Spring Framework Reference Documentation

4.3.16.RELEASE

Rod Johnson , Juergen Hoeller , Keith Donald , Colin Sampaleanu , Rob Harrop , Thomas Risberg , Alef
Arendsen , Darren Davison , Dmitriy Kopylenko , Mark Pollack , Thierry Templier , Erwin Vervaet , Portia
Tung , Ben Hale , Adrian Colyer , John Lewis , Costin Leau , Mark Fisher , Sam Brannen , Ramnivas
Laddad , Arjen Poutsma , Chris Beams , Tareq Abedrabbo , Andy Clement , Dave Syer , Oliver Gierke ,
Rossen Stoyanchev , Phillip Webb , Rob Winch , Brian Clozel , Stephane Nicoll , Sebastien Deleuze

Copyright © 2004-2016

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Framework Reference Documentation

Table of Contents

[. Overview Of SPring FrameEWOTKiiiiiiiiii e et e e 1
1. Getting Started With SPriNg ..o e e 2
2. Introduction to the Spring Framework ... 3

2.1. Dependency Injection and Inversion of CONrolcociiieiiiiiiiiii e 3
2.2. Framework MOAUIESuuuiiiiieiiiiii et e e 3
(0] (=R Ofo] o] =11 =7 S PP 4
AOP and INSIrUMENTALIONciiiitiiiiii e et ees 5

T LTSTST= o[o PPN 5
Data ACCESS/INTEGIAtiONoeeeiiieee et e e e e e eens 5

KT o S 5
IS S PP 6

2.3, USAQE SCENAIIOSietueit it et et et e ettt et e e et e et e e et e e et e e et e e ebn s e eaaaeenaeeen 6
Dependency Management and Naming CONVENLioNScc.ovveeievinneeeiiinneeeennnnnn. 9
Spring Dependencies and Depending 0N SPringccoevvveeiieeeinieiiieeeineen, 11

Maven Dependency Managementoooeuuiiiuiieeiiiaiii e eei e 11

Maven "Bill Of Materials" Dependencyccccviieiiiiiniiiiiiinieeein e 12

Gradle Dependency Managementceevvuieiiiieeiiieeiiiee e e e e eanes 12

vy Dependency Managementc..viiuueiinaiiieei e e 13
Distribution Zip FilESiiiiiii e 13

[0 To 1T R P 13
USING LOGA] 1.2 OF 2.X totuieeuiieiie ettt e e e e e e et e e e eeenns 14

Avoiding ComMmMONS LOGGING «..vuiiiiiiiiiiiiiee it 15

Using SLF4J with Log4j or Logbackccoviiiiiiiiiiiciiiicie e 15

Using JUL (java.utillogging)c..ooeeiiiiiii e 16
Commons Logging on WebSphere ..., 17

[I. What's New in SPring FramMeEWOIK 4.Xiiiiieiiieiie et e e e e e e e e e e st e e e e eeas 18

3. New Features and Enhancements in Spring Framework 4.0coooiiiiiiiiiiiiiiiiiieeies 19
3.1. Improved Getting Started EXPErENCEccouuiiiiiiiiiiiiiiii e 19
3.2. Removed Deprecated Packages and Methodscccoveviiiiiiiiccinc e, 19
3.3.Java 8 (S Well @S 6 @Nd 7) .eeuniiiiiiiiii e 19
3.4.JaVA EE 6 ANA 7 .oooiiiiiiiii e e 20
3.5. Groovy Bean Definition DSLooiiiiiiiiicii e 20
3.6. Core Container IMProVEMENTSiiutiiiiii et e e e e eeens 21
3.7. General Web IMProvVEMENTSiiiiiiiiiiieiii e e 21
3.8. WebSocket, SockJS, and STOMP MESSAQINGcvvvuevineiiieeiiieeiiiieeieeeiieeaieeaenaas 21
3.9. Testing IMPrOVEMENTS it et e e e e e et e et e e ea e aeanaas 22
4. New Features and Enhancements in Spring Framework 4.1cccoooeviiiiiiiiiiinineiiinneeens 23
4.1, IMS IMPIOVEMENTS ..uiiiiiiiie ittt e e e e e e et e e e e et e e e anaanns 23
4.2. Caching IMPrOVEMENTSccuiiii et e e et e e ea e ean s 23
4.3. WED IMPIOVEMENTS ...iiiiiiiiiii ettt e et e e et eeeaaa s 24
4.4. WebSocket Messaging IMProvVEMENESocviuiiiiiiiiii e e 25
4.5, Testing IMPrOVEMENTS ...t e e e e e et e et eeanaaees 25
5. New Features and Enhancements in Spring Framework 4.2ccoooviiiiinniiiiiinneecinnnn, 27
5.1. Core Container IMProVEMENLSiiiiiiiii i e e e e e e e eaans 27
5.2. Data ACCESS IMPIOVEIMENTSiiiiiiitie ittt et et e et e e e e e enns 29
5.3. IMS IMPIOVEMENTSoeiiiiiiiieeie ettt et e e e e e e en e eenes 29
5.4, WeD IMPrOVEMENESciiiiiiiiii et e e e e e e e e e eaaaeees 29

4.3.16.RELEASE Spring Framework iii

Spring Framework Reference Documentation

5.5. WebSocket Messaging IMProvVEMENESc..cveiuuieiinierineeen e e eeeie e e e e e eaeeeens 30
5.6. TeStiNg IMPrOVEMENLSiieiiiiiieiie ettt et e e et e e e e eaaaaas 31
6. New Features and Enhancements in Spring Framework 4.3ccooiiiiiiiiiiiiiiinneecie, 33
6.1. Core Container IMProVEMENLSiiiieiie e e e e e e e eeens 33
6.2. Data ACCESS IMPIOVEIMENTS ...ttt ettt e et ea e en e eenns 33
6.3. Caching IMPrOVEMENTSciiiiii i e 34
Lo N 11 S 10 0] 0] €017 1=] £ 34
6.5. WeD IMProVEMENLS ... et eaa e 34
6.6. WebSocket Messaging IMProVEMENLScc.uuiviiiiiiiieiiiiie e 35
6.7. TeStiNg IMPrOVEMENLSuiiiiiiii e e e e e e e et e e e e e r e e et e e e e eeenaaes 35
6.8. Support for new library and server generationscccooeieiiiiiiniiii i 36
[II. COre TECNNOIOGIESceiiiieeiii e et e et e e et e e et eeeeban s 37
7. THE 10C CONTAINET ...ttt e et e e e e e e e e e e e e ennneeas 38
7.1. Introduction to the Spring 10C container and beanscccooviiiiiiiinii e, 38
A ©a] c= 11 o 1T o 01V = T V= S 38
Configuration Metadatalcoevuiiiiiiiei e 39
INStantiating @ CONTAINETuiiii e e e e e e 40
Composing XML-based configuration metadatac...cccoveviieiiiiiiineennnnn. 41

The Groovy Bean Definition DSLcocvvieiiiiiii e 42

USING the CONTAINET ...cueiiii e e e e e ees 43

7.3, BEAN OVEIVIEW ...eeniiiiieeii et et e et e e et e ettt e et e et e e et s e e e e et e e et e e et e e e tn e eeenneeeenaees 43
[N F= T] o T 0T U 44
Aliasing a bean outside the bean definitioncccooiiiiiiiin, 45
INStantiating DEANSociiiii i 46
Instantiation With @ CONSIIUCIONuiiieiiiiiiiii e 47
Instantiation with a static factory method ..o a7
Instantiation using an instance factory methodcccoooiiiiiiis 47

A I 1= o T= T o [o =T o] TS 49
Dependency INJECLIONiiuii e e ea e 49
Constructor-based dependency iNJECIONc..uvvieiiiiiiiiiiiiieeeei e 49
Setter-based dependency INJECIONcoceviiiiiiiiiiii e 51
Dependency resSolUtiON PrOCESSc.uiiitiiiiiiiei e 52

Examples of dependency iNjeCtioncoiviiiiiiiiiiiiii e 53
Dependencies and configuration in detailc..cooveiiiiiiii 55
Straight values (primitives, Strings, and SO ON)cc.ovvieiiiiiiiiiiiieeieeeies 55
References to other beans (collaborators)cccoovviiiiiiiiiiiiin e, 57

INNEE DEANS ..o e 58
1070]| L=t 1o o 1< PP PPTPPPPT 58

Null and empty String VAIUESoooiiiiiiiiiiii e 60

XML shortcut with the p-namespacecccoveveiiiiiiiiiii e, 61

XML shortcut with the C-NameSPaceocevuiiiiiiiiiii e 62
Compound ProPerty NAIMESuiieiiin et e et e et eeeti e eer e eeriaeaees 63

L0 LS T o 0 1=7 o =T Vo £ o o 63
Lazy-initialized DEANScoouni i 63
AUOWINNG COIADOIALONSieiiiiieeeii e 64
Limitations and disadvantages of autowiringccoevvviiieiiineeiiieeeieeeieees 65

Excluding a bean from autOWIrINgoeeuiiiiiiiiee e 66

MEthod INJECTION ...coeveeiiii e et e et e e eees 66
Lookup mMethod INJECLIONciiviiiie e e 67

Arbitrary method replacement 69

4.3.16.RELEASE Spring Framework iv

Spring Framework Reference Documentation

T = T g T 0] o =2 70
The SINGIEION SCOPE ...ceuiiiiee e 71
THE ProtOtYPE SCOPE ...euiiiiii ettt e e s 72
Singleton beans with prototype-bean dependenciesccccoovviveiiiieiiiieviineeennn, 73
Request, session, global session, application, and WebSocket scopes 73
Initial web configurationcoooiii i 74
REQUEST SCOPE ..t 74
SESSION SCOPE ..ttt ee ettt ettt et e et et e e tt e e et e et e e e e e e 75
GlObal SESSION SCOPE ...ovvtiieiiiii ettt e 75
PY o] o] o= U1 T g =Yoo = 75
Scoped beans as dependencCiesc..ooiuuiiiiiiiiiiiie e 76
CUSEOM SCOPES ..iviieei ittt ettt ettt e et ettt e e et e e e e et et e eneeenas 78
Creating @ CUSIOM SCOPEvvvuiiiiieiiiieeeiee e e e e e e e e e e e e e e e e aaeeeanas 78
USING @ CUSEOM SCOPE ...nieeiiiitn ettt e ettt ettt e e e e e e e e e ean s 79
7.6. Customizing the nature of @ DeaNccooiiiiiiiiii i 80
LifeCyCle CallDACKSuuiiieiei e 80
Initialization CallDaCKSooiiiiiii 81
Destruction Callbackscooeuiiiiiiii 81
Default initialization and destroy methodscccccceveiiiiiii i, 82
Combining lifecycle mechaniSms ..o 83
Startup and shutdown callDackscoooveuiiiiiiiiiiii e 84

Shutting down the Spring 1oC container gracefully in non-web applications
... 86
ApplicationContextAware and BeanNameAWarecovevivinieiiiiinneeeiee e 86
Other AWAre INLEITACEScoouuiiiiiii e 87
7.7. Bean definition INNEIILANCEcouuiiii i e 88
7.8. Container EXtENSION POINESuiiiiiiiii e e e e e 90
Customizing beans using a BeanPOStPrOCESSOrccuuveiviiiiiiiieiiieeeiiievineeaineens 90
Example: Hello World, BeanPostProcessor-styleccoooviiiiiiiiiiiniiinn. 91
Example: The RequiredAnnotationBeanPostProcessorcccvevvvveeeenenennn. 93
Customizing configuration metadata with a BeanFactoryPostProcessor 93
Example: the Class name substitution PropertyPlaceholderConfigurer 94
Example: the PropertyOverrideConfigurerccoovviiiiiieiiiineecii e 95
Customizing instantiation logic with a FactoryBeanc.cccoevveviveiiieviineennnnn, 96
7.9. Annotation-based container configurationcooiiiii i 96
L@V =T [T =T o P 98
@AULOWITEA ...ttt e e e et e e e et e e eaan s 98
Fine-tuning annotation-based autowiring with @Primaryccccooiviiiiiiins 102
Fine-tuning annotation-based autowiring with qualifierscccccoooiiniiiinnnnn. 103
Using generics as autowiring qualifiersccoceiieiiiiiin e 108
CUuStoMAULOWIFECONTIQUIET ...c.ueiii et e e 109
(@ RS0 U] (o7 =T 109
@PostConstruct and @PreDESIIOY ...cvuuuivieiieii e e e e e e 110
7.10. Classpath scanning and managed COMPONENEScccuuiiiiiiiiiiiieiiieieieeeieeeeaaes 111
@Component and further stereotype annotationsc.ooeevviieiiiiinneeeiiinneeenn, 111
MEta-annOtAtIONSccoeuiiiiiii e 112
Automatically detecting classes and registering bean definitions 113
Using filters to customize SCANNINGviiiriiieiiii e 114
Defining bean metadata within COMpPoONENtsccoviviiiiiiii i 115
Naming autodetected COMPONENTSoiiuuiiiiiieiiieii e 117
4.3.16.RELEASE Spring Framework v

Spring Framework Reference Documentation

7.11.

7.12.

7.13.

7.14.
7.15.

Providing a scope for autodetected cOmpoNentsccecveviiieiiiieeiiieeiiieeee e, 118
Providing qualifier metadata with annotationscccooviiiiiiiniii e, 119
Using JSR 330 Standard ANNOLALIONScooiiviiiieiiiiieeieii e 120
Dependency Injection with @Inject and @Namedccoovviiiiiieviineiieeeenn, 120
@Named and @ManagedBean: standard equivalents to the @Component
=Yg T] = 1o} o P 121
Limitations of JSR-330 standard annotationsccceevvviiiiiniiiii i 122
Java-based container configurationccoceuiiiiiiiiiiiii e 124
Basic concepts: @Bean and @Configurationc.cccoeeviiiiiiiiieii e, 124
Instantiating the Spring container using AnnotationConfigApplicationContext 125
SIMPIE CONSIIUCTION ..eeiiiiiiiii e e e 125
Building the container programmatically using register(Class<?>...) 125
Enabling component scanning with scan(String...)cccooeveviviiiiiineieeeen, 126
Support for web applications with AnnotationConfigWebApplicationContext
... 126
Using the @Bean annotationcoeuiiiiiiiiiiiieii e ee e e e e e 127
Declaring @ Dean ... 127
Bean dependencCiesocoouuiiiiiiiiii e 128
Receiving lifecycle callbackscooovviiiiiiiiii 129
SPEeCifying DEAN SCOPEuiiiiiii e 130
Customizing bean NAaMINGccoeeuiiiiiii e eeens 131
Bean ali@Singcccuuiiiiiiiiii i 131
Bean deSCrPLIONieui e 131
Using the @Configuration annotationcccoeveiiiiiiieiiiiine e 132
Injecting inter-bean dependenciesovevviiiviiiiii e 132
Lookup method INJECHIONieeiie e 132
Further information about how Java-based configuration works internally.... 133
Composing Java-based configurationscccoevuiiiiiiiiiiii e 134
Using the @Import annotationccouviiiiiiiiiii e 134
Conditionally include @Configuration classes or @Bean methods 138
Combining Java and XML configurationcccoeeeiiiiiiieiiineiii e 139
Environment abStracCtionc..oiiuiiiiiii e 141
Bean definition profiles ... 142
@PTOFIE .o e 142
XML bean definition profiles ... 144
Activating @ Profile ... 145
Default Profilecceeeiii e 145
PropertySource abStraCtionooouuiiiiiiiiiii e 146
@ PTOPEITYSOUITE ...ttt ettt ettt ettt e e e et e e e b s 147
Placeholder resolution in StateMENtSoveeiiiiiiiiiiiii e 148
Registering a LoadTiMEWEAVETcoouuiiiiiiiiiieiii e 148
Additional capabilities of the ApplicationCoNtextocevvviieeiiiiinieiiiieeeeienn, 149
Internationalization USiNg MESSAJESOUICEuvvvrnieiiiieeiieeeiieeeeeeieeeaaeeaneens 149
Standard and CUSIOM EVENTSiiiuiiiiiii e 152
Annotation-based event lIStENErsSovvviiiiiiiii e 155
ASYNCHIroNOUS LISTENEISiiiiiiii i e 157
Ordering lISTENEISii e 157
LCT=] o= Ty ToR YT o (P 157
Convenient access to low-level reSOUICESooevvuiiiiiiiiiiieiii e 158
Convenient ApplicationContext instantiation for web applications 158

4.3.16.RELEASE

Spring Framework Vi

Spring Framework Reference Documentation

Deploying a Spring ApplicationContext as a Java EE RARfilecc.oceunnis 159
7.16. ThE BEANFACIONYccuiiiiiii ettt e e e e e e e eaa e ees 159
BeanFactory or ApplicatioNCONIEXE?iiiiiiiiieiiiii e 160

Glue code and the evil SINGIETONccouiiiiiiii e 161

8. RESOUICES ...ttt ettt et et e e e e e e e e enns 162
S 0 I [1o o 11 o3 1T o I PP 162
8.2. The ReSOUICe INLEITACEociiiii e 162
8.3. Built-in Resource implementationso..oviiiiiiiiieii e 163
| =TT 11] o= 163
ClasSPatNRESOUICEoiiiiiiiiieiii et e 163
FIleSYSIEMRESOUITE ...t e e e e 164
ServVIEtCONEXIRESOUICEiivuiiiiieii et e et e e e e e eeens 164
INPUESTIEAMRESOUITE ...ivniieee e e e e e e e e e e e e e e e e eaneanaeannes 164
BYIEAITAYRESOUITE ... e e eens 164

8.4. The ReESOUICELOAUET .. oevuiiiiiii et e e s 164
8.5. The ResourceLoaderAware iNtErfacecoovvveuiiiieiiiiiiieiie e 165
8.6. Resources as dependenCiescouuiiiuiiiiieii e 166
8.7. Application contexts and Resource pathscccooviiiiiiiiiiiiin e 166
Constructing application CONEXLS ...vuvuiiiinieii i e e e e 166
Constructing ClassPathXmlApplicationContext instances - shortcuts 167

Wildcards in application context constructor resource pathsccccoeveveiiinees 167
ANE-SEYIE PAtterNS ...ovvniiei e e 168

The classpath*: PrefiX ... 168

Other notes relating to WldCardscovviiiiiiiiiiiii e 169
FileSYyStEMRESOUICE CAVEALSuuiviieiiiieieii e e e e e e e e e e et e e e ann s 169

9. Validation, Data Binding, and Type CONVEISIONcc.oiiiuiiiiiiiiiieiei e 171
LS 0 I [o o [o3 1T o I PP 171
9.2. Validation using Spring’s Validator interfacec..cccoeveviiiiiiiiii e 171
9.3. ResoIving COUES t0 EIrOr MESSAUES ...cuuierneiiieitiieiei et e et e et e e a e e e e eaaaas 173
9.4. Bean manipulation and the BeanWrapperc..oveiiiiiiieiiiiiiieeeei e 174
Setting and getting basic and nested propertiescccoevveiiiiiin i, 174
Built-in PropertyEditor implementationsccooviiiiiiniiii e 176
Registering additional custom PropertyEditorscccovvvveviniiiiiiineeiininnnn. 179

9.5. SPriNg TYPE CONVEISION ...ccvuiiiiiieeiieee et e e e e e e e e e e e e e et e e e e et s e e e eanas 181
CONVEIEE SPI .o et e e e e 181
CONVEIEIFACIONY ...ttt 182

1= gLt ol Oo] V=T o =T ST OPPRTPN 182
ConditionalGeNEriCCONVEITETccuiiiiiieiii et 183
CONVEISIONSEIVICE AP ..o 183
Configuring @ CONVEISIONSEIVICEcvuuiiiiiieeieeei e et e e e e e e e e e e e e eens 184
Using a ConversionService programmaticallyccooooiiiiiiiiiiniiiniieiee, 185

9.6. Spring Field FOrmMattingc..uiiiiiiiiieiiii e 185
FOrMALIEr SPI ..o et et 186
Annotation-driven FOrMattingooeuiiiiiiiii e 187
Format ANNOLAtioN AP ... 188
FOrmatterREQISIIY SPI ...uuiiiiii e 188
FOormatterRegISIrar SPIo.. i 189
Configuring Formatting in Spring MVC ... 189

9.7. Configuring a global date & time formatc.cocovevii i, 189
9.8. SPring Validationcoouiiii i 191

4.3.16.RELEASE Spring Framework Vii

Spring Framework Reference Documentation

Overview of the JSR-303 Bean Validation APlccooviiiiiiiiiiiiiieeeci, 191
Configuring a Bean Validation Providerccooooiiiiiiiiiie e 191
Injecting @ Validator 192
Configuring Custom CONSLraiNtSoevvviiiiiieeii e 192
Spring-driven Method Validationccooiiiiiiiiii e 193
Additional Configuration OPLiONSuiiiiiiiiiieiiiiiee e 193
Configuring @ DataBiNGerccuuiiiiieii e e 193
Spring MVC 3 Validationooiiiiiii e 194

10. Spring Expression Language (SPEL) ...oouuuiiiiiiiiiiii et 195
I T O [1o To [o 1T o I PP 195
10.2. BVAIUALION ..ottt e 196
Eval uati 0NCONT @XT ..o 197
LI/ L o0 1Y/= T 67T I 198

Parser CONFIQUIALIONiiiiiii e et e e e e 198
SPEL COMPIIALION ..uiiiiii e 199
Compiler configUrationoeiiiiiii e 199

Compiler IMItAtIoNScounii e 200

10.3. Expressions in bean definitionscoooiiiiiiiii 200
XML CONFIQUIALION ..ovniiie i e e e e e e e e e e an s 200
ANNOLALION CONFIG .evniii e e e e eaa s 201
10.4. Language REFEIENCEuiiiiiiii et 202
Literal EXPrESSIONS ...vvuniiii i e e e 202
Properties, Arrays, Lists, Maps, INAEXErScc.ooiiiiiiiiiiii e 202
] T T 1] P 203

T T T, = o £ 203
AFTAY CONSIIUCTION ...ttt ettt e et e et e e e e e e et e ean e enes 204
1] 1 T Lo £ PP 204

L0 01T = 1o] Y 204
Relational OPeratorsoocu i 204

LOGICAl OPEIALOIS ...iiiiiei ittt e 205
Mathematical OPEratorscoevuiiiiiiiiie e 206
LTS (o[0] 41 o | PP PTPPPR 206

Y P ittt 206

1070] 0 53 1 11 ox (o] £ TP PTUPTN 207
VaANBDIES ..o e 207

The #this and #root variables ..o 207

FUNCHIONS .ottt e e et e et e e e et e e e eata e e eannns 207
BAN FEIEIENCES ...t 208
Ternary Operator (If-Then-ElIS€) ... 208

The EIVIS OPEIatOrcccveiiiiici e e e e e anas 209
Safe NavIgation OPEIatOrco.u i e e e 209

(070]|[=Tox 1o BEST =1 [=Tod 7] o 210

100]{[=Tox 1To] o T = o] =T 1o) o 1NN 210
EXPression temMplatingooeeoii e 211
10.5. Classes used in the examples ..o e 211
11. Aspect Oriented Programming With SPringccoceviiiiiiiiiiiiii e e 215
5 R [10T [DT i To] o I PP 215
F Y@] oo] (o1 =T o] £ PP 215
Spring AOP capabilities and goalscoocvuviiiiiiiii e 217
AOP PIOXIES ..ottt ettt ettt et e aa e 218

4.3.16.RELEASE Spring Framework viii

Spring Framework Reference Documentation

2 (01 AN o 1T A0 = U] o1 AP 218
Enabling @ASPECEI SUPPOIT ...ceuniiiieii et 218
Enabling @AspectJ Support with Java configurationcc.ccceeveennnns 218

Enabling @AspectJ Support with XML configurationccc.cceveeinene. 219

DeClaring @n @SPECLc.uuiiiiiiii e 219
Declarng @ POINTCULoiiiiiei ittt e e e eeeees 220
Supported Pointcut DeSIGNAtOrScvvveieiiieeiii e e e 220
Combining POINtCUt EXPreSSIONSciuuniiii it eaa e eees 222

Sharing common pointcut definitionNs ... 222

EXAMPIES ..o 224

WIItiNg gOOd POINTCULS ...evuiiiiieii e e 226

DeClarnng @aVICEuiiiiiiiiiiiii e 227
BefOre @dVICEvuiiii e 227

After returning AdVICEo.u i 227

After throwing @0VICEuuiiiiiiiii e 228

After (finally) @dVICEcooviii i 229

ATOUNT AAVICE ...ttt 229

ACVICE PATAMELEIS ...ttt et e e e e e era e aees 230

7o AV o7 T] (o [=1 1o Vo T 233
INEFOUCTIONS ..ottt e e e e e e e e ene e e e 234
Aspect instantiation MOElSccoouiiiiiiiiii 234
0= 1 1] o 1= 235
11.3. Schema-based AOP SUPPOITcoouiiiiii e e 237
DeClarng AN @SPECL ...couuuiiiiiii ettt 237
(D= Yo F= T TaTo =T o111 (o1 U | N 238
DeClaring @0VICEcoeuuiiiiieii e 239
BefOre @0VICEoiieeieii e 239

AFter returning adViCecouviiiii i 240

After throwing @0VICEccuuiiiiiiii e e 240

After (finally) AdVICEiiiiii i 241

AFOUNG BAVICEciiiieiiiiie et 241

AdVICE PArAMELEISiiiiiii et e e ees 242

ACVICE OFAEIING .eevvnieieiii et e e e eees 243
1ol ¥ ox o] o - TP PPTTT 244
Aspect instantiation MOAEISo..iiiiiiiii 244

0 A= P 244
3= 1 1] o = 245
11.4. Choosing which AOP declaration Style t0 USEocoeuiiiiiiiiiiiiiiiiieiieeeeeeene 247
Spring AOP O fUll ASPECTII? ...t 247
@Aspectd or XML for Spring AOP? ... 248
11.5. MiXiNG ASPECE TYPES ..ernieiieiit ettt ettt ettt e e e e et e e e e 248
11.6. Proxying MeChaNiSMSc.uuiiiiiiiiiiii et 249
Understanding AOP PrOXIES ...cuuuiiiiniiiiieei et e e et e e e e e e e e e e aeans 249
11.7. Programmatic creation of @ASPECtI Proxi€sccoceuiiiiiiiiiiiiniiiiieiiiieeeeeeenn, 252
11.8. Using Aspectd with Spring appliCationsocoeuuiiiiiiiiiieiiiiieeeee e 252
Using AspectJ to dependency inject domain objects with Spring 252

Unit testing @Configurable ObJECtSc..oiiiiiiiii e 255

Working with multiple application CONEXISccuviiiviiiiiiiiiiiiei e, 255

Other Spring aspects for ASPECLIcouuiiiiii i e 255
Configuring AspectJ aspects using Spring 10Ccoooiiiiiiiiiiiiei e, 256
4.3.16.RELEASE Spring Framework ix

Spring Framework Reference Documentation

Load-time weaving with AspectJ in the Spring Frameworkcccooevvivennnnns 257

A FIrSt @XamMPIE ... e 257

AASPECES .ttt 260
"META-INF/QOP. XML L. a e e 260

Required libraries (JARS) ... 261

Spring CoNfiQUIAtIoNiiiiiii e e 261
Environment-specific configurationccccooviiiiiii i, 263

11.9. FUINEI RESOUICEScuuiiiieiiti ettt et et e e et e e e e eaneas 265
12. SPIING AOP APIS ..ottt 266
20t O [1o To [o 1T o I PP 266
12.2. POINICUL AP IN SPIING .ot e e e e e 266
1070] g [o1=T o] 1< PP PP 266
Operations 0N POINTCULSiiiieei e e et e e e e e e e e e e e et e e eeanaeeaen 267
Aspect exXpresSion POINICULSc.uiietiiii e e ea e 267
Convenience pointcut implementationsccooviiiiiiiniiiii e 267

) = L[l o T 111 (o1 1| 267

DYNamicC POINTCULSuiii it e e e eaa s 268

POINICUL SUPEICIASSES ..covvniiiiii e 269
L1015 (o] o T o T 11 (011 | N 269
12.3. AdVICE API N SPIING .eniiiiiiie e et a e e e 269
AVICE NFECYCIES .oovii e 269
Yo AV ot Y o =T IS o 1 o 269
Interception around AdVICEc..ioiiuiiiiiii e 269

BefOre @0VICEoiieeieii e 270

TRFOWS @UVICE ...t e e 271

After REtUrNINg A0VICEcouuiiiiiiiii e 272
INtrOUCEION @AVICEuiiieiiii e e e e 273

2 Yo AV o T o T IS o 1 o 275
12.5. Using the ProxyFactoryBean to create AOP ProXi€scccovvveuieeuieeinneeennaennn. 275
[T [275
JavaBeaNn PrOPEITIESiiiieieii i e e e e e 276
JDK- and CGLIB-based ProXi€scioiuuiiieiiiiiiieeieee et 277
Proxying INtEITACESccoiuiiiiiii e 277
PrOXYING ClaSSES ..ovuiiiiiiii et e e e e e e e 279
UsiNg 'global’ @0VISOIScouiiiiiiii e 280
12.6. Concise proxy definitioNScooouiiiiiiiiii e 280
12.7. Creating AOP proxies programmatically with the ProxyFactoryc.c........ 281
12.8. Manipulating advised ODJECLScoouiiiiii 282
12.9. Using the "auto-proxy"” facCilitycoveiiuiiiiiiiii e 283
Autoproxy bean definitioNScooviiiiii 283
BeanNameAUtOPIOXYCIEaALOrc.ieuiii e eees 283
DefaultAdViSOrAUtOPIOXYCIEALONceeeuinieeiiiiiee et e e e e e e e e 284
AbstractAdViSOrAUtOPTOXYCIEALONccvvueveiiiiieeeieee e e e e e eaie e 285

Using metadata-driven auto-proXyingc.eceeueeuaeiuaeeieeie e e eeneeeennns 285
12.10. USING TArgEISOUITESuiiiiiiiieeiiii ettt e et e et e et e e et e e e bt eeeebaaeaees 287
Hot swappable target SOUIMCESoiiviiiiii i 287
P00ING tArget SOUICESiiiiieii et e e e e eaaeees 287
Prototype target SOUICESccuuiiiiiii e 289
ThreadLocal target SOUICESiveuiiiii e e e e e e e eaens 289
12.11. Defining NEW AQVICE tYPESiuuiiiii ettt e e e e e 289

4.3.16.RELEASE Spring Framework X

Spring Framework Reference Documentation

12.12. FUMNEE FTESOUICES ...iiiiiieeiii ettt ettt e ettt e et e e et e e e e et e e e eebn e eeenes 290
Y =T] o T R TP UPPTUPPN 291
13. Introduction t0 SPriNG TESHINGceeeuuuieiiii ettt e e e e e eaaans 292
0 U T o 1 A =) 1] Vo N 293
T14.1. MOCK ODJECES ..vuiieiiiii ettt et e e e et et e et e e e e aa e 293
1V o] o 01T o TP 293

B | PSP 293
SEIVIEE AP o e 293
POIEt AP e e 293
14.2. Unit Testing SUPPOIt CIASSESuicvuuiiiiiiiii e e e e 294
General testing ULIILIEScoeuiiiii e 294
SPING MVC oo e e 294

ST [a1 0=Te = o] T I~ 11 T 295
L5, OVEIVIEW ittt ettt et e et e et e et et e et e e et e et b e e et e e aaeeaneaees 295
15.2. Goals of Integration TeSHNGuuiiiiiiiiieiiii e 295
Context management and CaChINGcoovviiiiiiiiiii e 295
Dependency Injection of test fIXIUIEScc.uiiiiiiiiiii e 296
Transaction MaNAGEMENTcouuuuiiiiii et et e e 296
Support classes for integration teStNGvvvvviiiiiii e 297
15.3. IDBC TESHNG SUPPOIT ...ttt ettt ettt et et e e e e et eean e eeees 297
T Y o T = 11T L PP 297
Spring Testing ANNOLALIONSiiiiiii e e e e e e e 297
@BOOLSITAPWILN ... 298
@CoNteXtCONfIGUIAtIONoieeieii e e e e e 298
@WebAPPCONTIGUIALIONc.eiii e e e e 298
@CONEXIHIEIAICNYeiieie e 299

(@ A A VA= d 0] 1 [P 299

@ TEStPIOPEIYSOUICE ...uiiiiieeiieeeie ettt e e et e e e e e e e e e e e et e e e eeaneees 300

(@] DT [T 0] | (<) 300
@TESTEXECULIONLISIENEISvniiiiiiee e 302

L@V o] 101 0 11 S PP 302
@ROIDACK ..t e 302
@BEfOreTranSACLONcvuiiiieiiiee e 303
@AFEITIANSACLION ...ieiii e e e et e e eanens 303

@7 | PP 303
@SICONTIG .t 303
(@20 | (10T o T 304

Standard ANNOatioN SUPPOITeeeniitieie e eees 304
Spring JUNit 4 Testing ANNOTAIONScoouuiiiiiiiiie e 305
@IPIOfIEVAIUE ... 305
@ProfileValueSourceConfigurationcc.iieiiiiiiiieiiee e 305

(@I 4T R 305

(@Y= 0= 306
Meta-Annotation SuppOort FOr TESHNGc..vieuniiiiiiiii e 306
15.5. Spring TestContext FrameWOrKc.uuiiiiiiiieiiiiiee e 307
KEY @DSIIAaCIONS ...ooviiiii i e 308
TESICONTEXE ..ottt e 308
TEeStCONIEXIMANAGET ...ceeniieieiei et ettt eees 308
TESIEXECULIONLISIENET ..uuiiiiiii e e 308

CONEXE LOAAERTS ...ttt et et e e 308

4.3.16.RELEASE Spring Framework Xi

Spring Framework Reference Documentation

Bootstrapping the TestContext frameworkccoovviiiiiiiin e, 309
TestExecutionListener configurationccocoeiiieiniiiiii e 310
Registering custom TesStEXecutionLISteNerscccoveveiivviiiiiiinieeineeieeen 310
Automatic discovery of default TestExecutionListenersccccoceveeennnn. 310
Ordering TeStEXeCULIONLISIENErSoiiuiiiiiiiiii e 310
Merging TeStEXECULIONLISIENEISoiiiiiiieiiiii e 311
(070 1 (=T (R 4 F=TaT=To = 0 1= o | 312
Context configuration with XML reSOUICESoeveuiiiiiiiiiiiieiieeeiieeeieeeen 313
Context configuration with Groovy SCHPLScceuuiiiiiiiiiieiiiiieee e 313
Context configuration with annotated cClassescocceeveviiieiiiiiiieeiiees 314
Mixing XML, Groovy scripts, and annotated classescccoccoevevineennnnen. 315
Context configuration with context initializersccoooeviiiviiiiiiieieeeenn, 316
Context configuration INNErtaNCEecceviiiiiiiiiiec e 317
Context configuration with environment profilescccooviiiiiiiincennn. 318
Context configuration with test property SOUICeSoecevvvveereiiineeeeninnnnn. 323
Loading a WebApplicatioNCoONEXEovveiiiiiiiii e e 325
CONEXE CACNING .. eetnieit e e aens 328
Context IErarChiesoi i e 329
Dependency injection of test fiXtUreSccceviviiiiiiiii e 331
Testing request and session scoped beans ... 333
Transaction MaNAGEMENTccuuuuiiiiii ettt e e e 335
Test-managed tranSaCiONScocvuviiiiii e e 335
Enabling and disabling transactionscooveiiiiii i 336
Transaction rollback and commit behaviorccccoooeviiiiii e 337
Programmatic transaction Managementccovvveevveerrriinnnneeeeeeeeniinns 337
Executing code outside of a transactioncoccoiiiiiiiiiiiniiieee 337
Configuring a transaction MAaNAGE!ocveeuiieiiiiiiiereii e 338
Demonstration of all transaction-related annotationscccoeeveevevnnnnn. 338
EXE@CULING SQL SCIPLS ..niiitiiiieiit ettt e e e e e e e e ean e 339
Executing SQL scripts programmaticallycccoooeviiiiiiiiiniiiecennnn, 340
Executing SQL scripts declaratively with @Sqlc.ccovvvviviiiiiiiiiieeenn, 340
TestContext Framework SUPPOIT ClASSESc.uiiviiiiiiiiiiieec e 344
SPriNg JUNIE 4 RUNNET ..uuiiiii et et e e e 344
Spring JUNIt 4 RUIESciiiieii e e e e 344
JUNIE 4 SUPPOIT CIASSES ..euiieeieiieee ettt 345
TESING SUPPOIT CIASSESvuniiiiiiieeeee e 345
15.6. Spring MVC TeSt FrameWOIKccuuiiiiiiiiiieiie e ee e e e e e e eaaeees 346
SEIVEI-SIAE TOSES .uiiiiiiit ettt et et e et et e et e e e e eees 347
SEAIC IMPOITS .ttt eaaans 348
SetUP ChOICES ...iiiiicii e 348
Performing REQUESES ... e 349
Defining EXPECLALIONScovvviieiiiii et 350
Filter ReQISIratiONSoviviiiiii e e 351
Differences between Out-of-Container and End-to-End Integration Tests.... 351
Further Server-Side Test EXamplesocooiiiiiiiiii e, 352

L 10001 LT 1 A T a1 (= Te = o o 352
Why HtMIUNIt INteQration?ooouuiiiiee e 353
MockMve and HIMIURNIL ... e 355
MOCKMVC @and WEDDIIVETuuiiiiiiiiieiiii e 357
MOCKMVC and GeD ... 362

4.3.16.RELEASE

Spring Framework Xii

Spring Framework Reference Documentation

Client-Side REST TESES ..iiiiuiiiiiiii ettt e e e e e e e eaaenns 363

SEAtIC IMPOITS ...t e eean s 364

Further Examples of Client-side REST TeStScovviiiiiiiiiiiiiiieiiiineeceiieen 364

15.7. PetCliNIC EXAMPIE ...oveiiiiiiei et 365

16. FUMNEr RESOUICES ...ttt et et e e e et e e et e a e e eens 367

Y D E | = B o ol PP 368

17. Transaction ManagEMENTiiiiiiiiei e e e e e e e e e e e e e e e e e et e et e e e e eeens 369

17.1. Introduction to Spring Framework transaction managementcc...cccoeeeeenn.. 369
17.2. Advantages of the Spring Framework’s transaction support model 369

Global tranSACLIONSociiiii i 369

LOCAl traNSACLIONS ...t 370

Spring Framework’s consistent programming modelocooiiiiiiiiinniiinnnnn. 370

17.3. Understanding the Spring Framework transaction abstraction 371

17.4. Synchronizing resources with transactionscccoooiiiiiiiiiiiiii e, 374

High-level synchronization approachcccovveiiiiiiiiiiini e 374

Low-level synchronization approachcceevuioiiiiiii e 375

TransactionAwareDataSOUrCEPTOXYviiuuiiiiiiiiiieei et 375

17.5. Declarative transaction Managementveveiiiniiieiiiieeeii e 375
Understanding the Spring Framework’s declarative transaction implementation... 377

Example of declarative transaction implementationcccocoeieiiiiiiiiieinnneen. 377

Rolling back a declarative transSactioncccoveeiiiiiiiiiiiiine e 381
Configuring different transactional semantics for different beans 382

SEXIAAVICE/> SEHINGS ..eniitiiiie ettt e e e e e e eees 384

USING @TranSACONAIoieieeiiiei e e e e e e e eees 386

@Transactional SEHINGScvvuieiii e 391

Multiple Transaction Managers with @Transactionalccccoeeiiiennes 392

Custom shortcut annotationsoveiiiiiiiiiiiiii e 392

Transaction ProPagationcceueieieeeeii e e e e e e e e e e e e et e e aaaaes 393

REQUITEA ...t e et e a e 393

REQUITESINEBW ...ttt ettt e e et e e eaa e e 394

[N =21 (=0 PP 394

Advising transactional OPEratioNScccuuiieiiiiiiiiiei e 394

Using @Transactional With ASPECooiiiiiiiiiiiii e 397

17.6. Programmatic transaction managementcc.ovevuiiereinieiiiierie e et e e eeanes 398

Using the TransactionTemplateooouiiiiiii e 398

Specifying transaction SEttiNGScoouuuiiiiiiiiiiiii e 400

Using the PlatformTransactionManagercc.uvvvviiieiiiieiiiieeie e e 400

17.7. Choosing between programmatic and declarative transaction management 401

17.8. Transaction BouNd @VENLiiiiiii e 401

17.9. Application server-specific integrationcccoovuiiiiiii i 401

IBM WEDSPRNEIE ..ot e 402

Oracle WEDLOGIC SEIVET ...t 402

17.10. Solutions to common ProblIEMSociiiiiii i 402

Use of the wrong transaction manager for a specific DataSource 402

I O 01 =T =20 1 U o= 402

RS T I N @ 201U o oL 404

18.1. INTFOAUCTION ..ttt ettt e e et e et e et e e e e eanas 404

18.2. Consistent exception hierarChy ..., 404

18.3. Annotations used for configuring DAO or Repository classescccoevevvnvennnnn. 405

19. Data acCess WIth JDBCuiiiiiiiiiiii et et et e et e e e e ea e eaes 407

4.3.16.RELEASE Spring Framework Xiii

Spring Framework Reference Documentation

19.1. Introduction to Spring Framework JDBCc.ccciiiiiiieiiiieciiieee e e e e e 407
Choosing an approach for JDBC database acCesscccovvviiieiiiiiiinieeieeinnnns 407
Package hierarChy ..o 408

19.2. Using the JDBC core classes to control basic JDBC processing and error

NANAIING e e 409
JADCTEMPIALE ..o et 409

Examples of JdbcTemplate class usagecccoevveiiiiiiiieiiii i 409

JdbcTemplate best PractiCesooouviiiiiiiiiiii e 411
NamedParameterddbCTemplateoviiiiiiiiiiiii e 413
SQLEXCEPONTIANSIALOr ..ovuiiiiieiiii e e e e e e e eana e 415
EXECULING STAEMENTS ...ttt e e eeens 416
RUNNING QUETIES ...ttt e s 417
Updating the databasecooiiiiiiii e 418
Retrieving auto-generated KEYSoccuuiiiiiiiiiiiiie e 418

19.3. Controlling database CONNECLIONSciiuuiiiiiiiiiiei e 418
(D 1z Yo U] (ol R PP UP PP SPPT 418
DataSOUICEULIIS . ..uuiie it et e e e 420
SMANDAASOUITE ...ttt e et e e e et e enaenns 420
ADSIACIDAtASOUITEcevviiiiiiii et e e e e e e e e eaa e aeees 420
SiNgleConNNECtioNDAtASOUICEccuuuiiiiieiiiee e e e e 420
DriverManagerDataSOUICEoiiiiuuiiiiiiiie et 420
TransactionAWareDataSOUICEPTOXYc.uuiiireieeiieeiieeei e e e e eeae e e e eeineeaanaees 421
DataSourceTranSactioNMaNAJEToceuuiiuuiiii et eaa e 421
[INEE LEAVZE N o] oo b = 1o (o 421

19.4. JDBC batCh OPEratiONSccuuiiiiiieiiiei e e e e e e e e aans 422
Basic batch operations with the JdbcTemplatecccoooiiiiiiiiiiiii 422
Batch operations with a List 0f ODJECESoviiiiiiiiii e, 422
Batch operations with multiple batchescooiviiiiii i, 423

19.5. Simplifying JDBC operations with the SimpleJddbc classescccooceiiieininn. 424
Inserting data using SIMpPIeJdDCINSErTcooiiiiiiiii e 424
Retrieving auto-generated keys using SimpleJdbcInsertccocovvviiieiineennnn. 425
Specifying columns for a SimpleJdbcInSert ..o 426
Using SqlParameterSource to provide parameter valuesc.cccovvveviviennneennnn. 426
Calling a stored procedure with SimpleJddbcCallccoovviiiiiiiiiiiee, 427
Explicitly declaring parameters to use for a SimpleJdbcCallcccoeeeenn. 429
How to define SQIPArametersooiiiiiiiiiiii e 429
Calling a stored function using SimpleJdbcCallcccoovviiiiiiiiiin e, 430
Returning ResultSet/REF Cursor from a SimpleJddbcCallco.ooiiiiiniinnnn. 431

19.6. Modeling JDBC operations as Java ODJeCtScouvviiiiiiiiiiiiiei e, 432
o] [1T Y 432
MapPINGSGIQUETY ...eeeii et e e e ean s 432
SOIUPAALE ..ot 433
StOrEAPTOCEAUIE .. .oeveiieii e e e s 434

19.7. Common problems with parameter and data value handlingcccc.cees 437
Providing SQL type information for parameterscccooveviiiiiieiiiiinneeeiieeenen 437
Handling BLOB and CLOB OBJECESuiviiiiiiiicii e 438
Passing in lists of values for IN ClauSecoiiiiiiiiiiiii e 439
Handling complex types for stored procedure callscccovveiiiiiiiiiiiinnencinnnnn. 439

19.8. Embedded database SUPPOITco.uuieieiei e e e e s 441
Why use an embedded database? ..o 441

4.3.16.RELEASE Spring Framework Xiv

Spring Framework Reference Documentation

Creating an embedded database using Spring XMLc.ccccoviviiieviinieiineecieeen, 441
Creating an embedded database programmaticallyccooviiiiiiiiiiinnnnnn.n. 441
Selecting the embedded database typecccoiiiiiiiiiiiiiii e 442
L LS o o 5T 442
USING H2 e et 442
USING DEIDY .ottt 442
Testing data access logic with an embedded databaseccccoeveiiviiiennnns 442
Generating unique names for embedded databasescoooiiiiiiiiiieiinn 443
Extending the embedded database SUPPOITcoovviiiiiiiiiiiiiiii e 443
19.9. Initializing @ DAtASOUICEuiviiiieiee e e e e e e e e e e e e e eans 444
Initializing a database using Spring XML ..o 444
Initialization of other components that depend on the database 445
20. Object Relational Mapping (ORM) Data ACCESSc.uveeuniiiiieiiieeeiieeie e et eeeaeeeanes 447
20.1. Introduction to ORM With SPriNgccuuiiiiiiiii e 447
20.2. General ORM integration considerationscooveieviiiieiiiiinneieie e 448
Resource and transaction Managementcccouuivveriieiiiieeiie e eeeeeaeeenes 448
EXCeption transSIationooiueiiiii e 449
PO RS T o 11 o= 1 = (= PPN 449
SessionFactory setup in a Spring CONtaINErccvvvviieiiiieiiii e 449
Implementing DAOs based on plain Hibernate APlc.ooiiiiiiiiiiiiiii 450
Declarative transaction demarCationooeeeuuieiieiiiereiieeee e 451
Programmatic transaction demarCationcc.ovivereeeiiieeiii e eeeeeaeeeee 452
Transaction management SIrategIeScveuuiiiuniiiiiieiieei e e 453
Comparing container-managed and locally defined resourcesccccoeeeeevnnnen. 454
Spurious application server warnings with Hibernatecccoccoeviiiiievn e, 455
20.4. IDO et e et e aeeeanraa 456
PersistenceManagerFactory SEIUDovvveuiieiiiiee e 456
Implementing DAOs based on the plain JIDO APo.oiviiiiiiiee e 457
Transaction MANAGEMENTciuu ittt e e e e e ea e eees 459
N [(0] D= 1 =Y ot PN 460
20,5, JP A e 460
Three options for JPA setup in a Spring enviroNMeNtccooevveeiieiineeenneennn. 460
LocalEntityManagerFactoryBeanccooviiiiiniiiiiiiei e 460
Obtaining an EntityManagerFactory from IJNDIcccooeviiiiiiiiiiineeinns 461
LocalContainerEntityManagerFactoryBeancccoovviiiiiiiiiiiieiiiieeiis 461
Dealing with multiple persistence UNItSocoevviiiiiiiiiieiei e 463
Implementing DAOs based on JPA: EntityManagerFactory and EntityManager.... 464
Spring-driven JPA tranSaCtIONSccuuiiiiiiiiiiieeii e 466
JpaDialect and JPaVendorAaptercccuu i 466
Setting up JPA with JTA transaction managementc.ccceveveviveenineeiieennneennn 466
21. Marshalling XML uSIiNg O/X MEPPEIS ...euuniiieiii ettt e e e e e e eanas 468
0 T [o1 o o (U] 1T o I PP 468
Ease of configurationcccoouiiiiii i e 468
COoNSISIENT INTEITACES ... et e 468
Consistent exception NIErarChyoiviiiiiiiiiii e 468
21.2. Marshaller and Unmarshallercoooviiiiiiiiiii e 468
MAFSNAIIET ... et 468
(0T g F= = =1L P 469
DS 11\ F=T o] o1 o | St (o =Y o] 1 o] o 470
21.3. Using Marshaller and Unmarshaller ... 470

4.3.16.RELEASE Spring Framework XV

Spring Framework Reference Documentation

21.4. XML configuration NAmMESPACEuueveuniirinieeiiieeitieeeieeeaeeetreeaneeanneeetreeaneeanns 472
205, JAXB et a s 472
JaXD2MArSNAIIEE 472
XML configuration NAMESPACEuvivviieiiieiiiieeee e e 473
A T 0% 1) (o] P U PP TUPTPPTPPP 473
CaStOrMArSNAllEriiiiei e 473
/= o 11T P 474
XML configuration NAMESPACEueiuuriiiinieiiaeeii e e et e et e et e e e eaaeees 474
20.7. XMLBEANS ...ceiieiiiiii ettt et e e e e 475
XMIBEANSMAISNAIIETiiiiiiiie e 475
XML configuration NAMESPACEueiuuniiiii et aeeii e e et e e e et e e e eaaeees 475
R TN 11) PSPPSR 475
JIDXMAISNAIIET ... e 476
XML configuration NAMESPACEeiuuniieunaeiiaeeii e e et e et e et e e e eaaeees 476
A IS T 6511 (=T o PP 476
XSreamMarshalleriiiiiii e 476
RV TR I o T o PP 478
22. Web MVC frameWOIKcoouiiiiiiii e e 479
22.1. Introduction to Spring Web MVC frameworkccoveviiiiiiiiieiiieeii v eeiees 479
Features of Spring Web MVC ... 479
Pluggability of other MVC implementationsccooeveiiiiieiiiiinneeiieeeei e 481
22.2. The DiSpPatCherSErVIEtcc.uiiiiiiiii e e e eees 481
Special Bean Types In the WebApplicationContextcccoovieiiiiiiiiiiineeinee. 485
Default DispatcherServlet Configurationccccovviviiiiiiiiiiiin e 486
DispatcherServiet Processing SEQUENCEuvvevnieiiiieiiieeeiiieeieeei e et e eaaeeeenns 486
22.3. Implementing CONIIOIEISiiuiii e 488
Defining a controller with @CONLrollerc..viiiiiiiii e 488
Mapping Requests With @RequeStMappinNgcc.uvveeriieiiiieriin e eeeeeeeanes 489
Composed @RequestMapping Variantsccooeeieiiiiiiiineii e 490
@Controller and AOP PrOXYiNgcccuuuieieuuiieieiiieieiiinaeeeeinae v e eennens 491

New Support Classes for @RequestMapping methods in Spring MVC 3.1. 491
URI Template Patternsoooiuiiiiiie e 492
URI Template Patterns with Regular EXpressionscccooovvevivineeiinnnnnn. 493
Path Patternscoooeiiiiiii e 493
Path Pattern COmMPAariSONoiiiiiiiii e 494
Path Patterns with Placeholdersccoooeiiiiiiiiiii e 494
Suffix Pattern MatChingoovei i 494
Suffix Pattern Matching and RFD ..o 494
MatriX Variablesoooeuiriii e 495
Consumable Media TYPES ...cvevuieeeieeiiee e e e e e e e e eens 497
Producible Media TYPES ... 497
Request Parameters and Header Valuesc.cooooeiiiiiiiiiinicciinecci, 498
HTTP HEAD and HTTP OPTIONSccooiiiiiiiiieee e 498
Defining @RequestMapping handler methodscoooiiiiiiiiiiiieen, 499
Supported method argument tyPESccoevuiiiiiiiiieei e 499
Supported method return tyPEeSvvveiiii e 501

Binding request parameters to method parameters with @RequestParam.. 502
Mapping the request body with the @RequestBody annotation 503
Mapping the response body with the @ResponseBody annotation 504
Creating REST Controllers with the @RestController annotation 505

4.3.16.RELEASE Spring Framework XVi

Spring Framework Reference Documentation

USING HEPENLILY ..o e e e e 505
Using @ModelAttribute on a method ..., 505
Using @ModelAttribute on a method argumentcccoiiviiiiiiiieeeiiineees 506
Using @SessionAttributes to store model attributes in the HTTP session
DEIWEEN FEQUESTES ..o e 508
Using @SessionAttribute to access pre-existing global session attributes... 509
Using @RequestAttribute to access request attributesccoooeeeeeennnis 509
Working with "application/x-www-form-urlencoded" datac........ 509
Mapping cookie values with the @CookieValue annotation 510
Mapping request header attributes with the @RequestHeader annotation.. 510
Method Parameters And Type CONVErSIONcouuieieiniieiiieiiiieiiiieeeieeennn 511
Customizing WebDataBinder initializationccccooiviiiiiiniiiiineecie, 511
Advising controllers with @ControllerAdvice and @RestControllerAdvice.... 512
Jackson Serialization VIeW SUPPOITc.uniiiiiiiiieii e 513
Jackson JSONP SUPPOIT ...uuiiiiiiieieit et 514
Asynchronous ReqUEst PrOCESSING .. .c.uuviuuiiiiieiii e ieeeie e e vt e e e e e e eanns 515
Exception Handling for ASync REQUESLESc..viiiuiiiiiiiiiiieeicei e 516
Intercepting ASYNC REQUESLESoovuiiiiiiiieccei et 517
L I I S 1= = V2 11 o 517
HTTP Streaming With Server-Sent EVENtsSccoooveiiiiiiiiiiiiieceen, 517
HTTP Streaming Directly To The OutputStreamccooeveveviiiieiiineinnnnns 518
Configuring Asynchronous Request Processingccocvevvveviiieiiieviineennnnn. 518
TeStiNg CONLIOIEISoenee e 519
22.4. Handler MAaPPINGS .. .ccceueueieiiiae ettt e e et e e et e e et e e e era e e e er e aeee 519
Intercepting requests with a HandlerInterceptorccoevvieviiiiieiiiiccii e 520
22.5. RESOIVING VIBWSiiiiiiitee ittt ettt e et e et e e et e et eeanaeeees 522
Resolving views with the ViewResolver interfaceccccoovviiiiiniiiinnn. 522
Chaining VIEWRESOIVELSccuuiiiiiii e e e e 524
RedIreCtiNg 10 VIBWSuiiiiiiiii et e e eaa s 524
L= T0 [T =T o AT P 525
The redireCt: PrefiX .o e 526
The forward: PrefiX ... 526
ContentNegotiatingVIEWRESOIVETcoiiiiiiiiiii e 526
22.6. Using flash attributesiiiiiiiii e 528
22.7. BUIIAING URIS ittt e e et e e e et 529
Building URIs to Controllers and methodsoooeviiiiiiiiiiii e 530
Working with "Forwarded" and "X-Forwarded-*" Headersccooeevvvevnnnnn. 531
Building URIs to Controllers and methods from VIEWSccoveeeiiiiiiiiiieennnnns 531
22.8. USING [0CAIES ... 532
Obtaining Time Zone INformationccouiiiiiiiiiin e 532
AcceptHeaderLoCaleRESOIVEcoouuiiiiiii e 532
COOKIELOCAIERESOIVET .. .ceeiiie et e e e 533
SESSIONLOCAIERESOIVET ...coeviiiiiiii e 533
LocaleChangelNterCePLOrciete e 533
22.9. USING ThEIMES ..ottt e 534
OVEIVIEW Of tNEMES ..ouiiii e 534
Defining themMES ... e 534
TREME FESOIVEIS ...t e e e e e e ean e 535
22.10. Spring’s multipart (file upload) SUPPOItccevuieiiieiii e 535
INEFOAUCTION ..ttt e et e e et e et e eaneas 535

4.3.16.RELEASE Spring Framework XVii

Spring Framework Reference Documentation

Using a MultipartResolver with Commons FileUploadcccoeeviiiiiiieinnnen, 535
Using a MultipartResolver with Serviet 3.0oiiiiiiiii e 536
Handling a file upload in @ form ..o 536
Handling a file upload request from programmatic clientsc.cccoevevenen. 537
22.11. Handling €XCEPLIONS ... ieuu ittt e e et e e e e e e e 538
HandlerEXCEPtiONRESOIVELoiiiiiiiieiii e 538
@EXCEPtONHANAIETieiee e 538
Handling Standard Spring MVC EXCEPLIONSc..eiuuiiiiiiiiiiiiiieci e 539
Annotating Business Exceptions With @ResponseStatusccceevvevevinnneeennn. 540
Customizing the Default Serviet Container Error Pageccoovveviveiiiieviinennnnenns 540
22.12. WED SECUILY ..euniiieeie ettt e e e eeans 541
22.13. Convention over configuration SUPPOITcoouvuiiiiiiiiieiiie e 541
The Controller ControllerClassNameHandlerMappingccooevvieviiiieviineennnenn, 542
The Model ModelMap (ModelANdVIEW)iiuiiiiiiiiiiie e 543
Default VIBW NAME .. .oeeiii e e e e et e eeanaeee 544
2720 W o I o7 Vo o1 o YU o] o] o (P 545
Cache-Control HTTP h@aderoooiuiiiiiiiiii e 545
HTTP caching support for StatiC reSOUICESoevuviiiiiieiiieeeieeeee e e e e 546
Support for the Cache-Control, ETag and Last-Modified response headers in
1070] a1 (0] | =] £ PP UP PP UPT 546
Shallow ETag SUPPOIT ...ceeuiieiiiiie ettt e et e e e e 547
22.15. Code-based Servlet container initializationc.oooeiiiiiiiiiiiie e 548
22.16. Configuring SPring MVC ... 550
Enabling the MVC Java Config or the MVC XML Namespaceccceeevvnnnnee. 551
Customizing the Provided Configurationcccocouiiiviiiiiiiiiie e 552
Conversion and FOrMAHNGviiuuiiiiii e e 553
RV Z= 11T = o o PP 554
[T =T (od=T o] (0] £ TR PP PPN 555
Content NEQOLIALIONc.uiiii i e e e e eaa e ees 555
VIEW CONIOIEIS ..eeneieie et e e e e e e e eeen 556
VIBW RESOIVEIS ...ttt e e et e e e 557
SErVING Of RESOUICES ...cuuiiiiiiii ettt e et e e e eees 558
Default SEIVIET ... 560
Path MatChingcooviii e 561
MESSAGE CONVEITEISeeieiiet ettt et ettt e e et e et e e e e e e e e e eeaeens 562
Advanced Customizations with MVC Java Configccccoeeveiiiiiiiiiiiiiii e, 563
Advanced Customizations with the MVC Namespacecccoevevviveiiieviineennnnnns 564
23. VIeW TECNNOIOGIES ... ettt e e e eanas 565
b2 25 T [o1 o o (U] 1T o I PP 565
23.2. TRYMEIEAT .. ceee e e 565
23.3. GrOOVY MATKUPD ...eeniiii ettt et e e et e e e eaa s 565
CONFIGUIALION .ot 565
0= 11 1] o 1= 566
23.4. VeloCity & Fre€Marker ... 566
DEPENUEINCIES ...ttt 566
Context CoNfiIQUIALIONoeuiii e e 566
Creating tEMPIALES i e 567
Advanced CONfIQUIAIONuuiiiiiiiiei et 567
(V= Lo Tod 3V o] o] 1= 3 1= 567
FrE@MAIKET ..o e 568

4.3.16.RELEASE Spring Framework Xviii

Spring Framework Reference Documentation

Bind support and form handlingcoooiiiriiiirii 568

The DiNd MACIOS ...couiiii e 568

SiImple DINAING ..o 569

Form input generation MAaCIOSoevuuieeiiieeiiiie e e e e e e eanes 569

HTML escaping and XHTML complianCecoooviiiiiiiiiiniiiiiiiineeeeeenn, 573

235, ISP & JSTL it et eaeaaaae 573
VIBW TESOIVEIS ...ttt e e e e e e et e e e b 574
'Plain-old" JSPS VErSUS JSTL ..c.uuiiiiiiiiiiiii e 574
Spring’s JSP tag lBrary ... 574
Spring’s form tag lIDrary ..o 574
CONFIQUIALION ...t et e e e ea e 575

THE FOIM TG .. ieiiiiiee e e 575

B L=] 101 0 =V 576

The CheCKDOX Tag .. cceuniiiii e 576

The CheCKDOXES tAGiieviiiiiiii e 578

The radiobUttoN tAgovvveieiiiee e 579

The radioDULIONS A0uivernieiiiiei e e 579

THE PASSWOIT TAG oevvnieiiiiie e 579

THE SEIECE TAQ .uvvviiiei e e 579

THE OPLION TAG - .evniiiie i ea s 580

THE OPLONS TAG wevtueiiitiiee it eaaans 580

LI o) =T (== U - T 581

The hidden tagooeenii e 581

TRHE EITOIS LAY iivtniiiiii et 581

HTTP method CONVEISIONcocuuiiiiiiiiiie e 583

L BT 7= To 1 P 584

23.6. SCHIPL VIBWS .ttt ettt e et e et eeeab s 584
=0 [T =10 =T o1 £ 585
SCHPL LEMPIALES ...t 585
23.7. XML Marshallingccuuuiiiiiiiiiiii et 587
P22 TR TR 1= PSPPI 587
DEPENUENCIES ...ttt ettt e e et e e e e aa s 587
CONFIGUIALION .ot 587
UrIBasedVIEWRESOIVETcccuuuiiiiiiieee e e e 588
ResourceBundleVIieWRESOIVETccouuiiiiiiiiii e 588
SimpleSpringPreparerFactory and SpringBeanPreparerFactory 589

P22 TR T] PP 589
BANS .ot 590

L0 0110 | T 590
TranSfOrMALIONoooueiii e 591
23.10. Document Views: PDF, EXCElcoouiiiiiiiiiii e 591
T 10T [T 1o) o 1 P 591

(0] 01T 81 r=\ 1o o [592
ViIEW defiNItIONoeeie e ees 592

L0 0110 | T 592
EXCEI VIBWS ...ttt e 592

P VIBWS .ttt ettt e et e e e et e e e et e e e et e e e et a s 594
23.11. JASPEIREPOITS e 594
[1= T 01T o[- g o] 1 594

(7] 01 To 01 7= 11 o] o IS PP 594

4.3.16.RELEASE Spring Framework XiX

Spring Framework Reference Documentation

Configuring the VIEWRESOIVETc.oiiiiiiiiiee e 595
Configuring the VIBWSiiiii e 595

ADOUL REPOIt FIlES ..ot 595

Using JasperReportsSMUItiFOrMatVieWccoovuviiiiniiiiiieeie e 595
Populating the MOdelANAVIEWcoouiiiiiiiiii e 596
Working With SUD-TEPOISccouuiiiii e 597
Configuring sub-report fileSoovviiiii i 597
Configuring sub-report data SOUICESccuuiiiitniiiieiii e 598
Configuring exXporter PAraMELEISuuuiiieiii et eeaens 598
23.12. Feed VIEWS: RSS, ATOM ...uuiiiiiiiiei ettt e e e e eaenns 599
23.13. JSON MaPPING VIBW .. .ceuniiiiieiitee et e ettt et e e e e et e e e e eaaaas 599
23.14. XML MaPPING VIBWuiiiiiieeeiiii ettt et e e e e e e e eaaan s 600
24. Integrating with other web frameworkscooiiiii i 601
b2 I [(o o (U Tod 1o o PP UP PR UUPTRUPTRN 601
24.2. CommoON CONFIGUIALIONcouutiiiiii e 602
24.3. JAVASEIVETN FACES 1.2 ..ottt 603
SpringBeanFacesELRESOIVEr (JSF 1.24) ..o 603
FaceSCONEXIULIIS ... e e e 603
244, APACKNE SIIULS 2.X iiuiiiiii it e e et e e e e e e e et e e e e e e e et e e eaneeenns 603
24,5, TAPESIY 5.X ittt e een 604
24.6. FUMNEr RESOUICESuuiiiiiieiieee ettt et e e e e e e et e e et e e e e anaeeeen 604
25. Portlet MVC FrameEWOIKcouuiiiiiiiiee ittt e e e et e e e e et e e e eeanaeeeens 605
P2 I [0 (o o [FTod 1o o PP UP PP UUPTR PR 605
Controllers - The C in MVC ... e 606
VIEWS - The V IN IMVC .ouii e e 606
WED-SCOPEA DBANS ...t e 606
25.2. The DispatCherPOrIEtooiiiiii e 606
25.3. The VIeWRENEIerSErVIELo i e 608
25,4, CONIIOHIEIS ..ot et e e 609
AbstractController and PortletContentGeneratorcovvvveiiiiiiiiiinieeiiineeeeenn, 610
Other SImple CONLIOIIEIS ... ccveiii e e 611
Command CONLIOIEISuuei et e e 611
PortletWrappingCoNntrollEroiiiiiiiiie e 612
AT T o = L o [T g g T o] o1 Vo £ 612
PortletModeHaNdIerMappingcc.. e 613
ParameterHandlerMappingu oot 613
PortletModeParameterHandlerMappingcc.ovevvuiieiiiieiiiieeie e 614
Adding HandlerINterCePLOrso.u i e 614
HandlerInterCeptorAAPIETuu it 615
ParameterMappingInterCePIOrcvue e e 615
25.6. Views and resolving them ... 615
25.7. Multipart (file upload) SUPPOITuuiiiii e 615
Using the PortletMultipartRESOIVETviviiiiiiii e 616
Handling a file upload in @ form ... 616
25.8. HandliNg ©XCEPLIONS .. .cvevuieiiiii ettt et e e 620
25.9. Annotation-based controller configurationc.cccoiieiiiiiii i 620
Setting up the dispatcher for annotation SUPPOIToeeviiiiiiiiiiiiiiieeeeeeeen 620
Defining a controller with @CONLrollerc.uviiiiiii e 621
Mapping requests with @RequesStMapPINgcoevveveiiieiiie e 621
Supported handler method argumentsccoooiiiiiiiii e 623
4.3.16.RELEASE Spring Framework XX

Spring Framework Reference Documentation

Binding request parameters to method parameters with @RequestParam 625
Providing a link to data from the model with @ModelAttributeces 625
Specifying attributes to store in a Session with @SessionAttributes 626
Customizing WebDataBinder initializationcccoovveiiiiiiiiin e, 626
Customizing data binding with @InitBindercccoooiiiiiiiiiinieee, 626
Configuring a custom WebBindinglnitializerccccooooiiiiiiiii, 627

25.10. Portlet application deploymentccuiiiiiiiiiiii e 627
26. WeEDSOCKEE SUPPOIT ..ttt e et e e e eans 628
b4 S 70 W a1 o o 11 ox 1 o] o [PPSR 628
WebSocket Fallback OPtioNScc.eiiiiiiiiiiie e 628

A Messaging ArChItECIUIEcoeuiiii e 629
Sub-Protocol Support in WebDSOCKELooiiiiiiiiiiiiie e 629
Should | Use WEDSOCKEL?ooieiiiiiii e 629
26.2. WEDSOCKEL AP . ooiiiiiiii et e et e e e e e 630
WEDSOCKEtHANAIE!ot e 630
WebSocket HaNAShAKEuiiiiiiii e 631
WebSocketHandler DECOrationovceuuiieuiiiiiiieiie e 632
DEPIOYMENT ...t e 632
Configuring the WebSocket ENQINEco.uviiiiiiiiii e 633
Configuring allowed OFIgINSiiiiii e 635
26.3. SOCKIS FallDACKccevnieiiiei e 636
OVEIVIEW ...ttt ettt e e ettt e e e e ettt e e ettt e e e e e atreeeett e e e eentnaaaaes 636
ENADIe SOCKIS ... 637
TR TSP 638
HEAMDEALS ..ot 639
ClENt dISCONNECLS .. .ouuiiiiieie ettt e e e e et aean s 639
SOCKIS aNd CORS ..ot e e e e e e 640
SOCKISCIENT .eee e 640
26.4. STOMP ottt 642
L@ AT V1= PPN 642

BN EIES .t e 643
ENADIE STOMP ..oiiiiiii e e e et e e et e e aaan s 643
FIOW Of MESSAUES . .ceviiieiiiiii ettt 645
ANnotated CONIOIEIS ... it e e e eeees 648
@VESSAGEMAPPT NQ .eietieiii ettt aa e 648
@BUDSCIi DEMAPPI NG i 649
@vkessageExcepti onHandl eroooiiiiiiiii 649

SENA MESSAGES .. .euniiitiiaeii ettt et ettt et e e e e eaa s 650
SIMPIE BIOKET ...t e e e e 650
EXLEINAl BIOKET ...t 651
CONNECE 10 BIOKET ...t 652

DOt @S SEPAIALOL ...ccvuiiiet et 653

F U 1 =T oL Tor=1 (o] o SRR 654
Token AUheNtiCAtIONcc.uiiiiiii e 655
USEr DESHNALIONS ...euiiiiiiiiee et e e e e et e e e ean s 656
Events and INtErCEPLiONcvueiiiii e e 658

S IO 1Y = 1 1= | PN 659
WEDSOCKET SCOPE ...oneiiii e 660

[T 0] 10T o PPN 661

[[o] a1 (o] 11 oo PP 664
4.3.16.RELEASE Spring Framework XXi

Spring Framework Reference Documentation

=15 €1 o 665
27. CORS SUPPOIT ettt ettt et e e e e et e et e et e et e en e enaeans 666
B A% T [o1 o o (U] 1T o ISP 666
27.2. Controller method CORS configurationc.ccoeviiiiiiiiiii e 666
27.3. Global CORS cONfiIgUIAtIONcouuniiiiiii e 667
JAVACONTIG L.t 667
DY | g P T TS o = Lo = 668
27.4. Advanced CUSIOMIZALIONuiiieiiieieiii et e e e e ennes 668
27.5. Filter based CORS SUPPOITiiiiiiiieiiiiiee ettt 668
RV LR 17T > o 670
28. Remoting and web Services USiNg SPringooeuiiiiiiiiiii e 671
b= 20 T [o o (U] 1T o I PP 671
28.2. EXposing services USING RMI ... 672
Exporting the service using the RmiServiceEXpPOrterc.cooooivviiiiiiiieiineennnn. 672
Linking in the service at the ClIeNt ..., 673
28.3. Using Hessian or Burlap to remotely call services via HTTPc.cocevvviiiivennnn. 673
Wiring up the DispatcherServlet for Hessian and CO.ccoovvviiiiiiiiiiiiieneee, 673
Exposing your beans by using the HessianServiceExXporterccccoovvveeiineeens 674
Linking in the service on the Client ... 674
USING BUITAP e et 675
Applying HTTP basic authentication to a service exposed through Hessian or
2T T o P 675
28.4. Exposing services using HTTP INVOKEISc..oiiuiiiiiiiiiiiiiiiee e 675
EXPosing the Service ODJECTcoiiii i 676
Linking in the service at the Clientcoooei i 677
28.5. WED SEIVICES ...t 677
Exposing servlet-based web services using JAX-WS ..o, 677
Exporting standalone web services using JAX-WSc.cociiiiiiiiiiiiieiiiiec e 678
Exporting web services using the JAX-WS RI'S Spring supportcccoeeeeunneenn. 679
Accessing web services using JAX-WS ... 679
28.6. IMIS ittt e 680
Server-side CONfIQUIAtIoNoouiiiiiiiiii e e 681
Client-side configurationcocouuiiiiiiio e 681
28.7. AMOQP . e 682
28.8. Auto-detection is not implemented for remote interfacesccooeeviiiiiieiennnn. 682
28.9. Considerations when choosing a technologycccoveeiiiiniiiiiiineeiii e, 682
28.10. Accessing RESTful services on the clientcoooviiiiii i, 683
RESITEMPIALEot e et e e e e e 683
Working With the URI ..o 686
Dealing with request and response headersccovevviveiiiieiiievii e, 687
Jackson JSON VIEWS SUPPOIT ...c.uuiutiiieeeii et e e e 687
HTTP MESSAQE CONVEISION ..ooutuiiiiiiieiiiii e ettt e ettt e e ettt eeeeai e e eebaaeeees 687
StringHUPMESSAgECONVEIETiviiieiii e e e e e aaae e 688
FOrmHttpMeSSageCONVEITEYc.uiieiei e e e 688
ByteArrayHttpMessageCoONVEITErvuiviiiiiiieiee e 688
MarshallingHttpMeSSageCONVEIETccvvueieiieeeiieeeieee e e e e e 688
MappingJackson2HttpMessageCoNVEItercc.uvieiiiiiiieiiieeei e 688
MappingJackson2XmlHttpMessageConvertercceevvieeiiiiiiiiiiineeeeeee, 689
SourceHttpMeSSageCONVEITETvuu i e e e 689
BufferedimageHttpMessageCoNVErterovvieuiiiiiiiiiiiee e 689
4.3.16.RELEASE Spring Framework XXii

Spring Framework Reference Documentation

ASYNC RESITEMPIALE . .oveiiiiiieii e e e e e s 689

29. Enterprise JavaBeans (EJB) iNtEGrationooouiiiiiiiiiiiiiiii e 691
b4 5 T [o1 o o (U] 1T o ISP 691
29.2. ACCESSING EJBS ..ouiiiiiiiiii it 691
1000] g [o7=T o] (= T PP UPTPTN 691
ACCESSING 10CAI SLSBS ...couiiiiiiiiiieeee e 691
ACCESSING FEMOLE SLSBS ...iiuiiiiiiiii e ee e e et e e e e e e e e e eannaees 693
Accessing EJB 2.x SLSBs versus EJB 3 SLSBScocoiiiiiiiiiiie, 693
29.3. Using Spring’s EJB implementation SUPPOrt ClasSescocevvvevieiinieieiiinnenennnn, 694
EJB 3 iNJECHION INtEICEPLON ...uiiiii et e e e e e e e eaen 694

30. JMS (JaVa MESSAQE SEIVICE) ...ceuiiin ettt e ettt e e et e e e e et e et e eaaes 695
10 5 T [o o (U] 1T o IR 695
30.2. USING SPriNG JMS ..ot e e e e e e 695
JMSTEMPIALE ... e e eeaa e ees 695

L©] o] o T=Tox 1 o] o 696
Caching Messaging RESOUICESccvuuiiiiiieiiieeei e e e e e e eaaeee 696
SiNGleCONNECHONFACIONYciiiiiiiii e 697
CachingCoNNECHONFACIONYc.uuuiiiiiiiiei e 697
Destination ManagemENtociuuiiiiii i e e e e 697
Message Listener CONLAINEISciuuuiiiii it 698
SimpleMessageListenerCONtAINETcocuuuiiiiiiiii e 698
DefaultMessageListenerCoNntaiNerovvvviieiiiieiiie e 699
Transaction MAaNAGEMENTiiuu it e e e e e e ea e eees 700
30.3. SENAING 8 MESSAGE ...cevuiieiiiiiiiee ettt et e et e et e e et e e eeaa e eeee 700
USING MESSAJE CONVEIEIS ..ovuuiiiiieii et e et e e et e e e e e et e e et e e e et e eeaeeeanaaes 701
SessionCallback and ProducerCallbackcccooiviiiiiiiiiii e 702
30.4. RECEIVING @ MESSATEoeeeutneeiiiti i eeeeti e ettt ettt e e et e e et e e et e e e eea e eeeaans 702
)Y 1o gl o] o 10 ES R (=Tt =T o] 1o o 702
Asynchronous reception: Message-Driven POJOSc.ccoviiiiiiiiiiiiiiieiieeiiees 702
SessionAwareMessageListener interfacecooovviiiiiiiiiii 703
MeSSAgELISENEIATAPLETieeiiii e e e e 704
Processing messages within tranSactionsScc.ovviiiiiiiiiiiiiieee e 706
30.5. Support for JCA Message ENdPOointsoveeiiiiiiiiiiiine e 706
30.6. Annotation-driven listener endpointscccvuuiiiiiiiiiiii e 708
Enable listener endpoint annotationscc.oveiiiiiiiiiiiiiiie e 708
Programmatic endpoints registrationocoeuuiieiiiiinieiiii e 709
Annotated endpoint method SIgNAaturec.coeviiiiiiin e e 709
RESPONSE MANAGEIMENT ...t e e e e e e e e eaaes 710
30.7. IMS NAMESPACE SUPPONIT ..ceuneieriieinieeri ettt e et e e et e e e e e e e e eenas 711
TN 1 G 716
3 I I 1 o o U T 1 o] o PSPPSR 716
31.2. Exporting your Beans t0 JMXc.uuiiiiiiiiiieiiiiie e 716
Creating an MBEANSEIVETccuueiiiieee et e e e e e e e e e e e e et e e eeeens 718
Reusing an existing MBEANSEIVEYiiiuiiiiiiiii et 718
Lazy-initialized MBEENScooiuiiiiiiiii e 719
Automatic registration of MBEANScccviiiiiiiiiiiciie e 719
Controlling the registration behavior ..o 719
31.3. Controlling the management interface of your beansccoooeiiiiiiiiinennnnn. 720
MBeanInfoAssembler iNterfaceoouiiiii i 721
Using source-level metadata: Java annotationscccoveeeiiieiiiiiinieeineeieen 721

4.3.16.RELEASE Spring Framework XXiii

Spring Framework Reference Documentation

Source-level metadata tYPES ...cvvuiveiiiii e 723
AutodetectCapableMBeanInfoAssembler interfacec.coccoovviiiiiiiiiiiiienneen, 724
Defining management interfaces using Java interfacesccccoceivviiiiivinennnnn. 725
Using MethodNameBasedMBeanInfoAssemblercoccoveviiiiiiiiiiiieicieciees 726
31.4. Controlling the ObjectNames for your beanscccocoiviiiiiiiiiiiii e, 727
Reading ObjectNames from Propertiescoveveiviiiiiiiiiiiieei e 727
Using the MetadataNamingStrategyc.oveveriieirieiiierie e e e eaens 728
Configuring annotation based MBean eXPOrtcccuiviiiiiiiiiiiiiineieeeeeeeeee, 728
31.5. JSR-160 CONNECLOISieuiitniiteiie it e et e et e e e e et e et e et e an e aneeanns 729
Server-Side CONMNECIOISiiiiiii et e e et e e 729
Client-Side CONNECIOISceiiiiii et e e e e 730
JMX over Burlap/HESSIAN/SOAPoiiiiiiiiiii e 730
31.6. Accessing MBEANS Vi PrOXIESuiveuuiriiieeiieiiiieeaiieeeteeeisestseeanaeeatneeenaeennes 730
3L.7. NOUFICALIONS ..ceeietee e et e e e e e e e e e et eeaaaaees 731
Registering listeners for Notificationscooviiiiiiiiiiiiii e 731
Publishing NOtfICAtiONSccuuiiiiiiiii e e 734
31.8. FUIMNEI TESOUICES .. .etiiiiiieit ettt et et e e et e e e e e eaees 735
N [0 N O O L PP 737
122 I 1 o o U Tox 1 o] o U SPP 737
32.2. CoNfIQUIING CCl .unieiiii e e e 737
Connector CONfIGUIATIONuuiiiiiiie i eens 737
ConnectionFactory configuration in SPringcccvvvviieiiiieeie e 738
Configuring CCl CONNECTIONSciutiiiiieeii e 738
Using a single CCl CONNECLIONcciiutiieiiiiieeeii e 739
32.3. Using Spring’s CCl aCCESS SUPPOITcvvnririieeeieeeiieeieeeeeeeaneee e eeieeeanneeaneens 740
RECOI CONVEISION ...ceuiiiiiiie ettt e e e e e eeaa e eees 740
CCITEMPIALE ...t et e e e e eeeans 740
[0 @ 2=] Lo] 742
Automatic output record generationco.uoeeeuiiieiieiie e 743
SUMMATY ettt et ettt e et r et e e e e e et neenneera e 743
Using a CCI Connection and Interaction directlyccoeveiiiiiiniiiniciieeis 744
Example for CciTemplate USAQEcc.uiiiiiiiiiiiii e 744
32.4. Modeling CCI access as operation ODJECEScoeuviiiiiiiiiiieiiiie e, 746
(V=T o] o] 1aTe | md=TeTo] (o (@] o= = 11T o NS 746
MappingComMmMAIEaOPEIALIONccuuniiitiiiii e ea e eees 747
Automatic output record generationooceeveieeiiiiine e 748

IS0 0 0= T Y 748
Example for MappingRecordOperation USAJEveeeurieinieiiinaeiieeiieeeieeeenn 748
Example for MappingCommAreaOperation USAgEcoeuvureeeiriineereriineeeeninnnns 750
12 ST I = g == T £ o PSP 752
33 EMAIL . e et 753
13 0 T [o1 o o (1] 1T o I PP 753
B T2 U = o 1 S 753
Basic MailSender and SimpleMailMessage uUSagecccoceuviieuiiiiiiiiineeineennn. 754
Using the JavaMailSender and the MimeMessagePreparatorc.ccceevevennnnn. 754
33.3. Using the JavaMail MimeMessageHeIpercccooviiiiiiiii i 755
Sending attachments and inline reSOUICESccoviiuiiiiiiiiiiiii e 756
AHACHMENTS .o 756

INHINE TESOUICES ..vtiiiiii ettt eaans 756

Creating email content using a templating librarycc.ooooiiiiiin, 757
4.3.16.RELEASE Spring Framework XXiv

Spring Framework Reference Documentation

A Velocity-based eXamplecooveiiiiiii e 757
34. Task Execution and SChedulingcouiiiiiiiiii e 760
K T [o1 o o (U] 1T o IR 760
34.2. The Spring TaskExecutor abstractioncoevviiiiiiiiiiiieii e, 760
TASKEXECULOT TYPES . eeiiitieit ettt et e e e et e e et e e e e eaaeaes 760
USING @ TASKEXECULOL .. .ceeiuiiiiiii e 761
34.3. The Spring TaskScheduler abstractionccoocviiiiiiiiii e, 762
TrHGQEr INTEITACEnee e e 762
Trigger iIMpIEMENTAtIONSuiiiiii e e 763
TaskScheduler implementationsccoovuiiiiiiiiiii e 763
34.4. Annotation Support for Scheduling and Asynchronous Execution 763
Enable scheduling annotationsooovieiiiiiiiiin e 763
The @Scheduled annotationoiiiiiiiiii i 764
The @ASYNC @NNOTALIONiiiiiiii et e e e e e ean s 765
Executor qualification With @ASYNCooivviiiiiiiiii e 766
Exception management With @ASYNCcvvniiiiiieiie e 767
34.5. The task NAMESPACEc.uuiiiiiiiie et et e e e e 767
The 'scheduler' lemMeNntoiiii i e 767
The 'eXeCULOr EIEBMENTuiii e 767
The 'scheduled-tasks' element ... 768
34.6. Using the Quartz SCheduler ... 769
Using the JobDetailFactoryBeanccccuuiiviuiiiiiiiiiiie e e e e e e 769
Using the MethodInvokingJobDetailFactoryBeancooooeiiiiiiiiiiniiiiiiis 770
Wiring up jobs using triggers and the SchedulerFactoryBeanc.....cccoueneee. 771
35. Dynamic 1anguage SUPPOIcvuuueeieeei e e e et e e e e et e e et s e e e e e e e et e e e e e et aeeaneeanaeeeen 772
T I [0 (o o [FTod 1o o PP UP PR UUPTRUPTRN 772
35.2. A IrSt @XAMPIE oo e 772
35.3. Defining beans that are backed by dynamic languagesccooevvivevineinnnn. 774
COMIMON CONCEPLS .vuitieiteet ettt ettt et ettt e et e et e et e et e en e et et e eaeeneenns 774
The <lang:language/> elementoooiiiiiiiniiii e 775
Refreshable beans ... 775
Inline dynamic language source filescooiiiiiiiiiiiiii e 777
Understanding Constructor Injection in the context of dynamic-language-
Dacked DEANSiiiiii i 778
JRUDY DEANS ... 779
GrOOVY DRANS ...oeiiiii et 780
Customizing Groovy objects via a callbackcccoooiiviiiiiiiii 781
BeanShell DEANS ... 783
K S Yo = o - g o £ PN 784
Scripted Spring MVC CoNtrollerscoovuiiiiiieie e 784
Scripted Validatorscoeeiii e 785
35.5. BitS @Nd DODS ...iiiiiiici e 785
AOP - advising SCripted DEANSoiiiiiiiii i 785
Yoo o] o[RO UPPT PPN 786
35.6. FUMNEI TESOUICES ...iiiiiiiiiieei et e e e e et e e e e e eeeen 786
36. CaChe ADSIFTACTIONceuuiiiiiii e e et et 787
L% I [o o [FTod 1o o PP UP PP UUPTRUPTRN 787
36.2. Understanding the cache abstractioncoocoeuuiiiiiiiinieiiii e 787
36.3. Declarative annotation-based cachingccocooiieiiiiiiiicin e, 788
(@] Oz=Tol gT=T=1 0] [SHF=Ta] L0 ¢= 1o] o HRP 788

4.3.16.RELEASE Spring Framework XXV

Spring Framework Reference Documentation

Default Key GeNerationoiveuiiiiiiiiiiieiie e e e e e e e 789

Custom Key Generation Declarationccooceuiiiiiiiiiiiiiiiieee e 789

Default Cache ReSOIULIONcoovuiiiiiiiiie e 790

Custom cache reSOIULIONuiiiiiiiii e 790

Synchronized Caching ..o 791

Conditional CACNINGvuniiiiii e 791

Available caching SpEL evaluation contextc.cccoveviiveiiiieiiiieeineeieeeen 792

(@] Or=To] a1 V) =1] 4 10] =110] o NN 793
@CaCheEVICt anNNOtALIONcvieiiiiic e e 793

(@2 @%=Tod o TaTo =TT aTo] ¢= L1 o o RPN 794
@CacheConfig anNOtAiONvieuuiiiiiii e 794

Enable caching annotationSociiuuiiiiiiiiii e 794

Using cUStOM annOtatioNSievuueiuiieiei e e e e e e e e e e e e e e eees 797

36.4. JCache (JSR-107) @nNNOLAtIONSiieuiiiieiiiae e e e ea e eees 798
FEALUIE SUMMAIY ...ttt et e 798

ENnabling JSR-107 SUPPOITuuietiiii et e e e e e e e e e e e e e et e e e e eanaeees 799

36.5. Declarative XML-based cachingccoooiiiiiiiiii e 800
36.6. Configuring the cache StOrageuiiiiiiiiiiiiii e 800

JDK ConcurrentMap-based Cachecooovviiiiiiiii e 801
Ehcache-based Cache ... 801

Caffeine CaChe ... 801

GUAVA CACNE ..iiiiiiiieii e e 802
GemFire-based Cache ... 802

JSR-107 CACKNE vt 802

Dealing with caches without a backing storec.ccooceviviiiiiiieie e, 803

36.7. Plugging-in different back-end Cachescoooiiiiiiiiiiii e 803
36.8. How can | set the TTL/TTI/Eviction policy/XXX feature?ccccoovvviiiiieiiiiinnennnns 803

RV LY o 01T o [Tt 804
37. Migrating to Spring FrameEWOrK 4.Xooiuuiiiiiii e 805
38. Spring Annotation Programming MoOdelocooiiiiiiiiiiiiii e 806
39. ClasSIC SPrNG USAQJE ...ccuuiiiiieiiieeie et e e e et e e e e s e et e e et e e et e e et e e et s e eanaeeaneees 807
39.1. ClaSSIC ORM USAQGE .. .ceuuiiiiiiitaeetae ettt e et e b e et e e e e e e eeens 807
HIDEINALE .oeieee e 807

The HibernateTemplatecccouiiiiiiii e 807

Implementing Spring-based DAOs without callbacksccooveeiiiinnnis 808

9.2, IMS USBUE .euniiiiiiiiee ettt ettt et 809

B 141 1= 0 0] o] F= L (= 810
Asynchronous Message ReCeplioNcc.viiiuiiiiiiiiiiiiei e 810

L©] o] o T=Tox 1 o] o 810
Transaction ManagemMENTc.uuiiiii e e e e e e e e e eees 810

40. ClassiC SPriNg AOP USAQJEuiiuuiiiiiiii et ettt e e e an s 811
40.1. Pointcut API N SPriNG ..euniiiiiee et 811

L 0] 07T o] £ 811
Operations 0N POINTCULSiietiiii et e e e e e et e e e e eanaeeaes 812

ASpPeCtI eXPresSSioN POINTCULSiiiieieeiiiie et e et 812
Convenience pointcut implementationscovviviiieiin e 812

StAtIC POINTCULS ...ttt e e e e e et eeaa e eees 812

DYNAMIC POINTCULS ...eeviieiiiiie ettt e s 813

POINTCUL SUPEICIASSES ..uniiviiiiii ettt e e e e e e e 814

CUSLOM POINTCULS ...ttt ettt ettt e e et e et e e e e e et e e e e eanaeeeen 814

4.3.16.RELEASE Spring Framework XXVi

Spring Framework Reference Documentation

40.2. AAVICE APL N SPIiNG «ooveiieiiice e e e e 814
AVICE lIFECYCIES ..o e e 814
AQVICE TYPES IN SPIING .euieeiitieieiii et eaaens 815

Interception around AdVICEcc.uiiiiiiieiiiie e 815
BefOre @0VICEoeeeiiiiiei e 815
LI LTS T= Lo 1Y T S 816
After REtUrNiNg adVICEccvuuiiii e e e e 817
INErOdUCEION AAVICE ...t e e 818

40.3. AdVISOr APT N SPFING .evuiiiiiiiet e eaeans 820

40.4. Using the ProxyFactoryBean to create AOP ProXie€sccoovvvviveiiievinevenneennnnn. 821
B CS ittt 821
JavaBeaNn PrOPEITIEScovuiiiiiiii e e e et 821
JDK- and CGLIB-based ProXIEScccuuiiiuuieiiieiiiiieeii e e e e e e e e e ean e eeen 822
Proxying INTEITACESccuiiiii e e 823
PrOXYING ClASSES . .oviiiiiiiiiii e 825
Using 'global’ @dVISOISccuuiiiiicee e 826

40.5. Concise proxy definitioNSooiiiiiiii e 826

40.6. Creating AOP proxies programmatically with the ProxyFactory 827

40.7. Manipulating advised ODJECESc.uiiiiieii i 827

40.8. Using the "autoproxy" facCilitycoceeiiiiiiii e 829
Autoproxy bean definitionsoiiiiiiiii 829

BeanNameAUtOPIOXYCIEALONc.uveeieiiiei e e e e e e e e eaees 829
DefaultAdViSOrAUtOPIOXYCIEALONuiieiiiiii et 830
AbstractAdViSOrAULOPIOXYCIEALONueiiiiiieeiiiii e 831
Using metadata-driven auto-proXyingeeeeeieruieeriieeeiieeeineesneeanneesnneesenns 831

40.9. USING TArgEISOUITESeuuiitiiii ettt ettt e e et e e e et e eeanaaeees 833
Hot swappable target SOUICESccieiuiiiiiiiii e 833
eLoTo] [T To T c= T [A=Y o UL od = 834
Prototype target SOUICESccuuiieiii ittt e e e e e e eeans 835
ThreadLocal target SOUICESuiiiiiii i 835

40.10. Defining NEW AQVICE TYPES . ovvuiiiii e e e e e e e e e eanas 836

40.11. FUIMNEI FESOUICESuiiti ittt e e et e e e e e e e e eaaaaees 836

41. XML Schema-based configurationcoiiiiiiiiiiiii e 837

e I [] (o To [T o] PRSP 837

41.2. XML Schema-based configurationccocoeuiiiiiiiiiiii e 837
Referencing the SChEMAsoooiiiiiii e 837
the ULl SChEM@ .. .cooi e 838

SULICONSTANT/> .. e e 839
<SULIEProperty-path/> ... 840
ST 1] o] o] 0= 1= SN 842
SULILIISE/> e et e 842
SULIEMAP/> <o 843
SULIESBU> e e 843
the JEE SCREMA ..ot e 844
<jee:jndi-lookup/> (SIMPIE) ...cevvniieeiii e 844
<jee:jndi-lookup/> (with single JNDI environment setting)ccceevvvnnnns 845
<jee:jndi-lookup/> (with multiple JNDI environment settings) 845
<jee:jndi-lookup/> (COMPIEX)iieiieieiiii et 845
<jee:local-sIsh/> (SIMPIE) ...ccouiiei e 846
<jee:local-sIsh/> (COMPIEX) ...vevniiii e 846

4.3.16.RELEASE Spring Framework XXVii

Spring Framework Reference Documentation

<JEEIrEMOLE-SISH/> oo 846

the 1ang SCReM@A ... e 847

the JMS SCREMA ... e 847

the tx (transaction) SChEM@ccovviiiii e 848

the 0P SCREMA ... e 848

the CONtEXE SCREMA . .ouiiii e e e e 849
<property-placeholder/> ... 849
<anNNOtatioN-CoNfig/>ooenii e 849
<COMPONENT-SCAN/S .ottt e e e e ean s 849
<I0Ad-tIME-WEAVEI>oii it 850
<SPriNG-CONfIQUIEA/> ... e 850
<MBEAN-EXPOM/> ..oiiiiii e 850

the 100l SCNEMAeiii e e e 850

the JADC SChEMA ... e 850

the CaChe SChEMAoiie e 850

the Deans SChEMAi i e 851

42. Extensible XML aUtNOINGiiuiii e e e e 852
2t O 1o To 11X 1T o 852
42.2. AUthoring the SChEMAcoveii e 852
42.3. Coding a NamespaceHaNdIErooiuiiiiiiii e 853
42.4. BEanDefiNitIONPAISEruuiiii it 854
42.5. Registering the handler and the schemaccoooiiiii i 855
'META-INF/Spring.handlers’ ... 855
'META-INF/SPring.SChemas’oooiiiiiii e 856
42.6. Using a custom extension in your Spring XML configurationcccoeeeeen.. 856
42.7. Meatier @XamMPIES ... e 856
Nesting custom tags within custom tagsocoeviiiiiiiiin i, 856
Custom attributes on 'normal’ elementscooooviiiiiiiii 860
42.8. FUIMNEr RESOUICESuiiiiiiiiiiieiii ettt et e e e e e e eaa e eees 862
43. Spring JSP Tag LiDrary ... 863
I I [] (o To [1T o H OO PT 863
43.2. The @rgUmMENTE TAQG ...euuiieenieii ittt e e e e et et e et e e et e e eaeaenns 863
43.3. THE DING TG ..ueieiiieieii ettt e e e e e eba e eeee 863
G 30 S I g To R =T o 1] 20T | - T IS 864
43.5. THE @VAl TAQ .evuiiieiiii e et e 864
43.6. The hasBINAEITOrS Tagooiiuuiiiiiiiiieee e 865
43.7. The htMIESCAPE TAQ ..uiveniieiiieiii et e e e e e e e e e e eanaeeeen 865
43.8. The MESSAGE TAG +.uuietniiii ittt e e et e e e e ea e eeaas 865
43.9. The NeStedPath Tagcoouviiiiiii e 866
e 700 0 T I T o = = 1 = Vo 867
43.11. The thEIME TAG ..eeuniiitiieii et et e e e e e e e 867
43.12. The tranSfOrmM TAGoeeeeee et 868
e 700 I T I 1= T U = o N 868
44. spring-form JSP Tag LIDIary ...t 870
g O 1o To 11X 1T o 870
N I T T o101 (o - Vo 870
44.3. The CheCKDOX tagcoeeiiiiiii e 871
444, The ChECKDOXES TAQ ... iiieriieiiiiii ettt 872
T I o T T ¢ o £ - o PP 873
A4.6. THE TOMM TAG .. ieeiiiiii e et e e e e e e eens 874
4.3.16.RELEASE Spring Framework XXViii

Spring Framework Reference Documentation

oy I 1= TN o [0 1= o T = o 875
A4.8. THE INPUE TAG +.nietiiieee ettt e et e et e e e e e et e e eaeaeens 876
44.9. The 1abel TAG .ieriiiieii e e 877
ot 0 TR I 7= T o) 4o] 1 = o 878
44,11, THE OPLIONS TAG «ruueeuneiiteiii ettt et et e et e e ettt e e e e e et e e et e eanaaeees 879
44.12. The PASSWOIT TAY ..eevvrniiiiiti ettt et e e ettt e e e ert e e eena e eeees 880
44.13. The radiobUtton tagccveiiiiiii e 881
44.14. The radiobUtONS TAQieeuiiiii e 883
A4.15. THE SEIECE TAQG ... eieeetneeiiii ettt et e s 884
T I T IR (=) t= L (=T T - T [P 885
4.3.16.RELEASE Spring Framework XXiX

Part |I. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you
need, without having to bring in the rest. You can use the loC container, with any web framework on
top, but you can also use only the Hibernate integration code or the JDBC abstraction layer. The Spring
Framework supports declarative transaction management, remote access to your logic through RMI or
web services, and various options for persisting your data. It offers a full-featured MVC framework, and
enables you to integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be
easy to isolate these dependencies from the rest of your code base.

