHA encoded passwords, the original authentication provider configuration would

look like this:

Spring Security

3.1.7.RELEASE 16

<authentication-manager>

 <authentication-provider>

 <password-encoder hash="sha"/>

 <user-service>

 <user name="jimi" password="d7e6351eaa13189a5a3641bab846c8e8c69ba39f"

 authorities="ROLE_USER, ROLE_ADMIN" />

 <user name="bob" password="4e7421b1b8765d8f9406d87e7cc6aa784c4ab97f"

 authorities="ROLE_USER" />

 </user-service>

 </authentication-provider>

</authentication-manager>

When using hashed passwords, it's also a good idea to use a salt value to protect against dictionary attacks and

Spring Security supports this too. Ideally you would want to use a randomly generated salt value for each user,

but you can use any property of the UserDetails object which is loaded by your UserDetailsService.

For example, to use the username property, you would use

 <password-encoder hash="sha">

 <salt-source user-property="username"/>

 </password-encoder>

You can use a custom password encoder bean by using the ref attribute of password-encoder. This

should contain the name of a bean in the application context which is an instance of Spring Security's

PasswordEncoder interface.

3.3 Advanced Web Features

Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLs can only be accessed

over HTTPS, then this is directly supported using the requires-channel attribute on <intercept-

url>:

 <http>

 <intercept-url pattern="/secure/**" access="ROLE_USER" requires-channel="https"/>

 <intercept-url pattern="/**" access="ROLE_USER" requires-channel="any"/>

 ...

 </http>

With this configuration in place, if a user attempts to access anything matching the "/secure/**" pattern using

HTTP, they will first be redirected to an HTTPS URL 7. The available options are "http", "https" or "any".

Using the value "any" means that either HTTP or HTTPS can be used.

7For more details on how channel-processing is implemented, see the Javadoc for ChannelProcessingFilter and related classes.

Spring Security

3.1.7.RELEASE 17

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify a list of port mappings

as follows:

 <http>

 ...

 <port-mappings>

 <port-mapping http="9080" https="9443"/>

 </port-mappings>

 </http>

Note that in order to be truly secure, an application should not use HTTP at all or switch between HTTP

and HTTPS. It should start in HTTPS (with the user entering an HTTPS URL) and use a secure connection

throughout to avoid any possibility of man-in-the-middle attacks.

Session Management

Detecting Timeouts

You can configure Spring Security to detect the submission of an invalid session ID and redirect the user to an

appropriate URL. This is achieved through the session-management element:

 <http>

 ...

 <session-management invalid-session-url="/invalidSession.htm" />

 </http>

Note that if you use this mechanism to detect session timeouts, it may falsely report an error if the user logs out

and then logs back in without closing the browser. This is because the session cookie is not cleared when you

invalidate the session and will be resubmitted even if the user has logged out. You may be able to explicitly

delete the JSESSIONID cookie on logging out, for example by using the following syntax in the logout handler:

 <http>

 <logout delete-cookies="JSESSIONID" />

 </http>

Unfortunately this can't be guaranteed to work with every servlet container, so you will need to test it in your

environment8.

Concurrent Session Control

If you wish to place constraints on a single user's ability to log in to your application, Spring Security supports

this out of the box with the following simple additions. First you need to add the following listener to your

web.xml file to keep Spring Security updated about session lifecycle events:

8If you are running your application behind a proxy, you may also be able to remove the session cookie by configuring the proxy server.

For example, using Apache HTTPD's mod_headers, the following directive would delete the JSESSIONID cookie by expiring it in the

response to a logout request (assuming the application is deployed under the path /tutorial):

 <LocationMatch "/tutorial/j_spring_security_logout">

 Header always set Set-Cookie "JSESSIONID=;Path=/tutorial;Expires=Thu, 01 Jan 1970 00:00:00 GMT"

 </LocationMatch>

Spring Security

3.1.7.RELEASE 18

 <listener>

 <listener-class>

 org.springframework.security.web.session.HttpSessionEventPublisher

 </listener-class>

 </listener>

Then add the following lines to your application context:

 <http>

 ...

 <session-management>

 <concurrency-control max-sessions="1" />

 </session-management>

 </http>

This will prevent a user from logging in multiple times - a second login will cause the first to be invalidated.

Often you would prefer to prevent a second login, in which case you can use

 <http>

 ...

 <session-management>

 <concurrency-control max-sessions="1" error-if-maximum-exceeded="true" />

 </session-management>

 </http>

The second login will then be rejected. By “rejected”, we mean that the user will be sent to the

authentication-failure-url if form-based login is being used. If the second authentication takes

place through another non-interactive mechanism, such as “remember-me”, an “unauthorized” (402) error

will be sent to the client. If instead you want to use an error page, you can add the attribute session-

authentication-error-url to the session-management element.

If you are using a customized authentication filter for form-based login, then you have to configure concurrent

session control support explicitly. More details can be found in the Session Management chapter.

Session Fixation Attack Protection

Session fixation [http://en.wikipedia.org/wiki/Session_fixation] attacks are a potential risk where it is possible

for a malicious attacker to create a session by accessing a site, then persuade another user to log in with the

same session (by sending them a link containing the session identifier as a parameter, for example). Spring

Security protects against this automatically by creating a new session when a user logs in. If you don't require

this protection, or it conflicts with some other requirement, you can control the behaviour using the session-

fixation-protection attribute on <session-management>, which has three options

• migrateSession - creates a new session and copies the existing session attributes to the new session.

This is the default.

• none - Don't do anything. The original session will be retained.

• newSession - Create a new "clean" session, without copying the existing session data.

See the Session Management chapter for additional information.

http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation

Spring Security

3.1.7.RELEASE 19

OpenID Support

The namespace supports OpenID [http://openid.net/] login either instead of, or in addition to normal form-

based login, with a simple change:

 <http>

 <intercept-url pattern="/**" access="ROLE_USER" />

 <openid-login />

 </http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the user

information to your in-memory <user-service> :

 <user name="http://jimi.hendrix.myopenid.com/" authorities="ROLE_USER" />

You should be able to login using the myopenid.com site to authenticate. It is also possible to select a

specific UserDetailsService bean for use OpenID by setting the user-service-ref attribute on

the openid-login element. See the previous section on authentication providers for more information. Note

that we have omitted the password attribute from the above user configuration, since this set of user data is

only being used to load the authorities for the user. A random password will be generate internally, preventing

you from accidentally using this user data as an authentication source elsewhere in your configuration.

Attribute Exchange

Support for OpenID attribute exchange [http://openid.net/specs/openid-attribute-exchange-1_0.html]. As an

example, the following configuration would attempt to retrieve the email and full name from the OpenID

provider, for use by the application:

 <openid-login>

 <attribute-exchange>

 <openid-attribute name="email" type="http://axschema.org/contact/email" required="true"/>

 <openid-attribute name="name" type="http://axschema.org/namePerson"/>

 </attribute-exchange>

 </openid-login>

The “type” of each OpenID attribute is a URI, determined by a particular schema, in this case http://

axschema.org/. If an attribute must be retrieved for successful authentication, the required attribute can be

set. The exact schema and attributes supported will depend on your OpenID provider. The attribute values are

returned as part of the authentication process and can be accessed afterwards using the following code:

OpenIDAuthenticationToken token =

 (OpenIDAuthenticationToken)SecurityContextHolder.getContext().getAuthentication();

List<OpenIDAttribute> attributes = token.getAttributes();

The OpenIDAttribute contains the attribute type and the retrieved value (or values in the case of multi-

valued attributes). We'll see more about how the SecurityContextHolder class is used when we look at

core Spring Security components in the technical overview chapter. Multiple attribute exchange configurations

are also be supported, if you wish to use multiple identity providers. You can supply multiple attribute-

exchange elements, using an identifier-matcher attribute on each. This contains a regular expression

which will be matched against the OpenID identifier supplied by the user. See the OpenID sample application

http://openid.net/
http://openid.net/
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://axschema.org/
http://axschema.org/

Spring Security

3.1.7.RELEASE 20

in the codebase for an example configuration, providing different attribute lists for the Google, Yahoo and

MyOpenID providers.

Adding in Your Own Filters

If you've used Spring Security before, you'll know that the framework maintains a chain of filters in

order to apply its services. You may want to add your own filters to the stack at particular locations or

use a Spring Security filter for which there isn't currently a namespace configuration option (CAS, for

example). Or you might want to use a customized version of a standard namespace filter, such as the

UsernamePasswordAuthenticationFilter which is created by the <form-login> element,

taking advantage of some of the extra configuration options which are available by using the bean explicitly.

How can you do this with namespace configuration, since the filter chain is not directly exposed?

The order of the filters is always strictly enforced when using the namespace. When the application context

is being created, the filter beans are sorted by the namespace handling code and the standard Spring Security

filters each have an alias in the namespace and a well-known position.

Note

In previous versions, the sorting took place after the filter instances had been created, during post-

processing of the application context. In version 3.0+ the sorting is now done at the bean metadata

level, before the classes have been instantiated. This has implications for how you add your own filters

to the stack as the entire filter list must be known during the parsing of the <http> element, so the

syntax has changed slightly in 3.0.

The filters, aliases and namespace elements/attributes which create the filters are shown in Table 3.1, “Standard

Filter Aliases and Ordering”. The filters are listed in the order in which they occur in the filter chain.

Table 3.1. Standard Filter Aliases and Ordering

Alias Filter Class Namespace
Element or
Attribute

CHANNEL_FILTER ChannelProcessingFilter http/

intercept-

url@requires-

channel

SECURITY_CONTEXT_FILTER SecurityContextPersistenceFilterhttp

CONCURRENT_SESSION_FILTER ConcurrentSessionFilter session-

management/

concurrency-

control

LOGOUT_FILTER LogoutFilter http/logout

X509_FILTER X509AuthenticationFilter http/x509

Spring Security

3.1.7.RELEASE 21

Alias Filter Class Namespace
Element or
Attribute

PRE_AUTH_FILTER AstractPreAuthenticatedProcessingFilter

Subclasses

N/A

CAS_FILTER CasAuthenticationFilter N/A

FORM_LOGIN_FILTER UsernamePasswordAuthenticationFilterhttp/form-

login

BASIC_AUTH_FILTER BasicAuthenticationFilter http/http-

basic

SERVLET_API_SUPPORT_FILTER SecurityContextHolderAwareRequestFilterhttp/

@servlet-api-

provision

JAAS_API_SUPPORT_FILTER JaasApiIntegrationFilter http/@jaas-

api-provision

REMEMBER_ME_FILTER RememberMeAuthenticationFilterhttp/

remember-me

ANONYMOUS_FILTER AnonymousAuthenticationFilterhttp/

anonymous

SESSION_MANAGEMENT_FILTER SessionManagementFilter session-

management

EXCEPTION_TRANSLATION_FILTER ExceptionTranslationFilter http

FILTER_SECURITY_INTERCEPTOR FilterSecurityInterceptor http

SWITCH_USER_FILTER SwitchUserFilter N/A

You can add your own filter to the stack, using the custom-filter element and one of these names to

specify the position your filter should appear at:

 <http>

 <custom-filter position="FORM_LOGIN_FILTER" ref="myFilter" />

 </http>

 <beans:bean id="myFilter" class="com.mycompany.MySpecialAuthenticationFilter"/>

You can also use the after or before attributes if you want your filter to be inserted before or after another

filter in the stack. The names "FIRST" and "LAST" can be used with the position attribute to indicate that

you want your filter to appear before or after the entire stack, respectively.

Spring Security

3.1.7.RELEASE 22

Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the standard

filters created by the namespace then it's important that you don't include the namespace versions

by mistake. Avoid using the auto-config attribute and remove any elements which create filters

whose functionality you want to replace.

Note that you can't replace filters which are created by the use of the <http> element

itself - SecurityContextPersistenceFilter, ExceptionTranslationFilter or

FilterSecurityInterceptor. Some other filters are added by default, but you can disable

them. An AnonymousAuthenticationFilter is added by default and unless you have session-

fixation protection disabled, a SessionManagementFilter will also be added to the filter chain.

If you're replacing a namespace filter which requires an authentication entry point (i.e. where the authentication

process is triggered by an attempt by an unauthenticated user to access to a secured resource), you will need

to add a custom entry point bean too.

Setting a Custom AuthenticationEntryPoint

If you aren't using form login, OpenID or basic authentication through the namespace, you may want to define

an authentication filter and entry point using a traditional bean syntax and link them into the namespace, as

we've just seen. The corresponding AuthenticationEntryPoint can be set using the entry-point-

ref attribute on the <http> element.

The CAS sample application is a good example of the use of custom beans with the namespace, including

this syntax. If you aren't familiar with authentication entry points, they are discussed in the technical overview

chapter.

3.4 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your

service layer methods. It provides support for JSR-250 annotation security as well as the framework's original

@Secured annotation. From 3.0 you can also make use of new expression-based annotations. You can apply

security to a single bean, using the intercept-methods element to decorate the bean declaration, or you

can secure multiple beans across the entire service layer using the AspectJ style pointcuts.

The <global-method-security> Element

This element is used to enable annotation-based security in your application (by setting the appropriate

attributes on the element), and also to group together security pointcut declarations which will be applied across

your entire application context. You should only declare one <global-method-security> element. The

following declaration would enable support for Spring Security's @Secured:

 <global-method-security secured-annotations="enabled" />

Adding an annotation to a method (on an class or interface) would then limit the access to that method

accordingly. Spring Security's native annotation support defines a set of attributes for the method. These will

be passed to the AccessDecisionManager for it to make the actual decision:

Spring Security

3.1.7.RELEASE 23

 public interface BankService {

 @Secured("IS_AUTHENTICATED_ANONYMOUSLY")

 public Account readAccount(Long id);

 @Secured("IS_AUTHENTICATED_ANONYMOUSLY")

 public Account[] findAccounts();

 @Secured("ROLE_TELLER")

 public Account post(Account account, double amount);

 }

Support for JSR-250 annotations can be enabled using

 <global-method-security jsr250-annotations="enabled" />

These are standards-based and allow simple role-based constraints to be applied but do not have the power

Spring Security's native annotations. To use the new expression-based syntax, you would use

 <global-method-security pre-post-annotations="enabled" />

and the equivalent Java code would be

 public interface BankService {

 @PreAuthorize("isAnonymous()")

 public Account readAccount(Long id);

 @PreAuthorize("isAnonymous()")

 public Account[] findAccounts();

 @PreAuthorize("hasAuthority('ROLE_TELLER')")

 public Account post(Account account, double amount);

 }

Expression-based annotations are a good choice if you need to define simple rules that go beyond checking

the role names against the user's list of authorities.

Note

The annotated methods will only be secured for instances which are defined as Spring beans (in the

same application context in which method-security is enabled). If you want to secure instances which

are not created by Spring (using the new operator, for example) then you need to use AspectJ.

Note

You can enable more than one type of annotation in the same application, but only one type should be

used for any interface or class as the behaviour will not be well-defined otherwise. If two annotations

are found which apply to a particular method, then only one of them will be applied.

Spring Security

3.1.7.RELEASE 24

Adding Security Pointcuts using protect-pointcut

The use of protect-pointcut is particularly powerful, as it allows you to apply security to many beans

with only a simple declaration. Consider the following example:

 <global-method-security>

 <protect-pointcut expression="execution(* com.mycompany.*Service.*(..))"

 access="ROLE_USER"/>

 </global-method-security>

This will protect all methods on beans declared in the application context whose classes are in the

com.mycompany package and whose class names end in "Service". Only users with the ROLE_USER role

will be able to invoke these methods. As with URL matching, the most specific matches must come first in

the list of pointcuts, as the first matching expression will be used. Security annotations take precedence over

pointcuts.

3.5 The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within Spring

Security. If you don't you can skip it and come back to it later, as this section is only really relevant for people

who need to do some customization in order to use more than simple role-based security.

When you use a namespace configuration, a default instance of AccessDecisionManager is automatically

registered for you and will be used for making access decisions for method invocations and web URL access,

based on the access attributes you specify in your intercept-url and protect-pointcut declarations

(and in annotations if you are using annotation secured methods).

The default strategy is to use an AffirmativeBased AccessDecisionManager with a RoleVoter

and an AuthenticatedVoter. You can find out more about these in the chapter on authorization.

Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an alternative for both

method and web security.

For method security, you do this by setting the access-decision-manager-ref attribute on global-

method-security to the id of the appropriate AccessDecisionManager bean in the application

context:

 <global-method-security access-decision-manager-ref="myAccessDecisionManagerBean">

 ...

 </global-method-security>

The syntax for web security is the same, but on the http element:

 <http access-decision-manager-ref="myAccessDecisionManagerBean">

Spring Security

3.1.7.RELEASE 25

 ...

 </http>

3.6 The Authentication Manager and the Namespace

The main interface which provides authentication services in Spring Security is the

AuthenticationManager. This is usually an instance of Spring Security's ProviderManager class,

which you may already be familiar with if you've used the framework before. If not, it will be covered later,

in the technical overview chapter. The bean instance is registered using the authentication-manager

namespace element. You can't use a custom AuthenticationManager if you are using either HTTP or

method security through the namespace, but this should not be a problem as you have full control over the

AuthenticationProviders that are used.

You may want to register additional AuthenticationProvider beans with the ProviderManager

and you can do this using the <authentication-provider> element with the ref attribute, where the

value of the attribute is the name of the provider bean you want to add. For example:

 <authentication-manager>

 <authentication-provider ref="casAuthenticationProvider"/>

 </authentication-manager>

 <bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

 ...

 </bean>

Another common requirement is that another bean in the context may require a reference to the

AuthenticationManager. You can easily register an alias for the AuthenticationManager and

use this name elsewhere in your application context.

 <security:authentication-manager alias="authenticationManager">

 ...

 </security:authentication-manager>

 <bean id="customizedFormLoginFilter"

 class="com.somecompany.security.web.CustomFormLoginFilter">

 <property name="authenticationManager" ref="authenticationManager"/>

 ...

 </bean>

Spring Security

3.1.7.RELEASE 26

There are several sample web applications that are available with the project. To avoid an overly large

download, only the "tutorial" and "contacts" samples are included in the distribution zip file. The others can

be built directly from the source which you can obtain as described in the introduction. It's easy to build the

project yourself and there's more information on the project web site at http://www.springsource.org/security/

[http://www.springsource.org/security/]. All paths referred to in this chapter are relative to the project source

directory.

4.1 Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration

throughout. The compiled application is included in the distribution zip file, ready to be deployed into your web

container (spring-security-samples-tutorial-3.1.x.war). The form-based authentication

mechanism is used in combination with the commonly-used remember-me authentication provider to

automatically remember the login using cookies.

We recommend you start with the tutorial sample, as the XML is minimal and easy to follow. Most importantly,

you can easily add this one XML file (and its corresponding web.xml entries) to your existing application.

Only when this basic integration is achieved do we suggest you attempt adding in method authorization or

domain object security.

4.2 Contacts

The Contacts Sample is an advanced example in that it illustrates the more powerful features of domain object

access control lists (ACLs) in addition to basic application security. The application provides an interface with

which the users are able to administer a simple database of contacts (the domain objects).

To deploy, simply copy the WAR file from Spring Security distribution into your container’s webapps

directory. The war should be called spring-security-samples-contacts-3.1.x.war (the

appended version number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://localhost:8080/

contacts (or whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords are

suggested on that page. Simply authenticate with any of these and view the resulting page. It should contain

a success message similar to the following:

Security Debug Information

Authentication object is of type:

org.springframework.security.authentication.UsernamePasswordAuthenticationToken

Authentication object as a String:

http://www.springsource.org/security/
http://www.springsource.org/security/

Spring Security

3.1.7.RELEASE 27

org.springframework.security.authentication.UsernamePasswordAuthenticationToken@1f127853:

Principal: org.springframework.security.core.userdetails.User@b07ed00: Username: rod; \

Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;

credentialsNonExpired: true; AccountNonLocked: true; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER; \

Password: [PROTECTED]; Authenticated: true; \

Details: org.springframework.security.web.authentication.WebAuthenticationDetails@0: \

RemoteIpAddress: 127.0.0.1; SessionId: 8fkp8t83ohar; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER

Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)

ROLE_USER (getAuthority(): ROLE_USER)

Success! Your web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application's home page and click

"Manage". You can then try out the application. Notice that only the contacts available to the currently logged

on user are displayed, and only users with ROLE_SUPERVISOR are granted access to delete their contacts.

Behind the scenes, the MethodSecurityInterceptor is securing the business objects.

The application allows you to modify the access control lists associated with different contacts. Be sure to give

this a try and understand how it works by reviewing the application context XML files.

4.3 LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace configuration and

an equivalent configuration using traditional beans, both in the same application context file. This means there

are actually two identical authentication providers configured in this application.

4.4 OpenID Sample

The OpenID sample demonstrates how to use the namespace to configure OpenID and how to set up attribute

exchange [http://openid.net/specs/openid-attribute-exchange-1_0.html] configurations for Google, Yahoo and

MyOpenID identity providers (you can experiment with adding others if you wish). It uses the JQuery-based

openid-selector [http://code.google.com/p/openid-selector/] project to provide a user-friendly login page which

allows the user to easily select a provider, rather than typing in the full OpenID identifier.

The application differs from normal authentication scenarios in that it allows any user to access the site

(provided their OpenID authentication is successful). The first time you login, you will get a “Welcome [your

name]"” message. If you logout and log back in (with the same OpenID identity) then this should change to

“Welcome Back”. This is achieved by using a custom UserDetailsService which assigns a standard

role to any user and stores the identities internally in a map. Obviously a real application would use a database

instead. Have a look at the source form more information. This class also takes into account the fact that

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://code.google.com/p/openid-selector/
http://code.google.com/p/openid-selector/

Spring Security

3.1.7.RELEASE 28

different attributes may be returned from different providers and builds the name with which it addresses the

user accordingly.

4.5 CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn't included in the distribution so

you should check out the project code as described in the introduction. You'll find the relevant files under the

sample/cas directory. There's also a Readme.txt file in there which explains how to run both the server

and the client directly from the source tree, complete with SSL support.

4.6 JAAS Sample

The JAAS sample is very simple example of how to use a JAAS LoginModule with Spring Security. The

provided LoginModule will successfully authenticate a user if the username equals the password otherwise a

LoginException is thrown. The AuthorityGranter used in this example always grants the role ROLE_USER.

The sample application also demonstrates how to run as the JAAS Subject returned by the LoginModule by

setting jaas-api-provision equal to "true".

4.7 Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to make

use of login information from a J2EE container. The user name and roles are those setup by the container.

The code is in samples/preauth.

Spring Security

3.1.7.RELEASE 29

5.1 Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please log a

report using JIRA. Do not log it on the support forum, mailing list or by emailing the project's developers. Such

approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour. Or,

better yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged in the

issue tracker, although we only accept enhancement requests if you include corresponding unit tests. This is

necessary to ensure project test coverage is adequately maintained.

You can access the issue tracker at http://jira.springsource.org/browse/SEC.

5.2 Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways of contributing, including

reading the forum and responding to questions from other people, writing new code, improving existing code,

assisting with documentation, developing samples or tutorials, or simply making suggestions.

5.3 Further Information

Questions and comments on Spring Security are welcome. You can use the Spring Community Forum web site

at http://forum.springsource.org to discuss Spring Security with other users of the framework.

Remember to use JIRA for bug reports, as explained above.

http://jira.springsource.org/browse/SEC
http://forum.springsource.org

Part II. Architecture and Implementation
Once you are familiar with setting up and running some namespace-configuration based applications, you may

wish to develop more of an understanding of how the framework actually works behind the namespace facade.

Like most software, Spring Security has certain central interfaces, classes and conceptual abstractions that are

commonly used throughout the framework. In this part of the reference guide we will look at some of these

and see how they work together to support authentication and access-control within Spring Security.

Spring Security

3.1.7.RELEASE 31

6.1 Runtime Environment

Spring Security 3.0 requires a Java 5.0 Runtime Environment or higher. As Spring Security aims to operate

in a self-contained manner, there is no need to place any special configuration files into your Java Runtime

Environment. In particular, there is no need to configure a special Java Authentication and Authorization

Service (JAAS) policy file or place Spring Security into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any special

configuration files anywhere, nor include Spring Security in a server classloader. All the required files will be

contained within your application.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact (be it a

JAR, WAR or EAR) from one system to another and it will immediately work.

6.2 Core Components

In Spring Security 3.0, the contents of the spring-security-core jar were stripped down to the

bare minimum. It no longer contains any code related to web-application security, LDAP or namespace

configuration. We'll take a look here at some of the Java types that you'll find in the core module. They represent

the building blocks of the the framework, so if you ever need to go beyond a simple namespace configuration

then it's important that you understand what they are, even if you don't actually need to interact with them

directly.

SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is SecurityContextHolder. This is where we store details of the present

security context of the application, which includes details of the principal currently using the application. By

default the SecurityContextHolder uses a ThreadLocal to store these details, which means that the

security context is always available to methods in the same thread of execution, even if the security context is

not explicitly passed around as an argument to those methods. Using a ThreadLocal in this way is quite safe

if care is taken to clear the thread after the present principal's request is processed. Of course, Spring Security

takes care of this for you automatically so there is no need to worry about it.

Some applications aren't entirely suitable for using a ThreadLocal, because of the specific way they

work with threads. For example, a Swing client might want all threads in a Java Virtual Machine

to use the same security context. SecurityContextHolder can be configured with a strategy on

startup to specify how you would like the context to be stored. For a standalone application you would

use the SecurityContextHolder.MODE_GLOBAL strategy. Other applications might want to have

threads spawned by the secure thread also assume the same security identity. This is achieved by using

SecurityContextHolder.MODE_INHERITABLETHREADLOCAL. You can change the mode from the

default SecurityContextHolder.MODE_THREADLOCAL in two ways. The first is to set a system

property, the second is to call a static method on SecurityContextHolder. Most applications won't need

to change from the default, but if you do, take a look at the JavaDocs for SecurityContextHolder to

learn more.

Spring Security

3.1.7.RELEASE 32

Obtaining information about the current user

Inside the SecurityContextHolder we store details of the principal currently interacting with the

application. Spring Security uses an Authentication object to represent this information. You won't

normally need to create an Authentication object yourself, but it is fairly common for users to query the

Authentication object. You can use the following code block - from anywhere in your application - to

obtain the name of the currently authenticated user, for example:

Object principal = SecurityContextHolder.getContext().getAuthentication().getPrincipal();

if (principal instanceof UserDetails) {

 String username = ((UserDetails)principal).getUsername();

} else {

 String username = principal.toString();

}

The object returned by the call to getContext() is an instance of the SecurityContext interface. This

is the object that is kept in thread-local storage. As we'll see below, most authentication mechanisms withing

Spring Security return an instance of UserDetails as the principal.

The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from the

Authentication object. The principal is just an Object. Most of the time this can be cast into a

UserDetails object. UserDetails is a core interface in Spring Security. It represents a principal,

but in an extensible and application-specific way. Think of UserDetails as the adapter between your

own user database and what Spring Security needs inside the SecurityContextHolder. Being a

representation of something from your own user database, quite often you will cast the UserDetails to the

original object that your application provided, so you can call business-specific methods (like getEmail(),

getEmployeeNumber() and so on).

By now you're probably wondering, so when do I provide a UserDetails object? How do I do that? I thought

you said this thing was declarative and I didn't need to write any Java code - what gives? The short answer is

that there is a special interface called UserDetailsService. The only method on this interface accepts a

String-based username argument and returns a UserDetails:

 UserDetails loadUserByUsername(String username) throws UsernameNotFoundException;

This is the most common approach to loading information for a user within Spring Security and you will see

it used throughout the framework whenever information on a user is required.

On successful authentication, UserDetails is used to build the Authentication object that is

stored in the SecurityContextHolder (more on this below). The good news is that we provide

a number of UserDetailsService implementations, including one that uses an in-memory map

(InMemoryDaoImpl) and another that uses JDBC (JdbcDaoImpl). Most users tend to write their own,

though, with their implementations often simply sitting on top of an existing Data Access Object (DAO) that

represents their employees, customers, or other users of the application. Remember the advantage that whatever

your UserDetailsService returns can always be obtained from the SecurityContextHolder using

the above code fragment.

Spring Security

3.1.7.RELEASE 33

Note

There is often some confusion about UserDetailsService. It is purely a DAO for user data and

performs no other function other than to supply that data to other components within the framework.

In particular, it does not authenticate the user, which is done by the AuthenticationManager. In

many cases it makes more sense to implement AuthenticationProvider directly if you require

a custom authentication process.

GrantedAuthority

Besides the principal, another important method provided by Authentication is getAuthorities().

This method provides an array of GrantedAuthority objects. A GrantedAuthority is, not

surprisingly, an authority that is granted to the principal. Such authorities are usually “roles”, such as

ROLE_ADMINISTRATOR or ROLE_HR_SUPERVISOR. These roles are later on configured for web

authorization, method authorization and domain object authorization. Other parts of Spring Security are capable

of interpreting these authorities, and expect them to be present. GrantedAuthority objects are usually

loaded by the UserDetailsService.

Usually the GrantedAuthority objects are application-wide permissions. They are not specific to a

given domain object. Thus, you wouldn't likely have a GrantedAuthority to represent a permission to

Employee object number 54, because if there are thousands of such authorities you would quickly run out

of memory (or, at the very least, cause the application to take a long time to authenticate a user). Of course,

Spring Security is expressly designed to handle this common requirement, but you'd instead use the project's

domain object security capabilities for this purpose.

Summary

Just to recap, the major building blocks of Spring Security that we've seen so far are:

• SecurityContextHolder, to provide access to the SecurityContext.

• SecurityContext, to hold the Authentication and possibly request-specific security information.

• Authentication, to represent the principal in a Spring Security-specific manner.

• GrantedAuthority, to reflect the application-wide permissions granted to a principal.

• UserDetails, to provide the necessary information to build an Authentication object from your

application's DAOs or other source source of security data.

• UserDetailsService, to create a UserDetails when passed in a String-based username (or

certificate ID or the like).

Now that you've gained an understanding of these repeatedly-used components, let's take a closer look at the

process of authentication.

6.3 Authentication

Spring Security can participate in many different authentication environments. While we recommend people

use Spring Security for authentication and not integrate with existing Container Managed Authentication, it is

nevertheless supported - as is integrating with your own proprietary authentication system.

Spring Security

3.1.7.RELEASE 34

What is authentication in Spring Security?

Let's consider a standard authentication scenario that everyone is familiar with.

1. A user is prompted to log in with a username and password.

2. The system (successfully) verifies that the password is correct for the username.

3. The context information for that user is obtained (their list of roles and so on).

4. A security context is established for the user

5. The user proceeds, potentially to perform some operation which is potentially protected by an access control

mechanism which checks the required permissions for the operation against the current security context

information.

The first three items constitute the authentication process so we'll take a look at how these take place within

Spring Security.

1. The username and password are obtained and combined into an instance of

UsernamePasswordAuthenticationToken (an instance of the Authentication interface,

which we saw earlier).

2. The token is passed to an instance of AuthenticationManager for validation.

3. The AuthenticationManager returns a fully populated Authentication instance on successful

authentication.

4. The security context is established by calling

SecurityContextHolder.getContext().setAuthentication(...), passing in the

returned authentication object.

From that point on, the user is considered to be authenticated. Let's look at some code as an example.

import org.springframework.security.authentication.*;

import org.springframework.security.core.*;

import org.springframework.security.core.authority.SimpleGrantedAuthority;

import org.springframework.security.core.context.SecurityContextHolder;

public class AuthenticationExample {

 private static AuthenticationManager am = new SampleAuthenticationManager();

 public static void main(String[] args) throws Exception {

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

 while(true) {

 System.out.println("Please enter your username:");

 String name = in.readLine();

 System.out.println("Please enter your password:");

 String password = in.readLine();

 try {

 Authentication request = new UsernamePasswordAuthenticationToken(name, password);

 Authentication result = am.authenticate(request);

 SecurityContextHolder.getContext().setAuthentication(result);

 break;

 } catch(AuthenticationException e) {

Spring Security

3.1.7.RELEASE 35

 System.out.println("Authentication failed: " + e.getMessage());

 }

 }

 System.out.println("Successfully authenticated. Security context contains: " +

 SecurityContextHolder.getContext().getAuthentication());

 }

}

class SampleAuthenticationManager implements AuthenticationManager {

 static final List<GrantedAuthority> AUTHORITIES = new ArrayList<GrantedAuthority>();

 static {

 AUTHORITIES.add(new SimpleGrantedAuthority("ROLE_USER"));

 }

 public Authentication authenticate(Authentication auth) throws AuthenticationException {

 if (auth.getName().equals(auth.getCredentials())) {

 return new UsernamePasswordAuthenticationToken(auth.getName(),

 auth.getCredentials(), AUTHORITIES);

 }

 throw new BadCredentialsException("Bad Credentials");

 }

}

Here we have written a little program that asks the user to enter a username and password and performs the

above sequence. The AuthenticationManager which we've implemented here will authenticate any user

whose username and password are the same. It assigns a single role to every user. The output from the above

will be something like:

Please enter your username:

bob

Please enter your password:

password

Authentication failed: Bad Credentials

Please enter your username:

bob

Please enter your password:

bob

Successfully authenticated. Security context contains: \

 org.springframework.security.authentication.UsernamePasswordAuthenticationToken@441d0230: \

 Principal: bob; Password: [PROTECTED]; \

 Authenticated: true; Details: null; \

 Granted Authorities: ROLE_USER

Note that you don't normally need to write any code like this. The process will normally occur internally, in

a web authentication filter for example. We've just included the code here to show that the question of what

actually constitutes authentication in Spring Security has quite a simple answer. A user is authenticated when

the SecurityContextHolder contains a fully populated Authentication object.

Setting the SecurityContextHolder Contents Directly

In fact, Spring Security doesn't mind how you put the Authentication object

inside the SecurityContextHolder. The only critical requirement is that the

SecurityContextHolder contains an Authentication which represents a principal before the

AbstractSecurityInterceptor (which we'll see more about later) needs to authorize a user operation.

Spring Security

3.1.7.RELEASE 36

You can (and many users do) write their own filters or MVC controllers to provide interoperability with

authentication systems that are not based on Spring Security. For example, you might be using Container-

Managed Authentication which makes the current user available from a ThreadLocal or JNDI location. Or you

might work for a company that has a legacy proprietary authentication system, which is a corporate "standard"

over which you have little control. In situations like this it's quite easy to get Spring Security to work, and

still provide authorization capabilities. All you need to do is write a filter (or equivalent) that reads the third-

party user information from a location, build a Spring Security-specific Authentication object, and put

it into the SecurityContextHolder. In this case you also need to think about things which are normally

taken care of automatically by the built-in authentication infrastructure. For example, you might need to pre-

emptively create an HTTP session to cache the context between requests [tech-intro-sec-context-persistence],

before you write the response to the client1.

