Web on Servlet Stack

Version 5.0.17.RELEASE

Table of Contents

1. Spring Web MVC
1.1. Introduction
1.2. DispatcherServlet

1.2.1. Context Hierarchy
1.2.2. Special Bean Types
1.2.3. Web MVC Config
1.2.4. Servlet Config
1.2.5. Processing
1.2.6. Interception
1.2.7. Exceptions
Chain of resolvers
Container error page
1.2.8. View Resolution
Handling
Redirecting
Forwarding
Content negotiation
1.2.9. Locale
TimeZone
Header resolver
Cookie resolver
Session resolver
Locale interceptor
1.2.10. Themes
Define a theme
Resolve themes
1.2.11. Multipart resolver
Apache Commons FileUpload
Servlet 3.0

1.3. Filters

1.3.1. HTTP PUT Form
1.3.2. Forwarded Headers
1.3.3. Shallow ETag

1.3.4. CORS

1.4. Annotated Controllers

1.4.1. Declaration
AOP proxies
1.4.2. Request Mapping

© 00 J = N DN

11
13
13
14
14
15
16
17
17
17
17
18
18
18
19
19
20
20
21
21
22
22
22
22
23
23
23
24
24
25
25

URI patterns
Pattern comparison
Suffix match
Suffix match and RFD
Consumable media types
Producible media types
Parameters, headers
HTTP HEAD, OPTIONS
Custom Annotations

1.4.3. Handler Methods
Method Arguments
Return Values
Type Conversion
Matrix variables
@RequestParam
@RequestHeader
@CookieValue
@ModelAttribute
@SessionAttributes
@SessionAttribute
@RequestAttribute
Redirect attributes
Flash attributes
Multipart
@RequestBody
HttpEntity
@ResponseBody
ResponseEntity
Jackson JSON

1.4.4. Model

1.4.5. DataBinder

1.4.6. Exceptions
Method arguments
Return Values
REST API exceptions

1.4.7. Controller Advice

1.5. URI Links

1.5.1. UriComponents

1.5.2. UriBuilder

1.5.3. URI Encoding

1.5.4. Servlet request relative

26
27
28
28
29
29
30
30
31
31
31
33
35
35
37
38
38
39
41
42
42
43
43
44
47
48
48
48
49
51
52
53
35
56
57
58
58
58
39
60
62

1.5.5. LInKS t0o CONtroOllers.o 63

1.5.6. LINKS IN VIBWSo 65
1.6. ASYNC ReqUEeSESo 66
1.6.1. DeferredResult e 66
1.6.2. Callableo e 66
1.6.3. PrOCESSINGo 67
Exception handling. 68
INtercePion 68
Compared to WebFIUX 68
1.6.4. HTTP Streaming 69
OBt . . 69

SSE 70
Raw data 70
1.6.5. ReactiVe tyPes 71
1.6.6. DISCONNECTS. o 71
1.6.7. Configuration. 71
Servlet CONtaiNer. e 72
SPrINg MV C . . o 72

1.7, CORS . 72
1.7.1. IntroducCtiono 72
1.7.2. PPOCESSING oo 73
1.7.3. @CrossOTIGIN o 73
1.7.4.Global Config 75
Java Config 75
XML Configo 76
1.7.5. CORS FIlter o 76
1.8. Wb SeCUrity 77
1.9. HTTP Caching 77
1.9.1. CacheControl . . .o oo 77
1.9.2. Controllers e 78
1.9.3. StatiC TESOUTCESottt 79
1.9.4. ETag Filter. 80
1.10. View Technologies 80
1.10.1. Thymeleaf. 80
1.10.2. FreeMarker e 80
VieW CONMig. . . 80
FreeMarker config 81
Form handling 82
1.10.3. Groovy Markupo 87
Configuration. 87

EXample. . 88

1.10.4. Script Views 89

Requirements 89
Script templates 90
1.10.5. JSP & JSTL 92
View resolvers 93
JSPs versus JSTL 93
Spring’s JSP tag library 93
Spring’s form tag library 94
1.10.6. Tiles 108
Dependencies 108
Configuration 108
1.10.7. RSS, Atom 111
1.10.8. PDF, Excel 112
Introduction to document views 112
PDF views 112
Excel views 113
1.10.9. Jackson 113
Jackson-based JSON views 113
Jackson-based XML views 114
1.10.10. XML marshalling 114
1.10.11. XSLT views 114
Beans 114
Controller 115
Transformation 116
1.11. MVC Config 117
1.11.1. Enable MVC Config 117
1.11.2. MVC Config API 118
1.11.3. Type conversion 118
1.11.4. Validation 120
1.11.5. Interceptors 121
1.11.6. Content Types 122
1.11.7. Message Converters 122
1.11.8. View Controllers 124
1.11.9. View Resolvers 125
1.11.10. Static Resources 126
1.11.11. Default Servlet 128
1.11.12. Path Matching 129
1.11.13. Advanced Java Config 130
1.11.14. Advanced XML Config 131
1.12. HTTP/2 131

2. REST Clients 132

2.1. RestTemplate 132

2.2. WebClient 132
3. Testing 133
4. WebSockets 134

4.1. Introduction 134

4.1.1. HTTP vs WebSocket 135
4.1.2. When to use it? 135
4.2. WebSocket API 135
4.2.1. WebSocketHandler 136
4.2.2. WebSocket Handshake 137
4.2.3. Deployment 138
4.2.4. Server config 140
4.2.5. Allowed origins 142
4.3. Sock]S Fallback 144
4.3.1. Overview 144
4.3.2. Enable Sock]S 145
4.3.3.1E8,9 147
4.3.4. Heartbeats 148
4.3.5. Client disconnects 148
4.3.6. Sock]S and CORS 149
4.3.7. Sock]JsClient 149
4.4. STOMP 151
4.4.1. Overview 151
4.4.2. Benefits 152
4.4.3. Enable STOMP 153
4.4.4. Flow of Messages 155
4.4.5. Annotated Controllers 158
@MessageMapping 158
@SubscribeMapping 159
@MessageExceptionHandler 160
4.4.6. Send Messages 160
4.4.7. Simple Broker 161
4.4.8. External Broker 161
4.4.9. Connect to Broker 163
4.4.10. Dot as Separator 164
4.4.11. Authentication 166
4.4.12. Token Authentication 167
4.4.13. User Destinations 168
4.4.14. Events 170
4.4.15. Interception 171

4.4.16. STOMP Client 172

4.4.17. WebSocket Scope
4.4.18. Performance
4.4.19. Monitoring
4.4.20. Testing
5. Other Web Frameworks
5.1. Introduction
5.2. Common config
5.3.]JSF
5.3.1. Spring Bean Resolver
5.3.2. FacesContextUtils
5.4. Apache Struts 2.x
5.5. Tapestry 5.x

5.6. Further Resources

174
175
178
180
181
181
181
182
183
183
183
183
184

This part of the documentation covers support for Servlet stack, web
applications built on the Servlet API and deployed to Servlet containers.
Individual chapters include Spring MVC, View Technologies, CORS Support, and
WebSocket Support. For reactive stack, web applications, go to Web on Reactive
Stack.

web-reactive.pdf#spring-web-reactive
web-reactive.pdf#spring-web-reactive

Chapter 1. Spring Web MVC

1.1. Introduction

Spring Web MVC is the original web framework built on the Servlet API and included in the Spring
Framework from the very beginning. The formal name "Spring Web MVC" comes from the name of
its source module spring-webmvc but it is more commonly known as "Spring MVC".

Parallel to Spring Web MVC, Spring Framework 5.0 introduced a reactive stack, web framework
whose name Spring WebFlux is also based on its source module spring-webflux. This section covers
Spring Web MVC. The next section covers Spring WebFlux.

For baseline information and compatibility with Servlet container and Java EE version ranges
please visit the Spring Framework Wiki.

1.2. DispatcherServlet

Same in Spring WebFlux

Spring MVC, like many other web frameworks, is designed around the front controller pattern
where a central Servlet, the DispatcherServlet, provides a shared algorithm for request processing
while actual work is performed by configurable, delegate components. This model is flexible and
supports diverse workflows.

The DispatcherServlet, as any Servlet, needs to be declared and mapped according to the Servlet
specification using Java configuration or in web.xml. In turn the DispatcherServlet uses Spring
configuration to discover the delegate components it needs for request mapping, view resolution,
exception handling, and more.

Below is an example of the Java configuration that registers and initializes the DispatcherServlet.
This class is auto-detected by the Servlet container (see Servlet Config):

https://github.com/spring-projects/spring-framework/tree/master/spring-webmvc
https://github.com/spring-projects/spring-framework/tree/master/spring-webflux
web-reactive.pdf#spring-web-reactive
https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-Versions
web-reactive.pdf#webflux-dispatcher-handler

public class MyWebApplicationInitializer implements WebApplicationInitializer {

@0verride
public void onStartup(ServletContext servletCxt) {

// Load Spring web application configuration

AnnotationConfigWebApplicationContext ac = new
AnnotationConfigWebApplicationContext();

ac.register(AppConfig.class);

ac.refresh();

// Create and register the DispatcherServlet

DispatcherServlet servlet = new DispatcherServlet(ac);

ServletRegistration.Dynamic registration = servletCxt.addServlet("app",
servlet);

registration.setlLoadOnStartup(1);

registration.addMapping("/app/*");

In addition to using the ServletContext API directly, you can also extend
AbstractAnnotationConfigDispatcherServletInitializer and override specific
methods (see example under Context Hierarchy).

Below is an example of web.xml configuration to register and initialize the DispatcherServlet:

<web-app>

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/app-context.xml</param-value>
</context-param>

<servlet>
<servlet-name>app</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
<init-param>
<param-name>contextConfiglocation</param-name>
<param-value></param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>app</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

</web-app>

Spring Boot follows a different initialization sequence. Rather than hooking into
the lifecycle of the Servlet container, Spring Boot uses Spring configuration to

0 bootstrap itself and the embedded Servlet container. Filter and Servlet
declarations are detected in Spring configuration and registered with the Servlet
container. For more details check the Spring Boot docs.

1.2.1. Context Hierarchy

DispatcherServlet expects a WebApplicationContext, an extension of a plain ApplicationContext, for
its own configuration. WebApplicationContext has a link to the ServletContext and Servlet it is
associated with. It is also bound to the ServletContext such that applications can use static methods
on RequestContextUtils to look up the WebApplicationContext if they need access to it.

For many applications having a single WebApplicationContext is simple and sufficient. It is also
possible to have a context hierarchy where one root WebApplicationContext is shared across
multiple DispatcherServlet (or other Servlet) instances, each with its own child
WebApplicationContext configuration. See Additional Capabilities of the ApplicationContext for more
on the context hierarchy feature.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-embedded-container
core.pdf#context-introduction

The root WebApplicationContext typically contains infrastructure beans such as data repositories
and business services that need to be shared across multiple Servlet instances. Those beans are
effectively inherited and could be overridden (i.e. re-declared) in the Servlet-specific, child
WebApplicationContext which typically contains beans local to the given Servlet:

DispatcherServlet

Servlet WebApplicationContext

(containing controllers, view resolvers,
and other web-related beans)

Controllers HandlerMapping

ViewResolver

Delegates if no bean found

Root WebApplicationContext

(containing middle-tier services, datasources, etc.)

Services Repositories

Below is example configuration with a WebApplicationContext hierarchy:

public class MyWebAppInitializer extends
AbstractAnnotationConfigDispatcherServlietInitializer {

@0verride
protected Class<?>[] getRootConfigClasses() {
return new Class<?>[] { RootConfig.class };

}

@0verride
protected Class<?>[] getServletConfigClasses() {
return new Class<?>[] { App1Config.class };

}

@0verride

protected String[] getServletMappings() {
return new String[] { "/app1/*" };

}

Q If an application context hierarchy is not required, applications may return all
configuration via getRootConfigClasses() and null from getServletConfigClasses().

And the web.xml equivalent:

<web-app>

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/root-context.xml</param-value>
</context-param>

<servlet>
<servlet-name>app1</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
<init-param>
<param-name>contextConfiglocation</param-name>
<param-value>/WEB-INF/app1-context.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>app1</servlet-name>
<url-pattern>/app1/*</url-pattern>
</servlet-mapping>

</web-app>

Q If an application context hierarchy is not required, applications may configure a
"root" context only and leave the contextConfiglLocation Servlet parameter empty.

1.2.2. Special Bean Types

Same in Spring WebFlux

The DispatcherServlet delegates to special beans to process requests and render the appropriate
responses. By "special beans” we mean Spring-managed, Object instances that implement
framework contracts. Those usually come with built-in contracts but you can customize their
properties, extend or replace them.

The table below lists the special beans detected by the DispatcherServlet:

web-reactive.pdf#webflux-special-bean-types

Bean type
HandlerMapping

HandlerAdapter

HandlerExceptionResolver

ViewResolver

LocaleResolver,
LocaleContextResolver

ThemeResolver

MultipartResolver

FlashMapManager

1.2.3. Web MVC Config

Same in Spring WebFlux

Explanation

Map a request to a handler along with a list of interceptors for
pre- and post-processing. The mapping is based on some criteria
the details of which vary by HandlerMapping implementation.

The two main HandlerMapping implementations are
RequestMappingHandlerMapping (which supports @RequestMapping
annotated methods) and SimpleUr1lHandlerMapping (which
maintains explicit registrations of URI path patterns to handlers).

Help the DispatcherServlet to invoke a handler mapped to a
request, regardless of how the handler is actually invoked. For
example, invoking an annotated controller requires resolving
annotations. The main purpose of a HandlerAdapter is to shield
the DispatcherServlet from such details.

Strategy to resolve exceptions, possibly mapping them to
handlers, to HTML error views, or other targets. See Exceptions.

Resolve logical String-based view names returned from a
handler to an actual View with which to render to the response.
See View Resolution and View Technologies.

Resolve the Locale a client is using and possibly their time zone,
in order to be able to offer internationalized views. See Locale.

Resolve themes your web application can use — for example, to
offer personalized layouts. See Themes.

Abstraction for parsing a multi-part request (for example,
browser form file upload) with the help of some multipart
parsing library. See Multipart resolver.

Store and retrieve the "input" and the "output” FlashMap that can
be used to pass attributes from one request to another, usually
across a redirect. See Flash attributes.

Applications can declare the infrastructure beans listed in Special Bean Types that are required to
process requests. The DispatcherServlet checks the WebApplicationContext for each special bean. If

there are no matching bean
DispatcherServlet.properties.

types, it falls back on the default types listed in

In most cases the MVC Config is the best starting point. It declares the required beans in either Java
or XML, and provides a higher level configuration callback API to customize it.

0 Spring Boot relies on the MVC Java config to configure Spring MVC and also
provides many extra convenient options.

web-reactive.pdf#webflux-framework-config
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties

1.2.4. Servlet Config

In a Servlet 3.0+ environment, you have the option of configuring the Servlet container
programmatically as an alternative or in combination with a web.xml file. Below is an example of
registering a DispatcherServlet:

import org.springframework.web.WebApplicationInitializer;

public class MyWebApplicationInitializer implements WebApplicationInitializer {

public void onStartup(ServletContext container) {
XmlWebApplicationContext appContext = new XmlWebApplicationContext();
appContext.setConfiglLocation("/WEB-INF/spring/dispatcher-config.xml");

ServletRegistration.Dynamic registration = container.addServlet("dispatcher"”,
new DispatcherServlet(appContext));

registration.setlLoadOnStartup(1);

registration.addMapping("/");

WebApplicationInitializer is an interface provided by Spring MVC that ensures your
implementation is detected and automatically used to initialize any Servlet 3 container. An abstract
base class implementation of WebApplicationInitializer named
AbstractDispatcherServlietInitializer makes it even easier to register the DispatcherServlet by
simply overriding methods to specify the servlet mapping and the location of the DispatcherServlet
configuration.

This is recommended for applications that use Java-based Spring configuration:

public class MyWebAppInitializer extends
AbstractAnnotationConfigDispatcherServlietInitializer {

protected Class<?>[] getRootConfigClasses() {
return null;

}

protected Class<?>[] getServletConfigClasses() {
return new Class<?>[] { MyWebConfig.class };

}

protected String[] getServletMappings() {
return new String[] { "/" };
}

If wusing XML-based Spring configuration, you should extend directly from
AbstractDispatcherServletInitializer:

public class MyWebAppInitializer extends AbstractDispatcherServietInitializer {

protected WebApplicationContext createRootApplicationContext() {
return null;

}

protected WebApplicationContext createServlietApplicationContext() {
XmlWebApplicationContext cxt = new XmlWebApplicationContext();
cxt.setConfiglocation("/WEB-INF/spring/dispatcher-config.xml");
return cxt;

protected String[] getServletMappings() {
return new String[] { "/" };
}

AbstractDispatcherServletInitializer also provides a convenient way to add Filter instances and
have them automatically mapped to the DispatcherServlet:

10

public class MyWebAppInitializer extends AbstractDispatcherServietInitializer {

/] ...

protected Filter[] getServletFilters() {
return new Filter[] {
new HiddenHttpMethodFilter(), new CharacterEncodingFilter() };

Each filter is added with a default name based on its concrete type and automatically mapped to
the DispatcherServlet.

The isAsyncSupported protected method of AbstractDispatcherServletInitializer provides a single
place to enable async support on the DispatcherServlet and all filters mapped to it. By default this
flag is set to true.

Finally, if you need to further customize the DispatcherServlet itself, you can override the
createDispatcherServlet method.

1.2.5. Processing
Same in Spring WebFlux
The DispatcherServlet processes requests as follows:

» The WebApplicationContext is searched for and bound in the request as an attribute that the
controller and other elements in the process can use. It is bound by default under the key
DispatcherServlet.WEB_APPLICATION_CONTEXT_ATTRIBUTE.

* The locale resolver is bound to the request to enable elements in the process to resolve the
locale to use when processing the request (rendering the view, preparing data, and so on). If you
do not need locale resolving, you do not need it.

* The theme resolver is bound to the request to let elements such as views determine which
theme to use. If you do not use themes, you can ignore it.

* If you specify a multipart file resolver, the request is inspected for multiparts; if multiparts are
found, the request is wrapped in a MultipartHttpServletRequest for further processing by other
elements in the process. See Multipart resolver for further information about multipart
handling.

* An appropriate handler is searched for. If a handler is found, the execution chain associated
with the handler (preprocessors, postprocessors, and controllers) is executed in order to
prepare a model or rendering. Or alternatively for annotated controllers, the response may be
rendered (within the HandlerAdapter) instead of returning a view.

* If a model is returned, the view is rendered. If no model is returned, (may be due to a
preprocessor or postprocessor intercepting the request, perhaps for security reasons), no view
is rendered, because the request could already have been fulfilled.

11

web-reactive.pdf#webflux-dispatcher-handler-sequence

The HandlerExceptionResolver beans declared in the WebApplicationContext are used to resolve
exceptions thrown during request processing. Those exception resolvers allow customizing the
logic to address exceptions. See Exceptions for more details.

The Spring DispatcherServlet also supports the return of the last-modification-date, as specified by
the Servlet API. The process of determining the last modification date for a specific request is
straightforward: the DispatcherServlet looks up an appropriate handler mapping and tests whether
the handler that is found implements the LastModified interface. If so, the value of the long
getLastModified(request) method of the LastModified interface is returned to the client.

You can customize individual DispatcherServlet instances by adding Servlet initialization
parameters (init-param elements) to the Servlet declaration in the web.xml file. See the following
table for the list of supported parameters.

Table 1. DispatcherServlet initialization parameters

Parameter Explanation

contextClass Class that implements
ConfigurableWebApplicationContext, to be
instantiated and locally configured by this
Servlet. By default, XmLWebApplicationContext is
used.

contextConfiglocation String that is passed to the context instance
(specified by contextClass) to indicate where
context(s) can be found. The string consists
potentially of multiple strings (using a comma as
a delimiter) to support multiple contexts. In case
of multiple context locations with beans that are
defined twice, the latest location takes

precedence.
namespace Namespace of the WebApplicationContext.
Defaults to [servlet-name]-servlet.
throwExceptionIfNoHandlerFound Whether to throw a NoHandlerFoundException

when no handler was found for a request. The
exception can then be caught with a
HandlerExceptionResolver, e.g. via an
@ExceptionHandler controller method, and
handled as any others.

By default this is set to "false", in which case the
DispatcherServlet sets the response status to 404
(NOT_FOUND) without raising an exception.

Note that if default servlet handling is also
configured, then unresolved requests are always
forwarded to the default servlet and a 404 would
never be raised.

12

1.2.6. Interception

All HandlerMapping implementations supports handler interceptors that are useful when you want to
apply specific functionality to certain requests, for example, checking for a principal. Interceptors
must implement HandlerInterceptor from the org.springframework.web.servlet package with three
methods that should provide enough flexibility to do all kinds of pre-processing and post-
processing:

* preHandle(..) — before the actual handler is executed
* postHandle(..) — after the handler is executed

» afterCompletion(..) — after the complete request has finished

The preHandle(..) method returns a boolean value. You can use this method to break or continue
the processing of the execution chain. When this method returns true, the handler execution chain
will continue; when it returns false, the DispatcherServlet assumes the interceptor itself has taken
care of requests (and, for example, rendered an appropriate view) and does not continue executing
the other interceptors and the actual handler in the execution chain.

See Interceptors in the section on MVC configuration for examples of how to configure interceptors.
You can also register them directly via setters on individual HandlerMapping implementations.

Note that postHandle is less useful with @ResponseBody and ResponseEntity methods for which the
response is written and committed within the HandlerAdapter and before postHandle. That means its
too late to make any changes to the response such as adding an extra header. For such scenarios
you can implement ResponseBodyAdvice and either declare it as an Controller Advice bean or
configure it directly on RequestMappingHandlerAdapter.

1.2.7. Exceptions

Same in Spring WebFlux

If an exception occurs during request mapping or is thrown from a request handler such as an
@Controller, the DispatcherServlet delegates to a chain of HandlerExceptionResolver beans to resolve
the exception and provide alternative handling, which typically is an error response.

The table below lists the available HandlerExceptionResolver implementations:

Table 2. HandlerExceptionResolver implementations

HandlerExceptionResolver Description

SimpleMappingExceptionResolver A mapping between exception class names and error view
names. Useful for rendering error pages in a browser
application.

DefaultHandlerExceptionResolv Resolves exceptions raised by Spring MVC and maps them to
er HTTP status codes. Also see alternative
ResponseEntityExceptionHandler and REST API exceptions.

ResponseStatusExceptionResolve Resolves exceptions with the @ResponseStatus annotation and
: maps them to HTTP status codes based on the value in the
annotation.

13

web-reactive.pdf#webflux-dispatcher-exceptions
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/mvc/support/DefaultHandlerExceptionResolver.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/mvc/support/DefaultHandlerExceptionResolver.html

HandlerExceptionResolver Description

ExceptionHandlerExceptionResol Resolves exceptions by invoking an @ExceptionHandler method in
ver an @Controller or a @ControllerAdvice class. See
@ExceptionHandler methods.

Chain of resolvers

You can form an exception resolver chain simply by declaring multiple HandlerExceptionResolver
beans in your Spring configuration and setting their order properties as needed. The higher the
order property, the later the exception resolver is positioned.

The contract of HandlerExceptionResolver specifies that it can return:

* ModelAndView that points to an error view.
* Empty ModelAndView if the exception was handled within the resolver.

* null if the exception remains unresolved, for subsequent resolvers to try; and if the exception
remains at the end, it is allowed to bubble up to the Servlet container.

The MVC Config automatically declares built-in resolvers for default Spring MVC exceptions, for
@ResponseStatus annotated exceptions, and for support of @ExceptionHandler methods. You can
customize that list or replace it.

Container error page

If an exception remains unresolved by any HandlerExceptionResolver and is therefore left to
propagate, or if the response status is set to an error status (i.e. 4xx, 5xx), Servlet containers may
render a default error page in HTML. To customize the default error page of the container, you can
declare an error page mapping in web.xml:

<error-page>
<location>/error</location>
</error-page>

Given the above, when an exception bubbles up, or the response has an error status, the Servlet
container makes an ERROR dispatch within the container to the configured URL (e.g. "/error"). This
is then processed by the DispatcherServlet, possibly mapping it to an @Controller which could be
implemented to return an error view name with a model or to render a JSON response as shown
below:

14

public class ErrorController {

(path = "/error")
public Map<String, Object> handle(HttpServletRequest request) {
Map<String, Object> map = new HashMap<String, Object>();
map.put("status", request.getAttribute("javax.servlet.error.status_code"));
map.put(“reason"”, request.getAttribute("javax.servlet.error.message"));
return map,

Q The Servlet API does not provide a way to create error page mappings in Java. You
can however use both an WebApplicationInitializer and a minimal web.xml.

1.2.8. View Resolution
Same in Spring WebFlux

Spring MVC defines the ViewResolver and View interfaces that enable you to render models in a
browser without tying you to a specific view technology. ViewResolver provides a mapping between
view names and actual views. View addresses the preparation of data before handing over to a
specific view technology.