This document is a reference guide to Spring Framework features. If you have any requests, comments,
or questions on this document, please post them on the user mailing list. Questions on the Framework
itself should be asked on StackOverflow (see https://spring.io/questions).

https://groups.google.com/forum/#!forum/spring-framework-contrib
https://spring.io/questions

Spring Framework Reference Documentation

1. Getting Started with Spring

This reference guide provides detailed information about the Spring Framework. It provides
comprehensive documentation for all features, as well as some background about the underlying
concepts (such as "Dependency Injection™) that Spring has embraced.

If you are just getting started with Spring, you may want to begin using the Spring Framework by
creating a Spring Boot based application. Spring Boot provides a quick (and opinionated) way to create
a production-ready Spring based application. It is based on the Spring Framework, favors convention
over configuration, and is designed to get you up and running as quickly as possible.

You can use start.spring.io to generate a basic project or follow one of the "Getting Started" guides like
the Getting Started Building a RESTful Web Service one. As well as being easier to digest, these guides
are very task focused, and most of them are based on Spring Boot. They also cover other projects from
the Spring portfolio that you might want to consider when solving a particular problem.

4.3.16.RELEASE Spring Framework 2

http://projects.spring.io/spring-boot/
http://start.spring.io
https://spring.io/guides
https://spring.io/guides/gs/rest-service/

Spring Framework Reference Documentation

2. Introduction to the Spring Framework

The Spring Framework is a Java platform that provides comprehensive infrastructure support for
developing Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from "plain old Java objects" (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to
full and partial Java EE.

Examples of how you, as an application developer, can benefit from the Spring platform:

» Make a Java method execute in a database transaction without having to deal with transaction APIs.
* Make a local Java method an HTTP endpoint without having to deal with the Servlet API.

* Make a local Java method a message handler without having to deal with the JIMS API.

* Make a local Java method a management operation without having to deal with the IMX API.

2.1 Dependency Injection and Inversion of Control

A Java application — a loose term that runs the gamut from constrained, embedded applications to n-tier,
server-side enterprise applications — typically consists of objects that collaborate to form the application
proper. Thus the objects in an application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks the
means to organize the basic building blocks into a coherent whole, leaving that task to architects and
developers. Although you can use design patterns such as Factory, Abstract Factory, Builder, Decorator,
and Service Locator to compose the various classes and object instances that make up an application,
these patterns are simply that: best practices given a name, with a description of what the pattern does,
where to apply it, the problems it addresses, and so forth. Patterns are formalized best practices that
you must implement yourself in your application.

The Spring Framework Inversion of Control (IloC) component addresses this concern by providing a
formalized means of composing disparate components into a fully working application ready for use.
The Spring Framework codifies formalized design patterns as first-class objects that you can integrate
into your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

Background

"The question is, what aspect of control are [they] inverting?" Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency Injection.

2.2 Framework Modules

The Spring Framework consists of features organized into about 20 modules. These modules are
grouped into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, Messaging, and Test, as shown in the following diagram.

4.3.16.RELEASE Spring Framework 3

http://martinfowler.com/articles/injection.html

Spring Framework Reference Documentation

;{I Spring Framework Runtime

Data Access/Integration Web

JDBEC ORM WebSocket Serviet

OXM JMS

Transactions

Core Container

Core Context

Figure 2.1. Overview of the Spring Framework

The following sections list the available modules for each feature along with their artifact names and the
topics they cover. Artifact names correlate to artifact IDs used in Dependency Management tools.

Core Container

The Core Container consists of the spring-core, spring-beans, spri ng-context, spring-
cont ext - support, and spri ng- expr essi on (Spring Expression Language) modules.

The spring-core and spring- beans modules provide the fundamental parts of the framework,
including the loC and Dependency Injection features. The BeanFactory is a sophisticated
implementation of the factory pattern. It removes the need for programmatic singletons and allows you
to decouple the configuration and specification of dependencies from your actual program logic.

The Context (spri ng- cont ext) module builds on the solid base provided by the Core and Beans
modules: it is a means to access objects in a framework-style manner that is similar to a JNDI
registry. The Context module inherits its features from the Beans module and adds support for
internationalization (using, for example, resource bundles), event propagation, resource loading, and the
transparent creation of contexts by, for example, a Servlet container. The Context module also supports
Java EE features such as EJB, JMX, and basic remoting. The Appl i cat i onCont ext interface is
the focal point of the Context module. spri ng- cont ext - support provides support for integrating
common third-party libraries into a Spring application context for caching (EhCache, Guava, JCache),
mailing (JavaMail), scheduling (CommonJ, Quartz) and template engines (FreeMarker, JasperReports,
Velocity).

The spring-expressi on module provides a powerful Expression Language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the content of arrays, collections and indexers,

4.3.16.RELEASE Spring Framework 4

Spring Framework Reference Documentation

logical and arithmetic operators, named variables, and retrieval of objects by name from Spring’s l1oC
container. It also supports list projection and selection as well as common list aggregations.

AOP and Instrumentation

The spring-aop module provides an AOP Alliance-compliant aspect-oriented programming
implementation allowing you to define, for example, method interceptors and pointcuts to cleanly
decouple code that implements functionality that should be separated. Using source-level metadata
functionality, you can also incorporate behavioral information into your code, in a manner similar to that
of .NET attributes.

The separate spri ng- aspect s module provides integration with AspectJ.

The spring-instrunment module provides class instrumentation support and classloader
implementations to be used in certain application servers. The spri ng-i nst runent - t oncat module
contains Spring’s instrumentation agent for Tomcat.

Messaging

Spring Framework 4 includes a spri ng- nessagi ng module with key abstractions from the Spring
Integration project such as Message, MessageChannel , MessageHandl er, and others to serve as a
foundation for messaging-based applications. The module also includes a set of annotations for mapping
messages to methods, similar to the Spring MVC annotation based programming model.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS, and Transaction modules.

The spri ng-j dbc module provides a JDBC-abstraction layer that removes the need to do tedious
JDBC coding and parsing of database-vendor specific error codes.

The spri ng-t x module supports programmatic and declarative transaction management for classes
that implement special interfaces and for all your POJOs (Plain Old Java Objects).

The spri ng- or m module provides integration layers for popular object-relational mapping APIs,
including JPA, JDO, and Hibernate. Using the spri ng- or mmodule you can use all of these O/R-
mapping frameworks in combination with all of the other features Spring offers, such as the simple
declarative transaction management feature mentioned previously.

The spring-oxm module provides an abstraction layer that supports Object/XML mapping
implementations such as JAXB, Castor, XMLBeans, JiBX and XStream.

The spri ng-j ms module (Java Messaging Service) contains features for producing and consuming
messages. Since Spring Framework 4.1, it provides integration with the spri ng- messagi ng module.

Web

The Web layer consists of the spri ng- web, spri ng-webmvc, spri ng- websocket, and spri ng-
webnvc- portl et modules.

The spri ng- web module provides basic web-oriented integration features such as multipart file upload
functionality and the initialization of the IoC container using Servlet listeners and a web-oriented
application context. It also contains an HTTP client and the web-related parts of Spring’s remoting
support.

4.3.16.RELEASE Spring Framework 5

Spring Framework Reference Documentation

The spri ng-webnmvc module (also known as the Web-Servlet module) contains Spring’s model-
view-controller (MVC) and REST Web Services implementation for web applications. Spring’s MVC
framework provides a clean separation between domain model code and web forms and integrates with
all of the other features of the Spring Framework.

The spri ng- webmvc- portl et module (also known as the Web-Portlet module) provides the MVC
implementation to be used in a Portlet environment and mirrors the functionality of the Servlet-based
spri ng- webmvc module.

Test

The spri ng-t est module supports the unit testing and integration testing of Spring components with
JUnit or TestNG. It provides consistent loading of Spring Appl i cat i onCont ext s and caching of those
contexts. It also provides mock objects that you can use to test your code in isolation.

2.3 Usage scenarios

The building blocks described previously make Spring a logical choice in many scenarios, from
embedded applications that run on resource-constrained devices to full-fledged enterprise applications
that use Spring’s transaction management functionality and web framework integration.

L i L4 | | Integration
Form Multipart Dynamic with JSP
Binding to
Controllers Resolver Domain Model Velocity, SLT.
N | | | | PDF Excel
WebApplication Context
Sending Remote
Email Accees
Custom domain logic
Declarative Transactions
for POJOs
ORM Mappings
Tomcat Serviet Container | Custom DAO/Repositories

Figure 2.2. Typical full-fledged Spring web application

Spring’s declarative transaction management features make the web application fully transactional,
just as it would be if you used EJB container-managed transactions. All your custom business logic
can be implemented with simple POJOs and managed by Spring’s 10C container. Additional services
include support for sending email and validation that is independent of the web layer, which lets you
choose where to execute validation rules. Spring’s ORM support is integrated with JPA, Hibernate and
JDO; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-

4.3.16.RELEASE Spring Framework 6

Spring Framework Reference Documentation

layer with the domain model, removing the need for Act i onFor ns or other classes that transform HTTP
parameters to values for your domain model.

Web frontend using
Struts or Tapestry

WebApplication Context

Custom domain logic

Declarative Transactions
for POJOs

ORM Mappings
Tomcat Servlet Container Custom DAO/Repositories

Figure 2.3. Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with Struts, Tapestry, JSF or other Ul frameworks can be integrated with a Spring-
based middle-tier, which allows you to use Spring transaction features. You simply need to wire up your
business logic using an Appl i cati onCont ext and use a WebAppl i cati onCont ext to integrate
your web layer.

4.3.16.RELEASE Spring Framework 7

Spring Framework Reference Documentation

JAX RPC Client Hessian Client Burlap Client RMI Client

Transparent Remote Access

Custom domain logic

Tomcat Serviet Container

Figure 2.4. Remoting usage scenario

When you need to access existing code through web services, you can use Spring’s Hessi an-,
Bur | ap-, Rm - or JaxRpcPr oxyFact ory classes. Enabling remote access to existing applications
is not difficult.

EJB Access Layer
(using Sisbinvokers)

Spring-managed EJBs
(using AbstractEnterpriseBean)

Application Server (e.g. WebSphere, WeblLogic, JBoss)

Figure 2.5. EJBs - Wrapping existing POJOs

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans,
enabling you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable,
fail-safe web applications that might need declarative security.

4.3.16.RELEASE Spring Framework 8

Spring Framework Reference Documentation

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble all the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies
are not virtual components that are injected, but physical resources in a file system (typically). The
process of dependency management involves locating those resources, storing them and adding them
to classpaths. Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect
(e.g. my application depends on conmons- dbcp which depends on conmons- pool). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify
and manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of
Spring that you need. To make this easier Spring is packaged as a set of modules that separate the
dependencies as much as possible, so for example if you don’t want to write a web application you don't
need the spring-web modules. To refer to Spring library modules in this guide we use a shorthand naming
convention spring-* or spring-*.jar, where * represents the short name for the module (e.g.
spring-core,spring-webnvc, spring-j s, etc.). The actual jar file name that you use is normally
the module name concatenated with the version number (e.g. spring-core-4.3.16.RELEASE .jar).

Each release of the Spring Framework will publish artifacts to the following places:

» Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available
from Maven Central and a large section of the Spring community uses Maven for dependency
management, so this is convenient for them. The names of the jars here are in the form spri ng- *-
<versi on>. j ar and the Maven groupld is or g. spri ngf r amewor k.

 In a public Maven repository hosted specifically for Spring. In addition to the final GA releases, this
repository also hosts development snapshots and milestones. The jar file names are in the same form
as Maven Central, so this is a useful place to get development versions of Spring to use with other
libraries deployed in Maven Central. This repository also contains a bundle distribution zip file that
contains all Spring jars bundled together for easy download.

So the first thing you need to decide is how to manage your dependencies: we generally recommend the
use of an automated system like Maven, Gradle or Ivy, but you can also do it manually by downloading
all the jars yourself.

Below you will find the list of Spring artifacts. For a more complete description of each module, see
Section 2.2, “Framework Modules”.

Table 2.1. Spring Framework Artifacts

Groupld Artifactld Description
org.springframework spring-aop Proxy-based AOP support
org.springframework spring-aspects AspectJ based aspects
org.springframework spring-beans Beans support, including
Groovy
org.springframework spring-context Application context runtime,
including scheduling and
remoting abstractions

4.3.16.RELEASE Spring Framework 9

Spring Framework Reference Documentation

Groupld

Artifactld

Description

org.springframework

spring-context-support

Support classes for integrating
common third-party libraries
into a Spring application context

org.springframework

org.springframework

org.springframework

spring-core

spring-expression

spring-instrument

Core utilities, used by many
other Spring modules

Spring Expression Language
(SpEL)

Instrumentation agent for JVM
bootstrapping

org.springframework

org.springframework

org.springframework

spring-instrument-tomcat

spring-jdbc

spring-jms

Instrumentation agent for
Tomcat

JDBC support package,
including DataSource setup and
JDBC access support

JMS support package, including
helper classes to send/receive
JMS messages

org.springframework

spring-messaging

Support for messaging
architectures and protocols

org.springframework spring-orm Object/Relational Mapping,
including JPA and Hibernate
support
org.springframework spring-oxm Object/XML Mapping
org.springframework spring-test Support for unit testing and
integration testing Spring
components
org.springframework spring-tx Transaction infrastructure,
including DAO support and JCA
integration
org.springframework spring-web Foundational web support,

org.springframework

org.springframework

spring-webmvc

spring-webmvc-portlet

including web client and web-
based remoting

HTTP-based Model-View-
Controller and REST endpoints
for Servlet stacks

MVC implementation to be used
in a Portlet environment

4.3.16.RELEASE

Spring Framework

10

Spring Framework Reference Documentation

Groupld Artifactld Description

org.springframework spring-websocket WebSocket and SockJS
infrastructure, including STOMP
messaging support

Spring Dependencies and Depending on Spring

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn’t have to locate
and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is
for logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first with
Maven and then with Gradle and finally using Ivy. In all cases, if anything is unclear, refer to the
documentation of your dependency management system, or look at some sample code - Spring itself
uses Gradle to manage dependencies when it is building, and our samples mostly use Gradle or Maven.

Maven Dependency Management

If you are using Maven for dependency management you don’'t even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<version>4. 3. 16. RELEASE</ ver si on>
<scope>runti nme</ scope>
</ dependency>
</ dependenci es>

That's it. Note the scope can be declared as runtime if you don’t need to compile against Spring APls,
which is typically the case for basic dependency injection use cases.

The example above works with the Maven Central repository. To use the Spring Maven repository
(e.g. for milestones or developer snapshots), you need to specify the repository location in your Maven
configuration. For full releases:

<repositories>
<repository>
<i d>i 0. spring. repo. maven. rel ease</i d>
<url >http://repo.spring.iolrel ease/ </ url >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

For milestones:

<repositories>
<repository>
<i d>i 0. spring.repo. maven. m | estone</i d>
<url >http://repo.spring.io/mlestone/</url>
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

4.3.16.RELEASE Spring Framework 11

http://maven.apache.org/

Spring Framework Reference Documentation

And for snapshots:

<repositories>
<repository>
<i d>i 0. spring. repo. maven. snapshot </ i d>
<url >http://repo.spring.iol/snapshot/</url>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>

Maven "Bill Of Materials" Dependency

It is possible to accidentally mix different versions of Spring JARs when using Maven. For example,
you may find that a third-party library, or another Spring project, pulls in a transitive dependency to an
older release. If you forget to explicitly declare a direct dependency yourself, all sorts of unexpected
issues can arise.

To overcome such problems Maven supports the concept of a "bill of materials" (BOM) dependency.
You can import the spri ng- f ranewor k- bomin your dependencyManagenent section to ensure
that all spring dependencies (both direct and transitive) are at the same version.

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-framework-bom</ artifactld>
<version>4. 3. 16. RELEASE</ ver si on>
<t ype>ponk/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

An added benefit of using the BOM is that you no longer need to specify the <ver si on> attribute when
depending on Spring Framework artifacts:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-web</artifactld>
</ dependency>
<dependenci es>

Gradle Dependency Management

To use the Spring repository with the Gradle build system, include the appropriate URL in the
repositories section:

repositories {
mavenCentral ()
/1 and optionally...
maven { url "http://repo.spring.iolrel ease" }

You can change the repositories URL from /rel ease to /m | estone or /snapshot as
appropriate. Once a repository has been configured, you can declare dependencies in the usual Gradle
way:

4.3.16.RELEASE Spring Framework 12

http://www.gradle.org/

Spring Framework Reference Documentation

dependenci es {
conpi | e("org. springframework: spring-context:4.3.16. RELEASE")
test Conpi | e("org. springframework: spring-test: 4. 3.16. RELEASE")

}

Ivy Dependency Management
If you prefer to use lvy to manage dependencies then there are similar configuration options.
To configure Ivy to point to the Spring repository add the following resolver to youri vysetti ngs. xm :

<resol vers>
<i bi blio name="i 0. spring.repo. maven. rel ease"
n2conpat i bl e="true"
root="http://repo.spring.iol/rel ease/"/>
</resol ver s>

You can change the r oot URL from/r el ease/ to/ ni |l est one/ or/snapshot/ as appropriate.

Once configured, you can add dependencies in the usual way. For example (ini vy. xmi):

<dependency or g="org. springfranmewor k"
nane="spring-core" rev="4.3.16. RELEASE" conf="conpile->runtime"/>

Distribution Zip Files

Although using a build system that supports dependency management is the recommended way to
obtain the Spring Framework, it is still possible to download a distribution zip file.

Distribution zips are published to the Spring Maven Repository (this is just for our convenience, you
don’t need Maven or any other build system in order to download them).

To download a distribution zip open a web browser to http://repo.spring.io/release/org/springframework/
spring and select the appropriate subfolder for the version that you want. Distribution files end -
di st. zi p, for example spring-framework-{spring-version}-RELEASE-dist.zip. Distributions are also
published for milestones and shapshots.

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and c) Spring integrates
with lots of other tools all of which have also made a choice of logging dependency. One of the goals
of an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework.
It's important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do this
is to make one of the modules in Spring depend explicitly on comons- | oggi ng (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on conmons- | oggi ng,
then it is from Spring and specifically from the central module called spri ng- cor e.

The nice thing about conmons- | oggi ng is that you don’t need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging framewaorks in well known places

4.3.16.RELEASE Spring Framework 13

http://ant.apache.org/ivy
http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/milestone/org/springframework/spring
http://repo.spring.io/snapshot/org/springframework/spring

Spring Framework Reference Documentation

on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to).
If nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL
for short). You should find that your Spring application works and logs happily to the console out of the
box in most situations, and that's important.

Using Log4j 1.2 or 2.x

Note

Log4j 1.2 is EOL in the meantime. Also, Log4j 2.3 is the last Java 6 compatible release, with
newer Log4j 2.x releases requiring Java 7+.

Many people use Log4j as a logging framework for configuration and management purposes. It is
efficient and well-established, and in fact it is what we use at runtime when we build Spring. Spring
also provides some utilities for configuring and initializing Log4j, so it has an optional compile-time
dependency on Log4j in some modules.

To make Log4j 1.2 work with the default JCL dependency (comrmons- | oggi ng) all you need to do is
put Log4j on the classpath, and provide it with a configuration file (I og4j . properti es orl og4j . xm
in the root of the classpath). So for Maven users this is your dependency declaration:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<version>4. 3. 16. RELEASE</ ver si on>
</ dependency>
<dependency>
<gr oupl d>I og4j </ gr oupl d>
<artifactld>l og4j </artifactld>
<versi on>1. 2. 17</ ver si on>
</ dependency>
</ dependenci es>

And here’s a sample log4j.properties for logging to the console:

| 0g4j . r oot Cat egory=I NFO, st dout

| og4j . appender . st dout =or g. apache. | og4j . Consol eAppender

| og4j . appender. st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

| 0og4j . appender . st dout . | ayout . Conver si onPat t er n=%{ ABSOLUTE} %p % %{2}: % - %?n

| 0og4j . cat egory. or g. spri ngf ramewor k. beans. f act or y=DEBUG

To use Log4j 2.x with JCL, all you need to do is put Log4j on the classpath and provide it with a
configuration file (I og4j 2. xm , | og4j 2. pr operti es, or other supported configuration formats). For
Maven users, the minimal dependencies needed are:

<dependenci es>
<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>l og4j-core</artifactld>
<ver si on>2. 6. 2</ ver si on>
</ dependency>
<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>l og4j-jcl</artifactld>
<versi on>2. 6. 2</ ver si on>
</ dependency>
</ dependenci es>

4.3.16.RELEASE Spring Framework 14

http://logging.apache.org/log4j
http://logging.apache.org/log4j/2.x/manual/configuration.html

Spring Framework Reference Documentation

If you also wish to enable SLF4J to delegate to Log4j, e.qg. for other libraries which use SLF4J by default,
the following dependency is also needed:

<dependenci es>
<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>log4j-slf4j-inpl</artifactld>
<versi on>2. 6. 2</ ver si on>
</ dependency>
</ dependenci es>

Here is an example | og4j 2. xm for logging to the console:

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration status="WARN">
<Appender s>
<Consol e name="Consol e" target="SYSTEM OQUT" >
<Pat t ernLayout pattern="%l{HH nm ss. SSS} [%] % 5l evel % ogger{36} - %rsg%"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger name="org. spri ngfranmework. beans. factory" |evel ="DEBUG'/ >
<Root |evel ="error">
<Appender Ref ref="Consol e"/>
</ Root >
</ Logger s>
</ Confi gurati on>

Avoiding Commons Logging

Unfortunately, the runtime discovery algorithm in the standard commons-| oggi ng API, while
convenient for the end-user, can be problematic. If you'd like to avoid JCL’s standard lookup, there are
basically two ways to switch it off:

1. Exclude the dependency from the spri ng- core module (as it is the only module that explicitly
depends on conmons- | oggi ng)

2. Depend on a special conmons- | oggi ng dependency that replaces the library with an empty jar
(more details can be found in the SLF4J FAQ)

To exclude commons-logging, add the following to your dependencyManagenent section:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<versi on>4. 3. 16. RELEASE</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>comons- | oggi ng</ gr oupl d>
<artifactl|d>comons-| oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Now this application is currently broken because there is no implementation of the JCL API on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide
an alternative implementation of JCL using SLF4J.

Using SLF4J with Log4j or Logback

The Simple Logging Facade for Java (SLF4J) is a popular API used by other libraries commonly used
with Spring. It is typically used with Logback which is a native implementation of the SLF4J API.

4.3.16.RELEASE Spring Framework 15

http://slf4j.org/faq.html#excludingJCL
http://www.slf4j.org
https://logback.qos.ch/

Spring Framework Reference Documentation

SLF4J provides bindings to many common logging frameworks, including Log4j, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need
to replace the cormons- | oggi ng dependency with the SLF4J-JCL bridge. Once you have done that
then logging calls from within Spring will be translated into logging calls to the SLF4J API, so if other
libraries in your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4j. You need to supply several dependencies (and exclude the existing conmons- | oggi ng): the
JCL bridge, the SLF4j binding to Log4j, and the Log4j provider itself. In Maven you would do that like this

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<ver si on>4. 3. 16. RELEASE</ ver si on>
<excl usi ons>

<excl usi on>
<gr oupl d>comons- | oggi ng</ gr oupl d>
<artifact|d>commons-|oggi ng</artifact!d>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>jcl-over-slfdj</artifactld>
<versi on>1. 7. 21</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4jl12</artifactld>
<versi on>1. 7. 21</ ver si on>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<version>1. 2. 17</versi on>

</ dependency>

</ dependenci es>

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer
dependencies, is to bind directly to Logback. This removes the extra binding step because Logback
implements SLF4J directly, so you only need to depend on just two libraries, namely j cl - over - sl f 4j
and | ogback):

<dependenci es>
<dependency>
<groupl d>org. sl f4j </ groupl d>
<artifactld>jcl-over-slfd4j</artifactld>
<versi on>1. 7. 21</ ver si on>
</ dependency>
<dependency>
<groupl d>ch. gos. | ogback</ groupl d>
<artifactld>l ogback-classic</artifactld>
<versi on>1. 1. 7</ ver si on>
</ dependency>
</ dependenci es>

Using JUL (java.util.logging)

Commons Logging will delegate toj ava. uti | . | oggi ng by default, provided that no Log4j is detected
on the classpath. So there is no special dependency to set up: just use Spring with no external
dependency for log output to j ava. uti | . | oggi ng, either in a standalone application (with a custom

4.3.16.RELEASE Spring Framework 16

http://logback.qos.ch

Spring Framework Reference Documentation

or default JUL setup at the JDK level) or with an application server’s log system (and its system-wide
JUL setup).

Commons Logging on WebSphere

Spring applications may run on a container that itself provides an implementation of JCL, e.g. IBM’s
WebSphere Application Server (WAS). This does not cause issues per se but leads to two different
scenarios that need to be understood:

In a "parent first" ClassLoader delegation model (the default on WAS), applications will always pick up
the server-provided version of Commons Logging, delegating to the WAS logging subsystem (which is
actually based on JUL). An application-provided variant of JCL, whether standard Commons Logging
or the JCL-over-SLF4J bridge, will effectively be ignored, along with any locally included log provider.

With a "parent last" delegation model (the default in a regular Servlet container but an explicit
configuration option on WAS), an application-provided Commons Logging variant will be picked up,
enabling you to set up a locally included log provider, e.g. Log4j or Logback, within your application.
In case of no local log provider, regular Commons Logging will delegate to JUL by default, effectively
logging to WebSphere’s logging subsystem like in the "parent first" scenario.

All'in all, we recommend deploying Spring applications in the "parent last" model since it naturally allows
for local providers as well as the server’s log subsystem.

4.3.16.RELEASE Spring Framework 17

Part Il. What’s New In
Spring Framework 4.x

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Framework 4.3. If you are interested in more details, please see the link: Issue Tracker
tickets that were resolved as part of the 4.3 development process.

https://jira.spring.io/issues/?jql=project%20%3D%20SPR%20AND%20fixVersion%20in%20(%224.3%20RC1%22%2C%20%224.3%20RC2%22%2C%20%224.3%20GA%22)%20ORDER%20BY%20issuetype%20DESC&startIndex=50
https://jira.spring.io/issues/?jql=project%20%3D%20SPR%20AND%20fixVersion%20in%20(%224.3%20RC1%22%2C%20%224.3%20RC2%22%2C%20%224.3%20GA%22)%20ORDER%20BY%20issuetype%20DESC&startIndex=50

Spring Framework Reference Documentation

3. New Features and Enhancements in Spring
Framework 4.0

The Spring Framework was first released in 2004; since then there have been significant major revisions:
Spring 2.0 provided XML namespaces and AspectJ support; Spring 2.5 embraced annotation-driven
configuration; Spring 3.0 introduced a strong Java 5+ foundation across the framework codebase, and
features such as the Java-based @onf i gur ati on model.

Version 4.0 is the latest major release of the Spring Framework and the first to fully support Java 8
features. You can still use Spring with older versions of Java, however, the minimum requirement has
now been raised to Java SE 6. We have also taken the opportunity of a major release to remove many
deprecated classes and methods.

A migration guide for upgrading to Spring 4.0 is available on the Spring Framework GitHub Wiki.

3.1 Improved Getting Started Experience

The new spring.io website provides a whole series of "Getting Started" guides to help you learn Spring.
You can read more about the guides in the Chapter 1, Getting Started with Spring section in this
document. The new website also provides a comprehensive overview of the many additional projects
that are released under the Spring umbrella.

If you are a Maven user you may also be interested in the helpful bill of materials POM file that is now
published with each Spring Framework release.

3.2 Removed Deprecated Packages and Methods

All deprecated packages, and many deprecated classes and methods have been removed with version
4.0. If you are upgrading from a previous release of Spring, you should ensure that you have fixed any
deprecated calls that you were making to outdated APIs.

For a complete set of changes, check out the API Differences Report.

Note that optional third-party dependencies have been raised to a 2010/2011 minimum (i.e. Spring 4
generally only supports versions released in late 2010 or later now): notably, Hibernate 3.6+, EhCache
2.1+, Quartz 1.8+, Groovy 1.8+, and Joda-Time 2.0+. As an exception to the rule, Spring 4 requires the
recent Hibernate Validator 4.3+, and support for Jackson has been focused on 2.0+ now (with Jackson
1.8/1.9 support retained for the time being where Spring 3.2 had it; now just in deprecated form).

3.3 Java 8 (as well as 6 and 7)

Spring Framework 4.0 provides support for several Java 8 features. You can make use of lambda
expressions and method references with Spring’s callback interfaces. There is first-class support for
j ava. ti me (JSR-310), and several existing annotations have been retrofitted as @Repeat abl e. You
can also use Java 8's parameter name discovery (based on the - par anet er s compiler flag) as an
alternative to compiling your code with debug information enabled.

Spring remains compatible with older versions of Java and the JDK: concretely, Java SE 6 (specifically,
a minimum level equivalent to JDK 6 update 18, as released in January 2010) and above are still fully
supported. However, for newly started development projects based on Spring 4, we recommend the
use of Java 7 or 8.

4.3.16.RELEASE Spring Framework 19

https://github.com/spring-projects/spring-framework/wiki/Migrating-from-earlier-versions-of-the-spring-framework
https://github.com/spring-projects/spring-framework/wiki
https://spring.io
https://spring.io/guides
http://docs.spring.io/spring-framework/docs/3.2.4.RELEASE_to_4.0.0.RELEASE/
http://jcp.org/en/jsr/detail?id=310

Spring Framework Reference Documentation

Note

As of late 2017, JDK 6 is being phased out and therefore also Spring’s JDK 6 support. Oracle
as well as IBM will terminate all commercial support efforts for JDK 6 in 2018. While Spring will
retain its JDK 6 runtime compatibility for the entire 4.3.x line, we require an upgrade to JDK 7 or
higher for any further support beyond this point: in particular for JDK 6 specific bug fixes or other
issues where an upgrade to JDK 7 addresses the problem.

3.4JavaEE6 and 7

Java EE version 6 or above is now considered the baseline for Spring Framework 4, with the JPA 2.0
and Servlet 3.0 specifications being of particular relevance. In order to remain compatible with Google
App Engine and older application servers, it is possible to deploy a Spring 4 application into a Servlet
2.5 environment. However, Servlet 3.0+ is strongly recommended and a prerequisite in Spring’s test
and mock packages for test setups in development environments.

Note

If you are a WebSphere 7 user, be sure to install the JPA 2.0 feature pack. On WebLogic 10.3.4
or higher, install the JPA 2.0 patch that comes with it. This turns both of those server generations
into Spring 4 compatible deployment environments.

On a more forward-looking note, Spring Framework 4.0 supports the Java EE 7 level of applicable
specifications now: in particular, JMS 2.0, JTA 1.2, JPA 2.1, Bean Validation 1.1, and JSR-236
Concurrency Utilities. As usual, this support focuses on individual use of those specifications, e.g. on
Tomcat or in standalone environments. However, it works equally well when a Spring application is
deployed to a Java EE 7 server.

Note that Hibernate 4.3 is a JPA 2.1 provider and therefore only supported as of Spring Framework 4.0.
The same applies to Hibernate Validator 5.0 as a Bean Validation 1.1 provider. Neither of the two are
officially supported with Spring Framework 3.2.

3.5 Groovy Bean Definition DSL

Beginning with Spring Framework 4.0, it is possible to define external bean configuration using a Groovy
DSL. This is similar in concept to using XML bean definitions but allows for a more concise syntax. Using
Groovy also allows you to easily embed bean definitions directly in your bootstrap code. For example:

def reader = new G oovyBeanDefi niti onReader (nyAppl i cati onContext)
reader. beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assName = "org. hsql db. j dbcDriver"

url = "jdbc: hsqgl db: mem grai | sDB"
usernane = "sa"

password = ""

settings = [nynew "setting"]

}
sessi onFact ory(Sessi onFactory) {
dat aSour ce = dat aSour ce
}
nyServi ce(MyService) {
nest edBean = { Anot her Bean bean ->
dat aSour ce = dat aSour ce

}

4.3.16.RELEASE Spring Framework 20

Spring Framework Reference Documentation

For more information consult the Gr oovyBeanDef i ni ti onReader javadocs.

3.6 Core Container Improvements

There have been several general improvements to the core container:

* Spring now treats generic types as a form of qualifier when injecting Beans. For example, if you are
using a Spring Data Reposi t or y you can now easily inject a specific implementation: @\ut owi r ed
Reposi t or y<Cust onmer > cust oner Repository.

« If you use Spring’s meta-annotation support, you can now develop custom annotations that expose
specific attributes from the source annotation.

» Beans can now be ordered when they are autowired into lists and arrays. Both the @ der annotation
and Or der ed interface are supported.

e The @azy annotation can now be used on injection points, as well as on @ean definitions.

* The @escri pti on annotation has been introduced for developers using Java-based configuration.

» A generalized model for conditionally filtering beans has been added via the @Conditi onal
annotation. This is similar to @r of i | e support but allows for user-defined strategies to be developed
programmatically.

* CGLIB-based proxy classes no longer require a default constructor. Support is provided via the
objenesis library which is repackaged inline and distributed as part of the Spring Framework. With
this strategy, no constructor at all is being invoked for proxy instances anymore.

e There is managed time zone support across the framework now, e.g. on Local eCont ext .

3.7 General Web Improvements

Deployment to Servlet 2.5 servers remains an option, but Spring Framework 4.0 is now focused primarily
on Servlet 3.0+ environments. If you are using the Spring MVC Test Framework you will need to ensure
that a Servlet 3.0 compatible JAR is in your test classpath.

In addition to the WebSocket support mentioned later, the following general improvements have been
made to Spring’s Web modules:

* You can use the new @Rest Contr ol | er annotation with Spring MVC applications, removing the
need to add @esponseBody to each of your @Request Mappi ng methods.

e The AsyncRest Tenpl at e class has been added, allowing non-blocking asynchronous support
when developing REST clients.

» Spring now offers comprehensive timezone support when developing Spring MVC applications.

3.8 WebSocket, SockJS, and STOMP Messaging

A new spri ng- websocket module provides comprehensive support for WebSocket-based, two-way
communication between client and server in web applications. It is compatible with JSR-356, the Java
WebSocket API, and in addition provides SockJS-based fallback options (i.e. WebSocket emulation)
for use in browsers that don't yet support the WebSocket protocol (e.g. Internet Explorer < 10).

4.3.16.RELEASE Spring Framework 21

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html
http://code.google.com/p/objenesis/
http://jcp.org/en/jsr/detail?id=356

Spring Framework Reference Documentation

A new spri ng- nessagi hg module adds support for STOMP as the WebSocket sub-protocol to use in
applications along with an annotation programming model for routing and processing STOMP messages
from WebSocket clients. As a result an @ont r ol | er can now contain both @equest Mappi ng and
@vkssageMappi ng methods for handling HTTP requests and messages from WebSocket-connected
clients. The new spri ng- messagi ng module also contains key abstractions formerly from the Spring
Integration project such as Message, MessageChannel , MessageHandl| er, and others to serve as
a foundation for messaging-based applications.

For further details, including a more thorough introduction, see the Chapter 26, WebSocket Support
section.

3.9 Testing Improvements

In addition to pruning of deprecated code within the spri ng-test module, Spring Framework 4.0
introduces several new features for use in unit and integration testing.

 Almost all annotations in the spring-test module (e.g., @ontextConfiguration,
@\ebAppConfi guration, @ont ext H erarchy, @ctiveProfiles, etc.) can now be used
as meta-annotations to create custom composed annotations and reduce configuration duplication
across a test suite.

» Active bean definition profiles can now be resolved programmatically, simply by implementing
a custom ActiveProfil esResolver and registering it via the resol ver attribute of
@\ctiveProfiles.

* Anew Socket Ut i | s class has been introduced in the spri ng- cor e module which enables you to
scan for free TCP and UDP server ports on localhost. This functionality is not specific to testing but
can prove very useful when writing integration tests that require the use of sockets, for example tests
that start an in-memory SMTP server, FTP server, Servlet container, etc.

* As of Spring 4.0, the set of mocks in the org. springfranmework. nock. web package is
now based on the Servlet 3.0 API. Furthermore, several of the Servlet APl mocks (e.g.,
MockHt t pSer vl et Request, MockSer vl et Cont ext, etc.) have been updated with minor
enhancements and improved configurability.

4.3.16.RELEASE Spring Framework 22

http://projects.spring.io/spring-integration/
http://projects.spring.io/spring-integration/

Spring Framework Reference Documentation

4. New Features and Enhancements in Spring
Framework 4.1

Version 4.1 included a number of improvements, as described in the following sections:

» Section 4.1, “JMS Improvements”

Section 4.2, “Caching Improvements”

Section 4.3, “Web Improvements”

Section 4.4, “WebSocket Messaging Improvements”

Section 4.5, “Testing Improvements”

4.1 IMS Improvements

Spring 4.1 introduces a much simpler infrastructure to register JMS listener endpoints by annotating
bean methods with @nsLi st ener. The XML namespace has been enhanced to support this new
style (j ms: annot ati on-dri ven), and it is also possible to fully configure the infrastructure using
Java config (@nabl eJns, JnsLi st ener Cont ai ner Fact ory). It is also possible to register listener
endpoints programmatically using JnsLi st ener Confi gurer.

Spring 4.1 also aligns its JMS support to allow you to benefit from the spri ng- messagi ng abstraction
introduced in 4.0, that is:

» Message listener endpoints can have a more flexible signature and benefit from standard messaging
annotations such as @&ayl oad, @leader, @Header s, and @endTo. It is also possible to use a
standard Message in lieu of j avax. j ns. Message as method argument.

* A new JnsMessageQper at i ons interface is available and permits JnsTenpl at e like operations
using the Message abstraction.

Finally, Spring 4.1 provides additional miscellaneous improvements:
» Synchronous request-reply operations support in Jns Tenpl at e
* Listener priority can be specified per <j ns: | i st ener/ > element

» Recovery options for the message listener container are configurable using a BackOf f
implementation

» JMS 2.0 shared consumers are supported
4.2 Caching Improvements

Spring 4.1 supports JCache (JSR-107) annotations using Spring’s existing cache configuration and
infrastructure abstraction; no changes are required to use the standard annotations.

Spring 4.1 also improves its own caching abstraction significantly:

» Caches can be resolved at runtime using a CacheResol ver. As a result the val ue argument
defining the cache name(s) to use is no longer mandatory.

4.3.16.RELEASE Spring Framework 23

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/jms/annotation/JmsListener.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/jms/annotation/JmsListenerConfigurer.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessageOperations.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/util/backoff/BackOff.html

Spring Framework Reference Documentation

» More operation-level customizations: cache resolver, cache manager, key generator

* Anew @acheConf i g class-level annotation allows common settings to be shared at the class level
without enabling any cache operation.

 Better exception handling of cached methods using CacheEr r or Handl er

Spring 4.1 also has a breaking change in the Cache interface as a new put | f Absent method has
been added.

4.3 Web Improvements

* The existing support for resource handling based on the ResourceHttpRequest Handl er
has been expanded with new abstractions Resour ceResol ver, Resour ceTr ansf or mer, and
Resour ceUr | Provi der. A number of built-in implementations provide support for versioned
resource URLs (for effective HTTP caching), locating gzipped resources, generating an HTML 5
AppCache manifests, and more. See the section called “Serving of Resources”.

« JDK 1.8'sjava. util. Optional is now supported for @Request Par am @Request Header, and
@t ri xVari abl e controller method arguments.

e Listenabl eFuture is supported as a return value alternative to DeferredResult
where an underlying service (or perhaps a call to AsyncRest Tenpl at e) already returns
Li st enabl eFut ure.

e @bdel Attri but e methods are now invoked in an order that respects inter-dependencies. See
SPR-6299.

» Jackson's @sonVi ew is supported directly on @esponseBody and ResponseEnti ty controller
methods for serializing different amounts of detail for the same POJO (e.g. summary vs. detail page).
This is also supported with View-based rendering by adding the serialization view type as a model
attribute under a special key. See the section called “Jackson Serialization View Support” for details.

« JSONP is now supported with Jackson. See the section called “Jackson JSONP Support”.

* A new lifecycle option is available for intercepting @ResponseBody and ResponseEnt i t y methods
just after the controller method returns and before the response is written. To take advantage declare
an @ontrol | er Advi ce bean that implements ResponseBodyAdvi ce. The built-in support for
@sonVi ew and JSONP take advantage of this. See the section called “Intercepting requests with
a HandlerInterceptor”.

» There are three new Ht t pMessageConvert er options:
» Gson — lighter footprint than Jackson; has already been in use in Spring Android.

« Google Protocol Buffers — efficient and effective as an inter-service communication data protocol
within an enterprise but can also be exposed as JSON and XML for browsers.

e Jackson based XML serialization is now supported through the jackson-dataformat-xml extension.
When using @nabl eWebM/c or <mvc: annot ati on-dri ven/ >, this is used by default instead
of JAXB2 if j ackson- dat af or mat - xm is in the classpath.

» Views such as JSPs can now build links to controllers by referring to controller mappings by name. A
default name is assigned to every @Request Mappi ng. For example FooCont r ol | er with method

4.3.16.RELEASE Spring Framework 24

https://jira.spring.io/browse/SPR-6299
https://github.com/FasterXML/jackson-dataformat-xml

Spring Framework Reference Documentation

handl eFoo is named "FC#handleFoo". The naming strategy is pluggable. It is also possible to name
an @Request Mappi ng explicitly through its name attribute. Anew nvcUr | function in the Spring JSP
tag library makes this easy to use in JSP pages. See the section called “Building URIs to Controllers
and methods from views”.

* ResponseEnti ty provides a builder-style API to guide controller methods towards the preparation
of server-side responses, e.g. ResponseEntity. ok().

* RequestEntity is a new type that provides a builder-style API to guide client-side REST code
towards the preparation of HTTP requests.

» MVC Java config and XML namespace:

« View resolvers can now be configured including support for content negotiation, see the section
called “View Resolvers”.

« View controllers now have built-in support for redirects and for setting the response status. An
application can use this to configure redirect URLs, render 404 responses with a view, send "no
content" responses, etc. Some use cases are listed here.

« Path matching customizations are frequently used and now built-in. See the section called “Path
Matching”.

» Groovy markup template support (based on Groovy 2.3). See the Gr oovyMar kupConfi gur er and
respecitve Vi ewResol ver and "View' implementations.

4.4 WebSocket Messaging Improvements

» SockJS (Java) client-side support. See SockJsC i ent and classes in same package.

* New application context events Sessi onSubscri beEvent and Sessi onUnsubscri beEvent
published when STOMP clients subscribe and unsubscribe.

* New "websocket" scope. See the section called “WebSocket Scope”.

» @endToUser can target only a single session and does not require an authenticated user.

» @kssageMappi ng methods can use dot "." instead of slash "/" as path separator. See SPR-11660.
» STOMP/WebSocket monitoring info collected and logged. See the section called “Monitoring”.

* Significantly optimized and improved logging that should remain very readable and compact even at
DEBUG level.

» Optimized message creation including support for temporary message mutability and avoiding
automatic message id and timestamp creation. See Javadoc of MessageHeader Accessor.

» Close STOMP/WebSocket connections that have no activity within 60 seconds after the WebSocket
session is established. See SPR-11884.

4.5 Testing Improvements

» Groovy scripts can now be used to configure the Appl i cat i onCont ext loaded for integration tests
in the TestContext framework.

4.3.16.RELEASE Spring Framework 25

https://jira.spring.io/browse/SPR-11543?focusedCommentId=100308&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-100308
http://groovy-lang.org/docs/groovy-2.3.6/html/documentation/markup-template-engine.html
https://jira.spring.io/browse/SPR-11660
https://jira.spring.io/browse/SPR-11884

Spring Framework Reference Documentation

« See the section called “Context configuration with Groovy scripts” for details.

» Test-managed transactions can now be programmatically started and ended within transactional test
methods via the new Test Tr ansact i on API.

* See the section called “Programmatic transaction management” for details.

* SQL script execution can now be configured declaratively via the new @ql and @ql Confi g
annotations on a per-class or per-method basis.

» See the section called “Executing SQL scripts” for details.

» Test property sources which automatically override system and application property sources can be
configured via the new @est Pr opert ySour ce annotation.

« See the section called “Context configuration with test property sources” for details.

» Default Test Execut i onLi st ener s can now be automatically discovered.
« See the section called “Automatic discovery of default TestExecutionListeners” for details.

e Custom Test Execut i onLi st ener s can now be automatically merged with the default listeners.
« See the section called “Merging TestExecutionListeners” for details.

» The documentation for transactional testing support in the TestContext framework has been improved
with more thorough explanations and additional examples.

« See the section called “Transaction management” for details.

» Various improvements to MockSer vl et Cont ext , MockHt t pSer vl et Request , and other Servlet
API mocks.

» Assert Thr ows has been refactored to support Thr owabl e instead of Except i on.

* In Spring MVC Test, JSON responses can be asserted with JSON Assert as an extra option to using
JSONPath much like it has been possible to do for XML with XMLUnit.

 MockMvcBui | der recipes can now be created with the help of MockMscConf i gur er. This was
added to make it easy to apply Spring Security setup but can be used to encapsulate common setup
for any 3rd party framework or within a project.

» MockRest Ser vi ceSer ver now supports the AsyncRest Tenpl at e for client-side testing.

4.3.16.RELEASE Spring Framework 26

https://github.com/skyscreamer/JSONassert

Spring Framework Reference Documentation

5. New Features and Enhancements in Spring
Framework 4.2

Version 4.2 included a number of improvements, as described in the following sections:
» Section 5.1, “Core Container Improvements”

» Section 5.2, “Data Access Improvements”

e Section 5.3, “JMS Improvements”

» Section 5.4, “Web Improvements”

» Section 5.5, “WebSocket Messaging Improvements”

» Section 5.6, “Testing Improvements”

5.1 Core Container Improvements

« Annotations such as @ean get detected and processed on Java 8 default methods as well, allowing
for composing a configuration class from interfaces with default @ean methods.

» Configuration classes may declare @ npor t with regular component classes now, allowing for a mix
of imported configuration classes and component classes.

» Configuration classes may declare an @ der value, getting processed in a corresponding order (e.g.
for overriding beans by name) even when detected through classpath scanning.

e @Resour ce injection points support an @.azy declaration, analogous to @A\ut owi r ed, receiving a
lazy-initializing proxy for the requested target bean.

» The application event infrastructure now offers an annotation-based model as well as the ability to
publish any arbitrary event.

* Any public method in a managed bean can be annotated with @vent Li st ener to consume
events.

e @ransactional Event Li st ener provides transaction-bound event support.

» Spring Framework 4.2 introduces first-class support for declaring and looking up aliases for annotation
attributes. The new @\ i asFor annotation can be used to declare a pair of aliased attributes within
a single annotation or to declare an alias from one attribute in a custom composed annotation to an
attribute in a meta-annotation.

e The following annotations have been retrofited with @\ i asFor support
in order to provide meaningful aliases for their val ue attributes:
@acheabl e, @acheEvi ct, @achePut, @onponent Scan, @onponent Scan. Filter,
@ nport Resource, @cope, @mhnagedResource, @leader, @rayl oad, @endToUser,
@\ ctiveProfiles, @ontextConfiguration, @bql, @estExecutionlListeners,
@est PropertySource, @ransactional, @ontrollerAdvice, @CookieVal ue,
@Cr ossOri gi n, @mtrixVari abl e, @Request Header @request Mappi ng,

4.3.16.RELEASE Spring Framework 27

Spring Framework Reference Documentation

@request Par am @Request Part, @responseSt at us, @Bessi onAttri butes,
@\ct i onMappi ng, @Render Mappi ng, @vent Li st ener, @r ansacti onal Event Li st ener.

* For example, @ont ext Confi gurati on from the spri ng-test module is now declared as
follows:

public @nterface ContextConfiguration {

@\ i asFor ("l ocations")
String[] value() default {};

@\ i asFor ("val ue")
String[] locations() default {};

[N/

« Similarly, composed annotations that override attributes from meta-annotations can now use
@A\ i asFor for fine-grained control over exactly which attributes are overridden within an
annotation hierarchy. In fact, it is now possible to declare an alias for the val ue attribute of a meta-
annotation.

« For example, one can now develop a composed annotation with a custom attribute override as
follows.

@ont ext Confi gurati on
public @nterface MyTestConfig {

@\ i asFor (annot ati on = Cont ext Confi guration.class, attribute = "val ue")
String[] xm Files();

...

* See Spring Annotation Programming Model.

* Numerous improvements to Spring’s search algorithms used for finding meta-annotations. For
example, locally declared composed annotations are now favored over inherited annotations.

» Composed annotations that override attributes from meta-annotations can now be discovered on
interfaces and on abstract, bridge, & interface methods as well as on classes, standard methods,
constructors, and fields.

* Maps representing annotation attributes (and Annotati onAttri butes instances) can be
synthesized (i.e., converted) into an annotation.

The features of field-based data binding (Di r ect Fi el dAccessor) have been aligned with the
current property-based data binding (BeanW apper). In particular, field-based binding now supports
navigation for Collections, Arrays, and Maps.

Def aul t Conver si onSer vi ce now provides out-of-the-box converters for St ream Char set,
Currency, and Ti neZone. Such converters can be added individually to any arbitrary
Conver si onSer vi ce as well.

Def aul t For mat t i ngConver si onSer vi ce comes with out-of-the-box support for the value types
in JSR-354 Money & Currency (if the 'javax.money' API is present on the classpath): namely,
Monet ar yAnount and Cur r encyUni t . This includes support for applying @Nunber For mat .

e @\unber For mat can now be used as a meta-annotation.

4.3.16.RELEASE Spring Framework 28

Spring Framework Reference Documentation

JavaMai | Sender | npl has a new t est Connecti on() method for checking connectivity to the
server.

Schedul edTaskRegi st rar exposes scheduled tasks.
Apache comons- pool 2 is now supported for a pooling AOP CormonsPool 2Tar get Sour ce.

Introduced St andar dScri pt Factory as a JSR-223 based mechanism for scripted beans,
exposed through the | ang: std element in XML. Supports e.g. JavaScript and JRuby. (Note:
JRubyScriptFactory and | ang: j r uby are deprecated now, in favor of using JSR-223.)

5.2 Data Access Improvements

j avax. transaction. Transacti onal is now supported via AspectJ.
Si nmpl eJdbcCal | Oper at i ons now supports named binding.

Full support for Hibernate ORM 5.0: as a JPA provider (automatically adapted) as well as through its
native API (covered by the new or g. spri ngf r amewor k. or m hi ber nat e5 package).

Embedded databases can now be automatically assigned unique names, and <j dbc: enbedded-
dat abase> supports a new dat abase- nane attribute. See "Testing Improvements" below for further
details.

5.3 JMS Improvements

The aut oSt ar t up attribute can be controlled via JnsLi st ener Cont ai ner Fact ory.
The type of the reply Dest i nat i on can now be configured per listener container.
The value of the @endTo annotation can now use a SpEL expression.

The response destination can be computed at runtime using JnsResponse

@nslLi st ener is now a repeatable annotation to declare several JMS containers on the same
method (use the newly introduced @nsLi st ener s if you're not using Java8 yet).

5.4 Web Improvements

HTTP Streaming and Server-Sent Events support, see the section called “HTTP Streaming”.

Built-in support for CORS including global (MVC Java config and XML namespace) and local (e.g.
@Cr ossOri gi n) configuration. See Chapter 27, CORS Support for details.

HTTP caching updates:

e new CacheControl builder; plugged into ResponseEntity, WhbContent Generator,
Resour ceHt t pRequest Handl er .

e improved ETag/Last-Modified support in WebRequest .
Custom mapping annotations, using @Request Mappi ng as a meta-annotation.

Public methods in Abst r act Handl er Met hodMappi ng to register and unregister request mappings
at runtime.

4.3.16.RELEASE Spring Framework 29

Spring Framework Reference Documentation

Protected creat eDi spat cher Ser vl et method in
Abstract Di spatcherServletlnitializer to further customize the Di spat cher Servl et
instance to use.

Handl er Met hod as a method argument on @xcepti onHandl er methods, especially handy in
@control | er Advi ce components.

java.util.concurrent. Conpl et abl eFut ur e as an @ont r ol | er method return value type.
Byte-range request support in Ht t pHeader s and for serving static resources.

@responseSt at us detected on nested exceptions.

Uri Tenpl at eHandl er extension point in the Rest Tenpl at e.

e Def aul t Uri Tenpl at eHandl er exposes baseUr | property and path segment encoding options.
« the extension point can also be used to plug in any URI template library.

OKHTTP integration with the Rest Tenpl at e.

Custom baseUr | alternative for methods in MvcUr i Conponent sBui | der.
Serialization/deserialization exception messages are now logged at WARN level.

Default JSON prefix has been changed from "{} && " to the safer)]}, " one.

New Request BodyAdvi ce extension point and built-in implementation to support Jackson’'s
@sonVi ewon @Request Body method arguments.

When using GSON or Jackson 2.6+, the handler method return type is used to improve serialization
of parameterized types like Li st <Foo>.

Introduced Scri pt Tenpl at eVi ewas a JSR-223 based mechanism for scripted web views, with a
focus on JavaScript view templating on Nashorn (JDK 8).

5.5 WebSocket Messaging Improvements

» Expose presence information about connected users and subscriptions:

* new Si npUser Regi st ry exposed as a bean named "userRegistry".

« sharing of presence information across cluster of servers (see broker relay config options).
Resolve user destinations across cluster of servers (see broker relay config options).

St ompSubPr ot ocol Err or Handl er extension point to customize and control STOMP ERROR
frames to clients.

Global @vessageExcept i onHandl er methods via @ont r ol | er Advi ce components.

Heart-beats and a SpEL expression 'selector' header for subscriptions with
Si npl eBr oker MessageHandl er .

STOMP client for use over TCP and WebSocket; see the section called “STOMP Client”.

@endTo and @endToUser can contain destination variable placeholders.

4.3.16.RELEASE Spring Framework 30

http://square.github.io/okhttp/

Spring Framework Reference Documentation

e Jackson’'s @sonVi ew supported for return values on @kssageMapping and
@dubscri beMappi ng methods.

e Li st enabl eFut ure and Conpl et abl eFut ur e as return value types from @essageMappi ng
and @ubscri beMappi ng methods.

e Marshal | i ngMessageConvert er for XML payloads.

5.6 Testing Improvements

e JUnit-based integration tests can now be executed with JUnit rules instead of the
Spri ngJUni t 4C assRunner . This allows Spring-based integration tests to be run with alternative
runners like JUnit’'s Par anet er i zed or third-party runners such as the Mocki t oJUni t Runner .

* See the section called “Spring JUnit 4 Rules” for details.

e The Spring MVC Test framework now provides first-class support for HtmlUnit, including integration
with Selenium’s WebDriver, allowing for page-based web application testing without the need to
deploy to a Servlet container.

» See the section called “HtmlUnit Integration” for details.

* AopTest Uti | s is a new testing utility that allows developers to obtain a reference to the underlying
target object hidden behind one or more Spring proxies.

* See the section called “General testing utilities” for details.
 Refl ectionTest Uil s now supports setting and getting st at i c fields, including constants.

» The original ordering of bean definition profiles declared via @\cti vePr of i | es is now retained in
order to support use cases such as Spring Boot’'s Conf i gFi | eAppl i cati onLi st ener which loads
configuration files based on the names of active profiles.

e @irtiesContext supports new BEFORE_METHOD, BEFORE_CLASS, and
BEFORE_EACH TEST_METHOD modes for closing the Appl i cat i onCont ext before a test— for
example, if some rogue (i.e., yet to be determined) test within a large test suite has corrupted the
original configuration for the Appl i cat i onCont ext .

e @Comm t is a new annotation that may be used as a direct replacement for @Rol | back(f al se).
* @Rol | back may now be used to configure class-level default rollback semantics.

e Consequently, @ransacti onConfi guration is now deprecated and will be removed in a
subsequent release.

* @ql now supports execution of inlined SQL statements via a new st at erment s attribute.

» The Cont ext Cache that is used for caching Appl i cat i onCont ext s between tests is now a public
API with a default implementation that can be replaced for custom caching needs.

» Def aul t Test Cont ext, Def aul t Boot st r apCont ext , and
Def aul t CacheAwar eCont ext Loader Del egat e are now public classes in the support
subpackage, allowing for custom extensions.

e Test Cont ext Boot st r apper s are now responsible for building the Test Cont ext .

4.3.16.RELEASE Spring Framework 31

Spring Framework Reference Documentation

In the Spring MVC Test framework, M/cResul t details can now be logged at DEBUG level or
written to a custom Qut put St r eamor Wi t er . See the new | og(), pri nt (Qut put Streanj, and
print(Witer) methodsin MockM/cResul t Handl er s for details.

The JDBC XML namespace supports a new dat abase- name attribute in <j dbc: enbedded-
dat abase>, allowing developers to set unique names for embedded databases — for example, via
a SpEL expression or a property placeholder that is influenced by the current active bean definition
profiles.

Embedded databases can now be automatically assigned a unique name, allowing common test
database configuration to be reused in different Appl i cati onCont ext s within a test suite.

< See the section called “Generating unique names for embedded databases” for details.

MockHt t pSer vl et Request and MockHt t pSer vl et Response now provide better support for
date header formatting via the get Dat eHeader and set Dat eHeader methods.

4.3.16.RELEASE Spring Framework 32

Spring Framework Reference Documentation

6. New Features and Enhancements in Spring
Framework 4.3

Version 4.3 included a number of improvements, as described in the following sections:

Section 6.1, “Core Container Improvements”
Section 6.2, “Data Access Improvements”

Section 6.3, “Caching Improvements”

Section 6.4, “JMS Improvements”

Section 6.5, “Web Improvements”

Section 6.6, “WebSocket Messaging Improvements”
Section 6.7, “Testing Improvements”

Section 6.8, “Support for new library and server generations”

6.1 Core Container Improvements

Core container exceptions provide richer metadata to evaluate programmatically.
Java 8 default methods get detected as bean property getters/setters.
Lazy candidate beans are not being created in case of injecting a primary bean.

It is no longer necessary to specify the @\ut owi r ed annotation if the target bean only defines one
constructor.

@confi gur ati on classes support constructor injection.

Any SpEL expression used to specify the condi ti on of an @vent Li st ener can now refer to
beans (e.g. @eanNane. net hod()).

Composed annotations can now override array attributes in meta-annotations with a single element of
the component type of the array. For example, the Stri ng[] pat h attribute of @Request Mappi ng
can be overridden with St ri ng pat h in a composed annotation.

@er si st enceCont ext /@&er si st enceUni t selects a primary Ent i t yManager Fact ory bean
if declared as such.

@chedul ed and @chedul es may now be used as meta-annotations to create custom composed
annotations with attribute overrides.

@chedul ed is properly supported on beans of any scope.

6.2 Data Access Improvements

jdbc:initialize-databaseandjdbc: enbedded- dat abase support a configurable separator
to be applied to each script.

4.3.16.RELEASE Spring Framework 33

Spring Framework Reference Documentation

6.3 Caching Improvements

Spring 4.3 allows concurrent calls on a given key to be synchronized so that the value is only computed
once. This is an opt-in feature that should be enabled via the new sync attribute on @acheabl e. This
features introduces a breaking change in the Cache interface as a get (Obj ect key, Cal |l abl e<T>
val ueLoader) method has been added.

Spring 4.3 also improves the caching abstraction as follows:

 SpEL expressions in caches-related annotations can now refer to beans (i.e.
@eanNane. net hod()).

» Concurrent MapCacheManager and Concurrent MapCache now support the serialization of
cache entries via a new st or eByVal ue attribute.

e @acheabl e, @acheEvi ct, @achePut , and @achi ng may now be used as meta-annotations
to create custom composed annotations with attribute overrides.

6.4 JMS Improvements

» @endTo can now be specified at the class level to share a common reply destination.

e @nslLi stener and @nsLi st eners may now be used as meta-annotations to create custom
composed annotations with attribute overrides.

6.5 Web Improvements

* Built-in support for HTTP HEAD and HTTP OPTIONS.

 New @=et Mappi ng, @Post Mappi ng, @ut Mappi ng, @el et eMappi ng, and @at chMappi ng
composed annotations for @Request Mappi ng.

* See Composed @RequestMapping Variants for details.

* New @Request Scope, @essi onScope, and @\ppl i cati onScope composed annotations for
web scopes.

* See Request scope, Session scope, and Application scope for details.

* New @RrestControllerAdvice annotation with combined @ontrollerAdvice with
@ResponseBody semantics.

* @ResponseSt at us is now supported at the class level and inherited by all methods.

* New @Bessi onAtt ri but e annotation for access to session attributes (see example).

* New @Request Att ri but e annotation for access to request attributes (see example).

e @bdel Attri but e allows preventing data binding via bi ndi ng=f al se attribute (see reference).
» @rat hVvari abl e may be declared as optional (for use on @vwdel At tri but e methods).

» Consistent exposure of Errors and custom Throwables to MVC exception handlers.

» Consistent charset handling in HTTP message converters, including a UTF-8 default for multipart text
content.

4.3.16.RELEASE Spring Framework 34

Spring Framework Reference Documentation

 Static resource handling uses the configured Cont ent Negoti ati onManager for media type
determination.

* Rest Templ ate and AsyncRestTenplate support strict URI variable encoding via
Def aul t Uri Tenpl at eHandl er.

» AsyncRest Tenpl at e supports request interception.

6.6 WebSocket Messaging Improvements

* @endTo and @endToUser can now be specified at class-level to share a common destination.

6.7 Testing Improvements

The JUnit support in the Spring TestContext Framework now requires JUnit 4.12 or higher.
New Spri ngRunner alias for the Spri ngJUni t 4Cl assRunner .

Test related annotations may now be declared on interfaces — for example, for use with test interfaces
that make use of Java 8 based interface default methods.

An empty declaration of @ont ext Conf i gur ati on can now be completely omitted if default XML
files, Groovy scripts, or @onf i gur at i on classes are detected.

@ ansact i onal test methods are no longer required to be publ i ¢ (e.g., in TestNG and JUnit 5).

@ef oreTransacti on and @\ft er Transact i on methods are no longer required to be publ i c
and may now be declared on Java 8 based interface default methods.

The ApplicationContext cache in the Spring TestContext Framework is now bounded
with a default maximum size of 32 and a least recently used eviction policy. The maximum
size can be configured by setting a JVM system property or Spring property called
spring.test.context.cache. maxSi ze.

New Cont ext Cust omi zer API for customizing a test Appl i cat i onCont ext after bean definitions
have been loaded into the context but before the context has been refreshed. Customizers can be
registered globally by third parties, foregoing the need to implement a custom Cont ext Loader .

@ql and @sql G oup may now be used as meta-annotations to create custom composed
annotations with attribute overrides.

Refl ecti onTest Uti | s now automatically unwraps proxies when setting or getting a field.
Server-side Spring MVC Test supports expectations on response headers with multiple values.
Server-side Spring MVC Test parses form data request content and populates request parameters.
Server-side Spring MVC Test supports mock-like assertions for invoked handler methods.

Client-side REST test support allows indicating how many times a request is expected and whether
the order of declaration for expectations should be ignored (see the section called “Client-Side REST
Tests").

Client-side REST Test supports expectations for form data in the request body.

4.3.16.RELEASE Spring Framework 35

Spring Framework Reference Documentation

6.8 Support for new library and server generations

Hibernate ORM 5.2 (still supporting 4.2/4.3 and 5.0/5.1 as well, with 3.6 deprecated now)
 Hibernate Validator 5.3 (minimum remains at 4.3)

« Jackson 2.8 (minimum raised to Jackson 2.6+ as of Spring 4.3)

e OkHttp 3.x (still supporting OkHttp 2.x side by side)

* Tomcat 8.5 as well as 9.0 milestones

* Netty 4.1

e Undertow 1.4

WildFly 10.1

Furthermore, Spring Framework 4.3 embeds the updated ASM 5.1, CGLIB 3.2.4, and Objenesis 2.4
inspring-core.jar.

4.3.16.RELEASE Spring Framework 36

Part Ill. Core Technologies

This part of the reference documentation covers all of those technologies that are absolutely integral
to the Spring Framework.

Foremost amongst these is the Spring Framework’s Inversion of Control (I1oC) container. A thorough
treatment of the Spring Framework’s 10C container is closely followed by comprehensive coverage of
Spring’s Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring’s integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

» Chapter 7, The IoC container

» Chapter 8, Resources

» Chapter 9, Validation, Data Binding, and Type Conversion
» Chapter 10, Spring Expression Language (SpEL)

» Chapter 11, Aspect Oriented Programming with Spring

» Chapter 12, Spring AOP APIs

Spring Framework Reference Documentation

7. The l1oC container

7.1 Introduction to the Spring 10C container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) ! principle.
loC is also known as dependency injection (DI). It is a process whereby objects define their
dependencies, that is, the other objects they work with, only through constructor arguments, arguments
to a factory method, or properties that are set on the object instance after it is constructed or returned
from a factory method. The container then injects those dependencies when it creates the bean. This
process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself
controlling the instantiation or location of its dependencies by using direct construction of classes, or a
mechanism such as the Service Locator pattern.

The org. spri ngframewor k. beans and or g. spri ngf ramewor k. cont ext packages are the
basis for Spring Framework’s 10C container. The BeanFact ory interface provides an advanced
configuration mechanism capable of managing any type of object. Appl i cati onCont ext is a sub-
interface of BeanFact ory. It adds easier integration with Spring’'s AOP features; message resource
handling (for use in internationalization), event publication; and application-layer specific contexts such
as the WebAppl i cat i onCont ext for use in web applications.

In short, the BeanFact ory provides the configuration framework and basic functionality, and the
Appl i cati onCont ext adds more enterprise-specific functionality. The Appl i cati onCont ext is
a complete superset of the BeanFact ory, and is used exclusively in this chapter in descriptions
of Spring’'s l1oC container. For more information on using the BeanFactory instead of the
Appl i cati onCont ext, referto Section 7.16, “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring 1oC
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed
by a Spring loC container. Otherwise, a bean is simply one of many objects in your application. Beans,
and the dependencies among them, are reflected in the configuration metadata used by a container.

7.2 Container overview

The interface or g. spri ngf r amewor k. cont ext . Appl i cat i onCont ext represents the Spring loC
container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies
between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-
box with Spring. In standalone applications it is common to create an instance of
Cl assPat hXm Appl i cati onCont ext or Fi | eSyst emXm Appl i cat i onCont ext . While XML has
been the traditional format for defining configuration metadata you can instruct the container to use
Java annotations or code as the metadata format by providing a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances
of a Spring 1oC container. For example, in a web application scenario, a simple eight (or so) lines

'see Background

4.3.16.RELEASE Spring Framework 38

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/ApplicationContext.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html

Spring Framework Reference Documentation

of boilerplate web descriptor XML in the web. xmi file of the application will typically suffice (see the
section called “Convenient ApplicationContext instantiation for web applications”). If you are using the
Spring Tool Suite Eclipse-powered development environment this boilerplate configuration can be easily
created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are combined
with configuration metadata so that after the Appl i cat i onCont ext is created and initialized, you have
a fully configured and executable system or application.

Your Business Objects (FOJOs)

The Spri
Configuration antapirrwlgrg

Metadata

figur

-REld;%nr Use _

Figure 7.1. The Spring loC container
Configuration metadata

As the preceding diagram shows, the Spring loC container consumes a form of configuration metadata;
this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what most
of this chapter uses to convey key concepts and features of the Spring loC container.

Note

XML-based metadata is not the only allowed form of configuration metadata. The Spring 10C
container itself is totally decoupled from the format in which this configuration metadata is
actually written. These days many developers choose Java-based configuration for their Spring
applications.

For information about using other forms of metadata with the Spring container, see:

» Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

» Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@confi gurati on, @ean, @ nport and @ependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the
container must manage. XML-based configuration metadata shows these beans configured as <bean/
> elements inside a top-level <beans/ > element. Java configuration typically uses @ean annotated
methods within a @onf i gur at i on class.

4.3.16.RELEASE Spring Framework 39

https://spring.io/tools/sts

Spring Framework Reference Documentation

These bean definitions correspond to the actual objects that make up your application. Typically you
define service layer objects, data access objects (DAOS), presentation objects such as Struts Act i on
instances, infrastructure objects such as Hibernate Sessi onFact ori es, JMS Queues, and so forth.
Typically one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring’s integration with AspectJ to configure objects that have been created outside the control of an
loC container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean id="..." class="...">

<l'-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">

<l-- collaborators and configuration for this bean go here -->
</ bean>

<I-- nore bean definitions go here -->

</ beans>

The i d attribute is a string that you use to identify the individual bean definition. The cl ass attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers
to collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring loC container is straightforward. The location path or paths supplied to an
Appl i cati onCont ext constructor are actually resource strings that allow the container to load
configuration metadata from a variety of external resources such as the local file system, from the Java
CLASSPATH, and so on.

Appl i cati onCont ext context = new C assPat hXnl Appl i cati onCont ext ("services.xnm ", "daos.xm");

Note

After you learn about Spring’s 10C container, you may want to know more about Spring’s
Resour ce abstraction, as described in Chapter 8, Resources, which provides a convenient
mechanism for reading an InputStream from locations defined in a URI syntax. In particular,
Resour ce paths are used to construct applications contexts as described in Section 8.7,
“Application contexts and Resource paths”.

The following example shows the service layer objects (servi ces. xm) configuration file:

4.3.16.RELEASE Spring Framework 40

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwm. spri ngframewor k. or g/ schena/ beans
http: // wwv. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<l-- services -->
<bean id="petStore" class="org.springframework.sanpl es.] petstore.services. PetStoreServicel npl">

<property nanme="account Dao" ref="accountDao"/>
<property name="itenDao" ref="itenDao"/>

<!-- additional collaborators and configuration for this bean go here -->
</ bean>
<!-- nore bean definitions for services go here -->
</ beans>

The following example shows the data access objects daos. xm file:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmw. spri ngframewor k. or g/ schena/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="account Dao"

cl ass="org. springfranmewor k. sanpl es. j pet st or e. dao.] pa. JpaAccount Dao" >

<!-- additional collaborators and configuration for this bean go here -->
</ bean>

<bean id="itenDao" class="org.springfranmework. sanpl es. j petstore. dao.jpa.Jpal tenDao">

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions for data access objects go here -->
</ beans>

In the preceding example, the service layer consists of the class Pet St or eSer vi cel npl , and two data
access objects of the type JpaAccount Dao and Jpal t enDao (based on the JPA Object/Relational
mapping standard). The property nane element refers to the name of the JavaBean property,
and the r ef element refers to the name of another bean definition. This linkage between i d and
ref elements expresses the dependency between collaborating objects. For details of configuring an
object’s dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML configuration
file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resour ce locations, as was shown in the previous section. Alternatively,
use one or more occurrences of the <i nport /> element to load bean definitions from another file or
files. For example:

<beans>
<i nport resource="services.xm"/>
<i nport resource="resources/ nessageSource. xm "/ >
<inport resource="/resources/theneSource. xm"/>

<bean id="beanl" class="..."/>
<bean id="bean2" class="..."/>
</ beans>

4.3.16.RELEASE Spring Framework 41

Spring Framework Reference Documentation

In the preceding example, external bean definitions are loaded from three files: servi ces. xm ,
messageSour ce. xm , and t hemeSour ce. xnl . All location paths are relative to the definition file
doing the importing, so ser vi ces. xrm must be in the same directory or classpath location as the file
doing the importing, while messageSour ce. xm and t henmeSour ce. xnl must be in a r esour ces
location below the location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The contents of the files being
imported, including the top level <beans/ > element, must be valid XML bean definitions according to
the Spring Schema.

Note

It is possible, but not recommended, to reference files in parent directories using a relative
"..I" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example, "classpath:../
services.xml"), where the runtime resolution process chooses the "nearest" classpath root and
then looks into its parent directory. Classpath configuration changes may lead to the choice of a
different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for example, "file:C:/
config/services.xml" or "classpath:/config/services.xml". However, be aware that you are coupling
your application’s configuration to specific absolute locations. It is generally preferable to keep an
indirection for such absolute locations, for example, through "${...}" placeholders that are resolved
against JVM system properties at runtime.

The import directive is a feature provided by the beans namespace itself. Further configuration features
beyond plain bean definitions are available in a selection of XML namespaces provided by Spring, e.g.
the "context" and the "util" namespace.

The Groovy Bean Definition DSL

As a further example for externalized configuration metadata, bean definitions can also be expressed in
Spring’s Groovy Bean Definition DSL, as known from the Grails framewaork. Typically, such configuration
will live in a ".groovy" file with a structure as follows:

beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assName = "org. hsqgl db. j dbcDriver"

url = "jdbc: hsqgl db: mem grai | sDB"
usernane = "sa"

password =

settings = [nynew "setting"]

}
sessi onFact ory(Sessi onFactory) {
dat aSour ce = dat aSour ce
}
nyServi ce(MyService) {
nest edBean = { Anot her Bean bean ->
dat aSour ce = dat aSour ce

}

This configuration style is largely equivalent to XML bean definitions and even supports Spring’s
XML configuration namespaces. It also allows for importing XML bean definition files through an
"importBeans" directive.

4.3.16.RELEASE Spring Framework 42

Spring Framework Reference Documentation

Using the container

The Appl i cati onCont ext is the interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T get Bean(Stri ng name, O ass<T>
requi redType) you can retrieve instances of your beans.

The Appl i cat i onCont ext enables you to read bean definitions and access them as follows:

/| create and configure beans
ApplicationContext context = new C assPat hXm Appli cationContext("services.xm", "daos.xm");

/] retrieve configured instance
Pet St oreServi ce service = context.getBean("petStore", PetStoreService.class);

/'l use configured instance
Li st <String> userList = service. getUsernaneList();

With Groovy configuration, bootstrapping looks very similar, just a different context implementation class
which is Groovy-aware (but also understands XML bean definitions):

Appl i cati onCont ext context = new Generi cG oovyApplicati onContext("services.groovy", "daos.groovy");

The most flexible variantis Gener i cAppl i cati onCont ext in combination with reader delegates, e.g.
with Xn1 BeanDef i ni t i onReader for XML files:

Generi cAppl i cationContext context = new GenericApplicationContext();
new Xm BeanDefi ni ti onReader (cont ext) .| oadBeanDefinitions("services.xm", "daos.xm");
context.refresh();

Or with G- oovyBeanDef i ni t i onReader for Groovy files:

Generi cAppl i cati onCont ext context = new GenericApplicati onContext();
new G oovyBeanDefi ni ti onReader (context).| oadBeanDefinitions("services.groovy", "daos.groovy");
context.refresh();

Such reader delegates can be mixed and matched on the same Appl i cat i onCont ext , reading bean
definitions from diverse configuration sources, if desired.