If you're wondering how the AuthenticationManager is implemented in a real world example, we'll

look at that in the core services chapter.

6.4 Authentication in a Web Application

Now let's explore the situation where you are using Spring Security in a web application (without web.xml

security enabled). How is a user authenticated and the security context established?

Consider a typical web application's authentication process:

1. You visit the home page, and click on a link.

2. A request goes to the server, and the server decides that you've asked for a protected resource.

3. As you're not presently authenticated, the server sends back a response indicating that you must authenticate.

The response will either be an HTTP response code, or a redirect to a particular web page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web page so

that you can fill out the form, or the browser will somehow retrieve your identity (via a BASIC authentication

dialogue box, a cookie, a X.509 certificate etc.).

5. The browser will send back a response to the server. This will either be an HTTP POST containing the

contents of the form that you filled out, or an HTTP header containing your authentication details.

6. Next the server will decide whether or not the presented credentials are valid. If they're valid, the next step

will happen. If they're invalid, usually your browser will be asked to try again (so you return to step two

above).

7. The original request that you made to cause the authentication process will be retried. Hopefully you've

authenticated with sufficient granted authorities to access the protected resource. If you have sufficient

access, the request will be successful. Otherwise, you'll receive back an HTTP error code 403, which means

"forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The main

participants (in the order that they are used) are the ExceptionTranslationFilter, an

1It isn't possible to create a session once the response has been committed.

tech-intro-sec-context-persistence
tech-intro-sec-context-persistence

Spring Security

3.1.7.RELEASE 37

AuthenticationEntryPoint and an “authentication mechanism”, which is responsible for calling the

AuthenticationManager which we saw in the previous section.

ExceptionTranslationFilter

ExceptionTranslationFilter is a Spring Security filter that has responsibility for detecting

any Spring Security exceptions that are thrown. Such exceptions will generally be thrown by an

AbstractSecurityInterceptor, which is the main provider of authorization services. We will discuss

AbstractSecurityInterceptor in the next section, but for now we just need to know that it produces

Java exceptions and knows nothing about HTTP or how to go about authenticating a principal. Instead the

ExceptionTranslationFilter offers this service, with specific responsibility for either returning error

code 403 (if the principal has been authenticated and therefore simply lacks sufficient access - as per step seven

above), or launching an AuthenticationEntryPoint (if the principal has not been authenticated and

therefore we need to go commence step three).

AuthenticationEntryPoint

The AuthenticationEntryPoint is responsible for step three in the above list. As you can imagine, each

web application will have a default authentication strategy (well, this can be configured like nearly everything

else in Spring Security, but let's keep it simple for now). Each major authentication system will have its own

AuthenticationEntryPoint implementation, which typically performs one of the actions described in

step 3.

Authentication Mechanism

Once your browser submits your authentication credentials (either as an HTTP form post or HTTP header) there

needs to be something on the server that “collects” these authentication details. By now we're at step six in the

above list. In Spring Security we have a special name for the function of collecting authentication details from

a user agent (usually a web browser), referring to it as the “authentication mechanism”. Examples are form-

base login and Basic authentication. Once the authentication details have been collected from the user agent,

an Authentication “request” object is built and then presented to the AuthenticationManager.

After the authentication mechanism receives back the fully-populated Authentication object, it will deem

the request valid, put the Authentication into the SecurityContextHolder, and cause the original

request to be retried (step seven above). If, on the other hand, the AuthenticationManager rejected the

request, the authentication mechanism will ask the user agent to retry (step two above).

Storing the SecurityContext between requests

Depending on the type of application, there may need to be a strategy in place to store the security

context between user operations. In a typical web application, a user logs in once and is subsequently

identified by their session Id. The server caches the principal information for the duration session. In

Spring Security, the responsibility for storing the SecurityContext between requests falls to the

SecurityContextPersistenceFilter, which by default stores the context as an HttpSession

attribute between HTTP requests. It restores the context to the SecurityContextHolder for each request

and, crucially, clears the SecurityContextHolder when the request completes. You shouldn't interact

directly with the HttpSession for security purposes. There is simply no justification for doing so - always

use the SecurityContextHolder instead.

Spring Security

3.1.7.RELEASE 38

Many other types of application (for example, a stateless RESTful web service) do not use

HTTP sessions and will re-authenticate on every request. However, it is still important that

the SecurityContextPersistenceFilter is included in the chain to make sure that the

SecurityContextHolder is cleared after each request.

Note

In an application which receives concurrent requests in a single session, the same

SecurityContext instance will be shared between threads. Even though a ThreadLocal

is being used, it is the same instance that is retrieved from the HttpSession for

each thread. This has implications if you wish to temporarily change the context under

which a thread is running. If you just use SecurityContextHolder.getContext(),

and call setAuthentication(anAuthentication) on the returned context object,

then the Authentication object will change in all concurrent threads which

share the same SecurityContext instance. You can customize the behaviour of

SecurityContextPersistenceFilter to create a completely new SecurityContext

for each request, preventing changes in one thread from affecting another. Alternatively you can

create a new instance just at the point where you temporarily change the context. The method

SecurityContextHolder.createEmptyContext() always returns a new context instance.

6.5 Access-Control (Authorization) in Spring Security

The main interface responsible for making access-control decisions in Spring Security is the

AccessDecisionManager. It has a decide method which takes an Authentication object

representing the principal requesting access, a “secure object” (see below) and a list of security metadata

attributes which apply for the object (such as a list of roles which are required for access to be granted).

Security and AOP Advice

If you're familiar with AOP, you'd be aware there are different types of advice available: before, after, throws

and around. An around advice is very useful, because an advisor can elect whether or not to proceed with a

method invocation, whether or not to modify the response, and whether or not to throw an exception. Spring

Security provides an around advice for method invocations as well as web requests. We achieve an around

advice for method invocations using Spring's standard AOP support and we achieve an around advice for web

requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you protect

method invocations as well as web requests. Most people are interested in securing method invocations on their

services layer. This is because the services layer is where most business logic resides in current-generation J2EE

applications. If you just need to secure method invocations in the services layer, Spring's standard AOP will be

adequate. If you need to secure domain objects directly, you will likely find that AspectJ is worth considering.

You can elect to perform method authorization using AspectJ or Spring AOP, or you can elect to perform

web request authorization using filters. You can use zero, one, two or three of these approaches together.

The mainstream usage pattern is to perform some web request authorization, coupled with some Spring AOP

method invocation authorization on the services layer.

Spring Security

3.1.7.RELEASE 39

Secure Objects and the AbstractSecurityInterceptor

So what is a “secure object” anyway? Spring Security uses the term to refer to any object that can have security

(such as an authorization decision) applied to it. The most common examples are method invocations and web

requests.

Each supported secure object type has its own interceptor class, which is

a subclass of AbstractSecurityInterceptor. Importantly, by the time the

AbstractSecurityInterceptor is called, the SecurityContextHolder will contain a valid

Authentication if the principal has been authenticated.

AbstractSecurityInterceptor provides a consistent workflow for handling secure object requests,

typically:

1. Look up the “configuration attributes” associated with the present request

2. Submitting the secure object, current Authentication and configuration attributes to the

AccessDecisionManager for an authorization decision

3. Optionally change the Authentication under which the invocation takes place

4. Allow the secure object invocation to proceed (assuming access was granted)

5. Call the AfterInvocationManager if configured, once the invocation has returned. If the invocation

raised an exception, the AfterInvocationManager will not be invoked.

What are Configuration Attributes?

A “configuration attribute” can be thought of as a String that has special meaning to the

classes used by AbstractSecurityInterceptor. They are represented by the interface

ConfigAttribute within the framework. They may be simple role names or have more complex

meaning, depending on the how sophisticated the AccessDecisionManager implementation is. The

AbstractSecurityInterceptor is configured with a SecurityMetadataSource which it uses

to look up the attributes for a secure object. Usually this configuration will be hidden from the user.

Configuration attributes will be entered as annotations on secured methods or as access attributes on

secured URLs. For example, when we saw something like <intercept-url pattern='/secure/

**' access='ROLE_A,ROLE_B'/> in the namespace introduction, this is saying that the configuration

attributes ROLE_A and ROLE_B apply to web requests matching the given pattern. In practice, with the default

AccessDecisionManager configuration, this means that anyone who has a GrantedAuthority

matching either of these two attributes will be allowed access. Strictly speaking though, they are just attributes

and the interpretation is dependent on the AccessDecisionManager implementation. The use of the prefix

ROLE_ is a marker to indicate that these attributes are roles and should be consumed by Spring Security's

RoleVoter. This is only relevant when a voter-based AccessDecisionManager is in use. We'll see how

the AccessDecisionManager is implemented in the authorization chapter.

RunAsManager

Assuming AccessDecisionManager decides to allow the request, the

AbstractSecurityInterceptor will normally just proceed with the request. Having said that, on rare

Spring Security

3.1.7.RELEASE 40

occasions users may want to replace the Authentication inside the SecurityContext with a different

Authentication, which is handled by the AccessDecisionManager calling a RunAsManager.

This might be useful in reasonably unusual situations, such as if a services layer method needs to call a remote

system and present a different identity. Because Spring Security automatically propagates security identity from

one server to another (assuming you're using a properly-configured RMI or HttpInvoker remoting protocol

client), this may be useful.

AfterInvocationManager

Following the secure object invocation proceeding and then returning - which may mean a method invocation

completing or a filter chain proceeding - the AbstractSecurityInterceptor gets one final chance

to handle the invocation. At this stage the AbstractSecurityInterceptor is interested in possibly

modifying the return object. We might want this to happen because an authorization decision couldn't be made

“on the way in” to a secure object invocation. Being highly pluggable, AbstractSecurityInterceptor

will pass control to an AfterInvocationManager to actually modify the object if needed. This class can

even entirely replace the object, or throw an exception, or not change it in any way as it chooses. The after-

invocation checks will only be executed if the invocation is successful. If an exception occurs, the additional

checks will be skipped.

AbstractSecurityInterceptor and its related objects are shown in Figure 6.1, “Security interceptors

and the “secure object” model”.

Figure 6.1. Security interceptors and the “secure object” model

Spring Security

3.1.7.RELEASE 41

Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need

to use secure objects directly. For example, it would be possible to build a new secure object to secure

calls to a messaging system. Anything that requires security and also provides a way of intercepting a call

(like the AOP around advice semantics) is capable of being made into a secure object. Having said that,

most Spring applications will simply use the three currently supported secure object types (AOP Alliance

MethodInvocation, AspectJ JoinPoint and web request FilterInvocation) with complete

transparency.

6.6 Localization

Spring Security supports localization of exception messages that end users are likely to see. If your application is

designed for English-speaking users, you don't need to do anything as by default all Security Security messages

are in English. If you need to support other locales, everything you need to know is contained in this section.

All exception messages can be localized, including messages related to authentication failures and access being

denied (authorization failures). Exceptions and logging messages that are focused on developers or system

deployers (including incorrect attributes, interface contract violations, using incorrect constructors, startup time

validation, debug-level logging) are not localized and instead are hard-coded in English within Spring Security's

code.

Shipping in the spring-security-core-xx.jar you will find an

org.springframework.security package that in turn contains a messages.properties

file, as well as localized versions for some common languages. This should be referred to by your

ApplicationContext, as Spring Security classes implement Spring's MessageSourceAware interface

and expect the message resolver to be dependency injected at application context startup time. Usually all you

need to do is register a bean inside your application context to refer to the messages. An example is shown

below:

<bean id="messageSource"

 class="org.springframework.context.support.ReloadableResourceBundleMessageSource">

 <property name="basename" value="classpath:org/springframework/security/messages"/>

</bean>

The messages.properties is named in accordance with standard resource bundles and represents the

default language supported by Spring Security messages. This default file is in English.

If you wish to customize the messages.properties file, or support other languages, you should copy

the file, rename it accordingly, and register it inside the above bean definition. There are not a large number

of message keys inside this file, so localization should not be considered a major initiative. If you do perform

localization of this file, please consider sharing your work with the community by logging a JIRA task and

attaching your appropriately-named localized version of messages.properties.

Spring Security relies on Spring's localization support in order to actually lookup the appropriate

message. In order for this to work, you have to make sure that the locale from the incoming request

is stored in Spring's org.springframework.context.i18n.LocaleContextHolder. Spring

Spring Security

3.1.7.RELEASE 42

MVC's DispatcherServlet does this for your application automatically, but since Spring Security's filters

are invoked before this, the LocaleContextHolder needs to be set up to contain the correct Locale

before the filters are called. You can either do this in a filter yourself (which must come before the Spring

Security filters in web.xml) or you can use Spring's RequestContextFilter. Please refer to the Spring

Framework documentation for further details on using localization with Spring.

The “contacts” sample application is set up to use localized messages.

Spring Security

3.1.7.RELEASE 43

Now that we have a high-level overview of the Spring Security architecture and its core classes, let's

take a closer look at one or two of the core interfaces and their implementations, in particular the

AuthenticationManager, UserDetailsService and the AccessDecisionManager. These

crop up regularly throughout the remainder of this document so it's important you know how they are configured

and how they operate.

7.1 The AuthenticationManager, ProviderManager and
AuthenticationProviders

The AuthenticationManager is just an interface, so the implementation can be anything we choose, but

how does it work in practice? What if we need to check multiple authentication databases or a combination of

different authentication services such as a database and an LDAP server?

The default implementation in Spring Security is called ProviderManager and rather than handling the

authentication request itself, it delegates to a list of configured AuthenticationProviders, each of which

is queried in turn to see if it can perform the authentication. Each provider will either throw an exception

or return a fully populated Authentication object. Remember our good friends, UserDetails and

UserDetailsService? If not, head back to the previous chapter and refresh your memory. The most

common approach to verifying an authentication request is to load the corresponding UserDetails and

check the loaded password against the one that has been entered by the user. This is the approach used by

the DaoAuthenticationProvider (see below). The loaded UserDetails object - and particularly

the GrantedAuthoritys it contains - will be used when building the fully populated Authentication

object which is returned from a successful authentication and stored in the SecurityContext.

If you are using the namespace, an instance of ProviderManager is created and maintained internally, and

you add providers to it by using the namespace authentication provider elements (see the namespace chapter).

In this case, you should not declare a ProviderManager bean in your application context. However, if you

are not using the namespace then you would declare it like so:

<bean id="authenticationManager"

 class="org.springframework.security.authentication.ProviderManager">

 <property name="providers">

 <list>

 <ref local="daoAuthenticationProvider"/>

 <ref local="anonymousAuthenticationProvider"/>

 <ref local="ldapAuthenticationProvider"/>

 </list>

 </property>

</bean>

In the above example we have three providers. They are tried in the order shown (which is implied by the use of

a List), with each provider able to attempt authentication, or skip authentication by simply returning null. If

all implementations return null, the ProviderManager will throw a ProviderNotFoundException.

If you're interested in learning more about chaining providers, please refer to the ProviderManager

JavaDocs.

Authentication mechanisms such as a web form-login processing filter are injected with a reference to the

ProviderManager and will call it to handle their authentication requests. The providers you require

Spring Security

3.1.7.RELEASE 44

will sometimes be interchangeable with the authentication mechanisms, while at other times they will

depend on a specific authentication mechanism. For example, DaoAuthenticationProvider and

LdapAuthenticationProvider are compatible with any mechanism which submits a simple username/

password authentication request and so will work with form-based logins or HTTP Basic authentication.

On the other hand, some authentication mechanisms create an authentication request object which can

only be interpreted by a single type of AuthenticationProvider. An example of this would be

JA-SIG CAS, which uses the notion of a service ticket and so can therefore only be authenticated by a

CasAuthenticationProvider. You needn't be too concerned about this, because if you forget to

register a suitable provider, you'll simply receive a ProviderNotFoundException when an attempt to

authenticate is made.

Erasing Credentials on Successful Authentication

By default (from Spring Security 3.1 onwards) the ProviderManager will attempt to clear any sensitive

credentials information from the Authentication object which is returned by a successful authentication

request. This prevents information like passwords being retained longer than necessary.

This may cause issues when you are using a cache of user objects, for example, to improve performance

in a stateless application. If the Authentication contains a reference to an object in the cache (such

as a UserDetails instance) and this has its credentials removed, then it will no longer be possible

to authenticate against the cached value. You need to take this into account if you are using a cache.

An obvious solution is to make a copy of the object first, either in the cache implementation or in the

AuthenticationProvider which creates the returned Authentication object. Alternatively, you

can disable the eraseCredentialsAfterAuthentication property on ProviderManager. See

the Javadoc for more information.

DaoAuthenticationProvider

The simplest AuthenticationProvider implemented by Spring Security is

DaoAuthenticationProvider, which is also one of the earliest supported by the framework. It

leverages a UserDetailsService (as a DAO) in order to lookup the username, password and

GrantedAuthoritys. It authenticates the user simply by comparing the password submitted in a

UsernamePasswordAuthenticationToken against the one loaded by the UserDetailsService.

Configuring the provider is quite simple:

<bean id="daoAuthenticationProvider"

 class="org.springframework.security.authentication.dao.DaoAuthenticationProvider">

 <property name="userDetailsService" ref="inMemoryDaoImpl"/>

 <property name="passwordEncoder" ref="passwordEncoder"/>

</bean>

The PasswordEncoder is optional. A PasswordEncoder provides encoding and decoding of passwords

presented in the UserDetails object that is returned from the configured UserDetailsService. This

will be discussed in more detail below.

Spring Security

3.1.7.RELEASE 45

7.2 UserDetailsService Implementations

As mentioned in the earlier in this reference guide, most authentication providers take advantage

of the UserDetails and UserDetailsService interfaces. Recall that the contract for

UserDetailsService is a single method:

 UserDetails loadUserByUsername(String username) throws UsernameNotFoundException;

The returned UserDetails is an interface that provides getters that guarantee non-null provision of

authentication information such as the username, password, granted authorities and whether the user account

is enabled or disabled. Most authentication providers will use a UserDetailsService, even if the

username and password are not actually used as part of the authentication decision. They may use the returned

UserDetails object just for its GrantedAuthority information, because some other system (like LDAP

or X.509 or CAS etc) has undertaken the responsibility of actually validating the credentials.

Given UserDetailsService is so simple to implement, it should be easy for users to retrieve

authentication information using a persistence strategy of their choice. Having said that, Spring Security does

include a couple of useful base implementations, which we'll look at below.

In-Memory Authentication

Is easy to use create a custom UserDetailsService implementation that extracts information from a

persistence engine of choice, but many applications do not require such complexity. This is particularly true if

you're building a prototype application or just starting integrating Spring Security, when you don't really want

to spend time configuring databases or writing UserDetailsService implementations. For this sort of

situation, a simple option is to use the user-service element from the security namespace:

 <user-service id="userDetailsService">

 <user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />

 <user name="bob" password="bobspassword" authorities="ROLE_USER" />

 </user-service>

This also supports the use of an external properties file:

 <user-service id="userDetailsService" properties="users.properties"/>

The properties file should contain entries in the form

username=password,grantedAuthority[,grantedAuthority][,enabled|disabled]

For example

 jimi=jimispassword,ROLE_USER,ROLE_ADMIN,enabled

 bob=bobspassword,ROLE_USER,enabled

Spring Security

3.1.7.RELEASE 46

JdbcDaoImpl

Spring Security also includes a UserDetailsService that can obtain authentication information from

a JDBC data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured object

relational mapper (ORM) just to store user details. If your application does use an ORM tool, you might

prefer to write a custom UserDetailsService to reuse the mapping files you've probably already created.

Returning to JdbcDaoImpl, an example configuration is shown below:

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">

 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>

 <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>

 <property name="username" value="sa"/>

 <property name="password" value=""/>

</bean>

<bean id="userDetailsService"

 class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">

 <property name="dataSource" ref="dataSource"/>

</bean>

You can use different relational database management systems by modifying the

DriverManagerDataSource shown above. You can also use a global data source obtained from JNDI,

as with any other Spring configuration.

Authority Groups

By default, JdbcDaoImpl loads the authorities for a single user with the assumption that the authorities

are mapped directly to users (see the database schema appendix). An alternative approach is to partition

the authorities into groups and assign groups to the user. Some people prefer this approach as a means of

administering user rights. See the JdbcDaoImpl Javadoc for more information on how to enable the use of

group authorities. The group schema is also included in the appendix.

7.3 Password Encoding

Spring Security's PasswordEncoder interface is used to support the use of passwords which

are encoded in some way in persistent storage. This will normally mean that the passwords

are “hashed” using a digest algorithm such as MD5 or SHA. Spring Security 3.1's crypto

package introduces a simpler API which encourages best-practice for password hashing. We would

encourage you to use these APIs for new development and regard the classes in package

org.springframework.security.authentication.encoding as legacy implementations. The

DaoAuthenticationProvider can be injected with either the new or legacy PasswordEncoder

types.

What is a hash?

Password hashing is not unique to Spring Security but is a common source of confusion for users who are not

familiar with the concept. A hash (or digest) algorithm is a one-way function which produces a piece of fixed-

length output data (the hash) from some input data, such as a password. As an example, the MD5 hash of the

string “password” (in hexadecimal) is

Spring Security

3.1.7.RELEASE 47

 5f4dcc3b5aa765d61d8327deb882cf99

A hash is “one-way” in the sense that it is very difficult (effectively impossible) to obtain the original input

given the hash value, or indeed any possible input which would produce that hash value. This property makes

hash values very useful for authentication purposes. They can be stored in your user database as an alternative to

plaintext passwords and even if the values are compromised they do not immediately reveal a password which

can be used to login. Note that this also means you have no way of recovering the password once it is encoded.

Adding Salt to a Hash

One potential problem with the use of password hashes that it is relatively easy to get round the one-way

property of the hash if a common word is used for the input. For example, if you search for the hash

value 5f4dcc3b5aa765d61d8327deb882cf99 using google, you will quickly find the original word

“password”. In a similar way, an attacker can build a dictionary of hashes from a standard word list and use

this to lookup the original password. One way to help prevent this is to have a suitably strong password policy

to try to prevent common words from being used. Another is to use a “salt” when calculating the hashes. This

is an additional string of known data for each user which is combined with the password before calculating

the hash. Ideally the data should be as random as possible, but in practice any salt value is usually preferable

to none. Using a salt means that an attacker has to build a separate dictionary of hashes for each salt value,

making the attack more complicated (but not impossible).

The StandardPasswordEncoder in the crypto package uses a random 8-byte salt, which is stored in

the same field as the password.

Note

The legacy approach to handling salt was to inject a SaltSource into the

DaoAuthenticationProvider, which would obtain a salt value for a particular user and pass

it to the PasswordEncoder. Using a random salt and combining it with the password data field

means you don't have to worry about the details of salt handling (such as where the the value is stored),

as it is all done internally. So we'd strongly recommend you use this approach unless you already have

a system in place which stores the salt separately.

Hashing and Authentication

When an authentication provider (such as Spring Security's DaoAuthenticationProvider) needs to

check the password in a submitted authentication request against the known value for a user, and the stored

password is encoded in some way, then the submitted value must be encoded using exactly the same algorithm.

It's up to you to check that these are compatible as Spring Security has no control over the persistent values. If

you add password hashing to your authentication configuration in Spring Security, and your database contains

plaintext passwords, then there is no way authentication can succeed. Even if you are aware that your database

is using MD5 to encode the passwords, for example, and your application is configured to use Spring Security's

Md5PasswordEncoder, there are still things that can go wrong. The database may have the passwords

encoded in Base 64, for example while the encoder is using hexadecimal strings (the default). Alternatively

your database may be using upper-case while the output from the encoder is lower-case. Make sure you write a

test to check the output from your configured password encoder with a known password and salt combination

Spring Security

3.1.7.RELEASE 48

and check that it matches the database value before going further and attempting to authenticate through your

application.

If you want to generate encoded passwords directly in Java for storage in your user database, then you can use

the encode method on the PasswordEncoder.

Part III. Web Application Security
Most Spring Security users will be using the framework in applications which make user of HTTP and the

Servlet API. In this part, we'll take a look at how Spring Security provides authentication and access-control

features for the web layer of an application. We'll look behind the facade of the namespace and see which

classes and interfaces are actually assembled to provide web-layer security. In some situations it is necessary

to use traditional bean configuration to provide full control over the configuration, so we'll also see how to

configure these classes directly without the namespace.

Spring Security

3.1.7.RELEASE 50

Spring Security's web infrastructure is based entirely on standard servlet filters. It doesn't use servlets or any

other servlet-based frameworks (such as Spring MVC) internally, so it has no strong links to any particular web

technology. It deals in HttpServletRequests and HttpServletResponses and doesn't care whether

the requests come from a browser, a web service client, an HttpInvoker or an AJAX application.

Spring Security maintains a filter chain internally where each of the filters has a particular responsibility

and filters are added or removed from the configuration depending on which services are required. The

ordering of the filters is important as there are dependencies between them. If you have been using namespace

configuration, then the filters are automatically configured for you and you don't have to define any Spring

beans explicitly but here may be times when you want full control over the security filter chain, either because

you are using features which aren't supported in the namespace, or you are using your own customized versions

of classes.

8.1 DelegatingFilterProxy

When using servlet filters, you obviously need to declare them in your web.xml, or they will be ignored

by the servlet container. In Spring Security, the filter classes are also Spring beans defined in the application

context and thus able to take advantage of Spring's rich dependency-injection facilities and lifecycle interfaces.

Spring's DelegatingFilterProxy provides the link between web.xml and the application context.

When using DelegatingFilterProxy, you will see something like this in the web.xml file:

 <filter>

 <filter-name>myFilter</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>myFilter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Notice that the filter is actually a DelegatingFilterProxy, and not the class that will actually implement

the logic of the filter. What DelegatingFilterProxy does is delegate the Filter's methods through

to a bean which is obtained from the Spring application context. This enables the bean to benefit from the

Spring web application context lifecycle support and configuration flexibility. The bean must implement

javax.servlet.Filter and it must have the same name as that in the filter-name element. Read

the Javadoc for DelegatingFilterProxy for more information

8.2 FilterChainProxy

Spring Security's web infrastructure should only be used by delegating to an instance of

FilterChainProxy. The security filters should not be used by themselves. In theory you could declare

each Spring Security filter bean that you require in your application context file and add a corresponding

DelegatingFilterProxy entry to web.xml for each filter, making sure that they are ordered correctly,

but this would be cumbersome and would clutter up the web.xml file quickly if you have a lot of filters.

FilterChainProxy lets us add a single entry to web.xml and deal entirely with the application context

Spring Security

3.1.7.RELEASE 51

file for managing our web security beans. It is wired using a DelegatingFilterProxy, just like in the

example above, but with the filter-name set to the bean name “filterChainProxy”. The filter chain is then

declared in the application context with the same bean name. Here's an example:

<bean id="filterChainProxy" class="org.springframework.security.web.FilterChainProxy">

 <constructor-arg>

 <list>

 <sec:filter-chain pattern="/restful/**" filters="

 securityContextPersistenceFilterWithASCFalse,

 basicAuthenticationFilter,

 exceptionTranslationFilter,

 filterSecurityInterceptor" />

 <sec:filter-chain pattern="/**" filters="

 securityContextPersistenceFilterWithASCTrue,

 formLoginFilter,

 exceptionTranslationFilter,

 filterSecurityInterceptor" />

 </list>

 </constructor-arg>

</bean>

The namespace element filter-chain is used for convenience to set up the security filter chain(s) which

are required within the application. 1. It maps a particular URL pattern to a list of filters built up from the bean

names specified in the filters element, and combines them in a bean of type SecurityFilterChain.

The pattern attribute takes an Ant Paths and the most specific URIs should appear first 2. At runtime the

FilterChainProxy will locate the first URI pattern that matches the current web request and the list of

filter beans specified by the filters attribute will be applied to that request. The filters will be invoked in the

order they are defined, so you have complete control over the filter chain which is applied to a particular URL.

You may have noticed we have declared two SecurityContextPersistenceFilters

in the filter chain (ASC is short for allowSessionCreation, a property of

SecurityContextPersistenceFilter). As web services will never present a jsessionid on

future requests, creating HttpSessions for such user agents would be wasteful. If you had a high-

volume application which required maximum scalability, we recommend you use the approach shown above.

For smaller applications, using a single SecurityContextPersistenceFilter (with its default

allowSessionCreation as true) would likely be sufficient.

Note that FilterChainProxy does not invoke standard filter lifecycle methods on the filters it is configured

with. We recommend you use Spring's application context lifecycle interfaces as an alternative, just as you

would for any other Spring bean.

When we looked at how to set up web security using namespace configuration, we used a

DelegatingFilterProxy with the name “springSecurityFilterChain”. You should now be able to see

that this is the name of the FilterChainProxy which is created by the namespace.

1Note that you'll need to include the security namespace in your application context XML file in order to use this syntax. The older syntax

which used a filter-chain-map is still supported, but is deprecated in favour of the constructor argument injection.
2Instead of a path pattern, the request-matcher-ref attribute can be used to specify a RequestMatcher instance for more

powerful matching

Spring Security

3.1.7.RELEASE 52

Bypassing the Filter Chain

You can use the attribute filters = "none" as an alternative to supplying a filter bean list. This will

omit the request pattern from the security filter chain entirely. Note that anything matching this path will then

have no authentication or authorization services applied and will be freely accessible. If you want to make

use of the contents of the SecurityContext contents during a request, then it must have passed through

the security filter chain. Otherwise the SecurityContextHolder will not have been populated and the

contents will be null.

8.3 Filter Ordering

The order that filters are defined in the chain is very important. Irrespective of which filters you are actually

using, the order should be as follows:

1. ChannelProcessingFilter, because it might need to redirect to a different protocol

2. SecurityContextPersistenceFilter, so a SecurityContext can be set up in the

SecurityContextHolder at the beginning of a web request, and any changes to the

SecurityContext can be copied to the HttpSession when the web request ends (ready for use with

the next web request)

3. ConcurrentSessionFilter, because it uses the SecurityContextHolder functionality and

needs to update the SessionRegistry to reflect ongoing requests from the principal

4. Authentication processing mechanisms - UsernamePasswordAuthenticationFilter,

CasAuthenticationFilter, BasicAuthenticationFilter etc - so that the

SecurityContextHolder can be modified to contain a valid Authentication request token

5. The SecurityContextHolderAwareRequestFilter, if you are using it to install a Spring

Security aware HttpServletRequestWrapper into your servlet container

6. The JaasApiIntegrationFilter, if a JaasAuthenticationToken is in the

SecurityContextHolder this will process the FilterChain as the Subject in the

JaasAuthenticationToken

7. RememberMeAuthenticationFilter, so that if no earlier authentication processing mechanism

updated the SecurityContextHolder, and the request presents a cookie that enables remember-me

services to take place, a suitable remembered Authentication object will be put there

8. AnonymousAuthenticationFilter, so that if no earlier authentication processing mechanism

updated the SecurityContextHolder, an anonymous Authentication object will be put there

9. ExceptionTranslationFilter, to catch any Spring Security exceptions so that either an HTTP error

response can be returned or an appropriate AuthenticationEntryPoint can be launched

10.FilterSecurityInterceptor, to protect web URIs and raise exceptions when access is denied

Spring Security

3.1.7.RELEASE 53

8.4 Request Matching and HttpFirewall

Spring Security has several areas where patterns you have defined are tested against incoming requests in order

to decide how the request should be handled. This occurs when the FilterChainProxy decides which

filter chain a request should be passed through and also when the FilterSecurityInterceptor decides

which security constraints apply to a request. It's important to understand what the mechanism is and what

URL value is used when testing against the patterns that you define.

The Servlet Specification defines several properties for the HttpServletRequest which are accessible via

getter methods, and which we might want to match against. These are the contextPath, servletPath,

pathInfo and queryString. Spring Security is only interested in securing paths within the application,

so the contextPath is ignored. Unfortunately, the servlet spec does not define exactly what the values of

servletPath and pathInfo will contain for a particular request URI. For example, each path segment of a

URL may contain parameters, as defined in RFC 2396 [http://www.ietf.org/rfc/rfc2396.txt]3. The Specification

does not clearly state whether these should be included in the servletPath and pathInfo values and the

behaviour varies between different servlet containers. There is a danger that when an application is deployed in

a container which does not strip path parameters from these values, an attacker could add them to the requested

URL in order to cause a pattern match to succeed or fail unexpectedly.4. Other variations in the incoming

URL are also possible. For example, it could contain path-traversal sequences (like /../) or multiple forward

slashes (//) which could also cause pattern-matches to fail. Some containers normalize these out before

performing the servlet mapping, but others don't. To protect against issues like these, FilterChainProxy

uses an HttpFirewall strategy to check and wrap the request. Un-normalized requests are automatically

rejected by default, and path parameters and duplicate slashes are removed for matching purposes.5. It is

therefore essential that a FilterChainProxy is used to manage the security filter chain. Note that the

servletPath and pathInfo values are decoded by the container, so your application should not have any

valid paths which contain semi-colons, as these parts will be removed for matching purposes.

As mentioned above, the default strategy is to use Ant-style paths for matching and this is likely to be the

best choice for most users. The strategy is implemented in the class AntPathRequestMatcher which

uses Spring's AntPathMatcher to perform a case-insensitive match of the pattern against the concatenated

servletPath and pathInfo, ignoring the queryString.

If for some reason, you need a more powerful matching strategy, you can use regular expressions. The strategy

implementation is then RegexRequestMatcher. See the Javadoc for this class for more information.

In practice we recommend that you use method security at your service layer, to control access to your

application, and do not rely entirely on the use of security constraints defined at the web-application level.

URLs change and it is difficult to take account of all the possible URLs that an application might support and

how requests might be manipulated. You should try and restrict yourself to using a few simple ant paths which

are simple to understand. Always try to use a “deny-by-default” approach where you have a catch-all wildcard

(/** or **) defined last and denying access.

3You have probably seen this when a browser doesn't support cookies and the jsessionid parameter is appended to the URL after a

semi-colon. However the RFC allows the presence of these parameters in any path segment of the URL
4The original values will be returned once the request leaves the FilterChainProxy, so will still be available to the application.
5So, for example, an original request path /secure;hack=1/somefile.html;hack=2 will be returned as /secure/

somefile.html.

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Spring Security

3.1.7.RELEASE 54

Security defined at the service layer is much more robust and harder to bypass, so you should always take

advantage of Spring Security's method security options.

8.5 Use with other Filter-Based Frameworks

If you're using some other framework that is also filter-based, then you need to make sure that the Spring

Security filters come first. This enables the SecurityContextHolder to be populated in time for use by

the other filters. Examples are the use of SiteMesh to decorate your web pages or a web framework like Wicket

which uses a filter to handle its requests.