The table below provides more details on the ViewResolver hierarchy:

Table 3. ViewResolver implementations

ViewResolver Description

AbstractCachingViewResolver Sub-classes of AbstractCachingViewResolver
cache view instances that they resolve. Caching
improves performance of certain view
technologies. It’s possible to turn off the cache
by setting the cache property to false.
Furthermore, if you must refresh a certain view
at runtime (for example when a FreeMarker
template is modified), you can use the
removeFromCache(String viewName, Locale loc)
method.

XmlViewResolver Implementation of ViewResolver that accepts a
configuration file written in XML with the same
DTD as Spring’s XML bean factories. The default
configuration file is /WEB-INF/views.xml.

15

web-reactive.pdf#webflux-viewresolution

ViewResolver Description

ResourceBundleViewResolver Implementation of ViewResolver that uses bean
definitions in a ResourceBundle, specified by the
bundle base name, and for each view it is
supposed to resolve, it uses the value of the
property [viewname]. (class) as the view class
and the value of the property [viewname].ur1l as
the view url. Examples can be found in the
chapter on View Technologies.

UrlBasedViewResolver Simple implementation of the ViewResolver
interface that effects the direct resolution of
logical view names to URLs, without an explicit
mapping definition. This is appropriate if your
logical names match the names of your view
resources in a straightforward manner, without
the need for arbitrary mappings.

InternalResourceViewResolver Convenient subclass of Ur1BasedViewResolver
that supports InternalResourceView (in effect,
Servlets and JSPs) and subclasses such as
Jst1View and TilesView. You can specify the view
class for all views generated by this resolver by
using setViewClass(..). See the
Ur1BasedViewResolver javadocs for details.

FreeMarkerViewResolver Convenient subclass of Ur1BasedViewResolver
that supports FreeMarkerView and custom
subclasses of them.

ContentNegotiatingViewResolver Implementation of the ViewResolver interface
that resolves a view based on the request file
name or Accept header. See Content negotiation.

Handling

Same in Spring WebFlux

You chain view resolvers by declaring more than one resolver beans and, if necessary, by setting
the order property to specify ordering. Remember, the higher the order property, the later the view
resolver is positioned in the chain.

The contract of a ViewResolver specifies that it can return null to indicate the view could not be
found. However in the case of JSPs, and InternalResourceViewResolver, the only way to figure out if
a JSP exists is to perform a dispatch through RequestDispatcher. Therefore an
InternalResourceViewResolver must always be configured to be last in the overall order of view
resolvers.

To configure view resolution is as simple as adding ViewResolver beans to your Spring
configuration. The MVC Config provides provides a dedicated configuration API for View Resolvers
and also for adding logic-less View Controllers which are useful for HTML template rendering
without controller logic.

16

web-reactive.pdf#webflux-viewresolution-handling

Redirecting

Same in Spring WebFlux

The special redirect: prefix in a view name allows you to perform a redirect. The
UrlBasedViewResolver (and sub-classes) recognize this as an instruction that a redirect is needed.
The rest of the view name is the redirect URL.

The net effect is the same as if the controller had returned a RedirectView, but now the controller
itself can simply operate in terms of logical view names. A logical view name such as
redirect:/myapp/some/resource will redirect relative to the current Servlet context, while a name
such as redirect:https://myhost.com/some/arbitrary/path will redirect to an absolute URL.

Note that if a controller method is annotated with the @ResponseStatus, the annotation value takes
precedence over the response status set by RedirectView.

Forwarding

It is also possible to use a special forward: prefix for view names that are ultimately resolved by
UrlBasedViewResolver and subclasses. This creates an InternalResourceView which does a
RequestDispatcher.forward(). Therefore, this prefix is not useful with InternalResourceViewResolver
and InternalResourceView (for JSPs) but it can be helpful if using another view technology, but still
want to force a forward of a resource to be handled by the Servlet/JSP engine. Note that you may
also chain multiple view resolvers, instead.

Content negotiation

Same in Spring WebFlux

ContentNegotiatingViewResolver does not resolve views itself but rather delegates to other view
resolvers, and selects the view that resembles the representation requested by the client. The
representation can be determined from the Accept header or from a query parameter, e.g.
"/path?format=pdf".

The ContentNegotiatingViewResolver selects an appropriate View to handle the request by comparing
the request media type(s) with the media type (also known as Content-Type) supported by the View
associated with each of its ViewResolvers. The first View in the list that has a compatible Content-Type
returns the representation to the client. If a compatible view cannot be supplied by the ViewResolver
chain, then the list of views specified through the DefaultViews property will be consulted. This
latter option is appropriate for singleton Views that can render an appropriate representation of the
current resource regardless of the logical view name. The Accept header may include wild cards, for
example text/*, in which case a View whose Content-Type was text/xml is a compatible match.

See View Resolvers under MVC Config for configuration details.

1.2.9. Locale

Most parts of Spring’s architecture support internationalization, just as the Spring web MVC
framework does. DispatcherServlet enables you to automatically resolve messages using the client’s
locale. This is done with LocaleResolver objects.

17

web-reactive.pdf#webflux-redirecting-redirect-prefix
web-reactive.pdf#webflux-multiple-representations
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/view/ContentNegotiatingViewResolver.html

When a request comes in, the DispatcherServlet looks for a locale resolver, and if it finds one it tries
to use it to set the locale. Using the RequestContext.getlLocale() method, you can always retrieve the
locale that was resolved by the locale resolver.

In addition to automatic locale resolution, you can also attach an interceptor to the handler
mapping (see Interception for more information on handler mapping interceptors) to change the
locale under specific circumstances, for example, based on a parameter in the request.

Locale resolvers and interceptors are defined in the org.springframework.web.servlet.i18n package
and are configured in your application context in the normal way. Here is a selection of the locale
resolvers included in Spring.

TimeZone

In addition to obtaining the client’s locale, it is often useful to know their time zone. The
LocaleContextResolver interface offers an extension to LocaleResolver that allows resolvers to
provide a richer LocaleContext, which may include time zone information.

When available, the user’s TimeZone can be obtained using the RequestContext.getTimeZone()
method. Time zone information will automatically be used by Date/Time Converter and Formatter
objects registered with Spring’s ConversionService.

Header resolver

This locale resolver inspects the accept-language header in the request that was sent by the client
(e.g., a web browser). Usually this header field contains the locale of the client’s operating system.
Note that this resolver does not support time zone information.

Cookie resolver

This locale resolver inspects a Cookie that might exist on the client to see if a Locale or TimeZone is
specified. If so, it uses the specified details. Using the properties of this locale resolver, you can
specify the name of the cookie as well as the maximum age. Find below an example of defining a
CookielocaleResolver.

<bean id="localeResolver" class=
"org.springframework.web.servlet.i18n.CookielLocaleResolver">

<property name="cookieName" value="clientlanguage"/>
<!--in seconds. If set to -1, the cookie is not persisted (deleted when browser
shuts down) -->

<property name="cookieMaxAge" value="100000"/>

</bean>

Table 4. CookieLocaleResolver properties

18

Property Default Description

cookieName classname + The name of the cookie

LOCALE

cookieMaxAge Servlet The maximum time a cookie will stay persistent on the client. If
container -1 is specified, the cookie will not be persisted; it will only be
default available until the client shuts down their browser.

cookiePath / Limits the visibility of the cookie to a certain part of your site.

When cookiePath is specified, the cookie will only be visible to
that path and the paths below it.

Session resolver

The SessionLocaleResolver allows you to retrieve Locale and TimeZone from the session that might be
associated with the user’s request. In contrast to CookielLocaleResolver, this strategy stores locally
chosen locale settings in the Servlet container’s HttpSession. As a consequence, those settings are
just temporary for each session and therefore lost when each session terminates.

Note that there is no direct relationship with external session management mechanisms such as the
Spring Session project. This SessionLocaleResolver will simply evaluate and modify corresponding
HttpSession attributes against the current HttpServletRequest.

Locale interceptor

You can enable changing of locales by adding the LocaleChangelnterceptor to one of the
HandlerMapping definitions. It detects a parameter in the request and changes the locale accordingly,
calling the setLocale method on the LocaleResolver in the dispatcher’s application context. The next
example shows that calls to all *.view resources that contain a parameter named sitelanguage now
changes the locale. So, for example, a request for the URL, https://www.sf.net/home.view?
sitelanguage=nl, changes the site language to Dutch. The following example shows how to intercept
the locale:

19

https://www.sf.net/home.view?siteLanguage=nl
https://www.sf.net/home.view?siteLanguage=nl
https://www.sf.net/home.view?siteLanguage=nl
https://www.sf.net/home.view?siteLanguage=nl
https://www.sf.net/home.view?siteLanguage=nl

<bean id="localeChangeInterceptor"
class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
<property name="paramName" value="sitelanqguage"/>
</bean>

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.CookielLocaleResolver"/>

<bean id="ur1Mapping"
class="org.springframework.web.servlet.handler.SimpleUr1HandlerMapping">
<property name="interceptors">
<list>
<ref bean="localeChangeInterceptor"/>
</list>
</property>
<property name="mappings">
<value>/**/*.view=someController</value>
</property>
</bean>

1.2.10. Themes

You can apply Spring Web MVC framework themes to set the overall look-and-feel of your
application, thereby enhancing user experience. A theme is a collection of static resources, typically
style sheets and images, that affect the visual style of the application.

Define a theme

To use themes in your web application, you must set up an implementation of the
org.springframework.ui.context.ThemeSource interface. The WebApplicationContext interface extends
ThemeSource but delegates its responsibilities to a dedicated implementation. By default the delegate
will be an org.springframework.ui.context.support.ResourceBundleThemeSource implementation that
loads properties files from the root of the classpath. To use a custom ThemeSource implementation or
to configure the base name prefix of the ResourceBundleThemeSource, you can register a bean in the
application context with the reserved name themeSource. The web application context automatically
detects a bean with that name and uses it.

When using the ResourceBundleThemeSource, a theme is defined in a simple properties file. The
properties file lists the resources that make up the theme. Here is an example:

styleSheet=/themes/cool/style.css
background=/themes/cool/img/coolBg. jpg

The keys of the properties are the names that refer to the themed elements from view code. For a
JSP, you typically do this using the spring:theme custom tag, which is very similar to the
spring:message tag. The following JSP fragment uses the theme defined in the previous example to
customize the look and feel:

20

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>
<head>
<link rel="stylesheet" href="<spring:theme code="'styleSheet'/>
type="text/css"/>
</head>
<body style="background=<spring:theme code='background'/>">

</body>
</html>

By default, the ResourceBundleThemeSource uses an empty base name prefix. As a result, the
properties files are loaded from the root of the classpath. Thus you would put the cool.properties
theme definition in a directory at the root of the classpath, for example, in /WEB-INF/classes. The
ResourceBundleThemeSource uses the standard Java resource bundle loading mechanism, allowing for
full internationalization of themes. For example, we could have a /WEB-
INF/classes/cool_nl.properties that references a special background image with Dutch text on it.

Resolve themes

After you define themes, as in the preceding section, you decide which theme to use. The
DispatcherServlet will look for a bean named themeResolver to find out which ThemeResolver
implementation to use. A theme resolver works in much the same way as a LocaleResolver. It
detects the theme to use for a particular request and can also alter the request’s theme. The
following theme resolvers are provided by Spring:

Table 5. ThemeResolver implementations

Class Description
FixedThemeResolver Selects a fixed theme, set using the defaultThemeName property.

SessionThemeResolv The theme is maintained in the user’s HTTP session. It only needs to be set
U once for each session, but is not persisted between sessions.

CookieThemeResolve The selected theme is stored in a cookie on the client.
.

Spring also provides a ThemeChangeInterceptor that allows theme changes on every request with a
simple request parameter.

1.2.11. Multipart resolver
Same in Spring WebFlux

MultipartResolver from the org.springframework.web.multipart package is a strategy for parsing
multipart requests including file uploads. There is one implementation based on Commons
FileUpload and another based on Servlet 3.0 multipart request parsing.

To enable multipart handling, you need declare a MultipartResolver bean in your DispatcherServlet
Spring configuration with the name "multipartResolver". The DispatcherServlet detects it and
applies it to incoming request. When a POST with content-type of "multipart/form-data” is received,

21

web-reactive.pdf#webflux-multipart
https://jakarta.apache.org/commons/fileupload
https://jakarta.apache.org/commons/fileupload

the resolver parses the content and wraps the current HttpServletRequest as
MultipartHttpServletRequest in order to provide access to resolved parts in addition to exposing
them as request parameters.

Apache Commons FileUpload

To use Apache Commons FileUpload, simply configure a bean of type CommonsMultipartResolver with
the name multipartResolver. Of course you also need to have commons-fileupload as a dependency
on your classpath.

Servlet 3.0

Servlet 3.0 multipart parsing needs to be enabled through Servlet container configuration:

* in Java, set a MultipartConfigElement on the Servlet registration.

* inweb.xml, add a "<multipart-config>" section to the servlet declaration.

public class AppInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

/] ...

protected void customizeRegistration(ServletRegistration.Dynamic registration) {

// Optionally also set maxFileSize, maxRequestSize, fileSizeThreshold
registration.setMultipartConfig(new MultipartConfigElement("/tmp"));

Once the Servlet 3.0 configuration 1is in place, simply add a bean of type
StandardServletMultipartResolver with the name multipartResolver.

1.3. Filters

Same in Spring WebFlux

The spring-web module provides some useful filters.

1.3.1. HTTP PUT Form

Browsers can only submit form data via HTTP GET or HTTP POST but non-browser clients can also
use HTTP PUT and PATCH. The Servlet API requires ServletRequest.getParameter*() methods to
support form field access only for HTTP POST.

The spring-web module provides HttpPutFormContentFilter that intercepts HTTP PUT and PATCH
requests with content type application/x-www-form-urlencoded, reads the form data from the body

22

web-reactive.pdf#webflux-filters

of the request, and wraps the ServletRequest in order to make the form data available through the
ServletRequest.getParameter*() family of methods.

1.3.2. Forwarded Headers
Same in Spring WebFlux

As a request goes through proxies such as load balancers the host, port, and scheme may change
presenting a challenge for applications that need to create links to resources since the links should
reflect the host, port, and scheme of the original request as seen from a client perspective.

RFC 7239 defines the "Forwarded" HTTP header for proxies to use to provide information about the
original request. There are also other non-standard headers in use such as "X-Forwarded-Host", "X-
Forwarded-Port", and "X-Forwarded-Proto".

ForwardedHeaderFilter detects, extracts, and uses information from the "Forwarded" header, or
from "X-Forwarded-Host", "X-Forwarded-Port", and "X-Forwarded-Proto". It wraps the request in
order to overlay its host, port, and scheme and also "hides" the forwarded headers for subsequent
processing.

Note that there are security considerations when using forwarded headers as explained in Section 8
of RFC 7239. At the application level it is difficult to determine whether forwarded headers can be
trusted or not. This is why the network upstream should be configured correctly to filter out
untrusted forwarded headers from the outside.

Applications that don’t have a proxy and don’t need to use forwarded headers can configure the
ForwardedHeaderFilter to remove and ignore such headers.

1.3.3. Shallow ETag

The ShallowEtagHeaderFilter filter creates a "shallow" ETag by caching the content written to the
response, and computing an MD5 hash from it. The next time a client sends, it does the same, but
also compares the computed value against the If-None-Match request header and if the two are
equal, it returns a 304 (NOT_MODIFIED).

This strategy saves network bandwidth but not CPU, as the full response must be computed for each
request. Other strategies at the controller level, described above, can avoid the computation. See
HTTP Caching.

This filter has a writelleakETag parameter that configures the filter to write Weak ETags, like this:
W/"02a2d595e6ed9a0b241027f2b63b134d6", as defined in RFC 7232 Section 2.3.

1.3.4. CORS
Same in Spring WebFlux

Spring MVC provides fine-grained support for CORS configuration through annotations on
controllers. However when used with Spring Security it is advisable to rely on the built-in
CorsFilter that must be ordered ahead of Spring Security’s chain of filters.

23

web-reactive.pdf#webflux-filters-forwarded-headers
https://tools.ietf.org/html/rfc7239
https://tools.ietf.org/html/rfc7232#section-2.3
web-reactive.pdf#webflux-filters-cors

See the section on CORS and the CORS Filter for more details.

1.4. Annotated Controllers

Same in Spring WebFlux

Spring MVC provides an annotation-based programming model where @Controller and
@RestController components use annotations to express request mappings, request input, exception
handling, and more. Annotated controllers have flexible method signatures and do not have to
extend base classes nor implement specific interfaces.

public class HelloController {

("/hello")
public String handle(Model model) {
model.addAttribute("message”, "Hello World!");
return "index";

In this particular example the method accepts a Model and returns a view name as a String but
many other options exist and are explained further below in this chapter.

Q Guides and tutorials on spring.io use the annotation-based programming model
described in this section.

1.4.1. Declaration

Same in Spring WebFlux

You can define controller beans using a standard Spring bean definition in the Servlet’s
WebApplicationContext. The @Controller stereotype allows for auto-detection, aligned with Spring
general support for detecting @Component classes in the classpath and auto-registering bean
definitions for them. It also acts as a stereotype for the annotated class, indicating its role as a web
component.

To enable auto-detection of such @Controller beans, you can add component scanning to your Java
configuration:

("org.example.web")
public class WebConfig {

/] ...

24

web-reactive.pdf#webflux-controller
https://spring.io/guides
web-reactive.pdf#webflux-ann-controller

The XML configuration equivalent:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan base-package="org.example.web"/>
== —=>

</beans>

@RestController is a composed annotation that is itself meta-annotated with @Controller and
@ResponseBody indicating a controller whose every method inherits the type-level @ResponseBody
annotation and therefore writes directly to the response body vs view resolution and rendering
with an HTML template.

AOQOP proxies

In some cases a controller may need to be decorated with an AOP proxy at runtime. One example is
if you choose to have @Transactional annotations directly on the controller. When this is the case,
for controllers specifically, we recommend using class-based proxying. This is typically the default
choice with controllers. However if a controller must implement an interface that is not a Spring
Context callback (e.g. InitializingBean, *Aware, etc), you may need to explicitly configure class-based
proxying. For example with <tx:annotation-driven/>, change to <tx:annotation-driven proxy-
target-class="true"/>.

1.4.2. Request Mapping
Same in Spring WebFlux

The @RequestMapping annotation is used to map requests to controllers methods. It has various
attributes to match by URL, HTTP method, request parameters, headers, and media types. It can be
used at the class-level to express shared mappings or at the method level to narrow down to a
specific endpoint mapping.

There are also HTTP method specific shortcut variants of GRequestMapping:

o @GetMapping

o @PostMapping

o @PutMapping

o @DeleteMapping

25

core.pdf#beans-meta-annotations
web-reactive.pdf#webflux-ann-requestmapping

o @PatchMapping

The above are Custom Annotations that are provided out of the box because arguably most
controller methods should be mapped to a specific HTTP method vs using @RequestMapping which by
default matches to all HTTP methods. At the same an @RequestMapping is still needed at the class
level to express shared mappings.

Below is an example with type and method level mappings:

@RestController
@RequestMapping("/persons")
class PersonController {

@GetMapping("/{id}")

public Person getPerson(@PathVariable Long id) {
/] ...

}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)

public void add(@RequestBody Person person) {
/] ...

}

URI patterns

Same in Spring WebFlux
You can map requests using glob patterns and wildcards:

* ? matches one character
* * matches zero or more characters within a path segment

* ** match zero or more path segments

You can also declare URI variables and access their values with @PathVariable:

@GetMapping("/owners/{ownerId}/pets/{petId}")

public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
/] ...

+

URI variables can be declared at the class and method level:

26

web-reactive.pdf#webflux-ann-requestmapping-uri-templates

("/owners/{ownerId}")
public class OwnerController {

("/pets/{petld}")
public Pet findPet(Long ownerId, Long petld) {
/] ...
}

URI variables are automatically converted to the appropriate type or TypeMismatchException " is
raised. Simple types— int, long, Date, are supported by default and you can register support for any
other data type. See Type Conversion and DataBinder.

URI variables can be named explicitly —e.g. @PathVariable("customId"), but you can leave that
detail out if the names are the same and your code is compiled with debugging information or with
the -parameters compiler flag on Java 8.

The syntax {varName:regex} declares a URI variable with a regular expressions with the syntax
{varName:regex} —e.g. given URL "/spring-web-3.0.5 .jar", the below method extracts the name,
version, and file extension:

("/{name:[a-z-J+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")
public void handle(String version, String ext) {
/] ...

}

URI path patterns can also have embedded ${:--} placeholders that are resolved on startup via
PropertyPlaceHolderConfigurer against local, system, environment, and other property sources. This
can be used for example to parameterize a base URL based on some external configuration.

0 Spring MVC uses the PathMatcher contract and the AntPathMatcher implementation
from spring-core for URI path matching.
Pattern comparison

Same in Spring WebFlux

When multiple patterns match a URL, they must be compared to find the best match. This done via
AntPathMatcher.getPatternComparator(String path) which looks for patterns that more specific.

A pattern is less specific if it has a lower count of URI variables and single wildcards counted as 1
and double wildcards counted as 2. Given an equal score, the longer pattern is chosen. Given the
same score and length, the pattern with more URI variables than wildcards is chosen.

The default mapping pattern /** is excluded from scoring and always sorted last. Also prefix
patterns such as /public/** are considered less specific than other pattern that don’t have double
wildcards.

27

web-reactive.pdf#webflux-ann-requestmapping-pattern-comparison

For the full details see AntPatternComparator in AntPathMatcher and also keep in mind that the
PathMatcher implementation used can be customized. See Path Matching in the configuration
section.

Suffix match

By default Spring MVC performs ".*" suffix pattern matching so that a controller mapped to /person
is also implicitly mapped to /person.*. The file extension is then used to interpret the requested
content type to use for the response (i.e. instead of the "Accept" header), e.g. /person.pdf,
/person.xml, etc.

Using file extensions like this was necessary when browsers used to send Accept headers that were
hard to interpret consistently. At present that is no longer a necessity and using the "Accept" header
should be the preferred choice.

Over time the use of file name extensions has proven problematic in a variety of ways. It can cause
ambiguity when overlayed with the use of URI variables, path parameters, URI encoding, and it also
makes it difficult to reason about URL-based authorization and security (see next section for more
details).

To completely disable the use of file extensions, you must set both of these:

» useSuffixPatternMatching(false), see PathMatchConfigurer

» favorPathExtension(false), see ContentNegotiationConfigurer

URL-based content negotiation can still be useful, for example when typing a URL in a browser. To
enable that we recommend a query parameter based strategy to avoid most of the issues that come
with file extensions. Or if you must use file extensions, consider restricting them to a list of
explicitly registered extensions through the mediaTypes property of ContentNegotiationConfigurer.

Suffix match and RFD

Reflected file download (RFD) attack is similar to XSS in that it relies on request input, e.g. query
parameter, URI variable, being reflected in the response. However instead of inserting JavaScript
into HTML, an RFD attack relies on the browser switching to perform a download and treating the
response as an executable script when double-clicked later.

In Spring MVC @ResponseBody and ResponseEntity methods are at risk because they can render
different content types which clients can request via URL path extensions. Disabling suffix pattern
matching and the use of path extensions for content negotiation lower the risk but are not
sufficient to prevent RFD attacks.

To prevent RFD attacks, prior to rendering the response body Spring MVC adds a Content-
Disposition:inline;filename=f.txt header to suggest a fixed and safe download file. This is done
only if the URL path contains a file extension that is neither whitelisted nor explicitly registered for
content negotiation purposes. However it may potentially have side effects when URLs are typed
directly into a browser.

Many common path extensions are whitelisted by default. Applications with custom
HttpMessageConverter implementations can explicitly register file extensions for content negotiation

28

to avoid having a Content-Disposition header added for those extensions. See Content Types.

Check CVE-2015-5211 for additional recommendations related to RFD.

Consumable media types

Same in Spring WebFlux

You can narrow the request mapping based on the Content-Type of the request:

(path = "/pets", consumes = "application/json")
public void addPet(Pet pet) {
/] ...
}

The consumes attribute also supports negation expressions —e.g. !text/plain means any content
type other than "text/plain”.

You can declare a shared consumes attribute at the class level. Unlike most other request mapping
attributes however when used at the class level, a method-level consumes attribute will overrides
rather than extend the class level declaration.

Q MediaType provides constants for commonly wused media types—e.g.
APPLICATION_JSON_VALUE, APPLICATION_XML_VALUE.
Producible media types

Same in Spring WebFlux

You can narrow the request mapping based on the Accept request header and the list of content
types that a controller method produces:

(path = "/pets/{petld}", produces = "application/json;charset=UTF-
8")

public Pet getPet(String petld) {
/] ...

}

The media type can specify a character set. Negated expressions are supported —e.g. !text/plain
means any content type other than "text/plain”.

For JSON content type, the UTF-8 charset should be specified even if RFC7159
clearly states that "no charset parameter is defined for this registration" because

some browsers require it for interpreting correctly UTF-8 special characters.