You can then use get Bean to retrieve instances of your beans. The Appl i cat i onCont ext interface
has a few other methods for retrieving beans, but ideally your application code should never use them.
Indeed, your application code should have no calls to the get Bean() method at all, and thus no
dependency on Spring APIs at all. For example, Spring’s integration with web frameworks provides
dependency injection for various web framework components such as controllers and JSF-managed
beans, allowing you to declare a dependency on a specific bean through metadata (e.g. an autowiring
annotation).

7.3 Bean overview

A Spring loC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/ > definitions.

Within the container itself, these bean definitions are represented as BeanDef i ni t i on objects, which
contain (among other information) the following metadata:

» A package-qualified class name: typically the actual implementation class of the bean being defined.

» Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

4.3.16.RELEASE Spring Framework 43

Spring Framework Reference Documentation

» References to other beans that are needed for the bean to do its work; these references are also
called collaborators or dependencies.

» Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 7.1. The bean definition

Property Explained in...

class the section called “Instantiating beans”
name the section called “Naming beans”

scope Section 7.5, “Bean scopes”

constructor arguments the section called “Dependency Injection”
properties the section called “Dependency Injection”
autowiring mode the section called “Autowiring collaborators”
lazy-initialization mode the section called “Lazy-initialized beans”
initialization method the section called “Initialization callbacks”
destruction method the section called “Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
Appl i cati onCont ext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's
BeanFactory via the method get BeanFact ory() which returns the BeanFactory implementation
Def aul t Li st abl eBeanFactory. Def aul tLi st abl eBeanFactory supports this registration
through the methods r egi st er Si ngl eton(..) and regi st er BeanDefinition(..). However,
typical applications work solely with beans defined through metadata bean definitions.

Note

Bean metadata and manually supplied singleton instances need to be registered as early as
possible, in order for the container to properly reason about them during autowiring and other
introspection steps. While overriding of existing metadata and existing singleton instances is
supported to some degree, the registration of new beans at runtime (concurrently with live
access to factory) is not officially supported and may lead to concurrent access exceptions and/
or inconsistent state in the bean container.

Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can
be considered aliases.

In XML-based configuration metadata, you use the i d and/or nane attributes to specify the bean
identifier(s). The i d attribute allows you to specify exactly one id. Conventionally these names are

4.3.16.RELEASE Spring Framework 44

Spring Framework Reference Documentation

alphanumeric (‘'myBean’, 'fooService', etc.), but may contain special characters as well. If you want to
introduce other aliases to the bean, you can also specify them in the nane attribute, separated by a
comma (,), semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, thei d
attribute was defined as an xsd: | Dtype, which constrained possible characters. As of 3.1, it is defined
as an xsd: stri ng type. Note that bean i d uniqueness is still enforced by the container, though no
longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the container
generates a unique name for that bean. However, if you want to refer to that bean by name, through the
use of the r ef element or Service Locator style lookup, you must provide a name. Motivations for not
supplying a name are related to using inner beans and autowiring collaborators.

Bean Naming Conventions

The convention is to use the standard Java convention for instance field names when naming
beans. That is, bean names start with a lowercase letter, and are camel-cased from then on.
Examples of such names would be (without quotes) ' account Manager' ,' account Servi ce',
"userDao',' | oginController',and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if you
are using Spring AOP it helps a lot when applying advice to a set of beans related by name.

Note

With component scanning in the classpath, Spring generates bean names for unnamed
components, following the rules above: essentially, taking the simple class name and
turning its initial character to lower-case. However, in the (unusual) special case when
there is more than one character and both the first and second characters are upper
case, the original casing gets preserved. These are the same rules as defined by
j ava. beans. | nt rospect or. decapi t al i ze (which Spring is using here).

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination
of up to one name specified by the i d attribute, and any number of other names in the nane attribute.
These names can be equivalent aliases to the same bean, and are useful for some situations, such as
allowing each component in an application to refer to a common dependency by using a bean name
that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is
sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the
case in large systems where configuration is split amongst each subsystem, each subsystem having its
own set of object definitions. In XML-based configuration metadata, you can use the <al i as/ > element
to accomplish this.

<al i as nane="fronmNane" alias="toNanme"/>

In this case, a bean in the same container which is named f r onNane, may also, after the use of this
alias definition, be referred to as t oNane.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
subsyst emA- dat aSour ce. The configuration metadata for subsystem B may refer to a DataSource

4.3.16.RELEASE Spring Framework 45

Spring Framework Reference Documentation

via the name subsyst enB- dat aSour ce. When composing the main application that uses both these
subsystems the main application refers to the DataSource via the name my App- dat aSour ce. To have
all three names refer to the same object you add to the MyApp configuration metadata the following
aliases definitions:

<al i as name="subsyst emA- dat aSour ce" al i as="subsyst enB- dat aSource"/ >
<al i as nane="subsyst emA- dat aSour ce" al i as="nyApp- dat aSour ce" />

Now each component and the main application can refer to the dataSource through a name that is
unigue and guaranteed not to clash with any other definition (effectively creating a namespace), yet
they refer to the same bean.

Java-configuration

If you are using Java-configuration, the @Bean annotation can be used to provide aliases see the
section called “Using the @Bean annotation” for details.

Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the
recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean
definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the cl ass attribute of the <bean/ > element. This cl ass attribute, which internally is a
Cl ass property onaBeanDef i ni t i on instance, is usually mandatory. (For exceptions, see the section
called “Instantiation using an instance factory method” and Section 7.7, “Bean definition inheritance”.)
You use the O ass property in one of two ways:

» Typically, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the
new operator.

» To specify the actual class containing the st at i ¢ factory method that will be invoked to create the
object, in the less common case where the container invokes a st at i ¢ factory method on a class
to create the bean. The object type returned from the invocation of the st at i ¢ factory method may
be the same class or another class entirely.

Inner class names. If you want to configure a bean definition for a st at i ¢ nested class, you
have to use the binary name of the nested class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class
has a st at i ¢ nested class called Bar , the value of the ' cl ass' attribute on a bean definition
would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the nested class nhame from the outer
class name.

4.3.16.RELEASE Spring Framework 46

Spring Framework Reference Documentation

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible
with Spring. That is, the class being developed does not need to implement any specific interfaces or
to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending
on what type of l1oC you use for that specific bean, you may need a default (empty) constructor.

The Spring 10C container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can
also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it
as well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean nane="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo" / >

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the cl ass attribute to specify
the class containing the st at i ¢ factory method and an attribute named f act or y- net hod to specify
the name of the factory method itself. You should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through
a constructor. One use for such a bean definition is to call st at i ¢ factories in legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, the cr eat el nst ance() method must be a static method.

<bean id="client Servi ce"
cl ass="exanpl es. C i ent Servi ce"
factory-net hod="cr eat el nst ance"/ >

public class CdientService {
private static CientService clientService = new O ientService();
private dientService() {}

public static CientService createlnstance() {
return clientService;

}

For details about the mechanism for supplying (optional) arguments to the factory method and
setting object instance properties after the object is returned from the factory, see Dependencies and
configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leave the cl ass attribute empty, and inthe f act or y- bean attribute, specify the name of a

4.3.16.RELEASE Spring Framework 47

Spring Framework Reference Documentation

bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked
to create the object. Set the name of the factory method itself with the f act or y- met hod attribute.

<l-- the factory bean, which contains a nethod called createl nstance() -->
<bean id="serviceLocator" class="exanpl es. Def aul t Servi ceLocat or" >

<l'-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean id="clientService"

factory-bean="servi ceLocat or"

factory-met hod="created i ent Servi cel nstance"/ >

public class DefaultServiceLocator {
private static ClientService clientService = new CientServicelnpl();

public CientService createC ientServicelnstance() {
return clientService;

}

One factory class can also hold more than one factory method as shown here:

<bean id="servi ceLocator" class="exanpl es. Def aul t Servi ceLocat or" >
<l'-- inject any dependencies required by this |ocator bean -->
</ bean>

<bean id="clientService"
factory-bean="servi ceLocator"
factory-net hod="creat eC i ent Servi cel nstance"/ >

<bean id="account Service"
factory-bean="servi celLocat or"
fact ory- net hod="cr eat eAccount Ser vi cel nst ance"/ >

public class DefaultServiceLocator {
private static CientService clientService = new dientServicelnpl();
private static Account Service account Servi ce = new Account Servi cel npl ();

public CientService createC ientServicelnstance() {
return clientService;

}

public Account Servi ce createAccount Servi cel nstance() {
return account Service;

}

This approach shows that the factory bean itself can be managed and configured through dependency
injection (D). See Dependencies and configuration in detail.

Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring container
that will create objects through an instance or static factory method. By contrast, Fact or yBean
(notice the capitalization) refers to a Spring-specific Fact or yBean.

4.3.16.RELEASE Spring Framework 48

Spring Framework Reference Documentation

7.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand alone to a fully realized application where objects collaborate to achieve a goal.

Dependency Injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse,
hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of
its dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location
or class of the dependencies. As such, your classes become easier to test, in particular when the
dependencies are on interfaces or abstract base classes, which allow for stub or mock implementations
to be used in unit tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of
arguments, each representing a dependency. Calling a st at i ¢ factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to
a st at i ¢ factory method similarly. The following example shows a class that can only be dependency-
injected with constructor injection. Notice that there is nothing special about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.

public class SinpleMuvieLister {

/1 the SinpleMvieLister has a dependency on a Movi eFi nder
private MvieFi nder novi eFi nder;

/1 a constructor so that the Spring container can inject a MvieFinder
publ i c Sinpl eMovieLi ster(MvieFinder novi eFinder) {
this. novi eFi nder = novi eFi nder;

}

/] business logic that actually uses the injected MvieFinder is omtted...

Constructor argument resolution

Constructor argument resolution matching occurs using the argument’s type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor
arguments are defined in a bean definition is the order in which those arguments are supplied to the
appropriate constructor when the bean is being instantiated. Consider the following class:

4.3.16.RELEASE Spring Framework 49

Spring Framework Reference Documentation

package Xx.y;
public class Foo {
public Foo(Bar bar, Baz baz) {

11
}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus
the following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly in the <const r uct or - ar g/ > element.

<beans>
<bean id="foo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</ bean>

<bean id="bar" class="x.y.Bar"/>

<bean id="baz" class="x.y.Baz"/>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with
the preceding example). When a simple type is used, such as <val ue>t r ue</ val ue>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es;
public class Exanpl eBean {

/1 Nunber of years to calculate the Utinmate Answer
private int years;

/1 The Answer to Life, the Universe, and Everything
private String ultinmateAnswer;

publ i c Exanpl eBean(int years, String ultimteAnswer) {
this.years = years;
this.ultimateAnswer = ulti mat eAnswer;

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using the t ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Use the i ndex attribute to specify explicitly the index of constructor arguments. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg i ndex="0" val ue="7500000"/>
<constructor-arg i ndex="1" val ue="42"/>

</ bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is 0 based.

You can also use the constructor parameter name for value disambiguation:

4.3.16.RELEASE Spring Framework 50

Spring Framework Reference Documentation

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg name="years" val ue="7500000"/>
<constructor-arg nane="ul ti mat eAnswer" val ue="42"/>
</ bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can’t compile your
code with debug flag (or don’t want to) you can use @ConstructorProperties JDK annotation to explicitly
name your constructor arguments. The sample class would then have to look as follows:

package exanpl es;

public class Exanpl eBean {
/1l Fields onmtted
@onstructorProperties({"years", "ultinmteAnswer"})
publ i ¢ Exanpl eBean(int years, String ultimteAnswer) {

this.years = years;
this.ultimateAnswer = ultimateAnswer;

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument st at i ¢ factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SinpleMvielister {

/'l the SinpleMyvielister has a dependency on the Mvi eFi nder
private Movi eFi nder novi eFi nder;

/] a setter nethod so that the Spring container can inject a MvieFinder
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;

}

/| business logic that actually uses the injected MvieFinder is omtted...

The Appl i cat i onCont ext supports constructor-based and setter-based DI for the beans it manages.
It also supports setter-based DI after some dependencies have already been injected through the
constructor approach. You configure the dependencies in the form of a BeanDefi ni ti on, which
you use in conjunction with Propert yEdi t or instances to convert properties from one format to
another. However, most Spring users do not work with these classes directly (i.e., programmatically) but
rather with XML bean definitions, annotated components (i.e., classes annotated with @onponent ,
@ont rol | er, etc.), or @ean methods in Java-based @onf i gur at i on classes. These sources are
then converted internally into instances of BeanDef i ni ti on and used to load an entire Spring loC
container instance.

Constructor-based or setter-based DI?

Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to use
constructors for mandatory dependencies and setter methods or configuration methods for

4.3.16.RELEASE Spring Framework 51

http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

Spring Framework Reference Documentation

optional dependencies. Note that use of the @Required annotation on a setter method can be
used to make the property a required dependency.

The Spring team generally advocates constructor injection as it enables one to implement
application components as immutable objects and to ensure that required dependencies are not
nul | . Furthermore constructor-injected components are always returned to client (calling) code
in a fully initialized state. As a side note, a large number of constructor arguments is a bad code
smell, implying that the class likely has too many responsibilities and should be refactored to better
address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be assigned
reasonable default values within the class. Otherwise, not-null checks must be performed
everywhere the code uses the dependency. One benefit of setter injection is that setter methods
make objects of that class amenable to reconfiguration or re-injection later. Management through
JMX MBeans is therefore a compelling use case for setter injection.

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing with
third-party classes for which you do not have the source, the choice is made for you. For example,
if a third-party class does not expose any setter methods, then constructor injection may be the
only available form of DI.

Dependency resolution process

The container performs bean dependency resolution as follows:

e The Appl i cat i onCont ext is created and initialized with configuration metadata that describes all

the beans. Configuration metadata can be specified via XML, Java code, or annotations.

For each bean, its dependencies are expressed in the form of properties, constructor arguments,

or

arguments to the static-factory method if you are using that instead of a normal constructor. These

dependencies are provided to the bean, when the bean is actually created.

Each property or constructor argument is an actual definition of the value to set, or a reference
another bean in the container.

to

Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied

in string format to all built-in types, such asi nt, | ong, St ri ng, bool ean, etc.

The Spring container validates the configuration of each bean as the container is created. However,
the bean properties themselves are not set until the bean is actually created. Beans that are singleton-
scoped and set to be pre-instantiated (the default) are created when the container is created. Scopes

are defined in Section 7.5, “Bean scopes”. Otherwise, the bean is created only when it is requested.
Creation of a bean potentially causes a graph of beans to be created, as the bean’s dependencies and
its dependencies' dependencies (and so on) are created and assigned. Note that resolution mismatches

among those dependencies may show up late, i.e. on first creation of the affected bean.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

4.3.16.RELEASE Spring Framework

52

Spring Framework Reference Documentation

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for classes
A and B to be injected into each other, the Spring 1oC container detects this circular reference at
runtime, and throws a BeanCurrent | yl nCr eat i onExcepti on.

One possible solution is to edit the source code of some classes to be configured by setters
rather than constructors. Alternatively, avoid constructor injection and use setter injection only. In
other words, although it is not recommended, you can configure circular dependencies with setter
injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A
and bean B forces one of the beans to be injected into the other prior to being fully initialized itself
(a classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and
resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you request an object if there
is a problem creating that object or one of its dependencies. For example, the bean throws an exception
as aresult of a missing or invalid property. This potentially delayed visibility of some configuration issues
is why Appl i cat i onCont ext implementations by default pre-instantiate singleton beans. At the cost
of some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the Appl i cati onCont ext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring loC container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such
as a configured init method or the InitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<I-- setter injection using the nested ref elenent -->
<property name="beanOne">
<ref bean="anot her Exanpl eBean"/ >
</ property>

<I-- setter injection using the neater ref attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/>
<property name="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean id="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

4.3.16.RELEASE Spring Framework 53

Spring Framework Reference Documentation

public class Exanpl eBean {
private Anot her Bean beanOne;
private YetAnot her Bean beanTwo;
private int i;

public void set BeanOne(Anot her Bean beanOne) {
this. beanOne = beanOne;
}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =1i;

}

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DI:

<bean id="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<l-- constructor injection using the nested ref elenent -->
<const ructor-arg>
<ref bean="anot her Exanpl eBean"/ >
</ constructor-ar g>

<I-- constructor injection using the neater ref attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean id="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {
private Anot her Bean beanOne;
private YetAnot her Bean beanTwo;
private int i;
publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
t hi s. beanOne = anot her Bean;

this. beanTwo = yet Anot her Bean;
this.i =i;

The constructor arguments specified in the bean definition will be used as arguments to the constructor
of the Exanpl eBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a
st ati c factory method to return an instance of the object:

4.3.16.RELEASE Spring Framework 54

Spring Framework Reference Documentation

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" factory-nethod="creat el nstance">
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/'l a private constructor
private ExanpleBean(...) {

}

/1 a static factory nethod; the argunents to this nethod can be
/'l considered the dependenci es of the bean that is returned,
/'l regardl ess of how those argunents are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
/'l sone other operations...
return eb;

Arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the st at i ¢ factory method,
although in this example it is. An instance (non-static) factory method would be used in an essentially
identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute),
so details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring’s XML-based
configuration metadata supports sub-element types within its <pr operty/ > and <const r uct or -
ar g/ > elements for this purpose.

Straight values (primitives, Strings, and so on)

The val ue attribute of the <pr operty/ > element specifies a property or constructor argument as a
human-readable string representation. Spring’s conversion service is used to convert these values from
a St ri ng to the actual type of the property or argument.

<bean id="nyDat aSource" class="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">
<I-- results in a setDriverCl assNane(String) call -->
<property name="driverC assName" val ue="com nysql .jdbc. Driver"/>
<property name="url" val ue="j dbc: nysql://1 ocal host: 3306/ nydb"/ >
<property name="usernanme" val ue="root"/>
<property name="password" val ue="masterkaoli"/>
</ bean>

The following example uses the p-namespace for even more succinct XML configuration.

4.3.16.RELEASE Spring Framework 55

Spring Framework Reference Documentation

<beans xm ns="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. or g/ schema/ p"
xsi : schemaLocati on="http://wwm. spri ngframewor k. or g/ schena/ beans
htt p: // wwv. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="nyDat aSour ce" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce"
dest roy- met hod="cl ose"
p: driver d assNane="com nysql . j dbc. Dri ver"
p:url="jdbc:nysql://I| ocal host: 3306/ nydb"
p: user name="r oot "
p: passwor d="nast erkaol i "/ >

</ beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the Spring Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can also configure aj ava. util . Properti es instance as:

<bean id="mappi ngs"
cl ass="org. spri ngfranmewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">

<l-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc. driver. cl assName=com nysql . j dbc. Dri ver
jdbc.url=jdbc: mysql ://1ocal host: 3306/ nydb
</ val ue>
</ property>
</ bean>

The Spring container converts the text inside the <val ue/ > elementintoaj ava. util . Properti es
instance by using the JavaBeans Pr oper t yEdi t or mechanism. This is a nice shortcut, and is one of
a few places where the Spring team do favor the use of the nested <val ue/ > element over the val ue
attribute style.

The idref element

Thei dr ef elementis simply an error-proof way to pass the id (string value - not a reference) of another
bean in the container to a <const r uct or - ar g/ > or <pr oper t y/ > element.

<bean id="theTarget Bean" class="..."/>

<bean id="thed ientBean" class="...">
<property name="tar get Name" >
<i dref bean="t heTar get Bean"/ >
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:
<bean id="theTargetBean" class="..." />
<bean id="client" class="...">

<property nanme="target Name" val ue="t heTar get Bean"/ >
</ bean>

The first form is preferable to the second, because using the i dr ef tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation
is performed on the value that is passed to the t ar get Nane property of the cl i ent bean. Typos are
only discovered (with most likely fatal results) when the cl i ent bean is actually instantiated. If the

4.3.16.RELEASE Spring Framework 56

http://www.jetbrains.com/idea/
https://spring.io/tools/sts

Spring Framework Reference Documentation

cl i ent bean is a prototype bean, this typo and the resulting exception may only be discovered long
after the container is deployed.

Note

The | ocal attribute on the i dr ef element is no longer supported in the 4.0 beans xsd since
it does not provide value over a regular bean reference anymore. Simply change your existing
i dref | ocal referencestoi dref bean when upgrading to the 4.0 schema.

A common place (at least in versions earlier than Spring 2.0) where the <i dr ef / > element brings value
is in the configuration of AOP interceptors in a Pr oxyFact or yBean bean definition. Using <i dr ef / >
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <const ruct or-ar g/ > or <pr operty/ > definition
element. Here you set the value of the specified property of a bean to be a reference to another
bean (a collaborator) managed by the container. The referenced bean is a dependency of the bean
whose property will be set, and it is initialized on demand as needed before the property is set. (If
the collaborator is a singleton bean, it may be initialized already by the container.) All references are
ultimately a reference to another object. Scoping and validation depend on whether you specify the id/
name of the other object through the bean, | ocal , or par ent attributes.

Specifying the target bean through the bean attribute of the <r ef / > tag is the most general form, and
allows creation of a reference to any bean in the same container or parent container, regardless of
whether it is in the same XML file. The value of the bean attribute may be the same as the i d attribute
of the target bean, or as one of the values in the nane attribute of the target bean.

<ref bean="soneBean"/ >

Specifying the target bean through the par ent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the par ent attribute may be the same as either the i d
attribute of the target bean, or one of the values in the nane attribute of the target bean, and the target
bean must be in a parent container of the current one. You use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a
proxy that will have the same name as the parent bean.

<l-- in the parent context -->

<bean id="account Servi ce" cl ass="com foo. Si npl eAccount Servi ce">
<l-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean id="account Servi ce" <!-- bean nane is the same as the parent bean -->
cl ass="org. springframewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target">

<ref parent="account Service"/> <!-- notice how we refer to the parent bean -->
</ property>
<l-- insert other configuration and dependencies as required here -->
</ bean>

Note

The | ocal attribute on the r ef element is no longer supported in the 4.0 beans xsd since it
does not provide value over a regular bean reference anymore. Simply change your existing r ef
| ocal referencestoref bean when upgrading to the 4.0 schema.

4.3.16.RELEASE Spring Framework 57

Spring Framework Reference Documentation

Inner beans

A <bean/ > elementinside the <pr operty/ > or<const r uct or - ar g/ > elements defines a so-called
inner bean.

<bean id="outer" class="...">
<I-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property name="target">
<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property name="nanme" val ue="Fi ona Apple"/>
<property name="age" val ue="25"/>
</ bean>
</ property>
</ bean>

An inner bean definition does not require a defined id or name; if specified, the container does not use
such a value as an identifier. The container also ignores the scope flag on creation: Inner beans are
always anonymous and they are always created with the outer bean. It is not possible to inject inner
beans into collaborating beans other than into the enclosing bean or to access them independently.

As a corner case, it is possible to receive destruction callbacks from a custom scope, e.g. for a request-
scoped inner bean contained within a singleton bean: The creation of the inner bean instance will be tied
to its containing bean, but destruction callbacks allow it to participate in the request scope’s lifecycle.
This is not a common scenario; inner beans typically simply share their containing bean’s scope.

Collections

Inthe <l i st/ >, <set/ >, <map/ >, and <pr ops/ > elements, you set the properties and arguments of
the Java Col | ecti on types Li st, Set, Map, and Pr operti es, respectively.

<bean i d="noreConpl exbj ect” cl ass="exanpl e. Conpl exhj ect" >

<I-- results in a set Adm nEmai |l s(java.util.Properties) call -->
<property name="admi nEmail s">
<pr OpS>

<prop key="adm ni strator">adm ni strator @xanpl e. or g</ prop>
<prop key="support">support @xanpl e. or g</ pr op>
<prop key="devel opnment " >devel opment @xanpl e. or g</ pr op>

</ props>
</ property>
<l-- results in a setSoneList(java.util.List) call -->
<property name="soneList">

<list>

<val ue>a list elenment followed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a setSoneMap(java.util.Mp) call -->
<property name="soneMap">

<map>

<entry key="an entry" val ue="just some string"/>
<entry key ="a ref" val ue-ref="nyDat aSource"/>

</ map>
</ property>
<l-- results in a setSoneSet(java.util.Set) call -->
<property name="someSet">

<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</ set >
</ property>
</ bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

4.3.16.RELEASE Spring Framework 58

Spring Framework Reference Documentation

bean | ref | idref | list | set | map | props | value | nul

Collection merging

The Spring container also supports the merging of collections. An application developer can define a
parent-style <l i st/ >, <map/ >, <set/ > or <pr ops/ > element, and have child-style <l i st/ >, <map/
>, <set /> or <pr ops/ > elements inherit and override values from the parent collection. That is, the
child collection’s values are the result of merging the elements of the parent and child collections, with
the child’s collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent
and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

<beans>
<bean id="parent" abstract="true" cl ass="exanpl e. Conpl ex(bj ect">
<property nanme="adm nEmail s">
<props>
<prop key="adm ni strator">adm ni strat or @xanpl e. com</ pr op>
<prop key="support">support @xanpl e. com</ pr op>
</ props>
</ property>
</ bean>
<bean id="child" parent="parent">
<property name="adm nEmail s">
<I-- the nmerge is specified on the child collection definition -->
<props mnerge="true">
<prop key="sal es" >sal es@xanpl e. com</ prop>
<prop key="support">support @xanpl e. co. uk</ prop>
</ pr ops>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adm nEmai | s property
of the chi | d bean definition. When the chi | d bean is resolved and instantiated by the container, the
resulting instance has an adm nEnai | s Properti es collection that contains the result of the merging
of the child’s adm nEnai | s collection with the parent’s adni nEmai | s collection.

adm ni strat or=adm ni strat or @xanpl e. com
sal es=sal es@xanpl e. com
suppor t =support @xanpl e. co. uk

The child Pr oper ti es collection’s value set inherits all property elements from the parent <pr ops/ >,
and the child’s value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set / > collection types. In the
specific case of the <l i st/ > element, the semantics associated with the Li st collection type, that is,
the notion of an or der ed collection of values, is maintained; the parent’s values precede all of the child
list's values. In the case of the Map, Set , and Pr opert i es collection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set , and
Properti es implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a Li st), and if you do attempt to do
S0 an appropriate Except i on is thrown. The ner ge attribute must be specified on the lower, inherited,

4.3.16.RELEASE Spring Framework 59

Spring Framework Reference Documentation

child definition; specifying the mer ge attribute on a parent collection definition is redundant and will not
result in the desired merging.

Strongly-typed collection

With the introduction of generic types in Java 5, you can use strongly typed collections. That is, it is
possible to declare a Col | ect i on type such that it can only contain St ri ng elements (for example).
If you are using Spring to dependency-inject a strongly-typed Col | ecti on into a bean, you can
take advantage of Spring’'s type-conversion support such that the elements of your strongly-typed
Col | ect i on instances are converted to the appropriate type prior to being added to the Col | ecti on.

public class Foo {
private Map<String, Float> accounts;
public void setAccounts(Map<String, Float> accounts) {

this.accounts = accounts;

}

<beans>
<bean id="fo0" class="x.y.Foo">
<property name="accounts">
<n‘ap>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" value="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the account s property of the f 0o bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<Stri ng, Fl oat > is available by reflection. Thus Spring’s
type conversion infrastructure recognizes the various value elements as being of type Fl oat , and the
string values 9. 99, 2. 75, and 3. 99 are converted into an actual Fl oat type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty St r i ngs. The following XML-based
configuration metadata snippet sets the email property to the empty St ri ng value (™).

<bean cl ass="Exanpl eBean" >
<property name="email" val ue=""/>
</ bean>

The preceding example is equivalent to the following Java code:

exanpl eBean. setEmai | ("");

The <nul | / > element handles nul | values. For example:

<bean cl ass="Exanpl eBean" >
<property name="email ">
<nul | />
</ property>
</ bean>

The above configuration is equivalent to the following Java code:

exanpl eBean. set Emai | (nul |);

4.3.16.RELEASE Spring Framework 60

Spring Framework Reference Documentation

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element’s attributes, instead of nested <pr operty/ >
elements, to describe your property values and/or collaborating beans.

Spring supports extensible configuration formats with namespaces, which are based on an XML Schema
definition. The beans configuration format discussed in this chapter is defined in an XML Schema
document. However, the p-namespace is not defined in an XSD file and exists only in the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. spri ngfranmewor k. org/ schena/ p"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean name="cl assi ¢c" cl ass="com exanpl e. Exanpl eBean" >
<property name="email" val ue="foo@ar. coni'/>
</ bean>

<bean nane="p-nanmespace" cl ass="com exanpl e. Exanpl eBean"
p: emai | ="f oo@ar . cont'/ >
</ beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmework. or g/ schema/ p"
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean nane="j ohn-cl assi ¢c" cl ass="com exanpl e. Person">
<property name="nanme" val ue="John Doe"/>
<property name="spouse" ref="jane"/>

</ bean>

<bean nane="j ohn- noder n"
cl ass="com exanpl e. Person"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nane="j ane" cl ass="com exanpl e. Person" >
<property name="name" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can see, this example includes not only a property value using the p-namespace, but also uses
a special format to declare property references. Whereas the first bean definition uses <property
name="spouse" ref="jane"/> to create a reference from bean j ohn to bean j ane, the second
bean definition uses p: spouse-ref ="j ane" as an attribute to do the exact same thing. In this case
spouse is the property name, whereas the - r ef partindicates that this is not a straight value but rather
a reference to another bean.

4.3.16.RELEASE Spring Framework 61

Spring Framework Reference Documentation

Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref , whereas the standard XML
format does not. We recommend that you choose your approach carefully and communicate this
to your team members, to avoid producing XML documents that use all three approaches at the
same time.

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested const r uct or - ar g elements.

Let's review the examples from the section called “Constructor-based dependency injection” with the
C: namespace:

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: c="http://ww. springfranmewor k. or g/ schema/ c"
xsi : schemalLocati on="http://ww. springfranmework. or g/ schema/ beans
http://ww. springfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

<l-- traditional declaration -->

<bean id="foo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg val ue="f oo@ar.conl'/>

</ bean>

<l-- c-nanespace declaration -->

<bean id="foo0" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email ="foo@ar.conl/>
</ beans>

The c: namespace uses the same conventions as the p: one (trailing - r ef for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though
it is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<l-- c-nanespace index declaration -->
<bean id="fo0" class="x.y.Foo" c:_O-ref="bar" c:_1-ref="baz"/>

Note

Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

4.3.16.RELEASE Spring Framework 62

Spring Framework Reference Documentation

Compound property names

You can use compound or nested property names when you set bean properties, as long as all
components of the path except the final property name are not nul | . Consider the following bean
definition.

<bean id="foo0" class="foo.Bar">
<property name="fred. bob. samy" val ue="123" />
</ bean>

The f oo beanhas af r ed property, which has a bob property, which has a samy property, and that final
sanmmy property is being set to the value 123. In order for this to work, the f r ed property of f 00, and the
bob property of f r ed must not be nul | after the bean is constructed, or a Nul | Poi nt er Excepti on
is thrown.

Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <r ef / > element in XML-based configuration metadata. However,
sometimes dependencies between beans are less direct; for example, a static initializer in a class needs
to be triggered, such as database driver registration. The depends- on attribute can explicitly force one
or more beans to be initialized before the bean using this element is initialized. The following example
uses the depends- on attribute to express a dependency on a single bean:

<bean id="beanOne" cl ass="Exanpl eBean" depends-on="manager"/>
<bean id="nmnager" cl ass="Manager Bean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-
on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="nanager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean id="manager" cl ass="ManagerBean" />
<bean id="account Dao" cl ass="x.y.]dbc.JdbcAccount Dao" />

Note

The depends- on attribute in the bean definition can specify both an initialization time dependency
and, in the case of singleton beans only, a corresponding destroy time dependency. Dependent
beans that define a depends- on relationship with a given bean are destroyed first, prior to the
given bean itself being destroyed. Thus depends- on can also control shutdown order.

Lazy-initialized beans

By default, Appl i cati onCont ext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even
days later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the 10C container to create a
bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the | azy-i ni t attribute on the <bean/ > element; for example:

4.3.16.RELEASE Spring Framework 63

Spring Framework Reference Documentation

<bean id="lazy" class="com fo00. Expensi veToCr eat eBean" |azy-init="true"/>
<bean nanme="not.|azy" cl ass="com f0o0. Anot her Bean"/ >

When the preceding configuration is consumed by an Appl i cati onCont ext , the bean named | azy
is not eagerly pre-instantiated when the Appl i cat i onCont ext is starting up, whereas the not . | azy
bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized,
the Appl i cati onCont ext creates the lazy-initialized bean at startup, because it must satisfy the
singleton’s dependencies. The lazy-initialized bean is injected into a singleton bean elsewhere that is
not lazy-initialized.

You can also control lazy-initialization at the container level by using the def aul t - | azy-i ni t attribute
on the <beans/ > element; for example:

<beans default-lazy-init="true">
<I-- no beans will be pre-instantiated... -->
</ beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring
to resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
Appl i cati onCont ext . Autowiring has the following advantages:

» Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this
regard.)

» Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especially useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata 10, you specify autowire mode for a bean definition
with the aut owi r e attribute of the <bean/ > element. The autowiring functionality has four modes. You
specify autowiring per bean and thus can choose which ones to autowire.

Table 7.2. Autowiring modes

Mode Explanation

no (Default) No autowiring. Bean references must
be defined via a r ef element. Changing the
default setting is not recommended for larger
deployments, because specifying collaborators
explicitly gives greater control and clarity. To
some extent, it documents the structure of a
system.

byName Autowiring by property name. Spring looks for
a bean with the same name as the property

%see the section called “Dependency Injection”

4.3.16.RELEASE Spring Framework 64

Spring Framework Reference Documentation

Mode Explanation

that needs to be autowired. For example, if a
bean definition is set to autowire by name, and
it contains a master property (that is, it has a
setMaster(..) method), Spring looks for a bean
definition named nmast er, and uses it to set the

property.

byType Allows a property to be autowired if exactly one
bean of the property type exists in the container.
If more than one exists, a fatal exception is
thrown, which indicates that you may not use
byType autowiring for that bean. If there are no
matching beans, nothing happens; the property
is not set.

constructor Analogous to byType, but applies to constructor
arguments. If there is not exactly one bean of
the constructor argument type in the container, a
fatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases
all autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is St ri ng. An autowired
Maps values will consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general,
it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and construct or - ar g settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, St ri ngs, and C asses (and
arrays of such simple properties). This limitation is by-design.

» Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is careful
to avoid guessing in case of ambiguity that might have unexpected results, the relationships between
your Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring
container.

» Multiple bean definitions within the container may match the type specified by the setter method
or constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily
a problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

4.3.16.RELEASE Spring Framework 65

Spring Framework Reference Documentation

In the latter scenario, you have several options:
» Abandon autowiring in favor of explicit wiring.

« Avoid autowiring for a bean definition by setting its aut owi r e- candi dat e attributes to f al se as
described in the next section.

» Designate a single bean definition as the primary candidate by setting the pri mary attribute of its
<bean/ > elementtotrue.

* Implement the more fine-grained control available with annotation-based configuration, as described
in Section 7.9, “Annotation-based container configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set the
aut owi r e- candi dat e attribute of the <bean/ > element to f al se; the container makes that specific
bean definition unavailable to the autowiring infrastructure (including annotation style configurations
such as @\ut owi r ed).

Note

The aut owi r e- candi dat e attribute is designed to only affect type-based autowiring. It does
not affect explicit references by name, which will get resolved even if the specified bean is not
marked as an autowire candidate. As a consequence, autowiring by name will nevertheless inject
a bean if the name matches.

You can also limit autowire candidates based on pattern-matching against bean names. The top-
level <beans/ > element accepts one or more patterns within its def aul t - aut owi r e- candi dat es
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,
provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of t r ue or f al se for a bean definitions aut owi r e- candi dat e attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring.
It does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean
itself is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs
to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the
other. A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the Appl i cati onCont ext Awar e interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

4.3.16.RELEASE Spring Framework 66

Spring Framework Reference Documentation

/1 a class that uses a stateful Command-style class to perform sone processing
package fiona. appl e;

/'l Spring-APl inports

i nport org.springfranework. beans. BeansExcepti on;

i nport org.springframework. cont ext. Appli cati onCont ext;

i nport org.springfranework. cont ext. Appl i cati onCont ext Awar e;

public class CommandManager inplenents ApplicationContextAware {
private ApplicationContext applicationContext;

public Object process(Map commandState) {
/1 grab a new instance of the appropriate Command
Command command = creat eCommand() ;
/'l set the state on the (hopefully brand new) Comrand instance
command. set St at e(commandSt at e) ;
return command. execut e() ;

}

protected Conmand creat eCommand() {
/1 notice the Spring APl dependency!
return this.applicationContext.getBean("conmand", Conmand. cl ass);

}

public void setApplicationContext (
Appl i cati onCont ext applicationContext) throws BeansException {
this.applicationContext = applicationContext;

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring loC container, allows this

use case to be handled in a clean fashion.

You can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typically involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a

subclass that overrides the method.

Note

» For this dynamic subclassing to work, the class that the Spring bean container will subclass
cannot be f i nal , and the method to be overridden cannot be fi nal either.

» Unit-testing a class that has an abst r act method requires you to subclass the class yourself
and to supply a stub implementation of the abst r act method.

» Concrete methods are also necessary for component scanning which requires concrete classes
to pick up.

» Afurther key limitation is that lookup methods won’'t work with factory methods and in particular
not with @ean methods in configuration classes, since the container is not in charge of creating
the instance in that case and therefore cannot create a runtime-generated subclass on the fly.

4.3.16.RELEASE Spring Framework

67

https://spring.io/blog/2004/08/06/method-injection/

Spring Framework Reference Documentation

Looking at the CommandManager class in the previous code snippet, you see that the Spring
container will dynamically override the implementation of the creat eConmand() method. Your
ConmandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona. appl e;
/1 no nore Spring inports!
public abstract class ConmandManager {

public Object process(Object commandState) {
/1 grab a new instance of the appropriate Conmand interface
Command conmmand = creat eCommand() ;
/] set the state on the (hopefully brand new) Command i nstance
command. set St at e(commandSt at e) ;
return conmand. execut e();

}

/| okay... but where is the inplenentation of this nethod?
protected abstract Command creat eCommand() ;

In the client class containing the method to be injected (the ConmandManager in this case), the method
to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodNane(no-argunents);

If the method is abst r act, the dynamically-generated subclass implements the method. Otherwise,
the dynamically-generated subclass overrides the concrete method defined in the original class. For
example:

<I-- a stateful bean deployed as a prototype (non-singleton) -->

<bean i d="myCommand" cl ass="fi ona. appl e. AsyncConmand" scope="prototype">
<!-- inject dependencies here as required -->

</ bean>

<!'-- commandPr ocessor uses stateful CommandHel per -->

<bean id="comandManager" cl ass="fi ona. appl e. CommandManager " >
<l ookup- net hod name="cr eat eCommand" bean="nyConmmand"/ >
</ bean>

The bean identified as commandManager calls its own method cr eat eCormand() whenever it needs
a new instance of the myCommand bean. You must be careful to deploy the myConmmand bean as a
prototype, if that is actually what is needed. If it is as a singleton, the same instance of the ny Command
bean is returned each time.

Alternatively, within the annotation-based component model, you may declare a lookup method through
the @Q.ookup annotation:

public abstract class ConmandManager {

public Object process(Object commandState) {
Command command = creat eCommand() ;
conmand. set St at e(commandSt at e) ;
return command. execut e() ;

}

@.ookup(" myCommand")
protected abstract Conmand creat eConmand();

4.3.16.RELEASE Spring Framework 68

Spring Framework Reference Documentation

Or, more idiomatically, you may rely on the target bean getting resolved against the declared return
type of the lookup method:

public abstract class ConmandManager {

public Object process(Object commandState) {
MyConmand conmand = creat eConmand() ;
command. set St at e(commandSt at e) ;
return conmand. execut e() ;

}

@ookup
protected abstract MyConmand creat eConmand() ;

Note that you will typically declare such annotated lookup methods with a concrete stub implementation,
in order for them to be compatible with Spring’s component scanning rules where abstract classes get
ignored by default. This limitation does not apply in case of explicitly registered or explicitly imported
bean classes.

Tip

Another way of accessing differently scoped target beans is an (bj ect Fact ory/ Provi der
injection point. Check out the section called “Scoped beans as dependencies”.

The interested reader may also find the ServiceLocatorFactoryBean (in the
org. springfranmewor k. beans. factory. confi g package) to be of use.

Arbitrary method replacement

A less useful form of method injection than lookup method injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of
this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the r epl aced- net hod element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with
a method computeValue, which we want to override:

public class MyVal ueCal cul ator {
public String conputeValue(String input) {
/1 sone real code...

}

/1 sone ot her nethods. ..

A class implementing the or g. spri ngf ranmewor k. beans. f act ory. support. Met hodRepl acer
interface provides the new method definition.

4.3.16.RELEASE Spring Framework 69

Spring Framework Reference Documentation

/**
* meant to be used to override the existing conputeVal ue(String)
* inplementation in MyVal ueCal cul at or
*/
public class Repl acenent Conput eVal ue i npl enents Met hodRepl acer {
public Object reinplenent(Object o, Method m Object[] args) throws Throwable {
/1 get the input value, work with it, and return a conputed result

String input = (String) args[O0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean id="myVal ueCal cul ator" class="x.y.z. MyVal ueCal cul ator">
<!-- arbitrary nethod replacenment -->
<repl aced- net hod nanme="conput eVal ue" repl acer="r epl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</repl aced- net hod>
</ bean>

<bean id="repl acenent Conput eVal ue" cl ass="a.b. c. Repl acenent Conput eVal ue"/ >

You can use one or more contained <ar g-type/ > elements within the <r epl aced- net hod/ >
element to indicate the method signature of the method being overridden. The signature for the
arguments is necessary only if the method is overloaded and multiple variants exist within the class.
For convenience, the type string for an argument may be a substring of the fully qualified type name.
For example, the following all match j ava. | ang. Stri ng:

java.lang. String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an
argument type.

7.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined
by that bean definition. The idea that a bean definition is a recipe is important, because it means that,
as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into
an object that is created from a particular bean definition, but also the scope of the objects created from
a particular bean definition. This approach is powerful and flexible in that you can choose the scope
of the objects you create through configuration instead of having to bake in the scope of an object at
the Java class level. Beans can be defined to be deployed in one of a number of scopes: out of the
box, the Spring Framework supports seven scopes, five of which are available only if you use a web-
aware Appl i cat i onCont ext .

The following scopes are supported out of the box. You can also create a custom scope.

4.3.16.RELEASE Spring Framework 70

Spring Framework Reference Documentation

Table 7.3. Bean scopes

Scope Description
singleton (Default) Scopes a single bean definition to a
single object instance per Spring 1oC container.
prototype Scopes a single bean definition to any number of
object instances.
request Scopes a single bean definition to the lifecycle
of a single HTTP request; that is, each HTTP
request has its own instance of a bean created
off the back of a single bean definition. Only
valid in the context of a web-aware Spring
Appl i cati onCont ext .
session Scopes a single bean definition to the lifecycle of
an HTTP Sessi on. Only valid in the context of a
web-aware Spring Appl i cati onCont ext .
globalSession Scopes a single bean definition to the lifecycle
of a global HTTP Sessi on. Typically only
valid when used in a Portlet context. Only
valid in the context of a web-aware Spring
Appl i cati onCont ext .
application Scopes a single bean definition to the lifecycle of
a Ser vl et Cont ext . Only valid in the context of
a web-aware Spring Appl i cati onCont ext .
websocket Scopes a single bean definition to the lifecycle
of a WebSocket . Only valid in the context of a
web-aware Spring Appl i cati onCont ext .
Note

As of Spring 3.0, a thread scope is available, but is not registered by default. For more information,
see the documentation for Si_ npl eThr eadScope. For instructions on how to register this or any
other custom scope, see the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or
ids matching that bean definition result in that one specific bean instance being returned by the Spring

container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring 1oC
container creates exactly one instance of the object defined by that bean definition. This single instance
is stored in a cache of such singleton beans, and all subsequent requests and references for that named

bean return the cached object.

4.3.16.RELEASE

Spring Framework

71

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring Framework Reference Documentation

‘ Only one instance is ever created...

1

<bean id="accountDaeo" =lass="..." />

... and this same shared instance is injected into each collaborating object

Spring’s concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only
one instance of a particular class is created per ClassLoader. The scope of the Spring singleton is best
described as per container and per bean. This means that if you define one bean for a particular class
in a single Spring container, then the Spring container creates one and only one instance of the class
defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
a singleton in XML, you would write, for example:

<bean id="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce"/ >

<l-- the follow ng is equival ent, though redundant (singleton scope is the default) -->
<bean id="account Servi ce" class="com foo. Def aul t Account Servi ce" scope="si ngl eton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time a request for that specific bean is made. That is, the bean is injected into another bean or
you request it through a get Bean() method call on the container. As a rule, use the prototype scope
for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for this author to reuse the core of the singleton diagram.

4.3.16.RELEASE Spring Framework 72

Spring Framework Reference Documentation

A brand new bean instance is created...

/., | <bean id="accountDao" class="..."
; scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

The following example defines a bean as a prototype in XML:

<bean id="account Servi ce" cl ass="com f o0o. Def aul t Account Servi ce" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held
by prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans
that need to be cleaned up.

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a replacement
for the Java new operator. All lifecycle management past that point must be handled by the client. (For
details on the lifecycle of a bean in the Spring container, see the section called “Lifecycle callbacks”.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean
into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into
the singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-
scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-
scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your
singleton bean, because that injection occurs only once, when the Spring container is instantiating the
singleton bean and resolving and injecting its dependencies. If you need a new instance of a prototype
bean at runtime more than once, see the section called “Method injection”

Request, session, global session, application, and WebSocket scopes

The request, session, gl obal Session, application, and websocket scopes are only
available if you use a web-aware Spring ApplicationContext implementation (such as
Xm WebAppl i cati onCont ext). If you use these scopes with regular Spring 1oC containers

4.3.16.RELEASE Spring Framework 73

Spring Framework Reference Documentation

such as the d assPat hXm Appl i cati onContext, an ||| egal St at eExcepti on will be thrown
complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the r equest, sessi on, gl obal Sessi on, appl i cati on, and
websocket levels (web-scoped beans), some minor initial configuration is required before you define
your beans. (This initial setup is not required for the standard scopes, si ngl et on and pr ot ot ype.)

How you accomplish this initial setup depends on your particular Servlet environment.

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed
by the Spring Di spat cher Servl et or Di spat cher Port| et, then no special setup is necessary:
Di spat cher Servl et and Di spat cher Port | et already expose all relevant state.

If you wuse a Servlet 2.5 web container, with requests processed outside of
Spring’s Di spatcher Servl et (for example, when wusing JSF or Struts), you need
to register the org.springfranework. web. cont ext.request. Request Cont ext Li st ener
Servl et Request Li stener. For Servlet 3.0+, this can be done programmatically via the
WebApplicationlnitializer interface. Alternatively, or for older containers, add the following
declaration to your web application’s web. xm file:

<web- app>

<l|istener>
<listener-cl ass>
or g. spri ngf ramewor k. web. cont ext . request . Request Cont ext Li st ener
</listener-class>
</listener>

</ web- app>

Alternatively, if there are issues with your listener setup, consider using Spring’s
Request Context Fil ter. The filter mapping depends on the surrounding web application
configuration, so you have to change it as appropriate.

<web- app>

<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>requestContextFilter</filter-nane>
<url -pattern>/*</url -pattern>
</filter-mappi ng>

</ web- app>

Di spat cher Servl et, Request Cont ext Li st ener, and Request Cont ext Fi | t er all do exactly
the same thing, namely bind the HTTP request object to the Thr ead that is servicing that request. This
makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following XML configuration for a bean definition:

<bean id="I|ogi nAction" class="com foo. Logi nActi on" scope="request"/>

4.3.16.RELEASE Spring Framework 74

Spring Framework Reference Documentation

The Spring container creates a new instance of the Logi nAct i on bean by using the | ogi nActi on
bean definition for each and every HTTP request. That is, the | ogi nActi on bean is scoped at the
HTTP request level. You can change the internal state of the instance that is created as much as you
want, because other instances created from the same | ogi nAct i on bean definition will not see these
changes in state; they are particular to an individual request. When the request completes processing,
the bean that is scoped to the request is discarded.

When using annotation-driven components or Java Config, the @equest Scope annotation can be
used to assign a component to the r equest scope.

@rRequest Scope

@onponent

public class LoginAction {
...

}

Session scope
Consider the following XML configuration for a bean definition:

<bean id="userPreferences" class="com foo. UserPreferences" scope="session"/>

The Spring container creates a new instance of the User Preferences bean by using the
user Pr ef er ences bean definition for the lifetime of a single HTTP Sessi on. In other words, the
user Pr ef er ences bean is effectively scoped at the HTTP Sessi on level. As with r equest - scoped
beans, you can change the internal state of the instance that is created as much as you want,
knowing that other HTTP Sessi on instances that are also using instances created from the same
user Pr ef er ences bean definition do not see these changes in state, because they are particular to an
individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is scoped
to that particular HTTP Sessi on is also discarded.

When using annotation-driven components or Java Config, the @essi onScope annotation can be
used to assign a component to the sessi on scope.

@essi onScope

@onponent

public class UserPreferences {
I

}

Global session scope
Consider the following bean definition:

<bean id="user Preferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/>

The gl obal Sessi on scope is similar to the standard HTTP Sessi on scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion
of a global Sessi on that is shared among all portlets that make up a single portlet web application.
Beans defined at the gl obal Sessi on scope are scoped (or bound) to the lifetime of the global portlet
Sessi on.

If you write a standard Servlet-based web application and you define one or more beans as having
gl obal Sessi on scope, the standard HTTP Sessi on scope is used, and no error is raised.

Application scope

Consider the following XML configuration for a bean definition:

4.3.16.RELEASE Spring Framework 75

Spring Framework Reference Documentation

<bean i d="appPreferences" class="com foo. AppPref erences" scope="application"/>

The Spring container creates a new instance of the AppPreferences bean by using the
appPr ef er ences bean definition once for the entire web application. That is, the appPr ef er ences
bean is scoped at the Ser vl et Cont ext level, stored as a regular Ser vl et Cont ext attribute. This
is somewhat similar to a Spring singleton bean but differs in two important ways: It is a singleton per
Ser vl et Cont ext, not per Spring 'ApplicationContext' (for which there may be several in any given
web application), and it is actually exposed and therefore visible as a Ser vl et Cont ext attribute.

When using annotation-driven components or Java Config, the @\ppl i cat i onScope annotation can
be used to assign a component to the appl i cat i on scope.

@\ppl i cati onScope

@onponent

public class AppPreferences {
...

}
Scoped beans as dependencies

The Spring IoC container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean of a longer-lived scope, you may choose to inject an AOP proxy in place of the scoped
bean. That is, you need to inject a proxy object that exposes the same public interface as the scoped
object but that can also retrieve the real target object from the relevant scope (such as an HTTP request)
and delegate method calls onto the real object.

Note

You may also use <aop: scoped- pr oxy/ > between beans that are scoped as si ngl et on, with
the reference then going through an intermediate proxy that is serializable and therefore able to
re-obtain the target singleton bean on deserialization.

When declaring <aop: scoped- pr oxy/ > against a bean of scope pr ot ot ype, every method
call on the shared proxy will lead to the creation of a new target instance which the call is then
being forwarded to.

Also, scoped proxies are not the only way to access beans from shorter scopes in a lifecycle-safe
fashion. You may also simply declare your injection point (i.e. the constructor/setter argument
or autowired field) as Obj ect Fact or y<MyTar get Bean>, allowing for a get Obj ect () call to
retrieve the current instance on demand every time it is needed - without holding on to the instance
or storing it separately.

The JSR-330 variant of this is called Provi der, used with a Provi der <MyTar get Bean>
declaration and a corresponding get () call for every retrieval attempt. See here for more details
on JSR-330 overall.

The configuration in the following example is only one line, but it is important to understand the "why"
as well as the "how" behind it.

4.3.16.RELEASE Spring Framework 76

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww.springfranework. org/ schema/ aop"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
http://ww. springfranework. org/ schema/ aop/ spri ng- aop. xsd" >

<l-- an HITP Sessi on-scoped bean exposed as a proxy -->

<bean id="user Preferences" class="com foo. UserPreferences" scope="session">
<l-- instructs the container to proxy the surrounding bean -->
<aop: scoped- pr oxy/ >

</ bean>

<I-- a singl eton-scoped bean injected with a proxy to the above bean -->
<bean id="user Service" class="com foo. Si npl eUser Servi ce">
<l-- a reference to the proxi ed userPreferences bean -->
<property name="user Preferences" ref="userPreferences"/>
</ bean>
</ beans>

To create such a proxy, you insert a child <aop: scoped- proxy/ > element into a scoped bean
definition (see the section called “Choosing the type of proxy to create” and Chapter 41, XML Schema-
based configuration). Why do definitions of beans scoped at the r equest , sessi on, gl obal Sessi on
and custom-scope levels require the <aop: scoped- pr oxy/ > element? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes
(note that the following user Pr ef er ences bean definition as it stands is incomplete).

<bean id="userPreferences" class="com foo. UserPreferences" scope="session"/>

<bean id="user Manager" cl ass="com fo0o. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

In the preceding example, the singleton bean user Manager is injected with a reference to the HTTP
Sessi on-scoped bean user Pr ef er ences. The salient point here is that the user Manager beanis a
singleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the user Pr ef er ences bean) are also injected only once. This means that the user Manager bean
will only operate on the exact same user Pr ef er ences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-
lived scoped bean, for example injecting an HTTP Sessi on-scoped collaborating bean as a
dependency into singleton bean. Rather, you need a single user Manager object, and for the
lifetime of an HTTP Sessi on, you need a user Pr ef er ences object that is specific to said HTTP
Sessi on. Thus the container creates an object that exposes the exact same public interface as
the User Pr ef er ences class (ideally an object that is a User Pr ef er ences instance) which can
fetch the real User Pr ef er ences object from the scoping mechanism (HTTP request, Sessi on,
etc.). The container injects this proxy object into the user Manager bean, which is unaware that this
User Pr ef er ences reference is a proxy. In this example, when a User Manager instance invokes
a method on the dependency-injected User Pr ef er ences object, it actually is invoking a method on
the proxy. The proxy then fetches the real User Pr ef er ences object from (in this case) the HTTP
Sessi on, and delegates the method invocation onto the retrieved real User Pr ef er ences object.

Thus you need the following, correct and complete, configuration when injecting r equest -, sessi on-,
and gl obal Sessi on- scoped beans into collaborating objects:

4.3.16.RELEASE Spring Framework 77

Spring Framework Reference Documentation

<bean id="userPreferences" class="com foo. UserPreferences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean id="user Manager" cl ass="com f 0o. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy is created.

Note

CGLIB proxies only intercept public method calls! Do not call non-public methods on such a proxy;
they will not be delegated to the actual scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies
for such scoped beans, by specifying f al se for the value of the pr oxy-t ar get - cl ass attribute of
the <aop: scoped- pr oxy/ > element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it also means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean is injected must reference the bean through one of its interfaces.

<!l-- Defaul tUserPreferences inplenents the UserPreferences interface -->

<bean id="userPreferences" class="com foo. Defaul t User Pref erences" scope="session">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean id="user Manager" class="com fo0o. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

For more detailed information about choosing class-based or interface-based proxying, see
Section 11.6, “Proxying mechanisms”.

Custom scopes

The bean scoping mechanism is extensible; You can define your own scopes, or even redefine existing
scopes, although the latter is considered bad practice and you cannot override the built-in si ngl et on
and pr ot ot ype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
or g. spri ngframewor k. beans. factory. confi g. Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope javadocs, which explains the methods you
need to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope,
and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

4.3.16.RELEASE Spring Framework 78

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/beans/factory/config/Scope.html

Spring Framework Reference Documentation

Obj ect get(String name, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

Obj ect renobve(String nane)

The following method registers the callbacks the scope should execute when it is destroyed or when
the specified object in the scope is destroyed. Refer to the javadocs or a Spring scope implementation
for more information on destruction callbacks.

voi d regi sterDestructionCal | back(String name, Runnabl e destructionCall back)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, this identifier can be the session
identifier.

String getConversationld()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

voi d regi sterScope(String scopeNane, Scope scope);

This method is declared on the Conf i gur abl eBeanFact ory interface, which is available on most
of the concrete Appl i cati onCont ext implementations that ship with Spring via the BeanFactory

property.

The first argument to the regi st er Scope(..) method is the unigue name associated with a
scope; examples of such names in the Spring container itself are si ngl et on and pr ot ot ype. The
second argument to the r egi st er Scope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

Note

The example below uses Si mpl eThr eadScope which is included with Spring, but not registered
by default. The instructions would be the same for your own custom Scope implementations.

Scope threadScope = new Si npl eThr eadScope();
beanFact ory. regi st er Scope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, using the Cust onScopeConf i gur er class:

4.3.16.RELEASE Spring Framework 79

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww.springfranework. org/ schema/ aop"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
http://ww. springfranework. org/ schema/ aop/ spri ng- aop. xsd" >

<bean cl ass="org. springfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread">
<bean cl ass="org. spri ngframewor k. cont ext. support. Si npl eThr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="name" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean id="foo0" class="x.y.Foo">
<property name="bar" ref="bar"/>

</ bean>

</ beans>

Note

When you place <aop: scoped- proxy/ > in a Fact or yBean implementation, it is the factory
bean itself that is scoped, not the object returned from get Obj ect () .

7.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement
the Spring InitializingBean and Disposabl eBean interfaces. The container calls
after PropertiesSet () for the former and dest roy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans.

Tip

The JSR-250 @Post Const ruct and @r eDest r oy annotations are generally considered best
practice for receiving lifecycle callbacks in a modern Spring application. Using these annotations
means that your beans are not coupled to Spring specific interfaces. For details see the section
called “@PostConstruct and @PreDestroy”.

If you don’t want to use the JSR-250 annotations but you are still looking to remove coupling
consider the use of init-method and destroy-method object definition metadata.

Internally, the Spring Framework uses BeanPost Pr ocessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPost Pr ocessor yourself.
For more information, see Section 7.8, “Container Extension Points”.

4.3.16.RELEASE Spring Framework 80

Spring Framework Reference Documentation

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Li f ecycl e interface so that those objects can participate in the startup and shutdown process as
driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.
Initialization callbacks

The org. spri ngframewor k. beans. factory. I nitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container.
The I ni tializi ngBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

It is recommended that you do not use the | ni ti al i zi ngBean interface because it unnecessarily
couples the code to Spring. Alternatively, use the @ost Const r uct annotation or specify a POJO
initialization method. In the case of XML-based configuration metadata, you use the i ni t - net hod
attribute to specify the name of the method that has a void no-argument signature. With Java config,
you use the i ni t Met hod attribute of @ean, see the section called “Receiving lifecycle callbacks”. For
example, the following:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nmethod="init"/>

public class Exanpl eBean {

public void init() {
/1 do sone initialization work

}

...is exactly the same as...

<bean id="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Another Exanpl eBean i nplenents InitializingBean {

public void afterPropertiesSet() {
/1 do sone initialization work

}

but does not couple the code to Spring.
Destruction callbacks

Implementing the or g. spri ngf ramewor k. beans. f act ory. Di sposabl eBean interface allows a
bean to get a callback when the container containing it is destroyed. The Di sposabl eBean interface
specifies a single method:

voi d destroy() throws Exception;

It is recommended that you do not use the Di sposabl eBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, use the @r eDest r oy annotation or specify
a generic method that is supported by bean definitions. With XML-based configuration metadata, you
use the dest r oy- net hod attribute on the <bean/ >. With Java config, you use the dest r oyMet hod
attribute of @ean, see the section called “Receiving lifecycle callbacks”. For example, the following
definition:

4.3.16.RELEASE Spring Framework 81

Spring Framework Reference Documentation

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- net hod="cl eanup"/ >

public class Exanpl eBean {

public void cleanup() {
/1 do sonme destruction work (like rel easing pool ed connecti ons)

}

is exactly the same as:

<bean id="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like rel easing pool ed connecti ons)

}

but does not couple the code to Spring.

Tip

The dest r oy- et hod attribute of a <bean> element can be assigned a special (i nf erred)
value which instructs Spring to automatically detect a public cl ose or shut down method
on the specific bean class (any class that implements j ava. | ang. Aut oCl oseabl e or
j ava. i o. C oseabl e would therefore match). This special (i nf er r ed) value can also be set
on the def aul t - dest r oy- net hod attribute of a <beans> element to apply this behavior to an
entire set of beans (see the section called “Default initialization and destroy methods”). Note that
this is the default behavior with Java config.

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and D sposabl eBean callback interfaces, you typically write methods with
namessuchasinit(),initialize(),dispose(),andsoon.Ideally, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names
and ensure consistency.

You can configure the Spring container to | ook for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application
classes and use an initialization callback called i ni t (), without having to configure an init-
nmet hod="ini t" attribute with each bean definition. The Spring 10C container calls that method
when the bean is created (and in accordance with the standard lifecycle callback contract described
previously). This feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named i ni t () and destroy callback methods are
named dest r oy() . Your class will resemble the class in the following example.

4.3.16.RELEASE Spring Framework 82

Spring Framework Reference Documentation

public class DefaultBlogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public void set Bl ogDao(Bl ogDao bl ogDao) {
this. bl ogDao = bl ogDao;
}

/1 this is (unsurprisingly) the initialization callback nethod
public void init() {
if (this.blogbao == null) {
throw new Il egal StateException("The [bl ogDao] property nust be set.");
}

<beans defaul t-init-nethod="init">
<bean id="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property nanme="bl ogDao" ref="bl ogDao" />

</ bean>

</ beans>

The presence of the def aul t -i ni t - met hod attribute on the top-level <beans/ > element attribute
causes the Spring IoC container to recognize a method called i ni t on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it is invoked
at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the def aul t - dest r oy-
net hod attribute on the top-level <beans/ > element.

Where existing bean classes already have callback methods that are named at variance with the
convention, you can override the default by specifying (in XML, that is) the method name using the
i nit-nmethodand dest roy- net hod attributes of the <bean/ > itself.

The Spring container guarantees that a configured initialization callback is called immediately after
a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target
bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the
target bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the I ni ti al i zi ngBean
and Di sposabl eBean callback interfaces; custom init() and destroy() methods; and the
@ost Const ruct _and @°r eDest r oy annotations. You can combine these mechanisms to control a
given bean.

Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is configured
with a different method name, then each configured method is executed in the order listed below.
However, if the same method name is configured - for example, i ni t () for an initialization
method - for more than one of these lifecycle mechanisms, that method is executed once, as
explained in the preceding section.

4.3.16.RELEASE Spring Framework 83

Spring Framework Reference Documentation

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called as follows:

* Methods annotated with @ost Const r uct

« afterPropertiesSet() asdefinedbythelnitializingBean callback interface
» A custom configured i ni t () method

Destroy methods are called in the same order:

» Methods annotated with @°r eDest r oy

» destroy() as defined by the Di sposabl eBean callback interface

» A custom configured dest r oy() method

Startup and shutdown callbacks

The Li f ecycl e interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):

public interface Lifecycle {
void start();
void stop();

bool ean i sRunni ng();

Any Spring-managed object may implement that interface. Then, when the Appl i cat i onCont ext
itself receives start and stop signals, e.g. for a stop/restart scenario at runtime, it will cascade those
calls to all Li fecycl e implementations defined within that context. It does this by delegating to a
Li f ecycl eProcessor:

public interface Lifecycl eProcessor extends Lifecycle {
voi d onRefresh();

voi d ond ose();

Notice that the Li f ecycl ePr ocessor is itself an extension of the Li f ecycl e interface. It also adds
two other methods for reacting to the context being refreshed and closed.

Tip

Note that the regular or g. spri ngf ramewor k. cont ext . Li f ecycl e interface is just a plain
contract for explicit start/stop notifications and does NOT imply auto-startup at context refresh
time. Consider implementing or g. spri ngf r anmewor k. cont ext . Smart Li f ecycl e instead
for fine-grained control over auto-startup of a specific bean (including startup phases). Also, please
note that stop notifications are not guaranteed to come before destruction: On regular shutdown,
all Li f ecycl e beans will first receive a stop notification before the general destruction callbacks
are being propagated; however, on hot refresh during a context’s lifetime or on aborted refresh
attempts, only destroy methods will be called.

4.3.16.RELEASE Spring Framework 84

Spring Framework Reference Documentation

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its
dependency. However, at times the direct dependencies are unknown. You may only know that objects
of a certain type should start prior to objects of another type. In those cases, the SnartLi f ecycl e
interface defines another option, namely the get Phase() method as defined on its super-interface,
Phased.

public interface Phased {

i nt get Phase();

public interface SmartLifecycle extends Lifecycle, Phased {
bool ean i sAutoStartup();

voi d stop(Runnabl e cal | back);

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is
followed. Therefore, an object that implements Snmart Li f ecycl e and whose get Phase() method
returns | nt eger . M N_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of | nt eger . MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering
the phase value, it's also important to know that the default phase for any "normal” Li f ecycl e object
that does not implement Snart Li f ecycl e would be 0. Therefore, any negative phase value would
indicate that an object should start before those standard components (and stop after them), and vice
versa for any positive phase value.

As you can see the stop method defined by Smar t Li f ecycl e accepts a callback. Any implementation
must invoke that callback’s r un() method after that implementation’s shutdown process is complete.
That enables asynchronous shutdown where necessary since the default implementation of the
Li fecycl eProcessor interface, Def aul t Li f ecycl eProcessor, will wait up to its timeout value
for the group of objects within each phase to invoke that callback. The default per-phase timeout
is 30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the following
would be sufficient:

<bean id="lifecycl eProcessor" class="org.springfranmework.context.support.DefaultLifecycleProcessor">
<l-- timeout value in mlliseconds -->
<property nanme="ti meout Per Shut dowmnPhase" val ue="10000"/>

</ bean>

As mentioned, the Li f ecycl ePr ocessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if st op() had
been called explicitly, but it will happen when the context is closing. The 'refresh' callback on the
other hand enables another feature of Snart Li f ecycl e beans. When the context is refreshed (after
all objects have been instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each Smart Li f ecycl e object’s
i sAut oSt art up() method. If "true", then that object will be started at that point rather than waiting for
an explicit invocation of the context’s or its own st ar t () method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well
as any "depends-on" relationships will determine the startup order in the same way as described above.

4.3.16.RELEASE Spring Framework 85

Spring Framework Reference Documentation

Shutting down the Spring loC container gracefully in non-web applications

Note

This section applies only to non-web applications. Spring’s web-based Appl i cat i onCont ext
implementations already have code in place to shut down the Spring IoC container gracefully
when the relevant web application is shut down.

If you are using Spring’s 1oC container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the r egi st er Shut downHook () method that is declared on the
Confi gur abl eAppl i cati onCont ext interface:

i mport org.springframework. cont ext. Confi gurabl eAppl i cati onCont ext;
i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;

public final class Boot {

public static void main(final String[] args) throws Exception {
Conf i gur abl eAppli cati onContext ctx = new Cl assPat hXml Appl i cati onCont ext ("“beans. xm ") ;

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/1 app runs here...

/1 main nethod exits, hook is called prior to the app shutting down...

ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the
org. spri ngfranmewor k. cont ext. Appl i cati onCont ext Awar e interface, the instance is
provided with a reference to that Appl i cat i onCont ext .

public interface ApplicationContextAware {

voi d set ApplicationContext (ApplicationContext applicationContext) throws BeansExcepti on;

}

Thus beans can manipulate programmatically the Appl i cat i onCont ext that created them, through
the Appl i cat i onCont ext interface, or by casting the reference to a known subclass of this interface,
such as Confi gurabl eAppl i cati onCont ext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion
of Control style, where collaborators are provided to beans as properties. Other methods of the
Appl i cati onCont ext provide access to file resources, publishing application events, and accessing
a MessageSour ce. These additional features are described in Section 7.15, “Additional capabilities of
the ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the Appl i cat i onCont ext .
The "traditional" construct or and byType autowiring modes (as described in the section called
“Autowiring collaborators”) can provide a dependency of type Appl i cat i onCont ext for a constructor
argument or setter method parameter, respectively. For more flexibility, including the ability to autowire

4.3.16.RELEASE Spring Framework 86

Spring Framework Reference Documentation

fields and multiple parameter methods, use the new annotation-based autowiring features. If you do,
the Appl i cati onCont ext is autowired into a field, constructor argument, or method parameter that
is expecting the Appl i cati onCont ext type if the field, constructor, or method in question carries the
@\ut owi r ed annotation. For more information, see the section called “@Autowired”.

When an Appl i cat i onCont ext creates a class that implements the
org. spri ngfranmewor k. beans. f act ory. BeanNaneAwar e interface, the class is provided with a
reference to the name defined in its associated object definition.

public interface BeanNaneAware {

voi d set BeanName(String nane) throws BeansExcepti on;

}

The callback is invoked after population of normal bean properties but before an initialization callback
such as |l nitializi ngBean afterPropertiesSet or a custom init-method.

Other Aware interfaces

Besides Appl i cat i onCont ext Awar e and BeanNaneAwar e discussed above, Spring offers a range
of Awar e interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Awar e interfaces are summarized below - as a general rule, the name
is a good indication of the dependency type:

Table 7.4. Aware interfaces

Name Injected Dependency Explained in...
Appl i cati onCont ext Awar e | Declaring the section called
Appl i cati onCont ext “ApplicationContextAware and
BeanNameAware”

Appl i cati onEvent Publ i sher Bwanepublisher of the enclosing Section 7.15, “Additional
Appl i cati onCont ext capabilities of the
ApplicationContext”

BeanCl assLoader Awar e Class loader used to load the the section called “Instantiating
bean classes. beans”

BeanFact or yAwar e Declaring BeanFact ory the section called
“ApplicationContextAware and
BeanNameAware”

BeanNanmeAwar e Name of the declaring bean the section called
“ApplicationContextAware and
BeanNameAware”

Boot st r apCont ext Awar e Resource adapter Chapter 32, JCA CCI

Boot st r apCont ext the
container runs in. Typically
available only in JCA aware
Appl i cati onCont ext s

LoadTi meV\eaver Awar e Defined weaver for processing the section called “Load-time
class definition at load time weaving with AspectJ in the
Spring Framework”

4.3.16.RELEASE Spring Framework 87

Spring Framework Reference Documentation

Name

Injected Dependency

Explained in...

MessageSour ceAwar e

Configured strategy for
resolving messages (with
support for parametrization and
internationalization)

Section 7.15, “Additional
capabilities of the
ApplicationContext”

Noti fi cati onPubl i sher Awar

Port| et Confi gAwar e

Por t | et Cont ext Awar e

Resour ceLoader Anar e

&pring JMX natification
publisher

Current Port | et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cat i onCont ext

Current Por t | et Cont ext
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Configured loader for low-level
access to resources

Section 31.7, “Notifications

Chapter 25, Portlet MVC
Framework

Chapter 25, Portlet MVC
Framework

Chapter 8, Resources

Ser vl et Confi gAwar e

Ser vl et Cont ext Awar e

Current Ser vl et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Current Ser vl et Cont ext
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Chapter 22, Web MVC
framework

Chapter 22, Web MVC
framework

Note again that usage of these interfaces ties your code to the Spring APl and does not follow
the Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmatic access to the container.

7.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments, property
values, and container-specific information such as initialization method, static factory method name,
and so on. A child bean definition inherits configuration data from a parent definition. The child definition
can override some values, or add others, as needed. Using parent and child bean definitions can save
a lot of typing. Effectively, this is a form of templating.

If you work with an ApplicationContext interface programmatically, child bean definitions
are represented by the ChildBeanDefinition class. Most users do not work with
them on this level, instead configuring bean definitions declaratively in something like the
Cl assPat hXm Appl i cati onCont ext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the par ent attribute, specifying the parent bean as the value
of this attribute.

4.3.16.RELEASE Spring Framework 88

Spring Framework Reference Documentation

<bean id="inheritedTest Bean" abstract="true"
cl ass="org. springframewor k. beans. Test Bean" >
<property name="name" val ue="parent"/>
<property name="age" val ue="1"/>
</ bean>

<bean id="inheritsWthDi fferentd ass"
cl ass="org. springfranmewor k. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-method="initialize">
<property nanme="nane" val ue="override"/>
<l-- the age property value of 1 will be inherited fromparent -->
</ bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent’s property values.

A child bean definition inherits scope, constructor argument values, property values, and method
overrides from the parent, with the option to add new values. Any scope, initialization method, destroy
method, and/or st at i ¢ factory method settings that you specify will override the corresponding parent
settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abst r act
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition
as abstract is required, as follows:

<bean id="inheritedTest BeanWthout Gl ass" abstract="true">
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>

</ bean>

<bean id="inheritsWthC ass" cl ass="org. spri ngfranmework. beans. Deri vedTest Bean"
parent ="i nheritedTest BeanWthout d ass" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<l-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly
marked as abstract. When a definition is abst r act like this, it is usable only as a pure template
bean definition that serves as a parent definition for child definitions. Trying to use such an
abstract parent bean on its own, by referring to it as a ref property of another bean or doing an
explicit get Bean() call with the parent bean id, returns an error. Similarly, the container’s internal
prel nstanti at eSi ngl et ons() method ignores bean definitions that are defined as abstract.

Note

Appl i cati onCont ext pre-instantiates all singletons by default. Therefore, it is important (at
least for singleton beans) that if you have a (parent) bean definition which you intend to use only
as atemplate, and this definition specifies a class, you must make sure to set the abstract attribute
to true, otherwise the application context will actually (attempt to) pre-instantiate the abst r act
bean.

4.3.16.RELEASE Spring Framework 89

Spring Framework Reference Documentation

7.8 Container Extension Points

Typically, an application developer does not need to subclass Appl i cat i onCont ext implementation
classes. Instead, the Spring 10C container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPostProcessor

The BeanPost Pr ocessor interface defines callback methods that you can implement to provide your
own (or override the container’'s default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processor instances, and you can control the order in
which these BeanPost Processors execute by setting the order property. You can set this
property only if the BeanPost Processor implements the Or der ed interface; if you write your own
BeanPost Processor you should consider implementing the Or der ed interface too. For further
details, consult the javadocs of the BeanPost Pr ocessor and Or der ed interfaces. See also the note
below on programmatic registration of BeanPost Pr ocessor s.

Note

BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring 1oC
container instantiates a bean instance and then BeanPost Pr ocessor s do their work.

BeanPost Pr ocessor s are scoped per-container. This is only relevant if you are using container
hierarchies. If you define a BeanPost Processor in one container, it will only post-process the
beans in that container. In other words, beans that are defined in one container are not post-
processed by a BeanPost Pr ocessor defined in another container, even if both containers are
part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFact or yPost Processor as described in the section called “Customizing
configuration metadata with a BeanFactoryPostProcessor”.

The or g. spri ngf ranewor k. beans. fact ory. confi g. BeanPost Pr ocessor interface consists
of exactly two callback methods. When such a class is registered as a post-processor with the container,
for each bean instance that is created by the container, the post-processor gets a callback from the
container both before container initialization methods (such as InitializingBean's afterPropertiesSet()
and any declared init method) are called as well as after any bean initialization callbacks. The post-
processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide proxy-
wrapping logic.

An Appl i cati onCont ext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPost Pr ocessor interface. The Appl i cat i onCont ext registers
these beans as post-processors so that they can be called later upon bean creation. Bean post-
processors can be deployed in the container just like any other beans.

Note that when declaring a BeanPost Pr ocessor using an @ean factory method on a configuration
class, the return type of the factory method should be the implementation class itself or at least

4.3.16.RELEASE Spring Framework 90

Spring Framework Reference Documentation

the org. springframework. beans. factory. confi g. BeanPost Processor interface, clearly
indicating the post-processor nature of that bean. Otherwise, the Appl i cat i onCont ext won't be able
to autodetect it by type before fully creating it. Since a BeanPost Pr ocessor needs to be instantiated
early in order to apply to the initialization of other beans in the context, this early type detection is critical.

Programmatically registering BeanPostProcessors

While the recommended approach for BeanPost Processor registration is through
Appl i cati onCont ext auto-detection (as described above), it is also possible to register them
programmatically against a Conf i gur abl eBeanFact or y using the addBeanPost Pr ocessor
method. This can be useful when needing to evaluate conditional logic before registration,
or even for copying bean post processors across contexts in a hierarchy. Note however
that BeanPost Processor s added programmatically do not respect the Or der ed interface.
Here it is the order of registration that dictates the order of execution. Note also that
BeanPost Processor s registered programmatically are always processed before those
registered through auto-detection, regardless of any explicit ordering.

BeanPostProcessors and AOP auto-proxying

Classes that implement the BeanPost Pr ocessor interface are special and are treated differently
by the container. All BeanPost Processors and beans that they reference directly are
instantiated on startup, as part of the special startup phase of the Appl i cat i onCont ext . Next,
all BeanPost Pr ocessor s are registered in a sorted fashion and applied to all further beans in the
container. Because AOP auto-proxying is implemented as a BeanPost Pr ocessor itself, neither
BeanPost Pr ocessor s nor the beans they reference directly are eligible for auto-proxying, and
thus do not have aspects woven into them.

For any such bean, you should see an informational log message: "Bean foo is not eligible
for getting processed by all BeanPostProcessor interfaces (for example: not eligible for auto-

proxying)".

Note that if you have beans wired into your BeanPost Processor using autowiring or
@=esour ce (which may fall back to autowiring), Spring might access unexpected beans when
searching for type-matching dependency candidates, and therefore make them ineligible for
auto-proxying or other kinds of bean post-processing. For example, if you have a dependency
annotated with @Resour ce where the field/setter name does not directly correspond to the
declared name of a bean and no name attribute is used, then Spring will access other beans for
matching them by type.

The following examples show how to write, register, and use BeanPost Processors in an
Appl i cati onCont ext .

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPost Processor
implementation that invokes the t oSt ri ng() method of each bean as it is created by the container
and prints the resulting string to the system console.

Find below the custom BeanPost Pr ocessor implementation class definition:

4.3.16.RELEASE Spring Framework 91

Spring Framework Reference Documentation

package scripting;
i mport org.springfranmework. beans. factory. confi g. BeanPost Processor;
public class InstantiationTraci ngBeanPost Processor i npl enents BeanPost Processor {

/] sinply return the instantiated bean as-is
public Object postProcessBeforelnitialization(Object bean, String beanNane) {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterlnitialization(Object bean, String beanNane) {
Systemout.println("Bean '" + beanNanme + "' created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="http: //ww. spri ngfranmewor k. or g/ schenma/ | ang"
xsi : schemaLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ | ang
ht t p: / / www. spri ngf ramewor k. or g/ schena/ | ang/ spri ng-| ang. xsd" >

<l ang: gr oovy id="nmessenger"
script-source="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger. gr oovy" >
<l ang: property nanme="nessage" val ue="Fiona Apple |Is Just So Dreany."/>
</l ang: gr oovy>

<l--

when the above bean (nessenger) is instantiated, this custom

BeanPost Processor inplenentation will output the fact to the system consol e
oo

<bean cl ass="scripting.|nstantiationTraci ngBeanPost Processor"/>

</ beans>

Notice how the | nst anti ati onTr aci ngBeanPost Processor is simply defined. It does not even
have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring dynamic
language support is detailed in the chapter entitled Chapter 35, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

i nport org.springfranmework. context. Appl i cati onCont ext;
i mport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i nport org.springframework. scripting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXm Appli cati onContext ("scripting/ beans.xm");
Messenger nessenger = (Messenger) ctx.getBean("nessenger");
System out. printl n(nessenger);

The output of the preceding application resembles the following:

Bean 'nessenger' created : org.springframework.scripting.groovy. GoovyMessenger @72961
org. springframewor k. scri pting. groovy. G oovyMessenger @72961

4.3.16.RELEASE Spring Framework 92

Spring Framework Reference Documentation

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPost Processor
implementation is a common means of extending the Spring IoC container. An example is Spring’s
Requi r edAnnot at i onBeanPost Processor - a BeanPost Processor implementation that ships
with the Spring distribution which ensures that JavaBean properties on beans that are marked with an
(arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a BeanFactoryPostProcessor

The next extension point that we will look at is
the org.springfranmework. beans. factory. confi g. BeanFact or yPost Processor. The
semantics of this interface are similar to those of the BeanPost Pr ocessor , with one major difference:
BeanFact or yPost Pr ocessor operates on the bean configuration metadata; that is, the Spring loC
container allows a BeanFact or yPost Pr ocessor to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFact or yPost Pr ocessor s.

You can configure multiple BeanFact or yPost Processor s, and you can control the order in which
these BeanFact or yPost Pr ocessor s execute by setting the or der property. However, you can only
set this property if the BeanFact or yPost Processor implements the Or der ed interface. If you write
your own BeanFact or yPost Pr ocessor, you should consider implementing the Or der ed interface
too. Consult the javadocs of the BeanFact or yPost Processor and Or der ed interfaces for more
details.

Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPost Processor (described
above in the section called “Customizing beans using a BeanPostProcessor”). While it is
technically possible to work with bean instances within a BeanFact or yPost Pr ocessor (e.g.,
using BeanFact ory. get Bean()), doing so causes premature bean instantiation, violating the
standard container lifecycle. This may cause negative side effects such as bypassing bean post
processing.

Also, BeanFact or yPost Pr ocessor s are scoped per-container. This is only relevant if you are
using container hierarchies. If you define a BeanFact or yPost Pr ocessor in one container, it
will only be applied to the bean definitions in that container. Bean definitions in one container
will not be post-processed by BeanFact or yPost Pr ocessor s in another container, even if both
containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory post-processors,
such as PropertyOverrideConfigurer and PropertyPl acehol der Confi gurer. A custom
BeanFact or yPost Processor can also be used, for example, to register custom property editors.

An Appl i cati onCont ext automatically detects any beans that are deployed into it that implement
the BeanFact or yPost Pr ocessor interface. It uses these beans as bean factory post-processors, at
the appropriate time. You can deploy these post-processor beans as you would any other bean.

4.3.16.RELEASE Spring Framework 93

Spring Framework Reference Documentation

Note

As with BeanPostProcessors , you typically do not want to configure
BeanFact or yPost Processors for lazy initialization. If no other bean references a
Bean(Fact ory) Post Processor, that post-processor will not get instantiated at all. Thus,
marking it for lazy initialization will be ignored, and the Bean(Fact or y) Post Processor will be
instantiated eagerly even if you setthe def aul t - | azy-i ni t attribute tot r ue on the declaration
of your <beans /> element.

Example: the Class name substitution PropertyPlaceholderConfigurer

You use the PropertyPl acehol der Confi gurer to externalize property values from a bean
definition in a separate file using the standard Java Pr operti es format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and
passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with
placeholder values is defined. The example shows properties configured from an external Pr operti es
file. At runtime, a PropertyPl acehol der Confi gur er is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
${ property-nane} which follows the Ant/log4j/ JSP EL style.

<bean cl ass="org. springframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons" val ue="cl asspat h: coni f oo/ j dbc. properties"/>
</ bean>

<bean i d="dat aSource" destroy-nethod="cl ose"
cl ass="or g. apache. cormons. dbcp. Basi cDat aSour ce" >
<property name="driverd assNanme" val ue="${j dbc. dri verC assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernanme" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Pr operti es format:

jdbc. driverd assNane=or g. hsql db. j dbcDri ver
jdbc. url =j dbc: hsql db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Therefore, the string ${j dbc. username} is replaced at runtime with the value 'sa’, and
the same applies for other placeholder values that match keys in the properties file. The
Pr opert yPl acehol der Conf i gur er checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a comma-separated
listin the | ocat i on attribute.

<cont ext: property-pl acehol der | ocati on="cl asspat h: coni f oo/ j dbc. properties"/>

The PropertyPl acehol der Confi gur er not only looks for properties in the Pr operti es file you
specify. By default it also checks against the Java Syst emproperties if it cannot find a property in the
specified properties files. You can customize this behavior by setting the syst enProperti esMbde
property of the configurer with one of the following three supported integer values:

4.3.16.RELEASE Spring Framework 94

Spring Framework Reference Documentation

» never (0): Never check system properties

« fallback (1): Check system properties if not resolvable in the specified properties files. This is the
default.

» override (2): Check system properties first, before trying the specified properties files. This allows
system properties to override any other property source.

Consult the Pr opert yPl acehol der Conf i gur er javadocs for more information.
Tip

You can use the PropertyPl acehol der Confi gurer to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean cl ass="org. springframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons">
<val ue>cl asspat h: conl f oo/ strat egy. properti es</val ue>
</ property>
<property name="properties">
<val ue>cust om strat egy. cl ass=com f 0oo. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when
it is about to be created, which is during the pr el nst anti at eSi ngl et ons() phase of an
Appl i cati onCont ext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertyPl acehol der Confi gur er, but unlike the latter, the original definitions can have default
values or no values at all for bean properties. If an overriding Pr operti es file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious
from the XML definition file that the override configurer is being used. In case of multiple
PropertyOverri deConfi gurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanNane. pr operty=val ue

For example:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nysql : nydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

Compound property names are also supported, as long as every component of the path except the
final property being overridden is already non-null (presumably initialized by the constructors). In this
example...

4.3.16.RELEASE Spring Framework 95

Spring Framework Reference Documentation

f oo. fred. bob. sammy=123

i. the sammy property of the bob property of the f r ed property of the f 00 bean is set to the scalar
value 123.

Note

Specified override values are always literal values; they are not translated into bean references.
This convention also applies when the original value in the XML bean definition specifies a bean
reference.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<cont ext: property-override | ocati on="cl asspat h: overri de. properties"/>

Customizing instantiation logic with a FactoryBean

Implement the or g. spri ngf ramewor k. beans. f act ory. Fact or yBean interface for objects that
are themselves factories.