8.6 Advanced Namespace Configuration

As we saw earlier in the namespace chapter, it's possible to use multiple http elements to define different

security configurations for different URL patterns. Each element creates a filter chain within the internal

FilterChainProxy and the URL pattern that should be mapped to it. The elements will be added in the

order they are declared, so the most specific patterns must again be declared first. Here's another example, for a

similar situation to that above, where the application supports both a stateless RESTful API and also a normal

web application which users log into using a form.

 <!-- Stateless RESTful service using Basic authentication -->

 <http pattern="/restful/**" create-session="stateless">

 <intercept-url pattern='/**' access='ROLE_REMOTE' />

 <http-basic />

 </http>

 <!-- Empty filter chain for the login page -->

 <http pattern="/login.htm*" security="none"/>

 <!-- Additional filter chain for normal users, matching all other requests -->

 <http>

 <intercept-url pattern='/**' access='ROLE_USER' />

 <form-login login-page='/login.htm' default-target-url="/home.htm"/>

 <logout />

 </http>

Spring Security

3.1.7.RELEASE 55

There are some key filters which will always be used in a web application which uses Spring Security, so we'll

look at these and their supporting classes and interfaces first. We won't cover every feature, so be sure to look

at the Javadoc for them if you want to get the complete picture.

9.1 FilterSecurityInterceptor

We've already seen FilterSecurityInterceptor briefly when discussing access-control in general,

and we've already used it with the namespace where the <intercept-url> elements are combined to

configure it internally. Now we'll see how to explicitly configure it for use with a FilterChainProxy, along

with its companion filter ExceptionTranslationFilter. A typical configuration example is shown

below:

<bean id="filterSecurityInterceptor"

 class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

 <property name="authenticationManager" ref="authenticationManager"/>

 <property name="accessDecisionManager" ref="accessDecisionManager"/>

 <property name="securityMetadataSource">

 <security:filter-security-metadata-source>

 <security:intercept-url pattern="/secure/super/**" access="ROLE_WE_DONT_HAVE"/>

 <security:intercept-url pattern="/secure/**" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

 </security:filter-security-metadata-source>

 </property>

</bean>

FilterSecurityInterceptor is responsible for handling the security of HTTP resources. It requires a

reference to an AuthenticationManager and an AccessDecisionManager. It is also supplied with

configuration attributes that apply to different HTTP URL requests. Refer back to the original discussion on

these in the technical introduction.

The FilterSecurityInterceptor can be configured with configuration attributes in two ways.

The first, which is shown above, is using the <filter-security-metadata-source> namespace

element. This is similar to the <http> element from the namespace chapter but the <intercept-

url> child elements only use the pattern and access attributes. Commas are used to delimit the

different configuration attributes that apply to each HTTP URL. The second option is to write your own

SecurityMetadataSource, but this is beyond the scope of this document. Irrespective of the approach

used, the SecurityMetadataSource is responsible for returning a List<ConfigAttribute>

containing all of the configuration attributes associated with a single secure HTTP URL.

It should be noted that the FilterSecurityInterceptor.setSecurityMetadataSource()

method actually expects an instance of FilterInvocationSecurityMetadataSource. This

is a marker interface which subclasses SecurityMetadataSource. It simply denotes the

SecurityMetadataSource understands FilterInvocations. In the interests of simplicity

we'll continue to refer to the FilterInvocationSecurityMetadataSource as a

SecurityMetadataSource, as the distinction is of little relevance to most users.

The SecurityMetadataSource created by the namespace syntax obtains the configuration attributes for

a particular FilterInvocation by matching the request URL against the configured pattern attributes.

This behaves in the same way as it does for namespace configuration. The default is to treat all expressions

Spring Security

3.1.7.RELEASE 56

as Apache Ant paths and regular expressions are also supported for more complex cases. The path-type

attribute is used to specify the type of pattern being used. It is not possible to mix expression syntaxes within

the same definition. As an example, the previous configuration using regular expressions instead of Ant paths

would be written as follows:

<bean id="filterInvocationInterceptor"

 class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

 <property name="authenticationManager" ref="authenticationManager"/>

 <property name="accessDecisionManager" ref="accessDecisionManager"/>

 <property name="runAsManager" ref="runAsManager"/>

 <property name="securityMetadataSource">

 <security:filter-security-metadata-source path-type="regex">

 <security:intercept-url pattern="\A/secure/super/.*\Z" access="ROLE_WE_DONT_HAVE"/>

 <security:intercept-url pattern="\A/secure/.*\" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

 </security:filter-security-metadata-source>

 </property>

</bean>

Patterns are always evaluated in the order they are defined. Thus it is important that more specific patterns are

defined higher in the list than less specific patterns. This is reflected in our example above, where the more

specific /secure/super/ pattern appears higher than the less specific /secure/ pattern. If they were

reversed, the /secure/ pattern would always match and the /secure/super/ pattern would never be

evaluated.

9.2 ExceptionTranslationFilter

The ExceptionTranslationFilter sits above the FilterSecurityInterceptor in the security

filter stack. It doesn't do any actual security enforcement itself, but handles exceptions thrown by the security

interceptors and provides suitable and HTTP responses.

<bean id="exceptionTranslationFilter"

 class="org.springframework.security.web.access.ExceptionTranslationFilter">

 <property name="authenticationEntryPoint" ref="authenticationEntryPoint"/>

 <property name="accessDeniedHandler" ref="accessDeniedHandler"/>

</bean>

<bean id="authenticationEntryPoint"

 class="org.springframework.security.web.authentication.LoginUrlAuthenticationEntryPoint">

 <property name="loginFormUrl" value="/login.jsp"/>

</bean>

<bean id="accessDeniedHandler"

 class="org.springframework.security.web.access.AccessDeniedHandlerImpl">

 <property name="errorPage" value="/accessDenied.htm"/>

</bean>

AuthenticationEntryPoint

The AuthenticationEntryPoint will be called if the user requests a secure HTTP resource but they are

not authenticated. An appropriate AuthenticationException or AccessDeniedException will

be thrown by a security interceptor further down the call stack, triggering the commence method on the entry

point. This does the job of presenting the appropriate response to the user so that authentication can begin.

Spring Security

3.1.7.RELEASE 57

The one we've used here is LoginUrlAuthenticationEntryPoint, which redirects the request to a

different URL (typically a login page). The actual implementation used will depend on the authentication

mechanism you want to be used in your application.

AccessDeniedHandler

What happens if a user is already authenticated and they try to access a protected resource? In normal usage,

this shouldn't happen because the application workflow should be restricted to operations to which a user has

access. For example, an HTML link to an administration page might be hidden from users who do not have an

admin role. You can't rely on hiding links for security though, as there's always a possibility that a user will just

enter the URL directly in an attempt to bypass the restrictions. Or they might modify a RESTful URL to change

some of the argument values. Your application must be protected against these scenarios or it will definitely

be insecure. You will typically use simple web layer security to apply constraints to basic URLs and use more

specific method-based security on your service layer interfaces to really nail down what is permissible.

If an AccessDeniedException is thrown and a user has already been authenticated, then this

means that an operation has been attempted for which they don't have enough permissions. In this case,

ExceptionTranslationFilter will invoke a second strategy, the AccessDeniedHandler. By

default, an AccessDeniedHandlerImpl is used, which just sends a 403 (Forbidden) response to the client.

Alternatively you can configure an instance explicitly (as in the above example) and set an error page URL

which it will forwards the request to 1. This can be a simple “access denied” page, such as a JSP, or it could be

a more complex handler such as an MVC controller. And of course, you can implement the interface yourself

and use your own implementation.

It's also possible to supply a custom AccessDeniedHandler when you're using the namespace to configure

your application. See the namespace appendix for more details.

SavedRequests and the RequestCache Interface

Another of ExceptionTranslationFilter's responsibilities is to save the current request before

invoking the AuthenticationEntryPoint. This allows the request to be restored after the

use has authenticated (see previous overview of web authentication). A typical example would be

where the user logs in with a form, and is then redirected to the original URL by the default

SavedRequestAwareAuthenticationSuccessHandler (see below).

The RequestCache encapsulates the functionality required for storing and retrieving

HttpServletRequest instances. By default the HttpSessionRequestCache is used, which stores

the request in the HttpSession. The RequestCacheFilter has the job of actually restoring the saved

request from the cache when the user is redirected to the original URL.

Under normal circumstances, you shouldn't need to modify any of this functionality, but the saved-request

handling is a “best-effort” approach and there may be situations which the default configuration isn't able to

handle. The use of these interfaces makes it fully pluggable from Spring Security 3.0 onwards.

1We use a forward so that the SecurityContextHolder still contains details of the principal, which may be useful for displaying to the user.

In old releases of Spring Security we relied upon the servlet container to handle a 403 error message, which lacked this useful contextual

information.

Spring Security

3.1.7.RELEASE 58

9.3 SecurityContextPersistenceFilter

We covered the purpose of this all-important filter in the Technical Overview chapter so you might want

to re-read that section at this point. Let's first take a look at how you would configure it for use with a

FilterChainProxy. A basic configuration only requires the bean itself

<bean id="securityContextPersistenceFilter"

 class="org.springframework.security.web.context.SecurityContextPersistenceFilter"/>

As we saw previously, this filter has two main tasks. It is responsible for storage of the SecurityContext

contents between HTTP requests and for clearing the SecurityContextHolder when a request is

completed. Clearing the ThreadLocal in which the context is stored is essential, as it might otherwise be

possible for a thread to be replaced into the servlet container's thread pool, with the security context for a

particular user still attached. This thread might then be used at a later stage, performing operations with the

wrong credentials.

SecurityContextRepository

From Spring Security 3.0, the job of loading and storing the security context is now delegated to a separate

strategy interface:

public interface SecurityContextRepository {

 SecurityContext loadContext(HttpRequestResponseHolder requestResponseHolder);

 void saveContext(SecurityContext context, HttpServletRequest request,

 HttpServletResponse response);

}

The HttpRequestResponseHolder is simply a container for the incoming request and response objects,

allowing the implementation to replace these with wrapper classes. The returned contents will be passed to

the filter chain.

The default implementation is HttpSessionSecurityContextRepository, which stores the security

context as an HttpSession attribute 2. The most important configuration parameter for this implementation

is the allowSessionCreation property, which defaults to true, thus allowing the class to create a

session if it needs one to store the security context for an authenticated user (it won't create one unless

authentication has taken place and the contents of the security context have changed). If you don't want a

session to be created, then you can set this property to false:

<bean id="securityContextPersistenceFilter"

 class="org.springframework.security.web.context.SecurityContextPersistenceFilter">

 <property name='securityContextRepository'>

 <bean class='org.springframework.security.web.context.HttpSessionSecurityContextRepository'>

 <property name='allowSessionCreation' value='false' />

 </bean>

 </property>

</bean>

2In Spring Security 2.0 and earlier, this filter was called HttpSessionContextIntegrationFilter and performed all the work

of storing the context was performed by the filter itself. If you were familiar with this class, then most of the configuration options which

were available can now be found on HttpSessionSecurityContextRepository.

Spring Security

3.1.7.RELEASE 59

Alternatively you could provide an instance of NullSecurityContextRepository, a “null object

[http://en.wikipedia.org/wiki/Null_Object_pattern]” implementation, which will prevent the security context

from being stored, even if a session has already been created during the request.

9.4 UsernamePasswordAuthenticationFilter

We've now seen the three main filters which are always present in a Spring Security web configuration. These

are also the three which are automatically created by the namespace <http> element and cannot be substituted

with alternatives. The only thing that's missing now is an actual authentication mechanism, something that will

allow a user to authenticate. This filter is the most commonly used authentication filter and the one that is

most often customized 3. It also provides the implementation used by the <form-login> element from the

namespace. There are three stages required to configure it.

1. Configure a LoginUrlAuthenticationEntryPoint with the URL of the login page, just as we did

above, and set it on the ExceptionTranslationFilter.

2. Implement the login page (using a JSP or MVC controller).

3. Configure an instance of UsernamePasswordAuthenticationFilter in the application context

4. Add the filter bean to your filter chain proxy (making sure you pay attention to the order).

The login form simply contains j_username and j_password input fields, and posts to the URL that is

monitored by the filter (by default this is /j_spring_security_check). The basic filter configuration

looks something like this:

<bean id="authenticationFilter" class=

"org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

 <property name="authenticationManager" ref="authenticationManager"/>

 <property name="filterProcessesUrl" value="/j_spring_security_check"/>

</bean>

Application Flow on Authentication Success and Failure

The filter calls the configured AuthenticationManager to process each authentication

request. The destination following a successful authentication or an authentication failure is

controlled by the AuthenticationSuccessHandler and AuthenticationFailureHandler

strategy interfaces, respectively. The filter has properties which allow you to

set these so you can customize the behaviour completely 4. Some standard

implementations are supplied such as SimpleUrlAuthenticationSuccessHandler,

SavedRequestAwareAuthenticationSuccessHandler,

SimpleUrlAuthenticationFailureHandler and

ExceptionMappingAuthenticationFailureHandler. Have a look at the Javadoc for these classes

3For historical reasons, prior to Spring Security 3.0, this filter was called AuthenticationProcessingFilter and the entry

point was called AuthenticationProcessingFilterEntryPoint. Since the framework now supports many different forms of

authentication, they have both been given more specific names in 3.0.
4In versions prior to 3.0, the application flow at this point had evolved to a stage was controlled by a mix of properties on this class and

strategy plugins. The decision was made for 3.0 to refactor the code to make these two strategies entirely responsible.

http://en.wikipedia.org/wiki/Null_Object_pattern
http://en.wikipedia.org/wiki/Null_Object_pattern

Spring Security

3.1.7.RELEASE 60

and also for AbstractAuthenticationProcessingFilter to get an overview of how they work and

the supported features.

If authentication is successful, the resulting Authentication object will be placed into the

SecurityContextHolder. The configured AuthenticationSuccessHandler will then be

called to either redirect or forward the user to the appropriate destination. By default a

SavedRequestAwareAuthenticationSuccessHandler is used, which means that the user will be

redirected to the original destination they requested before they were asked to login.

Note

The ExceptionTranslationFilter caches the original request a user makes. When the user

authenticates, the request handler makes use of this cached request to obtain the original URL and

redirect to it. The original request is then rebuilt and used as an alternative.

If authentication fails, the configured AuthenticationFailureHandler will be invoked.

Spring Security

3.1.7.RELEASE 61

Basic and digest authentiation are alternative authentication mechanisms which are popular in web applications.

Basic authentication is often used with stateless clients which pass their credentials on each request. It's quite

common to use it in combination with form-based authentication where an application is used through both a

browser-based user interface and as a web-service. However, basic authentication transmits the password as

plain text so it should only really be used over an encrypted transport layer such as HTTPS.

10.1 BasicAuthenticationFilter

BasicAuthenticationFilter is responsible for processing basic authentication credentials presented

in HTTP headers. This can be used for authenticating calls made by Spring remoting protocols

(such as Hessian and Burlap), as well as normal browser user agents (such as Firefox and Internet

Explorer). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11, and

BasicAuthenticationFilter conforms with this RFC. Basic Authentication is an attractive approach

to authentication, because it is very widely deployed in user agents and implementation is extremely simple

(it's just a Base64 encoding of the username:password, specified in an HTTP header).

Configuration

To implement HTTP Basic Authentication, you need to add a BasicAuthenticationFilter to your

filter chain. The application context should contain BasicAuthenticationFilter and its required

collaborator:

<bean id="basicAuthenticationFilter"

 class="org.springframework.security.web.authentication.www.BasicAuthenticationFilter">

 <property name="authenticationManager" ref="authenticationManager"/>

 <property name="authenticationEntryPoint" ref="authenticationEntryPoint"/>

</bean>

<bean id="authenticationEntryPoint"

 class="org.springframework.security.web.authentication.www.BasicAuthenticationEntryPoint">

 <property name="realmName" value="Name Of Your Realm"/>

</bean>

The configured AuthenticationManager processes each authentication request. If authentication fails,

the configured AuthenticationEntryPoint will be used to retry the authentication process. Usually

you will use the filter in combination with a BasicAuthenticationEntryPoint, which returns a 401

response with a suitable header to retry HTTP Basic authentication. If authentication is successful, the resulting

Authentication object will be placed into the SecurityContextHolder as usual.

If the authentication event was successful, or authentication was not attempted because the HTTP header did

not contain a supported authentication request, the filter chain will continue as normal. The only time the filter

chain will be interrupted is if authentication fails and the AuthenticationEntryPoint is called.

10.2 DigestAuthenticationFilter

DigestAuthenticationFilter is capable of processing digest authentication credentials presented

in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of Basic authentication,

Spring Security

3.1.7.RELEASE 62

specifically by ensuring credentials are never sent in clear text across the wire. Many user agents support Digest

Authentication, including FireFox and Internet Explorer. The standard governing HTTP Digest Authentication

is defined by RFC 2617, which updates an earlier version of the Digest Authentication standard prescribed by

RFC 2069. Most user agents implement RFC 2617. Spring Security's DigestAuthenticationFilter

is compatible with the "auth" quality of protection (qop) prescribed by RFC 2617, which also provides

backward compatibility with RFC 2069. Digest Authentication is a more attractive option if you need to use

unencrypted HTTP (i.e. no TLS/HTTPS) and wish to maximise security of the authentication process. Indeed

Digest Authentication is a mandatory requirement for the WebDAV protocol, as noted by RFC 2518 Section

17.1.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic Authentication

and Digest Authentication, although extra security also means more complex user agent implementations.

Central to Digest Authentication is a "nonce". This is a value the server generates. Spring Security's nonce

adopts the following format:

 base64(expirationTime + ":" + md5Hex(expirationTime + ":" + key))

 expirationTime: The date and time when the nonce expires, expressed in milliseconds

 key: A private key to prevent modification of the nonce token

The DigestAuthenticatonEntryPoint has a property specifying the key used for generating the

nonce tokens, along with a nonceValiditySeconds property for determining the expiration time (default

300, which equals five minutes). Whist ever the nonce is valid, the digest is computed by concatenating various

strings including the username, password, nonce, URI being requested, a client-generated nonce (merely a

random value which the user agent generates each request), the realm name etc, then performing an MD5

hash. Both the server and user agent perform this digest computation, resulting in different hash codes if they

disagree on an included value (eg password). In Spring Security implementation, if the server-generated nonce

has merely expired (but the digest was otherwise valid), the DigestAuthenticationEntryPoint will

send a "stale=true" header. This tells the user agent there is no need to disturb the user (as the password

and username etc is correct), but simply to try again using a new nonce.

An appropriate value for DigestAuthenticationEntryPoint's nonceValiditySeconds

parameter will depend on your application. Extremely secure applications should note that an intercepted

authentication header can be used to impersonate the principal until the expirationTime contained in the

nonce is reached. This is the key principle when selecting an appropriate setting, but it would be unusual for

immensely secure applications to not be running over TLS/HTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent issues. For

example, Internet Explorer fails to present an "opaque" token on subsequent requests in the same session.

Spring Security filters therefore encapsulate all state information into the "nonce" token instead. In our testing,

Spring Security's implementation works reliably with FireFox and Internet Explorer, correctly handling nonce

timeouts etc.

Spring Security

3.1.7.RELEASE 63

Configuration

Now that we've reviewed the theory, let's see how to use it. To implement HTTP Digest Authentication, it

is necessary to define DigestAuthenticationFilter in the filter chain. The application context will

need to define the DigestAuthenticationFilter and its required collaborators:

<bean id="digestFilter" class=

 "org.springframework.security.web.authentication.www.DigestAuthenticationFilter">

 <property name="userDetailsService" ref="jdbcDaoImpl"/>

 <property name="authenticationEntryPoint" ref="digestEntryPoint"/>

 <property name="userCache" ref="userCache"/>

</bean>

<bean id="digestEntryPoint" class=

 "org.springframework.security.web.authentication.www.DigestAuthenticationEntryPoint">

 <property name="realmName" value="Contacts Realm via Digest Authentication"/>

 <property name="key" value="acegi"/>

 <property name="nonceValiditySeconds" value="10"/>

</bean>

The configured UserDetailsService is needed because DigestAuthenticationFilter must

have direct access to the clear text password of a user. Digest Authentication will NOT work if you are using

encoded passwords in your DAO 1. The DAO collaborator, along with the UserCache, are typically shared

directly with a DaoAuthenticationProvider. The authenticationEntryPoint property must

be DigestAuthenticationEntryPoint, so that DigestAuthenticationFilter can obtain the

correct realmName and key for digest calculations.

Like BasicAuthenticationFilter, if authentication is successful an Authentication request

token will be placed into the SecurityContextHolder. If the authentication event was successful, or

authentication was not attempted because the HTTP header did not contain a Digest Authentication request,

the filter chain will continue as normal. The only time the filter chain will be interrupted is if authentication

fails and the AuthenticationEntryPoint is called, as discussed in the previous paragraph.

Digest Authentication's RFC offers a range of additional features to further increase security. For example,

the nonce can be changed on every request. Despite this, Spring Security implementation was designed to

minimise the complexity of the implementation (and the doubtless user agent incompatibilities that would

emerge), and avoid needing to store server-side state. You are invited to review RFC 2617 if you wish to

explore these features in more detail. As far as we are aware, Spring Security's implementation does comply

with the minimum standards of this RFC.

1It is possible to encode the password in the format HEX(MD5(username:realm:password)) provided the

DigestAuthenticationFilter.passwordAlreadyEncoded is set to true. However, other password encodings will not

work with digest authentication.

Spring Security

3.1.7.RELEASE 64

11.1 Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity of a

principal between sessions. This is typically accomplished by sending a cookie to the browser, with the cookie

being detected during future sessions and causing automated login to take place. Spring Security provides the

necessary hooks for these operations to take place, and has two concrete remember-me implementations. One

uses hashing to preserve the security of cookie-based tokens and the other uses a database or other persistent

storage mechanism to store the generated tokens.

Note that both implemementations require a UserDetailsService. If you are using an authentication

provider which doesn't use a UserDetailsService (for example, the LDAP provider) then it won't work

unless you also have a UserDetailsService bean in your application context.

11.2 Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to the browser

upon successful interactive authentication, with the cookie being composed as follows:

 base64(username + ":" + expirationTime + ":" +

 md5Hex(username + ":" + expirationTime + ":" password + ":" + key))

 username: As identifiable to the UserDetailsService

 password: That matches the one in the retrieved UserDetails

 expirationTime: The date and time when the remember-me token expires,

 expressed in milliseconds

 key: A private key to prevent modification of the remember-me token

As such the remember-me token is valid only for the period specified, and provided that the username, password

and key does not change. Notably, this has a potential security issue in that a captured remember-me token

will be usable from any user agent until such time as the token expires. This is the same issue as with digest

authentication. If a principal is aware a token has been captured, they can easily change their password and

immediately invalidate all remember-me tokens on issue. If more significant security is needed you should use

the approach described in the next section. Alternatively remember-me services should simply not be used at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable

remember-me authentication just by adding the <remember-me> element:

 <http>

 ...

 <remember-me key="myAppKey"/>

 </http>

The UserDetailsService will normally be selected automatically. If you have more than one in your

application context, you need to specify which one should be used with the user-service-ref attribute,

where the value is the name of your UserDetailsService bean.

Spring Security

3.1.7.RELEASE 65

11.3 Persistent Token Approach

This approach is based on the article http://jaspan.com/improved_persistent_login_cookie_best_practice with

some minor modifications 1. To use the this approach with namespace configuration, you would supply a

datasource reference:

 <http>

 ...

 <remember-me data-source-ref="someDataSource"/>

 </http>

The database should contain a persistent_logins table, created using the following SQL (or equivalent):

 create table persistent_logins (username varchar(64) not null,

 series varchar(64) primary key,

 token varchar(64) not null,

 last_used timestamp not null)

11.4 Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with

HttpSessions. Remember-me is used with UsernamePasswordAuthenticationFilter, and is

implemented via hooks in the AbstractAuthenticationProcessingFilter superclass. The hooks

will invoke a concrete RememberMeServices at the appropriate times. The interface looks like this:

 Authentication autoLogin(HttpServletRequest request, HttpServletResponse response);

 void loginFail(HttpServletRequest request, HttpServletResponse response);

 void loginSuccess(HttpServletRequest request, HttpServletResponse response,

 Authentication successfulAuthentication);

Please refer to the JavaDocs for a fuller discussion on what the methods do, although

note at this stage that AbstractAuthenticationProcessingFilter only calls the

loginFail() and loginSuccess() methods. The autoLogin() method is called by

RememberMeAuthenticationFilter whenever the SecurityContextHolder does not contain

an Authentication. This interface therefore provides the underlying remember-me implementation with

sufficient notification of authentication-related events, and delegates to the implementation whenever a

candidate web request might contain a cookie and wish to be remembered. This design allows any number of

remember-me implementation strategies. We've seen above that Spring Security provides two implementations.

We'll look at these in turn.

TokenBasedRememberMeServices

This implementation supports the simpler approach described in Section 11.2,

“Simple Hash-Based Token Approach”. TokenBasedRememberMeServices generates a

1Essentially, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion on

this in the comments section of this article.

http://jaspan.com/improved_persistent_login_cookie_best_practice

Spring Security

3.1.7.RELEASE 66

RememberMeAuthenticationToken, which is processed by

RememberMeAuthenticationProvider. A key is shared between this authentication provider and the

TokenBasedRememberMeServices. In addition, TokenBasedRememberMeServices requires A

UserDetailsService from which it can retrieve the username and password for signature comparison purposes,

and generate the RememberMeAuthenticationToken to contain the correct GrantedAuthoritys.

Some sort of logout command should be provided by the application that invalidates the cookie if the user

requests this. TokenBasedRememberMeServices also implements Spring Security's LogoutHandler

interface so can be used with LogoutFilter to have the cookie cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean id="rememberMeFilter" class=

 "org.springframework.security.web.authentication.rememberme.RememberMeAuthenticationFilter">

 <property name="rememberMeServices" ref="rememberMeServices"/>

 <property name="authenticationManager" ref="theAuthenticationManager" />

</bean>

<bean id="rememberMeServices" class=

 "org.springframework.security.web.authentication.rememberme.TokenBasedRememberMeServices">

 <property name="userDetailsService" ref="myUserDetailsService"/>

 <property name="key" value="springRocks"/>

</bean>

<bean id="rememberMeAuthenticationProvider" class=

 "org.springframework.security.authentication.rememberme.RememberMeAuthenticationProvider">

 <property name="key" value="springRocks"/>

</bean>

Don't forget to add your RememberMeServices implementation to your

UsernamePasswordAuthenticationFilter.setRememberMeServices() property, include

the RememberMeAuthenticationProvider in your

AuthenticationManager.setProviders() list, and add

RememberMeAuthenticationFilter into your FilterChainProxy (typically immediately after

your UsernamePasswordAuthenticationFilter).

PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRememberMeServices, but it additionally needs

to be configured with a PersistentTokenRepository to store the tokens. There are two standard

implementations.

• InMemoryTokenRepositoryImpl which is intended for testing only.

• JdbcTokenRepositoryImpl which stores the tokens in a database.

The database schema is described above in Section 11.3, “Persistent Token Approach”.

Spring Security

3.1.7.RELEASE 67

HTTP session related functonality is handled by a combination of the SessionManagementFilter and

the SessionAuthenticationStrategy interface, which the filter delegates to. Typical usage includes

session-fixation protection attack prevention, detection of session timeouts and restrictions on how many

sessions an authenticated user may have open concurrently.

12.1 SessionManagementFilter

The SessionManagementFilter checks the contents of the SecurityContextRepository

against the current contents of the SecurityContextHolder to determine whether a user has been

authenticated during the current request, typically by a non-interactive authentication mechanism, such as pre-

authentication or remember-me 1. If the repository contains a security context, the filter does nothing. If it

doesn't, and the thread-local SecurityContext contains a (non-anonymous) Authentication object,

the filter assumes they have been authenticated by a previous filter in the stack. It will then invoke the configured

SessionAuthenticationStrategy.

If the user is not currently authenticated, the filter will check whether an invalid session ID has been requested

(because of a timeout, for example) and will invoke the configured InvalidSessionStrategy, if

one is set. The most common behaviour is just to redirect to a fixed URL and this is encapsulated in the

standard implementation SimpleRedirectInvalidSessionStrategy. The latter is also used when

configuring an invalid session URL through the namespace, as described earlier.

12.2 SessionAuthenticationStrategy

SessionAuthenticationStrategy is used by both SessionManagementFilter and

AbstractAuthenticationProcessingFilter, so if you are using a customized form-login class,

for example, you will need to inject it into both of these. In this case, a typical configuration, combining the

namespace and custom beans might look like this:

<http>

 <custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />

 <session-management session-authentication-strategy-ref="sas"/>

</http>

<beans:bean id="myAuthFilter" class=

 "org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

 <beans:property name="sessionAuthenticationStrategy" ref="sas" />

 ...

</beans:bean>

<beans:bean id="sas" class=

 "org.springframework.security.web.authentication.session.SessionFixationProtectionStrategy" />

Note that the use of the default, SessionFixationProtectionStrategy may cause issues if you

are storing beans in the session which implement HttpSessionBindingListener, including Spring

session-scoped beans. See the Javadoc for this class for more information.

1Authentication by mechanisms which perform a redirect after authenticating (such as form-login) will not be detected by

SessionManagementFilter, as the filter will not be invoked during the authenticating request. Session-management functionality

has to be handled separately in these cases.

Spring Security

3.1.7.RELEASE 68

12.3 Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same application more

than a specified number of times. Many ISVs take advantage of this to enforce licensing, whilst network

administrators like this feature because it helps prevent people from sharing login names. You can, for example,

stop user “Batman” from logging onto the web application from two different sessions. You can either expire

their previous login or you can report an error when they try to log in again, preventing the second login. Note

that if you are using the second approach, a user who has not explicitly logged out (but who has just closed

their browser, for example) will not be able to log in again until their original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter for the

simplest configuration. Sometimes you need to customize things though.

The implementation uses a specialized version of SessionAuthenticationStrategy, called

ConcurrentSessionControlStrategy.

Note

Previously the concurrent authentication check was made by the ProviderManager, which could

be injected with a ConcurrentSessionController. The latter would check if the user was

attempting to exceed the number of permitted sessions. However, this approach required that an HTTP

session be created in advance, which is undesirable. In Spring Security 3, the user is first authenticated

by the AuthenticationManager and once they are successfully authenticated, a session is created

and the check is made whether they are allowed to have another session open.

To use concurrent session support, you'll need to add the following to web.xml:

 <listener>

 <listener-class>

 org.springframework.security.web.session.HttpSessionEventPublisher

 </listener-class>

 </listener>

In addition, you will need to add the ConcurrentSessionFilter to your FilterChainProxy. The

ConcurrentSessionFilter requires two properties, sessionRegistry, which generally points to

an instance of SessionRegistryImpl, and expiredUrl, which points to the page to display when

a session has expired. A configuration using the namespace to create the FilterChainProxy and other

default beans might look like this:

<http>

 <custom-filter position="CONCURRENT_SESSION_FILTER" ref="concurrencyFilter" />

 <custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />

 <session-management session-authentication-strategy-ref="sas"/>

</http>

<beans:bean id="concurrencyFilter"

 class="org.springframework.security.web.session.ConcurrentSessionFilter">

 <beans:property name="sessionRegistry" ref="sessionRegistry" />

Spring Security

3.1.7.RELEASE 69

 <beans:property name="expiredUrl" value="/session-expired.htm" />

</beans:bean>

<beans:bean id="myAuthFilter" class=

 "org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

 <beans:property name="sessionAuthenticationStrategy" ref="sas" />

 <beans:property name="authenticationManager" ref="authenticationManager" />

</beans:bean>

<beans:bean id="sas" class=

 "org.springframework.security.web.authentication.session.ConcurrentSessionControlStrategy">

 <beans:constructor-arg name="sessionRegistry" ref="sessionRegistry" />

 <beans:property name="maximumSessions" value="1" />

</beans:bean>

<beans:bean id="sessionRegistry"

 class="org.springframework.security.core.session.SessionRegistryImpl" />

Adding the listener to web.xml causes an ApplicationEvent to be published to the Spring

ApplicationContext every time a HttpSession commences or terminates. This is critical, as it allows

the SessionRegistryImpl to be notified when a session ends. Without it, a user will never be able to

log back in again once they have exceeded their session allowance, even if they log out of another session

or it times out.

Querying the SessionRegistry for currently authenticated users and
their sessions

Setting up concurrency-control, either through the namespace or using plain beans has the useful side effect of

providing you with a reference to the SessionRegistry which you can use directly within your application,

so even if you don't want to restrict the number of sessions a user may have, it may be worth setting up the

infrastructure anyway. You can set the maximumSession property to -1 to allow unlimited sessions. If

you're using the namespace, you can set an alias for the internally-created SessionRegistry using the

session-registry-alias attribute, providing a reference which you can inject into your own beans.

The getAllPrincipals() method supplies you with a list of the currently authenticated users.

You can list a user's sessions by calling the getAllSessions(Object principal, boolean

includeExpiredSessions) method, which returns a list of SessionInformation objects. You can

also expire a user's session by calling expireNow() on a SessionInformation instance. When the user

returns to the application, they will be prevented from proceeding. You may find these methods useful in an

administration application, for example. Have a look at the Javadoc for more information.

Spring Security

3.1.7.RELEASE 70

13.1 Overview

It's generally considered good security practice to adopt a “deny-by-default” where you explicitly specify

what is allowed and disallow everything else. Defining what is accessible to unauthenticated users is a similar

situation, particularly for web applications. Many sites require that users must be authenticated for anything

other than a few URLs (for example the home and login pages). In this case it is easiest to define access

configuration attributes for these specific URLs rather than have for every secured resource. Put differently,

sometimes it is nice to say ROLE_SOMETHING is required by default and only allow certain exceptions to this

rule, such as for login, logout and home pages of an application. You could also omit these pages from the

filter chain entirely, thus bypassing the access control checks, but this may be undesirable for other reasons,

particularly if the pages behave differently for authenticated users.

This is what we mean by anonymous authentication. Note that there is no real conceptual difference between

a user who is “anonymously authenticated” and an unauthenticated user. Spring Security's anonymous

authentication just gives you a more convenient way to configure your access-control attributes. Calls to servlet

API calls such as getCallerPrincipal, for example, will still return null even though there is actually

an anonymous authentication object in the SecurityContextHolder.

There are other situations where anonymous authentication is useful, such as when an auditing interceptor

queries the SecurityContextHolder to identify which principal was responsible for a given operation.

Classes can be authored more robustly if they know the SecurityContextHolder always contains an

Authentication object, and never null.