You can declare a shared produces attribute at the class level. Unlike most other request mapping
attributes however when used at the class level, a method-level produces attribute will overrides

29

https://pivotal.io/security/cve-2015-5211
web-reactive.pdf#webflux-ann-requestmapping-consumes
web-reactive.pdf#webflux-ann-requestmapping-produces
https://tools.ietf.org/html/rfc7159#section-11

rather than extend the class level declaration.

Q MediaType provides constants for commonly used media types—e.g.
APPLICATION_JSON_UTF8_VALUE, APPLICATION_XML_VALUE.
Parameters, headers

Same in Spring WebFlux

You can narrow request mappings based on request parameter conditions. You can test for the
presence of a request parameter ("myParam"), for the absence ("!myParam"), or for a specific value
("myParam=myValue"):

(path = "/pets/{petId}", params = "myParam=myValue")
public void findPet(String petId) {
/] ...

}

You can also use the same with request header conditions:

(path = "/pets", headers = "myHeader=myValue")

public void findPet(String petId) {
/] ...
}
Q You can match Content-Type and Accept with the headers condition but it is better
to use consumes and produces instead.

HTTP HEAD, OPTIONS

Same in Spring WebFlux

@GetMapping—and also @RequestMapping(method=HttpMethod.GET), support HTTP HEAD transparently
for request mapping purposes. Controller methods don’t need to change. A response wrapper,
applied in javax.servlet.http.HttpServlet, ensures a "Content-Length" header is set to the number
of bytes written and without actually writing to the response.

@GetMapping—and also @RequestMapping(method=HttpMethod.GET), are implicitly mapped to and also
support HTTP HEAD. An HTTP HEAD request is processed as if it were HTTP GET except but instead
of writing the body, the number of bytes are counted and the "Content-Length" header set.

By default HTTP OPTIONS is handled by setting the "Allow" response header to the list of HTTP
methods listed in all @RequestMapping methods with matching URL patterns.

For a @RequestMapping without HTTP method declarations, the "Allow" header is set to
"GET,HEAD, POST,PUT,PATCH,DELETE,OPTIONS". Controller methods should always declare the supported
HTTP methods for example by using the HTTP method specific variants— @GetMapping,

30

web-reactive.pdf#webflux-ann-requestmapping-params-and-headers
web-reactive.pdf#webflux-ann-requestmapping-head-options

@PostMapping, etc.

@RequestMapping method can be explicitly mapped to HTTP HEAD and HTTP OPTIONS, but that is not
necessary in the common case.

Custom Annotations

Same in Spring WebFlux

Spring MVC supports the use of composed annotations for request mapping. Those are annotations
that are themselves meta-annotated with @RequestMapping and composed to redeclare a subset (or
all) of the @RequestMapping attributes with a narrower, more specific purpose.

@GetMapping, @PostMapping, @PutMapping, @DeleteMapping, and @PatchMapping are examples of composed
annotations. They’re provided out of the box because arguably most controller methods should be
mapped to a specific HTTP method vs using @RequestMapping which by default matches to all HTTP
methods. If you need an example of composed annotations, look at how those are declared.

Spring MVC also supports custom request mapping attributes with custom request matching logic.
This is a more advanced option that requires sub-classing RequestMappingHandlerMapping and
overriding the getCustomMethodCondition method where you can check the custom attribute and
return your own RequestCondition.

1.4.3. Handler Methods

Same in Spring WebFlux

@RequestMapping handler methods have a flexible signature and can choose from a range of
supported controller method arguments and return values.

Method Arguments

Same in Spring WebFlux

The table below shows supported controller method arguments. Reactive types are not supported
for any arguments.

JDK 8’s java.util.Optional is supported as a method argument in combination with annotations
that have a required attribute—e.g. @RequestParam, @RequestHeader, etc, and is equivalent to
required=false.

Controller method argument Description

WebRequest, NativeWebRequest Generic access to request parameters, request & session
attributes, without direct use of the Servlet API.

javax.servlet.ServletRequest, Choose any specific request or response type —e.g.
javax.servlet.ServletResponse SeryletRequest, HttpServletRequest, or Spring’s MultipartRequest,
MultipartHttpServletRequest.

31

web-reactive.pdf#mvc-ann-requestmapping-head-options
core.pdf#beans-meta-annotations
web-reactive.pdf#webflux-ann-methods
web-reactive.pdf#webflux-ann-arguments

Controller method argument
javax.servlet.http.HttpSession

javax.servlet.http.PushBuilder

java.security.Principal

HttpMethod

java.util.Llocale

java.util.TimeZone +
java.time.Zoneld

java.io.InputStream,
java.io.Reader

java.io.OutputStream,
java.io.Writer

@PathVariable
@MatrixVariable

©RequestParam

©RequestHeader

@CookieValue

©RequestBody

HttpEntity

@RequestPart

32

Description

Enforces the presence of a session. As a consequence, such an
argument is never null.

Note: Session access is not thread-safe. Consider setting the
RequestMappingHandlerAdapter's "synchronizeOnSession" flag to
"true" if multiple requests are allowed to access a session
concurrently.

Servlet 4.0 push builder API for programmatic HTTP/2 resource
pushes. Note that per Servlet spec, the injected PushBuilder
instance can be null if the client does not support that HTTP/2
feature.

Currently authenticated user; possibly a specific Principal
implementation class if known.

The HTTP method of the request.

The current request locale, determined by the most specific
LocaleResolver available, in effect, the configured LocaleResolver
/LocaleContextResolver.

The time zone associated with the current request, as determined
by a LocaleContextResolver.

For access to the raw request body as exposed by the Servlet APIL.

For access to the raw response body as exposed by the Servlet
APL

For access to URI template variables. See URI patterns.

For access to name-value pairs in URI path segments. See Matrix
variables.

For access to Servlet request parameters. Parameter values are
converted to the declared method argument type. See
@RequestParam.

Note that use of @RequestParam is optional, e.g. to set its attributes.
See "Any other argument” further below in this table.

For access to request headers. Header values are converted to the
declared method argument type. See @RequestHeader.

For access to cookies. Cookies values are converted to the
declared method argument type. See @CookieValue.

For access to the HTTP request body. Body content is converted to
the declared method argument type using HttpMessageConverters.
See @RequestBody.

For access to request headers and body. The body is converted
with HttpMessageConverters. See HttpEntity.

For access to a part in a "multipart/form-data"” request. See
Multipart.

Controller method argument Description

java.util.Map,

org.springframework.ui.Model,
org.springframework.ui.ModelMa

P
RedirectAttributes

@ModelAttribute

Errors, BindingResult

SessionStatus + class-level
@SessionAttributes

UriComponentsBuilder

@SessionAttribute

@RequestAttribute

Any other argument

Return Values

Same in Spring WebFlux

For access to the model that is used in HTML controllers and
exposed to templates as part of view rendering.

Specify attributes to use in case of a redirect —i.e. to be
appended to the query string, and/or flash attributes to be stored
temporarily until the request after redirect. See Redirect
attributes and Flash attributes.

For access to an existing attribute in the model (instantiated if
not present) with data binding and validation applied. See
@ModelAttribute as well as Model and DataBinder.

Note that use of @ModelAttribute is optional, e.g. to set its
attributes. See "Any other argument" further below in this table.

For access to errors from validation and data binding for a
command object (i.e. @ModelAttribute argument), or errors from
the validation of an @RequestBody or @RequestPart arguments; an
Errors, or BindingResult argument must be declared immediately
after the validated method argument.

For marking form processing complete which triggers cleanup of
session attributes declared through a class-level
@SessionAttributes annotation. See @SessionAttributes for more
details.

For preparing a URL relative to the current request’s host, port,
scheme, context path, and the literal part of the servlet mapping
also taking into account Forwarded and X-Forwarded-* headers. See
URI Links.

For access to any session attribute; in contrast to model attributes
stored in the session as a result of a class-level @SessionAttributes
declaration. See @SessionAttribute for more details.

For access to request attributes. See @RequestAttribute for more
details.

If a method argument is not matched to any of the above, by
default it is resolved as an @RequestParam if it is a simple type, as
determined by BeanUtils#isSimpleProperty, or as an
@ModelAttribute otherwise.

The table below shows supported controller method return values. Reactive types are supported for
all return values, see below for more details.

33

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-return-types

Controller method return Description

value

@ResponseBody The return value is converted through HttpMessageConverters and
written to the response. See @ResponseBody.

HttpEntity, The return value specifies the full response including HTTP

ResponseEntity headers and body be converted through HttpMessageConverters
and written to the response. See ResponseEntity.

HttpHeaders For returning a response with headers and no body.

String A view name to be resolved with ViewResolver's and used
together with the implicit model — determined through
command objects and @ModelAttribute methods. The handler
method may also programmatically enrich the model by
declaring a Model argument (see above).

View A View instance to use for rendering together with the implicit
model — determined through command objects and
@ModelAttribute methods. The handler method may also
programmatically enrich the model by declaring a Model
argument (see above).

java.util.Map, Attributes to be added to the implicit model with the view name

org.springframework.ui.Model jmplicitly determined through a RequestToViewNameTranslator.

@ModelAttribute An attribute to be added to the model with the view name
implicitly determined through a RequestToViewNameTranslator.

Note that @ModelAttribute is optional. See "Any other return
value" further below in this table.

ModelAndView object The view and model attributes to use, and optionally a response
status.
void A method with a void return type (or null return value) is

considered to have fully handled the response if it also has a
ServletResponse, or an OutputStream argument, or an
@ResponseStatus annotation. The same is true also if the
controller has made a positive ETag or lastModified timestamp
check (see Controllers for details).

If none of the above is true, a void return type may also indicate
"no response body" for REST controllers, or default view name
selection for HTML controllers.

DeferredResult<V> Produce any of the above return values asynchronously from
any thread — e.g. possibly as a result of some event or callback.
See Async Requests and DeferredResult.

Callable<V> Produce any of the above return values asynchronously in a
Spring MVC managed thread. See Async Requests and Callable.

ListenableFuture<V>, ~ Alternative to DeferredResult as a convenience for example when
java.util.concurrent.Completio ap underlying service returns one of those.

nStage<\V>,

java.util.concurrent.Completab

leFuture<V>

34

Controller method return Description
value

ResponseBodyEmitter, SseEmitter Emit a stream of objects asynchronously to be written to the
response with HttpMessageConverter's; also supported as the body
of a ResponseEntity. See Async Requests and HTTP Streaming.

StreamingResponseBody Write to the response OutputStream asynchronously; also
supported as the body of a ResponseEntity. See Async Requests
and HTTP Streaming.

Reactive types — Reactor, Alternative to DeferredResult with multi-value streams (e.g. Flux,

RxJava, or others via Observable) collected to a List.

ReactiveAdapterRegistry

For streaming scenarios —e.g. text/event-stream,
application/json+stream— SseEmitter and ResponseBodyEmitter
are used instead, where ServletOutputStream blocking I/O is
performed on a Spring MVC managed thread and back pressure
applied against the completion of each write.

See Async Requests and Reactive types.

Any other return value If a return value is not matched to any of the above, by default it
is treated as a view name, if it is String or void (default view
name selection via RequestToViewNameTranslator applies); or as a
model attribute to be added to the model, unless it is a simple
type, as determined by BeanUtils#isSimpleProperty in which case
it remains unresolved.

Type Conversion

Same in Spring WebFlux

Some annotated controller method arguments that represent String-based request input—e.g.
@RequestParam, @RequestHeader, @PathVariable, @MatrixVariable, and @CookieValue, may require type
conversion if the argument is declared as something other than String.

For such cases type conversion is automatically applied based on the configured converters. By
default simple types such as int, long, Date, etc. are supported. Type conversion can be customized
through a WebDataBinder, see DataBinder, or by registering Formatters with the
FormattingConversionService, see Spring Field Formatting.

Matrix variables

Same in Spring WebFlux

RFC 3986 discusses name-value pairs in path segments. In Spring MVC we refer to those as "matrix
variables" based on an "old post" by Tim Berners-Lee but they can be also be referred to as URI path
parameters.

Matrix variables can appear in any path segment, each variable separated by semicolon and
multiple values separated by comma, e.g. "/cars;color=red,green;year=2012". Multiple values can
also be specified through repeated variable names, e.g. "color=red;color=green;color=blue".

35

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-typeconversion
core.pdf#format
web-reactive.pdf#webflux-ann-matrix-variables
https://tools.ietf.org/html/rfc3986#section-3.3
https://www.w3.org/DesignIssues/MatrixURIs.html

If a URL is expected to contain matrix variables, the request mapping for a controller method must
use a URI variable to mask that variable content and ensure the request can be matched
successfully independent of matrix variable order and presence. Below is an example:

// GET /pets/42;q=11;r=22

@GetMapping("/pets/{petld}")
public void findPet(@PathVariable String petId, @MatrixVariable int q) {

// petld == 42
/7 q =1

Given that all path segments may contain matrix variables, sometimes you may need to
disambiguate which path variable the matrix variable is expected to be in. For example:

// GET /owners/42;q=11/pets/21;q=22
@GetMapping("/owners/{ownerId}/pets/{petId}")
public void findPet(
@MatrixVariable(name="q", pathVar="ownerId") int q1,
@MatrixVariable(name="q", pathVar="petId") int q2) {

/7 ql == 11
// q2 == 122

A matrix variable may be defined as optional and a default value specified:

// GET /pets/42

@GetMapping("/pets/{petId}")
public void findPet(@MatrixVariable(required=false, defaultValue="1") int q) {

//q::

To get all matrix variables, use a MultiValueMap:

36

// GET /owners/42;q=11;r=12/pets/21;q=22;5s=23

@GetMapping("/owners/{ownerId}/pets/{petId}")

public void findPet(
@MatrixVariable MultiValueMap<String, String> matrixVars,
@MatrixVariable(pathVar="petId") MultiValueMap<String, String> petMatrixVars)

// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]

Note that you need to enable the use of matrix variables. In the MVC Java config you need to set a
UrlPathHelper with removeSemicolonContent=false via Path Matching. In the MVC XML namespace,
use <mvc:annotation-driven enable-matrix-variables="true"/>.

@RequestParam

Same in Spring WebFlux

Use the @RequestParam annotation to bind Servlet request parameters (i.e. query parameters or form
data) to a method argument in a controller.

The following code snippet shows the usage:

@Controller
@RequestMapping("/pets")
public class EditPetForm {

/] ...

@GetMapping
public String setupForm(@RequestParam("petId") int petId, Model
model) {
Pet pet = this.clinic.loadPet(petld);
model.addAttribute("pet", pet);
return "petForm";

/] ...

Method parameters using this annotation are required by default, but you can specify that a
method parameter is optional by setting @RequestParam's required flag to false or by declaring the
argument with an java.util.Optional wrapper.

Type conversion is applied automatically if the target method parameter type is not String. See

37

web-reactive.pdf#webflux-ann-requestparam

Type Conversion.

When an @RequestParam annotation is declared as Map<String, String> or MultiValueMap<String,
String> argument, the map is populated with all request parameters.

Note that use of @RequestParam is optional, e.g. to set its attributes. By default any argument that is a
simple value type, as determined by BeanUtils#isSimpleProperty, and is not resolved by any other
argument resolver, is treated as if it was annotated with @RequestParam.

@RequestHeader

Same in Spring WebFlux
Use the @RequestHeader annotation to bind a request header to a method argument in a controller.

Given request with headers:

Host localhost:8080

Accept text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language fr,en-gb;q=0.7,en;q=0.3

Accept-Encoding gzip,deflate

Accept-Charset 1S0-8859-1,utf-8;q=0.7,%;q=0.7

Keep-Alive 300

The following gets the value of the Accept-Encoding and Keep-Alive headers:

@GetMapping("/demo")
public void handle(
@RequestHeader ("Accept-Encoding") String encoding,
@RequestHeader ("Keep-Alive") long keepAlive) {
/...

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

When an @RequestHeader annotation is used on a Map<String, String>, MultiValueMap<String,
String>, or HttpHeaders argument, the map is populated with all header values.

Built-in support is available for converting a comma-separated string into an

Q array/collection of strings or other types known to the type conversion system. For
example a method parameter annotated with eRequestHeader ("Accept") may be of
type String but also String[] or List<String>.

@CookieValue

Same in Spring WebFlux

38

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-requestheader
web-reactive.pdf#webflux-ann-cookievalue

Use the @CookieValue annotation to bind the value of an HTTP cookie to a method argument in a
controller.

Given request with the following cookie:

JSESSIONID=415A4AC178C59DACEOB2CICA727CDD84

The following code sample demonstrates how to get the cookie value:

("/demo")
public void handle(("JSESSIONID") String cookie) {
/...

}

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

@ModelAttribute

Same in Spring WebFlux

Use the @ModelAttribute annotation on a method argument to access an attribute from the model, or
have it instantiated if not present. The model attribute is also overlaid with values from HTTP
Servlet request parameters whose names match to field names. This is referred to as data binding
and it saves you from having to deal with parsing and converting individual query parameters and
form fields. For example:

("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(Pet pet) { }

The Pet instance above is resolved as follows:

* From the model if already added via Model.

e From the HTTP session via @SessionAttributes.

* From a URI path variable passed through a Converter (example below).
» From the invocation of a default constructor.

* From the invocation of a "primary constructor" with arguments matching to Servlet request
parameters; argument names are determined via JavaBeans @ConstructorProperties or via
runtime-retained parameter names in the bytecode.

While it is common to use a Model to populate the model with attributes, one other alternative is to
rely on a Converter<String, T>in combination with a URI path variable convention. In the example
below the model attribute name "account” matches the URI path variable "account" and the Account
is loaded by passing the String account number through a registered Converter<String, Account>:

39

web-reactive.pdf#webflux-ann-modelattrib-method-args

("/accounts/{account}")

public String save(("account") Account account) {
/] ...

}

After the model attribute instance is obtained, data binding is applied. The WebDataBinder class
matches Servlet request parameter names (query parameters and form fields) to field names on the
target Object. Matching fields are populated after type conversion is applied where necessary. For
more on data binding (and validation) see Validation. For more on customizing data binding see
DataBinder.

Data binding may result in errors. By default a BindException is raised but to check for such errors
in the controller method, add a BindingResult argument immediately next to the @ModelAttribute as
shown below:

("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(("pet") Pet pet,
BindingResult result) {
if (result.hasErrors()) {
return "petForm";

}
/] ...

In some cases you may want access to a model attribute without data binding. For such cases you
can inject the Model into the controller and access it directly or alternatively set
@ModelAttribute(binding=false) as shown below:

public AccountForm setUpForm() {
return new AccountForm();

}
public Account findAccount(String accountId) {
return accountRepository.findOne(accountId);
}
("update")
public String update(AccountUpdateForm form, BindingResult result,
 (binding=false) Account account) {
/] ...
}

Validation can be applied automatically after data binding by adding the javax.validation.Valid
annotation or Spring’s @Validated annotation (also see Bean validation and Spring validation). For
example:

40

core.pdf#validation
core.pdf#validation-beanvalidation
core.pdf#validation

("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(("pet") Pet pet,
BindingResult result) {
if (result.hasErrors()) {
return "petForm";

Note that use of @ModelAttribute is optional, e.g. to set its attributes. By default any argument that is
not a simple value type, as determined by BeanUtils#isSimpleProperty, and is not resolved by any
other argument resolver, is treated as if it was annotated with @ModelAttribute.

@SessionAttributes

Same in Spring WebFlux

@SessionAttributes is used to store model attributes in the HTTP Servlet session between requests.
It is a type-level annotation that declares session attributes used by a specific controller. This will
typically list the names of model attributes or types of model attributes which should be
transparently stored in the session for subsequent requests to access.

For example:

 ("pet")
public class EditPetForm {

/] ...
}

On the first request when a model attribute with the name "pet" is added to the model, it is
automatically promoted to and saved in the HTTP Servlet session. It remains there until another
controller method uses a SessionStatus method argument to clear the storage:

41

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-sessionattributes

@Controller
@SessionAttributes("pet")
public class EditPetForm {

/] ...
@PostMapping("/pets/{id}")

public String handle(Pet pet, BindingResult errors, SessionStatus status) {
if (errors.hasErrors) {

/] ...

}
status.setComplete();
/] ...

}

}
}
@SessionAttribute

Same in Spring WebFlux

If you need access to pre-existing session attributes that are managed globally, i.e. outside the
controller (e.g. by a filter), and may or may not be present use the @SessionAttribute annotation on
a method parameter:

@RequestMapping("/")
public String handle(@SessionAttribute User user) {
/] ...

}

For use cases that require adding or removing session attributes consider injecting
org.springframework.web.context.request.WebRequest or javax.servlet.http.HttpSession into the
controller method.

For temporary storage of model attributes in the session as part of a controller workflow consider
using SessionAttributes as described in @SessionAttributes.

@RequestAttribute

Same in Spring WebFlux

Similar to @SessionAttribute the @RequestAttribute annotation can be used to access pre-existing
request attributes created earlier, e.g. by a Servlet Filter or HandlerInterceptor:

42

web-reactive.pdf#webflux-ann-sessionattribute
web-reactive.pdf#webflux-ann-requestattrib

(Il/ll)
public String handle(Client client) {
/] ...

}

Redirect attributes

By default all model attributes are considered to be exposed as URI template variables in the
redirect URL. Of the remaining attributes those that are primitive types or collections/arrays of
primitive types are automatically appended as query parameters.

Appending primitive type attributes as query parameters may be the desired result if a model
instance was prepared specifically for the redirect. However, in annotated controllers the model
may contain additional attributes added for rendering purposes (e.g. drop-down field values). To
avoid the possibility of having such attributes appear in the URL, an @RequestMapping method can
declare an argument of type RedirectAttributes and use it to specify the exact attributes to make
available to RedirectView. If the method does redirect, the content of RedirectAttributes is used.
Otherwise the content of the model is used.

The RequestMappingHandlerAdapter provides a flag called "ignoreDefaultModel0OnRedirect” that can be
used to indicate the content of the default Model should never be used if a controller method
redirects. Instead the controller method should declare an attribute of type RedirectAttributes or if
it doesn’t do so no attributes should be passed on to RedirectView. Both the MVC namespace and the
MVC Java config keep this flag set to false in order to maintain backwards compatibility. However,
for new applications we recommend setting it to true

Note that URI template variables from the present request are automatically made available when
expanding a redirect URL and do not need to be added explicitly neither through Model nor
RedirectAttributes. For example:

("/files/{path}")
public String upload(...) {
/] ...
return "redirect:files/{path}";

Another way of passing data to the redirect target is via Flash Attributes. Unlike other redirect
attributes, flash attributes are saved in the HTTP session (and hence do not appear in the URL). See
Flash attributes for more information.

Flash attributes

Flash attributes provide a way for one request to store attributes intended for use in another. This
is most commonly needed when redirecting — for example, the Post/Redirect/Get pattern. Flash
attributes are saved temporarily before the redirect (typically in the session) to be made available
to the request after the redirect and removed immediately.

43

Spring MVC has two main abstractions in support of flash attributes. FlashMap is used to hold flash
attributes while FlashMapManager is used to store, retrieve, and manage FlashMap instances.

Flash attribute support is always “on” and does not need to be enabled explicitly. However, if not
used, it never causes HTTP session creation. On each request, there is an “input” FlashMap with
attributes passed from a previous request (if any) and an “output” FlashMap with attributes to save
for a subsequent request. Both FlashMap instances are accessible from anywhere in Spring MVC
through static methods in RequestContextUtils.

Annotated controllers typically do not need to work with FlashMap directly. Instead an
@RequestMapping method can accept an argument of type RedirectAttributes and use it to add flash
attributes for a redirect scenario. Flash attributes added via RedirectAttributes are automatically
propagated to the "output" FlashMap. Similarly, after the redirect, attributes from the "input"
FlashMap are automatically added to the Model of the controller serving the target URL.

Matching requests to flash attributes

The concept of flash attributes exists in many other Web frameworks and has proven to be
exposed sometimes to concurrency issues. This is because by definition flash attributes are to
be stored until the next request. However the very "next" request may not be the intended
recipient but another asynchronous request (e.g. polling or resource requests) in which case
the flash attributes are removed too early.

To reduce the possibility of such issues, RedirectView automatically "stamps" FlashMap
instances with the path and query parameters of the target redirect URL. In turn the default
FlashMapManager matches that information to incoming requests when looking up the "input”
FlashMap.

This does not eliminate the possibility of a concurrency issue entirely but nevertheless
reduces it greatly with information that is already available in the redirect URL. Therefore
the use of flash attributes is recommended mainly for redirect scenarios .

Multipart

Same in Spring WebFlux

After a MultipartResolver has been enabled, the content of POST requests with "multipart/form-
data" is parsed and accessible as regular request parameters. In the example below we access one
regular form field and one uploaded file:

44

web-reactive.pdf#webflux-multipart-forms

@Controller
public class FileUploadController {

@PostMapping("/form")
public String handleFormUpload(@RequestParam("name") String name,
@RequestParam("file") MultipartFile file) {

if (Mfile.isEmpty()) {
byte[] bytes = file.getBytes();
// store the bytes somewhere
return "redirect:uploadSuccess";

}
return "redirect:uploadFailure”;
}
}
0 When using Servlet 3.0 multipart parsing you can also use javax.servlet.http.Part

as a method argument instead of Spring’s MultipartFile.