The Fact or yBean interface is a point of pluggability into the Spring loC container’s instantiation logic.
If you have complex initialization code that is better expressed in Java as opposed to a (potentially)
verbose amount of XML, you can create your own Fact or yBean, write the complex initialization inside
that class, and then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

« (bj ect get bject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

* bool ean i sSi ngl et on() : returnst r ue if this Fact or yBean returns singletons, f al se otherwise.

» Cl ass get Obj ect Type() : returns the object type returned by the get Cbj ect () method or nul |
if the type is not known in advance.

The Fact or yBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the Fact or yBean interface ship with Spring itself.

When you need to ask a container for an actual Fact or yBean instance itself instead of the bean
it produces, preface the bean’s id with the ampersand symbol (& when calling the get Bean()
method of the Appl i cati onCont ext . So for a given Fact or yBean with an id of nyBean, invoking
get Bean(" nyBean") on the container returns the product of the Fact or yBean; whereas, invoking
get Bean(" &ryBean") returns the Fact or yBean instance itself.

7.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach
is 'better' than XML. The short answer is it depends. The long answer is that each approach has
its pros and cons, and usually it is up to the developer to decide which strategy suits them better.
Due to the way they are defined, annotations provide a lot of context in their declaration, leading
to shorter and more concise configuration. However, XML excels at wiring up components without

4.3.16.RELEASE Spring Framework 96

Spring Framework Reference Documentation

touching their source code or recompiling them. Some developers prefer having the wiring close
to the source while others argue that annotated classes are no longer POJOs and, furthermore,
that the configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring allows annotations to be used in a non-
invasive way, without touching the target components source code and that in terms of tooling, all
configuration styles are supported by the Spring Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by using
annotations on the relevant class, method, or field declaration. As mentioned in the section called
“Example: The RequiredAnnotationBeanPostProcessor”, using a BeanPost Pr ocessor in conjunction
with annotations is a common means of extending the Spring loC container. For example, Spring
2.0 introduced the possibility of enforcing required properties with the @Required annotation. Spring
2.5 made it possible to follow that same general approach to drive Spring’s dependency injection.
Essentially, the @\ut owi r ed annotation provides the same capabilities as described in the section
called “Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5
also added support for JSR-250 annotations such as @Post Const r uct, and @°r eDest r oy. Spring
3.0 added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @ nj ect and @Naned. Details about those annotations can be found in the relevant
section.

Note

Annotation injection is performed before XML injection, thus the latter configuration will override
the former for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly registered
by including the following tag in an XML-based Spring configuration (notice the inclusion of the cont ext
namespace):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: context ="http://ww. springfranmework. or g/ schema/ cont ext "
xsi : schemaLocat i on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. spri ngfranmework. or g/ schema/ cont ext/ spri ng-cont ext . xsd">

<cont ext: annot ati on-confi g/ >

</ beans>

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Pr ocessor,
CommonAnnot at i onBeanPost Pr ocessor, Per si st enceAnnot at i onBeanPost Pr ocessor, as
well as the aforementioned Requi r edAnnot at i onBeanPost Pr ocessor .)

Note

<cont ext : annot at i on- conf i g/ >only looks for annotations on beans in the same application
context in which it is defined. This means that, if you put <cont ext : annot at i on- confi g/ >

4.3.16.RELEASE Spring Framework 97

https://spring.io/tools/sts
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

Spring Framework Reference Documentation

in a WebAppl i cat i onCont ext for a Di spat cher Servl et it only checks for @\ut owi r ed
beans in your controllers, and not your services. See Section 22.2, “The DispatcherServlet” for
more information.

@Required

The @Requi r ed annotation applies to bean property setter methods, as in the following example:

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;

@Requi red
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

...

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding Nul | Poi nt er Except i ons or the like later on. It is still recommended that you put assertions
into the bean class itself, for example, into an init method. Doing so enforces those required references
and values even when you use the class outside of a container.

@Autowired

Note

JSR 330's @ nj ect annotation can be used in place of Spring’s @\ut owi r ed annotation in the
examples below. See here for more details.

You can apply the @Aut owi r ed annotation to constructors:

public class Myvi eRecommender {
private final CustonerPreferenceDao custonerPreferenceDao;
@\ut owi red
publ i ¢ Movi eReconmender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {

this.custonerPreferencebDao = custoner PreferencebDao;

}

...

Note

As of Spring Framework 4.3, an @\ut owi r ed annotation on such a constructor is no longer
necessary if the target bean only defines one constructor to begin with. However, if several
constructors are available, at least one must be annotated to teach the container which one to use.

As expected, you can also apply the @\ut owi r ed annotation to "traditional" setter methods:

4.3.16.RELEASE Spring Framework 98

Spring Framework Reference Documentation

public class SinpleMvielister {
private MvieFi nder novi eFi nder;
@\ut owi r ed

public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

Il

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecommender {
private MyvieCatal og novi eCat al og;
private CustonerPreferenceDao customnerPreferenceDao;

@\ut owi r ed
public void prepare(MvieCatal og novi eCat al og,
Cust orrer Pr ef er enceDao cust oner Pr ef er enceDao) {
this. novi eCat al og = novi eCat al og;
this.custonerPreferencebDao = custoner PreferencebDao;

You can apply @\ut owi r ed to fields as well and even mix it with constructors:

public class Myvi eRecommender {
private final CustonerPreferenceDao custonerPreferenceDao;

@\ut owi r ed
private MyvieCatal og novi eCat al og;

@\ut owi r ed
publi ¢ Movi eReconmender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t hi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

}

Il

Tip

the injection points referring to your bean).

Make sure that your target components (e.g. Movi eCat al og, Cust orrer Pr ef er encebDao) are
consistently declared by the type that you are using for your @\ut owi r ed-annotated injection
points. Otherwise injection may fail due to no type match found at runtime.

For XML-defined beans or component classes found through a classpath scan, the container
usually knows the concrete type upfront. However, for @ean factory methods, you need to
make sure that the declared return type is sufficiently expressive. For components implementing
several interfaces or for components potentially referred to by their implementation type, consider
declaring the most specific return type on your factory method (at least as specific as required by

It is also possible to provide all beans of a particular type from the Appl i cat i onCont ext by adding

the annotation to a field or method that expects an array of that type:

4.3.16.RELEASE Spring Framework

99

Spring Framework Reference Documentation

public class Myvi eRecommender {

@\ut owi r ed
private MovieCatal og[] novi eCat al ogs;

...

The same applies for typed collections:

public class Myvi eRecommender {
private Set<Mvi eCatal og> novi eCat al ogs;
@\ut owi r ed
public voi d set Mvi eCat al ogs(Set <Movi eCat al og> novi eCat al ogs) {

t hi s. novi eCat al ogs = novi eCat al ogs;

}

N/

Tip

Your target beans can implement the or g. spri ngf r anewor k. cor e. Or der ed interface or use
the @ der or standard @i ori t y annotation if you want items in the array or list to be sorted
in a specific order. Otherwise their order will follow the registration order of the corresponding
target bean definitions in the container.

The @ der annotation may be declared at target class level but also on @ean methods,
potentially being very individual per bean definition (in case of multiple definitions with the same
bean class). @x der values may influence priorities at injection points, but please be aware
that they do not influence singleton startup order which is an orthogonal concern determined by
dependency relationships and @ependsOn declarations.

Note that the standard j avax. annot ati on. Pri ori t y annotation is not available at the @ean
level since it cannot be declared on methods. Its semantics can be modeled through @ der
values in combination with @°r i mar y on a single bean per type.

Even typed Maps can be autowired as long as the expected key type is St ri ng. The Map values will

contain all beans of the expected type, and the keys will contain the corresponding bean names:

public class Myvi eRecommender {
private Map<String, MvieCatal og> novi eCat al ogs;
@\ut owi r ed
public void set Mvi eCat al ogs(Map<String, Mvi eCatal og> novi eCat al ogs) {

t hi s. novi eCat al ogs = novi eCat al ogs;

}

...

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior

can be changed as demonstrated below.

4.3.16.RELEASE Spring Framework

Spring Framework Reference Documentation

public class SinpleMvielister {
private MvieFi nder novi eFi nder;
@\wut owi red(required = fal se)
public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {

t hi s. novi eFi nder = novi eFi nder;

}

...

Note

Only one annotated constructor per-class can be marked as required, but multiple non-required
constructors can be annotated. In that case, each is considered among the candidates and Spring
uses the greediest constructor whose dependencies can be satisfied, that is the constructor that
has the largest number of arguments.

The required attribute of @\ut owi r ed is recommended over the @Requi r ed annotation. The
required attribute indicates that the property is not required for autowiring purposes, the property
is ignored if it cannot be autowired. @Requi r ed, on the other hand, is stronger in that it enforces
the property that was set by any means supported by the container. If no value is injected, a
corresponding exception is raised.

Alternatively, you may express the non-required nature of a particular dependency through Java 8's
java.util.Optional:

public class SinpleMvielister {

@\ut owi r ed
public void set Mvi eFi nder (Opti onal <Mbvi eFi nder > novi eFi nder) {

}

As of Spring Framework 5.0, you may also use an @\ul | abl e annotation (of any kind in any package,
e.g.j avax. annot ati on. Nul | abl e from JSR-305):

public class SinpleMvielister {

@\ut owi r ed
public voi d set MvieFi nder (@l | abl e Movi eFi nder novi eFi nder) {

}

You <can also wuse @\wtowi red for interfaces that are well-known resolvable
dependencies: BeanFactory, ApplicationContext, Environnent, ResourcelLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce. These interfaces and their extended
interfaces, such as Confi gur abl eAppl i cati onCont ext or ResourcePatt ernResol ver, are
automatically resolved, with no special setup necessary.

4.3.16.RELEASE Spring Framework 101

Spring Framework Reference Documentation

public class Myvi eRecommender {

@\ut owi r ed
private ApplicationContext context;

publ i c Mvi eRecommender () {
}

N/

Note

@\utowi red, @nject, @esource, and @al ue annotations are handled by Spring
BeanPost Processor implementations which in turn means that you cannot apply these
annotations within your own BeanPost Pr ocessor or BeanFact or yPost Processor types (if
any). These types must be ‘wired up' explicitly via XML or using a Spring @ean method.

Fine-tuning annotation-based autowiring with @Primary

Because autowiring by type may lead to multiple candidates, it is often necessary to have more
control over the selection process. One way to accomplish this is with Spring’s @r i mar y annotation.
@ri mary indicates that a particular bean should be given preference when multiple beans are
candidates to be autowired to a single-valued dependency. If exactly one 'primary' bean exists among
the candidates, it will be the autowired value.

Let's assume we have the following configuration that defines fi r st Movi eCat al og as the primary
Movi eCat al og.

@onfiguration
public class MvieConfiguration {

@Bean
@rimary
public MovieCatalog firstMvieCatalog() { ... }

@Bean
public Mvi eCat al og secondMovi eCatalog() { ... }

N/

With such configuration, the following Mbvi eReconmender will be autowired with the
firstMyvieCatal og.

public class Myvi eRecommender {

@\ut owi r ed
private Myvi eCatal og novi eCat al og;

...

The corresponding bean definitions appear as follows.

4.3.16.RELEASE Spring Framework 102

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont ext.xsd">

<cont ext : annot ati on-confi g/ >
<bean cl ass="exanpl e. Si npl eMovi eCat al og" prinmary="true">
<l'-- inject any dependencies required by this bean -->
</ bean>
<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >
<!-- inject any dependencies required by this bean -->
</ bean>

<bean id="novi eRecomender" cl ass="exanpl e. Movi eRecommender"/ >

</ beans>

Fine-tuning annotation-based autowiring with qualifiers

@rimary is an effective way to use autowiring by type with several instances when one primary
candidate can be determined. When more control over the selection process is required, Spring’s
@al i fi er annotation can be used. You can associate qualifier values with specific arguments,
narrowing the set of type matches so that a specific bean is chosen for each argument. In the simplest
case, this can be a plain descriptive value:

public class Myvi eRecommender {
@\ut owi r ed
@ualifier("main")
private MvieCatal og novi eCat al og;

Il

The @ual i fi er annotation can also be specified on individual constructor arguments or method
parameters:

public class Myvi eRecommender {
private MvieCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;

@\ut owi red
public void prepare(@ualifier("nmain")MvieCatal og novi eCat al og,
Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t hi s. novi eCat al og = novi eCat al og;
t hi s. cust omer Pref erenceDao = cust oner Pr ef er enceDao;

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

4.3.16.RELEASE Spring Framework 103

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont ext.xsd">

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier value="main"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier value="action"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecommender" cl ass="exanpl e. Movi eReconmender"/ >

</ beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @\ut owi r ed is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main” or "EMEA" or
"persistent", expressing characteristics of a specific component that are independent from the beani d,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding
example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set <Movi eCat al og>. In
this case, all matching beans according to the declared qualifiers are injected as a collection. This implies
that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, you
can define multiple Movi eCat al og beans with the same qualifier value "action", all of which would be
injected into a Set <Movi eCat al og> annotated with @ual i fi er("action").

Tip

Letting qualifier values select against target bean names, within the type-matching candidates,
doesn’t even require a @ual i f i er annotation at the injection point. If there is no other resolution
indicator (e.g. a qualifier or a primary marker), for a non-unique dependency situation, Spring will
match the injection point name (i.e. field name or parameter name) against the target bean names
and choose the same-named candidate, if any.

That said, if you intend to express annotation-driven injection by name, do not primarily use
@\ut owi r ed, even if is capable of selecting by bean name among type-matching candidates.
Instead, use the JSR-250 @Resour ce annotation, which is semantically defined to identify
a specific target component by its unique name, with the declared type being irrelevant for
the matching process. @\wut owi r ed has rather different semantics: After selecting candidate
beans by type, the specified String qualifier value will be considered within those type-selected

4.3.16.RELEASE Spring Framework 104

Spring Framework Reference Documentation

candidates only, e.g. matching an "account" qualifier against beans marked with the same qualifier
label.

For beans that are themselves defined as a collection/map or array type, @Resour ce is a fine
solution, referring to the specific collection or array bean by unique name. That said, as of 4.3,
collection/map and array types can be matched through Spring’s @\ut owi r ed type matching
algorithm as well, as long as the element type information is preserved in @ean return type
signatures or collection inheritance hierarchies. In this case, qualifier values can be used to select
among same-typed collections, as outlined in the previous paragraph.

As of 4.3, @A\ut owi r ed also considers self references for injection, i.e. references back to the
bean that is currently injected. Note that self injection is a fallback; regular dependencies on other
components always have precedence. In that sense, self references do not participate in regular
candidate selection and are therefore in particular never primary; on the contrary, they always end
up as lowest precedence. In practice, use self references as a last resort only, e.qg. for calling other
methods on the same instance through the bean’s transactional proxy: Consider factoring out the
affected methods to a separate delegate bean in such a scenario. Alternatively, use @Resour ce
which may obtain a proxy back to the current bean by its unique name.

@\ut owi r ed applies to fields, constructors, and multi-argument methods, allowing for narrowing
through qualifier annotations at the parameter level. By contrast, @Resour ce is supported only
for fields and bean property setter methods with a single argument. As a consequence, stick with
qualifiers if your injection target is a constructor or a multi-argument method.

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ualifier

public @nterface Genre {

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecommender {

@\ut owi r ed
@zenre("Action")
private MovieCatal og actionCat al og;

private MvieCatal og conedyCat al og;
@\ut owi r ed

public void set ConedyCat al og(@enr e(" Conedy") Mvi eCat al og conedyCat al og) {
this. comedyCat al og = conedyCat al og;

}

...

Next, provide the information for the candidate bean definitions. You can add <qual i fi er/ > tags as
sub-elements of the <bean/ > tag and then specify the t ype and val ue to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches
are demonstrated in the following example.

4.3.16.RELEASE Spring Framework 105

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont ext.xsd">

<cont ext : annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qualifier type="Genre" val ue="Action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="exanple.Genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean id="novi eRecommender" cl ass="exanpl e. Movi eRecommender "/ >

</ beans>

In Section 7.10, “Classpath scanning and managed components”, you will see an annotation-based
alternative to providing the qualifier metadata in XML. Specifically, see the section called “Providing
qualifier metadata with annotations”.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when
the annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet
connection is available. First define the simple annotation:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ualifier

public @nterface Offline {

}

Then add the annotation to the field or property to be autowired:

public class Myvi eRecommender {
@\ut owi red
@fline
private MovieCatal og of flineCatal og;

Il

Now the bean definition only needs a qualifier t ype:

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Ofline"/>

<l-- inject any dependencies required by this bean -->
</ bean>

You can also define custom qualifier annotations that accept named attributes in addition to or instead
of the simple val ue attribute. If multiple attribute values are then specified on a field or parameter
to be autowired, a bean definition must match all such attribute values to be considered an autowire
candidate. As an example, consider the following annotation definition:

4.3.16.RELEASE Spring Framework 106

Spring Framework Reference Documentation

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI ME)

@ualifier

public @nterface MovieQualifier {

String genre();

Format format();

In this case For mat is an enum:

public enum Format {
VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre and f or mat .

public class MvieRecomender {

@\ut owi r ed
@mbvi eQual i fier(format=Format.VHS, genre="Action")
private MyvieCatal og acti onVhsCat al og;

@\ut owi r ed
@mbvi eQual i fier(formt=Fornmat.VHS, genre="Conedy")
private MvieCatal og conedyVhsCat al og;

@\ut owi r ed
@bvi eQual i fier(format=Fornat.DVD, genre="Action")
private MovieCatal og acti onDvdCat al og;

@\ut owi r ed
@mbvi eQual i fier(format=Format. BLURAY, genre="Conedy")
private MvieCatal og conedyBl uRayCat al og;

/1

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qual i f i er / > sub-elements. If available, the
<qual i fier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <mret a/ > tags if no such qualifier is present, as in the last two bean definitions
in the following example.

4.3.16.RELEASE Spring Framework 107

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schemalLocat i on="htt p: //ww. spri ngframewor k. or g/ schena/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont ext . xsd" >

<cont ext : annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MovieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<!-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qual i fier type="MovieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<l'-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<nmeta key="format" val ue="DVD'/ >

<meta key="genre" val ue="Action"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<nmeta key="format" val ue="BLURAY"/>

<meta key="genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean -->
</ bean>

</ beans>

Using generics as autowiring qualifiers

In addition to the @al i fi er annotation, it is also possible to use Java generic types as an implicit
form of qualification. For example, suppose you have the following configuration:

@Confi guration
public class MyConfiguration {

@ean
public StringStore stringStore() {
return new StringStore();

}

@ean
public IntegerStore integerStore() {
return new I ntegerStore();

}

Assuming that beans above implement a generic interface, i.e. Store<String> and
St or e<I nt eger >, you can @\ut owi r e the St or e interface and the generic will be used as a qualifier:

4.3.16.RELEASE Spring Framework 108

Spring Framework Reference Documentation

@\ut owi r ed
private Store<String> sl1; // <String> qualifier, injects the stringStore bean

@\ut owi r ed
private Store<Integer> s2; // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

/1 Inject all Store beans as long as they have an <l nteger> generic
/| Store<String> beans will not appear in this |ist

@\ut owi r ed

private List<Store<l|nteger>> s;

CustomAutowireConfigurer

The Cust omAut owi r eConfi gur er is a BeanFact or yPost Processor that enables you to register
your own custom qualifier annotation types even if they are not annotated with Spring’s @ual i fi er
annotation.

<bean i d="cust omAut owi reConfi gurer"
cl ass="org. spri ngfranmewor k. beans. factory. annot ati on. Cust omAut owi r eConf i gurer">
<property name="custonmQualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set>
</ property>
</ bean>

The Aut owi r eCandi dat eResol ver determines autowire candidates by:
» the aut owi r e- candi dat e value of each bean definition
« any def aul t - aut owi r e- candi dat es pattern(s) available on the <beans/ > element

» the presence of @ualifier annotations and any custom annotations registered with the
Cust omAut owi r eConf i gur er

When multiple beans qualify as autowire candidates, the determination of a "primary" is the following:
if exactly one bean definition among the candidates has a pri mary attribute set to t r ue, it will be
selected.

@Resource

Spring also supports injection using the JSR-250 @Resour ce annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans
or JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@Resour ce takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SinpleMvielLister {
private Mvi eFi nder novi eFi nder;

@Resour ce(nane="nyMvi eFi nder")
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

4.3.16.RELEASE Spring Framework 109

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

Spring Framework Reference Documentation

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So
the following example is going to have the bean with name "movieFinder" injected into its setter method:

public class SinpleMvielister {

private Mvi eFi nder novi eFi nder;

@Rresour ce
public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}
}
Note

The name provided with the annotation is resolved as a bean name by the
Appl i cati onCont ext of which the ConmonAnnot at i onBeanPost Processor is aware. The
names can be resolved through JNDI if you configure Spring’s Si npl eJndi BeanFact ory
explicitly. However, it is recommended that you rely on the default behavior and simply use
Spring’s JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resour ce usage with no explicit name specified, and similar to @\ut owi r ed,
@resour ce finds a primary type match instead of a specific named bean and resolves well-
known resolvable dependencies: the BeanFact ory, Appl i cati onCont ext, Resour ceLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce interfaces.

Thus in the following example, the cust oner Pref erenceDao field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type
Cust oner Pr ef er enceDao. The "context" field is injected based on the known resolvable dependency
type Appl i cati onCont ext .

public class Myvi eRecommender {

@Resour ce
private CustonerPreferenceDao custoner PreferenceDao;

@Rresour ce
private ApplicationContext context;

publ i c Mvi eRecommender () {
}

N/

@PostConstruct and @PreDestroy

The ConmonAnnot at i onBeanPost Processor not only recognizes the @Resour ce annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these
annotations offers yet another alternative to those described in initialization callbacks and destruction
callbacks. Provided that the CormonAnnot at i onBeanPost Pr ocessor is registered within the Spring
Appl i cati onCont ext , a method carrying one of these annotations is invoked at the same point in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method.
In the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

4.3.16.RELEASE Spring Framework 110

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

Spring Framework Reference Documentation

public class Cachi nghWbvi eLi ster {

@ost Const ruct
public voi d popul at eMovi eCache() {
/'l popul ates the novie cache upon initialization...

}

@r eDest r oy
public void cl earMvieCache() {
/'l clears the novie cache upon destruction...

}

Note

For details about the effects of combining various lifecycle mechanisms, see the section called
“Combining lifecycle mechanisms”.

7.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDef i ni ti on within the Spring container. The previous section (Section 7.9, “Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base” bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration; instead
you can use annotations (for example @onponent), Aspect] type expressions, or your own custom
filter criteria to select which classes will have bean definitions registered with the container.

Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @onf i gur at i on, @ean, @ nport , and @ependsOn
annotations for examples of how to use these new features.

@Component and further stereotype annotations

The @Reposi t or y annotation is a marker for any class that fulfills the role or stereotype of a repository
(also known as Data Access Object or DAO). Among the uses of this marker is the automatic translation
of exceptions as described in the section called “Exception translation”.

Spring provides further stereotype annotations: @onponent, @ervice, and @ontroll er.
@onponent is a generic stereotype for any Spring-managed component. @Reposi t ory, @ber vi ce,
and @ontrol | er are specializations of @onponent for more specific use cases, for example,
in the persistence, service, and presentation layers, respectively. Therefore, you can annotate your
component classes with @onponent, but by annotating them with @eposi t ory, @ervi ce, or
@control | er instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also
possible that @Reposi t ory, @er vi ce, and @ont rol | er may carry additional semantics in future
releases of the Spring Framewaork. Thus, if you are choosing between using @onponent or @er vi ce

4.3.16.RELEASE Spring Framework 111

Spring Framework Reference Documentation

for your service layer, @er vi ce is clearly the better choice. Similarly, as stated above, @Reposi t ory
is already supported as a marker for automatic exception translation in your persistence layer.

Meta-annotations

Many of the annotations provided by Spring can be used as meta-annotations in your own code. A
meta-annotation is simply an annotation that can be applied to another annotation. For example, the
@er vi ce annotation mentioned above is meta-annotated with @onponent :

@ar get (El enent Type. TYPE)

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ocunent ed

@conmponent // Spring will see this and treat @ervice in the same way as @onponent
public @nterface Service {

Il

Meta-annotations can also be combined to create composed annotations. For example,
the @Rest Control | er annotation from Spring MVC is composed of @ontroller and
@ResponseBody.

In addition, composed annotations may optionally redeclare attributes from meta-annotations to allow
user customization. This can be particularly useful when you want to only expose a subset of the meta-
annotation’s attributes. For example, Spring’s @essi onScope annotation hardcodes the scope name
to sessi on but still allows customization of the pr oxyMbde.

@rar get ({ El enent Type. TYPE, El enent Type. VETHOD})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ocunent ed

@cope(WebAppl i cati onCont ext . SCOPE_SESSI ON)
public @nterface SessionScope {

/**
* Alias for {@ink Scope#proxyMde}.
* <p>Defaults to {@ink ScopedProxyMde#TARGET_CLASS}.
*
/
@\ i asFor (annot ati on = Scope. cl ass)
ScopedPr oxyMdde proxyMdde() default ScopedProxyMde. TARGET_CLASS;

@bessi onScope can then be used without declaring the pr oxy Mbde as follows:

@ervi ce

@essi onScope

public class Sessi onScopedService {
/1

}

Or with an overridden value for the pr oxyMode as follows:

@ervi ce

@bessi onScope(proxyMde = ScopedPr oxyMde. | NTERFACES)

public class SessionScopedUser Service inplenents UserService {
/1

}

For further details, consult the Spring Annotation Programming Model.

4.3.16.RELEASE Spring Framework 112

Spring Framework Reference Documentation

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDef i ni ti ons
with the Appl i cati onContext. For example, the following two classes are eligible for such
autodetection:

@ervi ce
public class SinpleMvielLister {

private MovieFi nder novi eFi nder;

@\ut owi r ed
publ i c Si npl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

@Reposi tory
public class JpaMovi eFi nder inplenents MvieFinder {
/] inplenmentation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to add @onponent Scan
to your @onf i gur ati on class, where the basePackages attribute is a common parent package for
the two classes. (Alternatively, you can specify a comma/semicolon/space-separated list that includes
the parent package of each class.)

@onfiguration
@onponent Scan(basePackages = "org. exanpl e")
public class AppConfig {

}

Note

For concision, the above may have used the val ue attribute of the annotation, i.e.
@onponent Scan(" or g. exanpl e")

The following is an alternative using XML

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: context ="http://ww. springfranmework. or g/ schema/ cont ext "
xsi : schenmaLocati on="http://wwmn. spri ngframewor k. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. spri ngfranework. or g/ schema/ cont ext/ spri ng-cont ext . xsd" >

<cont ext: conponent - scan base- package="or g. exanpl e"/ >

</ beans>

Tip

The use of <context:conponent-scan> implicity enables the functionality of
<context:annotation-config> There is wusually no need to include the
<cont ext : annot at i on- conf i g> element when using <cont ext : conponent - scan>.

4.3.16.RELEASE Spring Framework 113

Spring Framework Reference Documentation

Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the files-
only switch of the JAR task. Also, classpath directories may not get exposed based on security
policies in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires
‘Trusted-Library' setup in your manifests; see http://stackoverflow.com/questions/19394570/java-
jre-7u45-breaks-classloader-getresources).

Furthermore, the Aut owi r edAnnot at i onBeanPost Processor and
ConmonAnnot at i onBeanPost Processor are both included implicitly when you use the component-
scan element. That means that the two components are autodetected and wired together - all without
any bean configuration metadata provided in XML.

Note

You can disable the registration of Aut owi r edAnnot ati onBeanPost Processor and
ConmonAnnot at i onBeanPost Processor by including the annotation-config attribute with a
value of f al se.

Using filters to customize scanning

By default, classes annotated with @onponent, @Repository, @ervi ce, @ontroller, or
a custom annotation that itself is annotated with @onponent are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters. Add
them as includeFilters or excludeFilters parameters of the @onponent Scan annotation (or as include-
filter or exclude-filter sub-elements of the conponent - scan element). Each filter element requires the
t ype and expr essi on attributes. The following table describes the filtering options.

Table 7.5. Filter Types

Filter Type Example Expression Description

annotation (default) or g. exanpl e. SomeAnnot at i 0An annotation to be present
at the type level in target
components.

assignable or g. exanpl e. Soned ass A class (or interface) that

the target components
are assignable to (extend/

implement).

aspect] org. exanpl e. . *Servi ce+ An AspectJ type expression
to be matched by the target
components.

regex org\.exanple\.Default.* A regex expression to be

matched by the target
components class names.

custom or g. exanmpl e. MyTypeFi | t er A custom implementation of the
org.springframework. core.type . TypeFi
interface.

4.3.16.RELEASE Spring Framework 114

http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

Spring Framework Reference Documentation

The following example shows the configuration ignoring all @Reposi t or y annotations and using "stub"
repositories instead.

@configuration

@onponent Scan(basePackages = "org. exanpl e",
includeFilters = @ilter(type = FilterType. REGEX, pattern = ".*Stub.*Repository"),
excludeFilters = @ilter(Repository.class))

public class AppConfig {

}

and the equivalent using XML

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex"
expressi on=".*Stub. *Repository"/>
<context:exclude-filter type="annotation"
expressi on="org. springfranmework. st er eot ype. Repository"/>
</ cont ext : conponent - scan>
</ beans>

Note

You can also disable the default filters by setting useDef aul t Fi | t er s=f al se onthe annotation
or providing use-default-filters="fal se" as an attribute of the <conponent - scan/ >
element. This will in effect disable automatic detection of classes annotated with @onponent ,
@reposi tory, @ervice, @ontroll er, or @onfiguration.

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @ean annotation used to define bean metadata within @onf i gur at i on annotated classes.
Here is a simple example:

@Conponent
public class FactoryMet hodConponent {

@Bean
@alifier("public")
public TestBean publiclnstance() {
return new Test Bean("publiclnstance");

}

public void dowrk() {
/'l Conponent nethod inplenentation onitted

}

This class is a Spring component that has application-specific code contained in its doWr k()
method. However, it also contributes a bean definition that has a factory method referring to the
method publ i cl nst ance(). The @ean annotation identifies the factory method and other bean
definition properties, such as a qualifier value through the @ual i f i er annotation. Other method level
annotations that can be specified are @cope, @Qazy, and custom qualifier annotations.

Tip

In addition to its role for component initialization, the @.azy annotation may also be placed on
injection points marked with @\ut owi r ed or @ nj ect . In this context, it leads to the injection
of a lazy-resolution proxy.

4.3.16.RELEASE Spring Framework 115

Spring Framework Reference Documentation

Autowired fields and methods are supported as previously discussed, with additional support for
autowiring of @ean methods:

@onponent
public class FactoryMet hodConponent {

private static int i;

@Bean
@ualifier("public")
public TestBean publiclnstance() {
return new TestBean("publiclnstance");

}

/] use of a customqualifier and autowi ring of nethod paraneters
@ean
protected Test Bean protectedl nstance(
@ualifier("public") TestBean spouse,
@/al ve("#{privatelnstance.age}") String country) {
TestBean tb = new Test Bean("protectedl nstance", 1);
tb. set Spouse(spouse);
tb. set Country(country);
return tb;

}

@Bean
private TestBean privatel nstance() {
return new Test Bean("privatel nstance", i++);

}

@Bean
@Request Scope
publ i c Test Bean request Scopedl nstance() {
return new Test Bean("request Scopedl| nst ance", 3);

}

The example autowires the St ri ng method parameter count ry to the value of the Age property on
another bean named pri vat el nst ance. A Spring Expression Language element defines the value
of the property through the notation #{ <expressi on> }. For @/al ue annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

As of Spring Framework 4.3, you may also declare a factory method parameter of type
I nj ecti onPoi nt (or its more specific subclass DependencyDescri pt or) in order to access the
requesting injection point that triggers the creation of the current bean. Note that this will only apply to
the actual creation of bean instances, not to the injection of existing instances. As a consequence, this
feature makes most sense for beans of prototype scope. For other scopes, the factory method will only
ever see the injection point which triggered the creation of a new bean instance in the given scope: for
example, the dependency that triggered the creation of a lazy singleton bean. Use the provided injection
point metadata with semantic care in such scenarios.

@onponent
public class FactoryMet hodConponent {

@ean @cope(" prototype")
public TestBean prototypel nstance(lnjectionPoint injectionPoint) {
return new TestBean("prototypelnstance for " + injectionPoint.getMnber());

}

The @ean methods in a regular Spring component are processed differently than their counterparts
inside a Spring @onf i gur at i on class. The difference is that @onponent classes are not enhanced
with CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which

4.3.16.RELEASE Spring Framework 116

Spring Framework Reference Documentation

invoking methods or fields within @ean methods in @onf i gur at i on classes creates bean metadata
references to collaborating objects; such methods are not invoked with normal Java semantics but
rather go through the container in order to provide the usual lifecycle management and proxying of
Spring beans even when referring to other beans via programmatic calls to @Bean methods. In contrast,
invoking a method or field in an @ean method within a plain @onponent class has standard Java
semantics, with no special CGLIB processing or other constraints applying.

Note

You may declare @ean methods as st at i ¢, allowing for them to be called without creating their
containing configuration class as an instance. This makes particular sense when defining post-
processor beans, e.g. of type BeanFact or yPost Processor or BeanPost Pr ocessor, since
such beans will get initialized early in the container lifecycle and should avoid triggering other
parts of the configuration at that point.

Note that calls to static @ean methods will never get intercepted by the container, not even within
@confi gur ati on classes (see above). This is due to technical limitations: CGLIB subclassing
can only override non-static methods. As a consequence, a direct call to another @ean method
will have standard Java semantics, resulting in an independent instance being returned straight
from the factory method itself.

The Java language visibility of @ean methods does not have an immediate impact on the
resulting bean definition in Spring’s container. You may freely declare your factory methods as
you see fit in non-@onf i gur at i on classes and also for static methods anywhere. However,
regular @ean methods in @onfi gur ati on classes need to be overridable, i.e. they must not
be declared as pri vate orfi nal .

@ean methods will also be discovered on base classes of a given component or configuration
class, as well as on Java 8 default methods declared in interfaces implemented by the component
or configuration class. This allows for a lot of flexibility in composing complex configuration
arrangements, with even multiple inheritance being possible through Java 8 default methods as
of Spring 4.2.

Finally, note that a single class may hold multiple @ean methods for the same bean, as an
arrangement of multiple factory methods to use depending on available dependencies at runtime.
This is the same algorithm as for choosing the "greediest" constructor or factory method in
other configuration scenarios: The variant with the largest number of satisfiable dependencies
will be picked at construction time, analogous to how the container selects between multiple
@\ut owi r ed constructors.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNaneGener at or strategy known to that scanner. By default, any Spring stereotype annotation
(@Conponent, @Repository, @ervi ce, and @ontroll er) that contains a hame val ue will
thereby provide that name to the corresponding bean definition.

If such an annotation contains no name val ue or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified
class name. For example, if the following component classes were detected, the names would be
nyMovi eLi st er and novi eFi nder | npl :

4.3.16.RELEASE Spring Framework 117

Spring Framework Reference Documentation

@er vi ce("nyMvi eLi ster™)
public class SinpleMvieLister {
...

}

@Reposi tory
public class MvieFinderlnpl inplenents MvieFinder {
...

}

Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom bean-
naming strategy. First, implement the BeanNanmeGener at or interface, and be sure to include
a default no-arg constructor. Then, provide the fully-qualified class nhame when configuring the
scanner:

@onfiguration
@onponent Scan(basePackages = "org. exanpl e", naneGenerator = MyNaneGener at or . cl ass)
public class AppConfig {

}

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e"
name- gener at or =" or g. exanpl e. \yNaneGenerator" />
</ beans>

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever
the container is responsible for wiring.

Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for autodetected
components is si ngl et on. However, sometimes you need a different scope which can be specified
via the @cope annotation. Simply provide the name of the scope within the annotation:

@scope(" prot ot ype")

@Reposi tory

public class MvieFinderlnpl inplenents MvieFinder {
I

}

Note

@scope annotations are only introspected on the concrete bean class (for annotated components)
or the factory method (for @Bean methods). In contrast to XML bean definitions, there is no notion
of bean definition inheritance, and inheritance hierarchies at the class level are irrelevant for
metadata purposes.

For details on web-specific scopes such as "request”/"session" in a Spring context, see the section called
“Request, session, global session, application, and WebSocket scopes”. Like the pre-built annotations
for those scopes, you may also compose your own scoping annotations using Spring’s meta-annotation
approach: e.g. a custom annotation meta-annotated with @cope(" pr ot ot ype"), possibly also
declaring a custom scoped-proxy mode.

4.3.16.RELEASE Spring Framework 118

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html

Spring Framework Reference Documentation

Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMet adat aResol ver interface, and be sure to include a default
no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner:

@onfiguration
@onponent Scan(basePackages = "org. exanpl e", scopeResol ver = MyScopeResol ver. cl ass)
public class AppConfig {

}

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e" scope-resol ver ="or g. exanpl e. M/ScopeResol ver"/ >
</ beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped
objects. The reasoning is described in the section called “Scoped beans as dependencies”. For this
purpose, a scoped-proxy attribute is available on the component-scan element. The three possible
values are: no, interfaces, and targetClass. For example, the following configuration will result in
standard JDK dynamic proxies:

@onfi guration
@onponent Scan(basePackages = "org. exanpl e", scopedProxy = ScopedProxyMde. | NTERFACES)
public class AppConfig {

}

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e" scoped- proxy="i nterfaces"/>
</ beans>

Providing qualifier metadata with annotations

The @ualifier annotation is discussed in the section called “Fine-tuning annotation-based
autowiring with qualifiers”. The examples in that section demonstrate the use of the @ual i fi er
annotation and custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier metadata was
provided on the candidate bean definitions using the qual i fi er or nmet a sub-elements of the bean
element in the XML. When relying upon classpath scanning for autodetection of components, you
provide the qualifier metadata with type-level annotations on the candidate class. The following three
examples demonstrate this technique:

@onponent

@ual i fier("Action")

public class ActionMvieCatal og inplenents MvieCatal og {
/1

}

@onponent

@zenre("Action")

public class ActionMvieCatal og inplenents MvieCatal og {
/1

}

@Conponent

@xfline

public class Cachi ngWbvi eCat al og i npl enents Myvi eCat al og {
/1

}

4.3.16.RELEASE Spring Framework 119

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Spring Framework Reference Documentation

Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is bound
to the class definition itself, while the use of XML allows for multiple beans of the same type
to provide variations in their qualifier metadata, because that metadata is provided per-instance
rather than per-class.

7.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency
Injection). Those annotations are scanned in the same way as the Spring annotations. You just need
to have the relevant jars in your classpath.

Note

If you are using Maven, the j avax.inject artifact is available in the standard Maven
repository (http://repol.maven.org/maven2/javax/inject/javax.inject/1/). You can add the following
dependency to your file pom.xmil:

<dependency>
<groupl d>j avax. i nj ect </ gr oupl d>
<artifactld>avax.inject</artifactld>
<ver si on>1</ ver si on>

</ dependency>

Dependency Injection with @Inject and @Named

Instead of @\ut owi r ed, @ avax. i nj ect. | nject may be used as follows:

i nport javax.inject.|nject;

public class SinpleMvielister {
private Mvi eFi nder novi eFi nder;
@ nj ect

public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;

}

public void IistMvies() {
t hi s. novi eFi nder. fi ndMovi es(...);

As with @Aut owi r ed, it is possible to use @ nj ect at the field level, method level and constructor-
argument level. Furthermore, you may declare your injection point as a Pr ovi der, allowing for on-
demand access to beans of shorter scopes or lazy access to other beans through a Pr ovi der . get ()
call. As a variant of the example above:

4.3.16.RELEASE Spring Framework 120

http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Spring Framework Reference Documentation

i nport javax.inject.Inject;
i nport javax.inject. Provider;

public class SinpleMuvielister {
private Provider<Mvi eFi nder> novi eFi nder;
@ nj ect
public void set Mvi eFi nder (Provi der <Movi eFi nder > novi eFi nder) {

this. novi eFi nder = novi eFi nder;

}

public void IistMvies() {
t hi s. novi eFi nder. get (). findMovies(...);

If you would like to use a qualified name for the dependency that should be injected, you should use
the @aned annotation as follows:

i nport javax.inject.Inject;
i nport javax.inject. Naned;

public class SinpleMuvielister {
private MvieFi nder novi eFi nder;
@ nj ect
public void setMvieFi nder (@laned("mai n") Mvi eFi nder novi eFi nder) {

this. novi eFi nder = novi eFi nder;

}

Il

Like @ut owi red, @ nj ect can also be used with j ava. util. Opti onal or @Wul | abl e. This is
even more applicable here since @ nj ect does not have ar equi r ed attribute.

public class SinpleMuvieLister {

@ nj ect
public void set Mvi eFi nder (Opti onal <Mbvi eFi nder > novi eFi nder) {

}

public class SinpleMvielister {

@ nj ect
public void setMvieFi nder (@l | abl e Mvi eFi nder novi eFi nder) {

}

@Named and @ManagedBean: standard equivalents to the @Component
annotation

Instead of @onponent, @ avax. i nj ect. Named or j avax. annot at i on. ManagedBean may be
used as follows:

4.3.16.RELEASE Spring Framework 121

Spring Framework Reference Documentation

i nport javax.inject.Inject;
i nport javax.inject. Naned;

@\aned("novi eLi stener") [/ @managedBean("novi eLi stener") could be used as well
public class SinpleMvieLister {

private Mvi eFi nder novi eFi nder;
@ nj ect
public voi d set Mvi eFi nder (Myvi eFi nder novi eFi nder) {

t hi s. novi eFi nder = novi eFi nder;

}

Il

It is very common to use @onponent without specifying a name for the component. @Naned can be
used in a similar fashion:

i nport javax.inject.Inject;
i nport javax.inject.Naned;

@\aned
public class SinpleMvielister {

private MovieFi nder novi eFi nder;

@ nj ect
public void setMvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

/1

When using @Named or @/anagedBean, it is possible to use component scanning in the exact same
way as when using Spring annotations:

@onfiguration
@onponent Scan(basePackages = "org. exanpl e")
public class AppConfig {

}

Note

In contrast to @onponent , the JSR-330 @Naned and the JSR-250 ManagedBean annotations
are not composable. Please use Spring's stereotype model for building custom component
annotations.

Limitations of JSR-330 standard annotations

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

4.3.16.RELEASE Spring Framework 122

Spring Framework Reference Documentation

Table 7.6. Spring component model elements vs. JSR-330 variants

Spring javax.inject.* javax.inject restrictions /
comments
@Autowired @Inject @ nj ect has no 'required'

attribute; can be used with Java
8's Opt i onal instead.

@Component @Named / @ManagedBean JSR-330 does not provide a
composable model, just a way
to identify named components.

@Scope("singleton™) @Singleton The JSR-330 default scope

is like Spring’s pr ot ot ype.
However, in order to keep

it consistent with Spring’s
general defaults, a JSR-330
bean declared in the Spring
container is a si ngl et on by
default. In order to use a scope
other than si ngl et on, you
should use Spring’s @cope
annotation. j avax. i nj ect
also provides a @Scope
annotation. Nevertheless, this
one is only intended to be
used for creating your own
annotations.

@Qualifier @Qualifier / @Named javax.inject.Qualifier
is just a meta-annotation

for building custom

qualifiers. Concrete String
qualifiers (like Spring’s

@ual i fi er with a value)
can be associated through

j avax.inj ect. Naned.

@Value - no equivalent
@Required - no equivalent
@Lazy - no equivalent
ObjectFactory Provider j avax.inject. Provider is

a direct alternative to Spring’s
hj ect Fact ory, just with

a shorter get () method
name. It can also be used

in combination with Spring’s
@A\ut owi r ed or with non-

4.3.16.RELEASE Spring Framework 123

http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring Framework Reference Documentation

Spring javax.inject.* javax.inject restrictions /
comments

annotated constructors and
setter methods.

7.12 Java-based container configuration

Basic concepts: @Bean and @Configuration

The central artifacts in Spring’s new Java-configuration support are @onfi gur at i on-annotated
classes and @ean-annotated methods.

The @ean annotation is used to indicate that a method instantiates, configures and initializes a
new object to be managed by the Spring IoC container. For those familiar with Spring’s <beans/ >
XML configuration the @ean annotation plays the same role as the <bean/ > element. You can use
@ean annotated methods with any Spring @onponent , however, they are most often used with
@confi gurati on beans.

Annotating a class with @onf i gur at i on indicates that its primary purpose is as a source of bean
definitions. Furthermore, @onf i gur at i on classes allow inter-bean dependencies to be defined by
simply calling other @ean methods in the same class. The simplest possible @onf i gur at i on class
would read as follows:

@onfiguration
public class AppConfig {

@Bean
public MyService nyService() {
return new MyServicel npl ();
}
}

The AppConf i g class above would be equivalent to the following Spring <beans/ > XML.:

<beans>
<bean id="nmyService" class="com acne. servi ces. MyServicelnpl"/>
</ beans>

Full @Configuration vs 'lite' @Bean mode?

When @ean methods are declared within classes that are not annotated with @onf i gur ati on
they are referred to as being processed in a 'lite' mode. Bean methods declared in a @onponent
or even in a plain old class will be considered 'lite’, with a different primary purpose of the containing
class and an @ean method just being a sort of bonus there. For example, service components
may expose management views to the container through an additional @ean method on each
applicable component class. In such scenarios, @ean methods are a simple general-purpose
factory method mechanism.

Unlike full @onfi gurati on, lite @ean methods cannot declare inter-bean dependencies.
Instead, they operate on their containing component’s internal state and optionally on arguments
that they may declare. Such an @ean method should therefore not invoke other @Bean methods;
each such method is literally just a factory method for a particular bean reference, without any
special runtime semantics. The positive side-effect here is that no CGLIB subclassing has to be
applied at runtime, so there are no limitations in terms of class design (i.e. the containing class
may nevertheless be fi nal etc).

4.3.16.RELEASE Spring Framework 124

Spring Framework Reference Documentation

In common scenarios, @ean methods are to be declared within @onfi gurati on classes,
ensuring that 'full' mode is always used and that cross-method references will therefore get
redirected to the container’s lifecycle management. This will prevent the same @ean method from
accidentally being invoked through a regular Java call which helps to reduce subtle bugs that can
be hard to track down when operating in 'lite' mode.

The @ean and @onf i gur ati on annotations will be discussed in depth in the sections below. First,
however, we’'ll cover the various ways of creating a spring container using Java-based configuration.

Instantiating the Spring container using
AnnotationConfigApplicationContext

The sections below document Spring’s Annot at i onConf i gAppl i cat i onCont ext, new in Spring
3.0. This versatile ApplicationContext implementation is capable of accepting not only
@onfi gurati on classes as input, but also plain @onponent classes and classes annotated with
JSR-330 metadata.

When @Conf i gur at i on classes are provided as input, the @onf i gur at i on class itself is registered
as a bean definition, and all declared @ean methods within the class are also registered as bean
definitions.

When @onponent and JSR-330 classes are provided, they are registered as bean definitions, and it
is assumed that DI metadata such as @\ut owi r ed or @ nj ect are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
Cl assPat hXm Appl i cati onCont ext, @onfi gurati on classes may be used as input when
instantiating an Annot ati onConfi gAppl i cati onCont ext. This allows for completely XML-free
usage of the Spring container:

public static void main(String[] args) {
ApplicationContext ctx = new Annotati onConfi gAppli cationContext (AppConfig.class);
My/Servi ce nyService = ctx.getBean(M/Service. cl ass);
nyServi ce. doSt uf f ();

}

As mentioned above, Annot at i onConf i gAppl i cati onCont ext is not limited to working only with
@confi gur ati on classes. Any @onponent or JSR-330 annotated class may be supplied as input
to the constructor. For example:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppli cationContext (MServicel npl.class,
Dependencyl. cl ass, Dependency?2. cl ass);
My/Servi ce nyService = ctx.getBean(M/Servi ce. cl ass);
nyServi ce. doSt uf f () ;
}

The above assumes that MySer vi cel npl , Dependency1 and Dependency?2 use Spring dependency
injection annotations such as @\ut owi r ed.

Building the container programmatically using register(Class<?>...)

An Annot ati onConfi gAppl i cati onCont ext may be instantiated using a no-arg constructor
and then configured using the regi ster() method. This approach is particularly useful when
programmatically building an Annot at i onConfi gAppl i cati onCont ext .

4.3.16.RELEASE Spring Framework 125

Spring Framework Reference Documentation

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx. regi ster(AppConfig.class, OherConfig.class);
ctx.regi ster(Additional Config.class);
ctx.refresh();
MyServi ce nyService = ctx. get Bean(M/Servi ce. cl ass);
nmyServi ce. doSt uff () ;

Enabling component scanning with scan(String...)

To enable component scanning, just annotate your @onf i gur at i on class as follows:

@onfiguration
@onponent Scan(basePackages = "com acne")
public class AppConfig {

}
Tip
Experienced Spring users will be familiar with the XML declaration equivalent from Spring’s

cont ext : namespace

<beans>
<cont ext : conponent - scan base- package="com acne"/ >
</ beans>

In the example above, the com acne package will be scanned, looking for any @onponent -
annotated classes, and those classes will be registered as Spring bean definitions within the container.
Annot at i onConf i gAppl i cati onCont ext exposes the scan(String..) method to allow for the
same component-scanning functionality:

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onContext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx.scan("com acne");
ctx.refresh();
MyServi ce nyService = ctx. get Bean(M/Servi ce. cl ass);

Note

Remember that @onfi gurati on classes are meta-annotated with @onponent, so they
are candidates for component-scanning! In the example above, assuming that AppConfi g is
declared within the com acrne package (or any package underneath), it will be picked up during
the callto scan() ,and uponr ef resh() allits @ean methods will be processed and registered
as bean definitions within the container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebAppl i cati onCont ext variant of Annot ati onConfi gAppl i cati onCont ext is available
with Annot at i onConf i g\WebAppl i cati onContext. This implementation may be used
when configuring the Spring Cont extLoaderLi stener servlet listener, Spring MVC
Di spat cher Ser vl et , etc. What follows is a web. xml snippet that configures a typical Spring MVC
web application. Note the use of the cont ext Cl ass context-param and init-param:

4.3.16.RELEASE Spring Framework 126

Spring Framework Reference Documentation

<web- app>

<l-- Configure ContextLoaderlListener to use Annotati onConfi gWebAppli cati onCont ext
i nstead of the default Xm WebApplicationContext -->

<cont ext - par an»
<par am nanme>cont ext 0 ass</ par am nanme>
<par am val ue>

or g. spri ngf ramewor k. web. cont ext . support. Annot at i onConf i g\WebAppl i cat i onCont ext

</ par am val ue>

</ cont ext - par an>

<l-- Configuration |locations nmust consist of one or nore comma- or space-delimted
fully-qualified @onfiguration classes. Fully-qualified packages nay al so be
speci fied for conponent-scanning -->

<cont ext - par an»
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<param val ue>com acne. AppConfi g</ param val ue>

</ cont ext - par an>

<l-- Bootstrap the root application context as usual using ContextLoaderListener -->
<l i stener>

<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li stener</|istener-class>
</listener>

<l-- Declare a Spring M/C D spat cherServl et as usual -->
<servl et >
<servl et - nane>di spat cher </ ser vl et - nane>
<servl et-cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servlet-class>
<!-- Configure DispatcherServlet to use Annotati onConfi gWebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<init-paranp
<par am nane>cont ext Cl ass</ par am nanme>
<par am val ue>
or g. springfranmewor k. web. cont ext . support . Annot ati onConf i gWebAppl i cati onCont ext
</ param val ue>
</init-paran>
<l-- Again, config |locations nust consist of one or nobre comma- or space-delimted
and fully-qualified @onfiguration classes -->
<init-paranp
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<param val ue>com acne. web. MrcConfi g</ param val ue>
</init-paranme
</ servlet>

<I-- map all requests for /app/* to the dispatcher servliet -->
<servl et - mappi ng>
<ser vl et - name>di spat cher </ ser vl et - name>
<url -pattern>/app/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Using the @Bean annotation

@ean is a method-level annotation and a direct analog of the XML <bean/ > element. The annotation
supports some of the attributes offered by <bean/ >, such as: init-method, destroy-method, autowiring
and nane.

You can use the @ean annotation in a @onf i gur ati on-annotated or in a @onponent -annotated
class.

Declaring a bean

To declare a bean, simply annotate a method with the @ean annotation. You use this method to register
a bean definition within an Appl i cati onCont ext of the type specified as the method'’s return value.
By default, the bean name will be the same as the method name. The following is a simple example
of a @ean method declaration:

4.3.16.RELEASE Spring Framework 127

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
public TransferServicel npl transferService() {
return new TransferServicelnpl ();

}

The preceding configuration is exactly equivalent to the following Spring XML:

<beans>
<bean id="transferService" class="com acne. Transfer Servi cel npl "/ >
</ beans>

Both declarations make a bean named t r ansf er Ser vi ce available in the Appl i cati onCont ext,
bound to an object instance of type Tr ansf er Ser vi cel npl :

transferService -> com acne. Transf er Servi cel npl

You may also declare your @ean method with an interface (or base class) return type:

@onfi guration
public class AppConfig {

@Bean
public TransferService transferService() {
return new Transfer Servicel npl ();

}

However, this limits the visibility for advance type prediction to the specified interface type
(Transf er Ser vi ce) then, with the full type (Tr ansf er Ser vi cel nmpl) only known to the container
once the affected singleton bean has been instantiated. Non-lazy singleton beans get instantiated
according to their declaration order, so you may see different type matching results depending
on when another component tries to match by a non-declared type (such as @A\ut owi red
Transf er Servi cel npl which will only resolve once the "transferService" bean has been
instantiated).

Tip

If you consistently refer to your types by a declared service interface, your @ean return types
may safely join that design decision. However, for components implementing several interfaces
or for components potentially referred to by their implementation type, it is safer to declare the
most specific return type possible (at least as specific as required by the injection points referring
to your bean).

Bean dependencies

A @Bean annotated method can have an arbitrary number of parameters describing the dependencies
required to build that bean. For instance if our Tr ansf er Ser vi ce requires an Account Reposi tory
we can materialize that dependency via a method parameter:

4.3.16.RELEASE Spring Framework 128

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
public TransferService transferService(Account Repository account Repository) {
return new Transfer Servi cel npl (account Repository);

}

The resolution mechanism is pretty much identical to constructor-based dependency injection, see the
relevant section for more details.

Receiving lifecycle callbacks

Any classes defined with the @ean annotation support the regular lifecycle callbacks and can use the
@ost Const ruct and @r eDest r oy annotations from JSR-250, see JSR-250 annotations for further
details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
InitializingBean, Di sposabl eBean, or Li f ecycl e, their respective methods are called by the
container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNameAware,
MessageSourceAware, ApplicationContextAware, and so on are also fully supported.

The @ean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML’s i ni t - met hod and dest r oy- net hod attributes on the bean element:

public class Foo {

public void init() {
/1l initialization |ogic
}
}

public class Bar {

public void cleanup() {
/] destruction |ogic
}
}

@onfiguration
public class AppConfig {

@ean(initMethod = "init")
public Foo foo() {
return new Foo();

}

@Bean(destroyMet hod = "cl eanup")
public Bar bar() {
return new Bar();

}

Note

By default, beans defined using Java config that have a public cl ose or shut down method
are automatically enlisted with a destruction callback. If you have a public cl ose or shut down
method and you do not wish for it to be called when the container shuts down, simply add
@ean(destroyMet hod="") to your bean definition to disable the default (i nf er r ed) mode.

4.3.16.RELEASE Spring Framework 129

Spring Framework Reference Documentation

You may want to do that by default for a resource that you acquire via JNDI as its lifecycle is
managed outside the application. In particular, make sure to always do it for a Dat aSour ce as
it is known to be problematic on Java EE application servers.

@ean(dest royMet hod="")

publ i ¢ Dat aSour ce dataSource() throws Nam ngException {
return (DataSource) jndi Tenpl ate.|ookup("MDS");

}

Also, with @ean methods, you will typically choose to use programmatic JNDI lookups:
either using Spring’s Jndi Tenpl at e/Jndi Locat or Del egat e helpers or straight JNDI
I nitial Context usage, butnotthe Jndi Obj ect Fact or yBean variant which would force you
to declare the return type as the Fact or yBean type instead of the actual target type, making it
harder to use for cross-reference calls in other @ean methods that intend to refer to the provided
resource here.

Of course, in the case of Foo above, it would be equally as valid to call the i ni t () method directly

during construction:

@onfi guration
public class AppConfig {

@Bean

public Foo foo() {
Foo foo = new Foo();
foo.init();
return foo;

Tip

When you work directly in Java, you can do anything you like with your objects and do not always
need to rely on the container lifecycle!

Specifying bean scope

Using the @Scope annotation

You can specify that your beans defined with the @ean annotation should have a specific scope. You

can use any of the standard scopes specified in the Bean Scopes section.
The default scope is si ngl et on, but you can override this with the @cope annotation:

@onfiguration
public class MyConfiguration {

@Bean
@cope(" prot ot ype")
public Encryptor encryptor() {
...
}
}

@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The
easiest way to create such a proxy when using the XML configuration is the <aop: scoped- pr oxy/

4.3.16.RELEASE Spring Framework

130

Spring Framework Reference Documentation

> element. Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy (ScopedPr oxyMode. NO), but you can specify
ScopedPr oxyMdde. TARGET_CLASS or ScopedPr oxyMde. | NTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to
our @ean using Java, it would look like the following:

/1 an HTTP Sessi on-scoped bean exposed as a proxy
@Bean
@pessi onScope
public UserPreferences userPreferences() {
return new User Preferences();

}

@ean

public Service userService() {
User Servi ce service = new Si npl eUser Service();
/'l a reference to the proxied userPreferences bean
servi ce. set User Pref erences(user Preferences());
return service;

Customizing bean naming

By default, configuration classes use a @ean method’'s name as the name of the resulting bean. This
functionality can be overridden, however, with the nane attribute.

@onfiguration
public class AppConfig {

@ean(nane = "nyFoo")
public Foo foo() {
return new Foo();

}

Bean aliasing

As discussed in the section called “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known as bean aliasing. The nane attribute of the @ean annotation accepts
a String array for this purpose.

@configuration
public class AppConfig {

@ean(nanme = { "dataSource", "subsystemA-dataSource", "subsystenB-dataSource" })
publ i ¢ Dat aSource dataSource() {
/] instantiate, configure and return DataSource bean...

}

Bean description

Sometimes it is helpful to provide a more detailed textual description of a bean. This can be particularly
useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a @ean the @escr i pti on annotation can be used:

4.3.16.RELEASE Spring Framework 131

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/annotation/Description.html

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
@escription("Provides a basic exanpl e of a bean")
public Foo foo() {

return new Foo();

}

Using the @Configuration annotation

@confi gur ati on is a class-level annotation indicating that an object is a source of bean definitions.
@confi gurati on classes declare beans via public @ean annotated methods. Calls to @ean
methods on @onf i gur at i on classes can also be used to define inter-bean dependencies. See the
section called “Basic concepts: @Bean and @Configuration” for a general introduction.

Injecting inter-bean dependencies

When @eans have dependencies on one another, expressing that dependency is as simple as having
one bean method call another:

@onfiguration
public class AppConfig {

@Bean
public Foo foo() {
return new Foo(bar());

}

@Bean
public Bar bar() {
return new Bar();

}

In the example above, the f 00 bean receives a reference to bar via constructor injection.

Note

This method of declaring inter-bean dependencies only works when the @ean method is declared
within a @Confi guration class. You cannot declare inter-bean dependencies using plain
@onponent classes.

Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful
in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java
for this type of configuration provides a natural means for implementing this pattern.

public abstract class ConmandManager {
public Object process(Object coomandState) {
/1 grab a new instance of the appropriate Command interface
Command conmmand = creat eCommand() ;
/1 set the state on the (hopefully brand new) Command i nstance
conmand. set St at e(commandSt at e) ;
return comnmand. execut e() ;

}

/'l okay... but where is the inplenentation of this nethod?
protected abstract Conmand creat eConmand();

4.3.16.RELEASE Spring Framework 132

Spring Framework Reference Documentation

Using Java-configuration support , you can create a subclass of CormandManager where the abstract
cr eat eCommand() method is overridden in such a way that it looks up a new (prototype) command
object:

@Bean

@cope(" prot ot ype")

publ i c AsyncConmand asyncCommand() {
AsyncCommand command = new AsyncCommand() ;
/'l inject dependencies here as required
return command;

}

@Bean
publ i ¢ CommandManager conmandManager () {
/'l return new anonynous i nplenentation of CommandManager with conmand() overridden
/1 to return a new prototype Command obj ect
return new CommandManager () {
protected Conmand creat eCommand() {
return asyncConmand();

}

Further information about how Java-based configuration works internally

The following example shows a @ean annotated method being called twice:

@onfiguration
public class AppConfig {

@Bean

public CientService clientServicel() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setCientDao(clientDao());
return clientService;

}

@Bean

public dientService clientService2() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setCientDao(clientDao());
return clientService;

}

@Bean

public CientDao clientDao() {
return new C i ent Daol npl ();

}

cl i ent Dao() has been calledonceincl i ent Servi cel() andonceincl i ent Servi ce2(). Since
this method creates a new instance of d i ent Daol npl and returns it, you would normally expect
having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated
beans have a si ngl et on scope by default. This is where the magic comes in: All @onfi gur ati on
classes are subclassed at startup-time with CGLI B. In the subclass, the child method checks the
container first for any cached (scoped) beans before it calls the parent method and creates a new
instance. Note that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
CGLIB classes have been repackaged under or g. spri ngf ranewor k. cgl i b and included directly
within the spring-core JAR.

4.3.16.RELEASE Spring Framework 133

Spring Framework Reference Documentation

Note

The behavior could be different according to the scope of your bean. We are talking about
singletons here.

Tip

There are a few restrictions due to the fact that CGLIB dynamically adds features at startup-time,
in particular that configuration classes must not be final. However, as of 4.3, any constructors
are allowed on configuration classes, including the use of @\ut owi r ed or a single non-default
constructor declaration for default injection.

If you prefer to avoid any CGLIB-imposed limitations, consider declaring your @ean methods
on non-@onfi gurati on classes, e.g. on plain @onponent classes instead. Cross-method
calls between @ean methods won't get intercepted then, so you'll have to exclusively rely on
dependency injection at the constructor or method level there.

Composing Java-based configurations
Using the @Import annotation

Much as the <i npor t / > element is used within Spring XML files to aid in modularizing configurations,
the @ nport annotation allows for loading @ean definitions from another configuration class:

@Confi guration
public class ConfigA {

@Bean
public A a() {
return new A();
}
}

@onfiguration
@ nport (Confi gA. cl ass)
public class ConfigB {

@Bean
public B b() {
return new B();

}

Now, rather than needing to specify both Confi gA. cl ass and Confi gB. cl ass when instantiating
the context, only Conf i gB needs to be supplied explicitly:

public static void main(String[] args) {
Appl i cationContext ctx = new Annot ati onConfi gAppl i cati onCont ext (Confi gB. cl ass);

/1 now both beans A and B will be available...
A a = ctx.getBean(A. class);
B b = ctx. get Bean(B. cl ass);

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @onfi gur ati on classes during
construction.

4.3.16.RELEASE Spring Framework 134

Spring Framework Reference Documentation

Tip

As of Spring Framework 4.2, @ nport also supports references to regular component classes,
analogous to the Annot ati onConfi gApplicati onContext.regi ster method. This is
particularly useful if you'd like to avoid component scanning, using a few configuration classes as
entry points for explicitly defining all your components.

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies
on one another across configuration classes. When using XML, this is not an issue, per se, because
there is no compiler involved, and one can simply declare r ef =" someBean" and trust that Spring will
work it out during container initialization. Of course, when using @onf i gur ati on classes, the Java
compiler places constraints on the configuration model, in that references to other beans must be valid
Java syntax.

Fortunately, solving this problem is simple. As we already discussed, @ean method can have an
arbitrary number of parameters describing the bean dependencies. Let's consider a more real-world
scenario with several @Conf i gur at i on classes, each depending on beans declared in the others:

@onfi guration
public class ServiceConfig {

@Bean
public TransferService transferService(Account Repository account Repository) {
return new Transfer Servi cel npl (account Repository);
}
}

@onfiguration
public class RepositoryConfig {

@Bean
publ i ¢ Account Reposi tory account Reposi t ory(Dat aSour ce dat aSource) {
return new JdbcAccount Reposi t ory(dat aSource);
}
}

@onfi guration
@ nport ({Servi ceConfig.class, RepositoryConfig.class})
public class SysteniTestConfig {

@Bean
publ i c Dat aSour ce dataSource() {
/1 return new DataSource
}
}

public static void main(String[] args) {
Appl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
/1 everything wires up across configuration classes...
Transfer Servi ce transferService = ctx.getBean(TransferService.cl ass);
transferService.transfer(100.00, "A123", "C456");

There is another way to achieve the same result. Remember that @onfi gurati on classes are
ultimately just another bean in the container: This means that they can take advantage of @\ut owi r ed
and @al ue injection etc just like any other bean!

4.3.16.RELEASE Spring Framework 135

Spring Framework Reference Documentation

Warning

Make sure that the dependencies you inject that way are of the simplest kind only.
@confi gurati on classes are processed quite early during the initialization of the context and
forcing a dependency to be injected this way may lead to unexpected early initialization. Whenever
possible, resort to parameter-based injection as in the example above.

Also, be particularly careful with BeanPost Processor and BeanFact or yPost Processor
definitions via @ean. Those should usually be declared as static @ean methods, not
triggering the instantiation of their containing configuration class. Otherwise, @\ut owi r ed and
@/al ue won't work on the configuration class itself since it is being created as a bean instance
too early.

@onfiguration
public class ServiceConfig {

@\ut owi r ed
private Account Repository account Repository;

@Bean
public TransferService transferService() {
return new Transfer Servi cel npl (account Reposi tory);
}
}

@configuration
public class RepositoryConfig {

private final DataSource dataSource;

@\ut owi r ed
publ i ¢ RepositoryConfi g(DataSource dataSource) {
t hi s. dat aSour ce = dat aSource;

}

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Reposi t ory(dat aSour ce) ;
}
}

@onfi guration
@ nport ({ServiceConfig.class, RepositoryConfig.class})
public class SystenTestConfig {

@Bean
publ i ¢ Dat aSource dataSource() {
/1 return new DataSource
}
}

public static void main(String[] args) {
Appl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
/'l everything wires up across configuration classes...
Transf er Servi ce transferService = ctx.getBean(TransferService.cl ass);
transferService. transfer(100. 00, "A123", "C456");

Tip

Constructor injection in @onf i gur at i on classes is only supported as of Spring Framework
4.3. Note also that there is no need to specify @\ut owi r ed if the target bean defines only one

4.3.16.RELEASE Spring Framework 136

Spring Framework Reference Documentation

constructor; in the example above, @\ut owi r ed is not necessary on the Reposi t oryConfi g
constructor.

In the scenario above, using @\ut owi r ed works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at Ser vi ceConf i g, how do you know exactly where the @\ut owi r ed
Account Reposi tory bean is declared? It's not explicit in the code, and this may be just fine.
Remember that the Spring Tool Suite provides tooling that can render graphs showing how everything
is wired up - that may be all you need. Also, your Java IDE can easily find all declarations and uses of
the Account Reposi t ory type, and will quickly show you the location of @ean methods that return
that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within
your IDE from one @Conf i gur ati on class to another, consider autowiring the configuration classes
themselves:

@onfi guration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
/1 navigate 'through' the config class to the @ean nethod!
return new Transfer Servicel npl (repositoryConfig.account Repository());

In the situation above, it is completely explicit where Account Reposi tory is defined. However,
Ser vi ceConf i g is now tightly coupled to Reposi t or yConf i g; that's the tradeoff. This tight coupling
can be somewhat mitigated by using interface-based or abstract class-based @confi guration
classes. Consider the following:

4.3.16.RELEASE Spring Framework 137

https://spring.io/tools/sts

Spring Framework Reference Documentation

@onfi guration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
return new Transfer Servicel npl (repositoryConfig.account Repository());
}
}

@onfi guration
public interface RepositoryConfig {

@Bean
Account Reposi t ory account Repository();

}

@onfi guration
public class Defaul t RepositoryConfig inplenents RepositoryConfig {

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Repository(...);
}
}

@onfiguration
@ nport ({ServiceConfig.class, DefaultRepositoryConfig.class}) // inport the concrete config!
public class SystenTestConfig {

@ean
publ i c DataSource dataSource() {
/'l return DataSource

}
}

public static void main(String[] args) {
Appl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
TransferService transferService = ctx.getBean(TransferService.class);
transferService. transfer(100. 00, "A123", "C456");

Now Ser vi ceConfi g is loosely coupled with respect to the concrete Def aul t Reposi t or yConfi g,
and built-in IDE tooling is still useful: it will be easy for the developer to get a type hierarchy of
Reposi t or yConfi g implementations. In this way, navigating @onf i gur ati on classes and their
dependencies becomes no different than the usual process of navigating interface-based code.

Tip

If you would like to influence the startup creation order of certain beans, consider declaring some
of them as @azy (for creation on first access instead of on startup) or as @ependsOn on certain
other beans (making sure that specific other beans will be created before the current bean, beyond
what the latter’s direct dependencies imply).

Conditionally include @Configuration classes or @Bean methods

It is often useful to conditionally enable or disable a complete @Confi gurati on class, or even
individual @Bean methods, based on some arbitrary system state. One common example of this is to
use the @°r of i | e annotation to activate beans only when a specific profile has been enabled in the
Spring Envi ronnent (see the section called “Bean definition profiles” for details).

4.3.16.RELEASE Spring Framework 138

Spring Framework Reference Documentation

The @rrofile annotation is actually implemented using a much more flexible
annotation called @onditional. The @Conditional annotation indicates specific
or g. spri ngframewor k. cont ext. annot ati on. Condi ti on implementations that should be
consulted before a @ean is registered.

Implementations of the Condi t i on interface simply provide a mat ches(..) method that returnstrue
or f al se. For example, here is the actual Condi ti on implementation used for @r of i | e:

@verride
publ i c bool ean mat ches(Condi ti onCont ext context, AnnotatedTypeMetadata netadata) {
if (context.getEnvironnent() != null) {

// Read the @rofile annotation attributes
Mul ti Val ueMap<String, Object> attrs =
nmet adat a. get Al | Annot ati onAttributes(Profile.class.getNane());
if (attrs !'= null) {
for (Cbject value : attrs.get("value")) {
i f (context.getEnvironnent().acceptsProfiles(((String[]) value))) {
return true;
}
}
return false;
}
}

return true;

See the @Condi ti onal javadocs for more detail.

Combining Java and XML configuration

Spring’s @onfi gur ati on class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container.
In cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, Cl assPat hXm Appl i cati onCont ext, or in a "Java-centric"
fashion using Annot at i onConf i gAppl i cati onCont ext and the @ nport Resour ce annotation to
import XML as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include @onf i gur at i on classes
in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be easier to
create @onf i gur ati on classes on an as-needed basis and include them from the existing XML files.
Below you'll find the options for using @onf i gur at i on classes in this kind of "XML-centric" situation.

Remember that @onfi gur ati on classes are ultimately just bean definitions in the container. In this
example, we create a @onf i gur at i on class named AppConf i g andinclude itwithinsyst em t est -
config.xm as a <bean/ > definition. Because <cont ext : annot ati on- confi g/ > is switched
on, the container will recognize the @onf i gur at i on annotation and process the @ean methods
declared in AppConf i g properly.

4.3.16.RELEASE Spring Framework 139

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@\ut owi r ed
private DataSource dataSource;

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Reposi t or y(dat aSour ce) ;

}

@Bean
public TransferService transferService() {
return new Transfer Servi ce(account Repository());

}

system-test-config.xml:

<beans>
<I-- enabl e processing of annotations such as @\wutow red and @onfiguration -->
<cont ext : annot ati on-confi g/ >
<cont ext: property-placehol der |ocation="cl asspath:/conf acne/jdbc. properties"/>

<bean cl ass="com acne. AppConfig"/>

<bean cl ass="org. springframework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernanme" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

jdbc.properties:

jdbc. url =j dbc: hsql db: hsql : / /1 ocal host/ xdb
j dbc. user nane=sa
j dbc. passwor d=

public static void main(String[] args) {

ApplicationContext ctx = new C assPat hXm Appli cati onContext ("cl asspath:/conf acne/ systemtest -
config.xm");

Transf er Servi ce transferService = ctx.getBean(TransferService.cl ass);

/1

Note

In systemtest-config.xm above, the AppConfi g <bean/ > does not declare an id
element. While it would be acceptable to do so, it is unnecessary given that no other bean will ever
refer to it, and it is unlikely that it will be explicitly fetched from the container by name. Likewise
with the Dat aSour ce bean - it is only ever autowired by type, so an explicit bean i d is not strictly
required.

Because @onfi guration is meta-annotated with @onponent, @Confi gur ati on-annotated
classes are automatically candidates for component scanning. Using the same scenario as above,
we can redefine systemtest-config. xm to take advantage of component-scanning. Note that
in this case, we don't need to explicitly declare <cont ext: annot ati on-confi g/ >, because
<cont ext : component - scan/ > enables the same functionality.

system-test-config.xml:

4.3.16.RELEASE Spring Framework 140

Spring Framework Reference Documentation

<beans>
<l-- picks up and registers AppConfig as a bean definition -->
<cont ext : conponent - scan base- package="com acne"/ >
<cont ext: property-placehol der |ocati on="cl asspath:/conl acne/jdbc. properties"/>

<bean cl ass="org. springfranework. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernanme" val ue="${j dbc. usernanme}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

@Configuration class-centric use of XML with @ImportResource

In applications where @onfi gur ati on classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ npor t Resour ce and define only as much XML as is needed. Doing so achieves a "Java-centric"
approach to configuring the container and keeps XML to a bare minimum.

@onfi guration
@ npor t Resour ce("cl asspat h: / conf acne/ properties-config.xm")
public class AppConfig {

@/al ue("${jdbc.url}")
private String url;

@/al ue(" ${j dbc. user nane}")
private String usernane;

@/al ue(" ${j dbc. password}")
private String password;

@Bean
publ i c Dat aSour ce dataSource() {
return new Driver Manager Dat aSour ce(url, usernanme, password);

}

properties-config.xm
<beans>

<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>
</ beans>

jdbc. properties

jdbc. url =j dbc: hsqgl db: hsql : //1 ocal host/ xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {
Appl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext (AppConfi g. cl ass);
Transfer Servi ce transferService = ctx.getBean(TransferService.cl ass);
/1

7.13 Environment abstraction

The Envi ronnent is an abstraction integrated in the container that models two key aspects of the
application environment: profiles and properties.

A profile is a named, logical group of bean definitions to be registered with the container only if the given
profile is active. Beans may be assigned to a profile whether defined in XML or via annotations. The role
of the Envi r onnent object with relation to profiles is in determining which profiles (if any) are currently
active, and which profiles (if any) should be active by default.

4.3.16.RELEASE Spring Framework 141

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/core/env/Environment.html

Spring Framework Reference Documentation

Properties play an important role in almost all applications, and may originate from a variety of
sources: properties files, JVM system properties, system environment variables, JNDI, servlet context
parameters, ad-hoc Properties objects, Maps, and so on. The role of the Envi r onnment object with
relation to properties is to provide the user with a convenient service interface for configuring property
sources and resolving properties from them.

Bean definition profiles

Bean definition profiles is a mechanism in the core container that allows for registration of different beans
in different environments. The word environment can mean different things to different users and this
feature can help with many use cases, including:

» working against an in-memory datasource in development vs looking up that same datasource from
JNDI when in QA or production

 registering monitoring infrastructure only when deploying an application into a performance
environment

* registering customized implementations of beans for customer A vs. customer B deployments

Let's consider the first use case in a practical application that requires a Dat aSour ce. In a test
environment, the configuration may look like this:

@Bean
publ i ¢ Dat aSour ce dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EmbeddedDat abaseType. HSQL)
.addScri pt ("ny-schena. sql ")
.addScri pt ("ny-test-data.sqgl")
Lbuild();

}

Let’'s now consider how this application will be deployed into a QA or production environment, assuming
that the datasource for the application will be registered with the production application server’s JNDI
directory. Our dat aSour ce bean now looks like this:

@Bean(dest r oyMet hod="")
publ i c Dat aSour ce dataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|ookup("java:conp/env/jdbc/datasource");

}

The problem is how to switch between using these two variations based on the current environment.
Over time, Spring users have devised a number of ways to get this done, usually relying on a combination
of system environment variables and XML <i nport/> statements containing ${ pl acehol der}
tokens that resolve to the correct configuration file path depending on the value of an environment
variable. Bean definition profiles is a core container feature that provides a solution to this problem.

If we generalize the example use case above of environment-specific bean definitions, we end up with
the need to register certain bean definitions in certain contexts, while not in others. You could say that
you want to register a certain profile of bean definitions in situation A, and a different profile in situation
B. Let's first see how we can update our configuration to reflect this need.

@Profile

The @r of i | e annotation allows you to indicate that a component is eligible for registration when
one or more specified profiles are active. Using our example above, we can rewrite the dat aSour ce
configuration as follows:

4.3.16.RELEASE Spring Framework 142

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/annotation/Profile.html

Spring Framework Reference Documentation

@onfi guration
@rofile("devel opnent™)
public class Standal oneDat aConfig {

@Bean
publ i ¢ Dat aSource dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: conml bank/ confi g/ sql / schema. sql ")
.addScri pt ("cl asspat h: conml bank/ confi g/ sql /test-data.sql")
Lbuild();

@onfiguration
@rofile("production")
public class Jndi Dat aConfig {

@ean(dest royMet hod="")
publ i c Dat aSource dataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|ookup("java:conp/env/jdbc/datasource");

Note

As mentioned before, with @ean methods, you will typically choose to use programmatic JNDI
lookups: either using Spring’s Jndi Tenpl at e/Jndi Locat or Del egat e helpers or the straight
JNDI | ni ti al Cont ext usage shown above, but not the Jndi Cbj ect Fact or yBean variant
which would force you to declare the return type as the Fact or yBean type.

@rofile can be used as a meta-annotation for the purpose of creating a custom composed
annotation. The following example defines a custom @r oduct i on annotation that can be used as a

drop-in replacement for @r of i | e(" producti on"):

@ar get (El enent Type. TYPE)

@Ret ent i on(Ret ent i onPol i cy. RUNTI MVE)
@rofile("production")

public @nterface Production {

}

Tip

If a @onfi guration class is marked with @r of i | e, all of the @ean methods and @ npor t
annotations associated with that class will be bypassed unless one or more of the specified profiles
are active. If a @onponent or @onfi gurati on class is marked with @r of i | e({"pl",
"p2"}), that class will not be registered/processed unless profiles 'pl' and/or 'p2' have been
activated. If a given profile is prefixed with the NOT operator (!), the annotated element will
be registered if the profile is not active. For example, given @rofil e({"pl", "!p2"}),
registration will occur if profile 'pl' is active or if profile 'p2' is not active.

@r of i | e can also be declared at the method level to include only one particular bean of a configuration

class, e.g. for alternative variants of a particular bean:

4.3.16.RELEASE Spring Framework

143

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@ean(" dat aSour ce")
@rofile("devel opnent™)
publ i ¢ Dat aSour ce standal oneDat aSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: conml bank/ confi g/ sql / schema. sql ")
.addScri pt ("cl asspat h: conml bank/ confi g/ sql /test-data.sql")
Lbuild();
}

@Bean(" dat aSour ce")
@rofile("production")
publ i c DataSource jndi DataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|ookup("java:conp/env/jdbc/datasource");

Note

With @r of i | e on @ean methods, a special scenario may apply: In the case of overloaded
@ean methods of the same Java method name (analogous to constructor overloading), an
@r of i | e condition needs to be consistently declared on all overloaded methods. If the
conditions are inconsistent, only the condition on the first declaration among the overloaded
methods will matter. @r of i | e can therefore not be used to select an overloaded method with a
particular argument signature over another; resolution between all factory methods for the same
bean follows Spring’s constructor resolution algorithm at creation time.

If you would like to define alternative beans with different profile conditions, use distinct Java
method names pointing to the same bean name via the @ean name attribute, as indicated in the
example above. If the argument signatures are all the same (e.qg. all of the variants have no-arg
factory methods), this is the only way to represent such an arrangement in a valid Java class in
the first place (since there can only be one method of a particular name and argument signature).

XML bean definition profiles

The XML counterpartisthe pr of i | e attribute of the <beans> element. Our sample configuration above

can be rewritten in two XML files as follows:

<beans profil e="devel opment"
xm ns="http://ww. springfranmework. org/ scherma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: j dbc="http://ww. springframework. or g/ schenma/ j dbc"
xsi:schemalLocation="...">

<j dbc: enbedded- dat abase i d="dat aSour ce" >
<j dbc:script |ocation="classpath:conl bank/config/sql/schena.sql"/>
<j dbc: script |ocation="cl asspath: com bank/config/sql/test-data.sql"/>
</ j dbc: enmbedded- dat abase>
</ beans>

<beans profile="production"
xm ns="http://ww. spri ngfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: j ee="http://ww. springframework. org/ schena/j ee"
xsi:schemalLocation="...">

<j ee:j ndi -l ookup id="dataSource" jndi-nanme="java: conp/env/jdbc/datasource"/>
</ beans>

4.3.16.RELEASE Spring Framework

144

Spring Framework Reference Documentation

It is also possible to avoid that split and nest <beans/ > elements within the same file:

<beans xml ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: j dbc="http://ww. springframework. org/ schena/j dbc"
xm ns: j ee="http://ww. springfranmework. org/ schena/j ee"
xsi:schemalLocation="...">

<I-- other bean definitions -->

<beans profil e="devel opment">
<j dbc: enbedded- dat abase i d="dat aSour ce">
<j dbc: script |ocation="cl asspath: conf bank/ confi g/sqgl/schema. sql "/ >
<j dbc: script |ocation="classpath: conf bank/ config/sqgl/test-data.sql"/>
</ j dbc: enbedded- dat abase>
</ beans>

<beans profil e="production">
<j ee:] ndi -1 ookup i d="dataSource" jndi-nanme="java: conp/ env/j dbc/ dat asource"/ >
</ beans>
</ beans>

The spri ng- bean. xsd has been constrained to allow such elements only as the last ones in the file.
This should help provide flexibility without incurring clutter in the XML files.

Activating a profile

Now that we have updated our configuration, we still need to instruct Spring which profile is active. If
we started our sample application right now, we would see a NoSuchBeanDefi ni ti onExcepti on
thrown, because the container could not find the Spring bean named dat aSour ce.

Activating a profile can be done in several ways, but the most straightforward is to do it programmatically
against the Envi r onnent API which is available via an Appl i cat i onCont ext :

Annot ati onConf i gAppl i cati onContext ctx = new AnnotationConfi gApplicationContext();
ct x. get Envi ronnment (). set Acti veProfil es("devel opnent");

ctx. regi ster(SonmeConfig.cl ass, Standal oneDat aConfi g.cl ass, Jndi DataConfi g. cl ass);
ctx.refresh();

In addition, profiles may also be activated declaratively through the spring. profiles. active
property which may be specified through system environment variables, JVM system properties, servlet
context parameters in web. xm , or even as an entry in JNDI (see the section called “PropertySource
abstraction”). In integration tests, active profiles can be declared via the @\ct i vePr of i | es annotation
inthe spri ng-t est module (see the section called “Context configuration with environment profiles”).

Note that profiles are not an "either-or" proposition; it is possible to activate multiple profiles at once.
Programmatically, simply provide multiple profile names to the set Act i vePr of i | es() method, which
accepts St ri ng...varargs:

ctx. get Environnent ().setActiveProfiles("profilel”, "profile2");

Declaratively, spri ng. profil es. acti ve may accept a comma-separated list of profile names:

‘ -Dspring.profiles.active="profilel,profile2"
Default profile

The default profile represents the profile that is enabled by default. Consider the following:

4.3.16.RELEASE Spring Framework 145

Spring Framework Reference Documentation

@onfi guration
@rofile("default")
public class Defaul t DataConfig {

@Bean
publ i ¢ Dat aSource dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: conml bank/ confi g/ sql / schema. sql ")
.build();

If no profile is active, the dat aSour ce above will be created; this can be seen as a way to provide a
default definition for one or more beans. If any profile is enabled, the default profile will not apply.

The name of the default profile can be changed using set Def aul t Pr of i | es() onthe Envi r onnent
or declaratively using the spri ng. profi | es. def aul t property.

PropertySource abstraction

Spring’s Envi ronment abstraction provides search operations over a configurable hierarchy of
property sources. To explain fully, consider the following:

Appl i cationContext ctx = new Ceneri cApplicationContext();

Envi ronnent env = ctx. get Environnent () ;

bool ean cont ai nsFoo = env. cont ai nsProperty("foo");

System out. println("Does ny environnment contain the 'foo" property? " + contai nsFoo);

Inthe snippet above, we see a high-level way of asking Spring whether the f oo property is defined for the
current environment. To answer this question, the Envi r onnment object performs a search over a set of
Pr oper t ySour ce objects. A Propert ySour ce is a simple abstraction over any source of key-value
pairs, and Spring’s St andar dEnvi r onnment is configured with two PropertySource objects —one
representing the set of JVM system properties (ala Syst em get Properti es()) and one representing
the set of system environment variables (a la Syst em get env()).

Note

These default property sources are present for Standar dEnvironnent, for use in
standalone applications. St andar dServl et Envi ronnent is populated with additional
default property sources including servlet config and servlet context parameters.
St andar dPor t | et Envi ronnent similarly has access to portlet config and portlet context
parameters as property sources. Both can optionally enable a Jndi Pr oper t ySour ce. See the
javadocs for details.

Concretely, when using the St andar dEnvi r onnent , the call to env. cont ai nsProperty("foo")
will return true if a f 00 system property or f 00 environment variable is present at runtime.