13.2 Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration Spring

Security 3.0 and can be customized (or disabled) using the <anonymous> element. You don't need to

configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.

AnonymousAuthenticationToken is an implementation of Authentication, and

stores the GrantedAuthoritys which apply to the anonymous principal. There is

a corresponding AnonymousAuthenticationProvider, which is chained into the

ProviderManager so that AnonymousAuthenticationTokens are accepted. Finally, there is an

AnonymousAuthenticationFilter, which is chained after the normal authentication mechanisms and

automatically adds an AnonymousAuthenticationToken to the SecurityContextHolder if there

is no existing Authentication held there. The definition of the filter and authentication provider appears

as follows:

<bean id="anonymousAuthFilter"

 class="org.springframework.security.web.authentication.AnonymousAuthenticationFilter">

 <property name="key" value="foobar"/>

 <property name="userAttribute" value="anonymousUser,ROLE_ANONYMOUS"/>

</bean>

<bean id="anonymousAuthenticationProvider"

Spring Security

3.1.7.RELEASE 71

 class="org.springframework.security.authentication.AnonymousAuthenticationProvider">

 <property name="key" value="foobar"/>

</bean>

The key is shared between the filter and authentication provider, so that tokens created by

the former are accepted by the latter1. The userAttribute is expressed in the form of

usernameInTheAuthenticationToken,grantedAuthority[,grantedAuthority]. This

is the same syntax as used after the equals sign for InMemoryDaoImpl's userMap property.

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have security applied

to them. For example:

<bean id="filterSecurityInterceptor"

 class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

 <property name="authenticationManager" ref="authenticationManager"/>

 <property name="accessDecisionManager" ref="httpRequestAccessDecisionManager"/>

 <property name="securityMetadata">

 <security:filter-security-metadata-source>

 <security:intercept-url pattern='/index.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/hello.htm' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/logoff.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/login.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/**' access='ROLE_USER'/>

 </security:filter-security-metadata-source>" +

 </property>

</bean>

13.3 AuthenticationTrustResolver

Rounding out the anonymous authentication discussion is the AuthenticationTrustResolver

interface, with its corresponding AuthenticationTrustResolverImpl implementation. This interface

provides an isAnonymous(Authentication) method, which allows interested classes to take into

account this special type of authentication status. The ExceptionTranslationFilter uses this

interface in processing AccessDeniedExceptions. If an AccessDeniedException is thrown, and

the authentication is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter will

instead commence the AuthenticationEntryPoint so the principal can authenticate properly. This is

a necessary distinction, otherwise principals would always be deemed “authenticated” and never be given an

opportunity to login via form, basic, digest or some other normal authentication mechanism.

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced with

IS_AUTHENTICATED_ANONYMOUSLY, which is effectively the same thing when defining access controls.

1The use of the key property should not be regarded as providing any real security here. It is merely a book-keeping exercise. If you are

sharing a ProviderManager which contains an AnonymousAuthenticationProvider in a scenario where it is possible for an

authenticating client to construct the Authentication object (such as with RMI invocations), then a malicious client could submit an

AnonymousAuthenticationToken which it had created itself (with chosen username and authority list). If the key is guessable

or can be found out, then the token would be accepted by the anonymous provider. This isn't a problem with normal usage but if you are

using RMI you would be best to use a customized ProviderManager which omits the anonymous provider rather than sharing the one

you use for your HTTP authentication mechanisms.

Spring Security

3.1.7.RELEASE 72

This is an example of the use of the AuthenticatedVoter which we will see in the authorization

chapter. It uses an AuthenticationTrustResolver to process this particular configuration attribute

and grant access to anonymous users. The AuthenticatedVoter approach is more powerful, since it

allows you to differentiate between anonymous, remember-me and fully-authenticated users. If you don't need

this functionality though, then you can stick with ROLE_ANONYMOUS, which will be processed by Spring

Security's standard RoleVoter.

Part IV. Authorization
The advanced authorization capabilities within Spring Security represent one of the most compelling reasons

for its popularity. Irrespective of how you choose to authenticate - whether using a Spring Security-provided

mechanism and provider, or integrating with a container or other non-Spring Security authentication authority

- you will find the authorization services can be used within your application in a consistent and simple way.

In this part we'll explore the different AbstractSecurityInterceptor implementations, which were

introduced in Part I. We then move on to explore how to fine-tune authorization through use of domain access

control lists.

Spring Security

3.1.7.RELEASE 74

14.1 Authorities

As we saw in the technical overview, all Authentication implementations store a list of

GrantedAuthority objects. These represent the authorities that have been granted to the

principal. The GrantedAuthority objects are inserted into the Authentication object by

the AuthenticationManager and are later read by AccessDecisionManagers when making

authorization decisions.

GrantedAuthority is an interface with only one method:

 String getAuthority();

This method allows AccessDecisionManagers to obtain a precise String representation of the

GrantedAuthority. By returning a representation as a String, a GrantedAuthority can be easily

“read” by most AccessDecisionManagers. If a GrantedAuthority cannot be precisely represented

as a String, the GrantedAuthority is considered “complex” and getAuthority() must return

null.

An example of a “complex” GrantedAuthority would be an implementation that stores a list of operations

and authority thresholds that apply to different customer account numbers. Representing this complex

GrantedAuthority as a String would be quite difficult, and as a result the getAuthority() method

should return null. This will indicate to any AccessDecisionManager that it will need to specifically

support the GrantedAuthority implementation in order to understand its contents.

Spring Security includes one concrete GrantedAuthority implementation, GrantedAuthorityImpl.

This allows any user-specified String to be converted into a GrantedAuthority. All

AuthenticationProviders included with the security architecture use GrantedAuthorityImpl to

populate the Authentication object.

14.2 Pre-Invocation Handling

As we've also seen in the Technical Overview chapter, Spring Security provides interceptors which control

access to secure objects such as method invocations or web requests. A pre-invocation decision on whether the

invocation is allowed to proceed is made by the AccessDecisionManager.

The AccessDecisionManager

The AccessDecisionManager is called by the AbstractSecurityInterceptor and is responsible

for making final access control decisions. The AccessDecisionManager interface contains three

methods:

 void decide(Authentication authentication, Object secureObject,

 Collection<ConfigAttribute> attrs) throws AccessDeniedException;

 boolean supports(ConfigAttribute attribute);

 boolean supports(Class clazz);

Spring Security

3.1.7.RELEASE 75

The AccessDecisionManager's decide method is passed all the relevant information it needs in

order to make an authorization decision. In particular, passing the secure Object enables those arguments

contained in the actual secure object invocation to be inspected. For example, let's assume the secure

object was a MethodInvocation. It would be easy to query the MethodInvocation for any

Customer argument, and then implement some sort of security logic in the AccessDecisionManager

to ensure the principal is permitted to operate on that customer. Implementations are expected to throw an

AccessDeniedException if access is denied.

The supports(ConfigAttribute) method is called by the AbstractSecurityInterceptor at

startup time to determine if the AccessDecisionManager can process the passed ConfigAttribute.

The supports(Class) method is called by a security interceptor implementation to ensure the configured

AccessDecisionManager supports the type of secure object that the security interceptor will present.

Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDecisionManager to control all aspects of authorization,

Spring Security includes several AccessDecisionManager implementations that are based on voting.

Figure 14.1, “Voting Decision Manager” illustrates the relevant classes.

Figure 14.1. Voting Decision Manager

Using this approach, a series of AccessDecisionVoter implementations are polled on an

authorization decision. The AccessDecisionManager then decides whether or not to throw an

AccessDeniedException based on its assessment of the votes.

The AccessDecisionVoter interface has three methods:

int vote(Authentication authentication, Object object, Collection<ConfigAttribute> attrs);

Spring Security

3.1.7.RELEASE 76

boolean supports(ConfigAttribute attribute);

boolean supports(Class clazz);

Concrete implementations return an int, with possible values being reflected in the

AccessDecisionVoter static fields ACCESS_ABSTAIN, ACCESS_DENIED and ACCESS_GRANTED.

A voting implementation will return ACCESS_ABSTAIN if it has no opinion on an authorization decision. If

it does have an opinion, it must return either ACCESS_DENIED or ACCESS_GRANTED.

There are three concrete AccessDecisionManagers provided with Spring Security that tally the votes.

The ConsensusBased implementation will grant or deny access based on the consensus of non-abstain

votes. Properties are provided to control behavior in the event of an equality of votes or if all votes are

abstain. The AffirmativeBased implementation will grant access if one or more ACCESS_GRANTED

votes were received (i.e. a deny vote will be ignored, provided there was at least one grant vote). Like the

ConsensusBased implementation, there is a parameter that controls the behavior if all voters abstain. The

UnanimousBased provider expects unanimous ACCESS_GRANTED votes in order to grant access, ignoring

abstains. It will deny access if there is any ACCESS_DENIED vote. Like the other implementations, there is

a parameter that controls the behaviour if all voters abstain.

It is possible to implement a custom AccessDecisionManager that tallies votes differently. For example,

votes from a particular AccessDecisionVoter might receive additional weighting, whilst a deny vote

from a particular voter may have a veto effect.

RoleVoter

The most commonly used AccessDecisionVoter provided with Spring Security is the simple

RoleVoter, which treats configuration attributes as simple role names and votes to grant access if the user

has been assigned that role.

It will vote if any ConfigAttribute begins with the prefix ROLE_. It will vote to grant access if there

is a GrantedAuthority which returns a String representation (via the getAuthority() method)

exactly equal to one or more ConfigAttributes starting with the prefix ROLE_. If there is no exact

match of any ConfigAttribute starting with ROLE_, the RoleVoter will vote to deny access. If no

ConfigAttribute begins with ROLE_, the voter will abstain.

AuthenticatedVoter

Another voter which we've implicitly seen is the AuthenticatedVoter, which can be used to differentiate

between anonymous, fully-authenticated and remember-me authenticated users. Many sites allow certain

limited access under remember-me authentication, but require a user to confirm their identity by logging in

for full access.

When we've used the attribute IS_AUTHENTICATED_ANONYMOUSLY to grant anonymous access, this

attribute was being processed by the AuthenticatedVoter. See the Javadoc for this class for more

information.

Custom Voters

Obviously, you can also implement a custom AccessDecisionVoter and you can put just

about any access-control logic you want in it. It might be specific to your application (business-

Spring Security

3.1.7.RELEASE 77

logic related) or it might implement some security administration logic. For example, you'll find

a blog article [http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-

secured-session-in-real-time/] on the SpringSource web site which describes how to use a voter to deny access

in real-time to users whose accounts have been suspended.

14.3 After Invocation Handling

Whilst the AccessDecisionManager is called by the AbstractSecurityInterceptor before

proceeding with the secure object invocation, some applications need a way of modifying the object actually

returned by the secure object invocation. Whilst you could easily implement your own AOP concern to achieve

this, Spring Security provides a convenient hook that has several concrete implementations that integrate with

its ACL capabilities.

Figure 14.2, “After Invocation Implementation” illustrates Spring Security's AfterInvocationManager

and its concrete implementations.

Figure 14.2. After Invocation Implementation

Like many other parts of Spring Security, AfterInvocationManager has a single

concrete implementation, AfterInvocationProviderManager, which polls a list of

AfterInvocationProviders. Each AfterInvocationProvider is allowed to modify the return

object or throw an AccessDeniedException. Indeed multiple providers can modify the object, as the

result of the previous provider is passed to the next in the list.

Please be aware that if you're using AfterInvocationManager, you will still need configuration attributes

that allow the MethodSecurityInterceptor's AccessDecisionManager to allow an operation.

If you're using the typical Spring Security included AccessDecisionManager implementations,

having no configuration attributes defined for a particular secure method invocation will cause each

AccessDecisionVoter to abstain from voting. In turn, if the AccessDecisionManager property

"allowIfAllAbstainDecisions" is false, an AccessDeniedException will be thrown. You

may avoid this potential issue by either (i) setting "allowIfAllAbstainDecisions" to true (although

this is generally not recommended) or (ii) simply ensure that there is at least one configuration attribute that

an AccessDecisionVoter will vote to grant access for. This latter (recommended) approach is usually

achieved through a ROLE_USER or ROLE_AUTHENTICATED configuration attribute.

http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/
http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/
http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/

Spring Security

3.1.7.RELEASE 78

14.4 Hierarchical Roles

It is a common requirement that a particular role in an application should automatically “include” other roles.

For example, in an application which has the concept of an “admin” and a “user” role, you may want an admin

to be able to do everything a normal user can. To achieve this, you can either make sure that all admin users

are also assigned the “user” role. Alternatively, you can modify every access constraint which requires the

“user” role to also include the “admin” role. This can get quite complicated if you have a lot of different roles

in your application.

The use of a role-hierarchy allows you to configure which roles (or authorities) should include others.

An extended version of Spring Security's RoleVoter, RoleHierarchyVoter, is configured with a

RoleHierarchy, from which it obtains all the “reachable authorities” which the user is assigned. A typical

configuration might look like this:

<bean id="roleVoter" class="org.springframework.security.access.vote.RoleHierarchyVoter">

 <constructor-arg ref="roleHierarchy" />

</bean>

<bean id="roleHierarchy"

 class="org.springframework.security.access.hierarchicalroles.RoleHierarchyImpl">

 <property name="hierarchy">

 <value>

 ROLE_ADMIN > ROLE_STAFF

 ROLE_STAFF > ROLE_USER

 ROLE_USER > ROLE_GUEST

 </value>

 </property>

</bean>

Here we have four roles in a hierarchy ROLE_ADMIN => ROLE_STAFF => ROLE_USER =>

ROLE_GUEST. A user who is authenticated with ROLE_ADMIN, will behave as if they have all four roles

when security contraints are evaluated against an AccessDecisionManager cconfigured with the above

RoleHierarchyVoter. The > symbol can be thought of as meaning “includes”.

Role hierarchies offer a convenient means of simplifying the access-control configuration data for your

application and/or reducing the number of authorities which you need to assign to a user. For more complex

requirements you may wish to define a logical mapping between the specific access-rights your application

requires and the roles that are assigned to users, translating between the two when loading the user information.

Spring Security

3.1.7.RELEASE 79

15.1 AOP Alliance (MethodInvocation) Security Interceptor

Prior to Spring Security 2.0, securing MethodInvocations needed quite a lot of boiler plate configuration.

Now the recommended approach for method security is to use namespace configuration. This way the method

security infrastructure beans are configured automatically for you so you don't really need to know about the

implementation classes. We'll just provide a quick overview of the classes that are involved here.

Method security in enforced using a MethodSecurityInterceptor, which secures

MethodInvocations. Depending on the configuration approach, an interceptor may be specific to a single

bean or shared between multiple beans. The interceptor uses a MethodSecurityMetadataSource

instance to obtain the configuration attributes that apply to a particular method invocation.

MapBasedMethodSecurityMetadataSource is used to store configuration attributes keyed by

method names (which can be wildcarded) and will be used internally when the attributes are defined

in the application context using the <intercept-methods> or <protect-point> elements. Other

implementations will be used to handle annotation-based configuration.

Explicit MethodSecurityInterceptor Configuration

You can of course configure a MethodSecurityIterceptor directly in your application context for use

with one of Spring AOP's proxying mechanisms:

<bean id="bankManagerSecurity" class=

 "org.springframework.security.access.intercept.aopalliance.MethodSecurityInterceptor">

 <property name="authenticationManager" ref="authenticationManager"/>

 <property name="accessDecisionManager" ref="accessDecisionManager"/>

 <property name="afterInvocationManager" ref="afterInvocationManager"/>

 <property name="securityMetadataSource">

 <sec:method-security-metadata-source>

 <sec:protect method="com.mycompany.BankManager.delete*" access="ROLE_SUPERVISOR"/>

 <sec:protect method="com.mycompany.BankManager.getBalance" access="ROLE_TELLER,ROLE_SUPERVISOR"/>

 </sec:method-security-metadata-source>

 </property>

</bean>

15.2 AspectJ (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the

previous section. Indeed we will only discuss the differences in this section.

The AspectJ interceptor is named AspectJSecurityInterceptor. Unlike the AOP Alliance security

interceptor, which relies on the Spring application context to weave in the security interceptor via proxying,

the AspectJSecurityInterceptor is weaved in via the AspectJ compiler. It would not be uncommon

to use both types of security interceptors in the same application, with AspectJSecurityInterceptor

being used for domain object instance security and the AOP Alliance MethodSecurityInterceptor

being used for services layer security.

Let's first consider how the AspectJSecurityInterceptor is configured in the Spring application

context:

Spring Security

3.1.7.RELEASE 80

<bean id="bankManagerSecurity" class=

 "org.springframework.security.access.intercept.aspectj.AspectJMethodSecurityInterceptor">

 <property name="authenticationManager" ref="authenticationManager"/>

 <property name="accessDecisionManager" ref="accessDecisionManager"/>

 <property name="afterInvocationManager" ref="afterInvocationManager"/>

 <property name="securityMetadataSource">

 <sec:method-security-metadata-source>

 <sec:protect method="com.mycompany.BankManager.delete*" access="ROLE_SUPERVISOR"/>

 <sec:protect method="com.mycompany.BankManager.getBalance" access="ROLE_TELLER,ROLE_SUPERVISOR"/>

 </sec:method-security-metadata-source>

</property>

</bean>

As you can see, aside from the class name, the AspectJSecurityInterceptor is

exactly the same as the AOP Alliance security interceptor. Indeed the two interceptors can

share the same securityMetadataSource, as the SecurityMetadataSource works with

java.lang.reflect.Methods rather than an AOP library-specific class. Of course, your access

decisions have access to the relevant AOP library-specific invocation (ie MethodInvocation or

JoinPoint) and as such can consider a range of addition criteria when making access decisions (such as

method arguments).

Next you'll need to define an AspectJ aspect. For example:

package org.springframework.security.samples.aspectj;

import org.springframework.security.access.intercept.aspectj.AspectJSecurityInterceptor;

import org.springframework.security.access.intercept.aspectj.AspectJCallback;

import org.springframework.beans.factory.InitializingBean;

public aspect DomainObjectInstanceSecurityAspect implements InitializingBean {

 private AspectJSecurityInterceptor securityInterceptor;

 pointcut domainObjectInstanceExecution(): target(PersistableEntity)

 && execution(public * *(..)) && !within(DomainObjectInstanceSecurityAspect);

 Object around(): domainObjectInstanceExecution() {

 if (this.securityInterceptor == null) {

 return proceed();

 }

 AspectJCallback callback = new AspectJCallback() {

 public Object proceedWithObject() {

 return proceed();

 }

 };

 return this.securityInterceptor.invoke(thisJoinPoint, callback);

 }

 public AspectJSecurityInterceptor getSecurityInterceptor() {

 return securityInterceptor;

 }

 public void setSecurityInterceptor(AspectJSecurityInterceptor securityInterceptor) {

 this.securityInterceptor = securityInterceptor;

 }

Spring Security

3.1.7.RELEASE 81

 public void afterPropertiesSet() throws Exception {

 if (this.securityInterceptor == null)

 throw new IllegalArgumentException("securityInterceptor required");

 }

 }

}

In the above example, the security interceptor will be applied to every instance of PersistableEntity,

which is an abstract class not shown (you can use any other class or pointcut expression you like). For those

curious, AspectJCallback is needed because the proceed(); statement has special meaning only within

an around() body. The AspectJSecurityInterceptor calls this anonymous AspectJCallback

class when it wants the target object to continue.

You will need to configure Spring to load the aspect and wire it with the AspectJSecurityInterceptor.

A bean declaration which achieves this is shown below:

<bean id="domainObjectInstanceSecurityAspect"

 class="security.samples.aspectj.DomainObjectInstanceSecurityAspect"

 factory-method="aspectOf">

 <property name="securityInterceptor" ref="bankManagerSecurity"/>

</bean>

That's it! Now you can create your beans from anywhere within your application, using whatever means you

think fit (eg new Person();) and they will have the security interceptor applied.

Spring Security

3.1.7.RELEASE 82

Spring Security 3.0 introduced the ability to use Spring EL expressions as an authorization mechanism in

addition to the simple use of configuration attributes and access-decision voters which have seen before.

Expression-based access control is built on the same architecture but allows complicated boolean logic to be

encapsulated in a single expression.

16.1 Overview

Spring Security uses Spring EL for expression support and you should look at how that works if you are

interested in understanding the topic in more depth. Expressions are evaluated with a “root object” as part of

the evaluation context. Spring Security uses specific classes for web and method security as the root object, in

order to provide built-in expressions and access to values such as the current principal.

Common Built-In Expressions

The base class for expression root objects is SecurityExpressionRoot. This provides some common

expressions which are available in both web and method security.

Table 16.1. Common built-in expressions

Expression Description

hasRole([role]) Returns true if the current principal has the specified role.

hasAnyRole([role1,role2])Returns true if the current principal has any of the supplied roles (given

as a comma-separated list of strings)

principal Allows direct access to the principal object representing the current user

authentication Allows direct access to the current Authentication object obtained

from the SecurityContext

permitAll Always evaluates to true

denyAll Always evaluates to false

isAnonymous() Returns true if the current principal is an anonymous user

isRememberMe() Returns true if the current principal is a remember-me user

isAuthenticated() Returns true if the user is not anonymous

isFullyAuthenticated() Returns true if the user is not an anonymous or a remember-me user

16.2 Web Security Expressions

To use expressions to secure individual URLs, you would first need to set the use-expressions attribute in

the <http> element to true. Spring Security will then expect the access attributes of the <intercept-

url> elements to contain Spring EL expressions. The expressions should evaluate to a boolean, defining

whether access should be allowed or not. For example:

Spring Security

3.1.7.RELEASE 83

 <http use-expressions="true">

 <intercept-url pattern="/admin*"

 access="hasRole('admin') and hasIpAddress('192.168.1.0/24')"/>

 ...

 </http>

Here we have defined that the “admin” area of an application (defined by the URL pattern) should only

be available to users who have the granted authority “admin” and whose IP address matches a local

subnet. We've already seen the built-in hasRole expression in the previous section. The expression

hasIpAddress is an additional built-in expression which is specific to web security. It is defined by the

WebSecurityExpressionRoot class, an instance of which is used as the expression root object when

evaluation web-access expressions. This object also directly exposed the HttpServletRequest object

under the name request so you can invoke the request directly in an expression.

If expressions are being used, a WebExpressionVoter will be added to the AccessDecisionManager

which is used by the namespace. So if you aren't using the namespace and want to use expressions, you will

have to add one of these to your configuration.

16.3 Method Security Expressions

Method security is a bit more complicated than a simple allow or deny rule. Spring Security 3.0 introduced

some new annotations in order to allow comprehensive support for the use of expressions.

@Pre and @Post Annotations

There are four annotations which support expression attributes to allow pre and post-invocation authorization

checks and also to support filtering of submitted collection arguments or return values. They are

@PreAuthorize, @PreFilter, @PostAuthorize and @PostFilter. Their use is enabled through

the global-method-security namespace element:

<global-method-security pre-post-annotations="enabled"/>

Access Control using @PreAuthorize and @PostAuthorize

The most obviously useful annotation is @PreAuthorize which decides whether a method can actually be

invoked or not. For example (from the “Contacts” sample application)

 @PreAuthorize("hasRole('ROLE_USER')")

 public void create(Contact contact);

which means that access will only be allowed for users with the role "ROLE_USER". Obviously the same

thing could easily be achieved using a traditional configuration and a simple configuration attribute for the

required role. But what about:

 @PreAuthorize("hasPermission(#contact, 'admin')")

 public void deletePermission(Contact contact, Sid recipient, Permission permission);

Here we're actually using a method argument as part of the expression to decide whether the current user

has the “admin”permission for the given contact. The built-in hasPermission() expression is linked into

the Spring Security ACL module through the application context, as we'll see below. You can access any of

Spring Security

3.1.7.RELEASE 84

the method arguments by name as expression variables, provided your code has debug information compiled

in. Any Spring-EL functionality is available within the expression, so you can also access properties on the

arguments. For example, if you wanted a particular method to only allow access to a user whose username

matched that of the contact, you could write

 @PreAuthorize("#contact.name == authentication.name")

 public void doSomething(Contact contact);

Here we are accessing another built–in expression, authentication, which is the Authentication

stored in the security context. You can also access its “principal” property directly, using the expression

principal. The value will often be a UserDetails instance, so you might use an expression like

principal.username or principal.enabled.

Less commonly, you may wish to perform an access-control check after the method has been invoked. This

can be achieved using the @PostAuthorize annotation. To access the return value from a method, use the

built–in name returnObject in the expression.

Filtering using @PreFilter and @PostFilter

As you may already be aware, Spring Security supports filtering of collections and arrays and this can now be

achieved using expressions. This is most commonly performed on the return value of a method. For example:

 @PreAuthorize("hasRole('ROLE_USER')")

 @PostFilter("hasPermission(filterObject, 'read') or hasPermission(filterObject, 'admin')")

 public List<Contact> getAll();

When using the @PostFilter annotation, Spring Security iterates through the returned collection and

removes any elements for which the supplied expression is false. The name filterObject refers to the

current object in the collection. You can also filter before the method call, using @PreFilter, though this

is a less common requirement. The syntax is just the same, but if there is more than one argument which is a

collection type then you have to select one by name using the filterTarget property of this annotation.

Note that filtering is obviously not a substitute for tuning your data retrieval queries. If you are filtering large

collections and removing many of the entries then this is likely to be inefficient.

Built-In Expressions

There are some built-in expressions which are specific to method security, which we have already seen

in use above. The filterTarget and returnValue values are simple enough, but the use of the

hasPermission() expression warrants a closer look.

The PermissionEvaluator interface

hasPermission() expressions are delegated to an instance of PermissionEvaluator. It is intended to

bridge between the expression system and Spring Security's ACL system, allowing you to specify authorization

constraints on domain objects, based on abstract permissions. It has no explicit dependencies on the ACL

module, so you could swap that out for an alternative implementation if required. The interface has two

methods:

Spring Security

3.1.7.RELEASE 85

 boolean hasPermission(Authentication authentication, Object targetDomainObject,

 Object permission);

 boolean hasPermission(Authentication authentication, Serializable targetId,

 String targetType, Object permission);

which map directly to the available versions of the expression, with the exception that the first argument

(the Authentication object) is not supplied. The first is used in situations where the domain object, to

which access is being controlled, is already loaded. Then expression will return true if the current user has the

given permission for that object. The second version is used in cases where the object is not loaded, but its

identifier is known. An abstract “type” specifier for the domain object is also required, allowing the correct

ACL permissions to be loaded. This has traditionally been the Java class of the object, but does not have to be

as long as it is consistent with how the permissions are loaded.

To use hasPermission() expressions, you have to explicitly configure a PermissionEvaluator in

your application context. This would look something like this:

<security:global-method-security pre-post-annotations="enabled">

 <security:expression-handler ref="expressionHandler"/>

</security:global-method-security>

<bean id="expressionHandler" class=

 "org.springframework.security.access.expression.method.DefaultMethodSecurityExpressionHandler">

 <property name="permissionEvaluator" ref="myPermissionEvaluator"/>

</bean>

Where myPermissionEvaluator is the bean which implements PermissionEvaluator. Usually

this will be the implementation from the ACL module which is called AclPermissionEvaluator. See

the “Contacts” sample application configuration for more details.

Part V. Additional Topics
In this part we cover features which require a knowledge of previous chapters as well as some of the more

advanced and less-commonly used features of the framework.

Spring Security

3.1.7.RELEASE 87

17.1 Overview

Complex applications often will find the need to define access permissions not simply at a web request or

method invocation level. Instead, security decisions need to comprise both who (Authentication), where

(MethodInvocation) and what (SomeDomainObject). In other words, authorization decisions also

need to consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your Spring-

based application: staff of the pet clinic, as well as the pet clinic's customers. The staff will have access to

all of the data, whilst your customers will only be able to see their own customer records. To make it a little

more interesting, your customers can allow other users to see their customer records, such as their "puppy

preschool" mentor or president of their local "Pony Club". Using Spring Security as the foundation, you have

several approaches that can be used:

1. Write your business methods to enforce the security. You could consult a collection within

the Customer domain object instance to determine which users have access. By using the

SecurityContextHolder.getContext().getAuthentication(), you'll be able to access

the Authentication object.

2. Write an AccessDecisionVoter to enforce the security from the GrantedAuthority[]s stored

in the Authentication object. This would mean your AuthenticationManager would need

to populate the Authentication with custom GrantedAuthority[]s representing each of the

Customer domain object instances the principal has access to.

3. Write an AccessDecisionVoter to enforce the security and open the target Customer domain object

directly. This would mean your voter needs access to a DAO that allows it to retrieve the Customer object.

It would then access the Customer object's collection of approved users and make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization checking

to your business code. The main problems with this include the enhanced difficulty of unit testing and

the fact it would be more difficult to reuse the Customer authorization logic elsewhere. Obtaining the

GrantedAuthority[]s from the Authentication object is also fine, but will not scale to large

numbers of Customers. If a user might be able to access 5,000 Customers (unlikely in this case, but imagine

if it were a popular vet for a large Pony Club!) the amount of memory consumed and time required to construct

the Authentication object would be undesirable. The final method, opening the Customer directly from

external code, is probably the best of the three. It achieves separation of concerns, and doesn't misuse memory

or CPU cycles, but it is still inefficient in that both the AccessDecisionVoter and the eventual business

method itself will perform a call to the DAO responsible for retrieving the Customer object. Two accesses

per method invocation is clearly undesirable. In addition, with every approach listed you'll need to write your

own access control list (ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we'll talk about below.

17.2 Key Concepts

Spring Security's ACL services are shipped in the spring-security-acl-xxx.jar. You will need to

add this JAR to your classpath to use Spring Security's domain object instance security capabilities.

Spring Security

3.1.7.RELEASE 88

Spring Security's domain object instance security capabilities centre on the concept of an access control list

(ACL). Every domain object instance in your system has its own ACL, and the ACL records details of who can

and can't work with that domain object. With this in mind, Spring Security delivers three main ACL-related

capabilities to your application:

• A way of efficiently retrieving ACL entries for all of your domain objects (and modifying those ACLs)

• A way of ensuring a given principal is permitted to work with your objects, before methods are called

• A way of ensuring a given principal is permitted to work with your objects (or something they return), after

methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module is

providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely important,

because every domain object instance in your system might have several access control entries, and each ACL

might inherit from other ACLs in a tree-like structure (this is supported out-of-the-box by Spring Security,

and is very commonly used). Spring Security's ACL capability has been carefully designed to provide high

performance retrieval of ACLs, together with pluggable caching, deadlock-minimizing database updates,

independence from ORM frameworks (we use JDBC directly), proper encapsulation, and transparent database

updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used by

default in the implementation. The tables are presented below in order of size in a typical Spring Security ACL

deployment, with the table with the most rows listed last:

• ACL_SID allows us to uniquely identify any principal or authority in the system ("SID" stands for "security

identity"). The only columns are the ID, a textual representation of the SID, and a flag to indicate whether

the textual representation refers to a principal name or a GrantedAuthority. Thus, there is a single row

for each unique principal or GrantedAuthority. When used in the context of receiving a permission,

a SID is generally called a "recipient".

• ACL_CLASS allows us to uniquely identify any domain object class in the system. The only columns are

the ID and the Java class name. Thus, there is a single row for each unique Class we wish to store ACL

permissions for.

• ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.

Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know which

ACL_CLASS instance we're providing information for, the parent, a foreign key to the ACL_SID table to

represent the owner of the domain object instance, and whether we allow ACL entries to inherit from any

parent ACL. We have a single row for every domain object instance we're storing ACL permissions for.

• Finally, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include a

foreign key to the ACL_OBJECT_IDENTITY, the recipient (ie a foreign key to ACL_SID), whether we'll

be auditing or not, and the integer bit mask that represents the actual permission being granted or denied.

We have a single row for every recipient that receives a permission to work with a domain object.

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don't worry, you need not be

aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32 bits we can

Spring Security

3.1.7.RELEASE 89

switch on or off. Each of these bits represents a permission, and by default the permissions are read (bit 0),

write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement your own Permission

instance if you wish to use other permissions, and the remainder of the ACL framework will operate without

knowledge of your extensions.

It is important to understand that the number of domain objects in your system has absolutely no bearing on

the fact we've chosen to use integer bit masking. Whilst you have 32 bits available for permissions, you could

have billions of domain object instances (which will mean billions of rows in ACL_OBJECT_IDENTITY and

quite probably ACL_ENTRY). We make this point because we've found sometimes people mistakenly believe

they need a bit for each potential domain object, which is not the case.

Now that we've provided a basic overview of what the ACL system does, and what it looks like at a table

structure, let's explore the key interfaces. The key interfaces are:

• Acl: Every domain object has one and only one Acl object, which internally holds the

AccessControlEntrys as well as knows the owner of the Acl. An Acl does not refer directly to the

domain object, but instead to an ObjectIdentity. The Acl is stored in the ACL_OBJECT_IDENTITY

table.

• AccessControlEntry: An Acl holds multiple AccessControlEntrys, which are often

abbreviated as ACEs in the framework. Each ACE refers to a specific tuple of Permission, Sid and

Acl. An ACE can also be granting or non-granting and contain audit settings. The ACE is stored in the

ACL_ENTRY table.

• Permission: A permission represents a particular immutable bit mask, and offers convenience functions

for bit masking and outputting information. The basic permissions presented above (bits 0 through 4) are

contained in the BasePermission class.

• Sid: The ACL module needs to refer to principals and GrantedAuthority[]s. A level of

indirection is provided by the Sid interface, which is an abbreviation of "security identity". Common

classes include PrincipalSid (to represent the principal inside an Authentication object) and

GrantedAuthoritySid. The security identity information is stored in the ACL_SID table.

• ObjectIdentity: Each domain object is represented internally within the ACL module by an

ObjectIdentity. The default implementation is called ObjectIdentityImpl.

• AclService: Retrieves the Acl applicable for a given ObjectIdentity. In the included

implementation (JdbcAclService), retrieval operations are delegated to a LookupStrategy. The

LookupStrategy provides a highly optimized strategy for retrieving ACL information, using batched

retrievals (BasicLookupStrategy) and supporting custom implementations that leverage materialized

views, hierarchical queries and similar performance-centric, non-ANSI SQL capabilities.

• MutableAclService: Allows a modified Acl to be presented for persistence. It is not essential to use

this interface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This should

therefore work with all major databases. At the time of writing, the system had been successfully tested using

Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts Sample,

and the other is the Document Management System (DMS) Sample. We suggest taking a look over these for

examples.