Multipart content can also be used as part of data binding to a command object. For example the
above form field and file could have been fields on a form object:

45

class MyForm {
private String name;
private MultipartFile file;

/] ...

public class FileUploadController {

("/form")
public String handleFormUpload(MyForm form, BindingResult errors) {

if (!form.getFile().isEmpty()) {
byte[] bytes = form.getFile().getBytes();
// store the bytes somewhere
return "redirect:uploadSuccess";

}

return "redirect:uploadFailure"”;

Multipart requests can also be submitted from non-browser clients in a RESTful service scenario.
For example a file along with JSON:

POST /someUr1
Content-Type: multipart/mixed

--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQg7Vp
Content-Disposition: form-data; name="meta-data"
Content-Type: application/json; charset=UTF-8
Content-Transfer-Encoding: 8bit

{

“name": "value"
}
--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQg7Vp
Content-Disposition: form-data; name="file-data"; filename="file.properties"
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
. File Data ...

You can access the "meta-data" part with @RequestParam as a String but you’ll probably want it

46

deserialized from JSON (similar to @RequestBody). Use the @RequestPart annotation to access a
multipart after converting it with an HttpMessageConverter:

@PostMapping("/")
public String handle(@RequestPart("meta-data") MetaData metadata,
@RequestPart("file-data") MultipartFile file) {
/] ...

@RequestPart can be used in combination with javax.validation.Valid, or Spring’s @Validated
annotation, which causes Standard Bean Validation to be applied. By default validation errors cause
a MethodArgumentNotValidException which is turned into a 400 (BAD_REQUEST) response.
Alternatively validation errors can be handled locally within the controller through an Errors or
BindingResult argument:

@PostMapping("/")
public String handle(@Valid @RequestPart("meta-data") MetaData
metadata,
BindingResult result) {
/] ...

@RequestBody

Same in Spring WebFlux

Use the @RequestBody annotation to have the request body read and deserialized into an Object
through an HttpMessageConverter. Below is an example with an @RequestBody argument:

@PostMapping("/accounts")
public void handle(@RequestBody Account account) {
/] ...

}

You can use the Message Converters option of the MVC Config to configure or customize message
conversion.

@RequestBody can be used in combination with javax.validation.Valid, or Spring’s @Validated
annotation, which causes Standard Bean Validation to be applied. By default validation errors cause
a MethodArgumentNotValidException which is turned into a 400 (BAD_REQUEST) response.
Alternatively validation errors can be handled locally within the controller through an Errors or
BindingResult argument:

47

integration.pdf#rest-message-conversion
web-reactive.pdf#webflux-ann-requestbody
integration.pdf#rest-message-conversion

@PostMapping("/accounts")
public void handle(@Valid @RequestBody Account account, BindingResult result) {
/] ...

}

HttpEntity
Same in Spring WebFlux

HttpEntity is more or less identical to using @RequestBody but based on a container object that
exposes request headers and body. Below is an example:

@PostMapping("/accounts")

public void handle(HttpEntity<Account> entity) {
/...

}

@ResponseBody

Same in Spring WebFlux

Use the @ResponseBody annotation on a method to have the return serialized to the response body
through an HttpMessageConverter. For example:

@GetMapping("/accounts/{id}")
@ResponseBody
public Account handle() {
/] ...
+

@ResponseBody is also supported at the class level in which case it is inherited by all controller
methods. This is the effect of @RestController which is nothing more than a meta-annotation
marked with @Controller and @ResponseBody.

@ResponseBody may be used with reactive types. See Async Requests and Reactive types for more
details.

You can use the Message Converters option of the MVC Config to configure or customize message
conversion.

@ResponseBody methods can be combined with JSON serialization views. See Jackson JSON for
details.

ResponseEntity

Same in Spring WebFlux

48

web-reactive.pdf#webflux-ann-httpentity
web-reactive.pdf#webflux-ann-responsebody
integration.pdf#rest-message-conversion
web-reactive.pdf#webflux-ann-responseentity

ResponseEntity is like @ResponseBody but with status and headers. For example:

@GetMapping("/something")
public ResponseEntity<String> handle() {
String body = ... ;
String etag = ... ;
return ResponseEntity.ok().eTag(etag).build(body);

Spring MVC supports using a single value reactive type to produce the ResponseEntity
asynchronously, and/or single and multi-value reactive types for the body.

Jackson JSON

Jackson serialization views

Same in Spring WebFlux

Spring MVC provides built-in support for Jackson’s Serialization Views which allows rendering only
a subset of all fields in an Object. To use it with @ResponseBody or ResponseEntity controller methods,
use Jackson’s @JsonView annotation to activate a serialization view class:

49

web-reactive.pdf#webflux-ann-jsonview
https://wiki.fasterxml.com/JacksonJsonViews

public class UserController {

("/user")
(User .WithoutPasswordView.class)
public User getUser() {
return new User("eric", "7!jd#h23");
}
}

public class User {

public interface WithoutPasswordView {};
public interface WithPasswordView extends WithoutPasswordView {};

private String username;
private String password;

public User() {
}

public User(String username, String password) {
this.username = username;
this.password = password;

(WithoutPasswordView.class)
public String getUsername() {
return this.username;

}

(WithPasswordView.class)
public String getPassword() {
return this.password;

}

@JsonView allows an array of view classes but you can only specify only one per
0 controller method. Use a composite interface if you need to activate multiple
views.

For controllers relying on view resolution, simply add the serialization view class to the model:

50

public class UserController extends AbstractController {

("/user")
public String getUser(Model model) {
model.addAttribute("user", new User("eric", "7!jd#h23"));
model.addAttribute(JsonView.class.getName(), User.WithoutPasswordView.class);
return "userView";

Jackson JSONP

In order to enable JSONP support for @ResponseBody and ResponseEntity methods, declare a
@ControllerAdvice bean that extends AbstractJsonpResponseBodyAdvice as shown below where the
constructor argument indicates the JSONP query parameter name(s):

public class JsonpAdvice extends AbstractJsonpResponseBodyAdvice {

public JsonpAdvice() {
super("callback");

}

For controllers relying on view resolution, JSONP is automatically enabled when the request has a
query parameter named jsonp or callback. Those names can be customized through
jsonpParameterNames property.

O As of Spring Framework 5.0.7, JSONP support is deprecated and will be removed as
of Spring Framework 5.1, CORS should be used instead.

1.4.4. Model

Same in Spring WebFlux
The @ModelAttribute annotation can be used:
* On a method argument in @ERequestMapping methods to create or access an Object from the

model, and to bind it to the request through a WebDataBinder.

* As a method-level annotation in @Controller or @ControllerAdvice classes helping to initialize
the model prior to any @RequestMapping method invocation.

* On a @RequestMapping method to mark its return value is a model attribute.

This section discusses @ModelAttribute methods, or the 2nd from the list above. A controller can
have any number of @ModelAttribute methods. All such methods are invoked before @RequestMapping
methods in the same controller. A @ModelAttribute method can also be shared across controllers via

51

https://en.wikipedia.org/wiki/JSONP
web-reactive.pdf#webflux-ann-modelattrib-methods

@ControllerAdvice. See the section on Controller Advice for more details.

@ModelAttribute methods have flexible method signatures. They support many of the same
arguments as @RequestMapping methods except for @ModelAttribute itself nor anything related to the
request body.

An example @ModelAttribute method:

public void populateModel(String number, Model model) {
model.addAttribute(accountRepository.findAccount(number));
// add more ...

}

To add one attribute only:

public Account addAccount(String number) {
return accountRepository.findAccount(number);

}

When a name is not explicitly specified, a default name is chosen based on the

O Object type as explained in the Javadoc for Conventions. You can always assign an
explicit name by using the overloaded addAttribute method or through the name
attribute on @ModelAttribute (for a return value).

@ModelAttribute can also be used as a method-level annotation on @RequestMapping methods in
which case the return value of the @RequestMapping method is interpreted as a model attribute. This
is typically not required, as it is the default behavior in HTML controllers, unless the return value is
a String which would otherwise be interpreted as a view name (also see [mvc-coc-r2vnt]).
@ModelAttribute can also help to customize the model attribute name:

("/accounts/{id}")
("myAccount")
public Account handle() {
/] ...
return account;

1.4.5. DataBinder
Same in Spring WebFlux

@Controller or @ControllerAdvice classes can have @InitBinder methods in order to initialize
instances of WebDataBinder, and those in turn are used to:

52

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/core/Conventions.html
web-reactive.pdf#webflux-ann-initbinder

* Bind request parameters (i.e. form data or query) to a model object.

* Convert String-based request values such as request parameters, path variables, headers,
cookies, and others, to the target type of controller method arguments.

» Format model object values as String values when rendering HTML forms.

@InitBinder methods can register controller-specific java.bean.PropertyEditor, or Spring Converter
and Formatter components. In addition, the MVC config can be used to register Converter and
Formatter types in a globally shared FormattingConversionService.

@InitBinder methods support many of the same arguments that a @RequestMapping methods do,
except for @ModelAttribute (command object) arguments. Typically they’re are declared with a
WebDataBinder argument, for registrations, and a void return value. Below is an example:

public class FormController {

public void initBinder(WebDataBinder binder) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setlenient(false);

binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat,
false));

}

/] ...

Alternatively when using a Formatter-based setup through a shared FormattingConversionService,
you could re-use the same approach and register controller-specific Formatter's:

public class FormController {

protected void initBinder(WebDataBinder binder) {
binder.addCustomFormatter (new DateFormatter("yyyy-MM-dd"));

}

/] ...

1.4.6. Exceptions

Same in Spring WebFlux

@Controller and @ControllerAdvice classes can have @ExceptionHandler methods to handle
exceptions from controller methods. For example:

53

web-reactive.pdf#webflux-ann-controller-exceptions

public class SimpleController {

/] ...

public ResponseEntity<String> handle(IOException ex) {
/] ...

}

The exception may match against a top-level exception being propagated (i.e. a direct I0Exception
thrown), or against the immediate cause within a top-level wrapper exception (e.g. an I0Exception
wrapped inside an I1legalStateException).

For matching exception types, preferably declare the target exception as a method argument as
shown above. When multiple exception methods match, a root exception match is generally
preferred to a cause exception match. More specifically, the ExceptionDepthComparator is used to sort
exceptions based on their depth from the thrown exception type.

Alternatively, the annotation declaration may narrow the exception types to match:

({FileSystemException.class, RemoteException.class})
public ResponseEntity<String> handle(IOException ex) {
/] ...
}

Or even a list of specific exception types with a very generic argument signature:

({FileSystemException.class, RemoteException.class})
public ResponseEntity<String> handle(Exception ex) {
/] ...
}

54

The distinction between root and cause exception matching can be surprising:

In the IOException variant above, the method will typically be called with the

actual FileSystemException or RemoteException instance as the argument since both

of them extend from IOException. However, if any such matching exception is

propagated within a wrapper exception which is an I0Exception itself, the passed-
0 in exception instance will be that wrapper exception.

The behavior is even simpler in the handle(Exception) variant: This will always be
invoked with the wrapper exception in a wrapping scenario, with the actually
matching exception to be found through ex.getCause() in that case. The passed-in
exception will only be the actual FileSystemException or RemoteException instance
when these are thrown as top-level exceptions.

We generally recommend to be as specific as possible in the argument signature, reducing the
potential for mismatches between root and cause exception types. Consider breaking a multi-
matching method into individual @ExceptionHandler methods, each matching a single specific
exception type through its signature.

In a multi-eControllerAdvice arrangement, please declare your primary root exception mappings
on a @ControllerAdvice prioritized with a corresponding order. While a root exception match is
preferred to a cause, this is defined among the methods of a given controller or @ControllerAdvice
class. This means a cause match on a higher-priority @ControllerAdvice bean is preferred to any
match (e.g. root) on a lower-priority @ControllerAdvice bean.

Last but not least, an @ExceptionHandler method implementation may choose to back out of dealing
with a given exception instance by rethrowing it in its original form. This is useful in scenarios
where you are only interested in root-level matches or in matches within a specific context that
cannot be statically determined. A rethrown exception will be propagated through the remaining
resolution chain, just like if the given @ExceptionHandler method would not have matched in the
first place.

Support for @ExceptionHandler methods in Spring MVC is built on the DispatcherServlet level,
HandlerExceptionResolver mechanism.

Method arguments

@ExceptionHandler methods support the following arguments:

Method argument Description

Exception type For access to the raised exception.

HandlerMethod For access to the controller method that raised the exception.
WebRequest, NativeWebRequest Generic access to request parameters, request & session

attributes, without direct use of the Servlet API.

javax.servlet.ServletRequest, Choose any specific request or response type —e.g.
javax.servlet.ServletResponse SeryletRequest, HttpServletRequest, or Spring’s MultipartRequest,
MultipartHttpServletRequest.

55

Method argument
javax.servlet.http.HttpSession

java.security.Principal

HttpMethod

java.util.Locale

java.util.TimeZone +
java.time.Zoneld

java.io.OutputStream,
java.io.Writer

java.util.Map,

org.springframework.ui.Model,
org.springframework.ui.ModelMa

P
RedirectAttributes

@SessionAttribute

©RequestAttribute

Return Values

Description

Enforces the presence of a session. As a consequence, such an
argument is never null.

Note: Session access is not thread-safe. Consider setting the
RequestMappingHandlerAdapter's "synchronizeOnSession" flag to
"true" if multiple requests are allowed to access a session
concurrently.

Currently authenticated user; possibly a specific Principal
implementation class if known.

The HTTP method of the request.

The current request locale, determined by the most specific
LocaleResolver available, in effect, the configured LocaleResolver
/LocaleContextResolver.

The time zone associated with the current request, as determined
by a LocaleContextResolver.

For access to the raw response body as exposed by the Servlet
API.

For access to the model for an error response, always empty.

Specify attributes to use in case of a redirect —i.e. to be
appended to the query string, and/or flash attributes to be stored
temporarily until the request after redirect. See Redirect
attributes and Flash attributes.

For access to any session attribute; in contrast to model attributes
stored in the session as a result of a class-level @SessionAttributes
declaration. See @SessionAttribute for more details.

For access to request attributes. See @RequestAttribute for more
details.

@ExceptionHandler methods support the following return values:

Return value

@ResponseBody

HttpEntity,
ResponseEntity

String

56

Description

The return value is converted through HttpMessageConverters and
written to the response. See @ResponseBody.

The return value specifies the full response including HTTP
headers and body be converted through HttpMessageConverters
and written to the response. See ResponseEntity.

A view name to be resolved with ViewResolver's and used
together with the implicit model — determined through
command objects and @ModelAttribute methods. The handler
method may also programmatically enrich the model by
declaring a Model argument (see above).

Return value Description

View A View instance to use for rendering together with the implicit
model — determined through command objects and
@ModelAttribute methods. The handler method may also
programmatically enrich the model by declaring a Model
argument (see above).

java.util.Map, . Attributes to be added to the implicit model with the view name
org.springframework.ui.Model jmplicitly determined through a RequestToViewNameTranslator.

@ModelAttribute An attribute to be added to the model with the view name
implicitly determined through a RequestToViewNameTranslator.

Note that @ModelAttribute is optional. See "Any other return
value" further below in this table.

ModelAndView object The view and model attributes to use, and optionally a response
status.
void A method with a void return type (or null return value) is

considered to have fully handled the response if it also has a
ServletResponse, or an OutputStream argument, or an
@ResponseStatus annotation. The same is true also if the
controller has made a positive ETag or lastModified timestamp
check (see Controllers for details).

If none of the above is true, a void return type may also indicate
"no response body" for REST controllers, or default view name
selection for HTML controllers.

Any other return value If a return value is not matched to any of the above, by default it
is treated as a model attribute to be added to the model, unless it
is a simple type, as determined by BeanUtils#isSimpleProperty in
which case it remains unresolved.

REST API exceptions

Same in Spring WebFlux

A common requirement for REST services is to include error details in the body of the response.
The Spring Framework does not automatically do this because the representation of error details in
the response body is application specific. However a @RestController may use @ExceptionHandler
methods with a ResponseEntity return value to set the status and the body of the response. Such
methods may also be declared in @ControllerAdvice classes to apply them globally.

Applications that implement global exception handling with error details in the response body
should consider extending ResponseEntityExceptionHandler which provides handling for
exceptions that Spring MVC raises along with hooks to customize the response body. To make use of
this, create a subclass of ResponseEntityExceptionHandler, annotate with @ControllerAdvice, override
the necessary methods, and declare it as a Spring bean.

57

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-rest-exceptions
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseEntityExceptionHandler.html

1.4.7. Controller Advice
Same in Spring WebFlux

Typically @ExceptionHandler, @InitBinder, and @ModelAttribute methods apply within the @Controller
class (or class hierarchy) they are declared in. If you want such methods to apply more globally,
across controllers, you can declare them in a class marked with @ControllerAdvice or
@RestControllerAdvice.

@ControllerAdvice is marked with @Component which means such classes can be registered as Spring
beans via component scanning. @RestControllerAdvice is also a meta-annotation marked with both
@ControllerAdvice and @ResponseBody which essentially means @ExceptionHandler methods are
rendered to the response body via message conversion (vs view resolution/template rendering).

On startup, the infrastructure classes for @RequestMapping and @ExceptionHandler methods detect
Spring beans of type @ControllerAdvice, and then apply their methods at runtime. Global
@ExceptionHandler methods (from an @ControllerAdvice) are applied after local ones (from the
@Controller). By contrast global @ModelAttribute and @InitBinder methods are applied before local
ones.

By default @ControllerAdvice methods apply to every request, i.e. all controllers, but you can

narrow that down to a subset of controllers via attributes on the annotation:

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = RestController.class)
public class ExampleAdvicel {}

// Target all Controllers within specific packages

@ControllerAdvice("org.example.controllers")
public class ExampleAdvice2 {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = {ControllerInterface.class, AbstractController

.class})
public class ExampleAdvice3 {}

Keep in mind the above selectors are evaluated at runtime and may negatively impact performance
if used extensively. See the @ControllerAdvice Javadoc for more details.

1.5. URI Links

Same in Spring WebFlux

This section describes various options available in the Spring Framework to work with URD’s.

1.5.1. UriComponents

Spring MVC and Spring WebFlux

58

web-reactive.pdf#webflux-ann-controller-advice
core.pdf#beans-java-instantiating-container-scan
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/bind/annotation/ControllerAdvice.html
web-reactive.pdf#mvc-uri-building

UriComponentsBuilder helps to build URI’s from URI templates with variables:

UriComponents uriComponents = UriComponentsBuilder
fromUriString("https://example.com/hotels/{hotel}") @
.queryParam("q", "{q}") @

.encode() ®
.build(); @

URT uri = uriComponents.expand("Westin", "123").toUri(); ®

@ Static factory method with a URI template.

@ Add and/or replace URI components.

® Request to have the URI template and URI variables encoded.
@ Build a UriComponents.

® Expand variables, and obtain the URI.

The above can be consolidated into one chain and shortened with buildAndExpand:

URT uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}")
.queryParam("q", "{q}")

.encode()
.buildAndExpand("Westin", "123")
Ltolri();

It can be shortened further by going directly to URI (which implies encoding):

URT uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}")

.queryParam("q", "{q}")
.build("Westin", "123");

Or shorter further yet, with a full URI template:

URT uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}?q={q}")
.build("Westin", "123");

1.5.2. UriBuilder
Spring MVC and Spring WebFlux

UriComponentsBuilder implements UriBuilder. A UriBuilder in turn can be created with a
UriBuilderFactory. Together UriBuilderFactory and UriBuilder provide a pluggable mechanism to

59

build URIs from URI templates, based on shared configuration such as a base url, encoding
preferences, and others.

The RestTemplate and the WebClient can be configured with a UriBuilderFactory to customize the
preparation of URIs. DefaultUriBuilderFactory is a default implementation of UriBuilderFactory that
uses UriComponentsBuilder internally and exposes shared configuration options.

RestTemplate example:

// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode;
String baseUrl = "https://example.org";

DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl);
factory.setEncodingMode(EncodingMode. TEMPLATE_AND_VARIABLES);

RestTemplate restTemplate = new RestTemplate();
restTemplate.setUriTemplateHandler(factory);

WebClient example:

// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode;

String baseUrl = "https://example.org";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl);
factory.setEncodingMode(EncodingMode. TEMPLATE_AND_VARIABLES);

WebClient client = WebClient.builder().uriBuilderFactory(factory).build();

In addition DefaultUriBuilderFactory can also be wused directly. It is similar to wusing
UriComponentsBuilder but instead of static factory methods, it is an actual instance that holds
configuration and preferences:

String baseUrl = "https://example.com";
DefaultUriBuilderFactory uriBuilderFactory = new DefaultUriBuilderFactory(baseUrl);

URT uri = uriBuilderFactory.uriString("/hotels/{hotel}")

.queryParam("q", "{q}")
.build("Westin", "123");

1.5.3. URI Encoding
Spring MVC and Spring WebFlux
UriComponentsBuilder exposes encoding options at 2 levels:

1. UriComponentsBuilder#encode() - pre-encodes the URI template first, then strictly encodes URI
variables when expanded.

60

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html#encode--

2. UriComponents#encode() - encodes URI components after URI variables are expanded.

Both options replace non-ASCII and illegal characters with escaped octets, however option 1 also
replaces characters with reserved meaning that appear in URI variables.

Consider ";" which is legal in a path but has reserved meaning. Option 1 replaces
Q ";" with "%3B" in URI variables but not in the URI template. By contrast, option 2
never replaces ";" since it is a legal character in a path.

For most cases option 1 is likely to give the expected result because it treats URI variables as opaque
data to be fully encoded, while option 2 is useful only if URI variables intentionally contain
reserved characters.

Example usage using option 1:

URT uri = UriComponentsBuilder.fromPath("/hotel list/{city}")
.queryParam("q", "{q}")
.encode()
.buildAndExpand("New York", "foo+bar")
Ltolri();

// Result is "/hotel%201ist/New%20York?q=foo%2Bbar"
The above can be shortened by going directly to URI (which implies encoding):

URT uri = UriComponentsBuilder.fromPath("/hotel list/{city}")
.queryParam("q", "{q}")
.build("New York", "foo+bar")

Or shorter further yet, with a full URI template:

URI uri = UriComponentsBuilder.fromPath("/hotel list/{city}?q={q}")
.build("New York", "foo+bar")

The WebClient and the RestTemplate expand and encode URI templates internally through the
UriBuilderFactory strategy. Both can be configured with a custom strategy:

61

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/util/UriComponents.html#encode--

String baseUrl = "https://example.com";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl)
factory.setEncodingMode(EncodingMode. TEMPLATE_AND_VALUES);

// Customize the RestTemplate..
RestTemplate restTemplate = new RestTemplate();
restTemplate.setUriTemplateHandler(factory);

// Customize the WebClient..
WebClient client = WebClient.builder().uriBuilderFactory(factory).build();

The DefaultUriBuilderFactory implementation uses UriComponentsBuilder internally to expand and
encode URI templates. As a factory it provides a single place to configure the approach to encoding
based on one of the below encoding modes:

» TEMPLATE_AND_VALUES —uses UriComponentsBuilder#iencode(), corresponding to option 1 above, to
pre-encode the URI template and strictly encode URI variables when expanded.

* VALUES_ONLY —does not encode the URI template and instead applies strict encoding to URI
variables via UriUtils#encodeUriUriVariables prior to expanding them into the template.

* URI_COMPONENTS — uses UriComponents#encode(), corresponding to option 2 above, to encode URI
component value after URI variables are expanded.

* NONE—no encoding is applied.

Out of the box the RestTemplate is set to EncodingMode.URI_COMPONENTS for historic reasons and for
backwards compatibility. The WebClient relies on the default value in DefaultUriBuilderFactory
which was changed from EncodingMode .URI_COMPONENTS in 5.0.x to EncodingMode.TEMPLATE_AND_VALUES
in 5.1.

1.5.4. Servlet request relative

You can use ServletUriComponentsBuilder to create URIs relative to the current request:

HttpServletRequest request = ...

// Re-uses host, scheme, port, path and query string...

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromRequest(request)
.replaceQueryParam("accountId", "{id}").build()

.expand("123")
.encode();

You can create URIs relative to the context path:

62

// Re-uses host, port and context path...

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromContextPath(request)
.path("/accounts").build()

You can create URISs relative to a Servlet (e.g. /main/*):

// Re-uses host, port, context path, and Servlet prefix...

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromServletMapping
(request)
.path("/accounts").build()

ServletUriComponentsBuilder detects and uses information from the "Forwarded",

"X-Forwarded-Host", "X-Forwarded-Port", and "X-Forwarded-Proto" headers, so the

resulting links reflect the original request. You need to ensure that your
‘ application is behind a trusted proxy which filters out such headers coming from
outside. Also consider using the ForwardedHeaderFilter which processes such
headers once per request, and also provides an option to remove and ignore such
headers.