Tip

The search performed is hierarchical. By default, system properties have precedence over
environment variables, so if the f 0o property happens to be set in both places during a call to
env. get Property("foo"), the system property value will 'win' and be returned preferentially
over the environment variable. Note that property values will not get merged but rather completely
overridden by a preceding entry.

4.3.16.RELEASE Spring Framework 146

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/core/env/PropertySource.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/core/env/StandardEnvironment.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/web/context/support/StandardServletEnvironment.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/web/portlet/context/StandardPortletEnvironment.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/jndi/JndiPropertySource.html

Spring Framework Reference Documentation

For a common St andar dSer vl et Envi r onnent , the full hierarchy looks as follows, with the
highest-precedence entries at the top:

» ServletConfig parameters (if applicable, e.g. in case of a Di spat cher Ser vl et context)
» ServletContext parameters (web.xml context-param entries)
» JNDI environment variables ("java:comp/env/" entries)

» JVM system properties ("-D" command-line arguments)

» JVM system environment (operating system environment variables)

Most importantly, the entire mechanism is configurable. Perhaps you have a custom source of properties
that you'd like to integrate into this search. No problem — simply implement and instantiate your own
Pr oper t ySour ce and add it to the set of Pr oper t ySour ces for the current Envi r onment :

Confi gur abl eAppl i cati onContext ctx = new GenericApplicationContext();
Mut abl ePr opert ySour ces sources = ctx.get Environnent (). get PropertySources();
sour ces. addFi r st (new MyPropertySource());

In the code above, MyPr opert ySour ce has been added with highest precedence in the search. If
it contains a f oo property, it will be detected and returned ahead of any f oo property in any other
Pr opert ySour ce. The Mut abl ePr opert ySour ces API exposes a number of methods that allow for
precise manipulation of the set of property sources.

@PropertySource

The @r opertySour ce annotation provides a convenient and declarative mechanism for adding a
Pr opert ySour ce to Spring’s Envi r onnent .

Given a file "app.properties" containing the key/value pair t est bean. nane=nyTest Bean, the
following @Configuration class uses @ropertySource in such a way that a call to
t est Bean. get Nane() will return "myTestBean".

@onfiguration
@r opertySource("cl asspat h: / com myco/ app. properties")
public class AppConfig {

@\ut owi r ed
Envi ronnent env;

@Bean

public TestBean testBean() {
Test Bean testBean = new Test Bean();
t est Bean. set Nane(env. get Property("testbean. nane"));
return testBean;

Any ${ ..} placeholders presentin a @r opert ySour ce resource location will be resolved against the
set of property sources already registered against the environment. For example:

4.3.16.RELEASE Spring Framework 147

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/core/env/MutablePropertySources.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Framework Reference Documentation

@onfi guration
@r opertySour ce("cl asspat h: / coml ${ ny. pl acehol der: def aul t/ pat h}/ app. properties")
public class AppConfig {

@\ut owi r ed
Envi ronnent env;

@Bean

public TestBean testBean() {
Test Bean testBean = new Test Bean();
t est Bean. set Nane(env. get Property("testbean. nane"));
return testBean;

Assuming that "my.placeholder" is present in one of the property sources already registered, e.g. system
properties or environment variables, the placeholder will be resolved to the corresponding value. If not,
then "default/path” will be used as a default. If no default is specified and a property cannot be resolved,
an ||| egal Argurment Except i on will be thrown.

Note

The @°r opert ySour ce annotation is repeatable according to Java 8 conventions. However, all
such @r oper t ySour ce annotations need to be declared at the same level: either directly on the
configuration class or as meta-annotations within the same custom annotation. Mixing of direct
annotations and meta-annotations is not recommended since direct annotations will effectively
override meta-annotations.

Placeholder resolution in statements

Historically, the value of placeholders in elements could be resolved only against JVM system properties
or environment variables. No longer is this the case. Because the Environment abstraction is integrated
throughout the container, it's easy to route resolution of placeholders through it. This means that you
may configure the resolution process in any way you like: change the precedence of searching through
system properties and environment variables, or remove them entirely; add your own property sources
to the mix as appropriate.

Concretely, the following statement works regardless of where the cust onmer property is defined, as
long as it is available in the Envi r onnent :

<beans>
<i nport resource="com bank/servi ce/ ${custoner}-config.xm"/>
</ beans>

7.14 Registering a LoadTimeWeaver

The LoadTi nreWeaver is used by Spring to dynamically transform classes as they are loaded into the
Java virtual machine (JVM).

To enable load-time weaving add the @nabl eLoadTi neWeavi ng to one of your @onfi gurati on
classes:

@onfi guration
@Enabl eLoadTi neWeavi ng
public class AppConfig {

}

4.3.16.RELEASE Spring Framework 148

Spring Framework Reference Documentation

Alternatively for XML configuration use the cont ext : | oad-ti nme- weaver element:

<beans>
<cont ext : | oad-ti me-weaver/ >
</ beans>

Once configured for the Appli cati onContext. Any bean within that Appli cati onCont ext
may implement LoadTi neWeaver Awar e, thereby receiving a reference to the load-time
weaver instance. This is particularly useful in combination with Spring’s JPA support
where load-time weaving may be necessary for JPA class transformation. Consult the
Local Cont ai ner Enti t yManager Fact or yBean javadocs for more detail. For more on AspectJ
load-time weaving, see the section called “Load-time weaving with AspectJ in the Spring Framework”.

7.15 Additional capabilities of the ApplicationContext

As was discussed in the chapter introduction, the or g. spr i ngf r anewor k. beans. f act or y package
provides basic functionality for managing and manipulating beans, including in a programmatic
way. The or g. spri ngfranmewor k. cont ext package adds the Appl i cati onCont ext interface,
which extends the BeanFact ory interface, in addition to extending other interfaces to provide
additional functionality in a more application framework-oriented style. Many people use the
Appl i cati onCont ext in a completely declarative fashion, not even creating it programmatically,
but instead relying on support classes such as Cont ext Loader to automatically instantiate an
Appl i cati onCont ext as part of the normal startup process of a Java EE web application.

To enhance BeanFact ory functionality in a more framework-oriented style the context package also
provides the following functionality:

» Access to messages in i18n-style, through the MessageSour ce interface.
» Access to resources, such as URLs and files, through the Resour ceLoader interface.

» Event publication to namely beans implementing the Appl i cat i onLi st ener interface, through the
use of the Appl i cati onEvent Publ i sher interface.

» Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such
as the web layer of an application, through the Hi er ar chi cal BeanFact or y interface.

Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and
therefore provides internationalization (i18n) functionality. Spring also provides the interface
Hi er ar chi cal MessageSour ce, which can resolve messages hierarchically. Together these
interfaces provide the foundation upon which Spring effects message resolution. The methods defined
on these interfaces include:

* String get Message(String code, Cbject[] args, String default, Locale |oc):
The basic method used to retrieve a message from the MessageSour ce. When no message is found
for the specified locale, the default message is used. Any arguments passed in become replacement
values, using the MessageFor mat functionality provided by the standard library.

 String get Message(String code, Cbject[] args, Local e |oc): Essentially the same
as the previous method, but with one difference: no default message can be specified; if the message
cannot be found, a NoSuchMessageExcept i on is thrown.

4.3.16.RELEASE Spring Framework 149

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework Reference Documentation

e String getMessage(MessageSourceResol vable resolvable, Locale |locale):
All properties used in the preceding methods are also wrapped in a class named
MessageSour ceResol vabl e, which you can use with this method.

When an Appl i cati onCont ext is loaded, it automatically searches for a MessageSour ce bean
defined in the context. The bean must have the name nmessageSour ce. If such a bean is found, all
calls to the preceding methods are delegated to the message source. If no message source is found,
the Appl i cat i onCont ext attempts to find a parent containing a bean with the same name. If it does,
it uses that bean as the MessageSour ce. If the Appl i cati onCont ext cannot find any source for
messages, an empty Del egat i ngMessageSour ce is instantiated in order to be able to accept calls
to the methods defined above.

Spring provides two MessageSour ce implementations, Resour ceBundl eMessageSour ce and
St ati cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested
messaging. The St ati cMessageSour ce is rarely used but provides programmatic ways to add
messages to the source. The Resour ceBundl eMessageSour ce is shown in the following example:

<beans>
<bean i d="nmessageSource"
cl ass="org. springframewor k. cont ext. support. Resour ceBundl eMessageSour ce" >
<property nanme="basenanes">
<list>
<val ue>f ormat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>wi ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

In the example it is assumed you have three resource bundles defined in your classpath called f or mat ,
excepti ons and wi ndows. Any request to resolve a message will be handled in the JDK standard
way of resolving messages through ResourceBundles. For the purposes of the example, assume the
contents of two of the above resource bundle files are...

in format. properties
message=Al | i gators rock!

in exceptions.properties
argurnent . requi red=The {0} argunment is required.

A program to execute the MessageSour ce functionality is shown in the next example. Remember that
all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can be
cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ");
String nessage = resources. get Message("nessage", null, "Default", null);
System out. printl n(nessage);

The resulting output from the above program will be...

Al ligators rock!

So to summarize, the MessageSour ce is defined in a file called beans. xm , which exists at the root of
your classpath. The messageSour ce bean definition refers to a number of resource bundles through
its basenanes property. The three files that are passed in the list to the basenanes property exist as

4.3.16.RELEASE Spring Framework 150

Spring Framework Reference Documentation

files at the root of your classpath and are called f or mat . properti es, excepti ons. properties,
and wi ndows. properti es respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted
into Strings and inserted into placeholders in the lookup message.

<beans>

<l-- this MessageSource is being used in a web application -->

<bean id="nmessageSource" cl ass="org.springfranmework. cont ext.support.ResourceBundl eMessageSour ce" >
<property name="basenanme" val ue="exceptions"/>

</ bean>

<l-- lets inject the above MessageSource into this PQJO -->
<bean id="exanple" class="com foo. Exanpl e" >

<property name="nmessages" ref="nmessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nessages;

public void set Messages(MessageSour ce nessages) {
thi s. nessages = nessages;

}

public void execute() {
String nessage = this.nmessages. get Message("argunent.required”,
new Object [] {"userDao"}, "Required", null);
System out. printl n(nmessage);

The resulting output from the invocation of the execut e() method will be...

The userDao argunment is required.

With regard to internationalization (i18n), Spring’s various MessageSour ce implementations follow
the same locale resolution and fallback rules as the standard JDK Resour ceBundl e. In short, and
continuing with the example messageSour ce defined previously, if you want to resolve messages
against the British (en- GB) locale, you would create files called for mat _en_GB. properti es,
exceptions_en_GB. properties,andw ndows_en_GB. properti es respectively.

Typically, locale resolution is managed by the surrounding environment of the application. In this
example, the locale against which (British) messages will be resolved is specified manually.

in exceptions_en_GCB. properties
argunent . requi red=Ebagum | ad, the {0} argunment is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nessage = resources. get Message("argunent.required",
new Object [] {"userDao"}, "Required", Locale.UK);
System out. printl n(nmessage) ;

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao' argunent is required, | say, required.

4.3.16.RELEASE Spring Framework 151

Spring Framework Reference Documentation

You can also use the MessageSour ceAwar e interface to acquire a reference to any MessageSour ce
that has been defined. Any bean that is defined in an Appl i cati onCont ext that implements the
MessageSour ceAwar e interface is injected with the application context’'s MessageSour ce when the
bean is created and configured.

Note

As an alternative to ResourceBundl eMessageSource, Spring provides a
Rel oadabl eResour ceBundl eMessageSour ce class. This variant supports the same bundle
file format but is more flexible than the standard JDK based Resour ceBundl eMessageSour ce
implementation. In particular, it allows for reading files from any Spring resource location (not just
from the classpath) and supports hot reloading of bundle property files (while efficiently caching
them in between). Check out the Rel oadabl eResour ceBundl eMessageSour ce javadocs for
details.

Standard and custom events

Event handling in the Appl i cati onCont ext is provided through the Appli cati onEvent class
and ApplicationLi stener interface. If a bean that implements the Appl i cati onLi st ener
interface is deployed into the context, every time an Appli cati onEvent gets published to the
Appl i cati onCont ext , that bean is notified. Essentially, this is the standard Observer design pattern.

Tip

As of Spring 4.2, the event infrastructure has been significantly improved and offer an annotation-
based model as well as the ability to publish any arbitrary event, that is an object that does not
necessarily extend from Appl i cat i onEvent . When such an object is published we wrap it in
an event for you.

Spring provides the following standard events:

Table 7.7. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent Published when the Appl i cati onCont ext
is initialized or refreshed, for example,
using the r ef resh() method on the
Confi gur abl eAppl i cati onCont ext
interface. "Initialized" here means that all
beans are loaded, post-processor beans are
detected and activated, singletons are pre-
instantiated, and the Appl i cati onCont ext
object is ready for use. As long as the
context has not been closed, a refresh can
be triggered multiple times, provided that
the chosen Appl i cati onCont ext actually
supports such "hot" refreshes. For example,
Xm WebAppl i cati onCont ext supports hot
refreshes, but Generi cAppl i cati onCont ext
does not.

4.3.16.RELEASE Spring Framework 152

Spring Framework Reference Documentation

Event Explanation

Cont ext St art edEvent Published when the Appl i cati onCont ext
is started, using the st art () method on
the Conf i gur abl eAppl i cati onCont ext
interface. "Started" here means that all
Li f ecycl e beans receive an explicit start
signal. Typically this signal is used to restart
beans after an explicit stop, but it may also
be used to start components that have not
been configured for autostart , for example,
components that have not already started on
initialization.

Cont ext St oppedEvent Published when the Appl i cat i onCont ext
is stopped, using the st op() method on
the Conf i gur abl eAppl i cati onCont ext
interface. "Stopped" here means that all
Li f ecycl e beans receive an explicit stop
signal. A stopped context may be restarted
throughastart () call

Cont ext Cl osedEvent Published when the Appl i cati onCont ext
is closed, using the cl ose() method on the
Confi gur abl eAppl i cati onCont ext
interface. "Closed" here means that all singleton
beans are destroyed. A closed context reaches
its end of life; it cannot be refreshed or restarted.

Request Handl edEvent A web-specific event telling all beans that an
HTTP request has been serviced. This event
is published after the request is complete. This
event is only applicable to web applications
using Spring’s Di spat cher Ser vl et .

You can also create and publish your own custom events. This example demonstrates a simple class
that extends Spring’s Appl i cati onEvent base class:

public class BlackListEvent extends ApplicationEvent {

private final String address;
private final String test;

publ i c Bl ackLi st Event (Obj ect source, String address, String test) {
super (source);
this.address = address;
this.test = test;

}

/| accessor and ot her nethods. ..

To publish a custom ApplicationEvent, call the publishEvent() method on an
Appl i cati onEvent Publ i sher. Typically this is done by creating a class that implements

4.3.16.RELEASE Spring Framework 153

Spring Framework Reference Documentation

Appl i cati onEvent Publ i sher Awar e and registering it as a Spring bean. The following example
demonstrates such a class:

public class Email Service inplenents ApplicationEvent PublisherAware {

private List<String> blackList;
private ApplicationEventPublisher publisher;

public void setBl ackLi st (List<String> bl ackList) {
t his. bl ackLi st = bl ackLi st;
}

public voi d setApplicati onEvent Publi sher (Appli cationEvent Publisher publisher) {
this.publisher = publisher;
}

public void sendEmail (String address, String text) {
i f (bl ackList.contains(address)) {
Bl ackLi st Event event = new Bl ackLi st Event (thi s, address, text);
publ i sher. publ i shEvent (event);
return;

}

/1 send enuil ...

At configuration time, the Spring container will detect that Email Service
implements Appl i cati onEvent Publ i sher Awnar e and will automatically call
set Appl i cati onEvent Publ i sher () . Inreality, the parameter passed in will be the Spring container
itself; you're simply interacting with the application context via its Appl i cati onEvent Publ i sher
interface.

To receive the custom Appl i cati onEvent, create a class that implements Appl i cat i onLi st ener
and register it as a Spring bean. The following example demonstrates such a class:

public class Bl ackListNotifier inplenents ApplicationListener<Bl ackLi st Event> {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificati onAddress;

}

public voi d onApplicationEvent (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress...

}

Notice that Appl i cat i onLi st ener is generically parameterized with the type of your custom event,
Bl ackLi st Event . This means that the onAppl i cati onEvent () method can remain type-safe,
avoiding any need for downcasting. You may register as many event listeners as you wish, but note that
by default event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event. One advantage of this synchronous and
single-threaded approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for event publication
becomes necessary, refer to the javadoc for Spring’s Appl i cat i onEvent Mul ti cast er interface.

The following example shows the bean definitions used to register and configure each of the classes
above:

4.3.16.RELEASE Spring Framework 154

Spring Framework Reference Documentation

<bean id="email Servi ce" cl ass="exanpl e. Emai | Servi ce">
<property name="bl ackLi st">
<list>
<val ue>known. spanmmrer @xanpl e. or g</ val ue>
<val ue>known. hacker @xanpl e. or g</ val ue>
<val ue>j ohn. doe@xanpl e. or g</ val ue>
</list>
</ property>
</ bean>

<bean id="bl ackLi st Notifier" class="exanple.Bl ackLi stNotifier">
<property name="notificati onAddress" val ue="bl ackl i st @xanpl e.org"/ >
</ bean>

Putting it all together, when the sendEnai | () method of the emai | Ser vi ce bean is called, if there
are any emails that should be blacklisted, a custom event of type Bl ackLi st Event is published.
The bl ackLi st Noti fi er bean is registered as an Appl i cati onLi st ener and thus receives the
Bl ackLi st Event , at which point it can notify appropriate parties.

Note

Spring’s eventing mechanism is designed for simple communication between Spring beans within
the same application context. However, for more sophisticated enterprise integration needs,
the separately-maintained Spring Integration project provides complete support for building
lightweight, pattern-oriented, event-driven architectures that build upon the well-known Spring
programming model.

Annotation-based event listeners

As of Spring 4.2, an event listener can be registered on any public method of a managed bean via the
Event Li st ener annotation. The Bl ackLi st Noti fi er can be rewritten as follows:

public class BlackListNotifier {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificati onAddress;

}

@:vent Li st ener
public void processBl ackLi st Event (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress...

}

As you can see above, the method signature once again declares the event type it listens to, but this
time with a flexible name and without implementing a specific listener interface. The event type can also
be narrowed through generics as long as the actual event type resolves your generic parameter in its
implementation hierarchy.

If your method should listen to several events or if you want to define it with no parameter at all, the
event type(s) can also be specified on the annotation itself:

@vent Li st ener ({Cont ext St art edEvent . cl ass, Cont ext Ref reshedEvent. cl ass})
public void handl eContextStart () {

}

4.3.16.RELEASE Spring Framework 155

http://projects.spring.io/spring-integration/
http://www.enterpriseintegrationpatterns.com

Spring Framework Reference Documentation

It is also possible to add additional runtime filtering via the condi t i on attribute of the annotation that
defines a SpEL expression that should match to actually invoke the method for a particular event.

For instance, our notifier can be rewritten to be only invoked if the t est attribute of the event is equal
to f oo:

@vent Li stener(condi tion = "#bl Event.test == 'foo0'")
public void processBl ackLi st Event (Bl ackLi st Event bl Event) {
/'l notify appropriate parties via notificationAddress...

}

Each SpEL expression evaluates again a dedicated context. The next table lists the items made
available to the context so one can use them for conditional event processing:

Table 7.8. Event SpEL available metadata
Name Location Description Example

Event root object The actual #r oot . event
Appl i cati onEvent

Arguments array root object The arguments (as #r oot . ar gs[0]
array) used for invoking
the target

Argument name evaluation context Name of any of the #bl Event or #a0 (one
method arguments. can also use #p0 or
If for some reason #p<#ar g> notation as
the names are not an alias).

available (e.g. no
debug information),
the argument names
are also available
under the #a<#ar g>
where #arg stands for
the argument index
(starting from 0).

Note that #r oot . event allows you to access to the underlying event, even if your method signature
actually refers to an arbitrary object that was published.

If you need to publish an event as the result of processing another, just change the method signature
to return the event that should be published, something like:

@tvent Li st ener

public ListUpdat eEvent handl eBl ackLi st Event (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress and
/1 then publish a ListUpdateEvent. ..

Note

This feature is not supported for asynchronous listeners.

This new method will publish a new Li st Updat eEvent for every Bl ackLi st Event handled by the
method above. If you need to publish several events, just return a Col | ect i on of events instead.

4.3.16.RELEASE Spring Framework 156

Spring Framework Reference Documentation

Asynchronous Listeners

If you want a particular listener to process events asynchronously, simply reuse the regular @GAsync
support:

@tvent Li st ener

@\sync

public void processBl ackLi st Event (Bl ackLi st Event event) {
/| Bl ackLi st Event is processed in a separate thread

}

Be aware of the following limitations when using asynchronous events:

1. If the event listener throws an Exception it will not be propagated to the caller, check
AsyncUncaught Except i onHandl er for more details.

2. Such event listener cannot send replies. If you need to send another event as the result of the
processing, inject Appl i cat i onEvent Publ i sher to send the event manually.

Ordering listeners

If you need the listener to be invoked before another one, just add the @ der annotation to the method
declaration:

@vent Li st ener
@ der (42)
public void processBl ackLi st Event (Bl ackLi st Event event) {
/'l notify appropriate parties via notificationAddress...

}

Generic events

You may also use generics to further define the structure of your event. Consider an
Entit yCreat edEvent <T> where T is the type of the actual entity that got created. You can create
the following listener definition to only receive Ent i t yCr eat edEvent for a Per son:

@vent Li st ener
public void onPersonCreated(EntityCreat edEvent <Person> event) {

}

Due to type erasure, this will only work if the event that is fired resolves the generic parameter(s) on
which the event listener filters on (that is something like cl ass Per sonCreat edEvent extends
EntityCreat edEvent <Person> { ...}).

In certain circumstances, this may become quite tedious if all events follow the same structure
(as it should be the case for the event above). In such a case, you can implement
Resol vabl eTypePr ovi der to guide the framework beyond what the runtime environment provides:

public class EntityCreatedEvent <T>
extends ApplicationEvent inplenments Resol vabl eTypeProvider {

public EntityCreatedEvent (T entity) {
super (entity);
}

@verride
publ i ¢ Resol vabl eType get Resol vabl eType() {
return Resol vabl eType. forC assWt hGeneri cs(getC ass(),
Resol vabl eType. f or | nst ance(get Source()));

4.3.16.RELEASE Spring Framework 157

Spring Framework Reference Documentation

Tip

This works not only for Appl i cat i onEvent but any arbitrary object that you'd send as an event.

Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize
themselves with Spring’s Resour ce abstraction, as described in the chapter Chapter 8, Resources.

An application context is a Resour ceLoader , which can be used to load Resour ces. A Resour ce is
essentially a more feature rich version of the JDK class j ava. net . URL, in fact, the implementations
of the Resour ce wrap an instance of j ava. net . URL where appropriate. A Resour ce can obtain
low-level resources from almost any location in a transparent fashion, including from the classpath,
a filesystem location, anywhere describable with a standard URL, and some other variations. If the
resource location string is a simple path without any special prefixes, where those resources come from
is specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback
interface, Resour ceLoader Awar e, to be automatically called back at initialization time with the
application context itself passed in as the Resour ceLoader . You can also expose properties of type
Resour ce, to be used to access static resources; they will be injected into it like any other properties.
You can specify those Resour ce properties as simple String paths, and rely on a special JavaBean
Propert yEdi t or that is automatically registered by the context, to convert those text strings to actual
Resour ce objects when the bean is deployed.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource
strings, and in simple form are treated appropriately to the specific context implementation.
Cl assPat hXm Appl i cati onCont ext treats a simple location path as a classpath location. You can
also use location paths (resource strings) with special prefixes to force loading of definitions from the
classpath or a URL, regardless of the actual context type.

Convenient ApplicationContext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a
Cont ext Loader . Of course you can also create Appl i cat i onCont ext instances programmatically
by using one of the Appl i cat i onCont ext implementations.

You can register an Appl i cat i onCont ext using the Cont ext Loader Li st ener as follows:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<param val ue>/ WEB- | NF/ daoCont ext . xm /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an>

<l'i stener>
<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li stener</|istener-class>
</listener>

The listener inspects the cont ext Conf i gLocat i on parameter. If the parameter does not exist, the
listener uses / VEEB- | NF/ appl i cat i onCont ext . xml as a default. When the parameter does exist,
the listener separates the String by using predefined delimiters (comma, semicolon and whitespace)
and uses the values as locations where application contexts will be searched. Ant-style path patterns
are supported as well. Examples are / EB- | NF/ * Cont ext . xm for all files with names ending with
"Context.xml", residing in the "WEB-INF" directory, and / VVEB- | NF/ **/ * Cont ext . xm , for all such
files in any subdirectory of "WEB-INF".

4.3.16.RELEASE Spring Framework 158

Spring Framework Reference Documentation

Deploying a Spring ApplicationContext as a Java EE RAR file

It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context and all of
its required bean classes and library JARs in a Java EE RAR deployment unit. This is the equivalent
of bootstrapping a standalone ApplicationContext, just hosted in Java EE environment, being able
to access the Java EE servers facilities. RAR deployment is more natural alternative to scenario of
deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for
bootstrapping a Spring ApplicationContext in a Java EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather
consist only of message endpoints and scheduled jobs. Beans in such a context can use application
server resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS
ConnectionFactory instances, and may also register with the platform’s JMX server - all through Spring’'s
standard transaction management and JNDI and JMX support facilities. Application components
can also interact with the application server's JCA WorkManager through Spring’s TaskExecut or
abstraction.

Check out the javadoc of the Spri ngCont ext Resour ceAdapt er class for the configuration details
involved in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a Java EE RAR file: package all application
classes into a RAR file, which is a standard JAR file with a different file extension. Add all required
library JARs into the root of the RAR archive. Add a "META-INF/ra.xml" deployment descriptor (as
shown in Spri ngCont ext Resour ceAdapt er s javadoc) and the corresponding Spring XML bean
definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your
application server's deployment directory.

Note

Such RAR deployment units are usually self-contained; they do not expose components to the
outside world, not even to other modules of the same application. Interaction with a RAR-based
ApplicationContext usually occurs through JMS destinations that it shares with other modules. A
RAR-based ApplicationContext may also, for example, schedule some jobs, reacting to new files
in the file system (or the like). If it needs to allow synchronous access from the outside, it could
for example export RMI endpoints, which of course may be used by other application modules
on the same machine.

7.16 The BeanFactory

The BeanFact ory provides the underlying basis for Spring’s 1oC functionality but it is only used
directly in integration with other third-party frameworks and is now largely historical in nature for
most users of Spring. The BeanFact ory and related interfaces, such as BeanFact or yAwar e,
InitializingBean, Di sposabl eBean, are still present in Spring for the purposes of backward
compatibility with the large number of third-party frameworks that integrate with Spring. Often third-party
components that can not use more modern equivalents such as @ost Construct or @r eDest r oy
in order to avoid a dependency on JSR-250.

This section provides additional background into the differences between the BeanFact ory and
Appl i cati onCont ext and how one might access the 10C container directly through a classic singleton
lookup.

4.3.16.RELEASE Spring Framework 159

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/jca/context/SpringContextResourceAdapter.html

Spring Framework Reference Documentation

BeanFactory or ApplicationContext?

Use an Appl i cati onCont ext unless you have a good reason for not doing so.

Because the Appl i cat i onCont ext includes all functionality of the BeanFact ory, it is generally
recommended over the BeanFact or y, except for a few situations such as in embedded applications
running on resource-constrained devices where memory consumption might be critical and a few
extra kilobytes might make a difference. However, for most typical enterprise applications and
systems, the Appl i cati onContext is what you will want to use. Spring makes heavy use of
the BeanPost Processor _extension point (to effect proxying and so on). If you use only a plain

BeanFact or y, a fair amount of support such as transactions and AOP will not take effect, at least not
without some extra steps on your part. This situation could be confusing because nothing is actually

wrong with the configuration.

The following table lists features provided by the BeanFact or y and Appl i cat i onCont ext interfaces

and implementations.

Table 7.9. Feature Matrix

Feature BeanFact ory Appl i cati onCont ext
Bean instantiation/wiring Yes Yes
Automatic No Yes
BeanPost Pr ocessor

registration

Automatic No Yes
BeanFact or yPost Processor

registration

Convenient MessageSour ce No Yes
access (for i18n)

Appl i cati onEvent No Yes

publication

To explicitly register a bean post-processor with a BeanFact or y implementation, you need to write

code like this:

/1 now start using the factory

Def aul t Li st abl eBeanFactory factory = new Defaul tLi st abl eBeanFactory();
/| popul ate the factory with bean definitions

/1 now register any needed BeanPost Processor instances
MyBeanPost Processor post Processor = new MyBeanPost Processor () ;
factory. addBeanPost Processor (post Processor) ;

To explicitly register a BeanFact or yPost Pr ocessor when using a BeanFact ory implementation,

you must write code like this:

4.3.16.RELEASE

Spring Framework

160

Spring Framework Reference Documentation

Def aul t Li st abl eBeanFactory factory = new Def aul t Li st abl eBeanFactory();
Xm BeanDef i ni ti onReader reader = new Xm BeanDefi ni ti onReader (factory);
reader. | oadBeanDefi ni ti ons(new Fi | eSyst enResour ce("beans. xm ")) ;

/1 bring in some property values froma Properties file
PropertyPl acehol der Confi gurer cfg = new PropertyPl acehol der Configurer();
cfg.setLocati on(new Fil eSyst enResource("j dbc. properties"));

/1 now actual ly do the repl acenent
cf g. post ProcessBeanFact ory(factory);

In both cases, the explicit registration step is inconvenient, which is one reason why
the various Appli cati onCont ext implementations are preferred above plain BeanFact ory
implementations in the vast majority of Spring-backed applications, especially when using
BeanFact or yPost Processors and BeanPost Processors. These mechanisms implement
important functionality such as property placeholder replacement and AOP.

Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where that code is served
out of a Spring 1oC container, has its own dependencies supplied by the container when it is created, and
is completely unaware of the container. However, for the small glue layers of code that are sometimes
needed to tie other code together, you sometimes need a singleton (or quasi-singleton) style access
to a Spring loC container. For example, third-party code may try to construct new objects directly (
G ass. for Name() style), without the ability to get these objects out of a Spring 10C container.If the
object constructed by the third-party code is a small stub or proxy, which then uses a singleton style
access to a Spring loC container to get a real object to delegate to, then inversion of control has still been
achieved for the majority of the code (the object coming out of the container). Thus most code is still
unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing
benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java implementation object,
retrieved from a Spring 10C container. While the Spring loC container itself ideally does not have to be
a singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in
the Spring 10C container such as a Hibernate Sessi onFact or y) for each bean to use its own, non-
singleton Spring IoC container.

Looking up the application context in a service locator style is sometimes the only option for accessing
shared Spring-managed components, such as in an EJB 2.1 environment, or when you want to share
a single ApplicationContext as a parent to WebApplicationContexts across WAR files. In this case
you should look into using the utility class Cont ext Si ngl et onBeanFact or yLocat or locator that is
described in this Spring team blog entry.

4.3.16.RELEASE Spring Framework 161

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
https://spring.io/blog/2007/06/11/using-a-shared-parent-application-context-in-a-multi-war-spring-application/

Spring Framework Reference Documentation

8. Resources

8.1 Introduction

Java’'s standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are
not quite adequate enough for all access to low-level resources. For example, there is no standardized
URL implementation that may be used to access a resource that needs to be obtained from the classpath,
or relative to a Ser vl et Cont ext . While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as ht t p:), this is generally quite complicated, and
the URL interface still lacks some desirable functionality, such as a method to check for the existence
of the resource being pointed to.

8.2 The Resource interface

Spring’s Resour ce interface is meant to be a more capable interface for abstracting access to low-
level resources.

public interface Resource extends |nputStreanSource {
bool ean exi sts();
bool ean isOpen();
URL get URL() throws | OException;
File getFile() throws |COException;
Resource createRel ative(String relativePath) throws | OException;
String getFil enane();

String getDescription();

public interface |nputStreanSource {

I nput St ream get | nput Strean() throws | OException;

}

Some of the most important methods from the Resour ce interface are:

» get |l nput Strean() : locates and opens the resource, returning an | nput St r eamfor reading from
the resource. It is expected that each invocation returns a fresh | nput St r eam It is the responsibility
of the caller to close the stream.

e exi sts():returns a bool ean indicating whether this resource actually exists in physical form.

e i sOpen(): returns a bool ean indicating whether this resource represents a handle with an open
stream. If t r ue, the | nput St r eamcannot be read multiple times, and must be read once only and
then closed to avoid resource leaks. Will be f al se for all usual resource implementations, with the
exception of | nput St r eanResour ce.

» get Descri pti on() :returns a description for this resource, to be used for error output when working
with the resource. This is often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or Fi | e object representing the resource (if the
underlying implementation is compatible, and supports that functionality).

4.3.16.RELEASE Spring Framework 162

Spring Framework Reference Documentation

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method
signatures when a resource is needed. Other methods in some Spring APIs (such as the constructors to
various Appl i cat i onCont ext implementations), take a St ri ng which in unadorned or simple form
is used to create a Resour ce appropriate to that context implementation, or via special prefixes on
the St ri ng path, allow the caller to specify that a specific Resour ce implementation must be created
and used.

While the Resour ce interface is used a lot with Spring and by Spring, it's actually very useful to use as
a general utility class by itself in your own code, for access to resources, even when your code doesn't
know or care about any other parts of Spring. While this couples your code to Spring, it really only
couples it to this small set of utility classes, which are serving as a more capable replacement for URL,
and can be considered equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where
possible. For example, a Ur | Resour ce wraps a URL, and uses the wrapped URL to do its work.

8.3 Built-in Resource implementations

There are a number of Resour ce implementations that come supplied straight out of the box in Spring:
UrlResource

The Ur | Resour ce wraps a j ava. net . URL, and may be used to access any object that is normally
accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized
St ri ng representation, such that appropriate standardized prefixes are used to indicate one URL type
from another. This includes fi | e: for accessing filesystem paths, ht t p: for accessing resources via
the HTTP protocol, f t p: for accessing resources via FTP, etc.

A Ur | Resour ce is created by Java code explicitly using the Ur | Resour ce constructor, but will often
be created implicitly when you call an API method which takes a St ri ng argument which is meant
to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will ultimately decide which
type of Resour ce to create. If the path string contains a few well-known (to it, that is) prefixes such as
cl asspat h: , it will create an appropriate specialized Resour ce for that prefix. However, if it doesn’t
recognize the prefix, it will assume the this is just a standard URL string, and will create a Ur | Resour ce.

ClassPathResource

This class represents a resource which should be obtained from the classpath. This uses either the
thread context class loader, a given class loader, or a given class for loading resources.

This Resour ce implementation supports resolution as j ava.i o. Fi | e if the class path resource
resides in the file system, but not for classpath resources which reside in a jar and have not been
expanded (by the servlet engine, or whatever the environment is) to the filesystem. To address this the
various Resour ce implementations always support resolution as aj ava. net . URL.

A d assPat hResource is created by Java code explicitly using the O assPat hResource
constructor, but will often be created implicitly when you call an APl method which takes a Stri ng
argument which is meant to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will
recognize the special prefix cl asspat h: on the string path, and create a G assPat hResour ce in
that case.

4.3.16.RELEASE Spring Framework 163

Spring Framework Reference Documentation

FileSystemResource

This is a Resour ce implementation for j ava. i 0. Fi | e handles. It obviously supports resolution as a
Fi |l e, and as a URL.

ServletContextResource

This is a Resour ce implementation for Ser vl et Cont ext resources, interpreting relative paths within
the relevant web application’s root directory.

This always supports stream access and URL access, but only allows j ava. i o. Fi | e access when
the web application archive is expanded and the resource is physically on the filesystem. Whether or
not it's expanded and on the filesystem like this, or accessed directly from the JAR or somewhere else
like a DB (it's conceivable) is actually dependent on the Servlet container.

InputStreamResource

A Resour ce implementation for a given | nput St r eam This should only be used if no specific
Resour ce implementation is applicable. In particular, prefer Byt eAr r ayResour ce or any of the file-
based Resour ce implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource -
therefore returning t r ue from i sQpen() . Do not use it if you need to keep the resource descriptor
somewhere, or if you need to read a stream multiple times.

ByteArrayResource

This is a Resour ce implementation for a given byte array. It creates a Byt eAr r ayl nput St r eamfor
the given byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
| nput St reanResour ce.

8.4 The ResourcelLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load)
Resour ce instances.

public interface ResourcelLoader {

Resour ce get Resource(String |ocation);

All application contexts implement the Resour ceLoader interface, and therefore all application
contexts may be used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified
doesn’t have a specific prefix, you will get back a Resour ce type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
Cl assPat hXm Appl i cati onCont ext instance:

Resource tenplate = ctx.get Resource("sone/resource/ path/ myTenpl ate. txt");

4.3.16.RELEASE Spring Framework 164

Spring Framework Reference Documentation

What would be returned would be a C assPat hResour ce; if the same method was executed against
aFil eSystemXm Appl i cati onCont ext instance, you'd get back a Fi | eSyst enResour ce. For a
WebAppl i cati onCont ext, you'd get back a Ser vl et Cont ext Resour ce, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force Cl assPat hResour ce to be used, regardless of the application
context type, by specifying the special cl asspat h: prefix:

‘ Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. txt");

Similarly, one can force a Ur | Resour ce to be used by specifying any of the standard j ava. net . URL
prefixes:

‘ Resource tenplate = ctx.getResource("file:///sone/resourcel/path/ nyTenplate.txt");

‘ Resource tenplate = ctx.getResource("http://myhost.conlresource/path/nyTenpl ate. txt");

The following table summarizes the strategy for converting St ri ngs to Resour ces:

Table 8.1. Resource strings

Prefix Example Explanation
classpath: cl asspat h: cont nyapp/ Loaded from the classpath.
config.xm
file: file:///data/config.xm Loaded as a URL, from the
filesystem. !
http: http://nyserver/ Loaded as a URL.
| 0go. png
(none) / dat a/ confi g. xm Depends on the underlying
Appl i cati onCont ext .

But see also the section called “FileSystemResource caveats”.

8.5 The ResourceLoaderAware interface

The Resour ceLoader Awar e interface is a special marker interface, identifying objects that expect to
be provided with a Resour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour ceLoader (Resour ceLoader resourcelLoader);

}

When a class implements Resour ceLoader Awar e and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour ceLoader Awar e by the application context. The
application context will then invoke the set Resour ceLoader (Resour ceLoader) , supplying itself as
the argument (remember, all application contexts in Spring implement the Resour ceLoader interface).

Of course, since an Appl i cati onCont ext is a Resour ceLoader, the bean could also implement
the Appl i cati onCont ext Awar e interface and use the supplied application context directly to load
resources, but in general, it's better to use the specialized Resour ceLoader interface if that's all that's
needed. The code would just be coupled to the resource loading interface, which can be considered a
utility interface, and not the whole Spring Appl i cati onCont ext interface.

4.3.16.RELEASE Spring Framework 165

file:///data/config.xml
http://myserver/logo.png
http://myserver/logo.png

Spring Framework Reference Documentation

As of Spring 2.5, you can rely upon autowiring of the ResourcelLoader as an alternative to
implementing the Resour ceLoader Awar e interface. The "traditional" construct or and byType
autowiring modes (as described in the section called “Autowiring collaborators”) are now capable
of providing a dependency of type Resour ceLoader for either a constructor argument or setter
method parameter respectively. For more flexibility (including the ability to autowire fields and multiple
parameter methods), consider using the new annotation-based autowiring features. In that case, the
Resour ceLoader will be autowired into a field, constructor argument, or method parameter that is
expecting the Resour ceLoader type as long as the field, constructor, or method in question carries
the @\ut owi r ed annotation. For more information, see the section called “@Autowired”.

8.6 Resources as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic
process, it probably makes sense for the bean to use the Resour ceLoader interface to load resources.
Consider as an example the loading of a template of some sort, where the specific resource that is
needed depends on the role of the user. If the resources are static, it makes sense to eliminate the use
of the Resour ceLoader interface completely, and just have the bean expose the Resour ce properties
it needs, and expect that they will be injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a
special JavaBeans Pr opert yEdi t or which can convert Stri ng paths to Resour ce objects. So if
nmyBean has a template property of type Resour ce, it can be configured with a simple string for that
resource, as follows:

<bean id="nyBean" class="...">
<property nanme="tenpl ate" val ue="sone/resource/ path/ myTenpl ate. txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to
be used as the Resour ceLoader, the resource itself will be loaded via a C assPat hResour ce,
Fi | eSyst enmResour ce, or Ser vl et Cont ext Resour ce (as appropriate) depending on the exact type
of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following
two examples show how to force a Cl assPat hResour ce and a Ur | Resour ce (the latter being used
to access a filesystem file).

<property name="tenpl ate" val ue="cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" value="file:///some/resource/path/ myTenpl ate.txt"/>

8.7 Application contexts and Resource paths

Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or
array of strings as the location path(s) of the resource(s) such as XML files that make up the definition
of the context.

When such a location path doesn’t have a prefix, the specific Resour ce type built from that path and
used to load the bean definitions, depends on and is appropriate to the specific application context. For
example, if you create a Cl assPat hXm Appl i cati onCont ext as follows:

4.3.16.RELEASE Spring Framework 166

Spring Framework Reference Documentation

‘ Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext (" conf/appCont ext.xm ");

The bean definitions will be loaded from the classpath, as a Cl assPat hResour ce will be used. But if
you create a Fi | eSyst enXm Appl i cat i onCont ext as follows:

ApplicationContext ctx =
new Fi | eSyst emXnl Appl i cati onCont ext ("conf/appCont ext.xm ");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location
path will override the default type of Resource created to load the definition. So this
Fi | eSyst emXm Appl i cati onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("cl asspat h: conf/appCont ext. xm ") ;

i. will actually load its bean definitions from the classpath. However, it is still a
Fi | eSyst emXm Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader, any
unprefixed paths will still be treated as filesystem paths.

Constructing ClassPathXmlApplicationContext instances - shortcuts

The Cl assPat hXm Appl i cati onCont ext exposes a number of constructors to enable convenient
instantiation. The basic idea is that one supplies merely a string array containing just the filenames of
the XML files themselves (without the leading path information), and one also supplies a d ass; the
Gl assPat hXm Appl i cati onCont ext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

conl
f oo/
services. xm
daos. xm
Messenger Ser vi ce. cl ass

A Cl assPat hXm Appli cati onCont ext instance composed of the beans defined in the
"services.xm' and' daos. xm ' could be instantiated like so...

Appl i cationContext ctx = new O assPat hXnl Appl i cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Servi ce. cl ass);

Please do consult the C assPat hXnl Appl i cat i onCont ext javadocs for details on the various
constructors.

Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown
above) which has a one-to-one mapping to a target Resource, or alternately may contain the special
"classpath*:" prefix and/or internal Ant-style regular expressions (matched using Spring’s Pat hivat cher
utility). Both of the latter are effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can
'‘publish’ context definition fragments to a well-known location path, and when the final application context
is created using the same path prefixed via cl asspat h*: , all component fragments will be picked up
automatically.

4.3.16.RELEASE Spring Framework 167

Spring Framework Reference Documentation

Note that this wildcarding is specific to use of resource paths in application context constructors (or
when using the Pat hivat cher utility class hierarchy directly), and is resolved at construction time. It
has nothing to do with the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to
construct an actual Resour ce, as a resource points to just one resource at a time.

Ant-style Patterns
When the path location contains an Ant-style pattern, for example:

[V\EB- | NF/ *- cont ext . xni
conl myconpany/ **/ appl i cati onCont ext . xm
file:C /sone/path/*-context.xn
cl asspat h: comf myconpany/ **/ appl i cati onCont ext . xm

The resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces
a Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL is
notaj ar: URL or container-specific variant (e.g. zi p: in WebLogic, wsj ar in WebSphere, etc.), then
ajava.io. Fil e is obtained from it and used to resolve the wildcard by traversing the filesystem. In
the case of a jar URL, the resolver either gets a j ava. net . Jar URLConnect i on from it or manually
parses the jar URL and then traverses the contents of the jar file to resolve the wildcards.

Implications on portability

If the specified path is already a file URL (either explicitly, or implicity because the base
Resour ceLoader is a filesystem one, then wildcarding is guaranteed to work in a completely portable
fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path
segment URL via a Cl assl oader . get Resour ce() call. Since this is just a node of the path (not the
file at the end) it is actually undefined (in the Cl assLoader javadocs) exactly what sort of a URL is
returned in this case. In practice, it is always a j ava. i 0. Fi | e representing the directory, where the
classpath resource resolves to a filesystem location, or a jar URL of some sort, where the classpath
resource resolves to a jar location. Still, there is a portability concern on this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a
j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents
of the jar, and resolve the wildcard. This will work in most environments, but will fail in others, and it is
strongly recommended that the wildcard resolution of resources coming from jars be thoroughly tested
in your specific environment before you rely on it.

The classpath*: prefix

When constructing an XML-based application context, a location string may use the special
cl asspat h*: prefix:

ApplicationContext ctx =
new C assPat hXm Appl i cati onCont ext (" cl asspat h*: conf/ appCont ext . xm ") ;

This special prefix specifies that all classpath resources that match the given name must be obtained
(internally, this essentially happens via a O assLoader . get Resour ces(..) call), and then merged
to form the final application context definition.

Note

The wildcard classpath relies on the get Resour ces() method of the underlying classloader.
As most application servers nowadays supply their own classloader implementation, the

4.3.16.RELEASE Spring Framework 168

Spring Framework Reference Documentation

behavior might differ especially when dealing with jar files. A simple test to check if
cl asspat h* works is to use the classloader to load a file from within a jar on the classpath:
get O ass() . get d assLoader (). get Resour ces("<soneFi |l el nsi deTheJdar>"). Try
this test with files that have the same name but are placed inside two different locations. In case
an inappropriate result is returned, check the application server documentation for settings that
might affect the classloader behavior.

The cl asspat h*: prefix can also be combined with a Pat hMat cher pattern in the rest of the location
path, for example cl asspat h*: META- | NF/ *- beans. xni . In this case, the resolution strategy is fairly
simple: aC assLoader . get Resour ces() callis used on the last non-wildcard path segmentto get all
the matching resources in the class loader hierarchy, and then off each resource the same PathMatcher
resolution strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that cl asspat h*: when combined with Ant-style patterns will only work reliably with at
least one root directory before the pattern starts, unless the actual target files reside in the file system.
This means that a pattern like cl asspat h*: *. xm might not retrieve files from the root of jar files but
rather only from the root of expanded directories.

Spring’s ability to retrieve classpath entries originates from the JDK'’s
Cl assLoader . get Resour ces() method which only returns file system locations for a passed-
in empty string (indicating potential roots to search). Spring evaluates URLCl assLoader runtime
configuration and the "java.class.path" manifest in jar files as well but this is not guaranteed to lead to
portable behavior.

Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the files-
only switch of the JAR task. Also, classpath directories may not get exposed based on security
policies in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires
Trusted-Library' setup in your manifests; see http://stackoverflow.com/questions/19394570/java-
jre-7u45-breaks-classloader-getresources).

Ant-style patterns with cl asspat h: resources are not guaranteed to find matching resources if the root
package to search is available in multiple class path locations. This is because a resource such as

coni myconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

cl asspat h: coml nyconpany/ **/ servi ce- cont ext . xni

is used to try to resolve it, the resolver will work off the (first) URL returned by get Resour ce(" com
nmyconpany") ;. If this base package node exists in multiple classloader locations, the actual end
resource may not be underneath. Therefore, preferably, use " “classpath*:™ with the same Ant-style
pattern in such a case, which will search all class path locations that contain the root package.

FileSystemResource caveats

A Fi | eSyst emResour ce that is not attached to a Fi | eSyst emAppl i cati onCont ext (that is,
a Fil eSystemAppl i cati onCont ext is not the actual Resour ceLoader) will treat absolute vs.

4.3.16.RELEASE Spring Framework 169

http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

Spring Framework Reference Documentation

relative paths as you would expect. Relative paths are relative to the current working directory, while
absolute paths are relative to the root of the filesystem.

For backwards compatibility (historical) reasons however, this changes
when the Fi | eSyst emAppl i cat i onCont ext is the Resour ceLoader. The
Fi | eSyst emAppl i cati onCont ext simply forces all attached Fi | eSyst emResour ce instances to
treat all location paths as relative, whether they start with a leading slash or not. In practice, this means
the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("conf/context.xm");

ApplicationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("/conf/context.xm ");

As are the following: (Even though it would make sense for them to be different, as one case is relative
and the other absolute.)

Fi | eSyst emXm Appl i cati onContext ctx = ...;
ct x. get Resour ce("sone/ resour ce/ pat h/ nyTenpl ate. txt");

Fi | eSyst enXm Appl i cati onContext ctx = ...;
ct x. get Resource("/sone/ resour ce/ path/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths
with Fi | eSyst enResour ce / Fi | eSyst emXmi Appl i cati onCont ext, and just force the use of a
Ur | Resour ce, by using the fi | e: URL prefix.

/'l actual context type doesn't matter, the Resource will always be Ul Resource
ct x. get Resource("file:///sonme/ resource/ path/ nyTenplate. txt");

/| force this FileSystenXnl ApplicationContext to load its definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("file:///conf/context.xm");

4.3.16.RELEASE Spring Framework 170

Spring Framework Reference Documentation

9. Validation, Data Binding, and Type Conversion

9.1 Introduction

JSR-303/JSR-349 Bean Validation

Spring Framework 4.0 supports Bean Validation 1.0 (JSR-303) and Bean Validation 1.1 (JSR-349)
in terms of setup support, also adapting it to Spring’s Val i dat or interface.

An application can choose to enable Bean Validation once globally, as described in Section 9.8,
“Spring Validation”, and use it exclusively for all validation needs.

An application can also register additional Spring Val i dat or instances per Dat aBi nder
instance, as described in the section called “Configuring a DataBinder”. This may be useful for
plugging in validation logic without the use of annotations.

There are pros and cons for considering validation as business logic, and Spring offers a design for
validation (and data binding) that does not exclude either one of them. Specifically validation should
not be tied to the web tier, should be easy to localize and it should be possible to plug in any validator
available. Considering the above, Spring has come up with a Val i dat or interface that is both basic
and eminently usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of
an application (or whatever objects you use to process user input). Spring provides the so-called
Dat aBi nder to do exactly that. The Val i dat or and the Dat aBi nder make up the val i dati on
package, which is primarily used in but not limited to the MVC framework.

The BeanW apper is a fundamental concept in the Spring Framework and is used in a lot of places.
However, you probably will not have the need to use the BeanW apper directly. Because this is
reference documentation however, we felt that some explanation might be in order. We will explain the
BeanW apper in this chapter since, if you were going to use it at all, you would most likely do so when
trying to bind data to objects.

Spring’s DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and format
property values. The PropertyEdi t or concept is part of the JavaBeans specification, and is also
explained in this chapter. Spring 3 introduces a "core.convert" package that provides a general type
conversion facility, as well as a higher-level "format" package for formatting Ul field values. These new
packages may be used as simpler alternatives to PropertyEditors, and will also be discussed in this
chapter.

9.2 Validation using Spring’s Validator interface

Spring features a Val i dat or interface that you can use to validate objects. The Val i dat or interface
works using an Er r or s object so that while validating, validators can report validation failures to the
Err or s object.

Let’s consider a small data object:

4.3.16.RELEASE Spring Framework 171

Spring Framework Reference Documentation

public class Person {

private String nane;
private int age;

/1 the usual getters and setters...

We’'re going to provide validation behavior for the Per son class by implementing the following two
methods of the or g. spri ngfranewor k. val i dati on. Val i dat or interface:

» supports(d ass) - Can this Val i dat or validate instances of the supplied Cl ass?

- validate(Qbject, org.springfranmework.validation.Errors) - validates the given
object and in case of validation errors, registers those with the given Err or s object

Implementing a Validator is fairly straightforward, especially when you know of the
Val i dationUti | s helper class that the Spring Framework also provides.

public class PersonValidator inplenents Validator {

/**
* This Validator validates *just* Person instances
*/
public bool ean supports(d ass clazz) {
return Person.cl ass. equal s(cl azz);

}

public void validate(Object obj, Errors e) {
ValidationUils.rejectlfEnpty(e, "nane", "nane.enpty");
Person p = (Person) obj;
if (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rej ectVal ue("age", "too.darn.old");

}

As you can see, thestaticrejectlfEmpty(..) methodonthe ValidationUils classis used
to reject the ' name' property if it is nul | or the empty string. Have a look at the Val i dati onUtil s
javadocs to see what functionality it provides besides the example shown previously.

While it is certainly possible to implement a single Val i dat or class to validate each of the nested
objects in a rich object, it may be better to encapsulate the validation logic for each nested class
of object in its own Val i dat or implementation. A simple example of a 'rich' object would be a
Cust oner that is composed of two Stri ng properties (a first and second name) and a complex
Addr ess object. Addr ess objects may be used independently of Cust onmer objects, and so a distinct
Addr essVal i dat or has been implemented. If you want your Cust oner Val i dat or to reuse the
logic contained within the Addr essVal i dat or class without resorting to copy-and-paste, you can
dependency-inject or instantiate an Addr essVal i dat or within your Cust oner Val i dat or, and use
it like so:

4.3.16.RELEASE Spring Framework 172

Spring Framework Reference Documentation

public class CustonerValidator inplenents Validator {
private final Validator addressValidator;

publ i c CustonerValidator(Validator addressValidator) {

if (addressValidator == null) {
throw new I || egal Argunent Exception("The supplied [Validator] is " +
"required and nmust not be null.");

}
if (!addressValidator.supports(Address.class)) {
throw new I || egal Argunent Excepti on("The supplied [Validator] nust " +
"support the validation of [Address] instances.");
}

t his. addressVal i dat or = addressVal i dat or;

}

/**
* This Validator validates Custoner instances, and any subcl asses of Custoner too
*/
publ i c bool ean supports(C ass clazz) {
return Custoner.cl ass.isAssignabl eFron(cl azz);

}

public void validate(Qbject target, Errors errors) {
Val idationUWils.rejectlfEnptyO Wiitespace(errors, "firstNane", "field.required");

Val i dationUils.rejectlfEnptyO Wiitespace(errors, "surnane", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("address") ;

Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);
} finally {

errors. popNest edPat h() ;
}

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MVC
you can use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect
the errors object yourself. More information about the methods it offers can be found in the javadocs.

9.3 Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors
is the last thing we need to discuss. In the example we've shown above, we rejected the nane and
the age field. If we're going to output the error messages by using a MessageSour ce, we will do
so using the error code we've given when rejecting the field (‘'name' and 'age' in this case). When
you call (either directly, or indirectly, using for example the Val i dati onUti | s class) r ej ect Val ue
or one of the other r ej ect methods from the Err or s interface, the underlying implementation will
not only register the code you've passed in, but also a number of additional error codes. What
error codes it registers is determined by the MessageCodesResol ver that is used. By default, the
Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method.
So in case you reject a field using rej ect Val ue("age", "too.darn.old"), apart from the
t 0o. dar n. ol d code, Spring will also register t 0o. dar n. ol d. age and t oo. dar n. ol d. age. i nt
(so the first will include the field name and the second will include the type of the field); this is done as
a convenience to aid developers in targeting error messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online in the
javadocs of MessageCodesResol ver and Def aul t MessageCodesResol ver , respectively.

4.3.16.RELEASE Spring Framework 173

http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/validation/MessageCodesResolver.html
http://docs.spring.io/spring-framework/docs/4.3.16.RELEASE/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.html

Spring Framework Reference Documentation

9.4 Bean manipulation and the BeanWrapper

The org. spri ngframewor k. beans package adheres to the JavaBeans standard provided by
Oracle. A JavaBean is simply a class with a default no-argument constructor, which follows a naming
convention where (by way of an example) a property named bi ngoMadness would have a setter
method set Bi ngoMadness(..) and a getter method get Bi ngoMadness() . For more information
about JavaBeans and the specification, please refer to Oracle’s website (javabeans).

One quite important class in the beans package is the BeanW apper interface and its corresponding
implementation (BeanW apper | npl). As quoted from the javadocs, the BeanW apper offers
functionality to set and get property values (individually or in bulk), get property descriptors, and to
query properties to determine if they are readable or writable. Also, the BeanW apper offers support
for nested properties, enabling the setting of properties on sub-properties to an unlimited depth. Then,
the BeanW apper supports the ability to add standard JavaBeans Pr oper t yChangelLi st ener s and
Vet oabl eChangeli st ener s, without the need for supporting code in the target class. Last but not
least, the BeanW apper provides support for the setting of indexed properties. The BeanW apper
usually isn't used by application code directly, but by the Dat aBi nder and the BeanFact ory.

The way the BeanW apper works is partly indicated by its name: it wraps a bean to perform actions
on that bean, like setting and retrieving properties.

Setting and getting basic and nested properties
Setting and getting properties is done using the setPropertyValue(s) and
get PropertyVal ue(s) methods that both come with a couple of overloaded variants. They're all

described in more detail in the javadocs Spring comes with. What's important to know is that there are
a couple of conventions for indicating properties of an object. A couple of examples:

Table 9.1. Examples of properties

Expression Explanation

nane Indicates the property nane corresponding to
the methods get Name() ori sNanme() and
set Nanme(. .)

account . nane Indicates the nested property name of the

property account corresponding e.g. to the
methods get Account () . set Nane() or
get Account (). get Name()

account[2] Indicates the third element of the indexed
property account . Indexed properties can be
of type array, | i st or other naturally ordered
collection

account [COVPANYNANME] Indicates the value of the map entry indexed by
the key COMPANYNAME of the Map property
account

Below you'll find some examples of working with the BeanW apper to get and set properties.

4.3.16.RELEASE Spring Framework 174

http://docs.oracle.com/javase/6/docs/api/java/beans/package-summary.html

Spring Framework Reference Documentation

(This next section is not vitally important to you if you're not planning to work with the BeanW apper
directly. If you're just using the Dat aBi nder and the BeanFactory and their out-of-the-box
implementation, you should skip ahead to the section about Pr opert yEdi t ors.)

Consider the following two classes:

public class Conpany {

private String nane;
private Enpl oyee managi ngDirector;

public String getNane() {
return this.name;

}

public void setNane(String nane) {
t his. nanme = nane;

}

publ i c Enpl oyee get Managi ngDirector() {
return this.managi ngDirector;

}

public void set Managi ngDi r ect or (Enpl oyee managi ngDi rector) {
thi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private String nane;
private float salary;

public String getNane() {
return this.naneg;

}

public void setNane(String nane) {
this.name = nane;

}

public float getSalary() {
return salary;

}

public void setSalary(float salary) {
this.salary = sal ary;

}

The following code snippets show some examples of how to retrieve and manipulate some of the
properties of instantiated Conpani es and Enpl oyees:

4.3.16.RELEASE Spring Framework 175

Spring Framework Reference Documentation

BeanW apper conpany = new BeanW apper | npl (new Conpany());

/] setting the conpany nane..

conpany. set PropertyVal ue("nanme", "Some Conpany Inc.");

/1 ... can also be done like this:

PropertyVal ue val ue = new PropertyVal ue("nane", "Sone Conpany Inc.");
conpany. set PropertyVal ue(val ue);

/1 ok, let's create the director and tie it to the conpany:

BeanW apper jim = new BeanW apper | npl (new Enpl oyee());
jimsetPropertyVal ue("nane", "Jim Stravinsky");

conpany. set PropertyVal ue(" managi nghi rector", jim get Wappedl nstance());

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Float) conpany.get PropertyVal ue("nanagi ngDi rector.sal ary");

Built-in PropertyEditor implementations

Spring uses the concept of Propert yEdi t or s to effect the conversion between an Cbj ect and a
String. If you think about it, it sometimes might be handy to be able to represent properties in a
different way than the object itself. For example, a Dat e can be represented in a human readable way
(asthe String' 2007-14-09'), while we're still able to convert the human readable form back to the
original date (or even better: convert any date entered in a human readable form, back to Dat e objects).
This behavior can be achieved by registering custom editors, of type j ava. beans. Propert yEdi t or.
Registering custom editors on a BeanW apper or alternately in a specific loC container as mentioned
in the previous chapter, gives it the knowledge of how to convert properties to the desired type. Read
more about Pr opert yEdi t or s in the javadocs of the j ava. beans package provided by Oracle.

A couple of examples where property editing is used in Spring:

e setting properties on beans is done wusing PropertyEditors. When mentioning
java. |l ang. Stri ng as the value of a property of some bean you're declaring in XML file, Spring
will (if the setter of the corresponding property has a Cl ass-parameter) use the Cl assEdi t or to try
to resolve the parameter to a Cl ass object.

e parsing HTTP request parameters in Spring's MVC framework is done using all kinds of
Pr opert yEdi t or s that you can manually bind in all subclasses of the ConmandCont rol | er.

Spring has a number of built-in Pr oper t yEdi t or s to make life easy. Each of those is listed below
and they are all located in the or g. spri ngf r amewor k. beans. propertyedit or s package. Most,
but not all (as indicated below), are registered by default by BeanW apper | npl . Where the property
editor is configurable in some fashion, you can of course still register your own variant to override the
default one:

Table 9.2. Built-in PropertyEditors

Class Explanation

Byt eArrayPr opert yEdi t or Editor for byte arrays. Strings will simply
be converted to their corresponding byte
representations. Registered by default by
BeanW apper | npl .

Cl assEdi tor Parses Strings representing classes to actual
classes and the other way around. When a class
is not found, an I I | egal Ar gunent Excepti on
is thrown. Registered by default by
BeanW apper | mpl .

4.3.16.RELEASE Spring Framework 176

Spring Framework Reference Documentation

Class Explanation

Cust onBool eanEdi t or Customizable property editor for Bool ean
properties. Registered by default by
BeanW apper | npl , but, can be overridden
by registering custom instance of it as custom
editor.

Cust onCol | ecti onEdi t or Property editor for Collections, converting
any source Col | ecti on to a given target
Col | ecti on type.

Cust onDat eEdi t or Customizable property editor for java.util.Date,
supporting a custom DateFormat. NOT
registered by default. Must be user registered as
needed with appropriate format.

Cust omNunber Edi t or Customizable property editor for any Number
subclass like | nt eger, Long, Fl oat, Doubl e.
Registered by default by BeanW apper | npl ,
but can be overridden by registering custom
instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Stringstoj ava.io. Fil e
objects. Registered by default by
BeanW apper | mpl .

| nput St r eanEdi t or One-way property editor, capable of taking a
text string and producing (via an intermediate
Resour ceEdi t or and Resour ce) an
I nput St r eam so | nput St r eamproperties
may be directly set as Strings. Note
that the default usage will not close the
I nput St r eamfor you! Registered by default by
BeanW apper | npl .

Local eEdi t or Capable of resolving Strings to Local e
objects and vice versa (the String format is
[country][variant], which is the same thing
the toString() method of Locale provides).
Registered by default by BeanW apper | npl .

PatternEditor Capable of resolving Strings to
java. util.regex. Pattern objects and vice
versa.

Properti esEditor Capable of converting Strings (formatted

using the format as defined in the javadocs
ofthejava. util. Properties class) to

Pr operti es objects. Registered by default by
BeanW apper | mpl .

4.3.16.RELEASE Spring Framework 177

Spring Framework Reference Documentation

Class Explanation

StringTri mrer Editor Property editor that trims Strings. Optionally
allows transforming an empty string into a nul |
value. NOT registered by default; must be user
registered as needed.

URLEdi t or Capable of resolving a String representation of
a URL to an actual URL object. Registered by
default by BeanW apper | npl .

Spring uses the java. beans. PropertyEdi t or Manager to set the search path for property
editors that might be needed. The search path also includes sun. bean. edi t or s, which includes
Propert yEdi t or implementations for types such as Font, Col or, and most of the primitive types.
Note also that the standard JavaBeans infrastructure will automatically discover Pr opert yEdi t or
classes (without you having to register them explicitly) if they are in the same package as the class
they handle, and have the same name as that class, with ' Edi t or' appended; for example, one could
have the following class and package structure, which would be sufficient for the FooEdi t or class to
be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank

pop
Foo
FooEditor // the PropertyEditor for the Foo class

Note that you can also use the standard Beanl nf o JavaBeans mechanism here as well (described
in_not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly
registering one or more Pr opert yEdi t or instances with the properties of an associated class.

com
chank
pop
Foo
FooBeanl nfo // the Beanlnfo for the Foo class

Here is the Java source code for the referenced FooBeanl nf o class. This would associate a
Cust omNunber Edi t or with the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {
final PropertyEditor nunber PE = new CustonNunber Edi tor (I nteger.class, true)
PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(CObject bean) {
return nunber PE
b
B
return new PropertyDescriptor[] { ageDescriptor }
}
catch (Introspecti onException ex) {
throw new Error(ex.toString())

}

4.3.16.RELEASE Spring Framework 178

http://docs.oracle.com/javase/tutorial/javabeans/advanced/customization.html

Spring Framework Reference Documentation

Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring 1oC container ultimately uses standard
JavaBeans Pr oper t yEdi t or s to convert these Strings to the complex type of the property. Spring pre-
registers a number of custom Pr opert yEdi t or s (for example, to convert a classname expressed as
a string into a real Cl ass object). Additionally, Java’s standard JavaBeans Pr oper t yEdi t or lookup
mechanism allows a Pr opert yEdi t or for a class simply to be named appropriately and placed in the
same package as the class it provides support for, to be found automatically.

If there is a need to register other custom Pr oper t yEdi t or s, there are several mechanisms available.
The most manual approach, which is not normally convenient or recommended, is to simply use the
regi st er Cust ontdi t or () method of the Confi gur abl eBeanFact ory interface, assuming you
have a BeanFact or y reference. Another, slightly more convenient, mechanism is to use a special bean
factory post-processor called Cust onEdi t or Conf i gur er . Although bean factory post-processors can
be used with BeanFact or y implementations, the Cust onEdi t or Conf i gur er has a nested property
setup, so it is strongly recommended that it is used with the Appl i cat i onCont ext , where it may be
deployed in similar fashion to any other bean, and automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property
editors, through their use of something called a BeanW apper to handle property conversions. The
standard property editors that the BeanW apper registers are listed in the previous section. Additionally,
Appl i cati onCont ext s also override or add an additional number of editors to handle resource
lookups in a manner appropriate to the specific application context type.

Standard JavaBeans Pr opert yEdi t or instances are used to convert property values expressed as
strings to the actual complex type of the property. Cust onEdi t or Conf i gur er, a bean factory post-
processor, may be used to conveniently add support for additional Pr oper t yEdi t or instances to an
Appl i cati onCont ext .

Consider a user class Exoti cType, and another class DependsOnExoti cType which needs
Exoti cType set as a property:

package exanpl e;
public class ExoticType {
private String nane;
public ExoticType(String name) {
this.name = nane;
}
}
public class DependsOnExoticType {
private ExoticType type;
public void set Type(ExoticType type) {

this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Pr opert yEdi t or will behind the scenes convert into an actual Exot i cType instance:

<bean id="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

4.3.16.RELEASE Spring Framework 179

Spring Framework Reference Documentation

The Pr opert yEdi t or implementation could look similar to this:

/'l converts string representation to ExoticType object
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {

public void setAsText (String text) {
set Val ue(new Exoti cType(text.toUpperCase()));
}

Finally, we use CustonEditorConfigurer to register the new PropertyEditor with the
Appl i cati onCont ext , which will then be able to use it as needed:

<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="cust onEdi tors">
<map>
<entry key="exanpl e. Exoti cType" val ue="exanpl e. Exoti cTypeEdi tor"/>
</ map>
</ property>
</ bean>

Using PropertyEditorRegistrars

Another mechanism for registering property editors with the Spring container is to create and
use a PropertyEditorRegistrar. This interface is particularly useful when you need to
use the same set of property editors in several different situations: write a corresponding
registrar and reuse that in each case. PropertyEditorRegi strars work in conjunction with
an interface called PropertyEditor Regi stry, an interface that is implemented by the Spring
BeanW apper (and Dat aBi nder). Propert yEdi t or Regi strars are particularly convenient when
used in conjunction with the Cust onEdit or Confi gurer (introduced here), which exposes a
property called set PropertyEditorRegi strars(..): PropertyEditorRegi strars added to
a Cust onEdi t or Confi gur er in this fashion can easily be shared with Dat aBi nder and Spring
MVC Control | ers. Furthermore, it avoids the need for synchronization on custom editors: a
PropertyEdi t or Regi strar is expected to create fresh Pr oper t yEdi t or instances for each bean
creation attempt.

Using a Pr opert yEdi t or Regi st rar is perhaps best illustrated with an example. First off, you need
to create your own Pr opert yEdi t or Regi st r ar implementation:

package com foo. editors. spring;
public final class CustonPropertyEditorRegistrar inplenents PropertyEditorRegistrar {
public void registerCustonEditors(PropertyEditorRegistry registry) {

/1 it is expected that new PropertyEditor instances are created
registry.regi sterCustonEdi tor (Exoti cType. cl ass, new ExoticTypeEditor());

/1 you could register as nmany custom property editors as are required here...

See also the org. springfranmework. beans. support. ResourceEdi t or Regi strar for an
example PropertyEditorRegi strar implementation. Notice how in its implementation of the
regi st er Cust onkdi t or s(..) method it creates new instances of each property editor.

Next we configure a CustonEditorConfigurer and inject an instance of our
Cust onPropert yEdi t or Regi strar intoit:

4.3.16.RELEASE Spring Framework 180

Spring Framework Reference Documentation

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="propertyEditorRegistrars">
<list>
<ref bean="custonPropertyEditorRegistrar"/>
</list>
</ property>
</ bean>

<bean id="custonPropertyEditorRegistrar"
cl ass="com f 0o. edi tors. spri ng. Cust onProper t yEdi t or Regi strar"/ >

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring’s MVC
web framework, using Pr oper t yEdi t or Regi st r ar s in conjunction with data-binding Control | ers
(such as Si npl eFornControl | er) can be very convenient. Find below an example of using a
Propert yEdi t or Regi strar in the implementation of ani ni t Bi nder (. .) method:

public final class RegisterUserController extends SinpleFornController {
private final PropertyEditorRegistrar custonPropertyEditorRegistrar;

publ i c Regi sterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
this. cust onPropertyEditorRegi strar = propertyEditorRegistrar;
}

protected void initBinder(HtpServletRequest request,
Ser vl et Request Dat aBi nder bi nder) throws Exception {
this.custonPropertyEditorRegistrar.registerCustonEditors(binder);
}

/1 other nethods to do with registering a User

This style of PropertyEditor registration can lead to concise code (the implementation of
i ni tBi nder(..) isjustone line long!), and allows common Pr opert yEdi t or registration code to
be encapsulated in a class and then shared amongst as many Cont r ol | er s as needed.

9.5 Spring Type Conversion

Spring 3 introduces a cor e. convert package that provides a general type conversion system. The
system defines an SPIto implement type conversion logic, as well as an API to execute type conversions
at runtime. Within a Spring container, this system can be used as an alternative to PropertyEditors to
convert externalized bean property value strings to required property types. The public APl may also be
used anywhere in your application where type conversion is needed.

Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org. spri ngfranework. core. convert.converter;
public interface Converter<S, T> {

T convert (S source);

To create your own converter, simply implement the interface above. Parameterize S as the type
you are converting from, and T as the type you are converting to. Such a converter can also be
applied transparently if a collection or array of S needs to be converted to an array or collection
of T, provided that a delegating array/collection converter has been registered as well (which
Def aul t Conver si onSer vi ce does by default).

4.3.16.RELEASE Spring Framework 181

Spring Framework Reference Documentation

For each call to convert (S), the source argument is guaranteed to be NOT null. Your Converter
may throw any unchecked exception if conversion fails; specifically, an 1 | | egal Ar gunment Excepti on
should be thrown to report an invalid source value. Take care to ensure that your Converter
implementation is thread-safe.

Several converter implementations are provided in the core. convert. support package as a
convenience. These include converters from Strings to Numbers and other common types. Consider
StringTol nt eger as an example for a typical Conver t er implementation:

package org. springfranmework. core. convert. support;
final class StringTol nteger inplenents Converter<String, |nteger> {

public Integer convert(String source) {
return | nteger.val ueCf (source);

}

ConverterFactory

When you need to centralize the conversion logic for an entire class hierarchy, for example, when
converting from String to java.lang.Enum objects, implement Convert er Fact ory:

package org. springfranework. core. convert.converter;
public interface ConverterFactory<S, R> {

<T extends R> Converter<S, T> getConverter(C ass<T> targetType);

Parameterize S to be the type you are converting from and R to be the base type defining the range of
classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.

Consider the St ri ngToEnumConverterFactory as an example:

package org. springfranework. core. convert. support;
final class StringToEnunConverterFactory inplenents ConverterFactory<String, Enune {

public <T extends Enum> Converter<String, T> getConverter(C ass<T> targetType) {
return new StringToEnuntConverter (target Type);
}

private final class StringToEnunConverter<T extends Enun® inplenents Converter<String, T> {
private O ass<T> enunflype;

public StringToEnunConverter(C ass<T> enuniype) {
thi s. enuniType = enunilype;

}

public T convert(String source) {
return (T) Enum val ueCf (t hi s. enuniType, source.trin());

}

GenericConverter

When you require a sophisticated Converter implementation, consider the GenericConverter interface.
With a more flexible but less strongly typed signature, a GenericConverter supports converting between

4.3.16.RELEASE Spring Framework 182

Spring Framework Reference Documentation

multiple source and target types. In addition, a GenericConverter makes available source and target field
context you can use when implementing your conversion logic. Such context allows a type conversion
to be driven by a field annotation, or generic information declared on a field signature.

package org. springframework. core. convert.converter;
public interface GenericConverter {
publ i c Set<Converti bl ePair> get Convertibl eTypes();
Obj ect convert(Qbj ect source, TypeDescriptor sourceType, TypeDescriptor targetType);

}

To implement a GenericConverter, have getConvertibleTypes() return the supported source#target type
pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to implement your conversion
logic. The source TypeDescriptor provides access to the source field holding the value being converted.
The target TypeDescriptor provides access to the target field where the converted value will be set.

A good example of a GenericConverter is a converter that converts between a Java Array and a
Collection. Such an ArrayToCollectionConverter introspects the field that declares the target Collection
type to resolve the Collection’s element type. This allows each element in the source array to be
converted to the Collection element type before the Collection is set on the target field.

Note

Because GenericConverter is a more complex SPI interface, only use it when you need it. Favor
Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Convert er to execute if a specific condition holds true. For example,
you might only want to execute a Converter if a specific annotation is present on the target
field. Or you might only want to execute a Converter if a specific method, such as a static
val ueOf method, is defined on the target class. Condi t i onal Generi cConvert er isthe union of the
CGeneri cConverter and Condi ti onal Convert er interfaces that allows you to define such custom
matching criteria:

public interface Conditional Converter {
bool ean mat ches(TypeDescri ptor sourceType, TypeDescriptor targetType);

}

public interface Conditional GenericConverter
extends GenericConverter, Conditional Converter {

}

A good example of a Condi ti onal Generi cConvert er is an EntityConverter that converts between
an persistent entity identifier and an entity reference. Such a EntityConverter might only match if the
target entity type declares a static finder method e.g. f i ndAccount (Long) . You would perform such
a finder method check in the implementation of mat ches(TypeDescri ptor, TypeDescriptor).

ConversionService API

The ConversionService defines a unified API for executing type conversion logic at runtime. Converters
are often executed behind this facade interface:

4.3.16.RELEASE Spring Framework 183

Spring Framework Reference Documentation

package org. springfranework. core. convert;

public interface ConversionService {

bool ean canConvert (C ass<?> sourceType, C ass<?> target Type);

<T> T convert (Cbject source, C ass<T> targetType);

bool ean canConvert (TypeDescri ptor sourceType, TypeDescriptor targetType);

bj ect convert (Qbj ect source, TypeDescriptor sourceType, TypeDescriptor targetType);

Most ConversionService implementations also implement Convert er Regi st ry, which provides an
SPI for registering converters. Internally, a ConversionService implementation delegates to its registered
converters to carry out type conversion logic.

A robust ConversionService implementation is provided in the core. convert. support package.
Generi cConversi onServi ce is the general-purpose implementation suitable for use in most
environments. Conver si onSer vi ceFact ory provides a convenient factory for creating common
ConversionService configurations.

Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application startup, then shared
between multiple threads. In a Spring application, you typically configure a ConversionService instance
per Spring container (or ApplicationContext). That ConversionService will be picked up by Spring and
then used whenever a type conversion needs to be performed by the framework. You may also inject
this ConversionService into any of your beans and invoke it directly.

Note

If no ConversionService is registered with Spring, the original PropertyEditor-based system is
used.

To register a default ConversionService with Spring, add the following bean definition with id
conver si onSer vi ce:

<bean id="conversi onServi ce"
cl ass="org. springframewor k. cont ext. support. Conver si onSer vi ceFact or yBean"/ >

A default ConversionService can convert between strings, numbers, enums, collections, maps, and
other common types. To supplement or override the default converters with your own custom
converter(s), set the convert ers property. Property values may implement either of the Converter,
ConverterFactory, or GenericConverter interfaces.

<bean i d="conversi onService"
cl ass="org. spri ngfranmewor k. cont ext. support. Conver si onSer vi ceFact or yBean" >
<property name="converters">
<set >
<bean cl ass="exanpl e. M\yCust onConverter"/>
</ set >
</ property>
</ bean>

It is also common to use a ConversionService within a Spring MVC application. See the section called
“Conversion and Formatting” in the Spring MVC chapter.

4.3.16.RELEASE Spring Framework 184

Spring Framework Reference Documentation

In certain situations you may wish to apply formatting during conversion. See the section called
“FormatterRegistry SPI” for details on using For mat t i ngConver si onSer vi ceFact or yBean.

Using a ConversionService programmatically

To work with a ConversionService instance programmatically, simply inject a reference to it like you
would for any other bean:

@ervi ce
public class MyService {

@\ut owi r ed
public MyServi ce(ConversionService conversionService) {
this.conversionService = conversionService;

}

public void dolt() {
t hi s. conversionService.convert(...)

}

For most use cases, the conver t method specifying the targetType can be used but it will not work with
more complex types such as a collection of a parameterized element. If you want to convert a Li st of
I nt eger to aList of String programmatically, for instance, you need to provide a formal definition
of the source and target types.

Fortunately, TypeDescri pt or provides various options to make that straightforward:
Def aul t Conver si onServi ce cs = new Defaul t Conver si onService();

Li st<Integer> input =

cs. convert (i nput,
TypeDescriptor.forQoject(input), // List<Integer> type descriptor
TypeDescriptor.col | ection(List.class, TypeDescriptor.valueX(String.class)));

Note that Def aul t Conver si onSer vi ce registers converters automatically which are appropriate for
most environments. This includes collection converters, scalar converters, and also basic (bj ect to
St ri ng converters. The same converters can be registered with any Convert er Regi st ry using the
static addDef aul t Convert er s method on the Def aul t Conver si onSer vi ce class.

Converters for value types will be reused for arrays and collections, so there is no need to create a
specific converter to convert from a Col | ecti on of Sto a Col | ecti on of T, assuming that standard
collection handling is appropriate.

9.6 Spring Field Formatting

As discussed in the previous section, cor e. convert is a general-purpose type conversion system. It
provides a unified ConversionService API as well as a strongly-typed Converter SPI for implementing
conversion logic from one type to another. A Spring Container uses this system to bind bean property
values. In addition, both the Spring Expression Language (SpEL) and DataBinder use this system
to bind field values. For example, when SpEL needs to coerce a Short to a Long to complete
an expressi on. set Val ue(Obj ect bean, bject val ue) attempt, the core.convert system
performs the coercion.

Now consider the type conversion requirements of a typical client environment such as a web or desktop
application. In such environments, you typically convert from String to support the client postback

4.3.16.RELEASE Spring Framework 185

Spring Framework Reference Documentation

process, as well as back to String to support the view rendering process. In addition, you often need to
localize String values. The more general core.convert Converter SPI1 does not address such formatting
requirements directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that
provides a simple and robust alternative to PropertyEditors for client environments.

In general, use the Converter SPI when you need to implement general-purpose type conversion logic;
for example, for converting between a java.util.Date and and java.lang.Long. Use the Formatter SPI
when you’re working in a client environment, such as a web application, and need to parse and print
localized field values. The ConversionService provides a unified type conversion API for both SPIs.

Formatter SPI

The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org. springfranework. fornat ;

public interface Formatter<T> extends Printer<T> Parser<T> {

}

Where Formatter extends from the Printer and Parser building-block interfaces:

public interface Printer<T> {
String print(T fieldValue, Locale |ocale);

}

i nport java.text.ParseException;

public interface Parser<T> {
T parse(String clientValue, Locale l|ocale) throws ParseException;

}

To create your own Formatter, simply implement the Formatter interface above. Parameterize T to be the
type of object you wish to format, for example, j ava. uti | . Dat e. Implement the pri nt () operation
to print an instance of T for display in the client locale. Implement the par se() operation to parse an
instance of T from the formatted representation returned from the client locale. Your Formatter should
throw a ParseException or lllegalArgumentException if a parse attempt fails. Take care to ensure your
Formatter implementation is thread-safe.

Several Formatter implementations are provided in f or mat subpackages as a convenience. The
nunber package provides a Nunber For matt er, CurrencyFor matter, and Per cent Formatt er
toformatj ava. | ang. Nunber objects using aj ava. t ext . Nunber For mat . The dat et i me package
provides a Dat eFor mat t er to format j ava. uti | . Dat e objects with a j ava. t ext . Dat eFor mat .
The dat et i ne. j oda package provides comprehensive datetime formatting support based on the
Joda-Time library.

Consider Dat eFor mat t er as an example For mat t er implementation:

4.3.16.RELEASE Spring Framework 186

http://joda-time.sourceforge.net

Spring Framework Reference Documentation

package org. springfranework. format. dateti ne;
public final class DateFormatter inplenents Fornatter<Date> {
private String pattern;

public DateFormatter(String pattern) {
this.pattern = pattern;

}

public String print(Date date, Locale |ocale) {
if (date == null) {
return "";
}

return get Dat eFor mat (1 ocal e) . format (date);

}

public Date parse(String formatted, Locale |ocale) throws ParseException {
if (formatted.l ength() == 0) {
return null;
}

return get Dat eFormat (| ocal e). parse(formatted);

}

protected Dat eFormat get Dat eFor nat (Local e | ocal e) {
Dat eFor mat dat eFormat = new Si npl eDat eFor mat (t hi s. pattern, |ocale);
dat eFor mat . set Leni ent (f al se);
return dateFormat;

The Spring team welcomes community-driven For mat t er contributions; see jira.spring.io to contribute.

Annotation-driven Formatting

As you will see, field formatting can be configured by field type or annotation. To bind an Annotation to
a formatter, implement AnnotationFormatterFactory:

package org. spri ngfranework. f or nat ;

public interface AnnotationFornatterFactory<A extends Annotation> {
Set <Cl ass<?>> get Fi el dTypes();
Printer<?> getPrinter(A annotation, C ass<?> fieldType);

Par ser <?> get Parser (A annotation, C ass<?> fieldType);

Parameterize A to be the field annotationType you wish to associate formatting logic
with, for example org. springfranmework. format. annot ati on. Dat eTi neFor mat. Have
get Fi el dTypes() return the types of fields the annotation may be used on. Have get Pri nt er ()
return a Printer to print the value of an annotated field. Have get Par ser () return a Parser to parse
a clientValue for an annotated field.

The example AnnotationFormatterFactory implementation below binds the @NumberFormat Annotation
to a formatter. This annotation allows either a number style or pattern to be specified:

4.3.16.RELEASE Spring Framework 187

https://jira.spring.io/browse/SPR

Spring Framework Reference Documentation

public final class Nunber For mat Annot ati onFor matt er Fact ory
i npl enent s Annot at i onFor mat t er Fact or y<Nunber For mat > {

public Set<C ass<?>> get Fi el dTypes() {
return new HashSet <Cl ass<?>>(asLi st (new O ass<?>[] {
Short.class, Integer.class, Long.class, Float.class,
Doubl e. cl ass, Bi gDeci mal . cl ass, Biglnteger.class }));

}

public Printer<Nunber> getPrinter(Nunber Format annotation, Cass<?> fieldType) {
return configureFormatterFron{annotation, fieldType);

}

publ i ¢ Par ser <Nunber > get Par ser (Nunber For mat annot ati on, C ass<?> fiel dType) {
return configureFormatterFron{annotation, fieldType);

}

private Formatter<Nunber> confi gureFormatter Fron(Nunber For mat annot ati on,
Cl ass<?> fieldType) {
if (lannotation.pattern().iseEnpty()) {
return new Nunber For matter (annotation. pattern());
} else {
Style style = annotation.style();
if (style == Style. PERCENT) {
return new Percent Formatter();
} else if (style == Style. CURRENCY) {
return new CurrencyFormatter();
} else {
return new Nunber Formatter();

}

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyMdel {

@\unber For mat (st yl e=St yl e. CURRENCY)
private BigDecimal decinal;

Format Annotation API

A portable format annotation API exists in the org. spri ngfranework. f or mat. annot ati on
package. Use @NumberFormat to format java.lang.Number fields. Use @DateTimeFormat to format
java.util.Date, java.util.Calendar, java.util.Long, or Joda-Time fields.

The example below uses @DateTimeFormat to format a java.util.Date as a ISO Date (yyyy-MM-dd):

public class MyMdel {

@at eTi neFor mat (i so=I SO. DATE)
private Date date;

FormatterRegistry SPI

The FormatterRegistry is an SPI for registering formatters and converters.
Format t i ngConver si onServi ce is an implementation of FormatterRegistry suitable for most
environments. This implementation may be configured programmatically or declaratively as a Spring
bean using For mat ti ngConver si onServi ceFact or yBean. Because this implementation also

4.3.16.RELEASE Spring Framework 188

Spring Framework Reference Documentation

implements Conver si onSer vi ce, it can be directly configured for use with Spring’s DataBinder and
the Spring Expression Language (SpEL).