Spring Security

3.1.7.RELEASE 90

17.3 Getting Started

To get starting using Spring Security's ACL capability, you will need to store your ACL information

somewhere. This necessitates the instantiation of a DataSource using Spring. The DataSource is then

injected into a JdbcMutableAclService and BasicLookupStrategy instance. The latter provides

high-performance ACL retrieval capabilities, and the former provides mutator capabilities. Refer to one of the

samples that ship with Spring Security for an example configuration. You'll also need to populate the database

with the four ACL-specific tables listed in the last section (refer to the ACL samples for the appropriate SQL

statements).

Once you've created the required schema and instantiated JdbcMutableAclService, you'll next need

to ensure your domain model supports interoperability with the Spring Security ACL package. Hopefully

ObjectIdentityImpl will prove sufficient, as it provides a large number of ways in which it can be used.

Most people will have domain objects that contain a public Serializable getId() method. If the

return type is long, or compatible with long (eg an int), you will find you need not give further consideration to

ObjectIdentity issues. Many parts of the ACL module rely on long identifiers. If you're not using long

(or an int, byte etc), there is a very good chance you'll need to reimplement a number of classes. We do not

intend to support non-long identifiers in Spring Security's ACL module, as longs are already compatible with

all database sequences, the most common identifier data type, and are of sufficient length to accommodate all

common usage scenarios.

The following fragment of code shows how to create an Acl, or modify an existing Acl:

// Prepare the information we'd like in our access control entry (ACE)

ObjectIdentity oi = new ObjectIdentityImpl(Foo.class, new Long(44));

Sid sid = new PrincipalSid("Samantha");

Permission p = BasePermission.ADMINISTRATION;

// Create or update the relevant ACL

MutableAcl acl = null;

try {

 acl = (MutableAcl) aclService.readAclById(oi);

} catch (NotFoundException nfe) {

 acl = aclService.createAcl(oi);

}

// Now grant some permissions via an access control entry (ACE)

acl.insertAce(acl.getEntries().length, p, sid, true);

aclService.updateAcl(acl);

In the example above, we're retrieving the ACL associated with the "Foo" domain object with identifier

number 44. We're then adding an ACE so that a principal named "Samantha" can "administer" the object. The

code fragment is relatively self-explanatory, except the insertAce method. The first argument to the insertAce

method is determining at what position in the Acl the new entry will be inserted. In the example above, we're

just putting the new ACE at the end of the existing ACEs. The final argument is a boolean indicating whether

the ACE is granting or denying. Most of the time it will be granting (true), but if it is denying (false), the

permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACLs as part

of your DAO or repository operations. Instead, you will need to write code like shown above for your individual

Spring Security

3.1.7.RELEASE 91

domain objects. It's worth considering using AOP on your services layer to automatically integrate the ACL

information with your services layer operations. We've found this quite an effective approach in the past.

Once you've used the above techniques to store some ACL information in the database, the next step

is to actually use the ACL information as part of authorization decision logic. You have a number of

choices here. You could write your own AccessDecisionVoter or AfterInvocationProvider

that respectively fires before or after a method invocation. Such classes would use AclService

to retrieve the relevant ACL and then call Acl.isGranted(Permission[] permission,

Sid[] sids, boolean administrativeMode) to decide whether permission is granted or

denied. Alternately, you could use our AclEntryVoter, AclEntryAfterInvocationProvider

or AclEntryAfterInvocationCollectionFilteringProvider classes. All of these classes

provide a declarative-based approach to evaluating ACL information at runtime, freeing you from needing to

write any code. Please refer to the sample applications to learn how to use these classes.

Spring Security

3.1.7.RELEASE 92

There are situations where you want to use Spring Security for authorization, but the user has already been

reliably authenticated by some external system prior to accessing the application. We refer to these situations as

“pre-authenticated” scenarios. Examples include X.509, Siteminder and authentication by the J2EE container

in which the application is running. When using pre-authentication, Spring Security has to

1. Identify the user making the request.

2. Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their certificate

information in the case of X.509, or by an HTTP request header in the case of Siteminder. If relying on container

authentication, the user will be identified by calling the getUserPrincipal() method on the incoming

HTTP request. In some cases, the external mechanism may supply role/authority information for the user but

in others the authorities must be obtained from a separate source, such as a UserDetailsService.

18.1 Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set of classes

which provide an internal framework for implementing pre-authenticated authentication providers. This

removes duplication and allows new implementations to be added in a structured fashion, without having

to write everything from scratch. You don't need to know about these classes if you want to use something

like X.509 authentication, as it already has a namespace configuration option which is simpler to use and get

started with. If you need to use explicit bean configuration or are planning on writing your own implementation

then an understanding of how the provided implementations work will be useful. You will find classes under

the org.springframework.security.web.authentication.preauth. We just provide an outline here so you should

consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract user

information from the HTTP request and submit it to the AuthenticationManager. Subclasses override

the following methods to obtain this information:

 protected abstract Object getPreAuthenticatedPrincipal(HttpServletRequest request);

 protected abstract Object getPreAuthenticatedCredentials(HttpServletRequest request);

After calling these, the filter will create a PreAuthenticatedAuthenticationToken containing the

returned data and submit it for authentication. By “authentication” here, we really just mean further processing

to perhaps load the user's authorities, but the standard Spring Security authentication architecture is followed.

Like other Spring Security authentication filters, the pre-authentication filter has

an authenticationDetailsSource property which by default will create a

WebAuthenticationDetails object to store additional information such as the session-identifier and

originating IP address in the details property of the Authentication object. In cases where user role

information can be obtained from the pre-authentication mechanism, the data is also stored in this property, with

the details implementing the GrantedAuthoritiesContainer interface. This enables the authentication

Spring Security

3.1.7.RELEASE 93

provider to read the authorities which were externally allocated to the user. We'll look at a concrete example

next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an authenticationDetailsSource which is an instance of

this class, the authority information is obtained by calling the isUserInRole(String role)

method for each of a pre-determined set of “mappable roles”. The class gets these from a configured

MappableAttributesRetriever. Possible implementations include hard-coding a list in the

application context and reading the role information from the <security-role> information in a web.xml

file. The pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security

GrantedAuthority objects using a configured Attributes2GrantedAuthoritiesMapper. The

default will just add the usual ROLE_ prefix to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the UserDetails object for the user. It does

this by delegating to a AuthenticationUserDetailsService. The latter is similar to the standard

UserDetailsService but takes an Authentication object rather than just user name:

 public interface AuthenticationUserDetailsService {

 UserDetails loadUserDetails(Authentication token) throws UsernameNotFoundException;

 }

This interface may have also other uses but with pre-authentication it allows access to the authorities

which were packaged in the Authentication object, as we saw in the previous section. The

PreAuthenticatedGrantedAuthoritiesUserDetailsService class does this. Alternatively, it

may delegate to a standard UserDetailsService via the UserDetailsByNameServiceWrapper

implementation.

Http403ForbiddenEntryPoint

The AuthenticationEntryPoint was discussed in the technical overview chapter. Normally it is

responsible for kick-starting the authentication process for an unauthenticated user (when they try to access

a protected resource), but in the pre-authenticated case this doesn't apply. You would only configure the

ExceptionTranslationFilter with an instance of this class if you aren't using pre-authentication

in combination with other authentication mechanisms. It will be called if the user is rejected by the

AbstractPreAuthenticatedProcessingFilter resulting in a null authentication. It always returns

a 403-forbidden response code if called.

18.2 Concrete Implementations

X.509 authentication is covered in its own chapter. Here we'll look at some classes which provide support for

other pre-authenticated scenarios.

Spring Security

3.1.7.RELEASE 94

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific headers on

the HTTP request. A well known example of this is Siteminder, which passes the username in a header called

SM_USER. This mechanism is supported by the class RequestHeaderAuthenticationFilter which

simply extracts the username from the header. It defaults to using the name SM_USER as the header name.

See the Javadoc for more details.

Tip

Note that when using a system like this, the framework performs no authentication checks at all and

it is extremely important that the external system is configured properly and protects all access to

the application. If an attacker is able to forge the headers in their original request without this being

detected then they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using this filter would look like this:

 <security:http>

 <!-- Additional http configuration omitted -->

 <security:custom-filter position="PRE_AUTH_FILTER" ref="siteminderFilter" />

 </security:http>

 <bean id="siteminderFilter" class=

"org.springframework.security.web.authentication.preauth.RequestHeaderAuthenticationFilter">

 <property name="principalRequestHeader" value="SM_USER"/>

 <property name="authenticationManager" ref="authenticationManager" />

 </bean>

 <bean id="preauthAuthProvider"

class="org.springframework.security.web.authentication.preauth.PreAuthenticatedAuthenticationProvider">

 <property name="preAuthenticatedUserDetailsService">

 <bean id="userDetailsServiceWrapper"

 class="org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapper">

 <property name="userDetailsService" ref="userDetailsService"/>

 </bean>

 </property>

 </bean>

 <security:authentication-manager alias="authenticationManager">

 <security:authentication-provider ref="preauthAuthProvider" />

 </security:authentication-manager>

We've assumed here that the security namespace is being used for configuration. It's also assumed that you have

added a UserDetailsService (called “userDetailsService”) to your configuration to load the user's roles.

J2EE Container Authentication

The class J2eePreAuthenticatedProcessingFilter will extract the username from the

userPrincipal property of the HttpServletRequest. Use of this filter would usually

be combined with the use of J2EE roles as described above in the section called

“J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource”.

Spring Security

3.1.7.RELEASE 95

There is a sample application in the codebase which uses this approach, so get hold of the code from subversion

and have a look at the application context file if you are interested. The code is in the samples/preauth

directory.

Spring Security

3.1.7.RELEASE 96

19.1 Overview

LDAP is often used by organizations as a central repository for user information and as an authentication

service. It can also be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security's LDAP

provider is fully configurable. It uses separate strategy interfaces for authentication and role retrieval and

provides default implementations which can be configured to handle a wide range of situations.

You should be familiar with LDAP before trying to use it with Spring Security. The following link provides

a good introduction to the concepts involved and a guide to setting up a directory using the free LDAP server

OpenLDAP: http://www.zytrax.com/books/ldap/. Some familiarity with the JNDI APIs used to

access LDAP from Java may also be useful. We don't use any third-party LDAP libraries (Mozilla, JLDAP

etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so some familiarity with that project

may be useful if you plan on adding your own customizations.

When using LDAP authentication, it is important to ensure that you configure LDAP connection pooling

properly. If you are unfamiliar with how to do this, you can refer to the Java LDAP documentation

[http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html].

19.2 Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

1. Obtaining the unique LDAP “Distinguished Name”, or DN, from the login name. This will often mean

performing a search in the directory, unless the exact mapping of usernames to DNs is known in advance.

So a user might enter the name “joe” when logging in, but the actual name used to authenticate to LDAP

will be the full DN, such as uid=joe,ou=users,dc=springsource,dc=com.

2. Authenticating the user, either by “binding” as that user or by performing a remote “compare” operation of

the user's password against the password attribute in the directory entry for the DN.

3. Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and authenticate

against it locally. This may not be possible as directories are often set up with limited read access for attributes

such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration options,

please consult the security namespace schema (information from which should be available in your XML

editor).

19.3 Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place. This is

done using the <ldap-server> element from the security namespace. This can be configured to point at

an external LDAP server, using the url attribute:

http://www.zytrax.com/books/ldap/
http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html
http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html

Spring Security

3.1.7.RELEASE 97

 <ldap-server url="ldap://springframework.org:389/dc=springframework,dc=org" />

Using an Embedded Test Server

The <ldap-server> element can also be used to create an embedded server, which can be very useful for

testing and demonstrations. In this case you use it without the url attribute:

 <ldap-server root="dc=springframework,dc=org"/>

Here we've specified that the root DIT of the directory should be “dc=springframework,dc=org”, which is the

default. Used this way, the namespace parser will create an embedded Apache Directory server and scan the

classpath for any LDIF files, which it will attempt to load into the server. You can customize this behaviour

using the ldif attribute, which defines an LDIF resource to be loaded:

 <ldap-server ldif="classpath:users.ldif" />

This makes it a lot easier to get up and running with LDAP, since it can be inconvenient to work all the time

with an external server. It also insulates the user from the complex bean configuration needed to wire up an

Apache Directory server. Using plain Spring Beans the configuration would be much more cluttered. You

must have the necessary Apache Directory dependency jars available for your application to use. These can

be obtained from the LDAP sample application.

Using Bind Authentication

This is the most common LDAP authentication scenario.

 <ldap-authentication-provider user-dn-pattern="uid={0},ou=people"/>

This simple example would obtain the DN for the user by substituting the user login name in the supplied

pattern and attempting to bind as that user with the login password. This is OK if all your users are stored

under a single node in the directory. If instead you wished to configure an LDAP search filter to locate the

user, you could use the following:

 <ldap-authentication-provider user-search-filter="(uid={0})"

 user-search-base="ou=people"/>

If used with the server definition above, this would perform a search under the DN

ou=people,dc=springframework,dc=org using the value of the user-search-filter

attribute as a filter. Again the user login name is substituted for the parameter in the filter name, so it will

search for an entry with the uid attribute equal to the user name. If user-search-base isn't supplied, the

search will be performed from the root.

Spring Security

3.1.7.RELEASE 98

Loading Authorities

How authorities are loaded from groups in the LDAP directory is controlled by the following attributes.

• group-search-base. Defines the part of the directory tree under which group searches should be

performed.

• group-role-attribute. The attribute which contains the name of the authority defined by the group

entry. Defaults to cn

• group-search-filter. The filter which is used to search for group membership. The default is

uniqueMember={0}, corresponding to the groupOfUniqueNames LDAP class 1. In this case, the

substituted parameter is the full distinguished name of the user. The parameter {1} can be used if you want

to filter on the login name.

So if we used the following configuration

 <ldap-authentication-provider user-dn-pattern="uid={0},ou=people"

 group-search-base="ou=groups" />

and authenticated successfully as user “ben”, the subsequent loading of authorities would

perform a search under the directory entry ou=groups,dc=springframework,dc=org,

looking for entries which contain the attribute uniqueMember with value

uid=ben,ou=people,dc=springframework,dc=org. By default the authority names will have the

prefix ROLE_ prepended. You can change this using the role-prefix attribute. If you don't want any

prefix, use role-prefix="none". For more information on loading authorities, see the Javadoc for the

DefaultLdapAuthoritiesPopulator class.

19.4 Implementation Classes

The namespace configuration options we've used above are simple to use and much more concise than using

Spring beans explicitly. There are situations when you may need to know how to configure Spring Security

LDAP directly in your application context. You may wish to customize the behaviour of some of the classes,

for example. If you're happy using namespace configuration then you can skip this section and the next one.

The main LDAP provider class, LdapAuthenticationProvider, doesn't actually do much itself but

delegates the work to two other beans, an LdapAuthenticator and an LdapAuthoritiesPopulator

which are responsible for authenticating the user and retrieving the user's set of GrantedAuthoritys

respectively.

LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the permissions

on the attributes may depend on the type of authentication being used. For example, if binding as the user, it

may be necessary to read them with the user's own permissions.

There are currently two authentication strategies supplied with Spring Security:

Spring Security

3.1.7.RELEASE 99

• Authentication directly to the LDAP server ("bind" authentication).

• Password comparison, where the password supplied by the user is compared with the one stored in the

repository. This can either be done by retrieving the value of the password attribute and checking it locally

or by performing an LDAP "compare" operation, where the supplied password is passed to the server for

comparison and the real password value is never retrieved.

Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN) has to be obtained

from the login name supplied to the application. This can be done either by simple pattern-matching (by setting

the setUserDnPatterns array property) or by setting the userSearch property. For the DN pattern-matching

approach, a standard Java pattern format is used, and the login name will be substituted for the parameter {0}.

The pattern should be relative to the DN that the configured SpringSecurityContextSource will bind

to (see the section on connecting to the LDAP server for more information on this). For example, if you are using

an LDAP server with the URL ldap://monkeymachine.co.uk/dc=springframework,dc=org,

and have a pattern uid={0},ou=greatapes, then a login name of "gorilla" will map to a DN

uid=gorilla,ou=greatapes,dc=springframework,dc=org. Each configured DN pattern will

be tried in turn until a match is found. For information on using a search, see the section on search objects

below. A combination of the two approaches can also be used - the patterns will be checked first and if no

matching DN is found, the search will be used.

BindAuthenticator

The class BindAuthenticator in the package

org.springframework.security.ldap.authentication implements the bind authentication

strategy. It simply attempts to bind as the user.

PasswordComparisonAuthenticator

The class PasswordComparisonAuthenticator implements the password comparison authentication

strategy.

Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have to be supplied with a

SpringSecurityContextSource which is an extension of Spring LDAP's ContextSource. Unless

you have special requirements, you will usually configure a DefaultSpringSecurityContextSource

bean, which can be configured with the URL of your LDAP server and optionally with the username

and password of a "manager" user which will be used by default when binding to the server (instead

of binding anonymously). For more information read the Javadoc for this class and for Spring LDAP's

AbstractContextSource.

LDAP Search Objects

Often a more complicated strategy than simple DN-matching is required to locate a user entry in the

directory. This can be encapsulated in an LdapUserSearch instance which can be supplied to the

Spring Security

3.1.7.RELEASE 100

authenticator implementations, for example, to allow them to locate a user. The supplied implementation is

FilterBasedLdapUserSearch.

FilterBasedLdapUserSearch

This bean uses an LDAP filter to match the user object in the directory.

The process is explained in the Javadoc for the corresponding search method

on the JDK DirContext class [http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/

DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],

%20javax.naming.directory.SearchControls)]. As explained there, the search filter can be supplied with

parameters. For this class, the only valid parameter is {0} which will be replaced with the user's login name.

LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAuthenticationProvider will attempt to load

a set of authorities for the user by calling the configured LdapAuthoritiesPopulator bean. The

DefaultLdapAuthoritiesPopulator is an implementation which will load the authorities by

searching the directory for groups of which the user is a member (typically these will be groupOfNames

or groupOfUniqueNames entries in the directory). Consult the Javadoc for this class for more details on

how it works.

If you want to use LDAP only for authentication, but load the authorities from a difference source (such as a

database) then you can provide your own implementation of this interface and inject that instead.

Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

<bean id="contextSource"

 class="org.springframework.security.ldap.DefaultSpringSecurityContextSource">

 <constructor-arg value="ldap://monkeymachine:389/dc=springframework,dc=org"/>

 <property name="userDn" value="cn=manager,dc=springframework,dc=org"/>

 <property name="password" value="password"/>

</bean>

<bean id="ldapAuthProvider"

 class="org.springframework.security.ldap.authentication.LdapAuthenticationProvider">

 <constructor-arg>

 <bean class="org.springframework.security.ldap.authentication.BindAuthenticator">

 <constructor-arg ref="contextSource"/>

 <property name="userDnPatterns">

 <list><value>uid={0},ou=people</value></list>

 </property>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean

 class="org.springframework.security.ldap.userdetails.DefaultLdapAuthoritiesPopulator">

 <constructor-arg ref="contextSource"/>

 <constructor-arg value="ou=groups"/>

 <property name="groupRoleAttribute" value="ou"/>

 </bean>

 </constructor-arg>

</bean>

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)

Spring Security

3.1.7.RELEASE 101

This would set up the provider to access an LDAP server with URL ldap://monkeymachine:389/

dc=springframework,dc=org. Authentication will be performed by attempting to bind

with the DN uid=<user-login-name>,ou=people,dc=springframework,dc=org. After

successful authentication, roles will be assigned to the user by searching under the DN

ou=groups,dc=springframework,dc=org with the default filter (member=<user's-DN>). The

role name will be taken from the “ou” attribute of each match.

To configure a user search object, which uses the filter (uid=<user-login-name>) for use instead of

the DN-pattern (or in addition to it), you would configure the following bean

<bean id="userSearch"

 class="org.springframework.security.ldap.search.FilterBasedLdapUserSearch">

 <constructor-arg index="0" value=""/>

 <constructor-arg index="1" value="(uid={0})"/>

 <constructor-arg index="2" ref="contextSource" />

</bean>

and use it by setting the BindAuthenticator bean's userSearch property. The authenticator would then

call the search object to obtain the correct user's DN before attempting to bind as this user.

LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAuthenticationProvider is the same as a normal Spring

Security authentication using the standard UserDetailsService interface. A UserDetails object is

created and stored in the returned Authentication object. As with using a UserDetailsService,

a common requirement is to be able to customize this implementation and add extra properties. When using

LDAP, these will normally be attributes from the user entry. The creation of the UserDetails object is

controlled by the provider's UserDetailsContextMapper strategy, which is responsible for mapping

user objects to and from LDAP context data:

public interface UserDetailsContextMapper {

 UserDetails mapUserFromContext(DirContextOperations ctx, String username,

 Collection<GrantedAuthority> authorities);

 void mapUserToContext(UserDetails user, DirContextAdapter ctx);

}

Only the first method is relevant for authentication. If you provide an implementation of this interface and

inject it into the LdapAuthenticationProvider, you have control over exactly how the UserDetails

object is created. The first parameter is an instance of Spring LDAP's DirContextOperations which

gives you access to the LDAP attributes which were loaded during authentication. The username parameter

is the name used to authenticate and the final parameter is the collection of authorities loaded for the user by

the configured LdapAuthoritiesPopulator.

The way the context data is loaded varies slightly depending on the type of authentication you are using. With

the BindAuthenticator, the context returned from the bind operation will be used to read the attributes,

otherwise the data will be read using the standard context obtained from the configured ContextSource

(when a search is configured to locate the user, this will be the data returned by the search object).

Spring Security

3.1.7.RELEASE 102

19.5 Active Directory Authentication

Active Directory supports its own non-standard authentication options, and the normal usage pattern doesn't

fit too cleanly with the standard LdapAuthenticationProvider. Typically authentication is performed

using the domain username (in the form user@domain), rather than using an LDAP distinguished name. To

make this easier, Spring Security 3.1 has an authentication provider which is customized for a typical Active

Directory setup.

ActiveDirectoryLdapAuthenticationProvider

Configuring ActiveDirectoryLdapAuthenticationProvider is quite straightforward. You just

need to supply the domain name and an LDAP URL supplying the address of the server 2. An example

configuration would then look like this:

<bean id="adAuthenticationProvider"

 class="org.springframework.security.ldap.authentication.ad.ActiveDirectoryLdapAuthenticationProvider">

 <constructor-arg value="mydomain.com" />

 <constructor-arg value="ldap://adserver.mydomain.com/" />

</bean>

}

Note that there is no need to specify a separate ContextSource in order to define the server location - the

bean is completely self-contained. A user named “Sharon”, for example, would then be able to authenticate

by entering either the username sharon or the full Active Directory userPrincipalName, namely

sharon@mydomain.com. The user's directory entry will then be located, and the attributes returned for

possible use in customizing the created UserDetails object (a UserDetailsContextMapper can be

injected for this purpose, as described above). All interaction with the directory takes place with the identity

of the user themselves. There is no concept of a “manager” user.

By default, the user authorities are obtained from the memberOf attribute values of the user entry. The

authorities allocated to the user can again be customized using a UserDetailsContextMapper. You can

also inject a GrantedAuthoritiesMapper into the provider instance to control the authorities which end

up in the Authentication object.

Active Directory Error Codes

By default, a failed result will cause a standard Spring Security BadCredentialsException. If you set

the property convertSubErrorCodesToExceptions to true, the exception messages will be parsed

to attempt to extract the Active Directory-specific error code and raise a more specific exception. Check the

class Javadoc for more information.

2It is also possible to obtain the server's IP address using a DNS lookup. This is not currently supported, but hopefully will be in a future

version.

Spring Security

3.1.7.RELEASE 103

Spring Security has its own taglib which provides basic support for accessing security information and applying

security constraints in JSPs.

20.1 Declaring the Taglib

To use any of the tags, you must have the security taglib declared in your JSP:

 <%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>

20.2 The authorize Tag

This tag is used to determine whether its contents should be evaluated or not. In Spring

Security 3.0, it can be used in two ways 1. The first approach uses a web-security expression,

specified in the access attribute of the tag. The expression evaluation will be delegated to the

SecurityExpressionHandler<FilterInvocation> defined in the application context (you

should have web expressions enabled in your <http> namespace configuration to make sure this service is

available). So, for example, you might have

<sec:authorize access="hasRole('supervisor')">

This content will only be visible to users who have

the "supervisor" authority in their list of <tt>GrantedAuthority</tt>s.

</sec:authorize>

A common requirement is to only show a particular link, if the user is actually allowed to click it. How can

we determine in advance whether something will be allowed? This tag can also operate in an alternative mode

which allows you to define a particular URL as an attribute. If the user is allowed to invoke that URL, then the

tag body will be evaluated, otherwise it will be skipped. So you might have something like

<sec:authorize url="/admin">

This content will only be visible to users who are authorized to send requests to the "/admin" URL.

</sec:authorize>

To use this tag there must also be an instance of WebInvocationPrivilegeEvaluator in your

application context. If you are using the namespace, one will automatically be registered. This is an instance of

DefaultWebInvocationPrivilegeEvaluator, which creates a dummy web request for the supplied

URL and invokes the security interceptor to see whether the request would succeed or fail. This allows you

to delegate to the access-control setup you defined using intercept-url declarations within the <http>

namespace configuration and saves having to duplicate the information (such as the required roles) within your

JSPs. This approach can also be combined with a method attribute, supplying the HTTP method, for a more

specific match.

1The legacy options from Spring Security 2.0 are also supported, but discouraged.

Spring Security

3.1.7.RELEASE 104

The boolean result of evaluating the tag (whether it grants or denies access) can be stored in a page context

scope variable by setting the var attribute to the variable name, avoiding the need for duplicating and re-

evaluating the condition at other points in the page.

Disabling Tag Authorization for Testing

Hiding a link in a page for unauthorized users doesn't prevent them from accessing the URL. They

could just type it into their browser directly, for example. As part of your testing process, you may

want to reveal the hidden areas in order to check that links really are secured at the back end. If you

set the system property spring.security.disableUISecurity to true, the authorize tag

will still run but will not hide its contents. By default it will also surround the content with <span

class="securityHiddenUI">... tags. This allows you to display “hidden” content with a

particular CSS style such as a different background colour. Try running the “tutorial” sample application with

this property enabled, for example.

You can also set the properties spring.security.securedUIPrefix and

spring.security.securedUISuffix if you want to change surrounding text from the default span

tags (or use empty strings to remove it completely).

20.3 The authenticationTag

This tag allows access to the current Authentication object stored in the security context. It

renders a property of the object directly in the JSP. So, for example, if the principal property

of the Authentication is an instance of Spring Security's UserDetails object, then using

<sec:authentication property="principal.username" /> will render the name of the

current user.

Of course, it isn't necessary to use JSP tags for this kind of thing and some people prefer to keep as little logic

as possible in the view. You can access the Authentication object in your MVC controller (by calling

SecurityContextHolder.getContext().getAuthentication()) and add the data directly to

your model for rendering by the view.

20.4 The accesscontrollist Tag

This tag is only valid when used with Spring Security's ACL module. It checks a comma-separated list of

required permissions for a specified domain object. If the current user has any of those permissions, then the

tag body will be evaluated. If they don't, it will be skipped. An example might be

<sec:accesscontrollist hasPermission="1,2" domainObject="${someObject}">

This will be shown if the user has either of the permissions

represented by the values "1" or "2" on the given object.

</sec:accesscontrollist>

The permissions are passed to the PermissionFactory defined in the application context, converting them

to ACL Permission instances, so they may be any format which is supported by the factory - they don't have

to be integers, they could be strings like READ or WRITE. If no PermissionFactory is found, an instance

Spring Security

3.1.7.RELEASE 105

of DefaultPermissionFactory will be used. The AclServicefrom the application context will be

used to load the Acl instance for the supplied object. The Acl will be invoked with the required permissions

to check if any of them are granted.

This tag also supports the var attribute, in the same way as the authorize tag.

Spring Security

3.1.7.RELEASE 106

21.1 Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication and

Authorization Service (JAAS). This package is discussed in detail below.

21.2 AbstractJaasAuthenticationProvider

The AbstractJaasAuthenticationProvider is the basis for the provided JAAS

AuthenticationProvider implementations. Subclasses must implement a method that creates the

LoginContext. The AbstractJaasAuthenticationProvider has a number of dependencies that

can be injected into it that are discussed below.

JAAS CallbackHandler

Most JAAS LoginModules require a callback of some sort. These callbacks are usually used to obtain the

username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the authentication

mechanism). Thus, by the time the authentication request is delegated through to JAAS, Spring Security's

authentication mechanism will already have fully-populated an Authentication object containing all the

information required by the JAAS LoginModule.

Therefore, the JAAS package for Spring Security provides two default callback handlers,

JaasNameCallbackHandler and JaasPasswordCallbackHandler. Each of these callback

handlers implement JaasAuthenticationCallbackHandler. In most cases these callback handlers

can simply be used without understanding the internal mechanics.

For those needing full control over the callback behavior, internally

AbstractJaasAuthenticationProvider wraps these

JaasAuthenticationCallbackHandlers with an InternalCallbackHandler. The

InternalCallbackHandler is the class that actually implements JAAS’ normal CallbackHandler

interface. Any time that the JAAS LoginModule is used, it is passed a list of

application context configured InternalCallbackHandlers. If the LoginModule requests

a callback against the InternalCallbackHandlers, the callback is in-turn passed to the

JaasAuthenticationCallbackHandlers being wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on the

other hand, works with Authentication objects. Each Authentication object contains a single

principal, and multiple GrantedAuthoritys. To facilitate mapping between these different concepts,

Spring Security's JAAS package includes an AuthorityGranter interface.

An AuthorityGranter is responsible for inspecting a JAAS principal and returning a set

of Strings, representing the authorities assigned to the principal. For each returned authority

string, the AbstractJaasAuthenticationProvider creates a JaasGrantedAuthority

Spring Security

3.1.7.RELEASE 107

(which implements Spring Security’s GrantedAuthority interface) containing the authority

string and the JAAS principal that the AuthorityGranter was passed. The

AbstractJaasAuthenticationProvider obtains the JAAS principals by firstly successfully

authenticating the user’s credentials using the JAAS LoginModule, and then accessing the

LoginContext it returns. A call to LoginContext.getSubject().getPrincipals() is

made, with each resulting principal passed to each AuthorityGranter defined against the

AbstractJaasAuthenticationProvider.setAuthorityGranters(List) property.

Spring Security does not include any production AuthorityGranters given that every JAAS principal has

an implementation-specific meaning. However, there is a TestAuthorityGranter in the unit tests that

demonstrates a simple AuthorityGranter implementation.

21.3 DefaultJaasAuthenticationProvider

The DefaultJaasAuthenticationProvider allows a JAAS Configuration object to be injected

into it as a dependency. It then creates a LoginContext using the injected JAAS Configuration. This

means that DefaultJaasAuthenticationProvider is not bound any particular implementation of

Configuration as JaasAuthenticationProvider is.

InMemoryConfiguration

In order to make it easy to inject a Configuration into DefaultJaasAuthenticationProvider,

a default in memory implementation named InMemoryConfiguration is provided. The implementation

constructor accepts a Map where each key represents a login configuration name and the value represents an

Array of AppConfigurationEntrys. InMemoryConfiguration also supports a default Array of

AppConfigurationEntry objects that will be used if no mapping is found within the provided Map. For

details, refer to the class level javadoc of InMemoryConfiguration.

DefaultJaasAuthenticationProvider Example Configuration

While the Spring configuration for InMemoryConfiguration can be more verbose than the standarad

JAAS configuration files, using it in conjuction with DefaultJaasAuthenticationProvider is more

flexible than JaasAuthenticationProvider since it not dependant on the default Configuration

implementation.

An example configuration of DefaultJaasAuthenticationProvider using

InMemoryConfiguration is provided below. Note that custom implementations of Configuration

can easily be injected into DefaultJaasAuthenticationProvider as well.

<bean id="jaasAuthProvider"

 class="org.springframework.security.authentication.jaas.DefaultJaasAuthenticationProvider">

 <property name="configuration">

 <bean class="org.springframework.security.authentication.jaas.memory.InMemoryConfiguration">

 <constructor-arg>

 <map>

 <!--

 SPRINGSECURITY is the default loginContextName

 for AbstractJaasAuthenticationProvider

 -->

Spring Security

3.1.7.RELEASE 108

 <entry key="SPRINGSECURITY">

 <array>

 <bean class="javax.security.auth.login.AppConfigurationEntry">

 <constructor-arg value="sample.SampleLoginModule" />

 <constructor-arg>

 <util:constant static-field=

 "javax.security.auth.login.AppConfigurationEntry$LoginModuleControlFlag.REQUIRED"/>

 </constructor-arg>

 <constructor-arg>

 <map></map>

 </constructor-arg>

 </bean>

 </array>

 </entry>

 </map>

 </constructor-arg>

 </bean>

 </property>

 <property name="authorityGranters">

 <list>

 <!-- You will need to write your own implementation of AuthorityGranter -->

 <bean class="org.springframework.security.authentication.jaas.TestAuthorityGranter"/>

 </list>

 </property>

</bean>

21.4 JaasAuthenticationProvider

The JaasAuthenticationProvider assumes the default Configuration is an instance

of ConfigFile [http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/

login/ConfigFile.html]. This assumption is made in order to attempt to update the Configuration.

The JaasAuthenticationProvider then uses the default Configuration to create the

LoginContext.

Let’s assume we have a JAAS login configuration file, /WEB-INF/login.conf, with the following

contents:

JAASTest {

 sample.SampleLoginModule required;

};

Like all Spring Security beans, the JaasAuthenticationProvider is configured via the application

context. The following definitions would correspond to the above JAAS login configuration file:

<bean id="jaasAuthenticationProvider"

 class="org.springframework.security.authentication.jaas.JaasAuthenticationProvider">

 <property name="loginConfig" value="/WEB-INF/login.conf"/>

 <property name="loginContextName" value="JAASTest"/>

 <property name="callbackHandlers">

 <list>

 <bean

 class="org.springframework.security.authentication.jaas.JaasNameCallbackHandler"/>

 <bean

 class="org.springframework.security.authentication.jaas.JaasPasswordCallbackHandler"/>

 </list>

http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html

Spring Security

3.1.7.RELEASE 109

 </property>

 <property name="authorityGranters">

 <list>

 <bean class="org.springframework.security.authentication.jaas.TestAuthorityGranter"/>

 </list>

 </property>

</bean>

21.5 Running as a Subject

If configured, the JaasApiIntegrationFilter will attempt to run as the Subject on the

JaasAuthenticationToken. This means that the Subject can be accessed using:

 Subject subject = Subject.getSubject(AccessController.getContext());

This integration can easily be configured using the jaas-api-provision attribute. This feature is useful when

integrating with legacy or external API's that rely on the JAAS Subject being populated.