1.5.5. Links to controllers

Spring MVC provides a mechanism to prepare links to controller methods. For example, the
following MVC controller easily allows for link creation:

("/hotels/{hotel}")
public class BookingController {

("/bookings/{booking}")
public ModelAndView getBooking(Long booking) {

/] ...
}

You can prepare a link by referring to the method by name:

UriComponents uriComponents = MvcUriComponentsBuilder
. fromMethodName (BookingController.class, "getBooking", 21).buildAndExpand(42);

URT uri = uriComponents.encode().toUri();

In the above example we provided actual method argument values, in this case the long value 21, to
be used as a path variable and inserted into the URL. Furthermore, we provided the value 42 in

63

order to fill in any remaining URI variables such as the "hotel" variable inherited from the type-
level request mapping. If the method had more arguments you can supply null for arguments not
needed for the URL. In general only @PathVariable and @ERequestParam arguments are relevant for
constructing the URL.

There are additional ways to use MvcUriComponentsBuilder. For example you can use a technique
akin to mock testing through proxies to avoid referring to the controller method by name (the
example assumes static import of MvcUriComponentsBuilder.on):

UriComponents uriComponents = MvcUriComponentsBuilder
.fromMethodCall(on(BookingController.class).getBooking(21)).buildAndExpand(42);

URI uri = uriComponents.encode().toUri();

Controller method signatures are limited in their design when supposed to be
usable for link creation with fromMethodCall. Aside from needing a proper
parameter signature, there is a technical limitation on the return type: namely

0 generating a runtime proxy for link builder invocations, so the return type must
not be final. In particular, the common String return type for view names does
not work here; use ModelAndView or even plain Object (with a String return value)
instead.

The above examples use static methods in MvcUriComponentsBuilder. Internally they rely on
ServletUriComponentsBuilder to prepare a base URL from the scheme, host, port, context path and
servlet path of the current request. This works well in most cases, however sometimes it may be
insufficient. For example you may be outside the context of a request (e.g. a batch process that
prepares links) or perhaps you need to insert a path prefix (e.g. a locale prefix that was removed
from the request path and needs to be re-inserted into links).

For such cases you can use the static "fromXxx" overloaded methods that accept a
UriComponentsBuilder to use base URL. Or you can create an instance of MvcUriComponentsBuilder
with a base URL and then use the instance-based "withXxx" methods. For example:

UriComponentsBuilder base = ServletUriComponentsBuilder.fromCurrentContextPath().path
(Il/enll);

MvcUriComponentsBuilder builder = MvcUriComponentsBuilder.relativeTo(base);
builder.withMethodCall(on(BookingController.class).getBooking(21)).buildAndExpand(42);

URT uri = uriComponents.encode().toUri();

64

MvcUriComponentsBuilder detects and uses information from the "Forwarded", "X-
Forwarded-Host", "X-Forwarded-Port", and "X-Forwarded-Proto" headers, so the
resulting links reflect the original request. You need to ensure that your

' application is behind a trusted proxy which filters out such headers coming from
outside. Also consider using the ForwardedHeaderFilter which processes such
headers once per request, and also provides an option to remove and ignore such
headers.

1.5.6. Links in views

You can also build links to annotated controllers from views such as JSP, Thymeleaf, FreeMarker.
This can be done using the fromMappingName method in MvcUriComponentsBuilder which refers to
mappings by name.

Every @RequestMapping is assigned a default name based on the capital letters of the class and the
full method name. For example, the method getFoo in class FooController is assigned the name
"FC#getFoo". This strategy can be replaced or customized by creating an instance of
HandlerMethodMappingNamingStrategy and plugging it into your RequestMappingHandlerMapping. The
default strategy implementation also looks at the name attribute on @RequestMapping and uses that if
present. That means if the default mapping name assigned conflicts with another (e.g. overloaded
methods) you can assign a name explicitly on the @RequestMapping.

0 The assigned request mapping names are logged at TRACE level on startup.

The Spring JSP tag library provides a function called mvcUrl that can be used to prepare links to
controller methods based on this mechanism.

For example given:

("/people/{id}/addresses")
public class PersonAddressController {

("/{country}")
public HttpEntity getAddress(String country) { ... }

You can prepare a link from a JSP as follows:

n_n g

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

Get
Address

The above example relies on the mvcUrl JSP function declared in the Spring tag library (i.e. META-
INF/spring.tld). For more advanced cases (e.g. a custom base URL as explained in the previous
section), it is easy to define your own function, or use a custom tag file, in order to use a specific

65

instance of MvcUriComponentsBuilder with a custom base URL.

1.6. Async Requests
Compared to WebFlux
Spring MVC has an extensive integration with Servlet 3.0 asynchronous request processing:

* DeferredResult and Callable return values in controller method provide basic support for a
single asynchronous return value.

* Controllers can stream multiple values including SSE and raw data.

* Controllers can use reactive clients and return reactive types for response handling.

1.6.1. DeferredResult

Compared to WebFlux

Once the asynchronous request processing feature is enabled in the Servlet container, controller
methods can wrap any supported controller method return value with DeferredResult:

@GetMapping("/quotes")

@ResponseBody

public DeferredResult<String> quotes() {
DeferredResult<String> deferredResult = new DeferredResult<String>();
// Save the deferredResult somewhere..
return deferredResult;

}

// From some other thread...
deferredResult.setResult(data);

The controller can produce the return value asynchronously, from a different thread, for example
in response to an external event (JMS message), a scheduled task, or other.

1.6.2. Callable

Compared to WebFlux

A controller may also wrap any supported return value with java.util.concurrent.Callable:

66

public Callable<String> processUpload(final MultipartFile file) {

return new Callable<String>() {
public String call() throws Exception {
/] ...
return "someView";

The return value will then be obtained by executing the the given task through the configured
TaskExecutor.

1.6.3. Processing
Compared to WebFlux
Here is a very concise overview of Servlet asynchronous request processing:

* A ServletRequest can be put in asynchronous mode by calling request.startAsync(). The main
effect of doing so is that the Servlet, as well as any Filters, can exit but the response will remain
open to allow processing to complete later.

* The call to request.startAsync() returns AsyncContext which can be used for further control
over async processing. For example it provides the method dispatch, that is similar to a forward
from the Servlet API except it allows an application to resume request processing on a Servlet
container thread.

* The ServletRequest provides access to the current DispatcherType that can be used to distinguish
between processing the initial request, an async dispatch, a forward, and other dispatcher

types.

DeferredResult processing:
* Controller returns a DeferredResult and saves it in some in-memory queue or list where it can
be accessed.
» Spring MVC calls request.startAsync().

* Meanwhile the DispatcherServlet and all configured Filter’s exit the request processing thread
but the response remains open.

* The application sets the DeferredResult from some thread and Spring MVC dispatches the
request back to the Servlet container.

* The DispatcherServlet is invoked again and processing resumes with the asynchronously
produced return value.

Callable processing:

67

e Controller returns a Callable.

» Spring MVC calls request.startAsync() and submits the Callable to a TaskExecutor for processing
in a separate thread.

* Meanwhile the DispatcherServlet and all Filter’s exit the Servlet container thread but the
response remains open.

* Eventually the Callable produces a result and Spring MVC dispatches the request back to the
Servlet container to complete processing.

* The DispatcherServlet is invoked again and processing resumes with the asynchronously
produced return value from the Callable.

For further background and context you can also read the blog posts that introduced asynchronous
request processing support in Spring MVC 3.2.

Exception handling

When using a DeferredResult you can choose whether to call setResult or setErrorResult with an
exception. In both cases Spring MVC dispatches the request back to the Servlet container to
complete processing. It is then treated either as if the controller method returned the given value,
or as if it produced the given exception. The exception then goes through the regular exception
handling mechanism, e.g. invoking @ExceptionHandler methods.

When using Callable, similar processing logic follows. The main difference being that the result is
returned from the Callable or an exception is raised by it.

Interception

HandlerInterceptor's can also be AsyncHandlerInterceptor in order to receive the
afterConcurrentHandlingStarted callback on the initial request that starts asynchronous processing
instead of postHandle and afterCompletion.

HandlerInterceptor's can also register a CallableProcessingInterceptor or a
DeferredResultProcessinglnterceptor in order to integrate more deeply with the lifecycle of an
asynchronous request for example to handle a timeout event. See AsyncHandlerInterceptor for
more details.

DeferredResult provides onTimeout(Runnable) and onCompletion(Runnable) callbacks. See the Javadoc
of DeferredResult for more details. Callable can be substituted for WebAsyncTask that exposes
additional methods for timeout and completion callbacks.

Compared to WebFlux

The Servlet API was originally built for making a single pass through the Filter-Servlet chain.
Asynchronous request processing, added in Servlet 3.0, allows applications to exit the Filter-Servlet
chain but leave the response open for further processing. The Spring MVC async support is built
around that mechanism. When a controller returns a DeferredResult, the Filter-Servlet chain is
exited and the Servlet container thread is released. Later when the DeferredResult is set, an ASYNC
dispatch (to the same URL) is made during which the controller is mapped again but rather than
invoking it, the DeferredResult value is used (as if the controller returned it) to resume processing.

68

https://spring.io/blog/2012/05/07/spring-mvc-3-2-preview-introducing-servlet-3-async-support
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/AsyncHandlerInterceptor.html

By contrast Spring WebFlux is neither built on the Servlet API, nor does it need such an
asynchronous request processing feature because it is asynchronous by design. Asynchronous
handling is built into all framework contracts and is intrinsically supported through :: stages of
request processing.

From a programming model perspective, both Spring MVC and Spring WebFlux support
asynchronous and Reactive types as return values in controller methods. Spring MVC even supports
streaming, including reactive back pressure. However individual writes to the response remain
blocking (and performed on a separate thread) unlike WebFlux that relies on non-blocking I/O and
does not need an extra thread for each write.

Another fundamental difference is that Spring MVC does not support asynchronous or reactive
types in controller method arguments, e.g. @RequestBody, @RequestPart, and others, nor does it have
any explicit support for asynchronous and reactive types as model attributes. Spring WebFlux does
support all that.

1.6.4. HTTP Streaming
Same in Spring WebFlux

DeferredResult and Callable can be used for a single asynchronous return value. What if you want
to produce multiple asynchronous values and have those written to the response?

Objects

The ResponseBodyEmitter return value can be used to produce a stream of Objects, where each
Object sent is serialized with an HttpMessageConverter and written to the response. For example:

("/events")
public ResponseBodyEmitter handle() {
ResponseBodyEmitter emitter = new ResponseBodyEmitter();
// Save the emitter somewhere..
return emitter;

// In some other thread
emitter.send("Hello once");

// and again later on
emitter.send("Hello again");

// and done at some point
emitter.complete();

ResponseBodyEmitter can also be used as the body in a ResponseEntity allowing you to customize the
status and headers of the response.

When an emitter throws an I0Exception (e.g. if the remote client went away) applications are not
responsible for cleaning up the connection, and should not invoke emitter.complete or

69

web-reactive.pdf#webflux-codecs-streaming
integration.pdf#rest-message-conversion

emitter.completeWithError. Instead the servlet container automatically initiates an AsynclListener
error notification in which Spring MVC makes a completeWithError call, which in turn performs one
a final ASYNC dispatch to the application during which Spring MVC invokes the configured
exception resolvers and completes the request.

SSE

SseEmitter is a sub-class of ResponseBodyEmitter that provides support for Server-Sent Events where
events sent from the server are formatted according to the W3C SSE specification. In order to
produce an SSE stream from a controller simply return SseEmitter:

@GetMapping(path="/events", produces=MediaType.TEXT_EVENT_STREAM_VALUE)
public SseEmitter handle() {

SseEmitter emitter = new SseEmitter();

// Save the emitter somewhere..

return emitter;

// In some other thread
emitter.send("Hello once");

// and again later on
emitter.send("Hello again");

// and done at some point
emitter.complete();

While SSE is the main option for streaming into browsers, note that Internet Explorer does not
support Server-Sent Events. Consider using Spring’s WebSocket messaging with Sock]S fallback
transports (including SSE) that target a wide range of browsers.

Also see previous section for notes on exception handling.

Raw data

Sometimes it is useful to bypass message conversion and stream directly to the response
OutputStream for example for a file download. Use the of the StreamingResponseBody return value
type to do that:

@GetMapping("/download")
public StreamingResponseBody handle() {
return new StreamingResponseBody() {
@0verride
public void writeTo(OutputStream outputStream) throws IOException {
// write...
}
i

70

https://www.w3.org/TR/eventsource/

StreamingResponseBody can be used as the body in a ResponseEntity allowing you to customize the
status and headers of the response.

1.6.5. Reactive types
Same in Spring WebFlux

Spring MVC supports use of reactive client libraries in a controller (also read Reactive Libraries in
the WebFlux section). This includes the WebClient from spring-webflux and others, such as Spring
Data reactive data repositories. In such scenarios, it is convenient to be able to return reactive types
from the controller method.

Reactive return values are handled as follows:

* A single-value promise is adapted to, and similar to using DeferredResult. Examples include Mono
(Reactor) or Single (RxJava).

* A multi-value stream, with a streaming media type such as "application/stream+json” or
"text/event-stream”, is adapted to, and similar to using ResponseBodyEmitter or SseEmitter.
Examples include Flux (Reactor) or Observable (RxJava). Applications can also return
Flux<ServerSentEvent> or Observable<ServerSentEvent>.

* A multi-value stream, with any other media type (e.g. "application/json"), is adapted to, and
similar to using DeferredResult<List<?>>.

Q Spring MVC supports Reactor and RxJava through the ReactiveAdapterRegistry
from spring-core which allows it to adapt from multiple reactive libraries.

For streaming to the response, reactive back pressure is supported, but writes to the response are
still blocking, and are executed on a separate thread through the configured TaskExecutor in order
to avoid blocking the upstream source (e.g. a Flux returned from the WebClient). By default
SimpleAsyncTaskExecutor is used for the blocking writes but that is not suitable under load. If you
plan to stream with a reactive type, please use the MVC config to configure a task executor.

1.6.6. Disconnects
Same in Spring WebFlux

The Servlet API does not provide any notification when a remote client goes away. Therefore while
streaming to the response, whether via SseEmitter or <<mvc-ann-async-reactive-types,reactive
types>, it is important to send data periodically, since the write would fail if the client has
disconnected. The send could take the form of an empty (comment-only) SSE event, or any other
data that the other side would have to to interpret as a heartbeat and ignore.

Alternatively consider using web messaging solutions such as STOMP over WebSocket or
WebSocket with Sock]S that have a built-in heartbeat mechanism.

1.6.7. Configuration

Compared to WebFlux

71

web-reactive.pdf#webflux-codecs-streaming
web-reactive.pdf#webflux-reactive-libraries
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/core/ReactiveAdapterRegistry.html
web-reactive.pdf#webflux-codecs-streaming

The async request processing feature must be enabled at the Servlet container level. The MVC
config also exposes several options for asynchronous requests.

Servlet container

Filter and Servlet declarations have an asyncSupported that needs to be set to true in order enable
asynchronous request processing. In addition, Filter mappings should be declared to handle the
ASYNC javax.servlet.DispatchType.

In Java configuration, when you use AbstractAnnotationConfigDispatcherServletInitializer to
initialize the Servlet container, this is done automatically.

In web.xml configuration, add <async-supported>true</async-supported> to the DispatcherServlet and
to Filter declarations, and also add <dispatcher>ASYNC</dispatcher> to filter mappings.

Spring MVC
The MVC config exposes options related to async request processing:

* Java config —use the configureAsyncSupport callback on WebMvcConfigurer.

* XML namespace — use the <async-support> element under <mvc:annotation-driven>.
You can configure the following:

* Default timeout value for async requests, which if not set, depends on the underlying Servlet
container (e.g. 10 seconds on Tomcat).

» AsyncTaskExecutor to use for blocking writes when streaming with Reactive types, and also for
executing Callable's returned from controller methods. It is highly recommended to configure
this property if you’re streaming with reactive types or have controller methods that return
Callable since by default it is a SimpleAsyncTaskExecutor.

* DeferredResultProcessingInterceptor's and CallableProcessingInterceptor's.

Note that the default timeout value can also be set on a DeferredResult, ResponseBodyEmitter and
SseEmitter. For a Callable, use WebAsyncTask to provide a timeout value.

1.7. CORS

Same in Spring WebFlux

1.7.1. Introduction
Same in Spring WebFlux

For security reasons browsers prohibit AJAX calls to resources outside the current origin. For
example you could have your bank account in one tab and evil.com in another. Scripts from
evil.com should not be able to make AJAX requests to your bank API with your credentials, e.g.
withdrawing money from your account!

Cross-Origin Resource Sharing (CORS) is a W3C specification implemented by most browsers that

72

web-reactive.pdf#webflux-cors
web-reactive.pdf#webflux-cors-intro
https://www.w3.org/TR/cors/
https://caniuse.com/#feat=cors

allows you to specify what kind of cross domain requests are authorized rather than using less
secure and less powerful workarounds based on IFRAME or JSONP.

1.7.2. Processing
Same in Spring WebFlux

The CORS specification distinguishes between preflight, simple, and actual requests. To learn how
CORS works, you can read this article, among many others, or refer to the specification for more
details.

Spring MVC HandlerMapping's provide built-in support for CORS. After successfully mapping a
request to a handler, HandlerMapping's check the CORS configuration for the given request and
handler and take further actions. Preflight requests are handled directly while simple and actual
CORS requests are intercepted, validated, and have required CORS response headers set.

In order to enable cross-origin requests (i.e. the Origin header is present and differs from the host
of the request) you need to have some explicitly declared CORS configuration. If no matching CORS
configuration is found, preflight requests are rejected. No CORS headers are added to the responses
of simple and actual CORS requests and consequently browsers reject them.

Each HandlerMapping can be configured individually with URL pattern based CorsConfiguration
mappings. In most cases applications will use the MVC Java config or the XML namespace to declare
such mappings, which results in a single, global map passed to all HadlerMappping's.

Global CORS configuration at the HandlerMapping level can be combined with more fine-grained,
handler-level CORS configuration. For example annotated controllers can use class or method-level
@CrossOrigin annotations (other handlers can implement CorsConfigurationSource).

The rules for combining global and local configuration are generally additive —e.g. all global and
all local origins. For those attributes where only a single value can be accepted such as
allowCredentials and maxAge, the local overrides the global value. See
CorsConfiguration#icombine(CorsConfiguration) for more details.

To learn more from the source or make advanced customizations, check:

Q o CorsConfiguration
e CorsProcessor, DefaultCorsProcessor

« AbstractHandlerMapping

1.7.3. @CrossOrigin
Same in Spring WebFlux

The @CrossOrigin annotation enables cross-origin requests on annotated controller methods:

73

web-reactive.pdf#webflux-cors-processing
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/handler/AbstractHandlerMapping.html#setCorsConfigurations-java.util.Map-
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/cors/CorsConfiguration.html#combine-org.springframework.web.cors.CorsConfiguration-
web-reactive.pdf#webflux-cors-controller
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html

@RestController
@RequestMapping("/account™)
public class AccountController {

@CrossOrigin

@GetMapping("/{id}")

public Account retrieve(@PathVariable Long id) {
7

}

@DeleteMapping("/{id}")

public void remove(@PathVariable Long id) {
/] ...

Iy

By default @CrossOrigin allows:

All origins.
All headers.
All HTTP methods to which the controller method is mapped.

allowedCredentials is not enabled by default since that establishes a trust level that exposes
sensitive user-specific information such as cookies and CSRF tokens, and should only be used
where appropriate.

maxAge is set to 30 minutes.

@CrossOrigin is supported at the class level too and inherited by all methods:

@CrossOrigin(origins = "https://domain2.com", maxAge = 3600)
@RestController

@RequestMapping("/account™)

public class AccountController {

eGetMapping("/{id}")

public Account retrieve(@PathVariable Long id) {
/] ...

}

@DeleteMapping("/{id}")

public void remove(@PathVariable Long id) {
/] ...

}

CrossOrigin can be used at both class and method-level:

74

@CrossOrigin(maxAge = 3600)
@RestController
@RequestMapping("/account")
public class AccountController {

@CrossOrigin("https://domain2.com")

@GetMapping("/{id}")

public Account retrieve(@PathVariable Long id) {
/] ...

}

@DeleteMapping("/{id}")

public void remove(@PathVariable Long id) {
/] ...

}

1.7.4. Global Config

Same in Spring WebFlux

In addition to fine-grained, controller method level configuration you’ll probably want to define
some global CORS configuration too. You can set URL-based CorsConfiguration mappings
individually on any HandlerMapping. Most applications however will use the MVC Java config or the
MVC XNM namespace to do that.

By default global configuration enables the following:

* All origins.
e All headers.
e GET, HEAD, and POST methods.

* allowedCredentials is not enabled by default since that establishes a trust level that exposes
sensitive user-specific information such as cookies and CSRF tokens, and should only be used
where appropriate.

* maxAge is set to 30 minutes.

Java Config

Same in Spring WebFlux

To enable CORS in the MVC Java config, use the CorsRegistry callback:

75

web-reactive.pdf#webflux-cors-global
web-reactive.pdf#webflux-cors-global

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@Override
public void addCorsMappings(CorsRegistry registry) {

registry.addMapping("/api/**")
.allowedOrigins("https://domain2.com")
.allowedMethods("PUT", "DELETE")
.allowedHeaders("header1", "header2", "header3")
.exposedHeaders("header1", "header2")
.allowCredentials(true).maxAge(3600);

// Add more mappings...

XML Config

To enable CORS in the XML namespace, use the <mvc:cors> element:

<mvc:cors>

<mvc:mapping path="/api/**"
allowed-origins="https://domain1.com, https://domain2.com"
allowed-methods="GET, PUT"
allowed-headers="header1, header2, header3"
exposed-headers="header1, header2" allow-credentials="true'
max-age="123" />

<mvc:mapping path="/resources/**"
allowed-origins="https://domain1.com" />

</mvc:cors>

1.7.5. CORS Filter
Same in Spring WebFlux

You can apply CORS support through the built-in CorsFilter.

0 If you’re trying to use the CorsFilter with Spring Security, keep in mind that Spring
Security has built-in support for CORS.

To configure the filter pass a CorsConfigurationSource to its constructor:

76

web-reactive.pdf#webflux-cors-webfilter
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/filter/CorsFilter.html
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#cors

CorsConfiguration config = new CorsConfiguration();

// Possibly...
// config.applyPermitDefaultValues()

config.setAllowCredentials(true);
config.addAllowedOrigin("https://domainl.com");
config.addAllowedHeader ("*");
config.addAllowedMethod("*");

Ur1BasedCorsConfigurationSource source = new UrlBasedCorsConfigurationSource();
source.registerCorsConfiguration("/**", config);

CorsFilter filter = new CorsFilter(source);

1.8. Web Security

Same in Spring WebFlux

The Spring Security project provides support for protecting web applications from malicious
exploits. Check out the Spring Security reference documentation including:

» Spring MVC Security
* Spring MVC Test Support
* CSRF protection

» Security Response Headers

HDIV is another web security framework that integrates with Spring MVC.

1.9. HTTP Caching

Same in Spring WebFlux

HTTP caching can significantly improve the performance of a web application. HTTP caching
revolves around the "Cache-Control" response header and subsequently conditional request
headers such as "Last-Modified" and "ETag". "Cache-Control" advises private (e.g. browser) and
public (e.g. proxy) caches how to cache and re-use responses. An "ETag" header is used to make a
conditional request that may result in a 304 (NOT_MODIFIED) without a body, if the content has not
changed. "ETag" can be seen as a more sophisticated successor to the Last-Modified header.

This section describes HTTP caching related options available in Spring Web MVC.

1.9.1. CacheControl
Same in Spring WebFlux

CacheControl provides support for configuring settings related to the "Cache-Control" header and is

77

web-reactive.pdf#webflux-web-security
https://projects.spring.io/spring-security/
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#mvc
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#test-mockmvc
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#csrf
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#headers
https://hdiv.org/
web-reactive.pdf#webflux-caching
web-reactive.pdf#webflux-caching-cachecontrol
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/http/CacheControl.html

accepted as an argument in a number of places:

« WebContentInterceptor

« WebContentGenerator

e Controllers
» Static resources

While RFC 7234 describes all possible directives for the "Cache-Control" response header, the
CacheControl type takes a use case oriented approach focusing on the common scenarios:

// Cache for an hour - "Cache-Control: max-age=3600"
CacheControl ccCacheOneHour = CacheControl.maxAge(1, TimeUnit.HOURS);

// Prevent caching - "Cache-Control: no-store"
CacheControl ccNoStore = CacheControl.noStore();

// Cache for ten days in public and private caches,

// public caches should not transform the response

// "Cache-Control: max-age=864000, public, no-transform"

CacheControl ccCustom = CacheControl.maxAge(10, TimeUnit.DAYS).noTransform()
.cachePublic();

WebContentGenerator also accept a simpler cachePeriod property, in seconds, that works as follows:

* A -1value won’t generate a "Cache-Control" response header.
* A 0 value will prevent caching using the 'Cache-Control: no-store' directive.