Review the FormatterRegistry SPI below:

package org. springframework. fornat;

public interface FormatterRegi stry extends ConverterRegistry {
voi d addFor nat t er For Fi el dType(d ass<?> fiel dType, Printer<?> printer, Parser<?> parser);
voi d addFor matter For Fi el dType(d ass<?> fiel dType, Formatter<?> formatter);
voi d addFor nat t er For Fi el dType(Fornatter<?> fornmatter);

voi d addFor nat t er For Annot at i on(Annot ati onFor mat t er Fact ory<?, ?> factory);

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of duplicating such
configuration across your Controllers. For example, you might want to enforce that all Date fields are
formatted a certain way, or fields with a specific annotation are formatted in a certain way. With a shared
FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.

FormatterRegistrar SPI

The FormatterRegistrar is an SPI for registering formatters and converters through the
FormatterRegistry:

package org. springfranework. f or nat ;
public interface FormatterRegistrar {

voi d regi sterFornatters(FormatterRegistry registry);

A FormatterRegistrar is useful when registering multiple related converters and formatters for a given
formatting category, such as Date formatting. It can also be useful where declarative registration is
insufficient. For example when a formatter needs to be indexed under a specific field type different from
its own <T> or when registering a Printer/Parser pair. The next section provides more information on
converter and formatter registration.

Configuring Formatting in Spring MVC

See the section called “Conversion and Formatting” in the Spring MVC chapter.

9.7 Configuring a global date & time format

By default, date and time fields that are not annotated with @Dat eTi meFor mat are converted from
strings using the Dat eFor mat . SHORT style. If you prefer, you can change this by defining your own
global format.

You will need to ensure that Spring does not register default
formatters, and instead you should register all formatters manually. Use
the org.springfranmework. format. dateti ne.joda. JodaTi neFornatterRegi strar or

4.3.16.RELEASE Spring Framework 189

Spring Framework Reference Documentation

org. springfranmework. format. dat eti ne. Dat eFor matt er Regi strar class depending on
whether you use the Joda-Time library.

For example, the following Java configuration will register a global ' "yyyyMMdd’ format. This example
does not depend on the Joda-Time library:

@onfiguration
public class AppConfig {

@Bean
public FormattingConversionServi ce conversionService() {

/'l Use the DefaultFornattingConversionService but do not register defaults
Def aul t For mat t i ngConver si onSer vi ce conver si onServi ce = new
Def aul t For mat t i ngConver si onSer vi ce(fal se);

/| Ensure @WunberFormat is still supported
conver si onServi ce. addFor mat t er For Fi el dAnnot ati on(new Number For mat Annot ati onFor matter Factory());

/1 Register date conversion with a specific global format

Dat eFor mat t er Regi strar registrar = new DateFormatterRegistrar();
regi strar.set Formatter(new DateFormatter ("yyyyMvdd"));

regi strar.regi sterFormatters(conversionService);

return conversionServi ce;

If you prefer XML based configuration you can use a

Format t i ngConver si onSer vi ceFact or yBean. Here is the same example, this time using Joda
Time:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd>

<bean
i d="conver si onServi ce" class="org. springframework.format.support.FormattingConversi onServi ceFact oryBean" >
<property name="regi st erDef aul t Formatters" val ue="fal se" />
<property nanme="formatters">
<set >

<bean cl ass="org. springfranework. f or mat . nunber . Nunber For nat Annot at i onFor mat t er Fact ory" /

</ set >

</ property>

<property name="fornmatterRegistrars">
<set >

<bean cl ass="org. springfranework. format. datetine.joda.JodaTi meFor matterRegi strar">
<property name="dat eFormatter">

<bean cl ass="org. springframework. format. datetinme.joda. Dat eTi meFor mat t er Fact or yBean" >
<property name="pattern" val ue="yyyyMwd"/ >

</ bean>

</ property>
</ bean>
</ set>
</ property>
</ bean>
</ beans>

4.3.16.RELEASE Spring Framework 190

Spring Framework Reference Documentation

Note

Joda-Time provides separate distinct types to represent date, time and date-tine
values. The dat eFormatter, ti meFormatter and dat eTi neFor nmatt er properties of the
JodaTi neFor mat t er Regi st rar should be used to configure the different formats for each
type. The Dat eTi neFor nat t er Fact or yBean provides a convenient way to create formatters.

If you are using Spring MVC remember to explicitly configure the conversion service that is used. For
Java based @onf i gur at i on this means extending the WebMvycConf i gur ati onSupport class and
overriding the mvcConver si onSer vi ce() method. For XML you should use the ' conver si on-
servi ce' attribute of the mvc: annot ati on-dri ven element. See the section called “Conversion
and Formatting” for details.

9.8 Spring Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303 Bean Validation
APl is now fully supported. Second, when used programmatically, Spring’s DataBinder can now validate
objects as well as bind to them. Third, Spring MVC now has support for declaratively validating
@control | er inputs.

Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using this
API, you annotate domain model properties with declarative validation constraints and the runtime
enforces them. There are a number of built-in constraints you can take advantage of. You may also
define your own custom constraints.

To illustrate, consider a simple PersonForm model with two properties:

public class PersonForm {
private String name;
private int age;

}

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

@Not Nul |
@i ze(max=64)
private String nane;

@1 n(0)
private int age;

}
When an instance of this class is validated by a JSR-303 Validator, these constraints will be enforced.

For general information on JSR-303/JSR-349, see the Bean Validation website. For information on the
specific capabilities of the default reference implementation, see the Hibernate Validator documentation.
To learn how to setup a Bean Validation provider as a Spring bean, keep reading.

Configuring a Bean Validation Provider

Spring provides full support for the Bean Validation API. This includes convenient support for
bootstrapping a JSR-303/JSR-349 Bean Validation provider as a Spring bean. This allows for

4.3.16.RELEASE Spring Framework 191

http://beanvalidation.org/
https://www.hibernate.org/412.html

Spring Framework Reference Documentation

a javax.validation. ValidatorFactory or javax. val i dati on. Val i dat or to be injected
wherever validation is needed in your application.

Use the Local Val i dat or Fact or yBean to configure a default Validator as a Spring bean:

<bean id="validator"
cl ass="org. springframework. val i dati on. beanval i dati on. Local Val i dat or Fact or yBean"/ >

The basic configuration above will trigger Bean Validation to initialize using its default bootstrap
mechanism. A JSR-303/JSR-349 provider, such as Hibernate Validator, is expected to be present in
the classpath and will be detected automatically.

Injecting a Validator

Local Val i dat or Fact or yBean implements both j avax. val i dati on. Val i dat or Fact ory and
javax.validation. Val i dator, as well as Spring’s
org. springframewor k. val i dati on. Val i dat or. You may inject a reference to either of these
interfaces into beans that need to invoke validation logic.

Inject a reference to j avax. val i dati on. Val i dat or if you prefer to work with the Bean Validation
API directly:

i nport javax.validation. Validator;

@er vi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Inject a reference to or g. spri ngf ramewor k. val i dati on. Val i dat or if your bean requires the
Spring Validation API:

i mport org.springframework. validation. Validator;

@ber vi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Configuring Custom Constraints

Each Bean Validation constraint consists of two parts. First, a @onstrai nt annotation
that declares the constraint and its configurable properties. Second, an implementation of
the javax.validation. ConstraintValidator interface that implements the constraint’s
behavior. To associate a declaration with an implementation, each @Constrai nt annotation
references a corresponding ValidationConstraint implementation class. At runtime, a
Constrai nt Val i dat or Fact ory instantiates the referenced implementation when the constraint
annotation is encountered in your domain model.

By default, the Local Val i dat or Fact or yBean configures a
SpringConst rai nt Val i dat or Fact ory that uses Spring to create ConstraintValidator instances.
This allows your custom ConstraintValidators to benefit from dependency injection like any other Spring
bean.

4.3.16.RELEASE Spring Framework 192

Spring Framework Reference Documentation

Shown below is an example of a custom @Constrai nt declaration, followed by an associated
Const r ai nt Val i dat or implementation that uses Spring for dependency injection:

@rar get ({ El enent Type. METHOD, El enent Type. FlI ELD})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@onstrai nt (val i dat edBy=MyConst r ai nt Val i dat or . cl ass)
public @nterface MyConstraint {

}

i nport javax.validation. ConstraintValidator;
public class MyConstraintValidator inplenents ConstraintValidator {

@\ut owi r ed;
private Foo aDependency;

As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any
other Spring bean.

Spring-driven Method Validation

The method validation feature supported by Bean Validation 1.1, and as a custom extension
also by Hibernate Validator 4.3, can be integrated into a Spring context through a
Met hodVal i dat i onPost Processor bean definition:

<bean cl ass="org. springframework. val i dati on. beanval i dati on. Met hodVal i dati onPost Processor"/ >

In order to be eligible for Spring-driven method validation, all target classes need to be annotated
with Spring’s @/al i dat ed annotation, optionally declaring the validation groups to use. Check out the
Met hodVal i dat i onPost Processor javadocs for setup details with Hibernate Validator and Bean
Validation 1.1 providers.

Additional Configuration Options

The default Local Val i dat or Fact or yBean configuration should prove sufficient for most cases.
There are a number of configuration options for various Bean Validation constructs, from message
interpolation to traversal resolution. See the Local Val i dat or Fact or yBean javadocs for more
information on these options.

Configuring a DataBinder
Since Spring 3, a DataBinder instance can be configured with a Validator. Once configured, the Validator
may be invoked by calling bi nder . val i dat e() . Any validation Errors are automatically added to the

binder’'s BindingResult.

When working with the DataBinder programmatically, this can be used to invoke validation logic after
binding to a target object:

4.3.16.RELEASE Spring Framework 193

Spring Framework Reference Documentation

Foo target = new Foo();
Dat aBi nder bi nder = new Dat aBi nder (t arget);
bi nder. set Val i dat or (new FooVal i dator());

/1 bind to the target object
bi nder. bi nd(propertyVal ues);

/1 validate the target object
bi nder.val i date();

/1 get BindingResult that includes any validation errors
Bi ndi ngResult results = binder. getBi ndi ngResul t ();

A DataBinder can also be configured with multiple

Val i dat or

instances

via

dat aBi nder. addVal i dat ors and dat aBi nder. repl aceVal i dators. This is useful when
combining globally configured Bean Validation with a Spring Val i dat or configured locally on a

DataBinder instance. See ???.
Spring MVC 3 Validation

See the section called “Validation” in the Spring MVC chapter.

4.3.16.RELEASE Spring Framework

194

Spring Framework Reference Documentation

10. Spring Expression Language (SpEL)

10.1 Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that supports
guerying and manipulating an object graph at runtime. The language syntax is similar to Unified EL but
offers additional features, most notably method invocation and basic string templating functionality.

While there are several other Java expression languages available, OGNL, MVEL, and JBoss EL, to
name a few, the Spring Expression Language was created to provide the Spring community with a single
well supported expression language that can be used across all the products in the Spring portfolio.
Its language features are driven by the requirements of the projects in the Spring portfolio, including
tooling requirements for code completion support within the eclipse based Spring Tool Suite. That said,
SpEL is based on a technology agnostic API allowing other expression language implementations to
be integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring portfolio, it is not directly
tied to Spring and can be used independently. In order to be self contained, many of the examples in
this chapter use SpEL as if it were an independent expression language. This requires creating a few
bootstrapping infrastructure classes such as the parser. Most Spring users will not need to deal with this
infrastructure and will instead only author expression strings for evaluation. An example of this typical
use is the integration of SpEL into creating XML or annotated based bean definitions as shown in the
section Expression support for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language syntax. In several
places an Inventor and Inventor’s Society class are used as the target objects for expression evaluation.
These class declarations and the data used to populate them are listed at the end of the chapter.

The expression language supports the following functionality:
* Literal expressions

» Boolean and relational operators

* Regular expressions

» Class expressions

» Accessing properties, arrays, lists, maps
* Method invocation

* Relational operators

» Assignment

 Calling constructors

» Bean references

 Array construction

* Inline lists

* Inline maps

 Ternary operator

4.3.16.RELEASE Spring Framework 195

Spring Framework Reference Documentation

Variables

» User defined functions

Collection projection

Collection selection

Templated expressions

10.2 Evaluation

This section introduces the simple use of SpEL interfaces and its expression language. The complete
language reference can be found in the section Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression 'Hello World'.

Expr essi onPar ser parser = new Spel Expressi onParser();
Expression exp = parser.parseExpression("' Hello Wrld ");
String nmessage = (String) exp.getValue();

The value of the message variable is simply 'Hello World'.

The SpEL classes and interfaces you are most likely to use are located in the packages
org. spri ngfranmewor k. expr essi on and its sub packages and spel . support.

The interface Expr essi onPar ser is responsible for parsing an expression string. In this example
the expression string is a string literal denoted by the surrounding single quotes. The interface
Expr essi on is responsible for evaluating the previously defined expression string. There are
two exceptions that can be thrown, Par seExcepti on and Eval uati onExcepti on when calling
par ser. par seExpr essi on and exp. get Val ue respectively.

SpEL supports a wide range of features, such as calling methods, accessing properties, and calling
constructors.

As an example of method invocation, we call the concat method on the string literal.

Expr essi onPar ser parser = new Spel Expressi onParser();
Expression exp = parser.parseExpression("' Hello Wrld' .concat('!")");
String nmessage = (String) exp.getValue();

The value of message is now 'Hello World!".
As an example of calling a JavaBean property, the String property Byt es can be called as shown below.

Expressi onParser parser = new Spel Expressi onParser();
/1 invokes 'getBytes()'

Expressi on exp = parser. parseExpression("' Hello Wrld'.bytes");
byte[] bytes = (byte[]) exp.getValue();

SpEL also supports nested properties using standard dot notation, i.e. propl.prop2.prop3 and the setting
of property values

Public fields may also be accessed.
Expr essi onPar ser parser = new Spel Expressi onParser();
/'l invokes 'getBytes().length'

Expressi on exp = parser. parseExpression("' Hello Wrld'.bytes.length");
int length = (Integer) exp.getValue();

4.3.16.RELEASE Spring Framework 196

Spring Framework Reference Documentation

The String’s constructor can be called instead of using a string literal.

Expr essi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("new String('hello world').toUpperCase()");
String nmessage = exp.getVal ue(String.class);

Note the use of the generic method publ i ¢ <T> T get Val ue(d ass<T> desi redResul t Type).
Using this method removes the need to cast the value of the expression to the desired result type. An
Eval uati onExcepti on will be thrown if the value cannot be cast to the type T or converted using
the registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated against a specific
object instance (called the root object). The example shows how to retrieve the nane property from an
instance of the | nvent or class or create a boolean condition:

/1 Create and set a cal endar
Gregori anCal endar ¢ = new Gregori anCal endar () ;
c.set (1856, 7, 9);

/1 The constructor argunents are nane, birthday, and nationality.
Inventor tesla = new I nventor ("N kola Tesla", c.getTinme(), "Serbian");

Expr essi onPar ser parser = new Spel Expressi onParser () ;

Expression exp = parser. parseExpression("nane");
String name = (String) exp.getValue(tesla);

/1 nane == "N kol a Tesl a"

exp = parser.parseExpression("name == 'N kola Tesla'");
bool ean result = exp. getVal ue(tesla, Bool ean.class);

/] result == true

Eval uat i onCont ext

The interface Eval uati onCont ext is used when evaluating an expression to resolve properties,
methods, fields, and to help perform type conversion. There are two out-of-the-box implementations.

* Si npl eEval uati onCont ext —exposes a subset of essential SpEL language features and
configuration options, for categories of expressions that do not require the full extent of the SpEL
language syntax and should be meaningfully restricted. Examples include but are not limited to data
binding expressions, property-based filters, and others.

» St andar dEval uat i onCont ext —exposes the full set of SpEL language features and
configuration options. You may use it to specify a default root object, and to configure every available
evaluation-related strategy.

Si npl eEval uat i onCont ext is designed to support only a subset of the SpEL language syntax. It
excludes Java type references, constructors, and bean references. It also requires explicit choosing
the level of support for properties and methods in expressions. By default, the cr eat e() static factory
method enables only read access to properties. You can also obtain a builder to configure the exact
level of support needed, targeting one of, or some combination of the following:

1. Custom Pr opert yAccessor only (no reflection).
2. Data binding properties for read-only access.

3. Data binding properties for read and write.

4.3.16.RELEASE Spring Framework 197

Spring Framework Reference Documentation

Type conversion

By default SpEL uses the conversion service available in Spring core (
org. spri ngfranmework. core. convert. Conversi onServi ce). This conversion service comes
with many converters built in for common conversions but is also fully extensible so custom conversions
between types can be added. Additionally it has the key capability that it is generics aware. This means
that when working with generic types in expressions, SpEL will attempt conversions to maintain type
correctness for any objects it encounters.

What does this mean in practice? Suppose assignment, using set Val ue() , isbeingusedtosetali st
property. The type of the property is actually Li st <Bool ean>. SpEL will recognize that the elements
of the list need to be converted to Bool ean before being placed in it. A simple example:

class Sinple {
public Li st <Bool ean> bool eanLi st = new Arrayli st <Bool ean>();

}

Sinple sinple = new Sinple();
si npl e. bool eanLi st. add(true);

Si npl eEval uati onCont ext context = Sinpl eEval uati onContext().create();

/] false is passed in here as a string. SpEL and the conversion service will
/'l correctly recognize that it needs to be a Bool ean and convert it

par ser. par seExpr essi on("bool eanLi st[0]"). set Val ue(context, sinple, "false");

/1 b will be false
Bool ean b = si npl e. bool eanLi st. get (0);

Parser configuration

It is possible to configure the SpEL expression parser using a parser configuration object
(org. spri ngframewor k. expr essi on. spel . Spel Par ser Confi gurati on). The configuration
object controls the behavior of some of the expression components. For example, if indexing into an
array or collection and the element at the specified index is nul | itis possible to automatically create the
element. This is useful when using expressions made up of a chain of property references. If indexing
into an array or list and specifying an index that is beyond the end of the current size of the array or list
it is possible to automatically grow the array or list to accommodate that index.

cl ass Denp {
public List<String> |ist;

}

/] Turn on:

/1 - auto null reference initialization

/1 - auto collection grow ng

Spel Par ser Confi guration config = new Spel Parser Configuration(true,true);
Expr essi onPar ser parser = new Spel Expressi onParser(config);

Expressi on expressi on = parser. parseExpression("list[3]");

Dermp denp = new Deno();

Obj ect o = expression. get Val ue(deno) ;

// denp.list will now be a real collection of 4 entries
/'l Each entry is a new enpty String

It is also possible to configure the behaviour of the SpEL expression compiler.

4.3.16.RELEASE Spring Framework 198

Spring Framework Reference Documentation

SpEL compilation

Spring Framework 4.1 includes a basic expression compiler. Expressions are usually interpreted which
provides a lot of dynamic flexibility during evaluation but does not provide the optimum performance. For
occasional expression usage this is fine, but when used by other components like Spring Integration,
performance can be very important and there is no real need for the dynamism.

The new SpEL compiler is intended to address this need. The compiler will generate a real Java
class on the fly during evaluation that embodies the expression behavior and use that to achieve
much faster expression evaluation. Due to the lack of typing around expressions the compiler uses
information gathered during the interpreted evaluations of an expression when performing compilation.
For example, it does not know the type of a property reference purely from the expression but during the
first interpreted evaluation it will find out what it is. Of course, basing the compilation on this information
could cause trouble later if the types of the various expression elements change over time. For this
reason compilation is best suited to expressions whose type information is not going to change on
repeated evaluations.

For a basic expression like this:
someArray[0] . someProperty. someQt her Property < 0.1

which involves array access, some property derefencing and numeric operations, the performance gain
can be very noticeable. In an example micro benchmark run of 50000 iterations, it was taking 75ms to
evaluate using only the interpreter and just 3ms using the compiled version of the expression.

Compiler configuration

The compiler is not turned on by default, but there are two ways to turn it on. It can be turned on using the
parser configuration process discussed earlier or via a system property when SpEL usage is embedded
inside another component. This section discusses both of these options.

Itis important to understand that there are a few modes the compiler can operate in, captured in an enum
(org. spri ngframewor k. expr essi on. spel . Spel Conpi | er Mode). The modes are as follows:

e OFF - The compiler is switched off; this is the default.

* | MVEDI ATE - In immediate mode the expressions are compiled as soon as possible. This is typically
after the first interpreted evaluation. If the compiled expression fails (typically due to a type changing,
as described above) then the caller of the expression evaluation will receive an exception.

* M XED - In mixed mode the expressions silently switch between interpreted and compiled mode over
time. After some number of interpreted runs they will switch to compiled form and if something goes
wrong with the compiled form (like a type changing, as described above) then the expression will
automatically switch back to interpreted form again. Sometime later it may generate another compiled
form and switch to it. Basically the exception that the user gets in | MVEDI ATE mode is instead handled
internally.

| MVEDI ATE mode exists because M XED mode could cause issues for expressions that have side
effects. If a compiled expression blows up after partially succeeding it may have already done something
that has affected the state of the system. If this has happened the caller may not want it to silently re-
run in interpreted mode since part of the expression may be running twice.

After selecting a mode, use the Spel Par ser Confi gur at i on to configure the parser:

4.3.16.RELEASE Spring Framework 199

Spring Framework Reference Documentation

Spel Par ser Confi gurati on config = new Spel Par ser Confi gurati on(Spel Conpi | er Mode. | MVEDI ATE,
this.getd ass().getd assLoader());

Spel Expr essi onParser parser = new Spel Expressi onPar ser (confi g);
Expression expr = parser. parseExpression("payl oad");

M/Message nessage = new MyMessage();

Obj ect payl oad = expr. get Val ue(nessage) ;

When specifying the compiler mode it is also possible to specify a classloader (passing null is allowed).
Compiled expressions will be defined in a child classloader created under any that is supplied. It is
important to ensure if a classloader is specified it can see all the types involved in the expression
evaluation process. If none is specified then a default classloader will be used (typically the context
classloader for the thread that is running during expression evaluation).

The second way to configure the compiler is for use when SpEL is embedded inside some other
component and it may not be possible to configure via a configuration object. In these cases it is possible
to use a system property. The property spri ng. expr essi on. conpi | er. node can be set to one of
the Spel Conpi | er Mode enum values (of f , i mmedi at e, or mi xed).

Compiler limitations

With Spring Framework 4.1 the basic compilation framework is in place. However, the framework
does not yet support compiling every kind of expression. The initial focus has been on the common
expressions that are likely to be used in performance critical contexts. These kinds of expression cannot
be compiled at the moment:

e expressions involving assignment

 expressions relying on the conversion service

* expressions using custom resolvers or accessors
e expressions using selection or projection

More and more types of expression will be compilable in the future.

10.3 Expressions in bean definitions

SpEL expressions can be used with XML or annotation-based configuration metadata for defining
BeanDef i ni t i ons. In both cases the syntax to define the expression is of the form #{ <expr essi on
string> }.

XML configuration

A property or constructor-arg value can be set using expressions as shown below.

<bean id="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property name="randomNunmber" val ue="#{ T(java.lang. Math).random() * 100.0 }"/>

<l-- other properties -->
</ bean>

The variable syst enPr oper ti es is predefined, so you can use it in your expressions as shown below.
Note that you do not have to prefix the predefined variable with the # symbol in this context.

4.3.16.RELEASE Spring Framework 200

Spring Framework Reference Documentation

<bean id="taxCal cul ator" class="org.spring. sanpl es. TaxCal cul at or">
<property name="def aul t Local e" val ue="#{ systenProperties['user.region'] }"/>

<I-- other properties -->
</ bean>

You can also refer to other bean properties by name, for example.

<bean id="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property name="randonNunber" val ue="#{ T(java.lang.Math).randon() * 100.0 }"/>

<l-- other properties -->
</ bean>

<bean id="shapeGuess" cl ass="org. spring. sanpl es. ShapeGuess" >
<property name="initial ShapeSeed" val ue="#{ nunber Guess.random\unber }"/>

<l-- other properties -->
</ bean>

Annotation config

The @/al ue annotation can be placed on fields, methods and method/constructor parameters to specify
a default value.

Here is an example to set the default value of a field variable.

public static class Fiel dVal ueTest Bean

@/al ue("#{ systenProperties['user.region'] }")
private String defaultLocal e;

public void setDefaul tLocal e(String defaul tLocale) {
this.defaultLocal e = defaul tLocal e;

}

public String getDefaul tLocal e() {
return this.defaul tLocale;

}

The equivalent but on a property setter method is shown below.

public static class PropertyVal ueTest Bean
private String defaultLocal e;

@/al ue("#{ systenProperties['user.region'] }")
public void setDefaultLocal e(String defaul tLocale) {
this.defaultLocal e = defaul tLocal e;

}

public String getDefaul tLocal e() {
return this.defaul tLocale;

}

Autowired methods and constructors can also use the @/al ue annotation.

4.3.16.RELEASE Spring Framework 201

Spring Framework Reference Documentation

public class SinpleMvielister {

private MvieFi nder novi eFi nder;
private String defaul tLocal e;

@\ut owi r ed
public void configure(MvieFinder novi eFi nder,
@/al ue("#{ systenProperties['user.region'] }") String defaultLocale) {
t hi s. novi eFi nder = novi eFi nder;
this.defaul tLocal e = defaul tLocal e;

public class Myvi eRecommender {
private String defaul tLocal e;
private CustonerPreferenceDao custonerPreferencebDao;

@\ut owi r ed
publ i ¢ Movi eReconmender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao,
@/al ve("#{systenProperties|[user.country']}") String defaultLocale) {
this.custonerPreferencebDao = custoner PreferencebDao;
this.defaul tLocal e = defaul t Local e;

10.4 Language Reference

Literal expressions

The types of literal expressions supported are strings, numeric values (int, real, hex), boolean and null.
Strings are delimited by single quotes. To put a single quote itself in a string, use two single quote
characters.

The following listing shows simple usage of literals. Typically they would not be used in isolation like
this but rather as part of a more complex expression, for example using a literal on one side of a logical
comparison operator.

Expr essi onPar ser parser = new Spel Expressi onParser();

/] evals to "Hello World"
String helloWwrld = (String) parser.parseExpression("' Hello Wrld ").getVal ue();

doubl e avogadr osNunmber = (Doubl e) parser. parseExpression("6.0221415E+23"). get Val ue();

/] evals to 2147483647
int maxVal ue = (Integer) parser.parseExpression("0x7FFFFFFF") . get Val ue();

bool ean trueVal ue = (Bool ean) parser. parseExpression("true"). getVal ue();

Obj ect nul | Val ue = parser. parseExpression("null"). getVal ue();

Numbers support the use of the negative sign, exponential notation, and decimal points. By default real
numbers are parsed using Double.parseDouble().

Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy: just use a period to indicate a nested property value. The
instances of the | nvent or class, pupin, and tesla, were populated with data listed in the section Classes

4.3.16.RELEASE Spring Framework 202

Spring Framework Reference Documentation

used in the examples. To navigate "down" and get Tesla’s year of birth and Pupin’s city of birth the
following expressions are used.

/1l evals to 1856
int year = (Integer) parser.parseExpression("Birthdate. Year + 1900"). get Val ue(cont ext);

String city = (String) parser.parseExpression("placeOBirth.City").getVal ue(context);

Case insensitivity is allowed for the first letter of property names. The contents of arrays and lists are
obtained using square bracket notation.

Expr essi onPar ser parser = new Spel Expressi onParser () ;
Si npl eEval uati onCont ext context = Sinpl eEval uati onCont ext.create();

/'l Inventions Array

/1 evaluates to "Induction notor"
String invention = parser.parseExpression("inventions[3]").getVal ue(
context, tesla, String.class);

/1 Menbers List

/] evaluates to "N kola Tesla"
String name = parser. par seExpressi on("Menbers[0] . Nane") . get Val ue(
context, ieee, String.class);

/1 List and Array navigation

/1 evaluates to "Wrel ess comunication”

String invention = parser. parseExpression("Menbers[0].|nventions[6]").getVal ue(
context, ieee, String.class);

The contents of maps are obtained by specifying the literal key value within the brackets. In this case,
because keys for the Officers map are strings, we can specify string literals.

/'l Oficer's Dictionary

I nventor pupin = parser.parseExpression("Officers[' president']"). getVal ue(
soci etyCont ext, |nventor.class);

/1l evaluates to "ldvor"
String city = parser.parseExpression("O ficers[' president'].PlaceOBirth.City").getVal ue(
soci etyContext, String.class);

/] setting val ues
par ser. par seExpression(" O ficers['advisors'][0].PlaceOBirth. Country"). set Val ue(
soci etyContext, "Croatia");

Inline lists

Lists can be expressed directly in an expression using { } notation.

/] evaluates to a Java list containing the four nunbers
Li st nunbers = (List) parser.parseExpression("{1,2,3,4}").getVal ue(context);

List listOfLists = (List) parser.parseExpression("{{"a","'b"},{"x","y" }}").getVal ue(context);

{} by itself means an empty list. For performance reasons, if the list is itself entirely composed of fixed
literals then a constant list is created to represent the expression, rather than building a new list on
each evaluation.

Inline Maps

Maps can also be expressed directly in an expression using { key: val ue} notation.

4.3.16.RELEASE Spring Framework 203

Spring Framework Reference Documentation

/1 evaluates to a Java nap containing the two entries
Map i nventorlnfo = (Map) parser. parseExpression("{nane:"'N kol a', dob: "' 10-Jul y-1856'}"). get Val ue(cont ext);

Map mapOf Maps = (Map) parser. parseExpression("{nanme:{first:' Nikola',last:'Tesla'}, dob:
{day: 10, nont h: * Jul y' , year: 1856}}"). get Val ue(cont ext);

{:} by itself means an empty map. For performance reasons, if the map is itself composed of fixed
literals or other nested constant structures (lists or maps) then a constant map is created to represent
the expression, rather than building a new map on each evaluation. Quoting of the map keys is optional,
the examples above are not using quoted keys.

Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer to have the array
populated at construction time.

int[] nunbersl = (int[]) parser.parseExpression("new int[4]").getVal ue(context);

/1 Array with initializer
int[] nunbers2 = (int[]) parser.parseExpression("new int[]{1,2,3}").getValue(context);

/1 Multi dinensional array
int[][] nunbers3 = (int[][]) parser.parseExpression("new int[4][5]").getVal ue(context);

It is not currently allowed to supply an initializer when constructing a multi-dimensional array.
Methods

Methods are invoked using typical Java programming syntax. You may also invoke methods on literals.
Varargs are also supported.

/] string literal, evaluates to "bc"
String bc = parser.parseExpression("' abc'.substring(1, 3)").getValue(String.class);

/1 evaluates to true
bool ean i sMenber = parser. parseExpression("i sMenber (' M hajlo Pupin')").getVal ue(
soci et yCont ext, Bool ean. cl ass);

Operators
Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater than
or equal are supported using standard operator notation.

/| evaluates to true
bool ean trueVal ue = parser. parseExpression("2 == 2"). get Val ue(Bool ean. cl ass);

/1 evaluates to false
bool ean fal seVal ue = parser. parseExpression("2 < -5.0"). get Val ue(Bool ean. cl ass);

/| evaluates to true
bool ean trueVal ue = parser. parseExpression("' bl ack' < 'block'").getVal ue(Bool ean. cl ass);

Note

Greater/less-than comparisons against nul | follow a simple rule: nul | is treated as nothing here
(i.e. NOT as zero). As a consequence, any other value is always greater than nul | (X > nul |
is always t r ue) and no other value is ever less than nothing (X < nul | is always f al se).

4.3.16.RELEASE Spring Framework 204

Spring Framework Reference Documentation

If you prefer numeric comparisons instead, please avoid number-based nul | comparisons in
favor of comparisons against zero (e.g. X > 0 or X < 0).

In addition to standard relational operators SpEL supports the i nst anceof and regular expression
based mat ches operator.

/] evaluates to fal se
bool ean fal seVal ue = parser. par seExpressi on(
"' xyz' instanceof T(Integer)").getVal ue(Bool ean.cl ass);

/| evaluates to true
bool ean trueVal ue = parser. par seExpressi on(
"'5.00" matches "\N-2\\d+(\\.\\d{2})?$ ").get Val ue(Bool ean. cl ass);

/levaluates to false
bool ean fal seVal ue = parser. par seExpressi on(
"'5.0067" matches "\N-2A\\d+(\\.\\d{2})?$""). get Val ue(Bool ean. cl ass);

Note

Be careful with primitive types as they are immediately boxed up to the wrapper type, so 1
i nstanceof T(int) evaluates to fal se while 1 instanceof T(Integer) evaluates to
t rue, as expected.

Each symbolic operator can also be specified as a purely alphabetic equivalent. This avoids problems
where the symbols used have special meaning for the document type in which the expression is
embedded (eg. an XML document). The textual equivalents are shown here: I t (<), gt (), | e (#), ge
(>=),eq (==),ne (! =),div (/), nod (%, not (!). These are case insensitive.

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below.

/1 -- AND --

/'l evaluates to fal se
bool ean fal seVal ue = parser. parseExpression("true and fal se"). getVal ue(Bool ean. cl ass);

/1l evaluates to true
String expression = "isMenber (' Ni kola Tesla') and i sMenber (' M hajlo Pupin')";
bool ean trueVal ue = parser. parseExpressi on(expression). get Val ue(soci et yCont ext, Bool ean. cl ass);

0 == @R ==

/1l evaluates to true
bool ean trueVal ue = parser. parseExpression("true or false").getVal ue(Bool ean. cl ass);

/| evaluates to true
String expression = "isMenber(' N kola Tesla') or isMenber('Al bert Einstein)";
bool ean trueVal ue = parser. par seExpressi on(expressi on) . get Val ue(soci et yCont ext, Bool ean. cl ass);

/1 -- NOT --

/1 evaluates to fal se
bool ean fal seVal ue = parser. parseExpression("!true"). getVal ue(Bool ean. cl ass);

/1 -- AND and NOT --
String expression = "isMenber (' Nikola Tesla') and !isMenber('Mhajlo Pupin')";
bool ean fal seVal ue = parser. par seExpressi on(expressi on). get Val ue(soci et yCont ext, Bool ean. cl ass);

4.3.16.RELEASE Spring Framework 205

Spring Framework Reference Documentation

Mathematical operators

The addition operator can be used on both numbers and strings. Subtraction, multiplication and
division can be used only on numbers. Other mathematical operators supported are modulus (%) and
exponential power (). Standard operator precedence is enforced. These operators are demonstrated
below.

/1 Addition
int two = parser.parseExpression("1 + 1").getValue(lnteger.class); // 2

String testString = parser. parseExpression(
""test' + ' ' + 'string'").getValue(String.class); // 'test string

/1 Subtraction
int four = parser.parseExpression("1 - -3").getValue(lnteger.class); // 4

doubl e d = parser. parseExpressi on("1000.00 - 1e4"). get Val ue(Doubl e. cl ass); // -9000

/1 Multiplication
int six = parser.parseExpression("-2 * -3").getValue(lnteger.class); // 6

doubl e twentyFour = parser.parseExpression("2.0 * 3e0 * 4").getVal ue(Double.class); // 24.0

/1 Division
int mnusTwo = parser. parseExpression("6 / -3").getValue(lnteger.class); // -2

doubl e one = parser.parseExpression("8.0 / 4e0 / 2").getVal ue(Double.class); // 1.0

/'l Modul us
int three = parser.parseExpression("7 %4").getValue(lnteger.class); // 3

int one = parser.parseExpression("8 / 5 % 2").getValue(lnteger.class); // 1

/'l Operator precedence
int mnusTwentyOne = parser. par seExpression("1+2-3*8"). get Val ue(l nteger.class); // -21

Assignment

Setting of a property is done by using the assignment operator. This would typically be done within a
call to set Val ue but can also be done inside a call to get Val ue.

I nventor inventor = new Inventor();
Si npl eEval uati onCont ext context = Sinpl eEval uati onCont ext.create();

par ser. par seExpressi on(" Nane") . set Val ue(context, inventor, "Al exander Seovic2");
/1 alternatively

String al eks = parser. parseExpressi on(
"Name = ' Al exandar Seovic'").getVal ue(context, inventor, String.class);

Types

The special T operator can be used to specify an instance of java.lang.Class (the type). Static methods
are invoked using this operator as well. The St andar dEval uat i onCont ext uses a TypelLocat or
to find types and the St andar dTypelLocat or (which can be replaced) is built with an understanding
of the java.lang package. This means T() references to types within java.lang do not need to be fully
qualified, but all other type references must be.

4.3.16.RELEASE Spring Framework 206

Spring Framework Reference Documentation

Cl ass dateC ass = parser.parseExpression("T(java.util.Date)").getVal ue(C ass. cl ass);
Class stringCl ass = parser.parseExpression("T(String)").getVal ue(C ass. cl ass);
bool ean trueVal ue = parser. parseExpressi on(

"T(j ava. mat h. Roundi nghvbde) . CEI LI NG < T(j ava. mat h. Roundi nghbde) . FLOOR")
. get Val ue(Bool ean. cl ass);

Constructors

Constructors can be invoked using the new operator. The fully qualified class hame should be used for
all but the primitive type and String (where int, float, etc, can be used).

I nventor einstein = p.parseExpression(
"new org.spring.sanpl es.spel.inventor.lnventor(' Al bert Einstein', 'German')")
. get Val ue(I nventor.cl ass);

//create new inventor instance within add method of List
p. par seExpr essi on(
"Menbers. add(new org. spring. sanpl es. spel .i nventor. | nventor(
"Albert Einstein', 'German'))").getVal ue(societyContext);

Variables

Variables can be referenced in the expression using the syntax #vari abl eNane. Variables are set
using the method setVariable on Eval uat i onCont ext implementations.

Inventor tesla = new Inventor ("N kol a Tesla", "Serbian");
Si npl eEval uati onCont ext context = Sinpl eEval uati onCont ext.create();
cont ext. set Vari abl e("newNane", "M ke Tesla");

par ser. par seExpr essi on("Nane = #newNane"). get Val ue(context, tesla);

Systemout. println(tesla.getName()) // "M ke Tesla"

The #this and #root variables

The variable #this is always defined and refers to the current evaluation object (against which unqualified
references are resolved). The variable #root is always defined and refers to the root context object.
Although #this may vary as components of an expression are evaluated, #root always refers to the root.

/] create an array of integers
Li st<Integer> prinmes = new ArraylLi st<lnteger>();
prinmes. addAl | (Arrays. asList(2,3,5,7,11,13,17));

/] create parser and set variable 'prines' as the array of integers
Expr essi onPar ser parser = new Spel Expressi onParser();

Si npl eEval uati onCont ext context = Sinpl eEval uati onCont ext.create();
cont ext.setVariabl e("prinmes", prines);

/1 all prinme nunbers > 10 fromthe list (using selection ?{...})

/'l evaluates to [11, 13, 17]

Li st <I nteger> pri mesGreat er ThanTen = (List<lnteger>) parser.parseExpression(
"#primes. ?[#t hi s>10] ") . get Val ue(cont ext);

Functions

You can extend SpEL by registering user defined functions that can be called within the expression
string. The function is registered through the Eval uat i onCont ext .

4.3.16.RELEASE Spring Framework 207

Spring Framework Reference Documentation

Met hod nethod = ... ;

Si npl eEval uati onCont ext context = Sinpl eEval uati onContext.create();
cont ext. set Vari abl e("nyFunction", nmethod);

For example, given a utility method to reverse a string is shown below:

public abstract class StringUils {

public static String reverseString(String input) {
StringBuil der backwards = new StringBuil der();
for (int i =0; i < input.length(); i++)
backwar ds. append(i nput.charAt (input.length() - 1 - i));
}

return backwards.toString();

The above method can then be registered and used as follows:

Expr essi onPar ser parser = new Spel Expressi onParser () ;
Si npl eEval uati onCont ext context = Sinpl eEval uati onCont ext.create();

context.setVariabl e("reverseString",
StringUils. cl ass. get Decl aredMet hod("reverseString”, String.class));

String hell oWrl dRever sed = parser. par seExpressi on(
"#reverseString(' hello')").getValue(context, String.class);

Bean references

If the evaluation context has been configured with a bean resolver it is possible to lookup beans from
an expression using the (@) symbol.
Expr essi onPar ser parser = new Spel Expressi onParser () ;

St andar dEval uat i onCont ext context = StandardEval uati onContext.create();
cont ext . set BeanResol ver (new MyBeanResol ver());

/1 This will end up calling resolve(context,"foo") on M/BeanResol ver during eval uation
Obj ect bean = parser. parseExpression(" @ o00"). get Val ue(cont ext);

To access a factory bean itself, the bean name should instead be prefixed with a (&) symbol.

Expr essi onPar ser parser = new Spel Expressi onParser();
St andar dEval uat i onCont ext context = StandardEval uati onContext.create();
cont ext . set BeanResol ver (new MyBeanResol ver());

/1 This will end up calling resol ve(context,"& oo") on M/BeanResol ver during eval uation
Obj ect bean = parser. parseExpression("&f 00"). get Val ue(context);

Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside the expression. A
minimal example is:

String fal seString = parser. parseExpression(
"false ? "truekxp' : 'falseExp'").getValue(String.class);

In this case, the boolean false results in returning the string value ‘falseExp'. A more realistic example
is shown below.

4.3.16.RELEASE Spring Framework 208

Spring Framework Reference Documentation

par ser. par seExpr essi on("Nane") . set Val ue(soci etyContext, "IEEE");
soci et yCont ext . set Vari abl e("queryNane", "N kola Tesla");
expression = "isMenber (#queryNane) ? #queryNane + ' is a nenber of the ' " +

"+ Nanme + ' Society' : #queryNane + ' is not a nenber of the ' + Nanme + ' Society'";

String queryResultString = parser. parseExpressi on(expression)
. get Val ue(soci etyContext, String.class);
/1 queryResultString = "Nikola Tesla is a nenber of the | EEE Society"

Also see the next section on the Elvis operator for an even shorter syntax for the ternary operator.
The Elvis Operator

The Elvis operator is a shortening of the ternary operator syntax and is used in the Groovy language.
With the ternary operator syntax you usually have to repeat a variable twice, for example:

String nane = "Elvis Presley";
String displayName = name != null ? nane : "Unknown";

Instead you can use the Elvis operator, named for the resemblance to Elvis' hair style.

Expr essi onPar ser parser = new Spel Expressi onParser () ;

String nanme = parser. parseExpression("name?:' Unknown' ") . get Val ue(String. cl ass);

System out . println(nanme); // 'Unknown'

Here is a more complex example.

Expr essi onPar ser parser = new Spel Expressi onParser();

Inventor tesla = new Inventor ("N kol a Tesla", "Serbian");
Si npl eEval uati onCont ext context = Sinpl eEval uati onContext.create();

String nanme = parser.parseExpression("Name?:"'Elvis Presley'").getValue(context, tesla, String.class);
System out. println(nane); // N kola Tesla
tesl a. set Nane(nul I');

nanme = parser. parseExpression("Nane?:"' Elvis Presley'").getVal ue(context, tesla, String.class);

Systemout. println(nanme); // Elvis Presley

Safe Navigation operator

The Safe Navigation operator is used to avoid a Nul | Poi nt er Except i on and comes from the Groovy
language. Typically when you have a reference to an object you might need to verify that it is not null
before accessing methods or properties of the object. To avoid this, the safe navigation operator will
simply return null instead of throwing an exception.

4.3.16.RELEASE Spring Framework 209

http://www.groovy-lang.org/operators.html#_elvis_operator
http://www.groovy-lang.org/operators.html#_safe_navigation_operator

Spring Framework Reference Documentation

Expr essi onPar ser parser = new Spel Expressi onParser () ;

Inventor tesla = new Inventor ("N kol a Tesla", "Serbian");
tesla.setPlaceO Birth(new PlaceOBirth("Smljan"));

Si npl eEval uati onCont ext context = Sinpl eEval uati onContext.create();

String city = parser.parseExpression("PlaceOBirth?. City").getValue(context, tesla, String.class);
Systemout.println(city); // Smljan

tesla.setPlaceOBirth(null);
city = parser.parseExpression("PlaceOBirth?. City").getVal ue(context, tesla, String.class);

Systemout.println(city); // null - does not throw Nul |l Poi nterException!!!

Note

The Elvis operator can be used to apply default values in expressions, e.g. in an @/al ue
expression:

@/al ue("#{systenProperties[' pop3.port'] ?: 25}")

This will inject a system property pop3. port ifit is defined or 25 if not.

Collection Selection

Selection is a powerful expression language feature that allows you to transform some source collection
into another by selecting from its entries.

Selection uses the syntax . ?[sel ecti onExpr essi on] . This will filter the collection and return a new
collection containing a subset of the original elements. For example, selection would allow us to easily
get a list of Serbian inventors:

Li st<Inventor> list = (List<lnventor>) parser.parseExpression(
"Menbers. ?[Nationality == "Serbian']"). getVal ue(soci etyContext);

Selection is possible upon both lists and maps. In the former case the selection criteria is evaluated
against each individual list element whilst against a map the selection criteria is evaluated against each
map entry (objects of the Java type Map. Ent r y). Map entries have their key and value accessible as
properties for use in the selection.

This expression will return a new map consisting of those elements of the original map where the entry
value is less than 27.

Map newMap = parser. par seExpressi on("map. ?[val ue<27]"). get Val ue();

In addition to returning all the selected elements, it is possible to retrieve just the first or the last value.
To obtain the first entry matching the selection the syntax is ~[..] whilst to obtain the last matching
selection the syntax is $[..] .

Collection Projection

Projection allows a collection to drive the evaluation of a sub-expression and the result is a new
collection. The syntax for projection is ! [proj ecti onExpr essi on] . Most easily understood by
example, suppose we have a list of inventors but want the list of cities where they were born. Effectively
we want to evaluate 'placeOfBirth.city' for every entry in the inventor list. Using projection:

4.3.16.RELEASE Spring Framework 210

Spring Framework Reference Documentation

/l returns ['Smiljan', 'ldvor']
Li st placesOBirth = (List)parser.parseExpression("Mnbers.![placeOBirth.city]");

A map can also be used to drive projection and in this case the projection expression is evaluated
against each entry in the map (represented as a Java Map. Ent r y). The result of a projection across a
map is a list consisting of the evaluation of the projection expression against each map entry.

Expression templating
Expression templates allow a mixing of literal text with one or more evaluation blocks. Each evaluation

block is delimited with prefix and suffix characters that you can define, a common choice isto use #{ }
as the delimiters. For example,

String randonPhrase = parser. par seExpressi on(
"random nunber is #{T(java.lang. Math).randon()}",
new Tenpl at ePar ser Cont ext ()). get Val ue(String. cl ass);

/1 evaluates to "random nunber is 0.7038186818312008"

The string is evaluated by concatenating the literal text 'random number is ' with the result of evaluating
the expression inside the #{ } delimiter, in this case the result of calling that random() method. The second
argument to the method par seExpr essi on() is of the type Par ser Cont ext . The Par ser Cont ext
interface is used to influence how the expression is parsed in order to support the expression templating
functionality. The definition of Tenpl at ePar ser Cont ext is shown below.

public class Tenpl at ePar ser Cont ext i npl enents Parser Cont ext {

public String getExpressionPrefix() {
return "#{";

}

public String get ExpressionSuffix() {
return "}";

}

public bool ean isTenpl ate() {
return true;

}

10.5 Classes used in the examples

Inventor.java

4.3.16.RELEASE Spring Framework 211

Spring Framework Reference Documentation

package org. spring. sanpl es. spel . i nventor;

inport java.util.Date;
inport java.util.G egorianCal endar;

public class Inventor {

private String nane;

private String nationality;
private String[] inventions;
private Date birthdate;

private PlaceOBirth placeOBirth;

public Inventor(String name, String nationality) {
Gregori anCal endar c= new G egorianCal endar () ;
this.name = nane;
this.nationality = nationality;
this.birthdate = c.getTinme();

public Inventor(String nanme, Date birthdate, String nationality) {
this.name = nane;
this.nationality = nationality;
this.birthdate = birthdate;

public Inventor() {

}

public String getNane() {
return nane;

public void setNane(String nane) {
this.name = nane;

public String getNationality() {
return nationality;

public void setNationality(String nationality) {
this.nationality = nationality;

public Date getBirthdate() {
return birthdate;

public void setBirthdate(Date birthdate) {
this.birthdate = birthdate;

public PlaceOBirth getPlaceOBirth() {
return placeOBirth;

public void setPlaceOBirth(PlaceOBirth placeOBirth) {
this.placeOBirth = placeOBirth;

public void setlnventions(String[] inventions) {
this.inventions = inventions;

public String[] getlnventions() {
return inventions;

4.3.16.RELEASE Spring Framework 212

Spring Framework Reference Documentation

PlaceOfBirth.java

package org.spring.sanples.spel.inventor;
public class PlaceOBirth {

private String city;
private String country;

public PlaceO Birth(String city) {
this.city=city;
}

public PlaceOBirth(String city, String country) {
this(city);
this.country = country;

}

public String getGty() {
return city;

}

public void setCity(String s) {
this.city = s;
}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

Society.java

4.3.16.RELEASE Spring Framework 213

Spring Framework Reference Documentation

package org. spring. sanpl es. spel . inventor;
inport java.util.*;
public class Society {

private String nane;

public static String Advisors = "advisors";
public static String President = "president";

private List<lnventor> nmenbers = new Arrayli st<lnventor>();
private Map officers = new HashMap();

public List getMenbers() {
return nenbers;

}

public Map getOfficers() {
return officers;

}

public String getName() {
return nane;

public void setNanme(String nane) {
this.name = nane;

}

public bool ean i sMenber(String nanme) {
for (Inventor inventor : nenbers) {
if (inventor.getNane().equal s(nane)) {
return true;
}
}

return false;

4.3.16.RELEASE Spring Framework 214

Spring Framework Reference Documentation

11. Aspect Oriented Programming with Spring

11.1 Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas
in AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as
transaction management that cut across multiple types and objects. (Such concerns are often termed
crosscutting concerns in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring IoC container does not
depend on AOP, meaning you do not need to use AOP if you don’t want to, AOP complements Spring
loC to provide a very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schema-based approach or the @AspectJ annotation style. Both of these styles offer fully typed
advice and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema- and @AspectJ-based AOP supportis discussed in this chapter. Spring 2.0
AOP remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support
offered by the Spring 1.2 APIs is discussed in the following chapter.

AOP is used in the Spring Framework to...

... provide declarative enterprise services, especially as a replacement for EJB declarative services.
The most important such service is declarative transaction management.

... allow users to implement custom aspects, complementing their use of OOP with AOP.

Note

If you are interested only in generic declarative services or other pre-packaged declarative
middleware services such as pooling, you do not need to work directly with Spring AOP, and can
skip most of this chapter.

AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-
specific... unfortunately, AOP terminology is not particularly intuitive; however, it would be even more
confusing if Spring used its own terminology.

» Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is
a good example of a crosscutting concern in enterprise Java applications. In Spring AOP, aspects
are implemented using regular classes (the schema-based approach) or regular classes annotated
with the @Aspect annotation (the @\spect J style).

 Join point: a point during the execution of a program, such as the execution of a method or the handling
of an exception. In Spring AOP, a join point always represents a method execution.

4.3.16.RELEASE Spring Framework 215

Spring Framework Reference Documentation

» Advice: action taken by an aspect at a particular join point. Different types of advice include "around,"
"before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including
Spring, model an advice as an interceptor, maintaining a chain of interceptors around the join point.

» Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and
runs at any join point matched by the pointcut (for example, the execution of a method with a certain
name). The concept of join points as matched by pointcut expressions is central to AOP, and Spring
uses the AspectJ pointcut expression language by default.

« Introduction: declaring additional methods or fields on behalf of a type. Spring AOP allows you to
introduce new interfaces (and a corresponding implementation) to any advised object. For example,
you could use an introduction to make a bean implement an | sModi fi ed interface, to simplify
caching. (An introduction is known as an inter-type declaration in the Aspect]J community.)

» Target object: object being advised by one or more aspects. Also referred to as the advised object.
Since Spring AOP is implemented using runtime proxies, this object will always be a proxied object.

« AOP proxy: an object created by the AOP framework in order to implement the aspect contracts
(advise method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic
proxy or a CGLIB proxy.

» Weaving: linking aspects with other application types or objects to create an advised object. This can
be done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring
AOP, like other pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

» Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unless it throws an exception).

 After returning advice: Advice to be executed after a join point completes normally: for example, if a
method returns without throwing an exception.

» After throwing advice: Advice to be executed if a method exits by throwing an exception.

« After (finally) advice: Advice to be executed regardless of the means by which a join point exits (normal
or exceptional return).

» Around advice: Advice that surrounds a join point such as a method invocation. This is the most
powerful kind of advice. Around advice can perform custom behavior before and after the method
invocation. It is also responsible for choosing whether to proceed to the join point or to shortcut the
advised method execution by returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like AspectJ, provides a full range
of advice types, we recommend that you use the least powerful advice type that can implement the
required behavior. For example, if you need only to update a cache with the return value of a method, you
are better off implementing an after returning advice than an around advice, although an around advice
can accomplish the same thing. Using the most specific advice type provides a simpler programming
model with less potential for errors. For example, you do not need to invoke the pr oceed() method on
the Joi nPoi nt used for around advice, and hence cannot fail to invoke it.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of
the appropriate type (the type of the return value from a method execution for example) rather than
bj ect arrays.

4.3.16.RELEASE Spring Framework 216

Spring Framework Reference Documentation

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from
older technologies offering only interception. Pointcuts enable advice to be targeted independently
of the Object-Oriented hierarchy. For example, an around advice providing declarative transaction
management can be applied to a set of methods spanning multiple objects (such as all business
operations in the service layer).

Spring AOP capabilities and goals

Spring AOP is implemented in pure Java. There is no need for a special compilation process. Spring AOP
does not need to control the class loader hierarchy, and is thus suitable for use in a Servlet container
or application server.

Spring AOP currently supports only method execution join points (advising the execution of methods
on Spring beans). Field interception is not implemented, although support for field interception could be
added without breaking the core Spring AOP APIs. If you need to advise field access and update join
points, consider a language such as AspectJ.

Spring AOP’s approach to AOP differs from that of most other AOP frameworks. The aim is not to provide
the most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide
a close integration between AOP implementation and Spring 10C to help solve common problems in
enterprise applications.

Thus, for example, the Spring Framework’s AOP functionality is normally used in conjunction with the
Spring 1oC container. Aspects are configured using normal bean definition syntax (although this allows
powerful "autoproxying"” capabilities): this is a crucial difference from other AOP implementations. There
are some things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained
objects (such as domain objects typically): Aspectd is the best choice in such cases. However, our
experience is that Spring AOP provides an excellent solution to most problems in enterprise Java
applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We
believe that both proxy-based frameworks like Spring AOP and full-blown frameworks such as AspectJ
are valuable, and that they are complementary, rather than in competition. Spring seamlessly integrates
Spring AOP and loC with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-
based application architecture. This integration does not affect the Spring AOP API or the AOP Alliance
API: Spring AOP remains backward-compatible. See the following chapter for a discussion of the Spring
AOP APIs.

Note

One of the central tenets of the Spring Framework is that of non-invasiveness; this is the idea
that you should not be forced to introduce framework-specific classes and interfaces into your
business/domain model. However, in some places the Spring Framework does give you the option
to introduce Spring Framework-specific dependencies into your codebase: the rationale in giving
you such options is because in certain scenarios it might be just plain easier to read or code some
specific piece of functionality in such a way. The Spring Framework (almost) always offers you
the choice though: you have the freedom to make an informed decision as to which option best
suits your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which AOP
style) to choose. You have the choice of AspectJ and/or Spring AOP, and you also have the choice
of either the @AspectJ annotation-style approach or the Spring XML configuration-style approach.

4.3.16.RELEASE Spring Framework 217

Spring Framework Reference Documentation

The fact that this chapter chooses to introduce the @AspectJ-style approach first should not be
taken as an indication that the Spring team favors the @AspectJ annotation-style approach over
the Spring XML configuration-style.

See Section 11.4, “Choosing which AOP declaration style to use” for a more complete discussion
of the whys and wherefores of each style.

AOP Proxies

Spring AOP defaults to using standard JDK dynamic proxies for AOP proxies. This enables any interface
(or set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes rather than interfaces.
CGLIB is used by default if a business object does not implement an interface. As it is good practice
to program to interfaces rather than classes; business classes normally will implement one or more
business interfaces. It is possible to force the use of CGLIB, in those (hopefully rare) cases where you
need to advise a method that is not declared on an interface, or where you need to pass a proxied object
to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section called “Understanding
AOP proxies” for a thorough examination of exactly what this implementation detail actually means.

11.2 @Aspectd support

@AspectJ refers to a style of declaring aspects as regular Java classes annotated with annotations.
The @AspectJ style was introduced by the AspectJ project as part of the AspectJ 5 release. Spring
interprets the same annotations as AspectJ 5, using a library supplied by AspectJ for pointcut parsing
and matching. The AOP runtime is still pure Spring AOP though, and there is no dependency on the
AspectJ compiler or weaver.

Note

Using the AspectJ compiler and weaver enables use of the full AspectJ language, and is discussed
in Section 11.8, “Using AspectJ with Spring applications”.

Enabling @AspectJ Support

To use @AspectJ aspects in a Spring configuration you need to enable Spring support for configuring
Spring AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are
advised by those aspects. By autoproxying we mean that if Spring determines that a bean is advised by
one or more aspects, it will automatically generate a proxy for that bean to intercept method invocations
and ensure that advice is executed as needed.

The @AspectJ support can be enabled with XML or Java style configuration. In either case you will
also need to ensure that AspectJ’'s aspect j weaver . j ar library is on the classpath of your application
(version 1.6.8 or later). This library is available in the ' | i b' directory of an AspectJ distribution or via
the Maven Central repository.

Enabling @AspectJ Support with Java configuration

To enable @AspectJ support with Java @onfi gur ati on add the @nabl eAspect JAut oPr oxy
annotation:

4.3.16.RELEASE Spring Framework 218

http://www.eclipse.org/aspectj

Spring Framework Reference Documentation

@onfi guration
@nabl eAspect JAut oPr oxy
public class AppConfig {

}

Enabling @AspectJ Support with XML configuration

To enable @AspectJ support with XML based configuration use the aop: aspectj - aut opr oxy
element:

<aop: aspect j - aut opr oxy/ >

This assumes that you are using schema support as described in Chapter 41, XML Schema-based
configuration. See the section called “the aop schema” for how to import the tags in the aop namespace.

Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a class that is
an @AspectJ aspect (has the @Aspect annotation) will be automatically detected by Spring and used
to configure Spring AOP. The following example shows the minimal definition required for a not-very-
useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @\spect
annotation:

<bean id="nmyAspect" cl ass="org. xyz. Not VeryUsef ul Aspect ">
<l-- configure properties of aspect here as normal -->
</ bean>

And the Not Ver yUsef ul Aspect class definition, annotated with
org. aspectj .l ang. annot ati on. Aspect annotation;

package org. xyz;
i nport org.aspectj.lang. annotati on. Aspect;

@\spect
public class Not VeryUseful Aspect {

}

Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They
may also contain pointcut, advice, and introduction (inter-type) declarations.

Autodetecting aspects through component scanning

You may register aspect classes as regular beans in your Spring XML configuration, or autodetect
them through classpath scanning - just like any other Spring-managed bean. However, note that
the @Aspect annotation is not sufficient for autodetection in the classpath: For that purpose, you
need to add a separate @Component annotation (or alternatively a custom stereotype annotation
that qualifies, as per the rules of Spring’s component scanner).

Advising aspects with other aspects?

In Spring AOP, it is not possible to have aspects themselves be the target of advice from other
aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from
auto-proxying.

4.3.16.RELEASE Spring Framework 219

Spring Framework Reference Documentation

Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice
executes. Spring AOP only supports method execution join points for Spring beans, so you can think of
a pointcut as matching the execution of methods on Spring beans. A pointcut declaration has two parts:
a signature comprising a name and any parameters, and a pointcut expression that determines exactly
which method executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut
signature is provided by a regular method definition, and the pointcut expression is indicated using the
@Poi nt cut annotation (the method serving as the pointcut signature must have a voi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear.
The following example defines a pointcut named ' anyd dTr ansf er' that will match the execution of
any method named' transfer"' :

@oi nt cut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @oi nt cut annotation is a regular AspectJ 5
pointcut expression. For a full discussion of AspectJ’s pointcut language, see the AspectJ Programming
Guide (and for extensions, the AspectJ 5 Developers Notebook) or one of the books on AspectJ such
as "Eclipse AspectJ" by Colyer et. al. or "AspectJ in Action" by Ramnivas Laddad.

Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

Other pointcut types

The full AspectJ pointcut language supports additional pointcut designators that are not supported
in Spring. These are: cal |, get, set, preinitialization, staticinitialization,
initialization, handl er, adviceexecution, wthincode, cflow cflowbel ow,
if, @his, and @u t hi ncode. Use of these pointcut designators in pointcut expressions
interpreted by Spring AOP will result in an I | | egal Ar gunment Except i on being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases to
support more of the AspectJ pointcut designators.

» execution - for matching method execution join points, this is the primary pointcut designator you will
use when working with Spring AOP

« within - limits matching to join points within certain types (simply the execution of a method declared
within a matching type when using Spring AOP)

« this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

* target - limits matching to join points (the execution of methods when using Spring AOP) where the
target object (application object being proxied) is an instance of the given type

 args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

4.3.16.RELEASE Spring Framework 220

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Spring Framework Reference Documentation

» @target - limits matching to join points (the execution of methods when using Spring AOP) where the

class of the executing object has an annotation of the given type

* @args - limits matching to join points (the execution of methods when using Spring AOP) where the

runtime type of the actual arguments passed have annotations of the given type(s)

« @within - limits matching to join points within types that have the given annotation (the execution of

methods declared in types with the given annotation when using Spring AOP)

» @annotation - limits matching to join points where the subject of the join point (method being executed

in Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut
designators above gives a narrower definition than you will find in the AspectJ programming guide. In
addition, AspectlJ itself has type-based semantics and at an execution join point both t hi s andt ar get
refer to the same object - the object executing the method. Spring AOP is a proxy-based system and
differentiates between the proxy object itself (bound to t hi s) and the target object behind the proxy

(bound to t ar get).

Note

Due to the proxy-based nature of Spring’s AOP framework, calls within the target object are by
definition not intercepted. For JDK proxies, only public interface method calls on the proxy can
be intercepted. With CGLIB, public and protected method calls on the proxy will be intercepted,
and even package-visible methods if necessary. However, common interactions through proxies
should always be designed through public signatures.

Note that pointcut definitions are generally matched against any intercepted method. If a pointcut
is strictly meant to be public-only, even in a CGLIB proxy scenario with potential non-public
interactions through proxies, it needs to be defined accordingly.

If your interception needs include method calls or even constructors within the target class,
consider the use of Spring-driven native AspectJ weaving instead of Spring’s proxy-based AOP
framework. This constitutes a different mode of AOP usage with different characteristics, so be
sure to make yourself familiar with weaving first before making a decision.

Spring AOP also supports an additional PCD named bean. This PCD allows you to limit the matching of
join points to a particular named Spring bean, or to a set of named Spring beans (when using wildcards).

The bean PCD has the following form:

bean(i dOr NameCf Bean)

The i dOr NameOf Bean token can be the name of any Spring bean: limited wildcard support using the *
character is provided, so if you establish some naming conventions for your Spring beans you can quite
easily write a bean PCD expression to pick them out. As is the case with other pointcut designators,

the bean PCD can be &&'ed, ||'ed, and ! (negated) too.

Note

Please note that the bean PCD is only supported in Spring AOP - and not in native AspectJ
weaving. Itis a Spring-specific extension to the standard PCDs that AspectJ defines and therefore
not available for aspects declared in the @Aspect model.

4.3.16.RELEASE Spring Framework

221

Spring Framework Reference Documentation

The bean PCD operates at the instance level (building on the Spring bean name concept) rather
than at the type level only (which is what weaving-based AOP is limited to). Instance-based
pointcut designators are a special capability of Spring’s proxy-based AOP framework and its close
integration with the Spring bean factory, where it is natural and straightforward to identify specific
beans by name.

Combining pointcut expressions

Pointcut expressions can be combined using '&&', '||' and M. It is also possible to refer
to pointcut expressions by name. The following example shows three pointcut expressions:
anyPubl i cOper at i on (which matches if a method execution join point represents the execution of
any public method); i nTr adi ng (which matches if a method execution is in the trading module), and
t radi ngQper at i on (which matches if a method execution represents any public method in the trading
module).

@oi nt cut ("execution(public * *(..))")
private void anyPublicOperation() {}

@oi ntcut ("wi thin(comxyz.soneapp.trading..*)")
private void inTrading() {}

@oi nt cut ("anyPubl i cOperation() && inTrading()")
private void tradi ngOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as
shown above. When referring to pointcuts by name, normal Java visibility rules apply (you can see
private pointcuts in the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and
so on). Visibility does not affect pointcut matching.

Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application
and particular sets of operations from within several aspects. We recommend defining a
"SystemArchitecture" aspect that captures common pointcut expressions for this purpose. A typical such
aspect would look as follows:

4.3.16.RELEASE Spring Framework 222

Spring Framework Reference Documentation

package com xyz.someapp;

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj.|ang. annotati on. Poi nt cut;

@\spect
public class SystemArchitecture {

/**

* Ajoin point is in the web layer if the nmethod is defined

* in a type in the com xyz. someapp. web package or any sub- package
* under that.

*/

@oi ntcut ("wi t hi n(com xyz. soneapp. web. . *)")

public void i nWebLayer () {}

/**

* Ajoin point is in the service layer if the nethod is defined

* in a type in the com xyz. sonmeapp. servi ce package or any sub-package
* under that.

*/

@oi ntcut ("wi thin(com xyz. soneapp. service..*)")

public void inServicelLayer() {}

/**

* Ajoin point is in the data access layer if the nethod is defined
* in a type in the com xyz. someapp. dao package or any sub-package

* under that.

*/

@oi nt cut ("wi t hi n(com xyz. soneapp. dao. . *)")

public void inDataAccessLayer () {}

/**

* A business service is the execution of any nethod defined on a service
* interface. This definition assumes that interfaces are placed in the

* "service" package, and that inplenmentation types are in sub-packages.

* |f you group service interfaces by functional area (for exanple,

* in packages com xyz.sonmeapp. abc. service and com xyz. sonmeapp. def . servi ce) then
* the pointcut expression "execution(* com xyz.sonmeapp..service.*.*(..))"

* coul d be used instead.

* Alternatively, you can wite the expression using the 'bean'

* PCD, like so "bean(*Service)". (This assumes that you have
* named your Spring service beans in a consistent fashion.)
*/

@oi ntcut ("execution(* com xyz.soneapp..service.*.*(..))")

public void businessService() {}

/**

* A data access operation is the execution of any nmethod defined on a

* dao interface. This definition assumes that interfaces are placed in the
* "dao" package, and that inplenmentation types are in sub-packages.

*/

@oi nt cut ("execution(* com xyz.soneapp.dao.*.*(..))")

public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut
expression. For example, to make the service layer transactional, you could write:

4.3.16.RELEASE Spring Framework 223

Spring Framework Reference Documentation

<aop: confi g>
<aop: advi sor
poi nt cut =" com xyz. soneapp. Syst emAr chi t ect ur e. busi nessServi ce()"
advi ce-ref ="tx-advi ce"/>
</ aop: confi g>

<t x: advi ce id="tx-advice">
<tx:attributes>
<t x: met hod name="*" propagati on="REQUI RED"'/ >
</tx:attributes>
</tx: advi ce>

The <aop: confi g> and <aop: advi sor > elements are discussed in Section 11.3, “Schema-based
AOP support”. The transaction elements are discussed in Chapter 17, Transaction Management.

Examples

Spring AOP users are likely to use the execut i on pointcut designator the most often. The format of
an execution expression is:

execution(nodifiers-pattern? ret-type-pattern decl aring-type-pattern?nane-pattern(param pattern)
t hrows- pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and
parameters pattern are optional. The returning type pattern determines what the return type of the
method must be in order for a join point to be matched. Most frequently you will use * as the returning
type pattern, which matches any return type. A fully-qualified type name will match only when the method
returns the given type. The name pattern matches the method name. You can use the * wildcard as all
or part of a name pattern. If specifying a declaring type pattern then include a trailing . to join it to the
name pattern component. The parameters pattern is slightly more complex: () matches a method that
takes no parameters, whereas (. .) matches any number of parameters (zero or more). The pattern
(*) matches a method taking one parameter of any type, (*, St ri ng) matches a method taking two
parameters, the first can be of any type, the second must be a String. Consult the Language Semantics
section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

 the execution of any public method:

execution(public * *(..))

« the execution of any method with a name beginning with "set":

execution(* set*(..))

« the execution of any method defined by the Account Ser vi ce interface:

execution(* com xyz. service. Account Service.*(..))

« the execution of any method defined in the service package:

execution(* com xyz.service.*.*(..))

« the execution of any method defined in the service package or a sub-package:

execution(* com xyz.service..*.*(..))

 any join point (method execution only in Spring AOP) within the service package:

4.3.16.RELEASE Spring Framework 224

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

Spring Framework Reference Documentation

‘ wi t hi n(com xyz. service. *)

 any join point (method execution only in Spring AOP) within the service package or a sub-package:

‘ wi t hi n(com xyz. service..*)

e any join point (method execution only in Spring AOP) where the proxy implements the
Account Ser vi ce interface:

‘ thi s(com xyz. servi ce. Account Servi ce)

Note

'this' is more commonly used in a binding form :- see the following section on advice for how to
make the proxy object available in the advice body.

e any join point (method execution only in Spring AOP) where the target object implements the
Account Ser vi ce interface:

target (com xyz. servi ce. Account Servi ce)

Note

‘target’ is more commonly used in a binding form :- see the following section on advice for how
to make the target object available in the advice body.

* any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtime is Seri al i zabl e:

args(java.io. Serializable)

Note

‘args' is more commonly used in a binding form :- see the following section on advice for how to
make the method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(*
*(java.io.Serializable)): the args version matches if the argument passed at runtime is
Serializable, the execution version matches if the method signature declares a single parameter of type
Seri al i zabl e.

e any join point (method execution only in Spring AOP) where the target object has an
@r ansact i onal annotation:

@ ar get (org. springfranework. transaction. annot ati on. Transact i onal)

Note

‘@target’' can also be used in a binding form :- see the following section on advice for how to make
the annotation object available in the advice body.

» any join point (method execution only in Spring AOP) where the declared type of the target object
has an @r ansact i onal annotation:

4.3.16.RELEASE Spring Framework 225

Spring Framework Reference Documentation

@i t hi n(org. springfranework. transaction. annot ati on. Transact i onal)

Note

‘@within' can also be used in a binding form :- see the following section on advice for how to make
the annotation object available in the advice body.

* any join point (method execution only in Spring AOP) where the executing method has an
@r ansact i onal annotation:

@nnot ati on(org. springframework. transaction. annotation. Transacti onal)

Note

'@annotation’ can also be used in a binding form :- see the following section on advice for how
to make the annotation object available in the advice body.

 any join point (method execution only in Spring AOP) which takes a single parameter, and where the
runtime type of the argument passed has the @ assi f i ed annotation:

@rgs(com xyz. security. C assified)

Note

'‘@args' can also be used in a binding form :- see the following section on advice for how to make
the annotation object(s) available in the advice body.

» any join point (method execution only in Spring AOP) on a Spring bean named t r adeSer vi ce:

bean(tradeService)

 any join point (method execution only in Spring AOP) on Spring beans having names that match the
wildcard expression * Ser vi ce:

bean(*Servi ce)

Writing good pointcuts

During compilation, AspectJ processes pointcuts in order to try and optimize matching performance.
Examining code and determining if each join point matches (statically or dynamically) a given pointcut
is a costly process. (A dynamic match means the match cannot be fully determined from static analysis
and a test will be placed in the code to determine if there is an actual match when the code is running).
On first encountering a pointcut declaration, AspectJ will rewrite it into an optimal form for the matching
process. What does this mean? Basically pointcuts are rewritten in DNF (Disjunctive Normal Form) and
the components of the pointcut are sorted such that those components that are cheaper to evaluate are
checked first. This means you do not have to worry about understanding the performance of various
pointcut designators and may supply them in any order in a pointcut declaration.

However, Aspect] can only work with what it is told, and for optimal performance of matching you
should think about what they are trying to achieve and narrow the search space for matches as much
as possible in the definition. The existing designators naturally fall into one of three groups: kinded,
scoping and context:

4.3.16.RELEASE Spring Framework 226

Spring Framework Reference Documentation

» Kinded designators are those which select a particular kind of join point. For example: execution, get,
set, call, handler

» Scoping designators are those which select a group of join points of interest (of probably many kinds).
For example: within, withincode

» Contextual designators are those that match (and optionally bind) based on context. For example:
this, target, @annotation

A well written pointcut should try and include at least the first two types (kinded and scoping), whilst
the contextual designators may be included if wishing to match based on join point context, or bind that
context for use in the advice. Supplying either just a kinded designator or just a contextual designator will
work but could affect weaving performance (time and memory used) due to all the extra processing and
analysis. Scoping designators are very fast to match and their usage means AspectJ can very quickly
dismiss groups of join points that should not be further processed - that is why a good pointcut should
always include one if possible.

Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions
matched by the pointcut. The pointcut expression may be either a simple reference to a named pointcut,
or a pointcut expression declared in place.

Before advice

Before advice is declared in an aspect using the @ef or e annotation:

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj.|ang. annotati on. Before;

@\spect
public class BeforeExanple {

@Bef ore("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
...

}

If using an in-place pointcut expression we could rewrite the above example as:

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj.lang.annotation. Before;

@\spect
public class BeforeExanple {

@Bef ore("execution(* com xyz. nyapp.dao.*.*(..))")
public voi d doAccessCheck() {

...
}

After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@Af t er Ret ur ni ng annotation:

4.3.16.RELEASE Spring Framework 227

Spring Framework Reference Documentation

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj.|ang.annotation. After Returning;

@\ spect
public class AfterReturni ngExanpl e {

@\ft er Ret ur ni ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
/1

}

Note

Note: it is of course possible to have multiple advice declarations, and other members as well,
all inside the same aspect. We're just showing a single advice declaration in these examples to
focus on the issue under discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. You can use the
form of @\f t er Ret ur ni ng that binds the return value for this:

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj.lang.annotation. AfterReturning;

@\spect
public class AfterReturni ngExanpl e {

@A\f t er Ret ur ni ng(
poi nt cut =" com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation()",
returni ng="retVal")

public voi d doAccessCheck(Object retVal) {
11

}

The name used in the r et ur ni ng attribute must correspond to the name of a parameter in the advice
method. When a method execution returns, the return value will be passed to the advice method as
the corresponding argument value. A r et ur ni ng clause also restricts matching to only those method
executions that return a value of the specified type (Obj ect in this case, which will match any return
value).

Please note that it is not possible to return a totally different reference when using after-returning advice.
After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is
declared using the @A\f t er Thr owi ng annotation:

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj.lang. annotation. After Thr owi ng;

@\spect
public class AfterThrow ngExanple {

@\f t er Throwi ng("com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doRecoveryActions() {
Il

}

4.3.16.RELEASE Spring Framework 228

Spring Framework Reference Documentation

Often you want the advice to run only when exceptions of a given type are thrown, and you also often
need access to the thrown exception in the advice body. Use the t hr owi ng attribute to both restrict
matching (if desired, use Thr owabl e as the exception type otherwise) and bind the thrown exception
to an advice parameter.

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj .| ang. annot ati on. Aft er Thr owi ng;

@\spect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng(
poi nt cut ="com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation()",
t hr owi ng="ex")

public void doRecoveryActi ons(Dat aAccessException ex) {
...

}

The name used in the t hr owi ng attribute must correspond to the name of a parameter in the advice
method. When a method execution exits by throwing an exception, the exception will be passed to the
advice method as the corresponding argument value. A t hr owi ng clause also restricts matching to
only those method executions that throw an exception of the specified type (Dat aAccessExcepti on
in this case).

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @Af t er
annotation. After advice must be prepared to handle both normal and exception return conditions. It is
typically used for releasing resources, etc.

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj.lang.annotation. After;

@\spect
public class AfterFinallyExanple {

@\fter("com xyz. nyapp. Syst emAr chi t ecture. dat aAccessOperation()")
public voi d doRel easeLock() {

...
}

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution.
It has the opportunity to do work both before and after the method executes, and to determine when,
how, and even if, the method actually gets to execute at all. Around advice is often used if you need to
share state before and after a method execution in a thread-safe manner (starting and stopping a timer
for example). Always use the least powerful form of advice that meets your requirements (i.e. don’'t use
around advice if simple before advice would do).

Around advice is declared using the @\r ound annotation. The first parameter of the advice method
must be of type Pr oceedi ngJoi nPoi nt . Within the body of the advice, calling pr oceed() on the
Pr oceedi ngJoi nPoi nt causes the underlying method to execute. The pr oceed method may also
be called passing in an Qbj ect [] - the values in the array will be used as the arguments to the method
execution when it proceeds.

4.3.16.RELEASE Spring Framework 229

Spring Framework Reference Documentation

Note

The behavior of proceed when called with an Object[] is a little different than the behavior of
proceed for around advice compiled by the Aspectd compiler. For around advice written using
the traditional AspectJ language, the number of arguments passed to proceed must match the
number of arguments passed to the around advice (not the number of arguments taken by the
underlying join point), and the value passed to proceed in a given argument position supplants
the original value at the join point for the entity the value was bound to (Don't worry if this doesn’t
make sense right now!). The approach taken by Spring is simpler and a better match to its proxy-
based, execution only semantics. You only need to be aware of this difference if you are compiling
@AspectJ aspects written for Spring and using proceed with arguments with the AspectJ compiler
and weaver. There is a way to write such aspects that is 100% compatible across both Spring
AOP and AspectJ, and this is discussed in the following section on advice parameters.

i nport org.aspectj.|ang. annotati on. Aspect;
i nport org.aspectj .| ang. annotati on. Around;
i nport org.aspectj .| ang. Proceedi ngJoi nPoi nt ;

@\spect
public class AroundExanpl e {

@\r ound("com xyz. myapp. Syst emAr chi t ect ur e. busi nessService()")
public Object doBasicProfiling(Proceedi ngJoi nPoint pjp) throws Throwabl e {
/] start stopwatch
Obj ect retVal = pjp.proceed();
/] stop stopwatch
return retVal;

The value returned by the around advice will be the return value seen by the caller of the method. A
simple caching aspect for example could return a value from a cache if it has one, and invoke proceed()
if it does not. Note that proceed may be invoked once, many times, or not at all within the body of the
around advice, all of these are quite legal.

Advice parameters

Spring offers fully typed advice - meaning that you declare the parameters you need in the advice
signature (as we saw for the returning and throwing examples above) rather than work with Cbj ect []
arrays all the time. We’ll see how to make argument and other contextual values available to the advice
body in a moment. First let’s take a look at how to write generic advice that can find out about the method
the advice is currently advising.

Access to the current JoinPoint

Any advice method may declare as its first parameter, a parameter of type
org. aspectj .l ang. Joi nPoi nt (please note that around advice is required to declare a first
parameter of type Pr oceedi ngJoi nPoi nt, which is a subclass of Joi nPoi nt. The Joi nPoi nt
interface provides a number of useful methods such as get Ar gs() (returns the method arguments),
get Thi s() (returns the proxy object), get Tar get () (returns the target object), get Si gnat ur e()
(returns a description of the method that is being advised) and t oSt ri ng() (prints a useful description
of the method being advised). Please do consult the javadocs for full details.

4.3.16.RELEASE Spring Framework 230

Spring Framework Reference Documentation

Passing parameters to advice

We've already seen how to bind the returned value or exception value (using after returning and after
throwing advice). To make argument values available to the advice body, you can use the binding form
of ar gs. If a parameter name is used in place of a type name in an args expression, then the value
of the corresponding argument will be passed as the parameter value when the advice is invoked. An
example should make this clearer. Suppose you want to advise the execution of dao operations that
take an Account object as the first parameter, and you need access to the account in the advice body.
You could write the following:

@Bef ore("com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation() && args(account,..)")
public void validat eAccount (Account account) {
...

}

The args(account,..) part of the pointcut expression serves two purposes: firstly, it restricts
matching to only those method executions where the method takes at least one parameter, and the
argument passed to that parameter is an instance of Account ; secondly, it makes the actual Account
object available to the advice via the account parameter.

Another way of writing this is to declare a pointcut that "provides" the Account object value when it
matches a join point, and then just refer to the named pointcut from the advice. This would look as
follows:

@oi ntcut ("com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation() && args(account,..)")
private void account Dat aAccessOper ati on(Account account) {}

@Bef or e("account Dat aAccessOper at i on(account)")
public void validat eAccount (Account account) {
...

}

The interested reader is once more referred to the AspectJ programming guide for more details.

The proxy object (this), target object (target), and annotations (@v thin, @ arget,
@nnot ati on, @r gs) can all be bound in a similar fashion. The following example shows how you
could match the execution of methods annotated with an @\udi t abl e annotation, and extract the audit
code.

First the definition of the @\udi t abl e annotation:

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
@rar get (El enent Type. METHOD)
public @nterface Auditable {

Audi t Code val ue();

}

And then the advice that matches the execution of @\udi t abl e methods:

@ef ore("com xyz.|ib. Pointcuts.anyPublicMthod() &% @nnotation(auditable)")
public void audit (Auditable auditable) {

Audi t Code code = auditabl e. val ue();

...

Advice parameters and generics

Spring AOP can handle generics used in class declarations and method parameters. Suppose you have
a generic type like this:

4.3.16.RELEASE Spring Framework 231

Spring Framework Reference Documentation

public interface Sanple<T> {
voi d sanpl eGeneri cMet hod(T param;
voi d sanpl eCeneri cCol | ecti onMet hod(Col | ecti on<T> paran) ;

You can restrict interception of method types to certain parameter types by simply typing the advice
parameter to the parameter type you want to intercept the method for:

@ef ore("execution(* ..Sanpl e+. sanpl eCeneri cMet hod(*)) && args(param")
public void beforeSanpl eMet hod(MyType paran) {
/1 Advice inplenentation

}

That this works is pretty obvious as we already discussed above. However, it's worth pointing out that
this won't work for generic collections. So you cannot define a pointcut like this:

@ef ore("execution(* ..Sanpl e+. sanpl eCeneri cCol | ecti onMet hod(*)) && args(param")
public voi d beforeSanpl eMet hod(Col | ecti on<MyType> param) {
/1 Advice inplenentation

}

To make this work we would have to inspect every element of the collection, which is not reasonable
as we also cannot decide how to treat nul | values in general. To achieve something similar to this you
have to type the parameter to Col | ect i on<?> and manually check the type of the elements.

Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut expressions
to declared parameter names in (advice and pointcut) method signatures. Parameter names are not
available through Java reflection, so Spring AOP uses the following strategies to determine parameter
names:

« Ifthe parameter names have been specified by the user explicitly, then the specified parameter names
are used: both the advice and the pointcut annotations have an optional "argNames" attribute which
can be used to specify the argument names of the annotated method - these argument names are
available at runtime. For example:

@Bef ore(val ue="com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() && target (bean) && @nnot ati on(auditable)",
ar gNanes="bean, audi t abl e")
public void audit(Cbject bean, Auditable auditable) {
Audi t Code code = auditabl e.val ue();
/1 ... use code and bean

If the first parameter is of the Joi nPoi nt, Proceedi ngJoi nPoi nt, or Joi nPoi nt. Stati cPart
type, you may leave out the name of the parameter from the value of the "argNames" attribute. For
example, if you modify the preceding advice to receive the join point object, the "argNames" attribute
need not include it:

@ef ore(val ue="com xyz. | ib. Poi ntcuts.anyPubl i cMet hod() && target(bean) && @nnotati on(auditable)",
ar gNanes="bean, audi t abl e")
public void audit(JoinPoint jp, Cbject bean, Auditable auditable) {
Audi t Code code = auditabl e.val ue();
/1 ... use code, bean, and jp

The special treatment given to the first parameter of the Joi nPoi nt , Pr oceedi ngJoi nPoi nt, and
Joi nPoi nt. Stati cPart types is particularly convenient for advice that do not collect any other join

4.3.16.RELEASE Spring Framework 232

Spring Framework Reference Documentation

point context. In such situations, you may simply omit the "argNames" attribute. For example, the
following advice need not declare the "argNames" attribute:

@ef ore("com xyz.|ib. Pointcuts.anyPubl i cMet hod()")
public void audit(JoinPoint jp) {

/'l ... use jp
}

» Using the ' argNames' attribute is a little clumsy, so if the ' ar gNanes' attribute has not been
specified, then Spring AOP will look at the debug information for the class and try to determine the
parameter names from the local variable table. This information will be present as long as the classes
have been compiled with debug information (' - g: vars' at a minimum). The consequences of
compiling with this flag on are: (1) your code will be slightly easier to understand (reverse engineer), (2)
the class file sizes will be very slightly bigger (typically inconsequential), (3) the optimization to remove
unused local variables will not be applied by your compiler. In other words, you should encounter no
difficulties building with this flag on.

Note

If an @Aspect] aspect has been compiled by the AspectJ compiler (ajc) even without the debug
information then there is no need to add the argNames attribute as the compiler will retain the
needed information.

* If the code has been compiled without the necessary debug information, then Spring AOP will
attempt to deduce the pairing of binding variables to parameters (for example, if only one variable
is bound in the pointcut expression, and the advice method only takes one parameter, the pairing
is obvious!). If the binding of variables is ambiguous given the available information, then an
Anbi guousBi ndi ngExcept i on will be thrown.