Spring Security

3.1.7.RELEASE 110

22.1 Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives, JA-SIG's

Central Authentication Service is open source, widely used, simple to understand, platform independent, and

supports proxy capabilities. Spring Security fully supports CAS, and provides an easy migration path from

single-application deployments of Spring Security through to multiple-application deployments secured by an

enterprise-wide CAS server.

You can learn more about CAS at http://www.ja-sig.org/cas. You will also need to visit this site

to download the CAS Server files.

22.2 How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the general

overview again here within the context of Spring Security. Spring Security 3.x supports CAS 3. At the time

of writing, the CAS server was at version 3.4.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server is simply a standard WAR

file, so there isn't anything difficult about setting up your server. Inside the WAR file you will customise the

login and other single sign on pages displayed to users.

When deploying a CAS 3.4 server, you will also need to specify an AuthenticationHandler

in the deployerConfigContext.xml included with CAS. The AuthenticationHandler has

a simple method that returns a boolean as to whether a given set of Credentials is valid. Your

AuthenticationHandler implementation will need to link into some type of backend authentication

repository, such as an LDAP server or database. CAS itself includes numerous AuthenticationHandlers

out of the box to assist with this. When you download and deploy the server war file, it is set up to successfully

authenticate users who enter a password matching their username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications deployed

throughout your enterprise. These web applications are known as "services". There are three types of services.

Those that authenticate service tickets, those that can obtain proxy tickets, and those that authenticate proxy

tickets. Authenticating a proxy ticket differs because the list of proxies must be validated and often times a

proxy ticket can be reused.

Spring Security and CAS Interaction Sequence

The basic interaction between a web browser, CAS server and a Spring Security-secured service is as follows:

1. The web user is browsing the service's public pages. CAS or Spring Security is not involved.

2. The user eventually requests a page that is either secure or one of the beans it uses is secure.

Spring Security's ExceptionTranslationFilter will detect the AccessDeniedException or

AuthenticationException.

3. Because the user's Authentication object (or lack thereof) caused an

AuthenticationException, the ExceptionTranslationFilter will call the configured

Spring Security

3.1.7.RELEASE 111

AuthenticationEntryPoint. If using CAS, this will be the CasAuthenticationEntryPoint

class.

4. The CasAuthenticationEntryPoint will redirect the user's browser to the CAS

server. It will also indicate a service parameter, which is the callback URL for the

Spring Security service (your application). For example, the URL to which the browser

is redirected might be https://my.company.com/cas/login?service=https%3A%2F

%2Fserver3.company.com%2Fwebapp%2Fj_spring_cas_security_check.

5. After the user's browser redirects to CAS, they will be prompted for their username and password.

If the user presents a session cookie which indicates they've previously logged on, they will not be

prompted to login again (there is an exception to this procedure, which we'll cover later). CAS will use

the PasswordHandler (or AuthenticationHandler if using CAS 3.0) discussed above to decide

whether the username and password is valid.

6. Upon successful login, CAS will redirect the user's browser back to the original service. It will also

include a ticket parameter, which is an opaque string representing the "service ticket". Continuing our

earlier example, the URL the browser is redirected to might be https://server3.company.com/

webapp/j_spring_cas_security_check?ticket=ST-0-ER94xMJmn6pha35CQRoZ.

7. Back in the service web application, the CasAuthenticationFilter is always

listening for requests to /j_spring_cas_security_check (this is configurable, but

we'll use the defaults in this introduction). The processing filter will construct a

UsernamePasswordAuthenticationToken representing the service ticket. The principal will be

equal to CasAuthenticationFilter.CAS_STATEFUL_IDENTIFIER, whilst the credentials will

be the service ticket opaque value. This authentication request will then be handed to the configured

AuthenticationManager.

8. The AuthenticationManager implementation will be the ProviderManager, which is in

turn configured with the CasAuthenticationProvider. The CasAuthenticationProvider

only responds to UsernamePasswordAuthenticationTokens containing the CAS-

specific principal (such as CasAuthenticationFilter.CAS_STATEFUL_IDENTIFIER) and

CasAuthenticationTokens (discussed later).

9. CasAuthenticationProvider will validate the service ticket using a TicketValidator

implementation. This will typically be a Cas20ServiceTicketValidator which is

one of the classes included in the CAS client library. In the event the application

needs to validate proxy tickets, the Cas20ProxyTicketValidator is used. The

TicketValidator makes an HTTPS request to the CAS server in order to validate

the service ticket. It may also include a proxy callback URL, which is included in

this example: https://my.company.com/cas/proxyValidate?service=https%3A%2F

%2Fserver3.company.com%2Fwebapp

%2Fj_spring_cas_security_check&ticket=ST-0-

ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/

j_spring_cas_security_proxyreceptor.

10.Back on the CAS server, the validation request will be received. If the presented service ticket matches

the service URL the ticket was issued to, CAS will provide an affirmative response in XML indicating

Spring Security

3.1.7.RELEASE 112

the username. If any proxy was involved in the authentication (discussed below), the list of proxies is also

included in the XML response.

11.[OPTIONAL] If the request to the CAS validation service included the proxy callback URL

(in the pgtUrl parameter), CAS will include a pgtIou string in the XML response. This

pgtIou represents a proxy-granting ticket IOU. The CAS server will then create its own

HTTPS connection back to the pgtUrl. This is to mutually authenticate the CAS server and

the claimed service URL. The HTTPS connection will be used to send a proxy granting ticket

to the original web application. For example, https://server3.company.com/webapp/

j_spring_cas_security_proxyreceptor?pgtIou=PGTIOU-0-

R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-

si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH.

12.The Cas20TicketValidator will parse the XML received from the CAS server. It will return to the

CasAuthenticationProvider a TicketResponse, which includes the username (mandatory),

proxy list (if any were involved), and proxy-granting ticket IOU (if the proxy callback was requested).

13.Next CasAuthenticationProvider will call a configured CasProxyDecider. The

CasProxyDecider indicates whether the proxy list in the TicketResponse is acceptable to

the service. Several implementations are provided with Spring Security: RejectProxyTickets,

AcceptAnyCasProxy and NamedCasProxyDecider. These names are largely self-explanatory,

except NamedCasProxyDecider which allows a List of trusted proxies to be provided.

14.CasAuthenticationProvider will next request a AuthenticationUserDetailsService

to load the GrantedAuthority objects that apply to the user contained in the Assertion.

15.If there were no problems, CasAuthenticationProvider constructs a

CasAuthenticationToken including the details contained in the TicketResponse and the

GrantedAuthoritys.

16.Control then returns to CasAuthenticationFilter, which places the created

CasAuthenticationToken in the security context.

17.The user's browser is redirected to the original page that caused the AuthenticationException (or

a custom destination depending on the configuration).

It's good that you're still here! Let's now look at how this is configured

22.3 Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already know the basics

of using Spring Security, so these are not covered again below. We'll assume a namespace based configuration

is being used and add in the CAS beans as required. Each section builds upon the previous section. A full CAS

sample application can be found in the Spring Security Samples.

Spring Security

3.1.7.RELEASE 113

Service Ticket Authentication

This section describes how to setup Spring Security to authenticate Service Tickets. Often times this is all a

web application requires. You will need to add a ServiceProperties bean to your application context.

This represents your CAS service:

 <bean id="serviceProperties"

 class="org.springframework.security.cas.ServiceProperties">

 <property name="service"

 value="https://localhost:8443/cas-sample/j_spring_cas_security_check"/>

 <property name="sendRenew" value="false"/>

 </bean>

The service must equal a URL that will be monitored by the CasAuthenticationFilter. The

sendRenew defaults to false, but should be set to true if your application is particularly sensitive. What this

parameter does is tell the CAS login service that a single sign on login is unacceptable. Instead, the user will

need to re-enter their username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process (assuming you're

using a namespace configuration):

 <security:http entry-point-ref="casEntryPoint">

 ...

 <security:custom-filter position="CAS_FILTER" ref="casFilter" />

 </security:http>

 <bean id="casFilter"

 class="org.springframework.security.cas.web.CasAuthenticationFilter">

 <property name="authenticationManager" ref="authenticationManager"/>

 </bean>

 <bean id="casEntryPoint"

 class="org.springframework.security.cas.web.CasAuthenticationEntryPoint">

 <property name="loginUrl" value="https://localhost:9443/cas/login"/>

 <property name="serviceProperties" ref="serviceProperties"/>

 </bean>

For CAS to operate, the ExceptionTranslationFilter must have its

authenticationEntryPoint property set to the CasAuthenticationEntryPoint bean.

This can easily be done using entry-point-ref as is done in the example above. The

CasAuthenticationEntryPoint must refer to the ServiceProperties bean (discussed above),

which provides the URL to the enterprise's CAS login server. This is where the user's browser will be redirected.

The CasAuthenticationFilter has very similar properties to the

UsernamePasswordAuthenticationFilter (used for form-based logins). You can use these

properties to customize things like behavior for authentication success and failure.

Next you need to add a CasAuthenticationProvider and its collaborators:

Spring Security

3.1.7.RELEASE 114

 <security:authentication-manager alias="authenticationManager">

 <security:authentication-provider ref="casAuthenticationProvider" />

 </security:authentication-manager>

 <bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

 <property name="authenticationUserDetailsService">

 <bean class="org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapper">

 <constructor-arg ref="userService" />

 </bean>

 </property>

 <property name="serviceProperties" ref="serviceProperties" />

 <property name="ticketValidator">

 <bean class="org.jasig.cas.client.validation.Cas20ServiceTicketValidator">

 <constructor-arg index="0" value="https://localhost:9443/cas" />

 </bean>

 </property>

 <property name="key" value="an_id_for_this_auth_provider_only"/>

 </bean>

 <security:user-service id="userService">

 <security:user name="joe" password="joe" authorities="ROLE_USER" />

 ...

 </security:user-service>

The CasAuthenticationProvider uses a UserDetailsService instance to load the authorities

for a user, once they have been authenticated by CAS. We've shown a simple in-memory setup here. Note that

the CasAuthenticationProvider does not actually use the password for authentication, but it does use

the authorities.

The beans are all reasonably self-explanatory if you refer back to the How CAS Works section.

This completes the most basic configuration for CAS. If you haven't made any mistakes, your web application

should happily work within the framework of CAS single sign on. No other parts of Spring Security need to be

concerned about the fact CAS handled authentication. In the following sections we will discuss some (optional)

more advanced configurations.

Single Logout

The CAS protocol supports Single Logout and can be easily added to your Spring Security configuration.

Below are updates to the Spring Security configuration that handle Single Logout

 <security:http entry-point-ref="casEntryPoint">

 ...

 <security:logout logout-success-url="/cas-logout.jsp"/>

 <security:custom-filter ref="requestSingleLogoutFilter" before="LOGOUT_FILTER"/>

 <security:custom-filter ref="singleLogoutFilter" before="CAS_FILTER"/>

 </security:http>

 <!-- This filter handles a Single Logout Request from the CAS Server -->

 <bean id="singleLogoutFilter" class="org.jasig.cas.client.session.SingleSignOutFilter"/>

 <!-- This filter redirects to the CAS Server to signal Single Logout should be performed -->

 <bean id="requestSingleLogoutFilter"

 class="org.springframework.security.web.authentication.logout.LogoutFilter">

 <constructor-arg value="https://localhost:9443/cas/logout"/>

Spring Security

3.1.7.RELEASE 115

 <constructor-arg>

 <bean class=

 "org.springframework.security.web.authentication.logout.SecurityContextLogoutHandler"/>

 </constructor-arg>

 <property name="filterProcessesUrl" value="/j_spring_cas_security_logout"/>

 </bean>

The logout element logs the user out of the local application, but does not terminate the session with the

CAS server or any other applications that have been logged into. The requestSingleLogoutFilter

filter will allow the url of /spring_security_cas_logout to be requested to redirect the application

to the configured CAS Server logout url. Then the CAS Server will send a Single Logout request to all the

services that were signed into. The singleLogoutFilter handles the Single Logout request by looking

up the HttpSession in a static Map and then invalidating it.

It might be confusing why both the logout element and the singleLogoutFilter are needed. It

is considered best practice to logout locally first since the SingleSignOutFilter just stores the

HttpSession in a static Map in order to call invalidate on it. With the configuration above, the flow of

logout would be:

1. The user requests /j_spring_security_logout which would log the user out of the local application

and send the user to the logout success page.

2. The logout success page, /cas-logout.jsp, should instruct the user to click a link pointing to /

j_spring_cas_security_logout in order to logout out of all applications.

3. When the user clicks the link, the user is redirected to the CAS single logout URL (https://

localhost:9443/cas/logout).

4. On the CAS Server side, the CAS single logout URL then submits single logout requests to all the CAS

Services. On the CAS Service side, JASIG's SingleSignOutFilter processes the logout request by

invaliditing the original session.

The next step is to add the following to your web.xml

 <filter>

 <filter-name>characterEncodingFilter</filter-name>

 <filter-class>org.springframework.web.filter.CharacterEncodingFilter</filter-class>

 <init-param>

 <param-name>encoding</param-name>

 <param-value>UTF-8</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>characterEncodingFilter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <listener>

 <listener-class>org.jasig.cas.client.session.SingleSignOutHttpSessionListener</listener-class>

 </listener>

When using the SingleSignOutFilter you might encounter some encoding issues. Therefore it is

recommended to add the CharacterEncodingFilter to ensure that the character encoding is correct

when using the SingleSignOutFilter. Again, refer to JASIG's documentation for details. The

Spring Security

3.1.7.RELEASE 116

SingleSignOutHttpSessionListener ensures that when an HttpSession expires, the mapping

used for single logout is removed.

Authenticating to a Stateless Service with CAS

This section describes how to authenticate to a service using CAS. In other words, this section discusses how

to setup a client that uses a service that authenticates with CAS. The next section describes how to setup a

stateless service to Authenticate using CAS.

Configuring CAS to Obtain Proxy Granting Tickets

In order to authenticate to a stateless service, the application needs to obtain a proxy granting ticket (PGT).

This section describes how to configure Spring Security to obtain a PGT building upon then Service Ticket

Authentication [cas-st] configuration.

The first step is to include a ProxyGrantingTicketStorage in your Spring Security configuration. This

is used to store PGT's that are obtained by the CasAuthenticationFilter so that they can be used to

obtain proxy tickets. An example configuration is shown below

 <!--

 NOTE: In a real application you should not use an in memory implementation. You will also want

 to ensure to clean up expired tickets by calling ProxyGrantingTicketStorage.cleanup()

 -->

 <bean id="pgtStorage" class="org.jasig.cas.client.proxy.ProxyGrantingTicketStorageImpl"/>

The next step is to update the CasAuthenticationProvider to be able to obtain proxy tickets.

To do this replace the Cas20ServiceTicketValidator with a Cas20ProxyTicketValidator.

The proxyCallbackUrl should be set to a URL that the application will receive PGT's at. Last, the

configuration should also reference the ProxyGrantingTicketStorage so it can use a PGT to obtain

proxy tickets. You can find an example of the configuration changes that should be made below.

 <bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

 ...

 <property name="ticketValidator">

 <bean class="org.jasig.cas.client.validation.Cas20ProxyTicketValidator">

 <constructor-arg value="https://localhost:9443/cas"/>

 <property name="proxyCallbackUrl"

 value="https://localhost:8443/cas-sample/j_spring_cas_security_proxyreceptor"/>

 <property name="proxyGrantingTicketStorage" ref="pgtStorage"/>

 </bean>

 </property>

 </bean>

The last step is to update the CasAuthenticationFilter to accept PGT and to store them in

the ProxyGrantingTicketStorage. It is important the the proxyReceptorUrl matches the

proxyCallbackUrl of the Cas20ProxyTicketValidator. An example configuration is shown

below.

cas-st
cas-st
cas-st

Spring Security

3.1.7.RELEASE 117

 <bean id="casFilter"

 class="org.springframework.security.cas.web.CasAuthenticationFilter">

 ...

 <property name="proxyGrantingTicketStorage" ref="pgtStorage"/>

 <property name="proxyReceptorUrl" value="/j_spring_cas_security_proxyreceptor"/>

 </bean>

Calling a Stateless Service Using a Proxy Ticket

Now that Spring Security obtains PGTs, you can use them to create proxy tickets which can be used

to authenticate to a stateless service. The CAS sample application contains a working example in the

ProxyTicketSampleServlet. Example code can be found below:

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // NOTE: The CasAuthenticationToken can also be obtained using

 // SecurityContextHolder.getContext().getAuthentication()

 final CasAuthenticationToken token = (CasAuthenticationToken) request.getUserPrincipal();

 // proxyTicket could be reused to make calls to the CAS service even if the

 // target url differs

 final String proxyTicket = token.getAssertion().getPrincipal().getProxyTicketFor(targetUrl);

 // Make a remote call using the proxy ticket

 final String serviceUrl = targetUrl+"?ticket="+URLEncoder.encode(proxyTicket, "UTF-8");

 String proxyResponse = CommonUtils.getResponseFromServer(serviceUrl, "UTF-8");

 ...

 }

Proxy Ticket Authentication

The CasAuthenticationProvider distinguishes between stateful and stateless clients. A stateful client

is considered any that submits to the filterProcessUrl of the CasAuthenticationFilter. A

stateless client is any that presents an authentication request to CasAuthenticationFilter on a URL

other than the filterProcessUrl.

Because remoting protocols have no way of presenting themselves within the context of an HttpSession,

it isn't possible to rely on the default practice of storing the security context in the session between

requests. Furthermore, because the CAS server invalidates a ticket after it has been validated by the

TicketValidator, presenting the same proxy ticket on subsequent requests will not work.

One obvious option is to not use CAS at all for remoting protocol clients. However, this would eliminate

many of the desirable features of CAS. As a middle-ground, the CasAuthenticationProvider

uses a StatelessTicketCache. This is used solely for stateless clients which use a principal

equal to CasAuthenticationFilter.CAS_STATELESS_IDENTIFIER. What happens is the

CasAuthenticationProvider will store the resulting CasAuthenticationToken in the

StatelessTicketCache, keyed on the proxy ticket. Accordingly, remoting protocol clients can present

the same proxy ticket and the CasAuthenticationProvider will not need to contact the CAS server

for validation (aside from the first request). Once authenticated, the proxy ticket could be used for URLs other

than the original target service.

This section builds upon the previous sections to accomodate proxy ticket authentication. The first step is to

specify to authenticate all artifacts as shown below.

Spring Security

3.1.7.RELEASE 118

 <bean id="serviceProperties"

 class="org.springframework.security.cas.ServiceProperties">

 ...

 <property name="authenticateAllArtifacts" value="true"/>

 </bean>

The next step is to specify serviceProperties and the authenticationDetailsSource

for the CasAuthenticationFilter. The serviceProperties property instructs the

CasAuthenticationFilter to attempt to authenticate all artifacts instead of only ones

present on the filterProcessUrl. The ServiceAuthenticationDetailsSource creates

a ServiceAuthenticationDetails that ensures the current URL, based upon the

HttpServletRequest, is used as the service URL when validating the ticket. The method for generating

the service URL can be customized by injecting a custom AuthenticationDetailsSource that returns

a custom ServiceAuthenticationDetails.

 <bean id="casFilter"

 class="org.springframework.security.cas.web.CasAuthenticationFilter">

 ...

 <property name="serviceProperties" ref="serviceProperties"/>

 <property name="authenticationDetailsSource">

 <bean class=

 "org.springframework.security.cas.web.authentication.ServiceAuthenticationDetailsSource">

 <constructor-arg ref="serviceProperties"/>

 </bean>

 </property>

 </bean>

You will also need to update the CasAuthenticationProvider to handle proxy tickets. To do this

replace the Cas20ServiceTicketValidator with a Cas20ProxyTicketValidator. You will

need to configure the statelessTicketCache and which proxies you want to accept. You can find an

example of the updates required to accept all proxies below.

 <bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

 ...

 <property name="ticketValidator">

 <bean class="org.jasig.cas.client.validation.Cas20ProxyTicketValidator">

 <constructor-arg value="https://localhost:9443/cas"/>

 <property name="acceptAnyProxy" value="true"/>

 </bean>

 </property>

 <property name="statelessTicketCache">

 <bean class="org.springframework.security.cas.authentication.EhCacheBasedTicketCache">

 <property name="cache">

 <bean class="net.sf.ehcache.Cache"

 init-method="initialise" destroy-method="dispose">

 <constructor-arg value="casTickets"/>

 <constructor-arg value="50"/>

 <constructor-arg value="true"/>

 <constructor-arg value="false"/>

 <constructor-arg value="3600"/>

 <constructor-arg value="900"/>

 </bean>

 </property>

Spring Security

3.1.7.RELEASE 119

 </bean>

 </property>

 </bean>

Spring Security

3.1.7.RELEASE 120

23.1 Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when using SSL,

most commonly when using HTTPS from a browser. The browser will automatically check that the certificate

presented by a server has been issued (ie digitally signed) by one of a list of trusted certificate authorities which

it maintains.

You can also use SSL with “mutual authentication”; the server will then request a valid certificate from the

client as part of the SSL handshake. The server will authenticate the client by checking that its certificate is

signed by an acceptable authority. If a valid certificate has been provided, it can be obtained through the servlet

API in an application. Spring Security X.509 module extracts the certificate using a filter. It maps the certificate

to an application user and loads that user's set of granted authorities for use with the standard Spring Security

infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet container

before attempting to use it with Spring Security. Most of the work is in creating and installing suitable

certificates and keys. For example, if you're using Tomcat then read the instructions here http://

tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html. It's important that you get this working

before trying it out with Spring Security

23.2 Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/> element to your http

security namespace configuration.

<http>

 ...

 <x509 subject-principal-regex="CN=(.*?)," user-service-ref="userService"/>;

 ...

</http>

The element has two optional attributes:

• subject-principal-regex. The regular expression used to extract a username from the certificate's

subject name. The default value is shown above. This is the username which will be passed to the

UserDetailsService to load the authorities for the user.

• user-service-ref. This is the bean Id of the UserDetailsService to be used with X.509. It isn't

needed if there is only one defined in your application context.

The subject-principal-regex should contain a single group. For example the default expression

"CN=(.*?)," matches the common name field. So if the subject name in the certificate is "CN=Jimi

Hendrix, OU=...", this will give a user name of "Jimi Hendrix". The matches are case insensitive.

So "emailAddress=(.?)," will match "EMAILADDRESS=jimi@hendrix.org,CN=..." giving a user name

"jimi@hendrix.org". If the client presents a certificate and a valid username is successfully extracted, then

there should be a valid Authentication object in the security context. If no certificate is found, or no

corresponding user could be found then the security context will remain empty. This means that you can easily

use X.509 authentication with other options such as a form-based login.

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

Spring Security

3.1.7.RELEASE 121

23.3 Setting up SSL in Tomcat

There are some pre-generated certificates in the samples/certificate directory in the Spring Security

project. You can use these to enable SSL for testing if you don't want to generate your own. The file

server.jks contains the server certificate, private key and the issuing certificate authority certificate. There

are also some client certificate files for the users from the sample applications. You can install these in your

browser to enable SSL client authentication.

To run tomcat with SSL support, drop the server.jks file into the tomcat conf directory and add the

following connector to the server.xml file

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true"

 clientAuth="true" sslProtocol="TLS"

 keystoreFile="${catalina.home}/conf/server.jks"

 keystoreType="JKS" keystorePass="password"

 truststoreFile="${catalina.home}/conf/server.jks"

 truststoreType="JKS" truststorePass="password"

/>

clientAuth can also be set to want if you still want SSL connections to succeed even if the client doesn't

provide a certificate. Clients which don't present a certificate won't be able to access any objects secured by

Spring Security unless you use a non-X.509 authentication mechanism, such as form authentication.

Spring Security

3.1.7.RELEASE 122

24.1 Overview

The AbstractSecurityInterceptor is able to temporarily replace the Authentication

object in the SecurityContext and SecurityContextHolder during the secure object callback

phase. This only occurs if the original Authentication object was successfully processed

by the AuthenticationManager and AccessDecisionManager. The RunAsManager will

indicate the replacement Authentication object, if any, that should be used during the

SecurityInterceptorCallback.

By temporarily replacing the Authentication object during the secure object callback phase, the secured

invocation will be able to call other objects which require different authentication and authorization credentials.

It will also be able to perform any internal security checks for specific GrantedAuthority objects. Because

Spring Security provides a number of helper classes that automatically configure remoting protocols based

on the contents of the SecurityContextHolder, these run-as replacements are particularly useful when

calling remote web services

24.2 Configuration

A RunAsManager interface is provided by Spring Security:

 Authentication buildRunAs(Authentication authentication, Object object,

 List<ConfigAttribute> config);

 boolean supports(ConfigAttribute attribute);

 boolean supports(Class clazz);

The first method returns the Authentication object that should replace the existing Authentication

object for the duration of the method invocation. If the method returns null, it indicates no replacement

should be made. The second method is used by the AbstractSecurityInterceptor as part of its startup

validation of configuration attributes. The supports(Class) method is called by a security interceptor

implementation to ensure the configured RunAsManager supports the type of secure object that the security

interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The

RunAsManagerImpl class returns a replacement RunAsUserToken if any ConfigAttribute starts

with RUN_AS_. If any such ConfigAttribute is found, the replacement RunAsUserToken will

contain the same principal, credentials and granted authorities as the original Authentication object,

along with a new GrantedAuthorityImpl for each RUN_AS_ ConfigAttribute. Each new

GrantedAuthorityImpl will be prefixed with ROLE_, followed by the RUN_AS ConfigAttribute.

For example, a RUN_AS_SERVER will result in the replacement RunAsUserToken containing a

ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUserToken is just like any other Authentication object. It

needs to be authenticated by the AuthenticationManager, probably via delegation to a

suitable AuthenticationProvider. The RunAsImplAuthenticationProvider performs such

authentication. It simply accepts as valid any RunAsUserToken presented.

Spring Security

3.1.7.RELEASE 123

To ensure malicious code does not create a RunAsUserToken and present it for guaranteed acceptance by

the RunAsImplAuthenticationProvider, the hash of a key is stored in all generated tokens. The

RunAsManagerImpl and RunAsImplAuthenticationProvider is created in the bean context with

the same key:

<bean id="runAsManager"

 class="org.springframework.security.access.intercept.RunAsManagerImpl">

 <property name="key" value="my_run_as_password"/>

</bean>

<bean id="runAsAuthenticationProvider"

 class="org.springframework.security.access.intercept.RunAsImplAuthenticationProvider">

 <property name="key" value="my_run_as_password"/>

</bean>

By using the same key, each RunAsUserToken can be validated it was created by an approved

RunAsManagerImpl. The RunAsUserToken is immutable after creation for security reasons

Spring Security

3.1.7.RELEASE 124

25.1 Introduction

The Spring Security Crypto module provides support for symmetric encryption, key generation, and password

encoding. The code is distributed as part of the core module but has no dependencies on any other Spring

Security (or Spring) code.

25.2 Encryptors

The Encryptors class provides factory methods for constructing symmetric encryptors. Using this class, you

can create ByteEncryptors to encrypt data in raw byte[] form. You can also construct TextEncryptors to encrypt

text strings. Encryptors are thread safe.

BytesEncryptor

Use the Encryptors.standard factory method to construct a "standard" BytesEncryptor:

Encryptors.standard("password", "salt");

The "standard" encryption method is 256-bit AES using PKCS #5's PBKDF2 (Password-Based Key Derivation

Function #2). This method requires Java 6. The password used to generate the SecretKey should be kept in

a secure place and not be shared. The salt is used to prevent dictionary attacks against the key in the event

your encrypted data is compromised. A 16-byte random initialization vector is also applied so each encrypted

message is unique.

The provided salt should be in hex-encoded String form, be random, and be at least 8 bytes in length. Such a

salt may be generated using a KeyGenerator:

String salt = KeyGenerators.string().generateKey(); // generates a random 8-byte salt that is then hex-encoded

TextEncryptor

Use the Encryptors.text factory method to construct a standard TextEncryptor:

Encryptors.text("password", "salt");

A TextEncryptor uses a standard BytesEncryptor to encrypt text data. Encrypted results are returned as hex-

encoded strings for easy storage on the filesystem or in the database.

Use the Encryptors.queryableText factory method to construct a "queryable" TextEncryptor:

Encryptors.queryableText("password", "salt");

The difference between a queryable TextEncryptor and a standard TextEncryptor has to do with initialization

vector (iv) handling. The iv used in a queryable TextEncryptor#encrypt operation is shared, or constant, and

Spring Security

3.1.7.RELEASE 125

is not randomly generated. This means the same text encrypted multiple times will always produce the same

encryption result. This is less secure, but necessary for encrypted data that needs to be queried against. An

example of queryable encrypted text would be an OAuth apiKey.

25.3 Key Generators

The KeyGenerators class provides a number of convenience factory methods for constructing different types

of key generators. Using this class, you can create a BytesKeyGenerator to generate byte[] keys. You can also

construct a StringKeyGenerator to generate string keys. KeyGenerators are thread safe.

BytesKeyGenerator

Use the KeyGenerators.secureRandom factory methods to generate a BytesKeyGenerator backed by a

SecureRandom instance:

KeyGenerator generator = KeyGenerators.secureRandom();

byte[] key = generator.generateKey();

The default key length is 8 bytes. There is also a KeyGenerators.secureRandom variant that provides control

over the key length:

KeyGenerators.secureRandom(16);

Use the KeyGenerators.shared factory method to construct a BytesKeyGenerator that always returns the same

key on every invocation:

KeyGenerators.shared(16);

StringKeyGenerator

Use the KeyGenerators.string factory method to construct a 8-byte, SecureRandom KeyGenerator that hex-

encodes each key as a String:

KeyGenerators.string();

25.4 Password Encoding

The password package of the spring-security-crypto module provides support for encoding passwords.

PasswordEncoder is the central service interface and has the following signature:

public interface PasswordEncoder {

 String encode(String rawPassword);

Spring Security

3.1.7.RELEASE 126

 boolean matches(String rawPassword, String encodedPassword);

}

The matches method returns true if the rawPassword, once encoded, equals the encodedPassword. This method

is designed to support password-based authentication schemes.

The StandardPasswordEncoder implementation applies 1024 iterations of the SHA-256 hashing

algorithm to the rawPassword combined with a site-wide secret and 8-byte random salt:

StandardPasswordEncoder encoder = new StandardPasswordEncoder("secret");

String result = encoder.encode("myPassword");

assertTrue(encoder.matches("myPassword", result));

The random salt ensures each hash is unique when the same password is used multiple times. The site-wide

secret should be stored in a safe place separate from where passwords are stored, and is used to protect against

a bruce force attack in the event the database of passwords is compromised. 1024 iterations of the hashing

algorithm strengthens the key and makes it more difficult to compromise using a brute force attack.

Spring Security

3.1.7.RELEASE 127

Appendix A. Security Database Schema
There are various database schema used by the framework and this appendix provides a single reference point

to them all. You only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQLDB database. You can use these as a guideline for defining the schema

for the database you are using.

A.1 User Schema

The standard JDBC implementation of the UserDetailsService (JdbcDaoImpl) requires tables to load

the password, account status (enabled or disabled) and a list of authorities (roles) for the user.

 create table users(

 username varchar_ignorecase(50) not null primary key,

 password varchar_ignorecase(50) not null,

 enabled boolean not null);

 create table authorities (

 username varchar_ignorecase(50) not null,

 authority varchar_ignorecase(50) not null,

 constraint fk_authorities_users foreign key(username) references users(username));

 create unique index ix_auth_username on authorities (username,authority);

Group Authorities

Spring Security 2.0 introduced support for group authorities in JdbcDaoImpl. The table structure if groups

are enabled is as follows:

create table groups (

 id bigint generated by default as identity(start with 0) primary key,

 group_name varchar_ignorecase(50) not null);

create table group_authorities (

 group_id bigint not null,

 authority varchar(50) not null,

 constraint fk_group_authorities_group foreign key(group_id) references groups(id));

create table group_members (

 id bigint generated by default as identity(start with 0) primary key,

 username varchar(50) not null,

 group_id bigint not null,

 constraint fk_group_members_group foreign key(group_id) references groups(id));

Remember that these tables are only required if you are using the provided JDBC UserDetailsService

implementation. If you write your own or choose to implement AuthenticationProvider without a

UserDetailsService, then you have complete freedom over how you store the data, as long as the

interface contract is satisfied.

Spring Security

3.1.7.RELEASE 128

A.2 Persistent Login (Remember-Me) Schema

This table is used to store data used by the more secure persistent token remember-me implementation. If you

are using JdbcTokenRepositoryImpl either directly or through the namespace, then you will need this

table.

create table persistent_logins (

 username varchar(64) not null,

 series varchar(64) primary key,

 token varchar(64) not null,

 last_used timestamp not null);

A.3 ACL Schema

There are four tables used by the Spring Security ACL implementation.

1. acl_sid stores the security identities recognised by the ACL system. These can be unique principals or

authorities which may apply to multiple principals.

2. acl_class defines the domain object types to which ACLs apply. The class column stores the Java

class name of the object.

3. acl_object_identity stores the object identity definitions of specific domai objects.

4. acl_entry stores the ACL permissions which apply to a specific object identity and security identity.