* Ann > 0 value will cache the given response for n seconds using the 'Cache-Control: max-age=n'
directive.

1.9.2. Controllers
Same in Spring WebFlux

Controllers can add explicit support for HTTP caching. This is recommended since the lastModified
or ETag value for a resource needs to be calculated before it can be compared against conditional
request headers. A controller can add an ETag and "Cache-Control" settings to a ResponseEntity:

78

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/mvc/WebContentInterceptor.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/support/WebContentGenerator.html
https://tools.ietf.org/html/rfc7234#section-5.2.2
web-reactive.pdf#webflux-caching-etag-lastmodified

("/book/{id}")
public ResponseEntity<Book> showBook(Long id) {

Book book = findBook(id);
String version = book.getVersion();

return ResponseEntity
.ok()
.cacheControl(CacheControl.maxAge(30, TimeUnit.DAYS))
.eTag(version) // lastModified is also available
.body(book);

This will send an 304 (NOT_MODIFIED) response with an empty body, if the comparison to the
conditional request headers indicates the content has not changed. Otherwise the "ETag" and
"Cache-Control" headers will be added to the response.

The check against conditional request headers can also be made in the controller:

public String myHandleMethod(WebRequest webRequest, Model model) {
long eTag = ... @®

if (request.checkNotModified(eTag)) {
return null; @

}

model.addAttribute(...); ®
return "myViewName";

@ Application-specific calculation.
@ Response has been set to 304 (NOT_MODIFIED), no further processing.

® Continue with request processing.

There are 3 variants for checking conditional requests against eTag values, lastModified values, or
both. For conditional "GET" and "HEAD" requests, the response may be set to 304 (NOT_MODIFIED).
For conditional "POST", "PUT", and "DELETE", the response would be set to 409
(PRECONDITION_FAILED) instead to prevent concurrent modification.

1.9.3. Static resources
Same in Spring WebFlux

Static resources should be served with a "Cache-Control" and conditional response headers for
optimal performance. See section on configuring Static Resources.

79

web-reactive.pdf#webflux-caching-static-resources

1.9.4. ETag Filter

The ShallowEtagHeaderFilter can be used to add "shallow" eTag values, computed from the response
content and thus saving bandwidth but not CPU time. See Shallow ETag.

1.10. View Technologies
Same in Spring WebFlux

The use of view technologies in Spring MVC is pluggable, whether you decide to use Thymeleaf,
Groovy Markup Templates, JSPs, or other, is primarily a matter of a configuration change. This
chapter covers view technologies integrated with Spring MVC. We assume you are already familiar
with View Resolution.

1.10.1. Thymeleaf
Same in Spring WebFlux

Thymeleaf is modern server-side Java template engine that emphasizes natural HTML templates
that can be previewed in a browser by double-clicking, which is very helpful for independent work
on Ul templates, e.g. by designer, without the need for a running server. If you’re looking to replace
JSPs, Thymeleaf offers one of the most extensive set of features that will make such a transition
easier. Thymeleaf is actively developed and maintained. For a more complete introduction see the
Thymeleaf project home page.

The Thymeleaf integration with Spring MVC is managed by the Thymeleaf project. The
configuration involves a few bean declarations such as ServletContextTemplateResolver,
SpringTemplateEngine, and ThymeleafViewResolver. See Thymeleaf+Spring for more details.

1.10.2. FreeMarker
Same in Spring WebFlux

Apache FreeMarker is a template engine for generating any kind of text output from HTML to
email, and others. The Spring Framework has a built-in integration for using Spring MVC with
FreeMarker templates.

View config

Same in Spring WebFlux

To configure FreeMarker as a view technology:

80

web-reactive.pdf#webflux-view
web-reactive.pdf#webflux-view-thymeleaf
https://www.thymeleaf.org/
https://www.thymeleaf.org/documentation.html
web-reactive.pdf#webflux-view-freemarker
https://freemarker.apache.org/
web-reactive.pdf#webflux-view-freemarker-contextconfig

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.freemarker();

}
// Confiqure FreeMarker...

@Bean

public FreeMarkerConfigurer freeMarkerConfigurer() {
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplateLoaderPath("/WEB-INF/freemarker");
return confiqurer;

To configure the same in XML:

<mvc:annotation-driven/>

<mvc:iview-resolvers>
<mvc:freemarker/>
</mve:view-resolvers>

<!-- Confiqure FreeMarker... -->
<mvc:freemarker-configurer>

<mvc:template-loader-path location="/WEB-INF/freemarker"/>
</mvc:freemarker-configurer>

Or you can also declare the FreeMarkerConfigurer bean for full control over all properties:

<bean id="freemarkerConfig" class=
"org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">

<property name="templateloaderPath" value="/WEB-INF/freemarker/"/>
</bean>

Your templates need to be stored in the directory specified by the FreeMarkerConfigurer shown
above. Given the above configuration if your controller returns the view name "welcome" then the
resolver will look for the /WEB-INF/freemarker/welcome.ftl template.

FreeMarker config

Same in Spring WebFlux

81

web-reactive.pdf#webflux-views-freemarker

FreeMarker 'Settings' and 'SharedVariables' can be passed directly to the FreeMarker Configuration
object managed by Spring by setting the appropriate bean properties on the FreeMarkerConfigurer
bean. The freemarkerSettings property requires a java.util.Properties object and the
freemarkerVariables property requires a java.util.Map.

<bean id="freemarkerConfig" class=
"org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
<property name="templatelLoaderPath" value="/WEB-INF/freemarker/"/>
<property name="freemarkerVariables">
<map>
<entry key="xml_escape" value-ref="fmXmlEscape"/>
</map>
</property>
</bean>

<bean id="fmXmlEscape" class="freemarker.template.utility.XmlEscape"/>

See the FreeMarker documentation for details of settings and variables as they apply to the
Configuration object.

Form handling

Spring provides a tag library for use in JSP’s that contains, amongst others, a <spring:bind/> tag.
This tag primarily enables forms to display values from form backing objects and to show the
results of failed validations from a Validator in the web or business tier. Spring also has support for
the same functionality in FreeMarker, with additional convenience macros for generating form
input elements themselves.

The bind macros

A standard set of macros are maintained within the spring-webmvc.jar file for both languages, so
they are always available to a suitably configured application.

Some of the macros defined in the Spring libraries are considered internal (private) but no such
scoping exists in the macro definitions making all macros visible to calling code and user templates.
The following sections concentrate only on the macros you need to be directly calling from within
your templates. If you wish to view the macro code directly, the file is called spring.ftl in the
package org.springframework.web.servlet.view.freemarker.

Simple binding

In your HTML forms (v / ftl templates) which act as a form view for a Spring MVC controller, you
can use code similar to the following to bind to field values and display error messages for each
input field in similar fashion to the JSP equivalent. Example code is shown below for the personForm
view configured earlier:

82

<!-- freemarker macros have to be imported into a namespace. We strongly
recommend sticking to 'spring' -->

<#import "/spring.ftl" as spring/>

<html>

<form action="" method="POST">

Name:

<@spring.bind "myModelObject.name"/>

<input type="text"
name="${spring.status.expression}"
value="${spring.status.value?html}"/>

<#list spring.status.errorMessages as error> ${error}
 </#list>

<input type="submit" value="submit"/>
</form>

</html>

<@spring.bind> requires a 'path' argument which consists of the name of your command object (it
will be 'command' unless you changed it in your FormController properties) followed by a period
and the name of the field on the command object you wish to bind to. Nested fields can be used too
such as "command.address.street”. The bind macro assumes the default HTML escaping behavior
specified by the ServletContext parameter defaultHtmlEscape in web.xml.

The optional form of the macro called <@spring.bindEscaped> takes a second argument and
explicitly specifies whether HTML escaping should be used in the status error messages or values.
Set to true or false as required. Additional form handling macros simplify the use of HTML escaping
and these macros should be used wherever possible. They are explained in the next section.

Input macros

Additional convenience macros for both languages simplify both binding and form generation
(including validation error display). It is never necessary to use these macros to generate form
input fields, and they can be mixed and matched with simple HTML or calls direct to the spring
bind macros highlighted previously.

The following table of available macros show the FTL definitions and the parameter list that each
takes.

Table 6. Table of macro definitions

macro FTL definition

message (output a string from a resource bundle based on the code <@spring.message

parameter) code/>

messageText (output a string from a resource bundle based on the code <@spring.messageText

parameter, falling back to the value of the default parameter) code, text/>

url (prefix a relative URL with the application’s context root) <@spring.url
relativeUrl/>

83

macro

formInput (standard input field for gathering user input)

formHiddenInput * (hidden input field for submitting non-user input)

formPasswordInput * (standard input field for gathering passwords.
Note that no value will ever be populated in fields of this type)

formTextarea (large text field for gathering long, freeform text input)

formSingleSelect (drop down box of options allowing a single required
value to be selected)

formMultiSelect (a list box of options allowing the user to select 0 or
more values)

formRadioButtons (a set of radio buttons allowing a single selection to
be made from the available choices)

formCheckboxes (a set of checkboxes allowing 0 or more values to be
selected)

formCheckbox (a single checkbox)

showErrors (simplify display of validation errors for the bound field)

FTL definition

<@spring.formInput
path, attributes,
fieldType/>

<@spring.formHiddenl
nput path, attributes/>

<@spring.formPasswor
dInput path,
attributes/>

<@spring.formTextarea
path, attributes/>

<@spring.formSingleSe
lect path, options,
attributes/>

<@spring.formMultiSel
ect path, options,
attributes/>

<@spring.formRadioBu
ttons path, options
separator, attributes/>

<@spring.formCheckbo
xes path, options,
separator, attributes/>

<@spring.formCheckbo
X path, attributes/>

<@spring.showErrors
separator,
classOrStyle/>

* In FTL (FreeMarker), formHiddenInput and formPasswordInput are not actually required as you
can use the normal formInput macro, specifying hidden or password as the value for the fieldType

parameter.
The parameters to any of the above macros have consistent meanings:

* path: the name of the field to bind to (ie "command.name")

» options: a Map of all the available values that can be selected from in the input field. The keys to
the map represent the values that will be POSTed back from the form and bound to the
command object. Map objects stored against the keys are the labels displayed on the form to the
user and may be different from the corresponding values posted back by the form. Usually, such
a map is supplied as reference data by the controller. You can use any Map implementation,
depending on required behavior. For strictly sorted maps, you can use a SortedMap (such as a
TreeMap) with a suitable Comparator and, for arbitrary Maps that should return values in
insertion order, use a LinkedHashMap or a LinkedMap from commons-collections.

» separator: Where multiple options are available as discreet elements (radio buttons or
checkbozxes), the sequence of characters used to separate each one in the list (such as
).

84

» attributes: An additional string of arbitrary tags or text to be included within the HTML tag
itself. This string is echoed literally by the macro. For example, in a textarea field, you may
supply attributes (such as 'rows="5" cols="60"), or you could pass style information such as

"

'style="border:1px solid silver™.

e classOrStyle: For the showErrors macro, the name of the CSS class that the span element that
wraps each error uses. If no information is supplied (or the value is empty), the errors are
wrapped in tags.

Examples of the macros are outlined below some in FTL and some in VTL. Where usage differences
exist between the two languages, they are explained in the notes.

Input Fields

The formInput macro takes the path parameter (command.name) and an additional attributes
parameter which is empty in the example above. The macro, along with all other form generation
macros, performs an implicit spring bind on the path parameter. The binding remains valid until a
new bind occurs so the showErrors macro doesn’t need to pass the path parameter again - it simply
operates on whichever field a bind was last created for.

The showErrors macro takes a separator parameter (the characters that will be used to separate
multiple errors on a given field) and also accepts a second parameter, this time a class name or
style attribute. Note that FreeMarker is able to specify default values for the attributes parameter.

<@spring.formInput "command.name"/>
<@spring.showErrors "
"/>

Output is shown below of the form fragment generating the name field, and displaying a validation
error after the form was submitted with no value in the field. Validation occurs through Spring’s
Validation framework.

The generated HTML looks like this:

Name:
<input type="text" name="name" value="">

required

The formTextarea macro works the same way as the formInput macro and accepts the same
parameter list. Commonly, the second parameter (attributes) will be used to pass style information
or rows and cols attributes for the textarea.

Selection Fields

Four selection field macros can be used to generate common UI value selection inputs in your
HTML forms.

85

formSingleSelect

formMultiSelect

* formRadioButtons

formCheckboxes

Each of the four macros accepts a Map of options containing the value for the form field, and the
label corresponding to that value. The value and the label can be the same.

An example of radio buttons in FTL is below. The form backing object specifies a default value of
'London' for this field and so no validation is necessary. When the form is rendered, the entire list
of cities to choose from is supplied as reference data in the model under the name 'cityMap'.

Town:
<@spring.formRadioButtons "command.address.town", cityMap,

/>

This renders a line of radio buttons, one for each value in cityMap using the separator "". No
additional attributes are supplied (the last parameter to the macro is missing). The cityMap uses the
same String for each key-value pair in the map. The map’s keys are what the form actually submits
as POSTed request parameters, map values are the labels that the user sees. In the example above,
given a list of three well known cities and a default value in the form backing object, the HTML
would be

Town:

<input type="radio" name="address.town" value="London">London</input>

<input type="radio" name="address.town" value="Paris" checked="checked">Paris</input>
<input type="radio" name="address.town" value="New York">New York</input>

If your application expects to handle cities by internal codes for example, the map of codes would
be created with suitable keys like the example below.

protected Map<String, String> referenceData(HttpServletRequest request) throws
Exception {

Map<String, String> cityMap = new LinkedHashMap<>();

cityMap.put("LDN", "London");

cityMap.put("PRS", "Paris");

cityMap.put("NYC", "New York");

Map<String, String> model = new HashMap<>();

model.put("cityMap”, cityMap);
return model;

The code would now produce output where the radio values are the relevant codes but the user still
sees the more user friendly city names.

86

Town:

<input type="radio" name="address.town" value="LDN">London</input>

<input type="radio" name="address.town" value="PRS" checked="checked">Paris</input>
<input type="radio" name="address.town" value="NYC">New York</input>

HTML escaping

Default usage of the form macros above will result in HTML tags that are HTML 4.01 compliant and
that use the default value for HTML escaping defined in your web.xml as used by Spring’s bind
support. In order to make the tags XHTML compliant or to override the default HTML escaping
value, you can specify two variables in your template (or in your model where they will be visible
to your templates). The advantage of specifying them in the templates is that they can be changed to
different values later in the template processing to provide different behavior for different fields in
your form.

To switch to XHTML compliance for your tags, specify a value of true for a model/context variable

named xhtmlCompliant:

<#-- for FreeMarker -->
<#tassign xhtmlCompliant = true>

Any tags generated by the Spring macros will now be XHTML compliant after processing this
directive.

In similar fashion, HTML escaping can be specified per field:

<-- until this point, default HTML escaping is used -->
<#fassign htmlEscape = true>
<-- next field will use HTML escaping -->

<@spring.formInput "command.name"/>

<assign htmlEscape = false in spring>
<-- all future fields will be bound with HTML escaping off -->

1.10.3. Groovy Markup

Groovy Markup Template Engine is primarily aimed at generating XML-like markup (XML, XHTML,
HTMLS5, etc) but that can be used to generate any text based content. The Spring Framework has a
built-in integration for using Spring MVC with Groovy Markup.

Q The Groovy Markup Template engine requires Groovy 2.3.1+.

Configuration

To configure the Groovy Markup Template Engine:

87

http://groovy-lang.org/templating.html#_the_markuptemplateengine

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@Override

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.groovy();

}

// Configure the Groovy Markup Template Engine...

@Bean

public GroovyMarkupConfigurer groovyMarkupConfigurer() {
GroovyMarkupConfigurer configurer = new GroovyMarkupConfigurer();
configurer.setResourceloaderPath("/WEB-INF/");
return confiqurer;

To configure the same in XML:

<mvc:annotation-driven/>

<mvc:view-resolvers>
<mvc:groovy/>
</mve:view-resolvers>

<!-- Confiqure the Groovy Markup Template Engine... -->
<mvc:groovy-configurer resource-loader-path="/WEB-INF/"/>

Example

Unlike traditional template engines, Groovy Markup relies on a DSL that uses a builder syntax. Here
is a sample template for an HTML page:

yieldUnescaped '<!DOCTYPE htm1>'
html(lang:'en') {
head {
meta('http-equiv':'"Content-Type" content="text/html; charset=utf-8"")
title('My page')

}
body {

p('This is an example of HTML contents")
}

88

1.10.4. Script Views
Same in Spring WebFlux

The Spring Framework has a built-in integration for using Spring MVC with any templating library
that can run on top of the JSR-223 Java scripting engine. Below is a list of templating libraries we’ve
tested on different script engines:

Handlebars

Nashorn

Mustache

Nashorn

React

Nashorn

EJS

Nashorn

ERB
JRuby

String templates

Jython

Kotlin Script templating
Kotlin

Q The basic rule for integrating any other script engine is that it must implement the
ScriptEngine and Invocable interfaces.

Requirements

Same in Spring WebFlux
You need to have the script engine on your classpath:
* Nashorn JavaScript engine is provided with Java 8+. Using the latest update release available is
highly recommended.
* JRuby should be added as a dependency for Ruby support.

* Jython should be added as a dependency for Python support.

* org.jetbrains.kotlin:kotlin-script-util dependency and a META-
INF/services/javax.script.ScriptEngineFactory file containing a
org.jetbrains.kotlin.script.jsr223.KotlinJsr223JvmLocalScriptEngineFactory line should be
added for Kotlin script support, see this example for more details.

You need to have the script templating library. One way to do that for Javascript is through WebJars.

89

web-reactive.pdf#webflux-view-script
https://www.jcp.org/en/jsr/detail?id=223
https://handlebarsjs.com/
https://openjdk.java.net/projects/nashorn/
https://mustache.github.io/
https://openjdk.java.net/projects/nashorn/
https://facebook.github.io/react/
https://openjdk.java.net/projects/nashorn/
https://www.embeddedjs.com/
https://openjdk.java.net/projects/nashorn/
https://www.stuartellis.name/articles/erb/
https://www.jruby.org
https://docs.python.org/2/library/string.html#template-strings
https://www.jython.org/
https://github.com/sdeleuze/kotlin-script-templating
https://kotlinlang.org/
web-reactive.pdf#webflux-view-script-dependencies
https://openjdk.java.net/projects/nashorn/
https://www.jruby.org
https://www.jython.org
https://github.com/sdeleuze/kotlin-script-templating
https://www.webjars.org/

Script templates

Same in Spring WebFlux

Declare a ScriptTemplateConfigurer bean in order to specify the script engine to use, the script files
to load, what function to call to render templates, and so on. Below is an example with Mustache
templates and the Nashorn JavaScript engine:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();

}

@Bean

public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("mustache.js");
configurer.setRenderObject("Mustache");
configurer.setRenderFunction("render");
return confiqurer;

The same in XML:

<mvc:annotation-driven/>

<mvc:view-resolvers>
<mvc:script-template/>
</mve:view-resolvers>

<mvc:script-template-configurer engine-name="nashorn" render-object="Mustache" render-
function="render">

<mvc:script location="mustache.js"/>
</mvc:script-template-configurer>

The controller would look no different:

90

web-reactive.pdf#webflux-script-integrate

@Controller
public class SampleController {

@GetMapping("/sample")

public String test(Model model) {
model.addObject("title", "Sample title");
model.addObject("body", "Sample body");
return "template";

And the Mustache template is:

<html>
<head>
<title>{{title}}</title>
</head>
<body>
<p>{{body}}</p>
</body>
</html>

The render function is called with the following parameters:

» String template: the template content

* Map model: the view model

* RenderingContext renderingContext: the RenderingContext that gives access to the application
context, the locale, the template loader and the url (since 5.0)

Mustache.render () is natively compatible with this signature, so you can call it directly.

If your templating technology requires some customization, you may provide a script that
implements a custom render function. For example, Handlerbars needs to compile templates
before using them, and requires a polyfill in order to emulate some browser facilities not available
in the server-side script engine.

91

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/view/script/RenderingContext.html
https://handlebarsjs.com
https://en.wikipedia.org/wiki/Polyfill

public class WebConfig implements WebMvcConfigurer {

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();
}

public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("polyfill.js", "handlebars.js", "render.js");
configurer.setRenderFunction("render");
configurer.setSharedEngine(false);
return confiqurer;

Setting the sharedEngine property to false is required when using non thread-safe

0 script engines with templating libraries not designed for concurrency, like
Handlebars or React running on Nashorn for example. In that case, Java 8u60 or
greater is required due to this bug.

polyfill.js only defines the window object needed by Handlebars to run properly:

var window = {};

This basic render.js implementation compiles the template before using it. A production ready
implementation should also store and reused cached templates / pre-compiled templates. This can
be done on the script side, as well as any customization you need (managing template engine
configuration for example).

function render(template, model) {
var compiledTemplate = Handlebars.compile(template);
return compiledTemplate(model);

Check out the Spring Framework unit tests, java, and resources, for more configuration examples.

1.10.5. JSP & JSTL

The Spring Framework has a built-in integration for using Spring MVC with JSP and JSTL.

92

https://bugs.openjdk.java.net/browse/JDK-8076099
https://github.com/spring-projects/spring-framework/tree/master/spring-webmvc/src/test/java/org/springframework/web/servlet/view/script
https://github.com/spring-projects/spring-framework/tree/master/spring-webmvc/src/test/resources/org/springframework/web/servlet/view/script

View resolvers

When developing with JSPs, you can declare a InternalResourceViewResolver or a
ResourceBundleViewResolver bean.

ResourceBundleViewResolver relies on a properties file to define the view names mapped to a class
and a URL. With a ResourceBundleViewResolver, you can mix different types of views by using only
one resolver, as the following example shows:

<!-- the ResourceBundleViewResolver -->

<bean id="viewResolver" class=

"org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>

</bean>

And a sample properties file is used (views.properties in WEB-INF/classes):
welcome.(class)=org.springframework.web.servlet.view.Jst1View
welcome.url=/WEB-INF/jsp/welcome.jsp

productlist.(class)=org.springframework.web.servlet.view.Jst1View
productlList.url=/WEB-INF/jsp/productlist.jsp

InternalResourceViewResolver can also be used for JSPs. As a best practice, we strongly encourage
placing your JSP files in a directory under the '"WEB-INF' directory so there can be no direct access
by clients.

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.Jst1View"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

JSPs versus JSTL

When using the JSP Standard Tag Library (JSTL) you must use a special view class, the Jst1View, as
JSTL needs some preparation before things such as the [18N features can work.

Spring’s JSP tag library

Spring provides data binding of request parameters to command objects as described in earlier
chapters. To facilitate the development of JSP pages in combination with those data binding
features, Spring provides a few tags that make things even easier. All Spring tags haveHTML
escaping features to enable or disable escaping of characters.

The spring.tld tag library descriptor (TLD) is included in the spring-webmvc.jar. For a
comprehensive reference on individual tags, browse the API reference or see the tag library
description.

93

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/tags/package-summary.html#package.description

Spring’s form tag library

As of version 2.0, Spring provides a comprehensive set of data binding-aware tags for handling
form elements when using JSP and Spring Web MVC. Each tag provides support for the set of
attributes of its corresponding HTML tag counterpart, making the tags familiar and intuitive to use.
The tag-generated HTML is HTML 4.01/XHTML 1.0 compliant.

Unlike other form/input tag libraries, Spring’s form tag library is integrated with Spring Web MVC,
giving the tags access to the command object and reference data your controller deals with. As you
will see in the following examples, the form tags make JSPs easier to develop, read and maintain.

Let’s go through the form tags and look at an example of how each tag is used. We have included
generated HTML snippets where certain tags require further commentary.

Configuration

The form tag library comes bundled in spring-webmvc.jar. The library descriptor is called spring-
form.t1d.

To use the tags from this library, add the following directive to the top of your JSP page:

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

where formis the tag name prefix you want to use for the tags from this library.

The form tag

This tag renders an HTML 'form' tag and exposes a binding path to inner tags for binding. It puts
the command object in the PageContext so that the command object can be accessed by inner tags.
All the other tags in this library are nested tags of the form tag.

Let’s assume we have a domain object called User. It is a JavaBean with properties such as firstName
and lastName. We will use it as the form backing object of our form controller which returns
form.jsp. Below is an example of what form. jsp would look like:

94

<form:form>
<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
</tr>
<tr>
<td colspan="2">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form:form>

The firstName and lastName values are retrieved from the command object placed in the PageContext
by the page controller. Keep reading to see more complex examples of how inner tags are used with
the form tag.

The generated HTML looks like a standard form:

<form method="POST">
<table>
<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value="Harry"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><input name="lastName" type="text" value="Potter"/></td>
</tr>
<tr>
<td colspan="2">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form>

The preceding JSP assumes that the variable name of the form backing object is 'command'. If you
have put the form backing object into the model under another name (definitely a best practice),
then you can bind the form to the named variable like so:

95

<form:form modelAttribute="user">

<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
</tr>
<tr>
<td colspan="2">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>

</form:form>

The input tag

This tag renders an HTML 'input' tag using the bound value and type='text' by default. For an
example of this tag, see The form tag. You may also use HTML5-specific types like 'email’, 'tel’, 'date’,
and others.