« If all of the above strategies fail then an | | | egal Ar gurrent Except i on will be thrown.
Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works
consistently across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature
binds each of the method parameters in order. For example:

@\ ound("execution(List<Account> find*(..)) & " +
"com xyz. nyapp. Syst emAr chi t ect ure. i nDat aAccessLayer () && " +
"ar gs(account Hol der NanePattern)")
public Object preProcessQueryPattern(Proceedi ngJoi nPoi nt pjp,
String account Hol der NamePattern) throws Throwabl e {
String newPattern = preProcess(account Hol der NarmePat t ern) ;
return pjp.proceed(new Object[] {newPattern});

In many cases you will be doing this binding anyway (as in the example above).
Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP
follows the same precedence rules as AspectJ to determine the order of advice execution. The highest
precedence advice runs first "on the way in" (so given two pieces of before advice, the one with highest
precedence runs first). "On the way out" from a join point, the highest precedence advice runs last (so
given two pieces of after advice, the one with the highest precedence will run second).

4.3.16.RELEASE Spring Framework 233

Spring Framework Reference Documentation

When two pieces of advice defined in different aspects both need to run at the same join point,
unless you specify otherwise the order of execution is undefined. You can control the order of
execution by specifying precedence. This is done in the normal Spring way by either implementing the
org. spri ngframewor k. core. O der ed interface in the aspect class or annotating it with the Or der
annotation. Given two aspects, the aspect returning the lower value from Or der ed. get Val ue() (or
the annotation value) has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the
ordering is undefined (since there is no way to retrieve the declaration order via reflection for javac-
compiled classes). Consider collapsing such advice methods into one advice method per join point in
each aspect class, or refactor the pieces of advice into separate aspect classes - which can be ordered
at the aspect level.

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of
those objects.

An introduction is made using the @ecl ar ePar ent s annotation. This annotation is used to
declare that matching types have a new parent (hence the name). For example, given an interface
UsageTracked, and an implementation of that interface Def aul t UsageTr acked, the following
aspect declares that all implementors of service interfaces also implement the UsageTr acked interface.
(In order to expose statistics via JMX for example.)

@\spect
public class UsageTracking {

@ecl ar ePar ent s(val ue="com xzy. nyapp. servi ce. *+", defaul t| npl =Def aul t UsageTr acked. cl ass)
public static UsageTracked m xi n;

@ef ore("com xyz. myapp. Syst emAr chi t ect ure. busi nessServi ce() && this(usageTracked)")
public void recordUsage(UsageTracked usageTracked) {
usageTracked. i ncr ement UseCount () ;

}
}

The interface to be implemented is determined by the type of the annotated field. The val ue attribute
of the @ecl ar ePar ent s annotation is an AspectJ type pattern :- any bean of a matching type will
implement the UsageTracked interface. Note that in the before advice of the above example, service
beans can be directly used as implementations of the UsageTr acked interface. If accessing a bean
programmatically you would write the following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("nyService");

Aspect instantiation models

Note

(This is an advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. AspectJ calls
this the singleton instantiation model. It is possible to define aspects with alternate lifecycles :- Spring
supports AspectJ’'s pert hi s and pert ar get instantiation models (per cfl ow, percfl owbel ow,
and pert ypewi t hi n are not currently supported).

4.3.16.RELEASE Spring Framework 234

Spring Framework Reference Documentation

A "perthis" aspect is declared by specifying a pert hi s clause in the @\spect annotation. Let’'s look
at an example, and then we’ll explain how it works.

@\spect ("perthis(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())")
public class MyAspect {

private int someState;

@Bef or e(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce())
public void recordServiceUsage() {
...

}

The effect of the ' pert hi s' clause is that one aspect instance will be created for each unique service
object executing a business service (each unigue object bound to 'this' at join points matched by the
pointcut expression). The aspect instance is created the first time that a method is invoked on the service
object. The aspect goes out of scope when the service object goes out of scope. Before the aspect
instance is created, none of the advice within it executes. As soon as the aspect instance has been
created, the advice declared within it will execute at matched join points, but only when the service object
is the one this aspect is associated with. See the AspectJ programming guide for more information on
per-clauses.

The' pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect
instance for each unique target object at matched join points.

Example

Now that you have seen how all the constituent parts work, let's put them together to do something
useful!

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation is retried, it is quite likely to succeed next time round. For business services
where it is appropriate to retry in such conditions (idempotent operations that don’t need to go back to
the user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing
a Pessim sticLocki ngFai | ur eExcepti on. This is a requirement that clearly cuts across multiple
services in the service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed
multiple times. Here’s how the basic aspect implementation looks:

4.3.16.RELEASE Spring Framework 235

Spring Framework Reference Documentation

@\spect
public class Concurrent OperationExecutor inplenents Ordered {

private static final int DEFAULT_MAX RETRIES = 2;

private int maxRetries = DEFAULT_MAX_ RETRI ES;
private int order = 1;

public void set MaxRetries(int maxRetries) {
this.maxRetries = maxRetri es;

}

public int getOder() {
return this.order;

}

public void setOder(int order) {
this.order = order;

}

@\r ound(" com xyz. myapp. Syst emAr chi t ect ur e. busi nessService()")
public Obj ect doConcurrent Qperati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numttenpts = 0;
Pessi m sti cLocki ngFai | ureException | ockFail ureException;
do {
numAt t enpt s++;
try {
return pjp.proceed();
}
cat ch(Pessi m sticLocki ngFai | ureException ex) {
| ockFai | ur eExcepti on = ex;
}
} while(numAttenpts <= this.nmaxRetries);
throw | ockFai | ureExcepti on;

Note that the aspect implements the Ordered interface so we can set the precedence of the
aspect higher than the transaction advice (we want a fresh transaction each time we retry).
The maxRetries and order properties will both be configured by Spring. The main action
happens in the doConcurrent Operati on around advice. Notice that for the moment we're
applying the retry logic to all busi nessServi ce()s. We try to proceed, and if we fail with an
Pessi m st i cLocki ngFai | ur eExcepti on we simply try again unless we have exhausted all of our
retry attempts.

The corresponding Spring configuration is:

<aop: aspect] - aut opr oxy/ >

<bean i d="concurrent Operati onExecutor" class="com xyz. nmyapp. servi ce.inpl. Concurrent Qperati onExecut or">
<property name="maxRetries" val ue="3"/>
<property name="order" val ue="100"/>

</ bean>

To refine the aspect so that it only retries idempotent operations, we might define an | denpot ent
annotation:

@=et enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface |denmpotent {
/'l marker annotation

}

4.3.16.RELEASE Spring Framework 236

Spring Framework Reference Documentation

and use the annotation to annotate the implementation of service operations. The change to the
aspect to only retry idempotent operations simply involves refining the pointcut expression so that only
@ denpot ent operations match:

@\ ound("com xyz. myapp. Syst emAr chi t ect ure. busi nessService() && " +
"@nnot ati on(com xyz. nyapp. servi ce. | denpotent) ")
publ i c Object doConcurrent Operati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {

}

11.3 Schema-based AOP support

If you prefer an XML-based format, then Spring also offers support for defining aspects using the new
"aop" namespace tags. The exact same pointcut expressions and advice kinds are supported as when
using the @Aspect] style, hence in this section we will focus on the new syntax and refer the reader
to the discussion in the previous section (Section 11.2, “@Aspect] support”) for an understanding of
writing pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spri ng- aop schema
as described in Chapter 41, XML Schema-based configuration. See the section called “the aop schema”
for how to import the tags in the aop namespace.

Within your Spring configurations, all aspect and advisor elements must be placed within an
<aop: confi g> element (you can have more than one <aop: confi g> element in an application
context configuration). An <aop: conf i g> element can contain pointcut, advisor, and aspect elements
(note these must be declared in that order).

Warning

The <aop: config> style of configuration makes heavy use of Spring’s auto-proxying
mechanism. This can cause issues (such as advice not being woven) if you are already
using explicit auto-proxying via the use of BeanNaneAut oPr oxyCr eat or or suchlike. The
recommended usage pattern is to use either just the <aop: confi g> style, or just the
Aut oPr oxyCr eat or style.

Declaring an aspect

Using the schema support, an aspect is simply a regular Java object defined as a bean in your Spring
application context. The state and behavior is captured in the fields and methods of the object, and the
pointcut and advice information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the
ref attribute:

<aop: confi g>
<aop: aspect id="myAspect" ref="aBean">

</ aop: aspect >
</ aop: confi g>

<bean id="aBean" class="...">

</ bean>

The bean backing the aspect (" "aBean™ in this case) can of course be configured and dependency
injected just like any other Spring bean.

4.3.16.RELEASE Spring Framework 237

Spring Framework Reference Documentation

Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to
be shared across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as
follows:

<aop: confi g>

<aop: poi nt cut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: confi g>

Note that the pointcut expression itself is using the same AspectJ pointcut expression language as
described in Section 11.2, “@AspectJ support”. If you are using the schema based declaration style,
you can refer to named pointcuts defined in types (@Aspects) within the pointcut expression. Another
way of defining the above pointcut would be:

<aop: confi g>

<aop: poi ntcut id="busi nessService"
expressi on="com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce()"/>

</ aop: confi g>

Assuming you have a Syst emAr chi t ect ure aspect as described in the section called “Sharing
common pointcut definitions”.

Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut:

<aop: confi g>
<aop: aspect id="myAspect" ref="aBean">

<aop: poi nt cut id="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: aspect >

</ aop: confi g>

Much the same way in an @AspectJ aspect, pointcuts declared using the schema based definition style
may collect join point context. For example, the following pointcut collects the 'this' object as the join
point context and passes it to advice:

<aop: confi g>
<aop: aspect id="myAspect" ref="aBean">

<aop: poi nt cut id="busi nessService"
expressi on="execution(* com xyz. nmyapp.service.*.*(..)) &anp; &np; this(service)"/>

<aop: bef ore pointcut-ref="businessService" nethod="nonitor"/>

</ aop: aspect >

</ aop: confi g>

4.3.16.RELEASE Spring Framework 238

Spring Framework Reference Documentation

The advice must be declared to receive the collected join point context by including parameters of the
matching names:

public void nonitor(Cbject service) {

}

When combining pointcut sub-expressions, '&&' is awkward within an XML document, and so the
keywords 'and’, 'or' and 'not' can be used in place of '&&', '||' and 'I" respectively. For example, the
previous pointcut may be better written as:

<aop: confi g>
<aop: aspect id="nmyAspect" ref="aBean">

<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz.nyapp.service.*.*(..)) **and** this(service)"/>

<aop: bef ore pointcut-ref="busi nessServi ce" nmethod="nonitor"/>

</ aop: aspect >
</ aop: confi g>

Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named
pointcuts to form composite pointcuts. The named pointcut support in the schema based definition style
is thus more limited than that offered by the @AspectJ style.

Declaring advice

The same five advice kinds are supported as for the @AspectJ style, and they have exactly the same
semantics.

Before advice

Before advice runs before a matched method execution. It is declared inside an <aop: aspect > using
the <aop:before> element.

<aop: aspect id="beforeExanpl e" ref="aBean">

<aop: before
poi nt cut - r ef =" dat aAccessOper ati on"
nmet hod="doAccessCheck"/ >

</ aop: aspect >

Here dat aAccessOper ati on is the id of a pointcut defined at the top (<aop: confi g>) level. To
define the pointcut inline instead, replace the poi nt cut - r ef attribute with a poi nt cut attribute:

<aop: aspect id="beforeExanpl e" ref="aBean">
<aop: before

poi nt cut =" executi on(* com xyz. nyapp.dao.*.*(..))"
net hod="doAccessCheck"/ >

</ aop: aspect >

As we noted in the discussion of the @AspectJ style, using named pointcuts can significantly improve
the readability of your code.

4.3.16.RELEASE Spring Framework 239

Spring Framework Reference Documentation

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This
method must be defined for the bean referenced by the aspect element containing the advice. Before a
data access operation is executed (a method execution join point matched by the pointcut expression),
the "doAccessCheck" method on the aspect bean will be invoked.

After returning advice
After returning advice runs when a matched method execution completes normally. It is declared inside
an <aop: aspect > in the same way as before advice. For example:

<aop: aspect id="afterReturningExanpl e" ref="aBean">

<aop: after-returning
poi nt cut - r ef =" dat aAccessOper ati on"
nmet hod=" doAccessCheck"/ >

</ aop: aspect >

Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use
the returning attribute to specify the name of the parameter to which the return value should be passed:

<aop: aspect id="afterReturni ngExanpl e" ref="aBean">

<aop: after-returning
poi nt cut - r ef =" dat aAccessOper ati on"
returni ng="retVal"
net hod="doAccessCheck"/ >

</ aop: aspect >

The doAccessCheck method must declare a parameter named r et Val . The type of this parameter
constrains matching in the same way as described for @AfterReturning. For example, the method
signature may be declared as:

public void doAccessCheck(Object retVval) {...

After throwing advice
After throwing advice executes when a matched method execution exits by throwing an exception. It is

declared inside an <aop: aspect > using the after-throwing element:

<aop: aspect id="after Throwi ngExanpl e" ref="aBean">
<aop: after-throw ng

poi nt cut - r ef =" dat aAccessOper ati on"
net hod="doRecover yActi ons"/ >

</ aop: aspect >

Just as in the @Aspect] style, it is possible to get hold of the thrown exception within the advice body.
Use the throwing attribute to specify the name of the parameter to which the exception should be passed:

4.3.16.RELEASE Spring Framework 240

Spring Framework Reference Documentation

<aop: aspect id="afterThrowi ngExanpl e" ref="aBean">

<aop: after-throw ng
poi nt cut - r ef =" dat aAccessOper ati on"
t hr owi ng="dat aAccessEx"
net hod="doRecover yActi ons"/ >

</ aop: aspect >

The doRecoveryActions method must declare a parameter named dat aAccessEx. The type of this
parameter constrains matching in the same way as described for @AfterThrowing. For example, the
method signature may be declared as:

public voi d doRecoveryActi ons(Dat aAccessException dataAccessEx) {...

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the af t er
element:

<aop: aspect id="afterFinallyExanple" ref="aBean">
<aop: after

poi nt cut - r ef =" dat aAccessOper ati on"
net hod=" doRel easelLock"/ >

</ aop: aspect >

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution.
It has the opportunity to do work both before and after the method executes, and to determine when,
how, and even if, the method actually gets to execute at all. Around advice is often used if you need
to share state before and after a method execution in a thread-safe manner (starting and stopping a
timer for example). Always use the least powerful form of advice that meets your requirements; don’t
use around advice if simple before advice would do.

Around advice is declared using the aop: ar ound element. The first parameter of the advice method
must be of type Pr oceedi ngJoi nPoi nt . Within the body of the advice, calling pr oceed() on the
Pr oceedi ngJoi nPoi nt causes the underlying method to execute. The pr oceed method may also
be calling passing in an Obj ect [] - the values in the array will be used as the arguments to the method
execution when it proceeds. See the section called “Around advice” for notes on calling proceed with
an Gbj ect[].

<aop: aspect id="aroundExanpl e" ref="aBean">
<aop: ar ound

poi nt cut - r ef =" busi nessServi ce"
nmet hod="doBasi cProfiling"/>

</ aop: aspect >

The implementation of the doBasi cPr of i | i ng advice would be exactly the same as in the @AspectJ
example (minus the annotation of course):

4.3.16.RELEASE Spring Framework 241

Spring Framework Reference Documentation

public Object doBasicProfiling(Proceedi ngJoi nPoint pjp) throws Throwabl e {
/] start stopwatch
Obj ect retVal = pjp.proceed();
/'l stop stopwatch
return retVal;

Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the
@AspectJ support - by matching pointcut parameters by name against advice method parameters. See
the section called “Advice parameters” for details. If you wish to explicitly specify argument names for
the advice methods (not relying on the detection strategies previously described) then this is done using
the ar g- names attribute of the advice element, which is treated in the same manner to the "argNames"
attribute in an advice annotation as described in the section called “Determining argument names”. For
example:

<aop: before
poi nt cut =" com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() and @nnot ati on(audi tabl e)"
net hod="audi t"
ar g- nanes="audi t abl e"/ >

The ar g- nanes attribute accepts a comma-delimited list of parameter names.

Find below a slightly more involved example of the XSD-based approach that illustrates some around
advice used in conjunction with a number of strongly typed parameters.

package x.y.service;
public interface FooService {

Foo get Foo(String fooNane, int age);
}

public class Defaul t FooService inplenents FooService {
public Foo get Foo(String nane, int age) {

return new Foo(nane, age);

}

Next up is the aspect. Notice the fact that the profil e(..) method accepts a number of strongly-
typed parameters, the first of which happens to be the join point used to proceed with the method call:
the presence of this parameter is an indication that the prof i | e(. .) isto be used as ar ound advice:

package Xx.y;

i nport org.aspectj .| ang. Proceedi ngJoi nPoi nt ;
i nport org.springframework. util.StopWatch;

public class SinpleProfiler {

public Cbject profile(ProceedingJoinPoint call, String name, int age) throws Throwabl e {
St opWat ch cl ock = new StopWatch("Profiling for '" + name + "' and '" + age + "'");
try {

clock.start(call.toShortString());
return call.proceed();
} finally {
cl ock. stop();
System out. println(clock.prettyPrint());

4.3.16.RELEASE Spring Framework 242

Spring Framework Reference Documentation

Finally, here is the XML configuration that is required to effect the execution of the above advice for
a particular join point:

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:aop="http://ww.springfranmework. org/ scherma/ aop"
xsi : schenaLocat i on="
ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans http://www. springframework. or g/ schena/ beans/ spri ng-
beans. xsd
http://ww. springfranework. org/ schema/ aop http://ww. springfranework. org/ schena/ aop/ spri ng-
aop. xsd" >

<l-- this is the object that will be proxied by Spring's ACP infrastructure -->
<bean id="fooService" class="x.y.service. Def aul t FooServi ce"/>

<l-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SinpleProfiler"/>

<aop: confi g>
<aop: aspect ref="profiler">

<aop: poi ntcut id="theExecuti onOf SoneFooSer vi ceMet hod"
expressi on="execution(* x.y.service.FooService. getFoo(String,int))

and args(name, age)"/>

<aop: around poi ntcut -ref ="t heExecuti onCf SomeFooSer vi ceMet hod"
net hod="profile"/>

</ aop: aspect >
</ aop: confi g>

</ beans>

If we had the following driver script, we would get output something like this on standard output:

i nport org.springframework. beans. fact ory. BeanFactory;
i nport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
i nport Xx.y.service. FooServi ce;

public final class Boot {

public static void main(final String[] args) throws Exception {
BeanFactory ctx = new C assPat hXm Appl i cati onCont ext ("x/y/plain.xm");
FooService foo = (FooService) ctx.getBean("fooService");
f oo. get Foo(" Pengo", 12);

StopWatch 'Profiling for 'Pengo' and '12'': running time (mllis) =0

Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are
as described in the section called “Advice ordering”. The precedence between aspects is determined
by either adding the Or der annotation to the bean backing the aspect or by having the bean implement
the Or der ed interface.

4.3.16.RELEASE Spring Framework 243

Spring Framework Reference Documentation

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of
those objects.

An introduction is made using the aop: decl ar e- parent s element inside an aop: aspect This
element is used to declare that matching types have a new parent (hence the name). For example, given
an interface UsageTr acked, and an implementation of that interface Def aul t UsageTr acked, the
following aspect declares that all implementors of service interfaces also implement the UsageTr acked
interface. (In order to expose statistics via JMX for example.)

<aop: aspect id="usageTrackerAspect" ref="usageTracking">

<aop: decl are-parents
t ypes- mat chi ng="com xzy. nyapp. servi ce. *+"
i npl enent -i nterface="com xyz. nyapp. servi ce. tracki ng. UsageTr acked"
def aul t-inpl ="com xyz. myapp. servi ce. tracki ng. Def aul t UsageTr acked"/ >

<aop: before
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessSer vi ce()
and thi s(usageTracked)"
net hod="r ecor dUsage"/ >

</ aop: aspect >

The class backing the usageTr acki ng bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
usageTracked. i ncrenent UseCount () ;

}

The interface to be implemented is determined by i npl enment - i nt er f ace attribute. The value of the
t ypes- mat chi ng attribute is an AspectJ type pattern :- any bean of a matching type will implement the
UsageTr acked interface. Note that in the before advice of the above example, service beans can be
directly used as implementations of the UsageTr acked interface. If accessing a bean programmatically
you would write the following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("nyService");

Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other
instantiation models may be supported in future releases.

Advisors

The concept of "advisors" is brought forward from the AOP support defined in Spring 1.2 and does not
have a direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single
piece of advice. The advice itself is represented by a bean, and must implement one of the advice
interfaces described in the section called “Advice types in Spring”. Advisors can take advantage of
AspectJ pointcut expressions though.

Spring supports the advisor concept with the <aop: advi sor > element. You will most commonly see
it used in conjunction with transactional advice, which also has its own namespace support in Spring.
Here’s how it looks:

4.3.16.RELEASE Spring Framework 244

Spring Framework Reference Documentation

<aop: confi g>

<aop: poi nt cut i d="busi nessService"
expressi on="execution(* com xyz.nyapp.service.*.*(..))"/>

<aop: advi sor
poi nt cut - r ef =" busi nessServi ce"
advi ce-ref ="tx-advice"/>

</ aop: confi g>

<t x: advi ce id="t x-advi ce">
<tx:attributes>
<t x: met hod name="*" propagati on="REQUI RED'/ >
</tx:attributes>
</ tx: advi ce>

As well as the poi nt cut - r ef attribute used in the above example, you can also use the poi nt cut
attribute to define a pointcut expression inline.

To define the precedence of an advisor so that the advice can participate in ordering, use the or der
attribute to define the Or der ed value of the advisor.

Example

Let’s see how the concurrent locking failure retry example from the section called “Example” looks when
rewritten using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation is retried, it is quite likely it will succeed next time round. For business services
where it is appropriate to retry in such conditions (idempotent operations that don’t need to go back to
the user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing
a Pessi mi sti cLocki ngFai | ur eExcepti on. This is a requirement that clearly cuts across multiple
services in the service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we’ll need to use around advice so that we can call proceed
multiple times. Here’s how the basic aspect implementation looks (it's just a regular Java class using
the schema support):

4.3.16.RELEASE Spring Framework 245

Spring Framework Reference Documentation

public class Concurrent OperationExecutor inplenents Ordered {
private static final int DEFAULT_MAX_ RETRI ES = 2;

private int maxRetries = DEFAULT_MAX_ RETRI ES;
private int order = 1;

public void set MaxRetries(int nmaxRetries) {
this. maxRetries = maxRetries;

}

public int getOder() {
return this.order;

}

public void setOder(int order) {
this.order = order;

}

publ i c Object doConcurrent Operati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numittenpts = 0;
Pessi m sti cLocki ngFai | ureException | ockFail ureExcepti on;
do {
numAt t enpt s++;
try {
return pjp.proceed();
}
cat ch(Pessi mi sti cLocki ngFai | ureException ex) {
| ockFai | ur eExcepti on = ex;
}
} while(numAttenpts <= this.nmaxRetries);
throw | ockFai | ureExcepti on;

Note that the aspect implements the O dered interface so we can set the precedence of the
aspect higher than the transaction advice (we want a fresh transaction each time we retry). The
maxRet ri es and or der properties will both be configured by Spring. The main action happens
in the doConcurr ent Oper ati on around advice method. We try to proceed, and if we fail with a
Pessi m st i cLocki ngFai | ur eExcepti on we simply try again unless we have exhausted all of our
retry attempts.

Note

This class is identical to the one used in the @AspectJ example, but with the annotations removed.

The corresponding Spring configuration is:

4.3.16.RELEASE Spring Framework 246

Spring Framework Reference Documentation

<aop: confi g>
<aop: aspect id="concurrentQperationRetry" ref="concurrentOperati onExecutor">

<aop: poi ntcut id="idenpotent Operation"
expressi on="execution(* com xyz.nyapp.service.*.*(..))"/>

<aop: ar ound
poi nt cut - r ef =" i denpot ent Oper ati on"
met hod="doConcur r ent Oper ati on"/ >

</ aop: aspect >
</ aop: confi g>

<bean id="concurrent Operati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concurrent Oper ati onExecut or" >
<property name="maxRetries" val ue="3"/>
<property name="order" val ue="100"/>
</ bean>

Notice that for the time being we assume that all business services are idempotent. If this is not the
case we can refine the aspect so that it only retries genuinely idempotent operations, by introducing
an | denpot ent annotation:

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
public @nterface |denpotent {
/1 marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the
aspect to retry only idempotent operations simply involves refining the pointcut expression so that only
@ denpot ent operations match:

<aop: poi ntcut id="idenpot ent Operati on"
expressi on="execution(* com xyz.nyapp.service.*.*(..)) and
@nnot at i on(com xyz. nyapp. servi ce. | denpotent)"/>

11.4 Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement, how
do you decide between using Spring AOP or AspectJ, and between the Aspect language (code) style,
@AspectJ annotation style, or the Spring XML style? These decisions are influenced by a number of
factors including application requirements, development tools, and team familiarity with AOP.

Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as there is no
requirement to introduce the AspectJ compiler / weaver into your development and build processes.
If you only need to advise the execution of operations on Spring beans, then Spring AOP is the right
choice. If you need to advise objects not managed by the Spring container (such as domain objects
typically), then you will need to use AspectJ. You will also need to use Aspect] if you wish to advise join
points other than simple method executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the AspectJ language syntax (also known as the "code
style") or the @AspectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been
made for you... use the code style. If aspects play a large role in your design, and you are able to use
the AspectJ Development Tools (AJDT) plugin for Eclipse, then the AspectJ language syntax is the
preferred option: it is cleaner and simpler because the language was purposefully designed for writing

4.3.16.RELEASE Spring Framework 247

http://www.eclipse.org/ajdt/

Spring Framework Reference Documentation

aspects. If you are not using Eclipse, or have only a few aspects that do not play a major role in your
application, then you may want to consider using the @AspectJ style and sticking with a regular Java
compilation in your IDE, and adding an aspect weaving phase to your build script.

@AspectJ or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @AspectJ or XML style. There are
various tradeoffs to consider.

The XML style will be most familiar to existing Spring users and it is backed by genuine POJOs. When
using AOP as a tool to configure enterprise services then XML can be a good choice (a good test
is whether you consider the pointcut expression to be a part of your configuration you might want to
change independently). With the XML style arguably it is clearer from your configuration what aspects
are present in the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single,
unambiguous, authoritative representation of any piece of knowledge within a system. When using the
XML style, the knowledge of how a requirement is implemented is split across the declaration of the
backing bean class, and the XML in the configuration file. When using the @AspectJ style there is a
single module - the aspect - in which this information is encapsulated. Secondly, the XML style is slightly
more limited in what it can express than the @AspectJ style: only the "singleton" aspect instantiation
model is supported, and it is not possible to combine hamed pointcuts declared in XML. For example,
in the @AspectJ style you can write something like:

@oi nt cut (execution(* get*()))
public void propertyAccess() {}

@oi nt cut (execution(org.xyz. Account+ *(..))
public voi d operationReturni ngAnAccount () {}

@oi nt cut (propertyAccess() && operationReturni ngAnAccount ())
public void account PropertyAccess() {}

In the XML style | can declare the first two pointcuts:

<aop: poi ntcut id="propertyAccess"
expressi on="execution(* get*())"/>

<aop: poi ntcut id="operationReturni ngAnAccount"
expr essi on="execution(org. xyz. Account+ *(..))"/>

The downside of the XML approach is that you cannot define the account Pr opert yAccess pointcut
by combining these definitions.

The @Aspect] style supports additional instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @Aspect] aspects
can be understood (and thus consumed) both by Spring AOP and by Aspectd - so if you later decide
you need the capabilities of AspectJ to implement additional requirements then it is very easy to migrate
to an AspectJ-based approach. On balance the Spring team prefer the @AspectJ style whenever you
have aspects that do more than simple "configuration" of enterprise services.

11.5 Mixing aspect types

It is perfectly possible to mix @AspectJ style aspects using the autoproxying support, schema-defined
<aop: aspect > aspects, <aop: advi sor > declared advisors and even proxies and interceptors

4.3.16.RELEASE Spring Framework 248

Spring Framework Reference Documentation

defined using the Spring 1.2 style in the same configuration. All of these are implemented using the
same underlying support mechanism and will co-exist without any difficulty.

11.6 Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object.
(JDK dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic proxy will be
used. All of the interfaces implemented by the target type will be proxied. If the target object does not
implement any interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the
target object, not just those implemented by its interfaces) you can do so. However, there are some
issues to consider:

- fi nal methods cannot be advised, as they cannot be overridden.

» As of Spring 3.2, it is no longer necessary to add CGLIB to your project classpath, as CGLIB classes
are repackaged under org.springframework and included directly in the spring-core JAR. This means
that CGLIB-based proxy support ‘just works' in the same way that JDK dynamic proxies always have.

» As of Spring 4.0, the constructor of your proxied object will NOT be called twice anymore since the
CGLIB proxy instance will be created via Objenesis. Only if your JVM does not allow for constructor
bypassing, you might see double invocations and corresponding debug log entries from Spring’s AOP
support.

To force the use of CGLIB proxies set the value of the proxy-target-cl ass attribute of the
<aop: confi g> element to true:

<aop: confi g proxy-target-class="true">
<!-- other beans defined here... -->
</ aop: confi g>

To force CGLIB proxying when using the @AspectJ autoproxy support, set the ' proxy-t ar get -
cl ass' attribute of the <aop: aspectj - aut opr oxy> elementtot r ue:

<aop: aspect] - aut opr oxy proxy-target-class="true"/>

Note

Multiple <aop: confi g/ > sections are collapsed into a single unified auto-proxy creator
at runtime, which applies the strongest proxy settings that any of the <aop: confi g/ >
sections (typically from different XML bean definition files) specified. This also applies to the
<t x: annot ati on-driven/ > and <aop: aspectj - aut opr oxy/ > elements.

To be clear: using proxy-target-class="true" on <tx:annotation-driven/>,
<aop: aspectj - aut opr oxy/ > or <aop: confi g/ > elements will force the use of CGLIB
proxies for all three of them.

Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement
actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied
with the Spring Framework.

4.3.16.RELEASE Spring Framework 249

Spring Framework Reference Documentation

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight
object reference, as illustrated by the following code snippet.

public class SinplePojo inplenments Pojo {

public void foo() {
/1 this next method invocation is a direct call on the "this' reference
this.bar();

}

public void bar() {
/1 some logic...

}

If you invoke a method on an object reference, the method is invoked directly on that object reference,
as can be seen below.

[Caingoode | poso. £000

4
Flain Object) foo() on the object

public class Main {
public static void main(String[] args) {
Poj o pojo = new Si npl ePoj o();

/1l this is a direct nethod call on the 'pojo' reference
poj o. foo();

Things change slightly when the reference that client code has is a proxy. Consider the following diagram
and code snippet.

pojo. £oo ()
foo() on the proxy

Flain Object

then foo() on the cocbject

4.3.16.RELEASE Spring Framework 250

Spring Framework Reference Documentation

public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. addl nterface(Pojo.cl ass);
factory. addAdvi ce(new RetryAdvice());

Poj o pojo = (Pojo) factory.getProxy();

/1 this is a nethod call on the proxy!
poj o. foo();

The key thing to understand here is that the client code inside the mai n(..) of the Mai n class
has a reference to the proxy. This means that method calls on that object reference will be calls on
the proxy, and as such the proxy will be able to delegate to all of the interceptors (advice) that are
relevant to that particular method call. However, once the call has finally reached the target object, the
Si npl ePoj o reference in this case, any method calls that it may make on itself, such ast hi s. bar () or
t hi s. foo(), are going to be invoked against the this reference, and not the proxy. This has important
implications. It means that self-invocation is not going to result in the advice associated with a method
invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to
refactor your code such that the self-invocation does not happen. For sure, this does entail some work
on your part, but it is the best, least-invasive approach. The next approach is absolutely horrendous,
and | am almost reticent to point it out precisely because it is so horrendous. You can (choke!) totally
tie the logic within your class to Spring AOP by doing this:

public class SinplePojo inplenents Pojo {

public void foo() {

/1 this works, but... gah!

((Poj o) AopContext.currentProxy()).bar();
}

public void bar() {
/1 sone logic...

}

This totally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is being
used in an AOP context, which flies in the face of AOP. It also requires some additional configuration
when the proxy is being created:

public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. adddl nt er f ace(Poj o. cl ass) ;
factory. addAdvi ce(new RetryAdvice());
factory. set ExposeProxy(true);

Poj o pojo = (Pojo) factory.getProxy();

/1 this is a nethod call on the proxy!
poj o. foo();

4.3.16.RELEASE Spring Framework 251

Spring Framework Reference Documentation

Finally, it must be noted that AspectJ does not have this self-invocation issue because it is not a proxy-
based AOP framework.

11.7 Programmatic creation of @AspectJ Proxies

In addition to declaring aspects in your configuration using either <aop: conf i g> or <aop: aspectj -
aut opr oxy>, itis also possible programmatically to create proxies that advise target objects. For the full
details of Spring’s AOP API, see the next chapter. Here we want to focus on the ability to automatically
create proxies using @AspectJ aspects.

The class or g. spri ngf ramewor k. aop. aspectj . annot ati on. Aspect JPr oxyFact ory can be
used to create a proxy for a target object that is advised by one or more @AspectJ aspects. Basic usage
for this class is very simple, as illustrated below. See the javadocs for full information.

/] create a factory that can generate a proxy for the given target object
Aspect JProxyFactory factory = new Aspect JProxyFactory(target Cbj ect);

// add an aspect, the class nust be an @\spectJ aspect
/1 you can call this as many tines as you need with different aspects
factory. addAspect (Securi t yManager. cl ass);

/1 you can al so add existing aspect instances, the type of the object supplied nust be an @\spectJ
aspect
factory. addAspect (usageTracker);

/1 now get the proxy object...
M/l nterfaceType proxy = factory. getProxy();

11.8 Using AspectJ with Spring applications

Everything we've covered so far in this chapter is pure Spring AOP. In this section, we’re going to look
at how you can use the AspectJ compiler/weaver instead of, or in addition to, Spring AOP if your needs
go beyond the facilities offered by Spring AOP alone.

Spring ships with a small Aspect] aspect library, which is available standalone in your distribution as
spring-aspects.j ar; you'll need to add this to your classpath in order to use the aspects in it. the
section called “Using AspectJ to dependency inject domain objects with Spring” and the section called
“Other Spring aspects for AspectJ” discuss the content of this library and how you can use it. the section
called “Configuring AspectJ aspects using Spring loC” discusses how to dependency inject AspectJ
aspects that are woven using the AspectJ compiler. Finally, the section called “Load-time weaving with
AspectJ in the Spring Framework” provides an introduction to load-time weaving for Spring applications
using AspectJ.

Using AspectJ to dependency inject domain objects with Spring

The Spring container instantiates and configures beans defined in your application context. It is also
possible to ask a bean factory to configure a pre-existing object given the name of a bean definition
containing the configuration to be applied. The spri ng- aspect s. j ar contains an annotation-driven
aspect that exploits this capability to allow dependency injection of any object. The support is intended
to be used for objects created outside of the control of any container. Domain objects often fall into this
category because they are often created programmatically using the new operator, or by an ORM tool
as a result of a database query.

The @confi gur abl e annotation marks a class as eligible for Spring-driven configuration. In the
simplest case it can be used just as a marker annotation:

4.3.16.RELEASE Spring Framework 252

Spring Framework Reference Documentation

package com xyz. nyapp. donai n;
i nport org.springfranmework. beans. factory. annot ati on. Confi gur abl e;
@onfi gurabl e

public class Account {
1.

}

When used as a marker interface in this way, Spring will configure new instances of the annotated type
(Account in this case) using a bean definition (typically prototype-scoped) with the same name as the
fully-qualified type name (com xyz. nyapp. domai n. Account). Since the default name for a bean
is the fully-qualified name of its type, a convenient way to declare the prototype definition is simply to
omit the i d attribute:

<bean cl ass="com xyz. nyapp. domai n. Account" scope="pr ot otype">
<property name="fundsTransferService" ref="fundsTransfer Service"/>
</ bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly
in the annotation:

package com xyz. nyapp. donai n;
i mport org.springframework. beans. factory. annot ati on. Confi gurabl e;

@onf i gurabl e("account™)
public class Account {
...

}

Spring will now look for a bean definition named "account” and use that as the definition to configure
new Account instances.

You can also use autowiring to avoid having to specify a dedicated bean definition
at all. To have Spring apply autowiring use the autowire property of the
@conf i gur abl e annotation: specify either @onf i gur abl e(aut owi r e=Aut owi re. BY _TYPE) or
@conf i gur abl e(aut owi r e=Aut owi r e. BY_NAME for autowiring by type or by name respectively. As
an alternative, as of Spring 2.5 it is preferable to specify explicit, annotation-driven dependency injection
for your @onf i gur abl e beans by using @\wut owi r ed or @ nj ect at the field or method level (see
Section 7.9, “Annotation-based container configuration” for further details).

Finally you can enable Spring dependency checking for the object references in the
newly created and configured object by using the dependencyCheck attribute (for example:
@conf i gur abl e(aut owi r e=Aut owi r e. BY_NAME, dependencyCheck=t r ue)). If this attribute is
set to true, then Spring will validate after configuration that all properties (which are not primitives or
collections) have been set.

Using the annotaton on its own does nothing of course. It is the
Annot at i onBeanConf i gur er Aspect in spri ng- aspects. j ar that acts on the presence of the
annotation. In essence the aspect says "after returning from the initialization of a new object of a type
annotated with @onf i gur abl e, configure the newly created object using Spring in accordance with
the properties of the annotation". In this context, initialization refers to newly instantiated objects (e.g.,
objects instantiated with the new operator) as well as to Seri al i zabl e objects that are undergoing
deserialization (e.g., via readResolve()).

4.3.16.RELEASE Spring Framework 253

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html

Spring Framework Reference Documentation

Note

One of the key phrases in the above paragraph is 'in essence'. For most cases, the exact
semantics of 'after returning from the initialization of a new object’ will be fine... in this context, ‘after
initialization' means that the dependencies will be injected after the object has been constructed
- this means that the dependencies will not be available for use in the constructor bodies of the
class. If you want the dependencies to be injected before the constructor bodies execute, and
thus be available for use in the body of the constructors, then you need to define this on the
@conf i gur abl e declaration like so:

@onf i gur abl e(preConstructi on=true)

You can find out more information about the language semantics of the various pointcut types in
AspectJ in this appendix of the Aspectd Programming Guide.

For this to work the annotated types must be woven with the AspectJ weaver - you can either use a build-
time Ant or Maven task to do this (see for example the AspectJ Development Environment Guide) or
load-time weaving (see the section called “Load-time weaving with AspectJ in the Spring Framework”).
The Annot ati onBeanConfi gur er Aspect itself needs configuring by Spring (in order to obtain a
reference to the bean factory that is to be used to configure new objects). If you are using Java based
configuration simply add @nabl eSpri ngConfi gur ed to any @onf i gur ati on class.

@onfi guration
@Enabl eSpri ngConfi gured
public class AppConfig {

}

If you prefer XML based configuration, the Spring cont ext namespace defines a convenient
cont ext: spring-confi gured element:

<cont ext: spring- confi gured/ >

Instances of @onfi gur abl e objects created before the aspect has been configured will result in a
message being issued to the debug log and no configuration of the object taking place. An example
might be a bean in the Spring configuration that creates domain objects when it is initialized by Spring.
In this case you can use the "depends-on" bean attribute to manually specify that the bean depends
on the configuration aspect.

<bean id="nyService"
cl ass="com xzy. nyapp. servi ce. MyServi ce"
depends- on="or g. spri ngf ranewor k. beans. f act ory. aspectj . Annot at i onBeanConf i gur er Aspect " >

<l-- ... -->

</ bean>

Note

Do not activate @onf i gur abl e processing through the bean configurer aspect unless you
really mean to rely on its semantics at runtime. In particular, make sure that you do not
use @onfi gur abl e on bean classes which are registered as regular Spring beans with the
container: You would get double initialization otherwise, once through the container and once
through the aspect.

4.3.16.RELEASE Spring Framework 254

http://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
http://www.eclipse.org/aspectj/doc/next/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

Spring Framework Reference Documentation

Unit testing @Configurable objects

One of the goals of the @onf i gur abl e support is to enable independent unit testing of domain objects
without the difficulties associated with hard-coded lookups. If @Confi gur abl e types have not been
woven by AspectJ then the annotation has no affect during unit testing, and you can simply set mock
or stub property references in the object under test and proceed as normal. If @onfi gur abl e types
have been woven by AspectJ then you can still unit test outside of the container as normal, but you will
see a warning message each time that you construct an @onf i gur abl e object indicating that it has
not been configured by Spring.

Working with multiple application contexts

The Annot ati onBeanConfi gur er Aspect used to implement the @onfi gur abl e support is an
AspectJ singleton aspect. The scope of a singleton aspect is the same as the scope of static
members, that is to say there is one aspect instance per classloader that defines the type. This
means that if you define multiple application contexts within the same classloader hierarchy you need
to consider where to define the @nabl eSpri ngConfi gur ed bean and where to place spri ng-
aspect s. j ar on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining
common business services and everything needed to support them, and one child application context
per servlet containing definitions particular to that servlet. All of these contexts will co-exist within
the same classloader hierarchy, and so the Annot at i onBeanConf i gur er Aspect can only hold a
reference to one of them. In this case we recommend defining the @nabl eSpri ngConfi gur ed bean
in the shared (parent) application context: this defines the services that you are likely to want to inject
into domain objects. A consequence is that you cannot configure domain objects with references to
beans defined in the child (servlet-specific) contexts using the @Configurable mechanism (probably not
something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads
the types in spri ng-aspects.jar using its own classloader (for example, by placing spri ng-
aspects.jar in"WEB-INF/1ib'). If spring-aspects.jar is only added to the container wide
classpath (and hence loaded by the shared parent classloader), all web applications will share the same
aspect instance which is probably not what you want.

Other Spring aspects for AspectJ

In addition to the @Confi gurabl e aspect, spri ng-aspects.jar contains an Aspect] aspect
that can be used to drive Spring’s transaction management for types and methods annotated with
the @r ansacti onal annotation. This is primarily intended for users who want to use the Spring
Framework’s transaction support outside of the Spring container.

The aspect that interprets @tr ansact i onal annotations is the Annot ati onTr ansacti onAspect.
When using this aspect, you must annotate the implementation class (and/or methods within that class),
not the interface (if any) that the class implements. AspectJ follows Java’'s rule that annotations on
interfaces are not inherited.

A @r ansacti onal annotation on a class specifies the default transaction semantics for the execution
of any public operation in the class.

A @ransactional annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). Methods of any visibility may be annotated,

4.3.16.RELEASE Spring Framework 255

Spring Framework Reference Documentation

including private methods. Annotating non-public methods directly is the only way to get transaction
demarcation for the execution of such methods.

Tip

Since Spring Framework 4.2, spri ng- aspect s provides a similar aspect that offers the exact
same features for the standard j avax.transaction. Transacti onal annotation. Check
Jt aAnnot at i onTr ansact i onAspect for more details.

For AspectJ programmers that want to use the Spring configuration and transaction management
support but don't want to (or cannot) use annotations, spri ng-aspects.jar also contains
abstract aspects you can extend to provide your own pointcut definitions. See the sources for
the Abstract BeanConfi gurer Aspect and Abstract Transacti onAspect aspects for more
information. As an example, the following excerpt shows how you could write an aspect to configure
all instances of objects defined in the domain model using prototype bean definitions that match the
fully-qualified class names:

publ i c aspect Domai nObj ect Confi guration extends Abstract BeanConfi gurerAspect {

publ i ¢ Domai nObj ect Confi guration() {
set BeanW ri ngl nf oResol ver (new Cl assNaneBeanW ri ngl nf oResol ver ());

}

/1 the creation of a new bean (any object in the donain nodel)
protected pointcut beanCreation(CObject beanlnstance) :
initialization(newm..)) &&
Syst emAr chi t ecture. i nDomai nvbdel () &&
t hi s(beanl nst ance);

Configuring AspectJ aspects using Spring loC

When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to
configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and
the means of configuring the AspectJ created aspects via Spring depends on the AspectJ instantiation
model (the per - xxx clause) used by the aspect.

The majority of AspectJ aspects are singleton aspects. Configuration of these aspects is very easy:
simply create a bean definition referencing the aspect type as normal, and include the bean attribute
'factory-net hod="aspect O "' . This ensures that Spring obtains the aspect instance by asking
AspectdJ for it rather than trying to create an instance itself. For example:

<bean id="profiler" class="com xyz.profiler.Profiler"
fact ory-nmet hod="aspect Of ">

<property name="profilingStrategy" ref="janmonProfilingStrategy"/>
</ bean>

Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype
bean definitions and using the @onf i gur abl e support from spri ng- aspects. j ar to configure the
aspect instances once they have bean created by the AspectJ runtime.

If you have some @AspectJ aspects that you want to weave with AspectJ (for example, using load-time
weaving for domain model types) and other @AspectJ aspects that you want to use with Spring AOP,
and these aspects are all configured using Spring, then you will need to tell the Spring AOP @Aspect]

4.3.16.RELEASE Spring Framework 256

Spring Framework Reference Documentation

autoproxying support which exact subset of the @AspectJ aspects defined in the configuration should
be used for autoproxying. You can do this by using one or more <i ncl ude/ > elements inside the
<aop: aspectj - aut opr oxy/ > declaration. Each <i ncl ude/ > element specifies a name pattern, and
only beans with names matched by at least one of the patterns will be used for Spring AOP autoproxy
configuration:

<aop: aspect] - aut opr oxy>
<aop:incl ude name="t hi sBean"/ >
<aop: i ncl ude nanme="t hat Bean"/ >
</ aop: aspect j - aut opr oxy>

Note

Do not be misled by the name of the <aop: aspect j - aut opr oxy/ > element: using it will result
in the creation of Spring AOP proxies. The @AspectJ style of aspect declaration is just being used
here, but the AspectJ runtime is not involved.

Load-time weaving with AspectJ in the Spring Framework

Load-time weaving (LTW) refers to the process of weaving AspectJ aspects into an application’s class
files as they are being loaded into the Java virtual machine (JVM). The focus of this section is on
configuring and using LTW in the specific context of the Spring Framework: this section is not an
introduction to LTW though. For full details on the specifics of LTW and configuring LTW with just AspectJ
(with Spring not being involved at all), see the LTW section of the AspectJ Development Environment
Guide.

The value-add that the Spring Framework brings to AspectJ LTW is in enabling much finer-grained
control over the weaving process. 'Vanilla' Aspectd LTW is effected using a Java (5+) agent, which is
switched on by specifying a VM argument when starting up a JVM. It is thus a JVM-wide setting, which
may be fine in some situations, but often is a little too coarse. Spring-enabled LTW enables you to
switch on LTW on a per-ClassLoader basis, which obviously is more fine-grained and which can make
more sense in a 'single-JVM-multiple-application' environment (such as is found in a typical application
server environment).

Further, in certain environments, this support enables load-time weaving without making any
modifications to the application server’s launch script that will be needed to add - j avaagent : pat h/
t o/ aspectjweaver.jar or (as we describe later in this section) -javaagent: path/to/
org. springframework.instrunent-{version}.jar (previously namedspri ng-agent.j ar).
Developers simply modify one or more files that form the application context to enable load-time weaving
instead of relying on administrators who typically are in charge of the deployment configuration such
as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of AspectJ LTW using Spring,
followed by detailed specifics about elements introduced in the following example. For a complete
example, please see the Petclinic sample application.

A first example

Let us assume that you are an application developer who has been tasked with diagnosing the cause of
some performance problems in a system. Rather than break out a profiling tool, what we are going to do
is switch on a simple profiling aspect that will enable us to very quickly get some performance metrics,
so that we can then apply a finer-grained profiling tool to that specific area immediately afterwards.

4.3.16.RELEASE Spring Framework 257

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html
http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html
https://github.com/spring-projects/spring-petclinic

Spring Framework Reference Documentation

Note

The example presented here uses XML style configuration, it is also possible to configure and
use @AspectJ with Java Configuration. Specifically the @nabl eLoadTi mreWeavi ng annotation
can be used as an alternative to <cont ext : | oad-ti ne- weaver/ > (see below for details).

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@AspectJ-style of aspect declaration.

package foo;

i nport org.aspectj .| ang. Proceedi ngJoi nPoi nt ;

i nport org.aspectj.lang. annotation. Aspect;

i nport org.aspectj.|ang. annotati on. Around;

i nport org.aspectj.|ang. annotati on. Poi ntcut;

i mport org.springframework. util.StopWatch;

i mport org.springframework. core. annotati on. Order;

@\spect
public class ProfilingAspect {

@\r ound(" net hodsToBeProfiled()")
public Object profile(Proceedi ngJoi nPoint pjp) throws Throwable {
St opWat ch sw = new St opWat ch(get C ass(). get Si npl eNane());
try {
sw. start (pjp.getSignature().getNanme());
return pjp.proceed();
} finally {
sw. stop();
Systemout.println(sw prettyPrint());

}

@0i ntcut ("execution(public * foo..*.*(..))")
public void nethodsToBeProfiled(){}

We will also need to create an META- | NF/ aop. xmi file, to inform the AspectJ weaver that we want to
weave our Profi | i ngAspect into our classes. This file convention, namely the presence of a file (or
files) on the Java classpath called META- | NF/ aop. xm is standard AspectJ.

<! DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN' "http://ww. eclipse. org/aspectj/dtd/ aspectj.dtd">
<aspectj >

<weaver >
<I-- only weave classes in our application-specific packages -->
<include within="foo.*"/>

</ weaver >

<aspect s>
<l-- weave in just this aspect -->
<aspect name="foo.ProfilingAspect"/>
</ aspect s>

</ aspectj >

Now to the Spring-specific portion of the configuration. We need to configure a LoadTi neWeaver
(all explained later, just take it on trust for now). This load-time weaver is the essential component
responsible for weaving the aspect configuration in one or more META- | NF/ aop. xm files into the
classes in your application. The good thing is that it does not require a lot of configuration, as can be
seen below (there are some more options that you can specify, but these are detailed later).

4.3.16.RELEASE Spring Framework 258

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schenaLocat i on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranmework. or g/ schema/ cont ext/ spri ng-cont ext.xsd">

<l-- a service object; we will be profiling its nmethods -->
<bean id="entitl enment Cal cul ati onServi ce"
cl ass="fo00. StubEntitl ement Cal cul ati onServi ce"/ >

<l-- this switches on the |oad-tinme weaving -->
<cont ext: | oad-ti me-weaver/>
</ beans>

Now that all the required artifacts are in place - the aspect, the META- | NF/ aop. xm file, and the Spring
configuration -, let us create a simple driver class with a mai n(. .) method to demonstrate the LTW
in action.

package foo;
i nport org.springfranework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext ("beans. xm ", Main.cl ass);

Entitl enment Cal cul ati onService entitlementCal cul ati onService
= (EntitlenmentCal cul ati onService) ctx.getBean("entitlenmentCal cul ati onService");

/1 the profiling aspect is 'woven' around this nethod execution
entitl ement Cal cul ati onService. cal cul ateEntitlenent();

There is one last thing to do. The introduction to this section did say that one could switch on LTW
selectively on a per- O assLoader basis with Spring, and this is true. However, just for this example,
we are going to use a Java agent (supplied with Spring) to switch on the LTW. This is the command
line we will use to run the above Mai n class:

java -javaagent: C:/projects/foo/lib/global/spring-instrunent.jar foo.Min

The - j avaagent is a flag for specifying and enabling agents to instrument programs running on the
JVM. The Spring Framework ships with such an agent, the | nst r unment at i onSavi ngAgent , which
is packaged in the spring-instrunent.jar that was supplied as the value of the -j avaagent
argument in the above example.

The output from the execution of the Mai n program will look something like that below. (I have introduced
a Thread. sl eep(..) statement into the cal cul at eEnti t| ement () implementation so that the
profiler actually captures something other than O milliseconds - the 01234 milliseconds is not an
overhead introduced by the AOP :))

4.3.16.RELEASE Spring Framework 259

http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html

Spring Framework Reference Documentation

Cal cul ating entitlenment

StopWatch 'ProfilingAspect': running time (mllis) = 1234

01234 100% cal cul ateEntitlenment

Since this LTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans;
the following slight variation on the Mai n program will yield the same result.

package foo;
i nport org.springfranework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
new C assPat hXm Appl i cati onCont ext ("beans. xm ", Mai n. cl ass);

Entitl enment Cal cul ati onService entitlenmentCal cul ati onService =
new St ubEntitl enment Cal cul ati onService();

/'l the profiling aspect will be 'woven' around this nethod execution
entitl ement Cal cul ati onService. cal cul ateEntitlenent();

Notice how in the above program we are simply bootstrapping the Spring container, and then creating a
new instance of the St ubEnti t | ement Cal cul ati onSer vi ce totally outside the context of Spring...
the profiling advice still gets woven in.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all been
introduced in the above example, and the rest of this section will explain the ‘why' behind each bit of
configuration and usage in detail.

Note

The ProfilingAspect used in this example may be basic, but it is quite useful. It is a nice
example of a development-time aspect that developers can use during development (of course),
and then quite easily exclude from builds of the application being deployed into UAT or production.

Aspects

The aspects that you use in LTW have to be Aspect] aspects. They can be written in either the AspectJ
language itself or you can write your aspects in the @AspectJ-style. It means that your aspects are
then both valid Aspectd and Spring AOP aspects. Furthermore, the compiled aspect classes need to
be available on the classpath.

'META-INF/aop.xml'

The AspectJ LTW infrastructure is configured using one or more META- | NF/ aop. xm files, that are on
the Java classpath (either directly, or more typically in jar files).

The structure and contents of this file is detailed in the main AspectJ reference documentation, and the
interested reader is referred to that resource. (I appreciate that this section is brief, but the aop. xmi file
is 100% AspectJ - there is no Spring-specific information or semantics that apply to it, and so there is no

4.3.16.RELEASE Spring Framework 260

http://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html

Spring Framework Reference Documentation

extra value that | can contribute either as a result), so rather than rehash the quite satisfactory section
that the AspectJ developers wrote, | am just directing you there.)

Required libraries (JARS)

At a minimum you will need the following libraries to use the Spring Framework’s support for AspectJ
LTW:

* spring-aop.jar (version 2.5 or later, plus all mandatory dependencies)
e aspectjweaver.jar (version 1.6.8 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:

e spring-instrunent.jar
Spring configuration

The key component in Spring’'s LTW support is the LoadTi meWeaver interface (in
the org.springframework.instrument.cl assl oadi ng package), and the numerous
implementations of it that ship with the Spring distribution. A LoadTi meWeaver is responsible for adding
one or more j ava. |l ang. i nstrunent. C assFi | eTransf orners to a d assLoader at runtime,
which opens the door to all manner of interesting applications, one of which happens to be the LTW
of aspects.

Tip

If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to read
the javadoc API documentation for the j ava. | ang. i nstrunment package before continuing.
This is not a huge chore because there is - rather annoyingly - precious little documentation
there... the key interfaces and classes will at least be laid out in front of you for reference as you
read through this section.

Configuring a LoadTi meWeaver for a particular Appl i cat i onCont ext can be as easy as adding one
line. (Please note that you almost certainly will need to be using an Appl i cati onCont ext as your
Spring container - typically a BeanFact or y will not be enough because the LTW support makes use
of BeanFact or yPost Processors.)

To enable the Spring Framework’s LTW support, you need to configure a LoadTi mneWaver , which
typically is done using the @nabl eLoadTi neWWavi ng annotation.

@onfiguration
@nabl eLoadTi meWeavi ng
public class AppConfig {

}

Alternatively, if you prefer XML based configuration, use the <cont ext:| oad-ti me-weaver/>
element. Note that the element is defined in the cont ext namespace.

4.3.16.RELEASE Spring Framework 261

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schenaLocat i on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranmework. or g/ schema/ cont ext/ spri ng-cont ext.xsd">

<cont ext: | oad-ti me- weaver/ >

</ beans>

The above configuration will define and register a number of LTW-specific infrastructure beans for
you automatically, such as a LoadTi neWeaver and an Aspect JWeavi ngEnabl er. The default
LoadTi meWeaver is the Def aul t Cont ext LoadTi neWeaver class, which attempts to decorate
an automatically detected LoadTi neWeaver: the exact type of LoadTi neWeaver that will be
‘automatically detected' is dependent upon your runtime environment (summarized in the following
table).

Table 11.1. DefaultContextLoadTimeWeaver LoadTimeWeavers

Runtime Environment LoadTi neWeaver implementation
Running in Oracle’s WebLogic WebLogi cLoadTi mneWaver

Running in Oracle’s GlassFish d assFi shLoadTi neWeaver
Running in Apache Tomcat Tonctat LoadTi nreWWeaver

Running in Red Hat's JBoss AS or WildFly JBossLoadTi neWaver

Running in IBM’s WebSphere WebSpher eLoadTi meV\eaver

JVM started with Spring I nstrument ati onLoadTi neWeaver

I nst runent at i onSavi ngAgent (java -
javaagent:path/to/spring-instrument.jar)

Fallback, expecting the underlying ClassLoader Ref | ecti veLoadTi nre\WWeaver
to follow common conventions (e.g. applicable to

Tontat | nstrunment abl eCl assLoader and

Resin)

Note that these are just the LoadTi neWeavers that are autodetected when using
the Defaul t Cont ext LoadTi meWeaver: it is of course possible to specify exactly which
LoadTi neWeaver implementation that you wish to use.

To specify a specific LoadTi neWeaver with Java configuration implement the
LoadTi meWeavi ngConf i gur er interface and override the get LoadTi meWeaver () method:

@configuration
@Enabl eLoadTi neWeavi ng
public class AppConfig inplenments LoadTi meWeavi ngConfi gurer {

@verride
publ i c LoadTi neWeaver getLoadTi neWeaver () {
return new Refl ectiveLoadTi mneWeaver () ;

}

4.3.16.RELEASE Spring Framework 262

http://www.oracle.com/technetwork/middleware/weblogic/overview/index-085209.html
http://glassfish.dev.java.net/
http://tomcat.apache.org/
http://www.jboss.org/jbossas/
http://www.wildfly.org/
http://www-01.ibm.com/software/webservers/appserv/was/
http://www.caucho.com/

Spring Framework Reference Documentation

If you are using XML based configuration you can specify the fully-qualified classname as the value of
the weaver - cl ass attribute on the <cont ext : | oad-ti ne- weaver/ > element:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmewor k. or g/ schema/ cont ext "
xsi : schemaLocat i on="
http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranework. org/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
ht t p: / / www. spri ngf ramewor k. or g/ schenma/ cont ext / spri ng- cont ext . xsd" >

<cont ext: | oad-ti nme- weaver
weaver - cl ass="org. spri ngfranework. i nstrunent . cl assl oadi ng. Ref | ecti veLoadTi neWeaver"/ >

</ beans>

The LoadTi mreWeaver that is defined and registered by the configuration can be later retrieved
from the Spring container using the well-known name | oadTi neWeaver. Remember that the
LoadTi neWeaver exists just as a mechanism for Spring’s LTW infrastructure to add one or
more Cl assFi | eTransformners. The actual C assFi | eTr ansf or ner that does the LTW is the
Cl assPreProcessor Agent Adapt er (fromthe or g. aspectj . weaver. | oadt i ne package) class.
See the class-level javadocs of the Cl assPr ePr ocessor Agent Adapt er class for further details,
because the specifics of how the weaving is actually effected is beyond the scope of this section.

There is one final attribute of the configuration left to discuss: the aspect j Weavi ng attribute (or
aspectj - weavi ng if you are using XML). This is a simple attribute that controls whether LTW is
enabled or not; it is as simple as that. It accepts one of three possible values, summarized below, with
the default value being aut odet ect if the attribute is not present.

Table 11.2. AspectJ weaving attribute values
Annotation Value XML Value Explanation

ENABLED on AspectJ weaving is on, and
aspects will be woven at load-
time as appropriate.

DI SABLED of f LTW is off... no aspect will be
woven at load-time.

AUTODETECT aut odet ect If the Spring LTW infrastructure
can find at least one META-

I NF/ aop. xm file, then
AspectJ weaving is on, else it is
off. This is the default value.

Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using
Spring’s LTW support in environments such as application servers and web containers.

Tomcat

Historically, Apache Tomcat's default class loader did not support class transformation which
is why Spring provides an enhanced implementation that addresses this need. Named
Tontat | nst runment abl eCl assLoader , the loader works on Tomcat 6.0 and above.

4.3.16.RELEASE Spring Framework 263

http://tomcat.apache.org/

Spring Framework Reference Documentation

Tip

Do not define Tontat | nst runent abl e assLoader anymore on Tomcat 8.0 and higher.
Instead, let Spring automatically use Tomcat’s new native | nst r unent abl eCl assLoader
facility through the Tontat LoadTi neWeaver strategy.

If you still need to use Tontat | nst r unent abl eCl assLoader, it can be registered individually for
each web application as follows:

e Copy org.springfranmework.instrunent.tontat.jar into $CATALINA_ _HOME/lib, where
$CATALINA_HOME represents the root of the Tomcat installation)

* Instruct Tomcat to use the custom class loader (instead of the default) by editing the web application
context file:

<Cont ext pat h="/nmyWebApp" docBase="/ny/ webApp/| ocati on">
<Loader

| oader C ass="or g. spri ngf ranmewor k. i nstrunent . cl assl oadi ng. t ontat . Tontat | nst r unent abl eCl assLoader "/ >
</ Cont ext >

Apache Tomcat (6.0+) supports several context locations:
* server configuration file - SCATALINA_HOME/conf/server.xml

« default context configuration - $CATALINA_HOME/conf/context.xml - that affects all deployed web
applications

» per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname]/[webapp]-context.xml or embedded inside the
web-app archive at META-INF/context.xml

For efficiency, the embedded per-web-app configuration style is recommended because it will impact
only applications that use the custom class loader and does not require any changes to the server
configuration. See the Tomcat 6.0.x documentation for more details about available context locations.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's
launch script (see above). This will make instrumentation available to all deployed web applications, no
matter what ClassLoader they happen to run on.

WebLogic, WebSphere, Resin, GlassFish, JBoss

Recent versions of WebLogic Server (version 10 and above), IBM WebSphere Application Server
(version 7 and above), Resin (3.1 and above) and JBoss (6.x or above) provide a ClassLoader
that is capable of local instrumentation. Spring’s native LTW leverages such ClassLoaders to enable
AspectJ weaving. You can enable LTW by simply activating load-time weaving as described earlier.
Specifically, you do not need to modify the launch script to add - j avaagent : pat h/ t o/ spri ng-
instrunment.jar.

Note that GlassFish instrumentation-capable ClassLoader is available only in its EAR environment. For
GlassFish web applications, follow the Tomcat setup instructions as outlined above.

Note that on JBoss 6.x, the app server scanning needs to be disabled to prevent it from loading the
classes before the application actually starts. A quick workaround is to add to your artifact a file named
VEEB- | NF/ j boss- scanni ng. xm with the following content:

4.3.16.RELEASE Spring Framework 264

http://tomcat.apache.org/tomcat-6.0-doc/config/context.html

Spring Framework Reference Documentation

<scanni ng xm ns="urn:jboss: scanni ng: 1. 0"/ >

Generic Java applications

When class instrumentation is required in environments that do not support or are not supported
by the existing LoadTi mnreWeaver implementations, a JDK agent can be the only solution. For
such cases, Spring provides | nst runent at i onLoadTi mreWeaver , which requires a Spring-specific
(but very general) VM agent, or g. spri ngf ranewor k. i nstrunent - {versi on}.jar (previously
named spri ng-agent.jar).

To use it, you must start the virtual machine with the Spring agent, by supplying the following JVM
options:

-j avaagent:/path/to/ org. springframework.instrument-{version}.jar

Note that this requires modification of the VM launch script which may prevent you from using this in
application server environments (depending on your operation policies). Additionally, the JDK agent will
instrument the entire VM which can prove expensive.

For performance reasons, it is recommended to use this configuration only if your target environment
(such as Jetty) does not have (or does not support) a dedicated LTW.

11.9 Further Resources

More information on AspectJ can be found on the AspectJ website.

The book Eclipse AspectJ by Adrian Colyer et. al. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The book AspectJ in Action, Second Edition by Ramnivas Laddad (Manning, 2009) comes highly
recommended; the focus of the book is on AspectJ, but a lot of general AOP themes are explored (in
some depth).

4.3.16.RELEASE Spring Framework 265

http://www.eclipse.org/jetty/
http://www.eclipse.org/aspectj

Spring Framework Reference Documentation

12. Spring AOP APIs

12.1 Introduction

The previous chapter described the Spring’s support for AOP using @Aspect] and schema-based
aspect definitions. In this chapter we discuss the lower-level Spring AOP APIs and the AOP support
used in Spring 1.2 applications. For new applications, we recommend the use of the Spring 2.0 and later
AOP support described in the previous chapter, but when working with existing applications, or when
reading books and articles, you may come across Spring 1.2 style examples. Spring 4.0 is backwards
compatible with Spring 1.2 and everything described in this chapter is fully supported in Spring 4.0.

12.2 Pointcut APl in Spring

Let’s look at how Spring handles the crucial pointcut concept.

Concepts

Spring’s pointcut model enables pointcut reuse independent of advice types. It's possible to target
different advice using the same pointcut.

The or g. spri ngfranmewor k. aop. Poi nt cut interface is the central interface, used to target advices
to particular classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter getdassFilter();

Met hodMvat cher get Met hodMat cher () ;

Splitting the Poi nt cut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a "union" with another method matcher).

The O assFil ter interface is used to restrict the pointcut to a given set of target classes. If the
mat ches() method always returns true, all target classes will be matched:

public interface C assFilter {

bool ean mat ches(d ass cl azz);

The Met hodMat cher interface is normally more important. The complete interface is shown below:

public interface MethodMatcher {
bool ean matches(Method m C ass targetd ass);
bool ean i sRunti nme();

bool ean matches(Method m C ass targetC ass, Object[] args);

The mat ches(Met hod, C ass) method is used to test whether this pointcut will ever match a given
method on a target class. This evaluation can be performed when an AOP proxy is created, to avoid the
need for a test on every method invocation. If the 2-argument matches method returns true for a given
method, and the i sRunt i ne() method for the MethodMatcher returns true, the 3-argument matches

4.3.16.RELEASE Spring Framework 266

Spring Framework Reference Documentation

method will be invoked on every method invocation. This enables a pointcut to look at the arguments
passed to the method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i sRunt i me() method returns false. In this case,
the 3-argument matches method will never be invoked.

Tip

If possible, try to make pointcuts static, allowing the AOP framework to cache the results of pointcut
evaluation when an AOP proxy is created.

Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.
» Union means the methods that either pointcut matches.

* Intersection means the methods that both pointcuts match.

» Union is usually more useful.

» Pointcuts can be composed using the static methods in the
org.springframework.aop.support.Pointcuts class, or using the ComposablePointcut class in the same
package. However, using AspectJ pointcut expressions is usually a simpler approach.

AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
or g. spri ngframewor k. aop. aspectj . Aspect JExpr essi onPoi nt cut. This is a pointcut that
uses an AspectJ supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.
Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others
are intended to be subclassed in application-specific pointcuts.

Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method’s
arguments. Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate
a static pointcut only once, when a method is first invoked: after that, there is no need to evaluate the
pointcut again with each method invocation.

Let's consider some static pointcut implementations included with Spring.
Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides
Spring make this possible. or g. spri ngf r amewor k. aop. support . JdkRegexpMet hodPoi nt cut
is a generic regular expression pointcut, using the regular expression support in JDK 1.4+,

Using the JdkRegexpMet hodPoi nt cut class, you can provide a list of pattern Strings. If any of these
is a match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

4.3.16.RELEASE Spring Framework 267

Spring Framework Reference Documentation

The usage is shown below:

<bean id="settersAndAbsquat ul at ePoi nt cut"
cl ass="org. spri ngfranmewor k. aop. support. JdkRegexpMet hodPoi nt cut " >
<property name="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring provides a convenience class, RegexpMet hodPoi nt cut Advi sor, that allows us to
also reference an Advice (remember that an Advice can be an interceptor, before advice,
throws advice etc.). Behind the scenes, Spring will use a JdkRegexpMet hodPoi nt cut. Using
RegexpMet hodPoi nt cut Advi sor simplifies wiring, as the one bean encapsulates both pointcut and
advice, as shown below:

<bean id="settersAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngfranmewor k. aop. support. RegexpMet hodPoi nt cut Advi sor ">
<property name="advi ce">
<ref bean="beanNameCf AopAl | i ancel nterceptor"/>
</ property>
<property name="patterns">
<list>
<val ue>. *set. *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.
Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata
attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method
arguments, as well as static information. This means that they must be evaluated with every method
invocation; the result cannot be cached, as arguments will vary.

The main example is the control f| ow pointcut.
Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less
powerful. (There is currently no way to specify that a pointcut executes below a join point
matched by another pointcut.) A control flow pointcut matches the current call stack. For
example, it might fire if the join point was invoked by a method in the com nyconpany. web
package, or by the SoneCaller class. Control flow pointcuts are specified using the
or g. spri ngframewor k. aop. support. Cont r ol Fl owPoi nt cut class.

Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts.

4.3.16.RELEASE Spring Framework 268

Spring Framework Reference Documentation

Pointcut superclasses
Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as
shown below. This requires implementing just one abstract method (although it's possible to override
other methods to customize behavior):

cl ass Test StaticPoi ntcut extends StaticMethodMat cher Poi ntcut {

public bool ean matches(Method m C ass targetd ass) {
/1 return true if customcriteria nmatch
}
}

There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ)
it's possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can
be arbitrarily complex. However, using the AspectJ pointcut expression language is recommended if
possible.

Note

Later versions of Spring may offer support for "semantic pointcuts” as offered by JAC: for example,
"all methods that change instance variables in the target object.”

12.3 Advice APl in Spring

Let’'s now look at how Spring AOP handles advice.
Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique
to each advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors.
These do not depend on the state of the proxied object or add new state; they merely act on the method
and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds
state to the proxied object.

It's possible to use a mix of shared and per-instance advice in the same AOP proxy.
Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types.
Let us look at the basic concepts and standard advice types.

Interception around advice

The most fundamental advice type in Spring is interception around advice.

4.3.16.RELEASE Spring Framework 269

Spring Framework Reference Documentation

Spring is compliant with the AOP Alliance interface for around advice using method interception.
Methodinterceptors implementing around advice should implement the following interface:

public interface Methodlnterceptor extends |nterceptor {

Obj ect i nvoke(Met hodl nvocation invocation) throws Throwabl e;

The Met hodl nvocat i on argument to the i nvoke() method exposes the method being invoked; the
target join point; the AOP proxy; and the arguments to the method. The i nvoke() method should return
the invocation’s result: the return value of the join point.

A simple Met hodl nt er cept or implementation looks as follows:

public class Debuglnterceptor inplenents Mthodlnterceptor {

public Object invoke(Methodlnvocation invocation) throws Throwabl e {
Systemout. println("Before: invocation=[" + invocation + "]");
Obj ect rval = invocation. proceed();
Systemout. println("lnvocation returned");
return rval;

Note the call to the MethodInvocation’s pr oceed() method. This proceeds down the interceptor chain
towards the join point. Most interceptors will invoke this method, and return its return value. However,
a MethodInterceptor, like any around advice, can return a different value or throw an exception rather
than invoke the proceed method. However, you don’t want to do this without good reason!

Note

Methodinterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using the
most specific advice type, stick with MethodInterceptor around advice if you are likely to want
to run the aspect in another AOP framework. Note that pointcuts are not currently interoperable
between frameworks, and the AOP Alliance does not currently define pointcut interfaces.

Before advice

A simpler advice type is a before advice. This does not need a Met hodl nvocat i on object, since it will
only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the pr oceed() method, and
therefore no possibility of inadvertently failing to proceed down the interceptor chain.

The Met hodBef or eAdvi ce interface is shown below. (Spring’s API design would allow for field before
advice, although the usual objects apply to field interception and it's unlikely that Spring will ever
implement it).

public interface MethodBeforeAdvi ce extends BeforeAdvice {

voi d before(Method m Cbject[] args, Object target) throws Throwabl e;

Note the return type is voi d. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution

4.3.16.RELEASE Spring Framework 270

Spring Framework Reference Documentation

of the interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked,
or on the signature of the invoked method, it will be passed directly to the client; otherwise it will be
wrapped in an unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice inplenments MethodBeforeAdvice {
private int count;

public void before(Method m Object[] args, Object target) throws Throwable {
++count ;

}

public int getCount() {
return count;

}

Tip
Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring offers
typed throws advice. Note that this means that the or g. spri ngf r anewor k. aop. Thr owsAdvi ce
interface does not contain any methods: It is a tag interface identifying that the given object implements
one or more typed throws advice methods. These should be in the form of:

af ter Throwi ng([Met hod, args, target], subcl assO Throwabl e)

Only the last argument is required. The method signatures may have either one or four arguments,
depending on whether the advice method is interested in the method and arguments. The following
classes are examples of throws advice.

The advice below is invoked if a Renot eExcept i on is thrown (including subclasses):

public class Renpt eThrowsAdvi ce inpl enents ThrowsAdvi ce {

public void afterThrow ng(RenpteException ex) throws Throwabl e {
/1 Do sonething with renpte exception

}

The following advice is invoked if a Ser vl et Except i on is thrown. Unlike the above advice, it declares
4 arguments, so that it has access to the invoked method, method arguments and target object:

public class ServletThrowsAdvi ceWthArgunments inplenments ThrowsAdvice {

public void afterThrow ng(Method m Object[] args, Object target, ServletException ex) {
/1 Do sonmething with all argunents

}

The final example illustrates how these two methods could be used in a single class, which handles
both Renpt eExcepti on and Ser vl et Excepti on. Any number of throws advice methods can be
combined in a single class.

4.3.16.RELEASE Spring Framework 271

Spring Framework Reference Documentation

public static class Conbi nedThrowsAdvi ce i npl enents ThrowsAdvi ce {

public void afterThrow ng(RenpteException ex) throws Throwabl e {
/1 Do sonething with renote exception

}

public void afterThrow ng(Method m Object[] args, Object target, ServletException ex) {
/1 Do sonmething with all argunents

}

Note

If a throws-advice method throws an exception itself, it will override the original exception
(i.e. change the exception thrown to the user). The overriding exception will typically be a
RuntimeException; this is compatible with any method signature. However, if a throws-advice
method throws a checked exception, it will have to match the declared exceptions of the target
method and is hence to some degree coupled to specific target method signatures. Do not throw
an undeclared checked exception that is incompatible with the target method’s signature!

Tip

Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.AfterReturningAdvice
interface, shown below:

public interface AfterReturningAdvi ce extends Advice {

voi d afterReturning(Cbject returnValue, Method m bject[] args, Object target)
throws Throwabl e;

An after returning advice has access to the return value (which it cannot modify), invoked method,
methods arguments and target.

The following after returning advice counts all successful method invocations that have not thrown
exceptions:

public class Counti ngAfterReturni ngAdvi ce inpl enents AfterReturni ngAdvi ce {
private int count;

public void afterReturni ng(Object returnValue, Method m Object[] args, Object target)
throws Throwabl e {
++count ;

}

public int getCount() {
return count;

}

This advice doesn’t change the execution path. If it throws an exception, this will be thrown up the
interceptor chain instead of the return value.

4.3.16.RELEASE Spring Framework 272

Spring Framework Reference Documentation

Tip
After returning advice can be used with any pointcut.

Introduction advice
Spring treats introduction advice as a special kind of interception advice.

Introduction requires an I ntroducti onAdvisor, and an |Introductionlnterceptor,
implementing the following interface:

public interface Introductionlnterceptor extends Methodlnterceptor {

bool ean i npl enentslinterface(C ass intf);

The i nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must
implement the introduction: that is, if the invoked method is on an introduced interface, the introduction
interceptor is responsible for handling the method call - it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method,
level. You can only use introduction advice with the | nt r oduct i onAdvi sor, which has the following
methods:

public interface IntroductionAdvi sor extends Advisor, Introductionlnfo {
ClassFilter getClassFilter();

voi d validatelnterfaces() throws IIIegal Argument Excepti on;

}
public interface Introductionlnfo {

Class[] getlnterfaces();

}

Thereis no Met hodMat cher , and hence no Poi nt cut , associated with introduction advice. Only class
filtering is logical.

The get | nt er f aces() method returns the interfaces introduced by this advisor.

Theval i dat el nt er f aces() method is used internally to see whether or not the introduced interfaces
can be implemented by the configured | nt r oduct i onl nt er cept or.

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the
following interface to one or more objects:

public interface Lockable {
void lock();
voi d unl ock();
bool ean | ocked();

}

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type,
and call lock and unlock methods. If we call the lock() method, we want all setter methods to throw a
LockedExcepti on. Thus we can add an aspect that provides the ability to make objects immutable,
without them having any knowledge of it: a good example of AOP.

Firstly, we'll need an | ntroducti onl ntercept or that does the heavy lifting. In this case, we
extend the org. springfranmework. aop. support. Del egati ngl ntroducti onl nt erceptor

4.3.16.RELEASE Spring Framework 273

Spring Framework Reference Documentation

convenience class. We could implement Introductioninterceptor directly, but using
Del egati ngl ntroduct i onl nt er cept or is best for most cases.

The Del egati ngl nt roducti onl nt er cept or is designed to delegate an introduction to an actual
implementation of the introduced interface(s), concealing the use of interception to do so. The
delegate can be set to any object using a constructor argument; the default delegate (when the
no-arg constructor is used) is this. Thus in the example below, the delegate is the LockM xi n
subclass of Del egati ngl ntroductionlnterceptor. Given a delegate (by default itself), a
Del egati ngl ntroduct i onl nt er cept or instance looks for all interfaces implemented by the
delegate (other than Introductioninterceptor), and will support introductions against any of them. It's
possible for subclasses such as LockM xi n to call the suppr essi nterface(d ass i ntf) method
to suppress interfaces that should not be exposed. However, no matter how many interfaces an
I nt roducti onl nt er cept or is prepared to support, the | nt r oduct i onAdvi sor used will control
which interfaces are actually exposed. An introduced interface will conceal any implementation of the
same interface by the target.

Thus LockM xi n extends Del egati ngl nt r oducti onl nt er cept or and implements Lockabl e
itself. The superclass automatically picks up that Lockable can be supported for introduction, so we
don’t need to specify that. We could introduce any number of interfaces in this way.

Note the use of the | ocked instance variable. This effectively adds additional state to that held in the
target object.

public class LockM xi n extends Del egati ngl ntroductionlnterceptor inplenments Lockable {
private bool ean | ocked;

public void lock() {
this.locked = true;

}

public void unlock() {
this.locked = fal se;

}

public bool ean | ocked() {
return this.|ocked;

}

public Object invoke(Methodlnvocation invocation) throws Throwabl e {
if (locked() &% invocation.getMethod().getNane().indexCf("set") == 0) {
throw new LockedException();

}

return super.invoke(invocation);

Often it isn’t necessary to override the i nvoke() method: the
Del egati ngl nt roducti onl nt er cept or implementation - which calls the delegate method if the
method is introduced, otherwise proceeds towards the join point - is usually sufficient. In the present
case, we need to add a check: no setter method can be invoked if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockM xi n instance, and
specify the introduced interfaces - in this case, just Lockabl e. A more complex example might take a
reference to the introduction interceptor (which would be defined as a prototype): in this case, there’'s
no configuration relevant for a LockM xi n, so we simply create it using new.

4.3.16.RELEASE Spring Framework 274

Spring Framework Reference Documentation

public class LockM xi nAdvi sor extends Defaul tlntroductionAdvisor {

publ i c LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e.cl ass);

}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It's
impossible to use an I nt roducti onl nt er cept or without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We need a different instance of
LockM xi nAdvi sor, and hence LockM xi n, for each advised object. The advisor comprises part of
the advised object’s state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the
recommended way) in XML configuration, like any other advisor. All proxy creation choices discussed
below, including "auto proxy creators," correctly handle introductions and stateful mixins.

12.4 Advisor APl in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut
expression.

Apart from the special case of introductions, any advisor can be used with any advice.
or g. spri ngframewor k. aop. suppor t. Def aul t Poi nt cut Advi sor is the most commonly used
advisor class. For example, it can be used with a Met hodl nt er cept or, Bef oreAdvi ce or
Thr owsAdvi ce.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could
use a interception around advice, throws advice and before advice in one proxy configuration: Spring
will automatically create the necessary interceptor chain.

12.5 Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring loC container (an ApplicationContext or BeanFactory) for your business objects
- and you should be! - you will want to use one of Spring’s AOP FactoryBeans. (Remember that a factory
bean introduces a layer of indirection, enabling it to create objects of a different type.)

Note

The Spring AOP support also uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to wuse the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts
and advice that will apply, and their ordering. However, there are simpler options that are preferable if
you don’t need such control.

Basics

The ProxyFact or yBean, like other Spring Fact or yBean implementations, introduces a level of
indirection. If you define a Pr oxyFact or yBean with name f 0o, what objects referencing f oo see
is not the Pr oxyFact or yBean instance itself, but an object created by the Pr oxyFact or yBean's
implementation of the get Qbj ect () method. This method will create an AOP proxy wrapping a target
object.

4.3.16.RELEASE Spring Framework 275

Spring Framework Reference Documentation

One of the most important benefits of using a Pr oxyFact or yBean or another loC-aware class to create
AOP proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a powerful
feature, enabling certain approaches that are hard to achieve with other AOP frameworks. For example,
an advice may itself reference application objects (besides the target, which should be available in any
AOP framework), benefiting from all the pluggability provided by Dependency Injection.

JavaBean properties

In common with most Fact or yBean implementations provided with Spring, the Pr oxyFact or yBean
class is itself a JavaBean. Its properties are used to:

» Specify the target you want to proxy.

» Specify whether to use CGLIB (see below and also the section called “JDK- and CGLIB-based
proxies”).

Some key properties are inherited from or g. spri ngf r amewor k. aop. f r anewor k. ProxyConfi g
(the superclass for all AOP proxy factories in Spring). These key properties include:

» proxyTarget C ass:true if the target class is to be proxied, rather than the target class' interfaces.
If this property value is set to t r ue, then CGLIB proxies will be created (but see also the section
called “JDK- and CGLIB-based proxies”).

» opti m ze: controls whether or not aggressive optimizations are applied to proxies created via CGLIB.
One should not blithely use this setting unless one fully understands how the relevant AOP proxy
handles optimization. This is currently used only for CGLIB proxies; it has no effect with JDK dynamic
proxies.

» frozen:if a proxy configuration is f r ozen, then changes to the configuration are no longer allowed.
This is useful both as a slight optimization and for those cases when you don’t want callers to be able
to manipulate the proxy (via the Advi sed interface) after the proxy has been created. The default
value of this property is f al se, so changes such as adding additional advice are allowed.

» exposePr oxy: determines whether or not the current proxy should be exposed in a Thr eadLocal
so that it can be accessed by the target. If a target needs to obtain the proxy and the exposePr oxy
property is setto t r ue, the target can use the AopCont ext . cur r ent Proxy() method.

Other properties specific to Pr oxyFact or yBean include:

» proxyl nt erfaces: array of String interface names. If this isn’'t supplied, a CGLIB proxy for the target
class will be used (but see also the section called “JDK- and CGLIB-based proxies”).

» i ntercept or Nanes: String array of Advi sor , interceptor or other advice names to apply. Ordering
is significant, on a first come-first served basis. That is to say that the first interceptor in the list will
be the first to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories. You
can’'t mention bean references here since doing so would result in the Pr oxyFact or yBean ignoring
the singleton setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the application of all advisor
beans with names starting with the part before the asterisk to be applied. An example of using this
feature can be found in the section called “Using 'global’ advisors”.

» singleton: whether or not the factory should return a single object, no matter how often the
get Obj ect () method is called. Several Fact or yBean implementations offer such a method. The

4.3.16.RELEASE Spring Framework 276

Spring Framework Reference Documentation

defaultvalueist r ue. If you want to use stateful advice - for example, for stateful mixins - use prototype
advices along with a singleton value of f al se.

JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the Pr oxyFact or yBean chooses to create
one of either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

Note

The behavior of the ProxyFact oryBean with regard to creating JDK- or CGLIB-based
proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFact oryBean
now exhibits similar semantics with regard to auto-detecting interfaces as those of the
Transacti onPr oxyFact or yBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn’t
implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest scenario,
because JDK proxies are interface based, and no interfaces means JDK proxying isn't even possible.
One simply plugs in the target bean, and specifies the list of interceptors via the i nt er cept or Nanes
property. Note that a CGLIB-based proxy will be created even if the pr oxyTar get C ass property of
the Pr oxyFact or yBean has been setto f al se. (Obviously this makes no sense, and is best removed
from the bean definition because it is at best redundant, and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends
on the configuration of the Pr oxyFact or yBean.

If the pr oxyTar get Cl ass property of the Pr oxyFact or yBean has been settot r ue, then a CGLIB-
based proxy will be created. This makes sense, and is in keeping with the principle of least surprise.
Even if the pr oxyl nt er f aces property of the Pr oxyFact or yBean has been set to one or more fully
qualified interface names, the fact that the pr oxyTar get Cl ass property is set to t r ue will cause
CGLIB-based proxying to be in effect.

If the proxyl nterfaces property of the ProxyFact or yBean has been set to one or more fully
qualified interface names, then a JDK-based proxy will be created. The created proxy will implement all
of the interfaces that were specified in the pr oxyl nt er f aces property; if the target class happens to
implement a whole lot more interfaces than those specified in the pr oxyl nt er f aces property, that is
all well and good but those additional interfaces will not be implemented by the returned proxy.