It is assumed that the database will auto-generate the primary keys for each of the identities. The

JdbcMutableAclService has to be able to retrieve these when it has created a new row in the

acl_sid or acl_class tables. It has two properties which define the SQL needed to retrieve these values

classIdentityQuery and sidIdentityQuery. Both of these default to call identity()

Hypersonic SQL

The default schema works with the embedded HSQLDB database that is used in unit tests within the framework.

create table acl_sid (

 id bigint generated by default as identity(start with 100) not null primary key,

 principal boolean not null,

 sid varchar_ignorecase(100) not null,

 constraint unique_uk_1 unique(sid,principal));

create table acl_class (

 id bigint generated by default as identity(start with 100) not null primary key,

 class varchar_ignorecase(100) not null,

 constraint unique_uk_2 unique(class));

create table acl_object_identity (

 id bigint generated by default as identity(start with 100) not null primary key,

 object_id_class bigint not null,

 object_id_identity bigint not null,

 parent_object bigint,

Spring Security

3.1.7.RELEASE 129

 owner_sid bigint not null,

 entries_inheriting boolean not null,

 constraint unique_uk_3 unique(object_id_class,object_id_identity),

 constraint foreign_fk_1 foreign key(parent_object)references acl_object_identity(id),

 constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),

 constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id));

create table acl_entry (

 id bigint generated by default as identity(start with 100) not null primary key,

 acl_object_identity bigint not null,ace_order int not null,sid bigint not null,

 mask integer not null,granting boolean not null,audit_success boolean not null,

 audit_failure boolean not null,

 constraint unique_uk_4 unique(acl_object_identity,ace_order),

 constraint foreign_fk_4 foreign key(acl_object_identity)

 references acl_object_identity(id),

 constraint foreign_fk_5 foreign key(sid) references acl_sid(id));

PostgreSQL

create table acl_sid(

 id bigserial not null primary key,

 principal boolean not null,

 sid varchar(100) not null,

 constraint unique_uk_1 unique(sid,principal));

create table acl_class(

 id bigserial not null primary key,

 class varchar(100) not null,

 constraint unique_uk_2 unique(class));

create table acl_object_identity(

 id bigserial primary key,

 object_id_class bigint not null,

 object_id_identity bigint not null,

 parent_object bigint,

 owner_sid bigint,

 entries_inheriting boolean not null,

 constraint unique_uk_3 unique(object_id_class,object_id_identity),

 constraint foreign_fk_1 foreign key(parent_object) references acl_object_identity(id),

 constraint foreign_fk_2 foreign key(object_id_class) references acl_class(id),

 constraint foreign_fk_3 foreign key(owner_sid) references acl_sid(id));

create table acl_entry(

 id bigserial primary key,

 acl_object_identity bigint not null,

 ace_order int not null,

 sid bigint not null,

 mask integer not null,

 granting boolean not null,

 audit_success boolean not null,

 audit_failure boolean not null,

 constraint unique_uk_4 unique(acl_object_identity,ace_order),

 constraint foreign_fk_4 foreign key(acl_object_identity)

 references acl_object_identity(id),

 constraint foreign_fk_5 foreign key(sid) references acl_sid(id));

You will have to set the classIdentityQuery and sidIdentityQuery properties of

JdbcMutableAclService to the following values, respectively:

Spring Security

3.1.7.RELEASE 130

• select currval(pg_get_serial_sequence('acl_class', 'id'))

• select currval(pg_get_serial_sequence('acl_sid', 'id'))

Spring Security

3.1.7.RELEASE 131

Appendix B. The Security Namespace
This appendix provides a reference to the elements available in the security namespace and information on the

underlying beans they create (a knowledge of the individual classes and how they work together is assumed

- you can find more information in the project Javadoc and elsewhere in this document). If you haven't used

the namespace before, please read the introductory chapter on namespace configuration, as this is intended as

a supplement to the information there. Using a good quality XML editor while editing a configuration based

on the schema is recommended as this will provide contextual information on which elements and attributes

are available as well as comments explaining their purpose. The namespace is written in RELAX NG [http://

www.relaxng.org/] Compact format and later converted into an XSD schema. If you are familiar with this

format, you may wish to examine the schema file [https://fisheye.springsource.org/browse/spring-security/

config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc] directly.

B.1 Web Application Security

<debug>

Enables Spring Security debugging infrastructure. This will provide human-readable (multi-line) debugging

information to monitor requests coming into the security filters. This may include sensitive information, such

as request parameters or headers, and should only be used in a development environment.

<http>

If you use an <http> element within your application, a FilterChainProxy bean named

"springSecurityFilterChain" is created and the configuration within the element is used to build a filter chain

within FilterChainProxy. As of Spring Security 3.1, additional http elements can be used to add extra

filter chains 1. Some core filters are always created in a filter chain and others will be added to the stack

depending on the attributes and child elements which are present. The positions of the standard filters are fixed

(see the filter order table in the namespace introduction), removing a common source of errors with previous

versions of the framework when users had to configure the filter chain explicitly in the FilterChainProxy

bean. You can, of course, still do this if you need full control of the configuration.

All filters which require a reference to the AuthenticationManager will be automatically injected with

the internal instance created by the namespace configuration (see the introductory chapter for more on the

AuthenticationManager).

Each <http> namespace block always creates an SecurityContextPersistenceFilter, an

ExceptionTranslationFilter and a FilterSecurityInterceptor. These are fixed and

cannot be replaced with alternatives.

<http> Attributes

The attributes on the <http> element control some of the properties on the core filters.

1See the introductory chapter for how to set up the mapping from your web.xml

http://www.relaxng.org/
http://www.relaxng.org/
http://www.relaxng.org/
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc

Spring Security

3.1.7.RELEASE 132

access-decision-manager-ref

Optional attribute specifying the ID of the AccessDecisionManager implementation which should be

used for authorizing HTTP requests. By default an AffirmativeBased implementation is used for with a

RoleVoter and an AuthenticatedVoter.

access-denied-page

Deprecated in favour of the access-denied-handler child element.

authentication-manager-ref

A reference to the AuthenticationManager used for the FilterChain created by this http element.

auto-config

Automatically registers a login form, BASIC authentication, anonymous authentication, logout services,

remember-me and servlet-api-integration. If set to "true", all of these capabilities are added (although you can

still customize the configuration of each by providing the respective element). If unspecified, defaults to "false".

create-session

Controls the eagerness with which an HTTP session is created by Spring Security classes. Options include:

• always - Spring Security will proactively create a session if one does not exist.

• ifRequired - Spring Security will only create a session only if one is required (default value).

• never - Spring Security will never create a session, but will make use of one if the application does.

• stateless - Spring Security will not create a session and ignore the session for obtaining a Spring

Authentication.

disable-url-rewriting

Prevents session IDs from being appended to URLs in the application. Clients must use cookies if this attribute

is set to true. The default is false.

entry-point-ref

Normally the AuthenticationEntryPoint used will be set depending on which authentication

mechanisms have been configured. This attribute allows this behaviour to be overridden by defining a

customized AuthenticationEntryPoint bean which will start the authentication process.

jaas-api-provision

If available, runs the request as the Subject acquired from the JaasAuthenticationToken which is

implemented by adding a JaasApiIntegrationFilter bean to the stack. Defaults to false.

Spring Security

3.1.7.RELEASE 133

name

A bean identifier, used for referring to the bean elsewhere in the context.

once-per-request

Corresponds to the observeOncePerRequest property of FilterSecurityInterceptor. Defaults

to true.

path-type

Deprecated in favor of request-matcher.

pattern

Defining a pattern for the http element controls the requests which will be filtered through the list of filters

which it defines. The interpretation is dependent on the configured request-matcher. If no pattern is defined,

all requests will be matched, so the most specific patterns should be declared first.

realm

Sets the realm name used for basic authentication (if enabled). Corresponds to the realmName property on

BasicAuthenticationEntryPoint.

request-matcher

Defines the RequestMatcher strategy used in the FilterChainProxy and the beans created by the

intercept-url to match incoming requests. Options are currently ant, regex and ciRegex, for

ant, regular-expression and case-insensitive regular-expression repsectively. A separate instance is created

for each intercept-url element using its pattern and method attributes. Ant paths are matched using an

AntPathRequestMatcher and regular expressions are matched using a RegexRequestMatcher. See

the Javadoc for these classes for more details on exactly how the matching is preformed. Ant paths are the

default strategy.

request-matcher-ref

A referenece to a bean that implements RequestMatcher that will determine if this FilterChain should

be used. This is a more powerful alternative to pattern.

security

A request pattern can be mapped to an empty filter chain, by setting this attribute to none. No security will

be applied and none of Spring Security's features will be available.

security-context-repository-ref

Allows injection of a custom SecurityContextRepository into the

SecurityContextPersistenceFilter.

Spring Security

3.1.7.RELEASE 134

servlet-api-provision

Provides versions of HttpServletRequest security methods such as

isUserInRole() and getPrincipal() which are implemented by adding a

SecurityContextHolderAwareRequestFilter bean to the stack. Defaults to true.

use-expressions

Enables EL-expressions in the access attribute, as described in the chapter on expression-based access-

control.

Child Elements of <http>

• access-denied-handler

• anonymous

• custom-filter

• expression-handler

• form-login

• http-basic

• intercept-url

• jee

• logout

• openid-login

• port-mappings

• remember-me

• request-cache

• session-management

• x509

<access-denied-handler>

This element allows you to set the errorPage property for the default AccessDeniedHandler

used by the ExceptionTranslationFilter, using the error-page attribute, or to supply your

own implementation using the ref attribute. This is discussed in more detail in the section on the

ExceptionTranslationFilter.

Parent Elements of <access-denied-handler>

• http

Spring Security

3.1.7.RELEASE 135

<access-denied-handler> Attributes

error-page

The access denied page that an authenticated user will be redirected to if they request a page which they don't

have the authority to access.

ref

Defines a reference to a Spring bean of type AccessDeniedHandler .

<anonymous>

Adds an AnonymousAuthenticationFilter to the stack and an

AnonymousAuthenticationProvider. Required if you are using the

IS_AUTHENTICATED_ANONYMOUSLY attribute.

Parent Elements of <anonymous>

• http

<anonymous> Attributes

enabled

With the default namespace setup, the anonymous "authentication" facility is automatically enabled. You can

disable it using this property.

granted-authority

The granted authority that should be assigned to the anonymous request. Commonly this is used to assign

the anonymous request particular roles, which can subsequently be used in authorization decisions. If unset,

defaults to ROLE_ANONYMOUS.

key

The key shared between the provider and filter. This generally does not need to be set. If unset, it will default

to a secure randomly generated value. This means setting this value can improve startup time when using the

anonymous functionality since secure random values can take a while to be generated.

username

The username that should be assigned to the anonymous request. This allows the principal to be identified,

which may be important for logging and auditing. if unset, defaults to anonymousUser.

<custom-filter>

This element is used to add a filter to the filter chain. It doesn't create any additional beans but is used to

select a bean of type javax.servlet.Filter which is already defined in the application context and add

Spring Security

3.1.7.RELEASE 136

that at a particular position in the filter chain maintained by Spring Security. Full details can be found in the

namespace chapter.

Parent Elements of <custom-filter>

• http

<custom-filter> Attributes

after

The filter immediately after which the custom-filter should be placed in the chain. This feature will only

be needed by advanced users who wish to mix their own filters into the security filter chain and have

some knowledge of the standard Spring Security filters. The filter names map to specific Spring Security

implementation filters.

before

The filter immediately before which the custom-filter should be placed in the chain

position

The explicit position at which the custom-filter should be placed in the chain. Use if you are replacing a standard

filter.

ref

Defines a reference to a Spring bean that implements Filter.

<expression-handler>

Defines the SecurityExpressionHandler instance which will be used if expression-based access-

control is enabled. A default implementation (with no ACL support) will be used if not supplied.

Parent Elements of <expression-handler>

• global-method-security

• http

<expression-handler> Attributes

ref

Defines a reference to a Spring bean that implements SecurityExpressionHandler.

<form-login>

Used to add an UsernamePasswordAuthenticationFilter to the filter stack and an

LoginUrlAuthenticationEntryPoint to the application context to provide authentication on

Spring Security

3.1.7.RELEASE 137

demand. This will always take precedence over other namespace-created entry points. If no attributes are

supplied, a login page will be generated automatically at the URL "/spring_security_login" 2 The behaviour

can be customized using the <form-login> Attributes.

Parent Elements of <form-login>

• http

<form-login> Attributes

always-use-default-target

If set to true, the user will always start at the value given by default-target-url, regardless of

how they arrived at the login page. Maps to the alwaysUseDefaultTargetUrl property of

UsernamePasswordAuthenticationFilter. Default value is false.

authentication-details-source-ref

Reference to an AuthenticationDetailsSource which will be used by the authentication filter

authentication-failure-handler-ref

Can be used as an alternative to authentication-failure-url, giving you full control over the navigation flow

after an authentication failure. The value should be he name of an AuthenticationFailureHandler

bean in the application context.

authentication-failure-url

Maps to the authenticationFailureUrl property of

UsernamePasswordAuthenticationFilter. Defines the URL the browser will be redirected to

on login failure. Defaults to /spring_security_login?login_error, which will be automatically

handled by the automatic login page generator, re-rendering the login page with an error message.

authentication-success-handler-ref

This can be used as an alternative to default-target-url and always-use-default-target, giving you full

control over the navigation flow after a successful authentication. The value should be the name of an

AuthenticationSuccessHandler bean in the application context. By default, an implementation

of SavedRequestAwareAuthenticationSuccessHandler is used and injected with the default-

target-url .

default-target-url

Maps to the defaultTargetUrl property of UsernamePasswordAuthenticationFilter. If not

set, the default value is "/" (the application root). A user will be taken to this URL after logging in, provided

2This feature is really just provided for convenience and is not intended for production (where a view technology will have been chosen

and can be used to render a customized login page). The class DefaultLoginPageGeneratingFilter is responsible for rendering

the login page and will provide login forms for both normal form login and/or OpenID if required.

Spring Security

3.1.7.RELEASE 138

they were not asked to login while attempting to access a secured resource, when they will be taken to the

originally requested URL.

login-page

The URL that should be used to render the login page. Maps to the loginFormUrl property of the

LoginUrlAuthenticationEntryPoint. Defaults to "/spring_security_login".

login-processing-url

Maps to the filterProcessesUrl property of UsernamePasswordAuthenticationFilter.

The default value is "/j_spring_security_check".

password-parameter

The name of the request parameter which contains the password. Defaults to "j_password".

username-parameter

The name of the request parameter which contains the username. Defaults to "j_username".

<http-basic>

Adds a BasicAuthenticationFilter and BasicAuthenticationEntryPoint to the

configuration. The latter will only be used as the configuration entry point if form-based login is not enabled.

Parent Elements of <http-basic>

• http

<http-basic> Attributes

authentication-details-source-ref

Reference to an AuthenticationDetailsSource which will be used by the authentication filter

entry-point-ref

Sets the AuthenticationEntryPoint which is used by the BasicAuthenticationFilter.

<http-firewall> Element

This is a top-level element which can be used to inject a custom implementation of HttpFirewall into the

FilterChainProxy created by the namespace. The default implementation should be suitable for most

applications.

<http-firewall> Attributes

ref

Defines a reference to a Spring bean that implements HttpFirewall.

Spring Security

3.1.7.RELEASE 139

<intercept-url>

This element is used to define the set of URL patterns that the application is interested in and to configure how

they should be handled. It is used to construct the FilterInvocationSecurityMetadataSource

used by the FilterSecurityInterceptor. It is also responsible for configuring a

ChannelProcessingFilter if particular URLs need to be accessed by HTTPS, for example. When

matching the specified patterns against an incoming request, the matching is done in the order in which the

elements are declared. So the most specific matches patterns should come first and the most general should

come last.

Parent Elements of <intercept-url>

• filter-invocation-definition-source

• filter-security-metadata-source

• http

<intercept-url> Attributes

access

Lists the access attributes which will be stored in the FilterInvocationSecurityMetadataSource

for the defined URL pattern/method combination. This should be a comma-separated list of the security

configuration attributes (such as role names).

filters

Can only take the value “none”. This will cause any matching request to bypass the Spring Security filter chain

entirely. None of the rest of the <http> configuration will have any effect on the request and there will be no

security context available for its duration. Access to secured methods during the request will fail.

method

The HTTP Method which will be used in combination with the pattern to match an incoming request. If omitted,

any method will match. If an identical pattern is specified with and without a method, the method-specific

match will take precedence.

pattern

The pattern which defines the URL path. The content will depend on the request-matcher attribute from

the containing http element, so will default to ant path syntax.

requires-channel

Can be “http” or “https” depending on whether a particular URL pattern should be accessed over HTTP or

HTTPS respectively. Alternatively the value “any” can be used when there is no preference. If this attribute is

present on any <intercept-url> element, then a ChannelProcessingFilter will be added to the

filter stack and its additional dependencies added to the application context.

Spring Security

3.1.7.RELEASE 140

If a <port-mappings> configuration is added, this will be used to by the SecureChannelProcessor

and InsecureChannelProcessor beans to determine the ports used for redirecting to HTTP/HTTPS.

<jee>

Adds a J2eePreAuthenticatedProcessingFilter to the filter chain to provide integration with container

authentication.

Parent Elements of <jee>

• http

<jee> Attributes

mappable-roles

A comma-separate list of roles to look for in the incoming HttpServletRequest.

user-service-ref

A reference to a user-service (or UserDetailsService bean) Id

<logout>

Adds a LogoutFilter to the filter stack. This is configured with a

SecurityContextLogoutHandler.

Parent Elements of <logout>

• http

<logout> Attributes

The delete-cookies attribute

A comma-separated list of the names of cookies which should be deleted when the user logs out.

The invalidate-session attribute

Maps to the invalidateHttpSession of the SecurityContextLogoutHandler. Defaults to

"true", so the session will be invalidated on logout.

The logout-success-url attribute

The destination URL which the user will be taken to after logging out. Defaults to "/".

Setting this attribute will inject the SessionManagementFilter with a

SimpleRedirectInvalidSessionStrategy configured with the attribute value. When an invalid

session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

Spring Security

3.1.7.RELEASE 141

The logout-url attribute

The URL which will cause a logout (i.e. which will be processed by the filter). Defaults to "/

j_spring_security_logout".

The success-handler-ref attribute

May be used to supply an instance of LogoutSuccessHandler which will be invoked to control the

navigation after logging out.

<openid-login>

Similar to <form-login> and has the same attributes. The default value for login-

processing-url is "/j_spring_openid_security_check". An OpenIDAuthenticationFilter and

OpenIDAuthenticationProvider will be registered. The latter requires a reference to a

UserDetailsService. Again, this can be specified by id, using the user-service-ref attribute, or

will be located automatically in the application context.

Parent Elements of <openid-login>

• http

<openid-login> Attributes

always-use-default-target

Whether the user should always be redirected to the default-target-url after login.

authentication-details-source-ref

Reference to an AuthenticationDetailsSource which will be used by the authentication filter

authentication-failure-handler-ref

Reference to an AuthenticationFailureHandler bean which should be used to handle a failed authentication

request. Should not be used in combination with authentication-failure-url as the implementation should always

deal with navigation to the subsequent destination

authentication-failure-url

The URL for the login failure page. If no login failure URL is specified, Spring Security will automatically

create a failure login URL at /spring_security_login?login_error and a corresponding filter to render that login

failure URL when requested.

authentication-success-handler-ref

Reference to an AuthenticationSuccessHandler bean which should be used to handle a successful authentication

request. Should not be used in combination with default-target-url (or always-use-default-target) as the

implementation should always deal with navigation to the subsequent destination

Spring Security

3.1.7.RELEASE 142

default-target-url

The URL that will be redirected to after successful authentication, if the user's previous action could not be

resumed. This generally happens if the user visits a login page without having first requested a secured operation

that triggers authentication. If unspecified, defaults to the root of the application.

login-page

The URL for the login page. If no login URL is specified, Spring Security will automatically create a login

URL at /spring_security_login and a corresponding filter to render that login URL when requested.

login-processing-url

The URL that the login form is posted to. If unspecified, it defaults to /j_spring_security_check.

password-parameter

The name of the request parameter which contains the password. Defaults to "j_password".

user-service-ref

A reference to a user-service (or UserDetailsService bean) Id

username-parameter

The name of the request parameter which contains the username. Defaults to "j_username".

Child Elements of <openid-login>

• attribute-exchange

<attribute-exchange>

The attribute-exchange element defines the list of attributes which should be requested from the

identity provider. An example can be found in the OpenID Support section of the namespace configuration

chapter. More than one can be used, in which case each must have an identifier-match attribute,

containing a regular expression which is matched against the supplied OpenID identifier. This allows different

attribute lists to be fetched from different providers (Google, Yahoo etc).

Parent Elements of <attribute-exchange>

• openid-login

<attribute-exchange> Attributes

identifier-match

A regular expression which will be compared against the claimed identity, when deciding which attribute-

exchange configuration to use during authentication.

Spring Security

3.1.7.RELEASE 143

Child Elements of <attribute-exchange>

• openid-attribute

<openid-attribute>

Attributes used when making an OpenID AX Fetch Request [http://openid.net/specs/openid-attribute-

exchange-1_0.html#fetch_request]

Parent Elements of <openid-attribute>

• attribute-exchange

<openid-attribute> Attributes

count

Specifies the number of attributes that you wish to get back. For example, return 3 emails. The default value is 1.

name

Specifies the name of the attribute that you wish to get back. For example, email.

required

Specifies if this attribute is required to the OP, but does not error out if the OP does not return the attribute.

Default is false.

type

Specifies the attribute type. For example, http://axschema.org/contact/email. See your OP's documentation for

valid attribute types.

<port-mappings>

By default, an instance of PortMapperImpl will be added to the configuration for use in redirecting to secure

and insecure URLs. This element can optionally be used to override the default mappings which that class

defines. Each child <port-mapping> element defines a pair of HTTP:HTTPS ports. The default mappings

are 80:443 and 8080:8443. An example of overriding these can be found in the namespace introduction.

Parent Elements of <port-mappings>

• http

Child Elements of <port-mappings>

• port-mapping

<port-mapping>

Provides a method to map http ports to https ports when forcing a redirect.

http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request
http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request
http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request

Spring Security

3.1.7.RELEASE 144

Parent Elements of <port-mapping>

• port-mappings

<port-mapping> Attributes

http

The http port to use.

https

The https port to use.

<remember-me>

Adds the RememberMeAuthenticationFilter to the stack. This in turn will be configured with either

a TokenBasedRememberMeServices, a PersistentTokenBasedRememberMeServices or a

user-specified bean implementing RememberMeServices depending on the attribute settings.

Parent Elements of <remember-me>

• http

<remember-me> Attributes

authentication-success-handler-ref

Sets the authenticationSuccessHandler property on the

RememberMeAuthenticationFilter if custom navigation is required. The value should be the name

of a AuthenticationSuccessHandler bean in the application context.

data-source-ref

A reference to a DataSource bean. If this is set, PersistentTokenBasedRememberMeServices

will be used and configured with a JdbcTokenRepositoryImpl instance.

key

Maps to the "key" property of AbstractRememberMeServices. Should be set to a unique value to ensure

that remember-me cookies are only valid within the one application 3. If this is not set a secure random value

will be generated. Since generating secure random values can take a while, setting this value explicitly can

help improve startup times when using the remember me functionality.

services-alias

Exports the internally defined RememberMeServices as a bean alias, allowing it to be used by other beans

in the application context.

3This doesn't affect the use of PersistentTokenBasedRememberMeServices, where the tokens are stored on the server side.

Spring Security

3.1.7.RELEASE 145

services-ref

Allows complete control of the RememberMeServices implementation that will be used by the filter. The

value should be the id of a bean in the application context which implements this interface. Should also

implement LogoutHandler if a logout filter is in use.

token-repository-ref

Configures a PersistentTokenBasedRememberMeServices but allows the use of a custom

PersistentTokenRepository bean.

token-validity-seconds

Maps to the tokenValiditySeconds property of AbstractRememberMeServices. Specifies the

period in seconds for which the remember-me cookie should be valid. By default it will be valid for 14 days.

use-secure-cookie

It is recommended that remember-me cookies are only submitted over HTTPS and thus should be flagged as

“secure”. By default, a secure cookie will be used if the connection over which the login request is made is

secure (as it should be). If you set this property to false, secure cookies will not be used. Setting it to true

will always set the secure flag on the cookie. This attribute maps to the useSecureCookie property of

AbstractRememberMeServices.

user-service-ref

The remember-me services implementations require access to a UserDetailsService, so there has to

be one defined in the application context. If there is only one, it will be selected and used automatically by

the namespace configuration. If there are multiple instances, you can specify a bean id explicitly using this

attribute.

<request-cache> Element

Sets the RequestCache instance which will be used by the ExceptionTranslationFilter to store

request information before invoking an AuthenticationEntryPoint.

Parent Elements of <request-cache>

• http

<request-cache> Attributes

ref

Defines a reference to a Spring bean that is a RequestCache.

<session-management>

Session-management related functionality is implemented by the addition of a

SessionManagementFilter to the filter stack.

Spring Security

3.1.7.RELEASE 146

Parent Elements of <session-management>

• http

<session-management> Attributes

invalid-session-url

Setting this attribute will inject the SessionManagementFilter with a

SimpleRedirectInvalidSessionStrategy configured with the attribute value. When an invalid

session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

session-authentication-error-url

Defines the URL of the error page which should be shown when the SessionAuthenticationStrategy raises an

exception. If not set, an unauthorized (402) error code will be returned to the client. Note that this attribute

doesn't apply if the error occurs during a form-based login, where the URL for authentication failure will take

precedence.

session-authentication-strategy-ref

Allows injection of the SessionAuthenticationStrategy instance used by the SessionManagementFilter

session-fixation-protection

Indicates whether an existing session should be invalidated when a user authenticates and a new session started.

If set to "none" no change will be made. "newSession" will create a new empty session. "migrateSession" will

create a new session and copy the session attributes to the new session. Defaults to "migrateSession".

If session fixation protection is enabled, the SessionManagementFilter is injected with an appropriately

configured DefaultSessionAuthenticationStrategy. See the Javadoc for this class for more

details.

Child elements of <session-management>

• concurrency-control

<concurrency-control>

Adds support for concurrent session control, allowing limits to be placed on the number of

active sessions a user can have. A ConcurrentSessionFilter will be created, and a

ConcurrentSessionControlStrategy will be used with the SessionManagementFilter. If

a form-login element has been declared, the strategy object will also be injected into the created

authentication filter. An instance of SessionRegistry (a SessionRegistryImpl instance unless the

user wishes to use a custom bean) will be created for use by the strategy.

Parent Elements of <concurrency-control>

• session-management

Spring Security

3.1.7.RELEASE 147

<concurrency-control> Attributes

error-if-maximum-exceeded

If set to "true" a SessionAuthenticationException will be raised when a user attempts to exceed

the maximum allowed number of sessions. The default behaviour is to expire the original session.

expired-url

The URL a user will be redirected to if they attempt to use a session which has been "expired" by the concurrent

session controller because the user has exceeded the number of allowed sessions and has logged in again

elsewhere. Should be set unless exception-if-maximum-exceeded is set. If no value is supplied, an

expiry message will just be written directly back to the response.

max-sessions

Maps to the maximumSessions property of ConcurrentSessionControlStrategy.

session-registry-alias

It can also be useful to have a reference to the internal session registry for use in your own beans or an admin

interface. You can expose the internal bean using the session-registry-alias attribute, giving it a

name that you can use elsewhere in your configuration.

session-registry-ref

The user can supply their own SessionRegistry implementation using the session-registry-ref

attribute. The other concurrent session control beans will be wired up to use it.

<x509>

Adds support for X.509 authentication. An X509AuthenticationFilter will be added to the stack

and an Http403ForbiddenEntryPoint bean will be created. The latter will only be used if no other

authentication mechanisms are in use (its only functionality is to return an HTTP 403 error code). A

PreAuthenticatedAuthenticationProvider will also be created which delegates the loading of

user authorities to a UserDetailsService.

Parent Elements of <x509>

• http

<x509> Attributes

authentication-details-source-ref

A reference to an AuthenticationDetailsSource

subject-principal-regex

Defines a regular expression which will be used to extract the username from the certificate (for use with the

UserDetailsService).

Spring Security

3.1.7.RELEASE 148

user-service-ref

Allows a specific UserDetailsService to be used with X.509 in the case where multiple instances are

configured. If not set, an attempt will be made to locate a suitable instance automatically and use that.

<filter-chain-map>

Used to explicitly configure a FilterChainProxy instance with a FilterChainMap

<filter-chain-map> Attributes

path-type

Superseded by the request-matcher attribute

request-matcher

Supersedes the 'path-type' attribute. Defines the strategy use for matching incoming requests. Currently the

options are 'ant' (for ant path patterns), 'regex' for regular expressions and 'ciRegex' for case-insensitive regular

expressions.

Child Elements of <filter-chain-map>

• filter-chain

<filter-chain>

Used within to define a specific URL pattern and the list of filters which apply to the URLs matching that

pattern. When multiple filter-chain elements are assembled in a list in order to configure a FilterChainProxy,

the most specific patterns must be placed at the top of the list, with most general ones at the bottom.

Parent Elements of <filter-chain>

• filter-chain-map

<filter-chain> Attributes

filters

A comma separated list of references to Spring beans that implement Filter. The value "none" means that

no Filter's should be used for this FilterChain.

pattern

A-pattern that creates RequestMatcher in combination with the request-matcher

request-matcher-ref

A reference to a RequestMatcher that will be used to determine if the Filter's from the filters

attribute should be invoked.

Spring Security

3.1.7.RELEASE 149

<filter-invocation-definition-source>

Deprecated synonym for filter-security-metadata-source

<filter-invocation-definition-source> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.

lowercase-comparisons

Compare after forcing to lowercase

path-type

Superseded by request-matcher

request-matcher

Supersedes the 'path-type' attribute. Defines the strategy use for matching incoming requests. Currently the

options are 'ant' (for ant path patterns), 'regex' for regular expressions and 'ciRegex' for case-insensitive regular

expressions.

use-expressions

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the traditional

list of configuration attributes. Defaults to 'false'. If enabled, each attribute should contain a single boolean

expression. If the expression evaluates to 'true', access will be granted.

Child Elements of <filter-invocation-definition-source>

• intercept-url

<filter-security-metadata-source>

Used to explicitly configure a FilterSecurityMetadataSource bean for use with a FilterSecurityInterceptor.

Usually only needed if you are configuring a FilterChainProxy explicitly, rather than using the <http> element.

The intercept-url elements used should only contain pattern, method and access attributes. Any others will

result in a configuration error.

<filter-security-metadata-source> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.

lowercase-comparisons

Compare after forcing to lower case

Spring Security

3.1.7.RELEASE 150

path-type

Superseded by request-matcher

request-matcher

Supersedes the 'path-type' attribute. Defines the strategy use for matching incoming requests. Currently the

options are 'ant' (for ant path patterns), 'regex' for regular expressions and 'ciRegex' for case-insensitive regular

expressions.

use-expressions

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the traditional

list of configuration attributes. Defaults to 'false'. If enabled, each attribute should contain a single boolean

expression. If the expression evaluates to 'true', access will be granted.

Child Elements of <filter-security-metadata-source>

• intercept-url

B.2 Authentication Services

Before Spring Security 3.0, an AuthenticationManager was automatically registered internally. Now

you must register one explicitly using the <authentication-manager> element. This creates an instance

of Spring Security's ProviderManager class, which needs to be configured with a list of one or more

AuthenticationProvider instances. These can either be created using syntax elements provided

by the namespace, or they can be standard bean definitions, marked for addition to the list using the

authentication-provider element.

<authentication-manager>

Every Spring Security application which uses the namespace must have include this element somewhere. It

is responsible for registering the AuthenticationManager which provides authentication services to the

application. All elements which create AuthenticationProvider instances should be children of this

element.

<authentication-manager> Attributes

alias

This attribute allows you to define an alias name for the internal instance for use in your own configuration.

Its use is described in the namespace introduction.

erase-credentials

If set to true, the AuthenticationManger will attempt to clear any credentials data in the

returned Authentication object, once the user has been authenticated. Literally it maps to the

eraseCredentialsAfterAuthentication property of the ProviderManager. This is discussed

in the Core Services chapter.

Spring Security

3.1.7.RELEASE 151

id

This attribute allows you to define an id for the internal instance for use in your own configuration. It is the

same a the alias element, but provides a more consistent experience with elements that use the id attribute.

Child Elements of <authentication-manager>

• authentication-provider

• ldap-authentication-provider

<authentication-provider>

Unless used with a ref attribute, this element is shorthand for configuring a

DaoAuthenticationProvider. DaoAuthenticationProvider loads user information from a

UserDetailsService and compares the username/password combination with the values supplied at

login. The UserDetailsService instance can be defined either by using an available namespace element

(jdbc-user-service or by using the user-service-ref attribute to point to a bean defined elsewhere

in the application context). You can find examples of these variations in the namespace introduction.

Parent Elements of <authentication-provider>

• authentication-manager

<authentication-provider> Attributes

ref

Defines a reference to a Spring bean that implements AuthenticationProvider .

If you have written your own AuthenticationProvider implementation (or want to configure one of

Spring Security's own implementations as a traditional bean for some reason, then you can use the following

syntax to add it to the internal ProviderManager's list:

<security:authentication-manager>

 <security:authentication-provider ref="myAuthenticationProvider" />

</security:authentication-manager>

<bean id="myAuthenticationProvider" class="com.something.MyAuthenticationProvider"/>

user-service-ref

A reference to a bean that implements UserDetailsService that may be created using the standard bean element

or the custom user-service element.

Child Elements of <authentication-provider>

• jdbc-user-service

• ldap-user-service

Spring Security

3.1.7.RELEASE 152

• password-encoder

• user-service

<jdbc-user-service>

Causes creation of a JDBC-based UserDetailsService.

<jdbc-user-service> Attributes

authorities-by-username-query

An SQL statement to query for a user's granted authorities given a username.

The default is

select username, authority from authorities where username = ?

cache-ref

Defines a reference to a cache for use with a UserDetailsService.

data-source-ref

The bean ID of the DataSource which provides the required tables.

group-authorities-by-username-query

An SQL statement to query user's group authorities given a username.

The default is

select

 g.id, g.group_name, ga.authority

from

 groups g, group_members gm, group_authorities ga

where

 gm.username = ? and g.id = ga.group_id and g.id = gm.group_id

id

A bean identifier, used for referring to the bean elsewhere in the context.

role-prefix

A non-empty string prefix that will be added to role strings loaded from persistent storage (default is "ROLE_").

Use the value "none" for no prefix in cases where the default is non-empty.

users-by-username-query

An SQL statement to query a username, password, and enabled status given a username.

Spring Security

3.1.7.RELEASE 153

The default is

select username, password, enabled from users where username = ?

<password-encoder>

Authentication providers can optionally be configured to use a password encoder as described in the namespace

introduction. This will result in the bean being injected with the appropriate PasswordEncoder instance,

potentially with an accompanying SaltSource bean to provide salt values for hashing.

Parent Elements of <password-encoder>

• authentication-provider

• password-compare

<password-encoder> Attributes

base64

Whether a string should be base64 encoded

hash

Defines the hashing algorithm used on user passwords. We recommend strongly against using MD4, as it is

a very weak hashing algorithm.

ref

Defines a reference to a Spring bean that implements PasswordEncoder .

Child Elements of <password-encoder>

• salt-source

<salt-source>

Password salting strategy. A system-wide constant or a property from the UserDetails object can be used.

Parent Elements of <salt-source>

• password-encoder

<salt-source> Attributes

ref

Defines a reference to a Spring bean Id.

system-wide

A single value that will be used as the salt for a password encoder.

Spring Security

3.1.7.RELEASE 154

user-property

A property of the UserDetails object which will be used as salt by a password encoder. Typically something

like "username" might be used.

<user-service>

Creates an in-memory UserDetailsService from a properties file or a list of "user" child elements. Usernames

are converted to lower-case internally to allow for case-insensitive lookups, so this should not be used if case-

sensitivity is required.

<user-service> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.

properties

The location of a Properties file where each line is in the format of

username=password,grantedAuthority[,grantedAuthority][,enabled|disabled]

Child Elements of <user-service>

• user

<user>

Represents a user in the application.