The checkbox tag

This tag renders an HTML 'input’ tag with type 'checkbox'.

Let’s assume our User has preferences such as newsletter subscription and a list of hobbies. Below
is an example of the Preferences class:

96

public class Preferences {

private boolean receiveNewsletter;
private String[] interests;
private String favouriteWord;

public boolean isReceiveNewsletter() {
return receiveNewsletter;

}

public void setReceiveNewsletter(boolean receiveNewsletter) {
this.receiveNewsletter = receiveNewsletter;

}

public String[] getInterests() {
return interests;

}

public void setInterests(String[] interests) {
this.interests = interests;

}

public String getFavouriteWord() {
return favouriteWord;

}

public void setFavouriteWord(String favouriteWord) {
this.favouriteWord = favouriteWord;

}

The form. jsp would look like:

<form:form>
<table>
<tr>
<td>Subscribe to newsletter?:</td>
<%-- Approach 1: Property is of type java.lang.Boolean --%>
<td><form:checkbox path="preferences.receiveNewsletter"/></td>
</tr>

<tr>
<td>Interests:</td>
<%-- Approach 2: Property is of an array or of type java.util.Collection

<td>
Quidditch: <form:checkbox path="preferences.interests" value=
"Quidditch"/>
Herbology: <form:checkbox path="preferences.interests" value=
"Herbology"/>
Defence Against the Dark Arts: <form:checkbox path=
"preferences.interests" value="Defence Against the Dark Arts"/>
</td>
</tr>

<tr>
<td>Favourite Word:</td>
<%-- Approach 3: Property is of type java.lang.Object --%>
<td>
Magic: <form:checkbox path="preferences.favouriteWord" value="Magic"/>
</td>
</tr>
</table>
</form:form>

There are 3 approaches to the checkbox tag which should meet all your checkbox needs.

* Approach One - When the bound value is of type java.lang.Boolean, the input(checkbox) is
marked as 'checked' if the bound value is true. The value attribute corresponds to the resolved

value of the setValue(Object) value property.

* Approach Two - When the bound value is of type array or java.util.Collection, the
input(checkbox) is marked as 'checked' if the configured setValue(Object) value is present in the

bound Collection.

» Approach Three - For any other bound value type, the input(checkbox) is marked as 'checked' if

the configured setValue(Object) is equal to the bound value.

Note that regardless of the approach, the same HTML structure is generated. Below is an HTML

snippet of some checkboxes:

98

<tr>
<td>Interests:</td>
<td>
Quidditch: <input name="preferences.interests" type="checkbox" value=
"Quidditch"/>
<input type="hidden" value="1" name="_preferences.interests"/>
Herbology: <input name="preferences.interests" type="checkbox" value=
"Herbology"/>
<input type="hidden" value="1" name="_preferences.interests"/>
Defence Against the Dark Arts: <input name="preferences.interests" type=
"checkbox" value="Defence Against the Dark Arts"/>
<input type="hidden" value="1" name="_preferences.interests"/>
</td>
</tr>

What you might not expect to see is the additional hidden field after each checkbox. When a
checkbox in an HTML page is not checked, its value will not be sent to the server as part of the
HTTP request parameters once the form is submitted, so we need a workaround for this quirk in
HTML in order for Spring form data binding to work. The checkbox tag follows the existing Spring
convention of including a hidden parameter prefixed by an underscore ("_") for each checkbox. By
doing this, you are effectively telling Spring that "the checkbox was visible in the form and I want my
object to which the form data will be bound to reflect the state of the checkbox no matter what".

The checkboxes tag

This tag renders multiple HTML 'input' tags with type 'checkbox'.

Building on the example from the previous checkbox tag section. Sometimes you prefer not to have
to list all the possible hobbies in your JSP page. You would rather provide a list at runtime of the
available options and pass that in to the tag. That is the purpose of the checkboxes tag. You pass in
an Array, a List or a Map containing the available options in the "items" property. Typically the
bound property is a collection so it can hold multiple values selected by the user. Below is an
example of the JSP using this tag:

<form:form>

<table>
<tr>
<td>Interests:</td>
<td>
<%-- Property 1is of an array or of type java.util.Collection --%>
<form:checkboxes path="preferences.interests" items="${interestlList}
“/>
</td>
</tr>
</table>

</form:form>

This example assumes that the "interestList" is a List available as a model attribute containing

99

strings of the values to be selected from. In the case where you use a Map, the map entry key will be
used as the value and the map entry’s value will be used as the label to be displayed. You can also
use a custom object where you can provide the property names for the value using "itemValue" and
the label using "itemLabel".

The radiobutton tag
This tag renders an HTML 'input' tag with type 'radio'.

A typical usage pattern will involve multiple tag instances bound to the same property but with
different values.

<tr>
<td>Sex:</td>
<td>
Male: <form:radiobutton path="sex" value="M"/>

Female: <form:radiobutton path="sex" value="F"/>
</td>
</tr>
The radiobuttons tag

This tag renders multiple HTML 'input' tags with type 'radio’.

Just like the checkboxes tag above, you might want to pass in the available options as a runtime
variable. For this usage you would use the radiobuttons tag. You pass in an Array, a List or a Map
containing the available options in the "items" property. In the case where you use a Map, the map
entry key will be used as the value and the map entry’s value will be used as the label to be
displayed. You can also use a custom object where you can provide the property names for the
value using "itemValue" and the label using "itemLabel".

<tr>

<td>Sex:</td>

<td><form:radiobuttons path="sex" items="${sexOptions}"/></td>
</tr>

The password tag

This tag renders an HTML 'input' tag with type 'password' using the bound value.

<tr>
<td>Password:</td>
<td>
<form:password path="password"/>
</td>
</tr>

100

Please note that by default, the password value is not shown. If you do want the password value to
be shown, then set the value of the 'showPassword' attribute to true, like so.

<tr>
<td>Password:</td>
<td>

<form:password path="password" value="A76525bvHGq" showPassword="true"/>
</td>
</tr>

The select tag

This tag renders an HTML 'select’ element. It supports data binding to the selected option as well as
the use of nested option and options tags.

Let’s assume a User has a list of skills.
<tr>

<td>Skills:</td>

<td><form:select path="skills" items="${skills}"/></td>
</tr>

If the User’s skill were in Herbology, the HTML source of the 'Skills' row would look like:

<tr>
<td>Skills:</td>
<td>
<select name="skills" multiple="true">
<option value="Potions">Potions</option>
<option value="Herbology" selected="selected">Herbology</option>
<option value="Quidditch">Quidditch</option>
</select>
</td>
</tr>

The option tag

This tag renders an HTML 'option'. It sets 'selected’ as appropriate based on the bound value.

101

<tr>
<td>House:</td>
<td>
<form:select path="house">
<form:option value="Gryffindor"/>
<form:option value="Hufflepuff"/>
<form:option value="Ravenclaw"/>
<form:option value="Slytherin"/>
</form:select>
</td>
</tr>

If the User’s house was in Gryffindor, the HTML source of the 'House' row would look like:

<tr>
<td>House:</td>
<td>
<select name="house">
<option value="Gryffindor" selected="selected">Gryffindor</option>
<option value="Hufflepuff">Hufflepuff</option>
<option value="Ravenclaw">Ravenclaw</option>
<option value="Slytherin">Slytherin</option>
</select>
</td>
</tr>

The options tag

This tag renders a list of HTML 'option' tags. It sets the 'selected’ attribute as appropriate based on
the bound value.

<tr>
<td>Country:</td>
<td>
<form:select path="country">
<form:option value="-" label="--Please Select"/>
<form:options items="${countrylList}" itemValue="code" itemLabel="name"/>
</form:select>
</td>
</tr>

If the User lived in the UK, the HTML source of the 'Country' row would look like:

102

<tr>
<td>Country:</td>
<td>
<select name="country">
<option value="-">--Please Select</option>
<option value="AT">Austria</option>
<option value="UK" selected="selected">United Kingdom</option>
<option value="US">United States</option>
</select>
</td>
</tr>

As the example shows, the combined usage of an option tag with the options tag generates the same
standard HTML, but allows you to explicitly specify a value in the JSP that is for display only (where
it belongs) such as the default string in the example: "-- Please Select".

The items attribute is typically populated with a collection or array of item objects. itemValue and
itemLabel simply refer to bean properties of those item objects, if specified; otherwise, the item
objects themselves will be stringified. Alternatively, you may specify a Map of items, in which case
the map keys are interpreted as option values and the map values correspond to option labels. If
itemValue and/or itemLabel happen to be specified as well, the item value property will apply to the
map key and the item label property will apply to the map value.

The textarea tag

This tag renders an HTML 'textarea'.

<tr>
<td>Notes:</td>
<td><form:textarea path="notes" rows="3" cols="20"/></td>
<td><form:errors path="notes"/></td>

</tr>

The hidden tag

This tag renders an HTML 'input’' tag with type 'hidden' using the bound value. To submit an
unbound hidden value, use the HTML input tag with type 'hidden'.

<form:hidden path="house"/>

If we choose to submit the 'house' value as a hidden one, the HTML would look like:

<input name="house" type="hidden" value="Gryffindor"/>

103

The errors tag

This tag renders field errors in an HTML 'span’ tag. It provides access to the errors created in your
controller or those that were created by any validators associated with your controller.

Let’s assume we want to display all error messages for the firstName and lastName fields once we
submit the form. We have a validator for instances of the User class called UserValidator.

public class UserValidator implements Validator {

public boolean supports(Class candidate) {
return User.class.isAssignableFrom(candidate);

}

public void validate(Object obj, Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "required",
"Field is required.");
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "lastName", "required",
"Field is required.");
}
}

The form. jsp would look like:

<form:form>
<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
<%-- Show errors for firstName field --%>
<td><form:errors path="firstName"/></td>
</tr>

<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
<%-- Show errors for lastName field --%>
<td><form:errors path="lastName"/></td>
</tr>
<tr>
<td colspan="3">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form:form>

If we submit a form with empty values in the firstName and lastName fields, this is what the HTML
would look like:

104

<form method="POST">
<table>

<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value=""/></td>
<%-- Associated errors to firstName field displayed --%>
<td>Field is required.</td>

</tr>

<tr>
<td>Last Name:</td>
<td><input name="lastName" type="text" value=""/></td>
<%-- Associated errors to lastName field displayed --%>
<td>Field is required.</td>

</tr>

<tr>
<td colspan="3">

<input type="submit" value="Save Changes"/>

</td>

</tr>

</table>
</form>

What if we want to display the entire list of errors for a given page? The example below shows that
the errors tag also supports some basic wildcarding functionality.

* path="*"-displays all errors
» path="T1astName" - displays all errors associated with the lastName field

« if path is omitted - object errors only are displayed

The example below will display a list of errors at the top of the page, followed by field-specific
errors next to the fields:

105

<form:form>
<form:errors path="*" cssClass="errorBox"/>
<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
<td><form:errors path="firstName"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
<td><form:errors path="lastName"/></td>
</tr>
<tr>
<td colspan="3">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form:form>

The HTML would look like:

<form method="POST">
Field is required.
Field is
required.
<table>
<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value=""/></td>
<td>Field is required.</td>
</tr>

<tr>
<td>Last Name:</td>
<td><input name="lastName" type="text" value=""/></td>
<td>Field is required.</td>
</tr>
<tr>
<td colspan="3">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form>

The spring-form.tld tag library descriptor (TLD) is included in the spring-webmvc.jar. For a
comprehensive reference on individual tags, browse the API reference or see the tag library

106

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/tags/form/package-summary.html#package.description

description.

HTTP method conversion

A key principle of REST is the use of the Uniform Interface. This means that all resources (URLS) can
be manipulated using the same four HTTP methods: GET, PUT, POST, and DELETE. For each method,
the HTTP specification defines the exact semantics. For instance, a GET should always be a safe
operation, meaning that it has no side effects, and a PUT or DELETE should be idempotent, meaning
that you can repeat these operations over and over again, but the end result should be the same.
While HTTP defines these four methods, HTML only supports two: GET and POST. Fortunately, there
are two possible workarounds: you can either use JavaScript to do your PUT or DELETE, or simply
do a POST with the 'real' method as an additional parameter (modeled as a hidden input field in an
HTML form). This latter trick is what Spring’s HiddenHttpMethodFilter does. This filter is a plain
Servlet Filter and therefore it can be used in combination with any web framework (not just Spring
MV(). Simply add this filter to your web.xml, and a POST with a hidden _method parameter will be
converted into the corresponding HTTP method request.

To support HTTP method conversion, the Spring MVC form tag was updated to support setting the
HTTP method. For example, the following snippet comes from the Pet Clinic sample:

<form:form method="delete">
<p class="submit"><input type="submit" value="Delete Pet"/></p>
</form:form>

The preceding example performs an HTTP POST, with the 'real' DELETE method hidden behind a
request parameter. It is picked up by the HiddenHttpMethodFilter, which is defined in web.xml, as
the following example shows:

<filter>
<filter-name>httpMethodFilter</filter-name>
<filter-class>org.springframework.web.filter.HiddenHttpMethodFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>httpMethodFilter</filter-name>
<servlet-name>petclinic</serviet-name>
</filter-mapping>

The corresponding @Controller method is shown below:

(method = RequestMethod.DELETE)
public String deletePet(int ownerlId, int petld) {
this.clinic.deletePet(petld);
return "redirect:/owners/" + ownerld;

107

HTMLS tags

The Spring form tag library allows entering dynamic attributes, which means you can enter any
HTMLS5 specific attributes.

The form input tag supports entering a type attribute other than 'text'. This is intended to allow
rendering new HTMLS5 specific input types such as 'email’, 'date’, 'range', and others. Note that
entering type="text' is not required since 'text' is the default type.

1.10.6. Tiles

It is possible to integrate Tiles - just as any other view technology - in web applications using Spring.
The following describes in a broad way how to do this.

O This section focuses on Spring’s support for Tiles v3 in the
org.springframework.web.servlet.view.tiles3 package.

Dependencies

To be able to use Tiles, you have to add a dependency on Tiles version 3.0.1 or higher and its
transitive dependencies to your project.

Configuration

To be able to use Tiles, you have to configure it using files containing definitions (for basic
information on definitions and other Tiles concepts, please have a look at https://tiles.apache.org).
In Spring this is done using the TilesConfigurer. Have a look at the following piece of example
ApplicationContext configuration:

<bean id="tilesConfigurer" class=
"org.springframework.web.servlet.view.tiles3.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/defs/general.xml</value>
<value>/WEB-INF/defs/widgets.xml</value>
<value>/WEB-INF/defs/administrator.xml</value>
<value>/WEB-INF/defs/customer.xml</value>
<value>/WEB-INF/defs/templates.xml</value>
</list>
</property>
</bean>

As you can see, there are five files containing definitions, which are all located in the 'WEB-
INF/defs' directory. At initialization of the WebApplicationContext, the files will be loaded and the
definitions factory will be initialized. After that has been done, the Tiles includes in the definition
files can be used as views within your Spring web application. To be able to use the views you have
to have a ViewResolver just as with any other view technology used with Spring. Below you can find
two possibilities, the UrlBasedViewResolver and the ResourceBundleViewResolver.

108

https://tiles.apache.org/framework/dependency-management.html
https://tiles.apache.org/framework/dependency-management.html
https://tiles.apache.org

You can specify locale specific Tiles definitions by adding an underscore and then the locale. For
example:

<bean id="tilesConfigurer" class=
"org.springframework.web.servlet.view.tiles3.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/defs/tiles.xml</value>
<value>/WEB-INF/defs/tiles_fr_FR.xml</value>
</list>
</property>
</bean>

With this configuration, tiles_fr_FR.xml will be used for requests with the fr_FR locale, and
tiles.xml will be used by default.

0 Since underscores are used to indicate locales, it is recommended to avoid using
them otherwise in the file names for Tiles definitions.

UrlBasedViewResolver

The Ur1BasedViewResolver instantiates the given viewClass for each view it has to resolve.

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.Ur1BasedViewResolver">

<property name="viewClass" value=
"org.springframework.web.servlet.view.tiles3.TilesView"/>
</bean>

ResourceBundleViewResolver

The ResourceBundleViewResolver has to be provided with a property file containing view names and
view classes the resolver can use:

<bean id="viewResolver" class=

"org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>

</bean>

109

welcomeView.(class)=org.springframework.web.servliet.view.tiles3.TilesView
welcomeView.url=welcome (this is the name of a Tiles definition)

vetsView.(class)=org.springframework.web.servlet.view.tiles3.TilesView
vetsView.url=vetsView (again, this is the name of a Tiles definition)

findOwnersForm. (class)=org.springframework.web.servlet.view.Jst1View
findOwnersForm.url=/WEB-INF/jsp/findOwners.jsp

As you can see, when using the ResourceBundleViewResolver, you can easily mix different view
technologies.

Note that the TilesView class supports JSTL (the JSP Standard Tag Library) out of the box.

SimpleSpringPreparerFactory and SpringBeanPreparerFactory

As an advanced feature, Spring also supports two special Tiles PreparerFactory implementations.
Check out the Tiles documentation for details on how to use ViewPreparer references in your Tiles
definition files.

Specify SimpleSpringPreparerFactory to autowire ViewPreparer instances based on specified
preparer classes, applying Spring’s container callbacks as well as applying configured Spring
BeanPostProcessors. If Spring’s context-wide annotation configuration has been activated,
annotations in ViewPreparer classes are automatically detected and applied. Note that this expects
preparer classes in the Tiles definition files, as the default PreparerFactory does.

Specify SpringBeanPreparerFactory to operate on specified preparer names instead of classes,
obtaining the corresponding Spring bean from the DispatcherServlet’s application context. The full
bean creation process will be in the control of the Spring application context in this case, allowing
for the use of explicit dependency injection configuration, scoped beans, and so on. Note that you
need to define one Spring bean definition for each preparer name (as used in your Tiles
definitions). The following example shows how to define a SpringBeanPreparerFactory property on a
TilesConfiqurer bean:

110

<bean id="tilesConfigurer" class=
"org.springframework.web.servlet.view.tiles3.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/defs/general.xml</value>
<value>/WEB-INF/defs/widgets.xml</value>
<value>/WEB-INF/defs/administrator.xml</value>
<value>/WEB-INF/defs/customer.xml</value>
<value>/WEB-INF/defs/templates.xml</value>
</list>
</property>

<!-- resolving preparer names as Spring bean definition names -->
<property name="preparerFactoryClass"
value=
"org.springframework.web.servlet.view.tiles3.SpringBeanPreparerFactory"/>

</bean>

1.10.7. RSS, Atom

Both AbstractAtomFeedView and AbstractRssFeedView inherit from the base class AbstractFeedView
and are used to provide Atom and RSS Feed views respectfully. They are based on java.net’s ROME
project and are located in the package org.springframework.web.servlet.view.feed.

AbstractAtomFeedView requires you to implement the buildFeedEntries() method and optionally

override the buildFeedMetadata() method (the default implementation is empty), as shown below.

public class SampleContentAtomView extends AbstractAtomFeedView {

@0verride
protected void buildFeedMetadata(Map<String, Object> model,
Feed feed, HttpServletRequest request) {
// implementation omitted

}

@Override
protected List<Entry> buildFeedEntries(Map<String, Object> model,
HttpServletRequest request, HttpServletResponse response) throws Exception

// implementation omitted

Similar requirements apply for implementing AbstractRssFeedView, as shown below.

111

https://rome.dev.java.net

public class SampleContentRssView extends AbstractRssFeedView {

protected void buildFeedMetadata(Map<String, Object> model,
Channel feed, HttpServletRequest request) {
// implementation omitted

protected List<Item> buildFeedItems(Map<String, Object> model,
HttpServletRequest request, HttpServletResponse response) throws Exception

// implementation omitted

The buildFeedItems() and buildFeedEntires() methods pass in the HTTP request in case you need to
access the Locale. The HTTP response is passed in only for the setting of cookies or other HTTP
headers. The feed will automatically be written to the response object after the method returns.

For an example of creating an Atom view please refer to Alef Arendsen’s Spring Team Blog entry.

1.10.8. PDF, Excel

Introduction to document views

Returning an HTML page isn’t always the best way for the user to view the model output, and
Spring makes it simple to generate a PDF document or an Excel spreadsheet dynamically from the
model data. The document is the view and will be streamed from the server with the correct
content type to (hopefully) enable the client PC to run their spreadsheet or PDF viewer application
in response.

In order to use Excel views, you need to add the Apache POI library to your classpath. For PDF
generation, you need to add (preferably) the OpenPDF library.

You should use the latest versions of the underlying document-generation
libraries, if possible. In particular, we strongly recommend OpenPDF (for example,

O OpenPDF 1.0.5) instead of the outdated original iText 2.1.7, since OpenPDF is
actively maintained and fixes an important vulnerability for untrusted PDF
content.

PDF views
A simple PDF view for a word list could extend
org.springframework.web.servlet.view.document.AbstractPdfView and implement the

buildPdfDocument() method as follows:

112

https://spring.io/blog/2009/03/16/adding-an-atom-view-to-an-application-using-spring-s-rest-support

public class PdfWordList extends AbstractPdfView {

protected void buildPdfDocument(Map<String, Object> model, Document doc, PdfWriter
writer,
HttpServletRequest request, HttpServletResponse response) throws Exception

{
List<String> words = (List<String>) model.get("wordList");
for (String word : words) {
doc.add(new Paragraph(word));
}
}
}

A controller can return such a view either from an external view definition (referencing it by
name) or as a View instance from the handler method.

Excel views

Since Spring Framework 4.2, org.springframework.web.servlet.view.document.AbstractXlsView is
provided as a base class for Excel views. It is based on Apache POI, with specialized subclasses
(AbstractXlsxView and AbstractXlsxStreamingView) that supersede the outdated AbstractExcelView
class.

The programming model is similar to AbstractPdfView, with buildExcelDocument() as the central
template method and controllers being able to return such a view from an external definition (by
name) or as a View instance from the handler method.

1.10.9. Jackson

Same in Spring WebFlux

Jackson-based JSON views

Same in Spring WebFlux

The MappingJackson2]sonView uses the Jackson library’s ObjectMapper to render the response content
as JSON. By default, the entire contents of the model map (with the exception of framework-specific
classes) are encoded as JSON. For cases where the contents of the map need to be filtered, you can
specify a specific set of model attributes to encode by using the mode1Keys property. You can also use
the extractValueFromSingleKeyModel property to have the value in single-key models extracted and
serialized directly rather than as a map of model attributes.

JSON mapping can be customized as needed through the use of Jackson’s provided annotations.
When further control is needed, a custom ObjectMapper can be injected through the ObjectMapper
property for cases where custom JSON serializers/deserializers need to be provided for specific

types.

As of Spring Framework 5.0.7, JSONP support is deprecated and requires to customize the JSONP

113

web-reactive.pdf#webflux-view-httpmessagewriter
web-reactive.pdf#webflux-view-httpmessagewriter
https://en.wikipedia.org/wiki/JSONP

query parameter name(s) through the jsonpParameterNames property. This support will be removed
as of Spring Framework 5.1, CORS should be used instead.

Jackson-based XML views

Same in Spring WebFlux

MappingJackson2XmlView uses the Jackson XML extension’s XmlMapper to render the response content
as XML. If the model contains multiple entries, you should explicitly set the object to be serialized
by using the modelKey bean property. If the model contains a single entry, it is serialized
automatically.

XML mapping can be customized as needed through the use of JAXB or Jackson’s provided
annotations. When further control is needed, a custom XmlMapper can be injected through the
ObjectMapper property for cases where custom XML serializers/deserializers need to be provided for
specific types.

1.10.10. XML marshalling

The MarshallingView uses an XML Marshaller (defined in the org.springframework.oxm package) to
render the response content as XML. You can explicitly set the object to be marshalled by using a
MarshallingView instance’s modelKey bean property. Alternatively, the view iterates over all model
properties and marshals the first type that is supported by the Marshaller. For more information on
the functionality in the org.springframework.oxm package, see Marshalling XML using O/X Mappers.

1.10.11. XSLT views

XSLT is a transformation language for XML and is popular as a view technology within web
applications. XSLT can be a good choice as a view technology if your application naturally deals
with XML, or if your model can easily be converted to XML. The following section shows how to
produce an XML document as model data and have it transformed with XSLT in a Spring Web MVC
application.

This example is a trivial Spring application that creates a list of words in the Controller and adds
them to the model map. The map is returned along with the view name of our XSLT view. See
Annotated Controllers for details of Spring Web MVC’s Controller interface. The XSLT Controller
will turn the list of words into a simple XML document ready for transformation.

Beans

Configuration is standard for a simple Spring web application: The MVC configuration has to define
an XsltViewResolver bean and regular MVC annotation configuration.