If the pr oxyl nt er f aces property of the Pr oxyFact or yBean has not been set, but the target class
does implement one (or more) interfaces, then the Pr oxyFact or yBean will auto-detect the fact that the
target class does actually implement at least one interface, and a JDK-based proxy will be created. The
interfaces that are actually proxied will be all of the interfaces that the target class implements; in effect,
this is the same as simply supplying a list of each and every interface that the target class implements
to the pr oxyl nt er f aces property. However, it is significantly less work, and less prone to typos.

Proxying interfaces
Let’s look at a simple example of Pr oxyFact or yBean in action. This example involves:
» Atarget bean that will be proxied. This is the "personTarget" bean definition in the example below.

» An Advisor and an Interceptor used to provide advice.

4.3.16.RELEASE Spring Framework 277

Spring Framework Reference Documentation

« An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces
to proxy, along with the advices to apply.

<bean id="personTarget" class="com nmyconpany. Personl npl ">
<property name="name" val ue="Tony"/>
<property name="age" val ue="51"/>

</ bean>

<bean id="nmyAdvi sor" cl ass="com myconpany. MyAdvi sor" >
<property name="sonmeProperty" val ue="Custom string property val ue"/>
</ bean>

<bean id="debugl nterceptor" class="org.springframework. aop.interceptor.Debuglnterceptor">
</ bean>

<bean i d="person"
cl ass="org. springframewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxylnterfaces" val ue="com nyconpany. Person"/ >

<property name="target" ref="personTarget"/>
<property name="intercept or Names" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Note that the i nt er cept or Nanes property takes a list of String: the bean names of the interceptor or
advisors in the current factory. Advisors, interceptors, before, after returning and throws advice objects
can be used. The ordering of advisors is significant.

Note

You might be wondering why the list doesn’t hold bean references. The reason for this is that if
the ProxyFactoryBean's singleton property is set to false, it must be able to return independent
proxy instances. If any of the advisors is itself a prototype, an independent instance would need
to be returned, so it's necessary to be able to obtain an instance of the prototype from the factory;
holding a reference isn’t sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory.getBean("person");

Other beans in the same IoC context can express a strongly typed dependency on it, as with an ordinary
Java object:

<bean id="personUser" cl ass="com nyconpany. PersonUser" >
<property name="person"><ref bean="person"/></property>
</ bean>

The Per sonUser class in this example would expose a property of type Person. As far as it's concerned,
the AOP proxy can be used transparently in place of a "real" person implementation. However, its class
would be a dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed
below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean,
as follows. Only the ProxyFact oryBean definition is different; the advice is included only for
completeness:

4.3.16.RELEASE Spring Framework 278

Spring Framework Reference Documentation

<bean id="nmyAdvi sor" cl ass="com myconpany. MyAdvi sor" >
<property name="sonmeProperty" val ue="Custom string property val ue"/>
</ bean>

<bean i d="debugl nterceptor" class="org.springfranmework. aop.interceptor.Debugl nterceptor"/>

<bean id="person" class="org.springframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxylnterfaces" val ue="com myconpany. Person"/ >
<l-- Use inner bean, not |ocal reference to target -->
<property name="target">
<bean cl ass="com nyconpany. Personl npl " >
<property nanme="nanme" val ue="Tony"/>
<property name="age" val ue="51"/>
</ bean>
</ property>
<property name="interceptor Names" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

This has the advantage that there’s only one object of type Per son: useful if we want to prevent users
of the application context from obtaining a reference to the un-advised object, or need to avoid any
ambiguity with Spring loC autowiring. There's also arguably an advantage in that the ProxyFactoryBean
definition is self-contained. However, there are times when being able to obtain the un-advised target
from the factory might actually be an advantage: for example, in certain test scenarios.

Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Per son interface: we needed to advise a class called
Per son that didn't implement any business interface. In this case, you can configure Spring to use
CGLIB proxying, rather than dynamic proxies. Simply set the pr oxyTar get Cl ass property on the
ProxyFactoryBean above to true. While it's best to program to interfaces, rather than classes, the ability
to advise classes that don't implement interfaces can be useful when working with legacy code. (In
general, Spring isn't prescriptive. While it makes it easy to apply good practices, it avoids forcing a
particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this
generated subclass to delegate method calls to the original target: the subclass is used to implement
the Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:
» Fi nal methods can't be advised, as they can’t be overridden.

» Thereis no need to add CGLIB to your classpath. As of Spring 3.2, CGLIB is repackaged and included
in the spring-core JAR. In other words, CGLIB-based AOP will work "out of the box" just as do JDK
dynamic proxies.

There’s little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are slightly faster. However, this may change in the future. Performance should not be
a decisive consideration in this case.

4.3.16.RELEASE Spring Framework 279

Spring Framework Reference Documentation

Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before
the asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard
set of 'global’ advisors:

<bean id="proxy" class="org.springfranmework. aop. franmewor k. ProxyFact or yBean" >
<property name="target" ref="service"/>
<property name="interceptor Nanes" >
<list>
<val ue>gl obal *</ val ue>
</list>
</ property>
</ bean>

<bean id="gl obal _debug" cl ass="org. springfranmework. aop. i nterceptor.Debugl nterceptor”/>
<bean id="gl obal _performance" class="org.springfranework.aop.interceptor.PerfornmanceMnitorlnterceptor"/
>

12.6 Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The
use of parent and child bean definitions, along with inner bean definitions, can result in much cleaner

and more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="txProxyTenpl ate" abstract="true"
cl ass="org. springframework. transaction.interceptor. Transacti onProxyFact oryBean">
<property name="transacti onManager" ref="transacti onManager"/>
<property nanme="transacti onAttributes">
<props>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ pr ops>
</ property>
</ bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be
created is just a child bean definition, which wraps the target of the proxy as an inner bean definition,
since the target will never be used on its own anyway.

<bean id="nyService" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngfranmewor k. sanpl es. MySer vi cel npl ">
</ bean>
</ property>
</ bean>

It is of course possible to override properties from the parent template, such as in this case, the
transaction propagation settings:

4.3.16.RELEASE Spring Framework 280

Spring Framework Reference Documentation

<bean i d="mySpeci al Servi ce" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. springframewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property name="transacti onAttributes">
<pr ops>
<prop key="get*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="find*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="| oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="store*" >PROPAGATI ON_REQUI RED</ pr op>
</ pr ops>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by
using the abstract attribute, as described previously, so that it may not actually ever be instantiated.
Application contexts (but not simple bean factories) will by default pre-instantiate all singletons. It is
therefore important (at least for singleton beans) that if you have a (parent) bean definition which you
intend to use only as a template, and this definition specifies a class, you must make sure to set the
abstract attribute to true, otherwise the application context will actually try to pre-instantiate it.

12.7 Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP
without dependency on Spring loC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor.
The interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFact ory(nyBusi nessl nterfacel npl);
factory. addAdvi ce(nyMet hodl nt er ceptor);

factory. addAdvi sor (nyAdvi sor) ;

M/Busi nessinterface tb = (M/Businesslnterface) factory.getProxy();

The first step is to construct an object of type
org. springframewor k. aop. franewor k. ProxyFact or y. You can create this with a target object,
as in the above example, or specify the interfaces to be proxied in an alternate constructor.

You can add advices (with interceptors as a specialized kind of advice) and/or advisors, and manipulate
them for the life of the ProxyFactory. If you add an IntroductioninterceptionAroundAdvisor, you can
cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from Advi sedSuppor t) which allow
you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of
both ProxyFactory and ProxyFactoryBean.

Tip

Integrating AOP proxy creation with the 1oC framework is best practice in most applications. We
recommend that you externalize configuration from Java code with AOP, as in general.

4.3.16.RELEASE Spring Framework 281

Spring Framework Reference Documentation

12.8 Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org. springf ramewor k. aop. franewor k. Advi sed interface. Any AOP proxy can be cast to this
interface, whichever other interfaces it implements. This interface includes the following methods:

Advi sor[] get Advi sors();

voi d addAdvi ce(Advi ce advi ce) throws AopConfi gException;

voi d addAdvi ce(int pos, Advice advice) throws AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfigException;

i nt i ndexCf (Advi sor advi sor);

bool ean renpveAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d renoveAdvi sor (i nt index) throws AopConfigException;

bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gExcepti on;

bool ean i sFrozen();

The get Advi sor s() method will return an Advisor for every advisor, interceptor or other advice
type that has been added to the factory. If you added an Advisor, the returned advisor at this
index will be the object that you added. If you added an interceptor or other advice type, Spring
will have wrapped this in an advisor with a pointcut that always returns true. Thus if you added a
Met hodl nt er cept or, the advisor returned for this index will be an Def aul t Poi nt cut Advi sor
returning your Met hodl nt er cept or and a pointcut that matches all classes and methods.

The addAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and
advice will be the generic Def aul t Poi nt cut Advi sor, which can be used with any advice or pointcut
(but not for introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created.
The only restriction is that it's impossible to add or remove an introduction advisor, as existing proxies
from the factory will not show the interface change. (You can obtain a new proxy from the factory to
avoid this problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating
its advice:

Advi sed advised = (Advised) nyQbject;

Advi sor[] advisors = advised. get Advi sors();

i nt ol dAdvi sor Count = advi sors. | ength;

System out. printl n(ol dAdvi sor Count + " advisors");

/1 Add an advice like an interceptor w thout a pointcut

/1 WII match all proxied nethods

/1 Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

/1 Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, nyAdvice));

assert Equal s("Added two advi sors", ol dAdvi sorCount + 2, advi sed. get Advi sors().length);

4.3.16.RELEASE Spring Framework 282

Spring Framework Reference Documentation

Note

It's questionable whether it’'s advisable (no pun intended) to modify advice on a business object
in production, although there are no doubt legitimate usage cases. However, it can be very useful
in development: for example, in tests. | have sometimes found it very useful to be able to add test
code in the form of an interceptor or other advice, getting inside a method invocation | want to test.
(For example, the advice can get inside a transaction created for that method: for example, to run
SQL to check that a database was correctly updated, before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually setaf r ozen flag, in which case the Advi sed
i sFrozen() method will return true, and any attempts to modify advice through addition or removal
will result in an AopConf i gExcept i on. The ability to freeze the state of an advised object is useful in
some cases, for example, to prevent calling code removing a security interceptor. It may also be used
in Spring 1.1 to allow aggressive optimization if runtime advice modification is known not to be required.

12.9 Using the "auto-proxy" facility

So far we've considered explicit creation of AOP proxies using a Pr oxyFact or yBean or similar factory
bean.

Spring also allows us to use "auto-proxy" bean definitions, which can automatically proxy selected bean
definitions. This is built on Spring "bean post processor" infrastructure, which enables modification of
any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to configure the
auto proxy infrastructure. This allows you just to declare the targets eligible for auto-proxying: you don't
need to use Pr oxyFact or yBean.

There are two ways to do this:
» Using an auto-proxy creator that refers to specific beans in the current context.

» A special case of auto-proxy creation that deserves to be considered separately; auto-proxy creation
driven by source-level metadata attributes.

Autoproxy bean definitions

The org. springframework. aop. framewor k. aut opr oxy package provides the following
standard auto-proxy creators.

BeanNameAutoProxyCreator

The BeanNaneAut oPr oxyCr eat or class is a BeanPost Pr ocessor that automatically creates AOP
proxies for beans with names matching literal values or wildcards.

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. BeanNameAut oPr oxyCr eat or " >
<property name="beanNarmes" val ue="j dk*, onl yJdk"/ >
<property name="interceptor Names" >

<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

As with ProxyFact oryBean, there is an i ntercept or Names property rather than a list of
interceptors, to allow correct behavior for prototype advisors. Named "interceptors" can be advisors or
any advice type.

4.3.16.RELEASE Spring Framework 283

Spring Framework Reference Documentation

As with auto proxying in general, the main point of using BeanNanmeAut oPr oxyCr eat or is to apply the
same configuration consistently to multiple objects, with minimal volume of configuration. It is a popular
choice for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are
plain old bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNameAut oPr oxyCr eat or . The same advice will be applied to all matching beans. Note that if
advisors are used (rather than the interceptor in the above example), the pointcuts may apply differently
to different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is Def aul t Advi sor Aut oPr oxyCr eat or .
This will automagically apply eligible advisors in the current context, without the need to include
specific bean names in the auto-proxy advisor's bean definition. It offers the same merit of consistent
configuration and avoidance of duplication as BeanNanmeAut oPr oxyCr eat or .

Using this mechanism involves:
» Specifying a Def aul t Advi sor Aut oPr oxyCr eat or bean definition.

» Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors,
not just interceptors or other advices. This is necessary because there must be a pointcut to evaluate,
to check the eligibility of each advice to candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or will automatically evaluate the pointcut contained in each
advisor, to see what (if any) advice it should apply to each business object (such as "businessObjectl"
and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no
pointcut in any of the advisors matches any method in a business object, the object will not be proxied.
As bean definitions are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain
an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP
proxy, not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean cl ass="org. springframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or"/ >
<bean cl ass="org. springfranmework.transaction.interceptor.Transacti onAttri buteSourceAdvi sor">
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>
<bean id="customAdvi sor" cl ass="com nmyconpany. MyAdvi sor"/ >
<bean i d="busi nessbj ect1" cl ass="com myconpany. Busi nessChj ect 1" >
<!-- Properties omtted -->

</ bean>

<bean i d="busi nessObj ect2" cl ass="com nmyconpany. Busi nessObj ect 2"/ >

The Def aul t Advi sor Aut oPr oxyCr eat or is very useful if you want to apply the same advice
consistently to many business objects. Once the infrastructure definitions are in place, you can simply
add new business objects without including specific proxy configuration. You can also drop in additional
aspects very easily - for example, tracing or performance monitoring aspects - with minimal change to
configuration.

4.3.16.RELEASE Spring Framework 284

Spring Framework Reference Documentation

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention
so that only certain advisors are evaluated, allowing use of multiple, differently configured,
AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the
org. spri ngfranmewor k. core. O der ed interface to ensure correct ordering if this is an issue. The
TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the
default setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own auto-proxy creators
by subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to
the behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

Using metadata-driven auto-proxying

A particularly important type of auto-proxying is driven by metadata. This produces a similar
programming model to .NET Ser vi cedConponent s. Instead of defining metadata in XML descriptors,
configuration for transaction management and other enterprise services is held in source-level attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or, in combination with Advisors that
understand metadata attributes. The metadata specifics are held in the pointcut part of the candidate
advisors, rather than in the auto-proxy creation class itself.

This is really a special case of the Def aul t Advi sor Aut oPr oxyCr eat or , but deserves consideration
on its own. (The metadata-aware code is in the pointcuts contained in the advisors, not the AOP
framework itself.)

The /attributes directory of the JPetStore sample application shows the use of attribute-
driven auto-proxying. In this case, there’s no need to use the Transacti onPr oxyFact or yBean.
Simply defining transactional attributes on business objects is sufficient, because of the use
of metadata-aware pointcuts. The bean definitions include the following code, in /WEB- | NF/
decl arati veServi ces. xnm . Note that this is generic, and can be used outside the JPetStore:

<bean cl ass="org. springframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or"/ >

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttributeSourceAdvi sor">
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean id="transactionlnterceptor"
cl ass="org. springfranmework. transaction.interceptor. Transacti onl nterceptor">
<property nanme="transacti onManager" ref="transacti onManager"/>
<property name="transacti onAttributeSource">
<bean cl ass="org. springframework.transaction.interceptor.AttributesTransacti onAttributeSource">
<property nanme="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

<bean id="attributes" class="org.springfranmework. nmetadata. commons. ConmonsAttributes"/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition (the name is not significant, hence it
can even be omitted) will pick up all eligible pointcuts in the current application context. In this
case, the "transactionAdvisor" bean definition, of type Tr ansact i onAt t r i but eSour ceAdvi sor , will
apply to classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor
depends on a Transactioninterceptor, via constructor dependency. The example resolves this via

4.3.16.RELEASE Spring Framework 285

Spring Framework Reference Documentation

autowiring. The At t ri but esTransacti onAtt ri but eSour ce depends on an implementation of the
org. spri ngframewor k. net adat a. Attri but es interface. In this fragment, the "attributes" bean
satisfies this, using the Jakarta Commons Attributes API to obtain attribute information. (The application
code must have been compiled using the Commons Attributes compilation task.)

The / annot at i on directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection
of Spring’s Tr ansact i onal annotation, leading to implicit proxies for beans containing that annotation:

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreat or"/ >

<bean cl ass="org. springframework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor">
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean id="transactionlnterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onlnterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transacti onAttri buteSource">
<bean cl ass="org. spri ngfranmework. transacti on. annot ati on. Annot ati onTransacti onAttri buteSource"/>
</ property>
</ bean>

The Transacti onl nterceptor defined here depends on a Pl at f or mlr ansacti onManager
definition, which is not included in this generic file (although it could be) because it will be specific to the
application’s transaction requirements (typically JTA, as in this example, or Hibernate, JDO or JDBC):

<bean id="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager"/ >

Tip

If you require only declarative transaction management, using these generic XML definitions will
result in Spring automatically proxying all classes or methods with transaction attributes. You
won't need to work directly with AOP, and the programming model is similar to that of .NET
ServicedComponents.

This mechanism is extensible. It's possible to do auto-proxying based on custom attributes. You need to:
» Define your custom attribute.

» Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence
of the custom attribute on a class or method. You may be able to use an existing advice, merely
implementing a static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply
need to be defined as prototype, rather than singleton, bean definitions. For example, the LockM xi n
introduction interceptor from the Spring test suite, shown above, could be used in conjunction with a
generic Def aul t I nt roduct i onAdvi sor:

<bean id="1ockM xi n" class="test.m xi n. LockM xi n" scope="prototype"/>

<bean id="1 ockabl eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support. Def aul t|ntroducti onAdvi sor"
scope="pr ot ot ype" >
<constructor-arg ref="1ockM xi n"/>
</ bean>

Note that both | ockM xi n and | ockabl eAdvi sor are defined as prototypes.

4.3.16.RELEASE Spring Framework 286

Spring Framework Reference Documentation

12.10 Using TargetSources

Spring offers the concept of a TargetSource, expressed in the
or g. spri ngframewor k. aop. Tar get Sour ce interface. This interface is responsible for returning
the "target object” implementing the join point. The Tar get Sour ce implementation is asked for a target
instance each time the AOP proxy handles a method invocation.

Developers using Spring AOP don’t normally need to work directly with TargetSources, but this provides
a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a
pooling TargetSource can return a different target instance for each invocation, using a pool to manage
instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The
same target is returned for each invocation (as you would expect).

Let's look at the standard target sources provided with Spring, and how you can use them.
Tip
When using a custom target source, your target will usually need to be a prototype rather than a
singleton bean definition. This allows Spring to create a new target instance when required.
Hot swappable target sources

The org. springfranmewor k. aop. t ar get . Hot Swappabl eTar get Sour ce exists to allow the
target of an AOP proxy to be switched while allowing callers to keep their references to it.

Changing the target source’s target takes effect immediately. The Hot Swappabl eTar get Sour ce is
threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

Hot Swappabl eTar get Sour ce swapper = (Hot Swappabl eTar get Sour ce) beanFact ory. get Bean(" swapper");
Obj ect ol dTarget = swapper. swap(newTarget) ;

The XML definitions required look as follows:

<bean id="initial Target" class="myconpany. d dTarget"/>

<bean id="swapper" class="org.springfranmework. aop. target.Hot Swappabl eTar get Sour ce" >
<constructor-arg ref="initial Target"/>
</ bean>

<bean id="swappabl e" cl ass="org. spri ngfranmewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="tar get Source" ref="swapper"/>
</ bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that
bean will be unaware of the change, but will immediately start hitting the new target.

Although this example doesn’t add any advice - and it's not necessary to add advice to use a
Tar get Sour ce - of course any Tar get Sour ce can be used in conjunction with arbitrary advice.

Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which
a pool of identical instances is maintained, with method invocations going to free objects in the pool.

4.3.16.RELEASE Spring Framework 287

Spring Framework Reference Documentation

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to
any POJO. As with Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Commons Pool 2.2, which provides
a fairly efficient pooling implementation. Youll need the commons-pool Jar on
your application’s classpath to wuse this feature. It's also possible to subclass
org. spri ngfranmewor k. aop. t arget. Abstract Pool i ngTar get Sour ce to support any other
pooling API.

Note

Commons Pool 1.5+ is also supported but deprecated as of Spring Framework 4.2.

Sample configuration is shown below:

<bean i d="busi nessObj ect Target" cl ass="com nyconpany. M/Busi nessObj ect"
scope="pr ot ot ype" >
properties onmitted

</ bean>

<bean i d="pool Target Source" cl ass="org. spri ngfranmework. aop. t ar get. ConmonsPool 2Tar get Sour ce" >
<property name="t ar get BeanNane" val ue="busi nessObj ect Target"/ >
<property name="maxSi ze" val ue="25"/>

</ bean>

<bean i d="busi nessbj ect" cl ass="org. springframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="t ar get Sour ce" ref="pool Target Source"/ >
<property nanme="interceptorNanes" val ue="nylnterceptor"/>

</ bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows
the Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool
as necessary. See the javadocs of Abst r act Pool i ngTar get Sour ce and the concrete subclass you
wish to use for information about its properties: "maxSize" is the most basic, and always guaranteed
to be present.

In this case, "mylinterceptor” is the name of an interceptor that would need to be defined in the same
loC context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling,
and no other advice, don’t set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
or g. spri ngframewor k. aop. t arget . Pool i ngConfi g interface, which exposes information
about the configuration and current size of the pool through an introduction. You'll need to define an
advisor like this:

<bean i d="pool Confi gAdvi sor" class="org. springfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="target Qbj ect" ref="pool Target Source"/>
<property name="t ar get Met hod" val ue="get Pool i ngConfi gM xi n"/ >

</ bean>

This advisor is obtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce
class, hence the use of MethodInvokingFactoryBean. This advisor’s name ("poolConfigAdvisor" here)
must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

Pool i ngConfi g conf = (PoolingConfig) beanFactory. get Bean("busi nessCbject");
Systemout. println("Mx pool size is " + conf.get MaxSize());

4.3.16.RELEASE Spring Framework 288

Spring Framework Reference Documentation

Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the default
choice, as most stateless objects are naturally thread safe, and instance pooling is problematic
if resources are cached.

Simpler pooling is available using auto-proxying. It's possible to set the TargetSources used by any
auto-proxy creator.

Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance
of the target will be created on every method invocation. Although the cost of creating a new object isn'’t
high in a modern JVM, the cost of wiring up the new object (satisfying its loC dependencies) may be
more expensive. Thus you shouldn’t use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've also
changed the name, for clarity.)

<bean id="prototypeTarget Source" class="org. spri ngfranmework. aop. target. PrototypeTar get Sour ce">
<property name="t ar get BeanNane" ref="busi nessObj ect Target"/>
</ bean>

There’s only one property: the name of the target bean. Inheritance is used in the TargetSource
implementations to ensure consistent naming. As with the pooling target source, the target bean must
be a prototype bean definition.

ThreadLocal target sources

Thr eadLocal target sources are useful if you need an object to be created for each incoming request
(per thread that is). The concept of a Thr eadLocal provide a JDK-wide facility to transparently store
resource alongside a thread. Setting up a Thr eadLocal Tar get Sour ce is pretty much the same as
was explained for the other types of target source:

<bean id="threadl ocal Tar get Source" cl ass="org. spri ngfranmework. aop. t arget. Thr eadLocal Tar get Sour ce" >
<property name="t ar get BeanNane" val ue="busi nessObj ect Target"/ >
</ bean>

Note

ThreadLocals come with serious issues (potentially resulting in memory leaks) when incorrectly
using them in a multi-threaded and multi-classloader environments. One should always consider
wrapping a threadlocal in some other class and never directly use the Thr eadLocal itself (except
of course in the wrapper class). Also, one should always remember to correctly set and unset
(where the latter simply involved a call to Thr eadLocal . set (nul |)) the resource local to the
thread. Unsetting should be done in any case since not unsetting it might result in problematic
behavior. Spring’s ThreadLocal support does this for you and should always be considered in
favor of using ThreadLocals without other proper handling code.

12.11 Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently
used internally, it is possible to support arbitrary advice types in addition to the out-of-the-box
interception around advice, before, throws advice and after returning advice.

4.3.16.RELEASE Spring Framework 289

Spring Framework Reference Documentation

The org. springframewor k. aop. framewor k. adapt er package is an SPl package allowing
support for new custom advice types to be added without changing the core framework. The only
constraint on a custom Advi ce type is that it must implement the or g. aopal | i ance. aop. Advi ce
marker interface.

Please refer to the org. springfranmework. aop. f ranewor k. adapt er javadocs for further
information.

12.12 Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

* The JPetStore’s default configuration illustrates the use of the Tr ansact i onPr oxyFact or yBean
for declarative transaction management.

 The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative
transaction management.

4.3.16.RELEASE Spring Framework 290

Part IV. Testing

The adoption of the test-driven-development (TDD) approach to software development is certainly
advocated by the Spring team, and so coverage of Spring’s support for integration testing is covered
(alongside best practices for unit testing). The Spring team has found that the correct use of 1oC
certainly does make both unit and integration testing easier (in that the presence of setter methods
and appropriate constructors on classes makes them easier to wire together in a test without having
to set up service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully
convince you of this as well.

Spring Framework Reference Documentation

13. Introduction to Spring Testing

Testing is an integral part of enterprise software development. This chapter focuses on the value-add
of the IoC principle to unit testing and on the benefits of the Spring Framework’s support for integration
testing. (A thorough treatment of testing in the enterprise is beyond the scope of this reference manual.)

4.3.16.RELEASE Spring Framework 292

Spring Framework Reference Documentation

14. Unit Testing

Dependency Injection should make your code less dependent on the container than it would be with
traditional Java EE development. The POJOs that make up your application should be testable in JUnit
or TestNG tests, with objects simply instantiated using the new operator, without Spring or any other
container. You can use mock objects (in conjunction with other valuable testing techniques) to test your
code in isolation. If you follow the architecture recommendations for Spring, the resulting clean layering
and componentization of your codebase will facilitate easier unit testing. For example, you can test
service layer objects by stubbing or mocking DAO or Repository interfaces, without needing to access
persistent data while running unit tests.

True unit tests typically run extremely quickly, as there is no runtime infrastructure to set up. Emphasizing
true unit tests as part of your development methodology will boost your productivity. You may not need
this section of the testing chapter to help you write effective unit tests for your loC-based applications.
For certain unit testing scenarios, however, the Spring Framework provides the following mock objects
and testing support classes.

14.1 Mock Objects

Environment

The org. springframework. mock. env package contains mock implementations of the
Envi ronnent and Pr opert ySour ce abstractions (see the section called “Bean definition profiles” and
the section called “PropertySource abstraction”). MockEnvi r onment and MockPr opert ySour ce are
useful for developing out-of-container tests for code that depends on environment-specific properties.

JNDI

The or g. spri ngf ranewor k. nock. j ndi package contains an implementation of the JNDI SPI,
which you can use to set up a simple JNDI environment for test suites or stand-alone applications.
If, for example, JDBC Dat aSour ces get bound to the same JNDI names in test code as within a
Java EE container, you can reuse both application code and configuration in testing scenarios without
modification.

Servlet API

The or g. spri ngf ramewor k. nock. web package contains a comprehensive set of Serviet APl mock
objects that are useful for testing web contexts, controllers, and filters. These mock objects are targeted
at usage with Spring’s Web MVC framework and are generally more convenient to use than dynamic
mock objects such as EasyMock or alternative Servlet APl mock objects such as MockObjects. Since
Spring Framework 4.0, the set of mocks in the or g. spri ngf r anewor k. nock. web package is based
on the Servlet 3.0 API.

For thorough integration testing of your Spring MVC and REST Cont r ol | er s in conjunction with your
WebAppl i cati onCont ext configuration for Spring MVC, see the Spring MVC Test Framework.

Portlet API

The or g. spri ngframewor k. nock. web. portl et package contains a set of Portlet APl mock
objects, targeted at usage with Spring’s Portlet MVC framework.

4.3.16.RELEASE Spring Framework 293

http://www.easymock.org
http://www.mockobjects.com

Spring Framework Reference Documentation

14.2 Unit Testing support Classes

General testing utilities

The or g. spri ngfranewor k. t est. uti| package contains several general purpose utilities for use
in unit and integration testing.

Ref |l ectionTest Utils is a collection of reflection-based utility methods. Developers use these
methods in testing scenarios where they need to change the value of a constant, set a non-publ i c
field, invoke a non-publ i ¢ setter method, or invoke a non-publ i ¢ configuration or lifecycle callback
method when testing application code involving use cases such as the following.

* ORM frameworks such as JPA and Hibernate that condone pri vat e or pr ot ect ed field access as
opposed to publ i c setter methods for properties in a domain entity.

» Spring’s support for annotations such as @\ut owi r ed, @ nj ect , and @esour ce, which provides
dependency injection for pri vat e or pr ot ect ed fields, setter methods, and configuration methods.

» Use of annotations such as @ost Const ruct and @r eDest r oy for lifecycle callback methods.

AopTest Ut i | s is a collection of AOP-related utility methods. These methods can be used to obtain
a reference to the underlying target object hidden behind one or more Spring proxies. For example,
if you have configured a bean as a dynamic mock using a library like EasyMock or Mockito and the
mock is wrapped in a Spring proxy, you may need direct access to the underlying mock in order to
configure expectations on it and perform verifications. For Spring’s core AOP utilities, see AopUtil s
and AopProxyUtil s.

Spring MVC

The or g. spri ngfranmewor k. t est. web package contains Model AndVi ewAssert, which you can
use in combination with JUnit, TestNG, or any other testing framework for unit tests dealing with Spring
MVC Mbdel AndVi ew objects.

Unit testing Spring MVC Controllers

To unit test your Spring MVC Control | er s as POJOs, use Model AndVi ewAssert combined
with MockHt t pSer vl et Request , MockHt t pSessi on, and so on from Spring’s Serviet API
mocks. For thorough integration testing of your Spring MVC and REST Controllers in
conjunction with your WebAppl i cat i onCont ext configuration for Spring MVC, use the Spring
MVC Test Framework instead.

4.3.16.RELEASE Spring Framework 294

Spring Framework Reference Documentation

15. Integration Testing

15.1 Overview

It is important to be able to perform some integration testing without requiring deployment to your
application server or connecting to other enterprise infrastructure. This will enable you to test things
such as:

» The correct wiring of your Spring loC container contexts.

» Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first-class support for integration testing in the spring-test
module. The name of the actual JAR file might include the release version and might also
be in the long org. springframework.test form, depending on where you get it from
(see the section on Dependency Management for an explanation). This library includes the
or g. spri ngframewor k. t est package, which contains valuable classes for integration testing with
a Spring container. This testing does not rely on an application server or other deployment environment.
Such tests are slower to run than unit tests but much faster than the equivalent Selenium tests or remote
tests that rely on deployment to an application server.

In Spring 2.5 and later, unit and integration testing support is provided in the form of the annotation-driven
Spring TestContext Framework. The TestContext framework is agnostic of the actual testing framework
in use, thus allowing instrumentation of tests in various environments including JUnit, TestNG, and so on.

15.2 Goals of Integration Testing

Spring’s integration testing support has the following primary goals:

» To manage Spring 1oC container caching between test execution.

» To provide Dependency Injection of test fixture instances.

» To provide transaction management appropriate to integration testing.

To supply Spring-specific base classes that assist developers in writing integration tests.

The next few sections describe each goal and provide links to implementation and configuration details.

Context management and caching

The Spring TestContext Framework provides consistent loading of Spring Appl i cat i onCont ext s and
WebAppl i cati onCont ext s as well as caching of those contexts. Support for the caching of loaded
contexts is important, because startup time can become an issue — not because of the overhead of
Spring itself, but because the objects instantiated by the Spring container take time to instantiate. For
example, a project with 50 to 100 Hibernate mapping files might take 10 to 20 seconds to load the
mapping files, and incurring that cost before running every test in every test fixture leads to slower
overall test runs that reduce developer productivity.

Test classes typically declare either an array of resource locations for XML or Groovy configuration
metadata — often in the classpath—or an array of annotated classes that is used to configure the
application. These locations or classes are the same as or similar to those specified in web. xm or
other configuration files for production deployments.

4.3.16.RELEASE Spring Framework 295

Spring Framework Reference Documentation

By default, once loaded, the configured Appl i cati onCont ext is reused for each test. Thus the
setup cost is incurred only once per test suite, and subsequent test execution is much faster. In this
context, the term test suite means all tests run in the same JVM —for example, all tests run from an
Ant, Maven, or Gradle build for a given project or module. In the unlikely case that a test corrupts the
application context and requires reloading — for example, by modifying a bean definition or the state of
an application object — the TestContext framework can be configured to reload the configuration and
rebuild the application context before executing the next test.

See the section called “Context management” and the section called “Context caching” with the
TestContext framework.

Dependency Injection of test fixtures

When the TestContext framework loads your application context, it can optionally configure instances
of your test classes via Dependency Injection. This provides a convenient mechanism for setting up
test fixtures using preconfigured beans from your application context. A strong benefit here is that you
can reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed
object graphs, transactional proxies, Dat aSour ces, etc.), thus avoiding the need to duplicate complex
test fixture setup for individual test cases.

As an example, consider the scenario where we have a class, H bernat eTi t| eReposi t ory, that
implements data access logic for a Ti t | e domain entity. We want to write integration tests that test
the following areas:

* The Spring configuration: basically, is everything related to the configuration of the
Hi ber nat eTi t | eReposi t ory bean correct and present?

» The Hibernate mapping file configuration: is everything mapped correctly, and are the correct lazy-
loading settings in place?

» The logic of the Hi ber nat eTi t | eReposi t or y: does the configured instance of this class perform
as anticipated?

See dependency injection of test fixtures with the TestContext framework.

Transaction management

One common issue in tests that access a real database is their effect on the state of the persistence
store. Even when you're using a development database, changes to the state may affect future tests.
Also, many operations —such as inserting or modifying persistent data— cannot be performed (or
verified) outside a transaction.

The TestContext framework addresses this issue. By default, the framework will create and roll back a
transaction for each test. You simply write code that can assume the existence of a transaction. If you
call transactionally proxied objects in your tests, they will behave correctly, according to their configured
transactional semantics. In addition, if a test method deletes the contents of selected tables while running
within the transaction managed for the test, the transaction will roll back by default, and the database
will return to its state prior to execution of the test. Transactional support is provided to a test via a
Pl at f or nTr ansact i onManager bean defined in the test’s application context.

If you want a transaction to commit— unusual, but occasionally useful when you want a particular
test to populate or modify the database —the TestContext framework can be instructed to cause the
transaction to commit instead of roll back via the @onmmi t annotation.

4.3.16.RELEASE Spring Framework 296

Spring Framework Reference Documentation

See transaction management with the TestContext framework.

Support classes for integration testing

The Spring TestContext Framework provides several abst r act support classes that simplify the writing
of integration tests. These base test classes provide well-defined hooks into the testing framework as
well as convenient instance variables and methods, which enable you to access:

e The Appl i cat i onCont ext , for performing explicit bean lookups or testing the state of the context
as a whole.

« AJdbcTenpl at e, for executing SQL statements to query the database. Such queries can be used
to confirm database state both prior to and after execution of database-related application code, and
Spring ensures that such queries run in the scope of the same transaction as the application code.
When used in conjunction with an ORM tool, be sure to avoid false positives.

In addition, you may want to create your own custom, application-wide superclass with instance
variables and methods specific to your project.

See support classes for the TestContext framework.

15.3 JDBC Testing Support

The or g. spri ngf ramewor k. t est . j dbc package contains JdbcTest Uti | s, which is a collection
of JDBC related utility functions intended to simplify standard database testing scenarios. Specifically,
JdbcTest Uti | s provides the following static utility methods.

» count Rowsl nTabl e(. .) : counts the number of rows in the given table

» count Rows| nTabl eWher e(. .) : counts the number of rows in the given table, using the provided
VHERE clause

» del et eFronirabl es(. .) : deletes all rows from the specified tables
» del et eFronirabl eWher e(. .) : deletes rows from the given table, using the provided WHERE clause
» dropTabl es(..): drops the specified tables

Note that Abst ract Tr ansact i onal JUni t 4Spri ngCont ext Test s and
Abst ract Transact i onal Test NGSpri ngCont ext Test s provide convenience methods which
delegate to the aforementioned methods in JdbcTest Uti | s.

The spri ng-j dbc module provides support for configuring and launching an embedded database
which can be used in integration tests that interact with a database. For details, see Section 19.8,
“Embedded database support” and the section called “Testing data access logic with an embedded
database”.

15.4 Annotations

Spring Testing Annotations

The Spring Framework provides the following set of Spring-specific annotations that you can use in your
unit and integration tests in conjunction with the TestContext framework. Refer to the corresponding
javadocs for further information, including default attribute values, attribute aliases, and so on.

4.3.16.RELEASE Spring Framework 297

Spring Framework Reference Documentation

@BootstrapWith

@oot strapWth is a class-level annotation that is used to configure how the Spring
TestContext Framework is bootstrapped. Specifically, @oot st rapW't h is used to specify a custom
Test Cont ext Boot st rapper. Consult the Bootstrapping the TestContext framework section for
further details.

@ContextConfiguration

@cont ext Confi gur ati on defines class-level metadata that is used to determine how to load and
configure an Appl i cati onCont ext for integration tests. Specifically, @ont ext Confi gurati on
declares the application context resource | ocat i ons or the annotated cl asses that will be used to
load the context.

Resource locations are typically XML configuration files or Groovy scripts located in the classpath;
whereas, annotated classes are typically @Conf i gur at i on classes. However, resource locations can
also refer to files and scripts in the file system, and annotated classes can be component classes, etc.

@ont ext Confi guration("/test-config.xm")
public class Xm ApplicationContext Tests {
/1 class body. ..

}

@ont ext Confi guration(cl asses = Test Confi g.cl ass)
public class ConfigC assApplicationContext Tests {
/'l class body. ..

}

As an alternative or in addition to declaring resource locations or annotated classes,
@cont ext Confi gur ati on may be used to declare Appl i cati onContextlnitializer classes.

@ont ext Configuration(initializers = CustonContextlntializer.class)
public class ContextlnitializerTests {
/1 class body. ..

}

@cont ext Confi gur ati on may optionally be used to declare the Cont ext Loader strategy as well.
Note, however, that you typically do not need to explicitly configure the loader since the default loader
supports either resource | ocat i ons or annotated cl asses aswellasinitializers.

@ont ext Confi guration(locations = "/test-context.xm ", |oader = CustonContextLoader. cl ass)
public class Custonloader Xm Appl i cationContext Tests {

/1 class body. ..
}

Note

@Cont ext Conf i gurati on provides support for inheriting resource locations or configuration
classes as well as context initializers declared by superclasses by default.

See the section called “Context management” and the @ont ext Conf i gur at i on javadocs for further
details.

@WebAppConfiguration

@ebAppConfiguration is a class-level annotation that is used to declare that the
Appl i cati onCont ext loaded for an integration test should be a WebAppl i cati onCont ext .

4.3.16.RELEASE Spring Framework 298

Spring Framework Reference Documentation

The mere presence of @¥bAppConfiguration on a test class ensures that a
WebAppl i cati onCont ext will be loaded for the test, using the default value of "fi |l e: src/ mai n/
webapp" for the path to the root of the web application (i.e., the resource base path). The resource
base path is used behind the scenes to create a MockSer vl et Cont ext which serves as the
Ser vl et Cont ext for the test's WebAppl i cati onCont ext .

@ont ext Confi guration

@\ebAppConfi guration

public class WebAppTests {
/| class body...

}

To override the default, specify a different base resource path via the implicit val ue attribute. Both
cl asspat h: and fil e: resource prefixes are supported. If no resource prefix is supplied the path is
assumed to be a file system resource.

@ont ext Confi guration
@\ebAppConfi guration("cl asspat h: t est - web-resources")
public class WebAppTests {
/1 class body. ..
}

Note that @\bAppConfi gurati on must be used in conjunction with @ont ext Confi gur ati on,
either within a single test class or within a test class hierarchy. See the @ébAppConfi gurati on
javadocs for further details.

@ContextHierarchy

@cont ext Hi erarchy is a class-level annotation that is used to define a hierarchy of
Appl i cati onCont ext s for integration tests. @ont ext Hi er ar chy should be declared with a list
of one or more @ont ext Confi gur ati on instances, each of which defines a level in the context
hierarchy. The following examples demonstrate the use of @ont ext Hi er ar chy within a single test
class; however, @ont ext Hi er ar chy can also be used within a test class hierarchy.

@Cont ext Hi er ar chy({
@ont ext Configuration("/parent-config.xm"),
@ont ext Confi guration("/child-config.xm")
9]
public class ContextH erarchyTests {
/1 class body. ..
}

@\ebAppConfi guration

@ont ext Hi er ar chy({
@ont ext Confi gurati on(cl asses
@ont ext Confi gurati on(cl asses

AppConfi g. cl ass),
WebConfi g. cl ass)

9]
public class Wbl ntegrationTests {
/| class body. ..

}

If you need to merge or override the configuration for a given level of the context hierarchy within a test
class hierarchy, you must explicitly name that level by supplying the same value to the nane attribute in
@cont ext Confi gur at i on at each corresponding level in the class hierarchy. See the section called
“Context hierarchies” and the @ont ext Hi er ar chy javadocs for further examples.

@ActiveProfiles

@\ctiveProfiles is a class-level annotation that is used to declare which bean definition profiles
should be active when loading an Appl i cati onCont ext for an integration test.

4.3.16.RELEASE Spring Framework 299

Spring Framework Reference Documentation

@Cont ext Confi guration

@A\cti veProfiles("dev")

public class Devel operTests {
/1 class body. ..

}

@ont ext Confi guration

@\ctiveProfiles({"dev", "integration"})

public class Devel operlntegrationTests {
/'l class body. ..

}

Note

@\ctiveProfil es provides support for inheriting active bean definition profiles declared
by superclasses by default. It is also possible to resolve active bean definition profiles
programmatically by implementing a custom Act i vePr of i | esResol ver and registering it via
the r esol ver attribute of @Act i veProfi | es.

See the section called “Context configuration with environment profiles” and the @\ct i veProfil es
javadocs for examples and further details.

@TestPropertySource

@est PropertySour ce is a class-level annotation that is used to configure the locations of properties
files and inlined properties to be added to the set of Pr opert ySour ces in the Envi r onnment for an
Appl i cati onCont ext loaded for an integration test.

Test property sources have higher precedence than those loaded from the operating system’s
environment or Java system properties as well as property sources added by the application
declaratively via @r opert ySour ce or programmatically. Thus, test property sources can be used to
selectively override properties defined in system and application property sources. Furthermore, inlined
properties have higher precedence than properties loaded from resource locations.

The following example demonstrates how to declare a properties file from the classpath.

@Cont ext Confi guration
@est PropertySource("/test.properties")
public class MylIntegrationTests {
/1 class body. ..
}

The following example demonstrates how to declare inlined properties.

@ont ext Confi guration
@est PropertySource(properties = { "tinezone = GMI", "port: 4242" })
public class MylntegrationTests {
/1 class body. ..
}

@DirtiesContext

@i rti esCont ext indicates that the underlying Spring Appl i cati onCont ext has been dirtied
during the execution of a test (i.e., modified or corrupted in some manner — for example, by changing
the state of a singleton bean) and should be closed. When an application context is marked dirty, it
is removed from the testing framework’s cache and closed. As a consequence, the underlying Spring
container will be rebuilt for any subsequent test that requires a context with the same configuration
metadata.

4.3.16.RELEASE Spring Framework 300

Spring Framework Reference Documentation

@i rti esCont ext can be used as both a class-level and method-level annotation within the same
class or class hierarchy. In such scenarios, the Appl i cat i onCont ext is marked as dirty before or
after any such annotated method as well as before or after the current test class, depending on the
configured net hodMode and cl assMode.

The following examples explain when the context would be dirtied for various configuration scenarios:

» Before the current test class, when declared on a class with class mode set to BEFORE_CLASS.

@i rtiesContext (cl assMbde = BEFORE_CLASS)
public class FreshContextTests {
/'l some tests that require a new Spring container

}

 After the current test class, when declared on a class with class mode set to AFTER_CLASS (i.e., the
default class mode).

@i rti esCont ext
public class ContextDirtyingTests {
/'l some tests that result in the Spring container being dirtied

}

» Before each test method in the current test class, when declared on a class with class mode set to
BEFORE_EACH TEST_METHOD.

@i rtiesContext(classMde = BEFORE_EACH _TEST_METHOD)
public class FreshContextTests {
/'l some tests that require a new Spring container

}

» After each test method in the current test class, when declared on a class with class mode set to
AFTER EACH TEST METHOD.

@i rtiesContext(classMde = AFTER EACH TEST_METHOD)
public class ContextDirtyingTests {
/] sonme tests that result in the Spring container being dirtied

}

» Before the current test, when declared on a method with the method mode set to BEFORE_METHCOD.

@i rtiesCont ext (met hodMbde = BEFORE_METHOD)
@est
public void testProcessWi chRequiresFreshAppCt x() {
/'l some |ogic that requires a new Spring container

}

 After the current test, when declared on a method with the method mode set to AFTER_METHQOD (i.e.,
the default method mode).

@i rti esCont ext
@est
public void testProcessWichDirtiesAppCtx() {
/'l some logic that results in the Spring container being dirtied

}

If @i rtiesContext is used in a test whose context is configured as part of a context hierarchy via
@cont ext Hi er ar chy, the hi er ar chyMode flag can be used to control how the context cache is
cleared. By default an exhaustive algorithm will be used that clears the context cache including not only
the current level but also all other context hierarchies that share an ancestor context common to the
current test; all Appl i cat i onCont ext s that reside in a sub-hierarchy of the common ancestor context

4.3.16.RELEASE Spring Framework 301

Spring Framework Reference Documentation

will be removed from the context cache and closed. If the exhaustive algorithm is overkill for a particular
use case, the simpler current level algorithm can be specified instead, as seen below.

@ont ext Hi er ar chy({
@ont ext Confi guration("/parent-config.xm"),
@ont ext Confi guration("/child-config.xm")
9]
public class BaseTests {
/1 class body...

}
public class ExtendedTests extends BaseTests {

@est
@i rtiesContext (hi erarchyMde = CURRENT_LEVEL)
public void test() {
/'l sone logic that results in the child context being dirtied

}

For further details regarding the EXHAUSTIVE and CURRENT_LEVEL algorithms see the
Dirti esCont ext. H erarchyMode javadocs.

@TestExecutionListeners

@est Execut i onLi steners defines class-level metadata for configuring the
Test Execut i onLi st ener implementations that should be registered with the
Test Cont ext Manager . Typically, @west Executi onLi steners is used in conjunction with
@cont ext Confi gurati on.

@ont ext Confi guration
@est Execut i onLi st ener s({ Cust onfTest Execut i onLi stener. cl ass, Anot her Test Execut i onLi st ener. cl ass})
public class Custoniest ExecutionLi stenerTests {

/1 class body. ..

}

@est Execut i onLi st ener s supports inherited listeners by default. See the javadocs for an example
and further details.

@Commit

@onmmi t indicates that the transaction for a transactional test method should be committed after the
test method has completed. @onmmi t can be used as a direct replacement for @Rol | back(f al se)
in order to more explicitly convey the intent of the code. Analogous to @Rol | back, @onmi t may also
be declared as a class-level or method-level annotation.

@onni t

@est

public void testProcessWthoutRol | back() {
...

}
@Rollback

@Rol | back indicates whether the transaction for a transactional test method should be rolled back
after the test method has completed. If t r ue, the transaction is rolled back; otherwise, the transaction
is committed (see also @onmi t). Rollback semantics for integration tests in the Spring TestContext
Framework default to t r ue even if @Rol | back is not explicitly declared.

When declared as a class-level annotation, @Rol | back defines the default rollback semantics for all
test methods within the test class hierarchy. When declared as a method-level annotation, @0l | back

4.3.16.RELEASE Spring Framework 302

Spring Framework Reference Documentation

defines rollback semantics for the specific test method, potentially overriding class-level @Rol | back
or @onm t semantics.

@Rol | back(fal se)

@est

public void testProcessWthoutRol | back() {
...

}

@BeforeTransaction

@Bef or eTr ansact i on indicates that the annotated voi d method should be executed before
a transaction is started for test methods configured to run within a transaction via Spring's
@r ansact i onal annotation. As of Spring Framework 4.3, @ef or eTr ansact i on methods are not
required to be publ i ¢ and may be declared on Java 8 based interface default methods.

@Bef or eTr ansact i on
voi d beforeTransaction() {
/'l logic to be executed before a transaction is started

}

@AfterTransaction

@\fterTransaction indicates that the annotated voi d method should be executed after
a transaction is ended for test methods configured to run within a transaction via Spring's
@Tr ansacti onal annotation. As of Spring Framework 4.3, @\f t er Tr ansact i on methods are not
required to be publ i ¢ and may be declared on Java 8 based interface default methods.

@\t er Transacti on
void afterTransaction() {
/1 logic to be executed after a transaction has ended

}

@sql

@5ql is used to annotate a test class or test method to configure SQL scripts to be executed against
a given database during integration tests.

@est
@ql ({"/test-schema.sql", "/test-user-data.sql"})
public void userTest {
/| execute code that relies on the test schenma and test data

}
See the section called “Executing SQL scripts declaratively with @Sql” for further details.
@SqlConfig

@ql Confi g defines metadata that is used to determine how to parse and execute SQL scripts
configured via the @ql annotation.

@est
@l (
scripts = "/test-user-data.sql",
config = @Bql Config(comentPrefix = """, separator = "@d)

)

public void userTest {
/| execute code that relies on the test data

}

4.3.16.RELEASE Spring Framework 303

Spring Framework Reference Documentation

@SqlGroup

@ql Group is a container annotation that aggregates several @qgl annotations. @ql G- oup can be
used natively, declaring several nested @ql annotations, or it can be used in conjunction with Java
8's support for repeatable annotations, where @ql can simply be declared several times on the same
class or method, implicitly generating this container annotation.

@est

@l Group({
@ql (scripts = "/test-schema. sql ", config = @ql Config(comentPrefix =" "))
@0l ("/test-user-data.sqgl")

)}
public void userTest {
/| execute code that uses the test schena and test data

}

Standard Annotation Support

The following annotations are supported with standard semantics for all configurations of the Spring
TestContext Framework. Note that these annotations are not specific to tests and can be used anywhere
in the Spring Framework.

e @\ut ow red

e @ualifier

e @Resour ce (javax.annotation) if JSR-250 is present

* @mnagedBean (javax.annotation) if JSR-250 is present

* @ nj ect (javax.inject) if ISR-330 is present

e @\anmed (javax.inject) if JSR-330 is present

» @er si st enceCont ext (javax.persistence) if JPA is present
» @ersistenceUnit (javax.persistence) if JPA is present

e @Required

e @ransacti onal

JSR-250 Lifecycle Annotations

In the Spring TestContext Framework @ost Const ruct and @r eDest r oy may be used with
standard semantics on any application components configured in the Appl i cat i onCont ext ;
however, these lifecycle annotations have limited usage within an actual test class.

If a method within a test class is annotated with @Post Const r uct , that method will be executed
before any before methods of the underlying test framework (e.g., methods annotated with JUnit
4's @ef or e), and that will apply for every test method in the test class. On the other hand, if a
method within a test class is annotated with @r eDest r oy, that method will never be executed.
Within a test class it is therefore recommended to use test lifecycle callbacks from the underlying
test framework instead of @ost Const ruct and @°r eDest r oy.

4.3.16.RELEASE Spring Framework 304

Spring Framework Reference Documentation

Spring JUnit 4 Testing Annotations

The following annotations are only supported when used in conjunction with the SpringRunner, Spring’s
JUnit rules, or Spring’s JUnit 4 support classes.

@IfProfilevValue

@ f Profil evVal ue indicates that the annotated test is enabled for a specific testing environment. If
the configured Pr of i | eVal ueSour ce returns a matching val ue for the provided nane, the test is
enabled. Otherwise, the test will be disabled and effectively ignored.

@ f Profil eVal ue can be applied at the class level, the method level, or both. Class-level usage of
@f Profil eval ue takes precedence over method-level usage for any methods within that class or
its subclasses. Specifically, a test is enabled if it is enabled both at the class level and at the method
level; the absence of @ f Pr of i | eVal ue means the test is implicitly enabled. This is analogous to the
semantics of JUnit 4's @ gnor e annotation, except that the presence of @ gnor e always disables a
test.

@f Profil evVal ue(nane="j ava. vendor", val ue="Oracl e Corporation")
@est
public void testProcessWi chRunsOnl yOnOr acl eJvn() {
/'l sone |ogic that should run only on Java VMs from Oracl e Corporation

}

Alternatively, you can configure @ f Pr of i | eVal ue with a list of val ues (with OR semantics) to
achieve TestNG-like support for test groups in a JUnit 4 environment. Consider the following example:

@f Profil eVal ue(nane="test-groups", values={"unit-tests", "integration-tests"})
@est
public void testProcessWi chRunsFor Unit Ol ntegrationTest Goups() {

/1 sone logic that should run only for unit and integration test groups

}
@ProfileValueSourceConfiguration

@r of i | eVal ueSour ceConfi gurati on is a class-level annotation that specifies what type
of Profil eVal ueSource to use when retrieving profile values configured through the
@ f Profi |l eVal ue annotation. If @r of i | eVal ueSour ceConf i gur at i on is not declared for a test,
Syst enProf i | eVal ueSour ce is used by default.

@r of i | eVal ueSour ceConfi gur ati on(Cust onProf i | eVal ueSour ce. cl ass)
public class CustonProfileVal ueSourceTests {

/1 class body...
}

@Timed

@i med indicates that the annotated test method must finish execution in a specified time period (in
milliseconds). If the text execution time exceeds the specified time period, the test fails.

The time period includes execution of the test method itself, any repetitions of the test (see @Repeat),
as well as any set up or tear down of the test fixture.

@imed(m |l lis=1000)
public void testProcessWthOneSecondTi neout () {
/'l sonme |ogic that should not take |onger than 1 second to execute

}

4.3.16.RELEASE Spring Framework 305

Spring Framework Reference Documentation

Spring’s @i ned annotation has different semantics than JUnit 4's @est (ti neout =..) support.
Specifically, due to the manner in which JUnit 4 handles test execution timeouts (that is, by executing
the test method in a separate Thr ead), @est (ti meout =..) preemptively fails the test if the test takes
too long. Spring’s @i ned, on the other hand, does not preemptively fail the test but rather waits for
the test to complete before failing.

@Repeat

@repeat indicates that the annotated test method must be executed repeatedly. The number of times
that the test method is to be executed is specified in the annotation.

The scope of execution to be repeated includes execution of the test method itself as well as any set
up or tear down of the test fixture.

@Repeat (10)

@rest

public void testProcessRepeatedl y() {
...

}

Meta-Annotation Support for Testing

It is possible to use most test-related annotations as meta-annotations in order to create custom
composed annotations and reduce configuration duplication across a test suite.

Each of the following may be used as meta-annotations in conjunction with the TestContext framework.

e @ootstrapWth

e @Cont ext Configuration
e @Cont ext Hi erarchy

e @\ctiveProfiles

» @est PropertySource

* @irtiesContext

» @\ébAppConfi guration
* @est ExecutionLi steners
e @ransacti onal

o @eforeTransaction

e @XfterTransaction

e @Conmmi t

@0l | back

. @ql

e @ql Config

« @ql Goup

e @Repeat

4.3.16.RELEASE Spring Framework 306

Spring Framework Reference Documentation

e @ined
e @fProfileVal ue
e @rofil eVal ueSour ceConfiguration

For example, if we discover that we are repeating the following configuration across our JUnit 4 based
test suite...

@RunW t h(Spri ngRunner . cl ass)

@ont ext Confi guration({"/app-config.xm", "/test-data-access-config.xm"})
@\ctiveProfiles("dev")

@r ansact i onal

public class OrderRepositoryTests { }

@RunW t h(Spri ngRunner . cl ass)

@ont ext Confi guration({"/app-config.xm", "/test-data-access-config.xm"})
@\ctiveProfiles("dev")

@r ansact i onal

public class UserRepositoryTests { }

We can reduce the above duplication by introducing a custom composed annotation that centralizes
the common test configuration like this:

@ar get (El ement Type. TYPE)

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ont ext Configuration({"/app-config.xm", "/test-data-access-config.xm"})
@A\cti veProfiles("dev")

@r ansacti onal

public @nterface Transactional DevTest { }

Then we can use our custom @r ansacti onal DevTest annotation to simplify the configuration of
individual test classes as follows:

@unW t h(SpringRunner. cl ass)
@r ansacti onal DevTest
public class O derRepositoryTests { }

@RunW t h(SpringRunner. cl ass)
@r ansact i onal DevTest
public class UserRepositoryTests { }

For further details, consult the Spring Annotation Programming Model.

15.5 Spring TestContext Framework

The Spring TestContext Framework (located in the org. springfranmework.test. context
package) provides generic, annotation-driven unit and integration testing support that is agnostic of
the testing framework in use. The TestContext framework also places a great deal of importance on
convention over configuration with reasonable defaults that can be overridden through annotation-based
configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support for JUnit
4 and TestNG in the form of abst ract support classes. For JUnit 4, Spring also provides a custom
JUnit Runner and custom JUnit Rul es that allow one to write so-called POJO test classes. POJO test
classes are not required to extend a particular class hierarchy.

The following section provides an overview of the internals of the TestContext framework. If you are
only interested in using the framework and not necessarily interested in extending it with your own

4.3.16.RELEASE Spring Framework 307

Spring Framework Reference Documentation

custom listeners or custom loaders, feel free to go directly to the configuration (context management,
dependency injection, transaction management), support classes, and annotation support sections.

Key abstractions

The core of the framework consists of the Test Cont ext Manager class and the Test Cont ext ,
Test Executi onLi st ener, and Smart Cont ext Loader interfaces. A Test Cont ext Manager is
created per test class (e.qg., for the execution of all test methods within a single test class in JUnit 4). The
Test Cont ext Manager in turn manages a Test Cont ext that holds the context of the current test.
The Test Cont ext Manager also updates the state of the Test Cont ext as the test progresses and
delegates to Test Execut i onLi st ener implementations, which instrument the actual test execution
by providing dependency injection, managing transactions, and so on. A Snart Cont ext Loader is
responsible for loading an Appl i cat i onCont ext for a given test class. Consult the javadocs and the
Spring test suite for further information and examples of various implementations.

TestContext

Test Cont ext encapsulates the context in which a test is executed, agnostic of the actual testing
framework in use, and provides context management and caching support for the test instance for
which it is responsible. The Test Cont ext also delegates to a Snart Cont ext Loader to load an
Appl i cati onCont ext if requested.

TestContextManager

Test Cont ext Manager is the main entry pointinto the Spring TestContext Framework, which manages
a single Test Cont ext and signals events to each registered Test Execut i onLi st ener at well-
defined test execution points:

* prior to any before class or before all methods of a particular testing framework

test instance post-processing

« prior to any before or before each methods of a particular testing framework
« after any after or after each methods of a particular testing framework

* after any after class or after all methods of a particular testing framework
TestExecutionListener

Test Execut i onLi st ener defines the APl for reacting to test execution events published
by the Test Cont ext Manager with which the listener is registered. See the section called
“TestExecutionListener configuration”.

Context Loaders

Cont ext Loader is a strategy interface that was introduced in Spring 2.5 for loading an
Appl i cati onCont ext for an integration test managed by the Spring TestContext Framework.
Implement Snart Cont ext Loader instead of this interface in order to provide support for
annotated classes, active bean definition profiles, test property sources, context hierarchies, and
WebAppl i cati onCont ext support.

Smar t Cont ext Loader is an extension of the Cont ext Loader interface introduced in Spring 3.1.
The Smar t Cont ext Loader SPI supersedes the Cont ext Loader SPI that was introduced in Spring

4.3.16.RELEASE Spring Framework 308

Spring Framework Reference Documentation

2.5. Specifically, a Smart Cont ext Loader can choose to process resource | ocat i ons, annotated
cl asses, or context i nitializers. Furthermore, a Smart Cont ext Loader can set active bean
definition profiles and test property sources in the context that it loads.

Spring provides the following implementations:

» Del egati ngSmart Cont ext Loader: one of two default loaders which delegates
internally to an Annot at i onConf i gCont ext Loader, a Generi cXnl Cont ext Loader, or a
Generi cG oovyXm Cont ext Loader depending either on the configuration declared for the test
class or on the presence of default locations or default configuration classes. Groovy support is only
enabled if Groovy is on the classpath.

» WebDel egat i ngSmar t Cont ext Loader : one of two default loaders which delegates internally
to an Annot ati onConfi gWebCont ext Loader, a Generi cXm WebCont ext Loader, or a
Generi cG oovyXm WebCont ext Loader depending either on the configuration declared for
the test class or on the presence of default locations or default configuration classes. A web
Cont ext Loader will only be used if @\¥bAppConf i gur ati on is present on the test class. Groovy
support is only enabled if Groovy is on the classpath.

» Annot at i onConf i gCont ext Loader : loads a standard Appl i cati onCont ext from annotated
classes.

* Annot at i onConf i gWebCont ext Loader : loads a WebAppl i cati onCont ext from annotated
classes.

* Generi cG oovyXm Cont ext Loader : loads a standard Appl i cati onCont ext from resource
locations that are either Groovy scripts or XML configuration files.

e GenericG oovyXm WebCont ext Loader: loads a WebAppl i cati onCont ext from resource
locations that are either Groovy scripts or XML configuration files.

e Generi cXnl Cont ext Loader: loads a standard Appli cati onContext from XML resource
locations.

e Generi cXnml WebCont ext Loader: loads a WebApplicati onContext from XML resource
locations.

e GenericPropertiesCont ext Loader: loads a standard Applicati onContext from Java
Properties files.

Bootstrapping the TestContext framework

The default configuration for the internals of the Spring TestContext Framework is sufficient for all
common use cases. However, there are times when a development team or third party framework would
like to change the default Cont ext Loader , implement a custom Test Cont ext or Cont ext Cache,
augment the default sets of Context Custom zerFactory and Test Executi onlLi st ener
implementations, etc. For such low level control over how the TestContext framework operates, Spring
provides a bootstrapping strategy.

Test Cont ext Boot st rapper defines the SPI for bootstrapping the TestContext framework.
A Test Cont ext Boot strapper is used by the TestContextManager to load the
Test Execut i onLi st ener implementations for the current test and to build the Test Cont ext
that it manages. A custom bootstrapping strategy can be configured for a test class (or test
class hierarchy) via @Boot st rapW t h, either directly or as a meta-annotation. If a bootstrapper is

4.3.16.RELEASE Spring Framework 309

Spring Framework Reference Documentation

not explicitly configured via @oot strapW t h, either the Def aul t Test Cont ext Boot st r apper
or the WebTest Cont ext Boot strapper will be used, depending on the presence of
@\bAppConfi guration.

Since the Test Cont ext Boot st r apper SPI is likely to change in the future in order to accommodate
new requirements, implementers are strongly encouraged not to implement this interface directly but
rather to extend Abst r act Test Cont ext Boot st r apper or one of its concrete subclasses instead.

TestExecutionListener configuration

Spring provides the following Test Executi onLi st ener implementations that are registered by
default, exactly in this order.

» Servl et Test Executi onLi st ener: configures Servlet API mocks for a
WebAppl i cati onCont ext

 DirtiesCont ext Bef oreModesTest Executi onLi stener: handles the @i rti esCont ext
annotation for before modes

» Dependencyl nj ecti onTest Executi onLi st ener: provides dependency injection for the test
instance

 DirtiesContext Test Executi onLi st ener:handlesthe @i rti esCont ext annotation for after
modes

e Transacti onal Test Executi onLi st ener: provides transactional test execution with default
rollback semantics

e Sql Scri pt sTest Executi onLi st ener : executes SQL scripts configured via the @ql annotation
Registering custom TestExecutionListeners

Custom Test Executi onLi steners can be registered for a test class and its subclasses
via the @est Executi onLi st eners annotation. See annotation support and the javadocs for
@est Executi onLi st ener s for details and examples.

Automatic discovery of default TestExecutionListeners

Registering custom Test Executi onlLi st eners via @est Executi onLi st eners is suitable for
custom listeners that are used in limited testing scenarios; however, it can become cumbersome if
a custom listener needs to be used across a test suite. Since Spring Framework 4.1, this issue is
addressed via support for automatic discovery of default Test Execut i onLi st ener implementations
via the Spri ngFact ori esLoader mechanism.

Specifically, the spri ng-t est module declares all core default Test Execut i onLi st ener s under
the org. spri ngframework. t est. cont ext. Test Executi onLi st ener key in its META- | NF/
spring. factori es properties file. Third-party frameworks and developers can contribute their own
Test Execut i onLi st ener s to the list of default listeners in the same manner via their own META-
I NF/ spring. factori es properties file.

Ordering TestExecutionListeners

When the TestContext framework discovers default Test Executi onLi steners via the
aforementioned Spri ngFact ori esLoader mechanism, the instantiated listeners are sorted
using Spring’s Annot at i onAwar eOr der Conpar at or which honors Spring’s Or der ed interface

4.3.16.RELEASE Spring Framework 310

Spring Framework Reference Documentation

and @ der annotation for ordering. Abstract Test ExecutionLi stener and all default
Test Execut i onLi st eners provided by Spring implement Ordered with appropriate values.
Third-party frameworks and developers should therefore make sure that their default
Test Execut i onLi st eners are registered in the proper order by implementing O dered or
declaring @ der. Consult the javadocs for the get Order() methods of the core default
Test Execut i onLi st ener s for details on what values are assigned to each core listener.

Merging TestExecutionListeners

If a custom Test Execut i onLi st ener is registered via @est Execut i onLi st ener s, the default
listeners will not be registered. In most common testing scenarios, this effectively forces the developer
to manually declare all default listeners in addition to any custom listeners. The following listing
demonstrates this style of configuration.

@ont ext Confi guration
@est Execut i onLi st eners({
My/Cust onTTest Execut i onLi st ener. cl ass,
Ser vl et Test Execut i onLi st ener. cl ass,
Di rti esCont ext Bef or eMbdesTest Execut i onLi st ener . cl ass,
Dependencyl nj ecti onTest Execut i onLi st ener. cl ass,
Di rti esCont ext Test Executi onLi st ener. cl ass,
Tr ansact i onal Test Executi onLi st ener. cl ass,
Sql Scri pt sTest Execut i onLi st ener. cl ass
b
public class MyTest {
/1 class body. ..

}

The challenge with this approach is that it requires that the developer know exactly which listeners
are registered by default. Moreover, the set of default listeners can change from release to
release — for example, Sql Scri pt sTest Execut i onLi st ener was introduced in Spring Framework
4.1, and DirtiesCont ext Bef oreMbdesTest Executi onLi st ener was introduced in Spring
Framework 4.2. Furthermore, third-party frameworks like Spring Security register their own default
Test Execut i onLi st ener s via the aforementioned automatic discovery mechanism.

To avoid having to be aware of and re-declare all default listeners, the mergeMde
attribute of @est Executi onLi steners can be set to MergeMdde. MERGE W TH_DEFAULTS.
MERGE_W TH_DEFAULTS indicates that locally declared listeners should be merged with the default
listeners. The merging algorithm ensures that duplicates are removed from the list and that the resulting
set of merged listeners is sorted according to the semantics of Annot at i onAwar eOr der Conpar at or
as described in the section called “Ordering TestExecutionListeners”. If a listener implements Or der ed
or is annotated with @ der it can influence the position in which it is merged with the defaults;
otherwise, locally declared listeners will simply be appended to the list of default listeners when merged.

For example, if the MyCust onilfest Execut i onLi st ener class in the previous example configures its
or der value (for example, 500) to be less than the order of the Ser vl et Test Execut i onLi st ener
(which happens to be 1000), the MyCust onTTest Execut i onLi st ener can then be automatically
merged with the list of defaults in front of the Ser vl et Test Execut i onLi st ener, and the previous
example could be replaced with the following.

@ont ext Confi gurati on
@est Execut i onLi st ener s(
|isteners = MyCust onTest Executi onLi st ener. cl ass,
mer geMbde = MERGE_W TH_DEFAULTS
)
public class MyTest {
/1 class body. ..
}

4.3.16.RELEASE Spring Framework 311

Spring Framework Reference Documentation

Context management

Each Test Cont ext provides context management and caching support for the test instance
it is responsible for. Test instances do not automatically receive access to the configured
Appl i cati onCont ext. However, if a test class implements the Appli cati onCont ext Awar e
interface, a reference to the ApplicationContext is supplied to the test instance.
Note that Abst ract JUni t 4Spri ngCont ext Test s and Abst r act Test NGSpr i ngCont ext Test s
implement Appl i cat i onCont ext Awar e and therefore provide access to the Appl i cat i onCont ext
automatically.

@Autowired ApplicationContext

As an alternative to implementing the Appl i cat i onCont ext Awar e interface, you can inject the
application context for your test class through the @\ut owi r ed annotation on either a field or
setter method. For example:

@unW t h(SpringRunner. cl ass)
@ont ext Confi guration
public class MyTest {

@\ut owi r ed
private ApplicationContext applicationContext;

/1 class body. ..

Similarly, if your test is configured to load a WebAppl i cat i onCont ext , you can inject the web
application context into your test as follows:

@unW t h(SpringRunner. cl ass)
@\ebAppConfiguration
@ont ext Confi guration
public class MyWebAppTest {
@\ut owi r ed
private WebApplicationContext wac;

/1 class body...

Dependency injection via @\ut owi red is provided by the
Dependencyl nj ecti onTest Execut i onLi st ener which is configured by default (see the
section called “Dependency injection of test fixtures”).

Test classes that use the TestContext framework do not need to extend any particular class or implement
a specific interface to configure their application context. Instead, configuration is achieved simply
by declaring the @ont ext Confi gur ati on annotation at the class level. If your test class does
not explicitly declare application context resource | ocat i ons or annotated cl asses, the configured
Cont ext Loader determines how to load a context from a default location or default configuration
classes. In addition to context resource | ocat i ons and annotated cl asses, an application context
can also be configured via application contexti niti al i zers.

The following sections explain how to configure an Appl i cat i onCont ext via XML configuration files,
Groovy scripts, annotated classes (typically @Conf i gur ati on classes), or context initializers using
Spring’s @ont ext Conf i gur at i on annotation. Alternatively, you can implement and configure your
own custom Snar t Cont ext Loader for advanced use cases.

4.3.16.RELEASE Spring Framework 312

Spring Framework Reference Documentation

Context configuration with XML resources

To load an Appl i cati onCont ext for your tests using XML configuration files, annotate your test
class with @ont ext Confi gurati on and configure the | ocati ons attribute with an array that
contains the resource locations of XML configuration metadata. A plain or relative path — for example
"cont ext . xm " —will be treated as a classpath resource that is relative to the package in which the
test class is defined. A path starting with a slash is treated as an absolute classpath location, for example
"/ orgl/ exanpl e/ confi g. xm ". A path which represents a resource URL (i.e., a path prefixed with
classpath:,file:,http:, etc.)wil be used as is.

@RunW t h(Spri ngRunner. cl ass)
/1 ApplicationContext will be |oaded from"/app-config.xm" and
/1 "/test-config.xm" in the root of the classpath
@Cont ext Confi guration(l ocati ons={"/app-config.xm", "/test-config.xm"})
public class MyTest {
/1 class body. ..

}

@Cont ext Conf i gur at i on supports an alias for the | ocat i ons attribute through the standard Java
val ue attribute. Thus, if you do not need to declare additional attributes in @ont ext Confi gurati on,
you can omit the declaration of the | ocat i ons attribute name and declare the resource locations by
using the shorthand format demonstrated in the following example.

@unW t h(Spri ngRunner. cl ass)
@Cont ext Confi guration({"/app-config.xm", "/test-config.xm"})
public class MyTest {
/1 class body. ..
}

If you omit both the | ocations and val ue attributes from the @Cont ext Confi gurati on
annotation, the TestContext framework will attempt to detect a default XML resource location.
Specifically, Generi cXnl Cont ext Loader and Generi cXm WebCont ext Loader detect a default
location based on the name of the test class. If your class is hamed com exanpl e. MyTest,
CGeneri cXm Cont ext Loader loads your application context from "cl asspat h: com exanpl e/
MyTest - cont ext . xmi .

package com exanpl e;

@RunW t h(Spri ngRunner. cl ass)
/'l ApplicationContext will be |oaded from
/1 "cl asspat h: conf exanpl e/ MyTest - cont ext . xm "
@ont ext Confi guration
public class MyTest {
/| class body...
}

Context configuration with Groovy scripts

To load an Appl i cati onCont ext for your tests using Groovy scripts that utilize the Groovy Bean
Definition DSL, annotate your test class with @ont ext Conf i gur at i on and configure thel ocati ons
or val ue attribute with an array that contains the resource locations of Groovy scripts. Resource lookup
semantics for Groovy scripts are the same as those described for XML configuration files.

Enabling Groovy script support

Support for using Groovy scripts to load an Appl i cat i onCont ext in the Spring TestContext
Framework is enabled automatically if Groovy is on the classpath.

4.3.16.RELEASE Spring Framework 313

Spring Framework Reference Documentation

@RunW t h(Spri ngRunner . cl ass)
/1 ApplicationContext will be |oaded from"/AppConfig.groovy" and
/1 "/ Test Config.groovy" in the root of the classpath
@ront ext Confi guration({"/AppConfig.groovy", "/TestConfig.G oovy"})
public class MyTest {

/'l class body. ..

}

If you omit both the | ocations and val ue attributes from the @Cont ext Confi gurati on
annotation, the TestContext framework will attempt to detect a default Groovy script. Specifically,
Generi cG oovyXnl Cont ext Loader and GCenericG oovyXnm WebCont ext Loader detect a
default location based on the name of the test class. If your class is named com exanpl e. MyTest ,
the Groovy context loader will load your application context from "cl asspat h: com exanpl e/
MyTest Cont ext . gr oovy".

package com exanpl e;

@RunW t h(Spri ngRunner . cl ass)
/'l ApplicationContext will be |oaded from
/1 "cl asspat h: cont exanpl e/ MyTest Cont ext . gr oovy"
@ront ext Confi guration
public class MyTest {
/] class body. ..

}

Declaring XML config and Groovy scripts simultaneously

Both XML configuration files and Groovy scripts can be declared simultaneously via the
| ocati ons or val ue attribute of @ont ext Confi gurati on. If the path to a configured
resource location ends with . xm it will be loaded using an Xm BeanDefi ni ti onReader ;
otherwise it will be loaded using a G- oovyBeanDefi ni t i onReader.

The following listing demonstrates how to combine both in an integration test.

@RunW t h(Spri ngRunner . cl ass)
/1 ApplicationContext will be |oaded from
/1 "lapp-config.xm" and "/ Test Config.groovy"
@ont ext Confi guration({ "/app-config.xm", "/TestConfig.groovy" })
public class MyTest {
/1 class body. ..

}

Context configuration with annotated classes

To load an Applicati onCont ext for your tests using annotated classes (see Section 7.12,
“Java-based container configuration”), annotate your test class with @ont ext Confi gur ati on and
configure the cl asses attribute with an array that contains references to annotated classes.

@RunW t h(Spri ngRunner . cl ass)
/'l ApplicationContext will be | oaded from AppConfig and Test Config
@ont ext Confi guration(cl asses = {AppConfi g.cl ass, TestConfig.class})
public class MyTest {

/1 class body. ..

}

Annotated Classes
The term annotated class can refer to any of the following.

» A class annotated with @onfi gurati on

4.3.16.RELEASE Spring Framework 314

Spring Framework Reference Documentation

« A component (i.e., a class annotated with @Conponent , @er vi ce, @Reposi t ory, etc.)
e A JSR-330 compliant class that is annotated with j avax. i nj ect annotations
» Any other class that contains @ean-methods

Consult the javadocs of @onfi gurati on and @ean for further information regarding the
configuration and semantics of annotated classes, paying special attention to the discussion of
"@Bean’ Lite Mode.

If you omit the cl asses attribute from the @ont ext Confi gur ati on annotation, the TestContext
framework will attempt to detect the presence of default configuration classes. Specifically,
Annot at i onConf i gCont ext Loader and Annot at i onConf i g\WebCont ext Loader will detect all
static nested classes of the test class that meet the requirements for configuration class
implementations as specified in the @onfi gurati on javadocs. In the following example, the
Or der Servi ceTest class declares a st at i ¢ nested configuration class named Conf i g that will be
automatically used to load the Appl i cati onCont ext for the test class. Note that the name of the
configuration class is arbitrary. In addition, a test class can contain more than one st ati ¢ nested
configuration class if desired.

@unW t h(SpringRunner. cl ass)

/'l ApplicationContext will be |oaded fromthe
/] static nested Config class

@ont ext Confi guration

public class OrderServiceTest {

@onfiguration
static class Config {

/1 this bean will be injected into the OrderServiceTest class
@Bean
public OrderService orderService() {

Order Service orderService = new Order Servicelnpl ();

/| set properties, etc.

return order Service;

}

@\ut owi r ed
private OrderService orderService;

@rest
public void testOrderService() {
// test the orderService

}

Mixing XML, Groovy scripts, and annotated classes

It may sometimes be desirable to mix XML configuration files, Groovy scripts, and annotated classes
(i.e., typically @onfi guration classes) to configure an Appli cati onCont ext for your tests.
For example, if you use XML configuration in production, you may decide that you want to use
@confi gur ati on classes to configure specific Spring-managed components for your tests, or vice
versa.

Furthermore, some third-party frameworks (like Spring Boot) provide first-class support for loading an
Appl i cati onCont ext from different types of resources simultaneously (e.g., XML configuration files,
Groovy scripts, and @onf i gur at i on classes). The Spring Framework historically has not supported

4.3.16.RELEASE Spring Framework 315

Spring Framework Reference Documentation

this for standard deployments. Consequently, most of the Smar t Cont ext Loader implementations
that the Spring Framework delivers in the spri ng-t est module support only one resource type per
test context; however, this does not mean that you cannot use both. One exception to the general
rule is that the Gener i cG oovyXnm Cont ext Loader and Generi cG oovyXnm WebCont ext Loader
support both XML configuration files and Groovy scripts simultaneously. Furthermore, third-
party frameworks may choose to support the declaration of both | ocati ons and cl asses via
@cont ext Confi gur at i on, and with the standard testing support in the TestContext framework, you
have the following options.

If you want to use resource locations (e.g., XML or Groovy) and @Conf i gur at i on classes to configure
your tests, you will have to pick one as the entry point, and that one will have to include or import the
other. For example, in XML or Groovy scripts you can include @onf i gur at i on classes via component
scanning or define them as normal Spring beans; whereas, in a @onfi gurati on class you can
use @ nport Resour ce to import XML configuration files or Groovy scripts. Note that this behavior is
semantically equivalent to how you configure your application in production: in production configuration
you will define either a set of XML or Groovy resource locations or a set of @onf i gur ati on classes
that your production Appl i cati onCont ext will be loaded from, but you still have the freedom to
include or import the other type of configuration.

Context configuration with context initializers

To configure an Appl i cati onCont ext for your tests using context initializers, annotate your test
class with @ont ext Conf i gur at i on and configure the i ni ti al i zer s attribute with an array that
contains references to classes that implement Appl i cati onContextlnitializer. The declared
context initializers will then be used to initialize the Confi gur abl eAppl i cati onCont ext that is
loaded for your tests. Note that the concrete Confi gur abl eAppl i cati onCont ext type supported
by each declared initializer must be compatible with the type of Appl i cati onCont ext created by
the Smart Cont ext Loader in use (i.e., typically a Generi cAppl i cati onCont ext). Furthermore,
the order in which the initializers are invoked depends on whether they implement Spring’s Or der ed
interface or are annotated with Spring’s @ der annotation or the standard @°r i or i t y annotation.

@unW t h(Spri ngRunner. cl ass)
/| ApplicationContext will be |oaded from Test Config
/1 and initialized by Test AppCtxInitializer
@ont ext Confi gurati on(

cl asses = Test Config.cl ass,

initializers = TestAppCixlnitializer.class)
public class MyTest {

/] class body. ..

}

It is also possible to omit the declaration of XML configuration files, Groovy scripts,
or annotated classes in @ontext Configuration entirely and instead declare only
ApplicationContextlInitializer classes which are then responsible for registering beans in the
context — for example, by programmatically loading bean definitions from XML files or configuration
classes.

@unW t h(SpringRunner. cl ass)
/1 ApplicationContext will be initialized by EntireApplnitializer
/1 which presunably registers beans in the context
@Cont ext Configuration(initializers = EntireApplnitializer.class)
public class MyTest {

/1 class body. ..

}

4.3.16.RELEASE Spring Framework 316

Spring Framework Reference Documentation

Context configuration inheritance

@cont ext Confi gur ati on supports boolean i nheritlLocations and inheritlnitializers
attributes that denote whether resource locations or annotated classes and context initializers declared
by superclasses should be inherited. The default value for both flags is t r ue. This means that a test
class inherits the resource locations or annotated classes as well as the context initializers declared by
any superclasses. Specifically, the resource locations or annotated classes for a test class are appended
to the list of resource locations or annotated classes declared by superclasses. Similarly, the initializers
for a given test class will be added to the set of initializers defined by test superclasses. Thus, subclasses
have the option of extending the resource locations, annotated classes, or context initializers.

Ifthei nheritLocationsorinheritlnitializers attributein @Cont ext Confi gur ati on is set
to f al se, the resource locations or annotated classes and the context initializers, respectively, for the
test class shadow and effectively replace the configuration defined by superclasses.

In the following example that uses XML resource locations, the ApplicationContext for
Ext endedTest will be loaded from "base-config.xml* and "extended-config.xml", in that order.
Beans defined in "extended-config.xml" may therefore override (i.e., replace) those defined in "base-
config.xml".

@unW t h(SpringRunner. cl ass)
/'l ApplicationContext will be |oaded from"/base-config.xn"
/1 in the root of the classpath
@Cont ext Confi guration("/base-config.xm")
public class BaseTest {
/1 class body. ..
}

/'l ApplicationContext will be |oaded from"/base-config.xnm" and
/'l "/ extended-config.xm" in the root of the classpath
@ont ext Confi guration("/ext ended-config.xm ")
public class ExtendedTest extends BaseTest {
/1 class body. ..
}

Similarly, in the following example that uses annotated classes, the Appli cati onCont ext for
Ext endedTest will be loaded from the BaseConfig and ExtendedConfi g classes, in that
order. Beans defined in Ext endedConfi g may therefore override (i.e., replace) those defined in
BaseConfi g.

@unW 't h(Spri ngRunner . cl ass)
/'l ApplicationContext will be | oaded from BaseConfig
@ront ext Confi guration(cl asses = BaseConfig.cl ass)
public class BaseTest {

/] class body. ..
}

/1 ApplicationContext will be |oaded from BaseConfig and ExtendedConfig
@Cont ext Confi guration(cl asses = Ext endedConfi g. cl ass)
public class ExtendedTest extends BaseTest {
/] class body. ..
}

In the following example that uses context initializers, the Appl i cat i onCont ext for Ext endedTest
will be initialized using Basel niti al i zer and Ext endedl niti al i zer. Note, however, that the
order in which the initializers are invoked depends on whether they implement Spring’'s Or der ed
interface or are annotated with Spring’s @ der annotation or the standard @°r i ori t y annotation.

4.3.16.RELEASE Spring Framework 317

Spring Framework Reference Documentation

@RunW t h(Spri ngRunner . cl ass)
/1 ApplicationContext will be initialized by Baselnitializer
@ont ext Configuration(initializers = Baselnitializer.class)
public class BaseTest {

/| class body. ..
}

/1 ApplicationContext will be initialized by Baselnitializer
/1 and Extendedlnitializer
@ont ext Configuration(initializers = Extendedlnitializer.class)
public class ExtendedTest extends BaseTest {
/1 class body. ..
}

Context configuration with environment profiles

Spring 3.1 introduced first-class support in the framework for the notion of environments and profiles
(a.k.a., bean definition profiles), and integration tests can be configured to activate particular bean
definition profiles for various testing scenarios. This is achieved by annotating a test class with the
@\cti veProfil es annotation and supplying a list of profiles that should be activated when loading
the Appl i cati onCont ext for the test.

Note

@\ctiveProfil es may be used with any implementation of the new Smar t Cont ext Loader
SPI, but @Act i vePr of i | es is not supported with implementations of the older Cont ext Loader
SPI.

Let's take a look at some examples with XML configuration and @onf i gur at i on classes.

4.3.16.RELEASE Spring Framework 318

Spring Framework Reference Documentation

<l-- app-config.xm -->

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:jdbc="http://ww.springfranmework. org/ schema/jdbc"
xm ns: j ee="http://ww. springfranmework. org/ schenma/ j ee"
xsi : schenalLocation="...">

<bean id="transfer Service"
cl ass="com bank. servi ce. i nternal . Def aul t Transf er Servi ce" >
<constructor-arg ref="account Repository"/>
<constructor-arg ref="feePolicy"/>
</ bean>

<bean i d="account Repository"
cl ass="com bank. reposi tory.internal .JdbcAccount Repository">
<constructor-arg ref="dataSource"/>
</ bean>

<bean id="feePolicy"
cl ass="com bank. servi ce. i nternal . Zer oFeePol i cy"/ >

<beans profile="dev">
<j dbc: enbedded- dat abase i d="dat aSour ce">
<j dbc: scri pt
| ocati on="cl asspat h: coni bank/ confi g/ sql / schema. sql "/ >
<j dbc: scri pt
| ocati on="cl asspat h: coml bank/ confi g/ sql / test -dat a. sql "/ >
</ j dbc: enbedded- dat abase>
</ beans>

<beans profil e="production">
<j ee:] ndi -1 ookup id="dataSource" jndi-nanme="java: conp/ env/j dbc/ dat asource"/ >
</ beans>

<beans profile="defaul t">
<j dbc: enbedded- dat abase i d="dat aSour ce">
<j dbc: s