Parent Elements of <user>

• user-service

<user> Attributes

authorities

One of more authorities granted to the user. Separate authorities with a comma (but no space). For example,

"ROLE_USER,ROLE_ADMINISTRATOR"

disabled

Can be set to "true" to mark an account as disabled and unusable.

locked

Can be set to "true" to mark an account as locked and unusable.

Spring Security

3.1.7.RELEASE 155

name

The username assigned to the user.

password

The password assigned to the user. This may be hashed if the corresponding authentication provider supports

hashing (remember to set the "hash" attribute of the "user-service" element). This attribute be omitted in the case

where the data will not be used for authentication, but only for accessing authorities. If omitted, the namespace

will generate a random value, preventing its accidental use for authentication. Cannot be empty.

B.3 Method Security

<global-method-security>

This element is the primary means of adding support for securing methods on Spring Security beans. Methods

can be secured by the use of annotations (defined at the interface or class level) or by defining a set of pointcuts

as child elements, using AspectJ syntax.

<global-method-security> Attributes

access-decision-manager-ref

Method security uses the same AccessDecisionManager configuration as web security, but this can be

overridden using this attribute. By default an AffirmativeBased implementation is used for with a RoleVoter

and an AuthenticatedVoter.

authentication-manager-ref

A reference to an AuthenticationManager that should be used for method security.

jsr250-annotations

Specifies whether JSR-250 style attributes are to be used (for example "RolesAllowed"). This will require

the javax.annotation.security classes on the classpath. Setting this to true also adds a Jsr250Voter to the

AccessDecisionManager, so you need to make sure you do this if you are using a custom implementation

and want to use these annotations.

<metadata-source-ref> Attribute

An external MethodSecurityMetadataSource instance can be supplied which will take priority over

other sources (such as the default annotations).

The mode Attribute

This attribute can be set to “aspectj” to specify that AspectJ should be used instead of the default Spring

AOP. Secured methods must be woven with the AnnotationSecurityAspect from the spring-

security-aspects module.

Spring Security

3.1.7.RELEASE 156

order

Allows the advice "order" to be set for the method security interceptor.

pre-post-annotations

Specifies whether the use of Spring Security's pre and post invocation annotations (@PreFilter, @PreAuthorize,

@PostFilter, @PostAuthorize) should be enabled for this application context. Defaults to "disabled".

proxy-target-class

If true, class based proxying will be used instead of interface based proxying.

run-as-manager-ref

A reference to an optional RunAsManager implementation which will be used by the configured

MethodSecurityInterceptor

secured-annotations

Specifies whether the use of Spring Security's @Secured annotations should be enabled for this application

context. Defaults to "disabled".

Child Elements of <global-method-security>

• after-invocation-provider

• expression-handler

• pre-post-annotation-handling

• protect-pointcut

<after-invocation-provider>

This element can be used to decorate an AfterInvocationProvider for use by the security

interceptor maintained by the <global-method-security> namespace. You can define zero or more

of these within the global-method-security element, each with a ref attribute pointing to an

AfterInvocationProvider bean instance within your application context.

Parent Elements of <after-invocation-provider>

• global-method-security

<after-invocation-provider> Attributes

ref

Defines a reference to a Spring bean that implements AfterInvocationProvider.

Spring Security

3.1.7.RELEASE 157

<pre-post-annotation-handling>

Allows the default expression-based mechanism for handling Spring Security's pre and post invocation

annotations (@PreFilter, @PreAuthorize, @PostFilter, @PostAuthorize) to be replace entirely. Only applies

if these annotations are enabled.

Parent Elements of <pre-post-annotation-handling>

• global-method-security

Child Elements of <pre-post-annotation-handling>

• invocation-attribute-factory

• post-invocation-advice

• pre-invocation-advice

<invocation-attribute-factory>

Defines the PrePostInvocationAttributeFactory instance which is used to generate pre and post invocation

metadata from the annotated methods.

Parent Elements of <invocation-attribute-factory>

• pre-post-annotation-handling

<invocation-attribute-factory> Attributes

ref

Defines a reference to a Spring bean Id.

<post-invocation-advice>

Customizes the PostInvocationAdviceProvider with the ref as the

PostInvocationAuthorizationAdvice for the <pre-post-annotation-handling> element.

Parent Elements of <post-invocation-advice>

• pre-post-annotation-handling

<post-invocation-advice> Attributes

ref

Defines a reference to a Spring bean Id.

<pre-invocation-advice>

Customizes the PreInvocationAuthorizationAdviceVoter with the ref as the

PreInvocationAuthorizationAdviceVoter for the <pre-post-annotation-handling> element.

Spring Security

3.1.7.RELEASE 158

Parent Elements of <pre-invocation-advice>

• pre-post-annotation-handling

<pre-invocation-advice> Attributes

ref

Defines a reference to a Spring bean Id.

Securing Methods using <protect-pointcut>

Rather than defining security attributes on an individual method or class basis using the @Secured annotation,

you can define cross-cutting security constraints across whole sets of methods and interfaces in your service

layer using the <protect-pointcut> element. You can find an example in the namespace introduction.

Parent Elements of <protect-pointcut>

• global-method-security

<protect-pointcut> Attributes

access

Access configuration attributes list that applies to all methods matching the pointcut, e.g. "ROLE_A,ROLE_B"

expression

An AspectJ expression, including the 'execution' keyword. For example, 'execution(int

com.foo.TargetObject.countLength(String))' (without the quotes).

<intercept-methods>

Can be used inside a bean definition to add a security interceptor to the bean and set up access configuration

attributes for the bean's methods

<intercept-methods> Attributes

access-decision-manager-ref

Optional AccessDecisionManager bean ID to be used by the created method security interceptor.

Child Elements of <intercept-methods>

• protect

<method-security-metadata-source>

Creates a MethodSecurityMetadataSource instance

Spring Security

3.1.7.RELEASE 159

<method-security-metadata-source> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.

use-expressions

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the traditional

list of configuration attributes. Defaults to 'false'. If enabled, each attribute should contain a single boolean

expression. If the expression evaluates to 'true', access will be granted.

Child Elements of <method-security-metadata-source>

• protect

<protect>

Defines a protected method and the access control configuration attributes that apply to it. We strongly advise

you NOT to mix "protect" declarations with any services provided "global-method-security".

Parent Elements of <protect>

• intercept-methods

• method-security-metadata-source

<protect> Attributes

access

Access configuration attributes list that applies to the method, e.g. "ROLE_A,ROLE_B".

method

A method name

B.4 LDAP Namespace Options

LDAP is covered in some details in its own chapter. We will expand on that here with some explanation of

how the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP extensively,

so some familiarity with that project's API may be useful.

Defining the LDAP Server using the <ldap-server> Element

This element sets up a Spring LDAP ContextSource for use by the other LDAP beans, defining the

location of the LDAP server and other information (such as a username and password, if it doesn't allow

anonymous access) for connecting to it. It can also be used to create an embedded server for testing. Details of

the syntax for both options are covered in the LDAP chapter. The actual ContextSource implementation

is DefaultSpringSecurityContextSource which extends Spring LDAP's LdapContextSource

Spring Security

3.1.7.RELEASE 160

class. The manager-dn and manager-password attributes map to the latter's userDn and password

properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined beans will

use it automatically. Otherwise, you can give the element an "id" attribute and refer to it from other namespace

beans using the server-ref attribute. This is actually the bean id of the ContextSource instance, if

you want to use it in other traditional Spring beans.

<ldap-server> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.

ldif

Explicitly specifies an ldif file resource to load into an embedded LDAP server. The ldiff is should be a Spring

resource pattern (i.e. classpath:init.ldiff). The default is classpath*:*.ldiff

manager-dn

Username (DN) of the "manager" user identity which will be used to authenticate to a (non-embedded) LDAP

server. If omitted, anonymous access will be used.

manager-password

The password for the manager DN. This is required if the manager-dn is specified.

port

Specifies an IP port number. Used to configure an embedded LDAP server, for example. The default value

is 33389.

root

Optional root suffix for the embedded LDAP server. Default is "dc=springframework,dc=org"

url

Specifies the ldap server URL when not using the embedded LDAP server.

<ldap-authentication-provider>

This element is shorthand for the creation of an LdapAuthenticationProvider instance. By default this

will be configured with a BindAuthenticator instance and a DefaultAuthoritiesPopulator.

As with all namespace authentication providers, it must be included as a child of the authentication-

provider element.

Parent Elements of <ldap-authentication-provider>

• authentication-manager

Spring Security

3.1.7.RELEASE 161

<ldap-authentication-provider> Attributes

group-role-attribute

The LDAP attribute name which contains the role name which will be used within Spring Security. Maps to

the DefaultLdapAuthoritiesPopulator's groupRoleAttribute property. Defaults to "cn".

group-search-base

Search base for group membership searches. Maps to the DefaultLdapAuthoritiesPopulator's

groupSearchBase constructor argument. Defaults to "" (searching from the root).

group-search-filter

Group search filter. Maps to the DefaultLdapAuthoritiesPopulator's groupSearchFilter

property. Defaults to (uniqueMember={0}). The substituted parameter is the DN of the user.

role-prefix

A non-empty string prefix that will be added to role strings loaded from persistent. Maps to the

DefaultLdapAuthoritiesPopulator's rolePrefix property. Defaults to "ROLE_". Use the value

"none" for no prefix in cases where the default is non-empty.

server-ref

The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-server> with no

Id), that server will be used.

user-context-mapper-ref

Allows explicit customization of the loaded user object by specifying a UserDetailsContextMapper bean which

will be called with the context information from the user's directory entry

user-details-class

Allows the objectClass of the user entry to be specified. If set, the framework will attempt to load standard

attributes for the defined class into the returned UserDetails object

user-dn-pattern

If your users are at a fixed location in the directory (i.e. you can work out the DN directly from the username

without doing a directory search), you can use this attribute to map directly to the DN. It maps directly to the

userDnPatterns property of AbstractLdapAuthenticator. The value is a specific pattern used to

build the user's DN, for example "uid={0},ou=people". The key "{0}" must be present and will be substituted

with the username.

user-search-base

Search base for user searches. Defaults to "". Only used with a 'user-search-filter'.

Spring Security

3.1.7.RELEASE 162

If you need to perform a search to locate the user in the directory, then you can set these attributes to control

the search. The BindAuthenticator will be configured with a FilterBasedLdapUserSearch and

the attribute values map directly to the first two arguments of that bean's constructor. If these attributes aren't

set and no user-dn-pattern has been supplied as an alternative, then the default search values of user-

search-filter="(uid={0})" and user-search-base="" will be used.

user-search-filter

The LDAP filter used to search for users (optional). For example "(uid={0})". The substituted parameter is

the user's login name.

If you need to perform a search to locate the user in the directory, then you can set these attributes to control

the search. The BindAuthenticator will be configured with a FilterBasedLdapUserSearch and

the attribute values map directly to the first two arguments of that bean's constructor. If these attributes aren't

set and no user-dn-pattern has been supplied as an alternative, then the default search values of user-

search-filter="(uid={0})" and user-search-base="" will be used.

Child Elements of <ldap-authentication-provider>

• password-compare

<password-compare>

This is used as child element to <ldap-provider> and switches the authentication strategy from

BindAuthenticator to PasswordComparisonAuthenticator.

Parent Elements of <password-compare>

• ldap-authentication-provider

<password-compare> Attributes

hash

Defines the hashing algorithm used on user passwords. We recommend strongly against using MD4, as it is

a very weak hashing algorithm.

password-attribute

The attribute in the directory which contains the user password. Defaults to "userPassword".

Child Elements of <password-compare>

• password-encoder

<ldap-user-service>

This element configures an LDAP UserDetailsService. The class used is

LdapUserDetailsService which is a combination of a FilterBasedLdapUserSearch and a

Spring Security

3.1.7.RELEASE 163

DefaultLdapAuthoritiesPopulator. The attributes it supports have the same usage as in <ldap-

provider>.

<ldap-user-service> Attributes

cache-ref

Defines a reference to a cache for use with a UserDetailsService.

group-role-attribute

The LDAP attribute name which contains the role name which will be used within Spring Security. Defaults

to "cn".

group-search-base

Search base for group membership searches. Defaults to "" (searching from the root).

group-search-filter

Group search filter. Defaults to (uniqueMember={0}). The substituted parameter is the DN of the user.

id

A bean identifier, used for referring to the bean elsewhere in the context.

role-prefix

A non-empty string prefix that will be added to role strings loaded from persistent storage (e.g. "ROLE_"). Use

the value "none" for no prefix in cases where the default is non-empty.

server-ref

The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-server> with no

Id), that server will be used.

user-context-mapper-ref

Allows explicit customization of the loaded user object by specifying a UserDetailsContextMapper bean which

will be called with the context information from the user's directory entry

user-details-class

Allows the objectClass of the user entry to be specified. If set, the framework will attempt to load standard

attributes for the defined class into the returned UserDetails object

user-search-base

Search base for user searches. Defaults to "". Only used with a 'user-search-filter'.

Spring Security

3.1.7.RELEASE 164

user-search-filter

The LDAP filter used to search for users (optional). For example "(uid={0})". The substituted parameter is

the user's login name.

Spring Security

3.1.7.RELEASE 165

Appendix C. Spring Security
Dependencies
This appendix provides a reference of the modules in Spring Security and the additional dependencies that

they require in order to function in a running application. We don't include dependenices that are only used

when building or testing Spring Security itself. Nor do we include transitive dependencies which are required

by external dependencies.

The version of Spring required is listed on the project website, so the specific versions are omitted for Spring

dependencies below. Note that some of the dependencies listed as “optional” below may still be required for

other non-security functionality in a Spring application. Also dependencies listed as “optional” may not actually

be marked as such in the project's Maven pom files if they are used in most applications. They are “optional”

only in the sense that you don't need them unless you are using the specified functionality.

Where a module depends on another Spring Security module, the non-optional dependencies of the module it

depends on are also assumed to be required and are not listed separately.

C.1 spring-security-core

The core module must be included in any project using Spring Security.

Table C.1. Core Depenendencies

Dependency Version Description

aopalliance 1.0 Required for method security implementation.

ehcache 1.6.2 Required if the ehcache-based user cache

implementation is used (optional).

spring-aop Method security is based on Spring AOP

spring-beans Required for Spring configuration

spring-expression Required for expression-based method security

(optional)

spring-jdbc Required if using a database to store user data

(optional).

spring-tx Required if using a database to store user data

(optional).

aspectjrt 1.6.10 Required if using AspectJ support (optional).

jsr250-api 1.0 Required if you are using JSR-250 method-security

annotations (optional).

Spring Security

3.1.7.RELEASE 166

C.2 spring-security-remoting

This module is typically required in web applications which use the Servlet API.

Table C.2. Remoting Dependencies

Dependency Version Description

spring-security-core

spring-web Required for clients which use HTTP remoting

support.

C.3 spring-security-web

This module is typically required in web applications which use the Servlet API.

Table C.3. Web Dependencies

Dependency Version Description

spring-security-core

spring-web Spring web support classes are used extensively.

spring-jdbc Required for JDBC-based persistent remember-me

token repository (optional).

spring-tx Required by remember-me persistent token

repository implementations (optional).

C.4 spring-security-ldap

This module is only required if you are using LDAP authentication.

Table C.4. LDAP Dependencies

Dependency Version Description

spring-security-core

spring-ldap-core 1.3.0 LDAP support is based on Spring LDAP.

spring-tx Data exception classes are required.

apache-ds 1 1.5.5 Required if you are using an embedded LDAP

server (optional).

shared-ldap 0.9.15 Required if you are using an embedded LDAP

server (optional).

Spring Security

3.1.7.RELEASE 167

Dependency Version Description

ldapsdk 4.1 Mozilla LdapSDK. Used for decoding LDAP

password policy controls if you are using password-

policy functionality with OpenLDAP, for example.

1The modules apacheds-core, apacheds-core-entry, apacheds-protocol-shared, apacheds-protocol-ldap

and apacheds-server-jndi are required.

C.5 spring-security-config

This module is required if you are using Spring Security namespace configuration.

Table C.5. Config Dependencies

Dependency Version Description

spring-security-core

spring-security-web Required if you are using any web-related

namespace configuration (optional).

spring-security-ldap Required if you are using the LDAP namespace

options (optional).

spring-security-openid Required if you are using OpenID authentication

(optional).

aspectjweaver 1.6.10 Required if using the protect-pointcut namespace

syntax (optional).

C.6 spring-security-acl

The ACL module.

Table C.6. ACL Dependencies

Dependency Version Description

spring-security-core

ehcache 1.6.2 Required if the ehcache-based ACL cache

implementation is used (optional if you are using

your own implementation).

spring-jdbc Required if you are using the default JDBC-based

AclService (optional if you implement your own).

spring-tx Required if you are using the default JDBC-based

AclService (optional if you implement your own).

Spring Security

3.1.7.RELEASE 168

C.7 spring-security-cas

The CAS module provides integration with JA-SIG CAS.

Table C.7. CAS Dependencies

Dependency Version Description

spring-security-core

spring-security-web

cas-client-core 3.1.12 The JA-SIG CAS Client. This is the basis of the

Spring Security integration.

ehcache 1.6.2 Required if you are using the ehcache-based ticket

cache (optional).

C.8 spring-security-openid

The OpenID module.

Table C.8. OpenID Dependencies

Dependency Version Description

spring-security-core

spring-security-web

openid4java-nodeps 0.9.6 Spring Security's OpenID integration uses

OpenID4Java.

httpclient 4.1.1 openid4java-nodeps depends on HttpClient 4.

guice 2.0 openid4java-nodeps depends on Guice 2.

C.9 spring-security-taglibs

Provides Spring Security's JSP tag implementations.

Table C.9. Taglib Dependencies

Dependency Version Description

spring-security-core

spring-security-web

spring-security-acl Required if you are using the

accesscontrollist tag or

Spring Security

3.1.7.RELEASE 169

Dependency Version Description

hasPermission() expressions with ACLs

(optional).

spring-expression Required if you are using SPEL expressions in your

tag access constraints.

	Spring Security
	Table of Contents
	Preface
	Part I. Getting Started
	1. Introduction
	1.1 What is Spring Security?
	1.2 History
	1.3 Release Numbering
	1.4 Getting Spring Security
	Project Modules
	Core - spring-security-core.jar
	Remoting - spring-security-remoting.jar
	Web - spring-security-web.jar
	Config - spring-security-config.jar
	LDAP - spring-security-ldap.jar
	ACL - spring-security-acl.jar
	CAS - spring-security-cas.jar
	OpenID - spring-security-openid.jar

	Checking out the Source

	2. What's new in Spring Security 3.1
	2.1 High level updates found Spring Security 3.1
	2.2 Spring Security 3.1 namespace updates

	3. Security Namespace Configuration
	3.1 Introduction
	Design of the Namespace

	3.2 Getting Started with Security Namespace Configuration
	web.xml Configuration
	A Minimal <http> Configuration
	What does auto-config Include?

	Form and Basic Login Options
	Setting a Default Post-Login Destination

	Logout Handling
	Using other Authentication Providers
	Adding a Password Encoder

	3.3 Advanced Web Features
	Remember-Me Authentication
	Adding HTTP/HTTPS Channel Security
	Session Management
	Detecting Timeouts
	Concurrent Session Control
	Session Fixation Attack Protection

	OpenID Support
	Attribute Exchange

	Adding in Your Own Filters
	Setting a Custom AuthenticationEntryPoint

	3.4 Method Security
	The <global-method-security> Element
	Adding Security Pointcuts using protect-pointcut

	3.5 The Default AccessDecisionManager
	Customizing the AccessDecisionManager

	3.6 The Authentication Manager and the Namespace

	4. Sample Applications
	4.1 Tutorial Sample
	4.2 Contacts
	4.3 LDAP Sample
	4.4 OpenID Sample
	4.5 CAS Sample
	4.6 JAAS Sample
	4.7 Pre-Authentication Sample

	5. Spring Security Community
	5.1 Issue Tracking
	5.2 Becoming Involved
	5.3 Further Information

	Part II. Architecture and Implementation
	6. Technical Overview
	6.1 Runtime Environment
	6.2 Core Components
	SecurityContextHolder, SecurityContext and Authentication Objects
	Obtaining information about the current user

	The UserDetailsService
	GrantedAuthority
	Summary

	6.3 Authentication
	What is authentication in Spring Security?
	Setting the SecurityContextHolder Contents Directly

	6.4 Authentication in a Web Application
	ExceptionTranslationFilter
	AuthenticationEntryPoint
	Authentication Mechanism
	Storing the SecurityContext between requests

	6.5 Access-Control (Authorization) in Spring Security
	Security and AOP Advice
	Secure Objects and the AbstractSecurityInterceptor
	What are Configuration Attributes?
	RunAsManager
	AfterInvocationManager
	Extending the Secure Object Model

	6.6 Localization

	7. Core Services
	7.1 The AuthenticationManager, ProviderManager and AuthenticationProviders
	Erasing Credentials on Successful Authentication
	DaoAuthenticationProvider

	7.2 UserDetailsService Implementations
	In-Memory Authentication
	JdbcDaoImpl
	Authority Groups

	7.3 Password Encoding
	What is a hash?
	Adding Salt to a Hash
	Hashing and Authentication

	Part III. Web Application Security
	8. The Security Filter Chain
	8.1 DelegatingFilterProxy
	8.2 FilterChainProxy
	Bypassing the Filter Chain

	8.3 Filter Ordering
	8.4 Request Matching and HttpFirewall
	8.5 Use with other Filter-Based Frameworks
	8.6 Advanced Namespace Configuration

	9. Core Security Filters
	9.1 FilterSecurityInterceptor
	9.2 ExceptionTranslationFilter
	AuthenticationEntryPoint
	AccessDeniedHandler
	SavedRequests and the RequestCache Interface

	9.3 SecurityContextPersistenceFilter
	SecurityContextRepository

	9.4 UsernamePasswordAuthenticationFilter
	Application Flow on Authentication Success and Failure

	10. Basic and Digest Authentication
	10.1 BasicAuthenticationFilter
	Configuration

	10.2 DigestAuthenticationFilter
	Configuration

	11. Remember-Me Authentication
	11.1 Overview
	11.2 Simple Hash-Based Token Approach
	11.3 Persistent Token Approach
	11.4 Remember-Me Interfaces and Implementations
	TokenBasedRememberMeServices
	PersistentTokenBasedRememberMeServices

	12. Session Management
	12.1 SessionManagementFilter
	12.2 SessionAuthenticationStrategy
	12.3 Concurrency Control
	Querying the SessionRegistry for currently authenticated users and their sessions

	13. Anonymous Authentication
	13.1 Overview
	13.2 Configuration
	13.3 AuthenticationTrustResolver

	Part IV. Authorization
	14. Authorization Architecture
	14.1 Authorities
	14.2 Pre-Invocation Handling
	The AccessDecisionManager
	Voting-Based AccessDecisionManager Implementations
	RoleVoter
	AuthenticatedVoter
	Custom Voters

	14.3 After Invocation Handling
	14.4 Hierarchical Roles

	15. Secure Object Implementations
	15.1 AOP Alliance (MethodInvocation) Security Interceptor
	Explicit MethodSecurityInterceptor Configuration

	15.2 AspectJ (JoinPoint) Security Interceptor

	16. Expression-Based Access Control
	16.1 Overview
	Common Built-In Expressions

	16.2 Web Security Expressions
	16.3 Method Security Expressions
	@Pre and @Post Annotations
	Access Control using @PreAuthorize and @PostAuthorize
	Filtering using @PreFilter and @PostFilter

	Built-In Expressions
	The PermissionEvaluator interface

	Part V. Additional Topics
	17. Domain Object Security (ACLs)
	17.1 Overview
	17.2 Key Concepts
	17.3 Getting Started

	18. Pre-Authentication Scenarios
	18.1 Pre-Authentication Framework Classes
	AbstractPreAuthenticatedProcessingFilter
	J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	PreAuthenticatedAuthenticationProvider
	Http403ForbiddenEntryPoint

	18.2 Concrete Implementations
	Request-Header Authentication (Siteminder)
	Siteminder Example Configuration

	J2EE Container Authentication

	19. LDAP Authentication
	19.1 Overview
	19.2 Using LDAP with Spring Security
	19.3 Configuring an LDAP Server
	Using an Embedded Test Server
	Using Bind Authentication
	Loading Authorities

	19.4 Implementation Classes
	LdapAuthenticator Implementations
	Common Functionality
	BindAuthenticator
	PasswordComparisonAuthenticator

	Connecting to the LDAP Server
	LDAP Search Objects
	FilterBasedLdapUserSearch

	LdapAuthoritiesPopulator
	Spring Bean Configuration
	LDAP Attributes and Customized UserDetails

	19.5 Active Directory Authentication
	ActiveDirectoryLdapAuthenticationProvider
	Active Directory Error Codes

	20. JSP Tag Libraries
	20.1 Declaring the Taglib
	20.2 The authorize Tag
	Disabling Tag Authorization for Testing

	20.3 The authenticationTag
	20.4 The accesscontrollist Tag

	21. Java Authentication and Authorization Service (JAAS) Provider
	21.1 Overview
	21.2 AbstractJaasAuthenticationProvider
	JAAS CallbackHandler
	JAAS AuthorityGranter

	21.3 DefaultJaasAuthenticationProvider
	InMemoryConfiguration
	DefaultJaasAuthenticationProvider Example Configuration

	21.4 JaasAuthenticationProvider
	21.5 Running as a Subject

	22. CAS Authentication
	22.1 Overview
	22.2 How CAS Works
	Spring Security and CAS Interaction Sequence

	22.3 Configuration of CAS Client
	Service Ticket Authentication
	Single Logout
	Authenticating to a Stateless Service with CAS
	Configuring CAS to Obtain Proxy Granting Tickets
	Calling a Stateless Service Using a Proxy Ticket

	Proxy Ticket Authentication

	23. X.509 Authentication
	23.1 Overview
	23.2 Adding X.509 Authentication to Your Web Application
	23.3 Setting up SSL in Tomcat

	24. Run-As Authentication Replacement
	24.1 Overview
	24.2 Configuration

	25. Spring Security Crypto Module
	25.1 Introduction
	25.2 Encryptors
	BytesEncryptor
	TextEncryptor

	25.3 Key Generators
	BytesKeyGenerator
	StringKeyGenerator

	25.4 Password Encoding

	Appendix A. Security Database Schema
	A.1 User Schema
	Group Authorities

	A.2 Persistent Login (Remember-Me) Schema
	A.3 ACL Schema
	Hypersonic SQL
	PostgreSQL

	Appendix B. The Security Namespace
	B.1 Web Application Security
	<debug>
	<http>
	<http> Attributes
	access-decision-manager-ref
	access-denied-page
	authentication-manager-ref
	auto-config
	create-session
	disable-url-rewriting
	entry-point-ref
	jaas-api-provision
	name
	once-per-request
	path-type
	pattern
	realm
	request-matcher
	request-matcher-ref
	security
	security-context-repository-ref
	servlet-api-provision
	use-expressions

	Child Elements of <http>

	<access-denied-handler>
	Parent Elements of <access-denied-handler>
	<access-denied-handler> Attributes
	error-page
	ref

	<anonymous>
	Parent Elements of <anonymous>
	<anonymous> Attributes
	enabled
	granted-authority
	key
	username

	<custom-filter>
	Parent Elements of <custom-filter>
	<custom-filter> Attributes
	after
	before
	position
	ref

	<expression-handler>
	Parent Elements of <expression-handler>
	<expression-handler> Attributes
	ref

	<form-login>
	Parent Elements of <form-login>
	<form-login> Attributes
	always-use-default-target
	authentication-details-source-ref
	authentication-failure-handler-ref
	authentication-failure-url
	authentication-success-handler-ref
	default-target-url
	login-page
	login-processing-url
	password-parameter
	username-parameter

	<http-basic>
	Parent Elements of <http-basic>
	<http-basic> Attributes
	authentication-details-source-ref
	entry-point-ref

	<http-firewall> Element
	<http-firewall> Attributes
	ref

	<intercept-url>
	Parent Elements of <intercept-url>
	<intercept-url> Attributes
	access
	filters
	method
	pattern
	requires-channel

	<jee>
	Parent Elements of <jee>
	<jee> Attributes
	mappable-roles
	user-service-ref

	<logout>
	Parent Elements of <logout>
	<logout> Attributes
	The delete-cookies attribute
	The invalidate-session attribute
	The logout-success-url attribute
	The logout-url attribute
	The success-handler-ref attribute

	<openid-login>
	Parent Elements of <openid-login>
	<openid-login> Attributes
	always-use-default-target
	authentication-details-source-ref
	authentication-failure-handler-ref
	authentication-failure-url
	authentication-success-handler-ref
	default-target-url
	login-page
	login-processing-url
	password-parameter
	user-service-ref
	username-parameter

	Child Elements of <openid-login>

	<attribute-exchange>
	Parent Elements of <attribute-exchange>
	<attribute-exchange> Attributes
	identifier-match

	Child Elements of <attribute-exchange>

	<openid-attribute>
	Parent Elements of <openid-attribute>
	<openid-attribute> Attributes
	count
	name
	required
	type

	<port-mappings>
	Parent Elements of <port-mappings>
	Child Elements of <port-mappings>

	<port-mapping>
	Parent Elements of <port-mapping>
	<port-mapping> Attributes
	http
	https

	<remember-me>
	Parent Elements of <remember-me>
	<remember-me> Attributes
	authentication-success-handler-ref
	data-source-ref
	key
	services-alias
	services-ref
	token-repository-ref
	token-validity-seconds
	use-secure-cookie
	user-service-ref

	<request-cache> Element
	Parent Elements of <request-cache>
	<request-cache> Attributes
	ref

	<session-management>
	Parent Elements of <session-management>
	<session-management> Attributes
	invalid-session-url
	session-authentication-error-url
	session-authentication-strategy-ref
	session-fixation-protection

	Child elements of <session-management>

	<concurrency-control>
	Parent Elements of <concurrency-control>
	<concurrency-control> Attributes
	error-if-maximum-exceeded
	expired-url
	max-sessions
	session-registry-alias
	session-registry-ref

	<x509>
	Parent Elements of <x509>
	<x509> Attributes
	authentication-details-source-ref
	subject-principal-regex
	user-service-ref

	<filter-chain-map>
	<filter-chain-map> Attributes
	path-type
	request-matcher

	Child Elements of <filter-chain-map>

	<filter-chain>
	Parent Elements of <filter-chain>
	<filter-chain> Attributes
	filters
	pattern
	request-matcher-ref

	<filter-invocation-definition-source>
	<filter-invocation-definition-source> Attributes
	id
	lowercase-comparisons
	path-type
	request-matcher
	use-expressions

	Child Elements of <filter-invocation-definition-source>

	<filter-security-metadata-source>
	<filter-security-metadata-source> Attributes
	id
	lowercase-comparisons
	path-type
	request-matcher
	use-expressions

	Child Elements of <filter-security-metadata-source>

	B.2 Authentication Services
	<authentication-manager>
	<authentication-manager> Attributes
	alias
	erase-credentials
	id

	Child Elements of <authentication-manager>

	<authentication-provider>
	Parent Elements of <authentication-provider>
	<authentication-provider> Attributes
	ref
	user-service-ref

	Child Elements of <authentication-provider>

	<jdbc-user-service>
	<jdbc-user-service> Attributes
	authorities-by-username-query
	cache-ref
	data-source-ref
	group-authorities-by-username-query
	id
	role-prefix
	users-by-username-query

	<password-encoder>
	Parent Elements of <password-encoder>
	<password-encoder> Attributes
	base64
	hash
	ref

	Child Elements of <password-encoder>

	<salt-source>
	Parent Elements of <salt-source>
	<salt-source> Attributes
	ref
	system-wide
	user-property

	<user-service>
	<user-service> Attributes
	id
	properties

	Child Elements of <user-service>

	<user>
	Parent Elements of <user>
	<user> Attributes
	authorities
	disabled
	locked
	name
	password

	B.3 Method Security
	<global-method-security>
	<global-method-security> Attributes
	access-decision-manager-ref
	authentication-manager-ref
	jsr250-annotations
	<metadata-source-ref> Attribute
	The mode Attribute
	order
	pre-post-annotations
	proxy-target-class
	run-as-manager-ref
	secured-annotations

	Child Elements of <global-method-security>

	<after-invocation-provider>
	Parent Elements of <after-invocation-provider>
	<after-invocation-provider> Attributes
	ref

	<pre-post-annotation-handling>
	Parent Elements of <pre-post-annotation-handling>
	Child Elements of <pre-post-annotation-handling>

	<invocation-attribute-factory>
	Parent Elements of <invocation-attribute-factory>
	<invocation-attribute-factory> Attributes
	ref

	<post-invocation-advice>
	Parent Elements of <post-invocation-advice>
	<post-invocation-advice> Attributes
	ref

	<pre-invocation-advice>
	Parent Elements of <pre-invocation-advice>
	<pre-invocation-advice> Attributes
	ref

	Securing Methods using <protect-pointcut>
	Parent Elements of <protect-pointcut>
	<protect-pointcut> Attributes
	access
	expression

	<intercept-methods>
	<intercept-methods> Attributes
	access-decision-manager-ref

	Child Elements of <intercept-methods>

	<method-security-metadata-source>
	<method-security-metadata-source> Attributes
	id
	use-expressions

	Child Elements of <method-security-metadata-source>

	<protect>
	Parent Elements of <protect>
	<protect> Attributes
	access
	method

	B.4 LDAP Namespace Options
	Defining the LDAP Server using the <ldap-server> Element
	<ldap-server> Attributes
	id
	ldif
	manager-dn
	manager-password
	port
	root
	url

	<ldap-authentication-provider>
	Parent Elements of <ldap-authentication-provider>
	<ldap-authentication-provider> Attributes
	group-role-attribute
	group-search-base
	group-search-filter
	role-prefix
	server-ref
	user-context-mapper-ref
	user-details-class
	user-dn-pattern
	user-search-base
	user-search-filter

	Child Elements of <ldap-authentication-provider>

	<password-compare>
	Parent Elements of <password-compare>
	<password-compare> Attributes
	hash
	password-attribute

	Child Elements of <password-compare>

	<ldap-user-service>
	<ldap-user-service> Attributes
	cache-ref
	group-role-attribute
	group-search-base
	group-search-filter
	id
	role-prefix
	server-ref
	user-context-mapper-ref
	user-details-class
	user-search-base
	user-search-filter

	Appendix C. Spring Security Dependencies
	C.1 spring-security-core
	C.2 spring-security-remoting
	C.3 spring-security-web
	C.4 spring-security-ldap
	C.5 spring-security-config
	C.6 spring-security-acl
	C.7 spring-security-cas
	C.8 spring-security-openid
	C.9 spring-security-taglibs