114

web-reactive.pdf#webflux-view-httpmessagewriter
https://github.com/FasterXML/jackson-dataformat-xml
data-access.pdf#oxm

public class WebConfig implements WebMvcConfigurer {

public XsltViewResolver xsltViewResolver() {
XsltViewResolver viewResolver = new XsltViewResolver();
viewResolver.setPrefix("/WEB-INF/xs1/");
viewResolver.setSuffix(".xslt");
return viewResolver;

And we need a Controller that encapsulates our word generation logic.

Controller

The controller logic is encapsulated in a @Controller class, with the handler method being defined
as follows:

public class XsltController {

(ll/ll)
public String home(Model model) throws Exception {
Document document = DocumentBuilderFactory.newInstance().newDocumentBuilder()

.newDocument();
Element root = document.createElement("wordList");

List<String> words = Arrays.asList("Hello", "Spring", "Framework");
for (String word : words) {
Element wordNode = document.createElement("word");
Text textNode = document.createTextNode(word);
wordNode.appendChild(textNode);
root.appendChild(wordNode);

}

model.addAttribute("wordList", root);
return "home";

So far we’ve only created a DOM document and added it to the Model map. Note that you can also
load an XML file as a Resource and use it instead of a custom DOM document.

Of course, there are software packages available that will automatically 'domify' an object graph,
but within Spring, you have complete flexibility to create the DOM from your model in any way you

115

choose. This prevents the transformation of XML playing too great a part in the structure of your
model data which is a danger when using tools to manage the domification process.

Next, XsltViewResolver will resolve the "home" XSLT template file and merge the DOM document
into it to generate our view.

Transformation

Finally, the XsltViewResolver will resolve the "home" XSLT template file and merge the DOM
document into it to generate our view. As shown in the XsltViewResolver configuration, XSLT
templates live in the war file in the '"WEB-INF/xs1' directory and end with a "xs1t" file extension.

<?xml version="1.0" encoding="utf-8"7?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html" omit-xml-declaration="yes"/>

<xsl:template match="/">
<html>
<head><title>Hello!</title></head>
<body>
<h1>My First Words</h1>

<xsl:apply-templates/>

</body>
</html>
</xsl:template>

<xsl:template match="word">
<xsl:value-of select="."/></1i>

</xsl:template>

</xsl:stylesheet>

This is rendered as:

116

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Hello!</title>
</head>
<body>
<h1>My First Words</h1>

Hello</1i>
<1i>Spring</1i>
Framework</11>

</body>
</html>

1.11. MVC Config

Same in Spring WebFlux

The MVC Java config and the MVC XML namespace provide default configuration suitable for most
applications along with a configuration API to customize it.

For more advanced customizations, not available in the configuration API, see Advanced Java
Config and Advanced XML Config.

You do not need to understand the underlying beans created by the MVC Java config and the MVC
namespace but if you want to learn more, see Special Bean Types and Web MVC Config.

1.11.1. Enable MVC Config
Same in Spring WebFlux

In Java config use the @EnablellebMvc annotation:

@Configuration
@EnableWebMvc

public class WebConfig {
}

In XML use the <mvc:annotation-driven> element:

117

web-reactive.pdf#webflux-config
web-reactive.pdf#webflux-config-enable

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/mvc
https://www.springframework.org/schema/mvc/spring-mvc.xsd">

<mvc:annotation-driven/>

</beans>

The above registers a number of Spring MVC infrastructure beans also adapting to dependencies
available on the classpath: e.g. payload converters for JSON, XML, etc.

1.11.2. MVC Config API
Same in Spring WebFlux

In Java config implement WebMvcConfigurer interface:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

// Implement configuration methods...

In XML check attributes and sub-elements of <mvc:annotation-driven/>. You can view the Spring
MVC XML schema or use the code completion feature of your IDE to discover what attributes and
sub-elements are available.

1.11.3. Type conversion

Same in Spring WebFlux

By default formatters for Number and Date types are installed, including support for the
@NumberFormat and @DateTimeFormat annotations. Full support for the Joda-Time formatting library is
also installed if Joda-Time is present on the classpath.

In Java config, register custom formatters and converters:

118

web-reactive.pdf#webflux-config-customize
https://schema.spring.io/mvc/spring-mvc.xsd
https://schema.spring.io/mvc/spring-mvc.xsd
web-reactive.pdf#webflux-config-conversion

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride

public void addFormatters(FormatterRegistry registry) {
/] ...

}

In XML, the same:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/mvc
https://www.springframework.org/schema/mvc/spring-mvc.xsd">

<mvc:annotation-driven conversion-service="conversionService"/>

<bean id="conversionService"
class=
"org.springframework.format.support.FormattingConversionServiceFactoryBean">
<property name="converters">
<set>
<bean class="org.example.MyConverter"/>
</set>
</property>
<property name="formatters">
<set>
<bean class="org.example.MyFormatter"/>
<bean class="org.example.MyAnnotationFormatterFactory"/>
</set>
</property>
<property name="formatterRegistrars">
<set>
<bean class="org.example.MyFormatterRegistrar"/>
</set>
</property>
</bean>

</beans>

119

0 See FormatterRegistrar SPI and the FormattingConversionServiceFactoryBean for
more information on when to use FormatterRegistrars.

1.11.4. Validation
Same in Spring WebFlux

By default if Bean Validation is present on the classpath—e.g. Hibernate Validator, the
LocalValidatorFactoryBean is registered as a global Validator for use with @Valid and Validated on
controller method arguments.

In Java config, you can customize the global Validator instance:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride

public Validator getValidator(); {
/] ...

}

In XML, the same:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/mvc
https://www.springframework.org/schema/mvc/spring-mvc.xsd">

<mvc:annotation-driven validator="globalValidator"/>

</beans>

Note that you can also register Validator's locally:

120

core.pdf#format-FormatterRegistrar-SPI
web-reactive.pdf#webflux-config-validation
core.pdf#validation-beanvalidation-overview
core.pdf#validator

@Controller
public class MyController {

@InitBinder

protected void initBinder(WebDataBinder binder) {
binder.addValidators(new FooValidator());

}

If you need to have a LocalValidatorFactoryBean injected somewhere, create a bean
and mark it with @Primary in order to avoid conflict with the one declared in the
MVC config.

1.11.5. Interceptors

In Java config, register interceptors to apply to incoming requests:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(new LocaleChangeInterceptor());
registry.addInterceptor(new ThemeChangeInterceptor()).addPathPatterns("/**")
.excludePathPatterns("/admin/**");
registry.addInterceptor(new SecurityInterceptor()).addPathPatterns("/secure/*
Bk
}
}

In XML, the same:

<mvc:interceptors>
<bean class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor"/>
<mvc:interceptor>
<mvc:mapping path="/**"/>
<mvc:exclude-mapping path="/admin/**"/>
<bean class="org.springframework.web.servlet.theme.ThemeChangeInterceptor"/>
</mvc:interceptor>
<mvc:interceptor>
<mvc:mapping path="/secure/*"/>
<bean class="org.example.SecurityInterceptor"/>
</mvc:interceptor>
</mvc:interceptors>

121

1.11.6. Content Types

Same in Spring WebFlux

You can configure how Spring MVC determines the requested media types from the request —e.g.
Accept header, URL path extension, query parameter, etc.

By default the URL path extension is checked first—with json, xml, rss, and atom registered as
known extensions depending on classpath dependencies, and the "Accept" header is checked
second.

Consider changing those defaults to Accept header only and if you must use URL-based content type
resolution consider the query parameter strategy over the path extensions. See Suffix match and
Suffix match and RFD for more details.

In Java config, customize requested content type resolution:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride

public void configureContentNegotiation(ContentNegotiationConfigurer configurer) {
configurer.mediaType("json", MediaType.APPLICATION_JSON);
configurer.mediaType("xml", MediaType.APPLICATION_XML);

In XML, the same:

<mvc:annotation-driven content-negotiation-manager="contentNegotiationManager"/>

<bean id="contentNegotiationManager" class=
"org.springframework.web.accept.ContentNegotiationManagerFactoryBean">
<property name="mediaTypes">
<value>
json=application/json
xml=application/xml
</value>
</property>
</bean>

1.11.7. Message Converters

Same in Spring WebFlux

Customization of HttpMessageConverter can be achieved in Java config by overriding
configureMessageConverters() if you want to replace the default converters created by Spring MVC,

122

web-reactive.pdf#webflux-config-content-negotiation
web-reactive.pdf#webflux-config-message-codecs
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/config/annotation/WebMvcConfigurer.html#configureMessageConverters-java.util.List-

or by overriding extendMessageConverters() if you just want to customize them or add additional
converters to the default ones.

Below is an example that adds Jackson JSON and XML converters with a customized ObjectMapper
instead of default ones:

@Configuration
@EnableWebMvc
public class WebConfiguration implements WebMvcConfigurer {

@Override
public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {
Jackson20bjectMapperBuilder builder = new Jackson20bjectMapperBuilder()
.indentOutput(true)
.dateFormat(new SimpleDateFormat("yyyy-MM-dd"))
.modulesToInstall(new ParameterNamesModule());
converters.add(new MappingJackson2HttpMessageConverter(builder.build()));
converters.add(new MappingJackson2XmlHttpMessageConverter(builder
.createXmlMapper(true).build()));

}
}

In this example, Jackson20bjectMapperBuilder is used to create a common configuration for both
MappingJackson2HttpMessageConverter and MappingJackson2XmlHttpMessageConverter with indentation
enabled, a customized date format and the registration of jackson-module-parameter-names that
adds support for accessing parameter names (feature added in Java 8).

This builder customizes Jackson’s default properties with the following ones:

1. DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is disabled.
2. MapperFeature.DEFAULT_VIEW_INCLUSION is disabled.

It also automatically registers the following well-known modules if they are detected on the
classpath:

1. jackson-datatype-jdk7: support for Java 7 types like java.nio.file.Path.
2. jackson-datatype-joda: support for Joda-Time types.

3. jackson-datatype-jsr310: support for Java 8 Date & Time API types.

4. jackson-datatype-jdk8: support for other Java 8 types like Optional.

0 Enabling indentation with Jackson XML support requires woodstox-core-asl
dependency in addition to jackson-dataformat-xml one.

Other interesting Jackson modules are available:

1. jackson-datatype-money: support for javax.money types (unofficial module)

2. jackson-datatype-hibernate: support for Hibernate specific types and properties (including lazy-

123

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/config/annotation/WebMvcConfigurer.html#extendMessageConverters-java.util.List-
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/http/converter/json/Jackson2ObjectMapperBuilder.html
https://github.com/FasterXML/jackson-module-parameter-names
https://fasterxml.github.io/jackson-databind/javadoc/2.6/com/fasterxml/jackson/databind/DeserializationFeature.html#FAIL_ON_UNKNOWN_PROPERTIES
https://fasterxml.github.io/jackson-databind/javadoc/2.6/com/fasterxml/jackson/databind/MapperFeature.html#DEFAULT_VIEW_INCLUSION
https://github.com/FasterXML/jackson-datatype-jdk7
https://github.com/FasterXML/jackson-datatype-joda
https://github.com/FasterXML/jackson-datatype-jsr310
https://github.com/FasterXML/jackson-datatype-jdk8
https://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.codehaus.woodstox%22%20AND%20a%3A%22woodstox-core-asl%22
https://search.maven.org/#search%7Cga%7C1%7Ca%3A%22jackson-dataformat-xml%22
https://github.com/zalando/jackson-datatype-money
https://github.com/FasterXML/jackson-datatype-hibernate

loading aspects)

It is also possible to do the same in XML:

<mvc:annotation-driven>
<mvc:message-converters>
<bean class=
"org.springframework.http.converter.json.MappingJackson2HttpMessageConverter">
<property name="objectMapper" ref="objectMapper"/>
</bean>
<bean class=
"org.springframework.http.converter.xml.MappingJackson2XmlHttpMessageConverter">
<property name="objectMapper" ref="xmlMapper"/>
</bean>
</mvc:message-converters>
</mvc:annotation-driven>

<bean id="objectMapper" class=
"org.springframework.http.converter.json.Jackson20bjectMapperFactoryBean"
p:indentOutput="true"
p:simpleDateFormat="yyyy-MM-dd"
p:modulesToInstall="
com. fasterxml.jackson.module.paramnames.ParameterNamesModule"/>

<bean id="xmlMapper" parent="objectMapper" p:createXmlMapper="true"/>

1.11.8. View Controllers

This is a shortcut for defining a ParameterizableViewController that immediately forwards to a view
when invoked. Use it in static cases when there is no Java controller logic to execute before the
view generates the response.

An example of forwarding a request for "/" to a view called "home" in Java:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addViewControllers(ViewControllerRegistry registry) {
registry.addViewController("/").setViewName("home");

}

And the same in XML use the <mvc:view-controller> element:

<mvc:view-controller path="/" view-name="home"/>

124

1.11.9. View Resolvers
Same in Spring WebFlux
The MVC config simplifies the registration of view resolvers.

The following is a Java config example that configures content negotiation view resolution using
JSP and Jackson as a default View for JSON rendering:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.enableContentNegotiation(new MappingJackson2JsonView());

registry.jsp();

And the same in XML:

<mvc:view-resolvers>
<mvc:content-negotiation>
<mvc:default-views>
<bean class=
"org.springframework.web.servlet.view.json.Mappinglackson2]sonView"/>
</mvc:default-views>
</mvc:content-negotiation>
<mvc:jsp/>
</mvc:view-resolvers>

Note however that FreeMarker, Tiles, Groovy Markup and script templates also require
configuration of the underlying view technology.

The MVC namespace provides dedicated elements. For example with FreeMarker:

125

web-reactive.pdf#webflux-config-view-resolvers

<mvc:view-resolvers>
<mvc:content-negotiation>
<mvc:default-views>
<bean class=
"org.springframework.web.servlet.view.json.Mappinglackson2JsonView"/>
</mvc:default-views>
</mvc:content-negotiation>
<mvc:freemarker cache="false"/>
</mvc:view-resolvers>

<mvc:freemarker-configurer>
<mvc:template-loader-path location="/freemarker"/>
</mvc:freemarker-configurer>

In Java config simply add the respective "Configurer" bean:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.enableContentNegotiation(new MappingJackson2JsonView());
registry.freeMarker().cache(false);

@Bean

public FreeMarkerConfigurer freeMarkerConfigurer() {
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplateLoaderPath("/freemarker");
return confiqurer;

1.11.10. Static Resources

Same in Spring WebFlux

This option provides a convenient way to serve static resources from a list of Resource-based

locations.

In the example below, given a request that starts with "/resources”, the relative path is used to find
and serve static resources relative to "/public” under the web application root or on the classpath
under "/static". The resources are served with a 1-year future expiration to ensure maximum use
of the browser cache and a reduction in HTTP requests made by the browser. The Last-Modified

header is also evaluated and if present a 304 status code is returned.

In Java config:

126

web-reactive.pdf#webflux-config-static-resources
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/core/io/Resource.html

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourcelLocations("/public", "classpath:/static/")
.setCachePeriod(31556926);

In XML:

<mvc:resources mapping="/resources/**"
location="/public, classpath:/static/"
cache-period="31556926" />

See also HTTP caching support for static resources.

The resource handler also supports a chain of ResourceResolvers and ResourceTransformers.
which can be used to create a toolchain for working with optimized resources.

The VersionResourceResolver can be used for versioned resource URLs based on an MD5 hash
computed from the content, a fixed application version, or other. A ContentVersionStrategy (MD5
hash) is a good choice with some notable exceptions such as JavaScript resources used with a
module loader.

For example in Java config;

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourcelocations("/public/")
.resourceChain(true)
.addResolver (new VersionResourceResolver().addContentVersionStrategy(
"/);
}
}

In XML, the same:

127

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceResolver.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceTransformer.html

<mvc:resources mapping="/resources/**" location="/public/">
<mvc:resource-chain>
<mvc:resource-cache/>
<mvc:resolvers>
<mvc:version-resolver>
<mvc:content-version-strategy patterns="/**"/>
</mvc:version-resolver>
</mvc:resolvers>
</mvc:resource-chain>
</mvc:resources>

You can use ResourceUrlProvider to rewrite URLs and apply the full chain of resolvers and
transformers — e.g. to insert versions. The MVC config provides a ResourceUr1Provider bean so it can
be injected into others. You can also make the rewrite transparent with the
ResourceUrlEncodingFilter for Thymeleaf, JSPs, FreeMarker, and others with URL tags that rely on
HttpServletResponse#fencodeURL.

WebJars are also supported through the WebJarsResourceResolver which is automatically registered
when the org.webjars:webjars-locator-core library is present on the classpath. The resolver can re-
write URLs to include the version of the jar and can also match against incoming URLs without
versions — for example, from /jquery/jquery.min.js to /jquery/1.2.0/jquery.min.js.

1.11.11. Default Servlet

This allows for mapping the DispatcherServlet to "/" (thus overriding the mapping of the container’s
default Servlet), while still allowing static resource requests to be handled by the container’s
default Servlet. It configures a DefaultServletHttpRequestHandler with a URL mapping of "/**" and
the lowest priority relative to other URL mappings.

This handler will forward all requests to the default Servlet. Therefore it is important that it
remains last in the order of all other URL HandlerMappings. That will be the case if you use
<mvc:annotation-driven> or alternatively if you are setting up your own customized HandlerMapping
instance be sure to set its order property to a value lower than that of the
DefaultServletHttpRequestHandler, which is Integer.MAX_VALUE

To enable the feature using the default setup use:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void configureDefaultServletHandling(DefaultServletHandlerConfigurer
configurer) {
configurer.enable();

}

128

https://www.webjars.org/documentation

Or in XML:
<mvc:default-servlet-handler/>

The caveat to overriding the "/" Servlet mapping is that the RequestDispatcher for the default Servlet
must be retrieved by name rather than by path. The DefaultServletHttpRequestHandler will attempt
to auto-detect the default Servlet for the container at startup time, using a list of known names for
most of the major Servlet containers (including Tomcat, Jetty, GlassFish, JBoss, Resin, WebLogic, and
WebSphere). If the default Servlet has been custom configured with a different name, or if a
different Servlet container is being used where the default Servlet name is unknown, then the
default Servlet’s name must be explicitly provided as in the following example:

public class WebConfig implements WebMvcConfigurer {

public void configureDefaultServletHandling(DefaultServletHandlerConfigurer
configurer) {
configurer.enable("myCustomDefaultServlet");

}

Or in XML:

<mvc:default-servlet-handler default-servlet-name="myCustomDefaultServlet"/>

1.11.12. Path Matching
Same in Spring WebFlux

This allows customizing options related to URL matching and treatment of the URL. For details on
the individual options check out the PathMatchConfigurer API.

Example in Java config:

129

web-reactive.pdf#webflux-config-path-matching
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/servlet/config/annotation/PathMatchConfigurer.html

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void configurePathMatch(PathMatchConfigurer configurer) {
configurer

.setUseSuffixPatternMatch(true)
.setUseTrailingSlashMatch(false)
.setUseReqgisteredSuffixPatternMatch(true)
.setPathMatcher(antPathMatcher())
.setUr1PathHelper (urlPathHelper());

}

@Bean

public UrlPathHelper urlPathHelper() {
//...

}

@Bean

public PathMatcher antPathMatcher() {
//...

}

In XML, the same:

<mvc:annotation-driven>
<mvc:path-matching

suffix-pattern="true"
trailing-slash="false"
registered-suffixes-only="true"
path-helper="pathHelper"
path-matcher="pathMatcher"/>

</mvc:annotation-driven>

<bean id="pathHelper" class="org.example.app.MyPathHelper"/>
<bean id="pathMatcher" class="org.example.app.MyPathMatcher"/>

1.11.13. Advanced Java Config

Same in Spring WebFlux

@EnableWebMvc imports DelegatingWebMvcConfiguration that (1) provides default Spring configuration
for Spring MVC applications and (2) detects and delegates to WebMvcConfigurer's to customize that
configuration.

130

web-reactive.pdf#webflux-config-advanced-java

For advanced mode, remove @EnableWebMvc and extend directly from DelegatingWebMvcConfiguration
instead of implementing WebMvcConfigurer:

public class WebConfig extends DelegatingWebMvcConfiguration {

/] ...

You can keep existing methods in WebConfig but you can now also override bean declarations from
the base class and you can still have any number of other WebMvcConfigurer's on the classpath.

1.11.14. Advanced XML Config

The MVC namespace does not have an advanced mode. If you need to customize a property on a
bean that you can’t change otherwise, you can use the BeanPostProcessor lifecycle hook of the
Spring ApplicationContext:

public class MyPostProcessor implements BeanPostProcessor {

public Object postProcessBeforelInitialization(Object bean, String name) throws
BeansException {
/] ...
¥

Note that MyPostProcessor needs to be declared as a bean either explicitly in XML or detected
through a <component-scan/> declaration.

1.12. HTTP/2

Same in Spring WebFlux

Servlet 4 containers are required to support HTTP/2 and Spring Framework 5 is compatible with
Servlet API 4. From a programming model perspective there is nothing specific that applications
need to do. However there are considerations related to server configuration. For more details
please check out the HTTP/2 wiki page.

The Servlet API does expose one construct related to HTTP/2. The javax.servlet.http.PushBuilder
can used to proactively push resources to clients and it is supported as a method argument to
@RequestMapping methods.

131

web-reactive.pdf#webflux-http2
https://github.com/spring-projects/spring-framework/wiki/HTTP-2-support

Chapter 2. REST Clients

This section describes options for client-side access to REST endpoints.

2.1. RestTemplate

RestTemplate is a synchronous client to perform HTTP requests. It is the original Spring REST client,
exposing a simple, template method API over underlying HTTP client libraries.

As of 5.0 the RestTemplate is in maintenance mode, with only minor requests for

0 changes and bugs to be accepted going forward. Please, consider using the
WebClient which offers a more modern API and supports sync, async, and
streaming scenarios.

See RestTemplate for details.

2.2. WebClient

WebClient is a non-blocking, reactive client to perform HTTP requests. It was introduced in 5.0 and
offers a modern alternative to the RestTemplate with efficient support for both synchronous and
asynchronous, as well as streaming scenarios.

See WebClient for more details.

132

web-reactive.pdf#webflux-client
integration.pdf#rest-client-access
web-reactive.pdf#webflux-client

Chapter 3. Testing

Same in Spring WebFlux
This section summarizes the options available in spring-test for Spring MVC applications.
Servlet API Mocks

Mock implementations of Servlet API contracts for unit testing controllers, filters, and other web
components. See Servlet API mock objects for more details.

TestContext Framework

Support for loading Spring configuration in JUnit and TestNG tests including efficient caching of the
loaded configuration across test methods and support for loading a WebApplicationContext with a
MockServletContext. See TestContext Framework for more details.

Spring MVC Test

A framework, also known as MockMve, for testing annotated controllers through the
DispatcherServlet, i.e. supporting annotations and complete with Spring MVC infrastructure, but
without an HTTP server. See Spring MVC Test for more details.

Client-side REST

spring-test provides a MockRestServiceServer that can be used as a mock server for testing client-
side code that internally uses the RestTemplate. See Client REST Tests for more details.

WebTestClient

WebTestClient was built for testing WebFlux applications but it can also be used for end-to-end
integration testing, to any server, over an HTTP connection. It is a non-blocking, reactive client and
well suited for testing asynchronous and streaming scenarios.

133

web-reactive.pdf#webflux-test
testing.pdf#mock-objects-servlet
testing.pdf#testcontext-framework
testing.pdf#spring-mvc-test-framework
testing.pdf#spring-mvc-test-client

Chapter 4. WebSockets

Same in Spring WebFlux

This part of the reference documentation covers support for Servlet stack, WebSocket messaging
that includes raw WebSocket interactions, WebSocket emulation via Sock]JS, and pub-sub messaging
via STOMP as a sub-protocol over WebSocket.

4.1. Introduction

The WebSocket protocol RFC 6455 provides a standardized way to establish a full-duplex, two-way
communication channel between client and server over a single TCP connection. It is a different
TCP protocol from HTTP but is designed to work over HTTP, using ports 80 and 443 and allowing re-
use of existing firewall rules.

A WebSocket interaction begins with an HTTP request that uses the HTTP "Upgrade" header to
upgrade, or in this case to switch, to the WebSocket protocol:

GET /spring-websocket-portfolio/portfolio HTTP/1.1
Host: localhost:8080

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: Uc919TMkWGbHFD2gnFH1tg==
Sec-WebSocket-Protocol: v10.stomp, v11.stomp
Sec-WebSocket-Version: 13

Origin: http://localhost:8080

Instead of the usual 200 status code, a server with WebSocket support returns:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: 1qVdfYHU9hPO14JYYNXF623Gzn0=
Sec-WebSocket-Protocol: v10.stomp

After a successful handshake the TCP socket underlying the HTTP upgrade request remains open
for both client and server to continue to send and receive messages.

A complete introduction of how WebSockets work is beyond the scope of this document. Please
read RFC 6455, the WebSocket chapter of HTML5, or one of many introductions and tutorials on the
Web.

Note that if a WebSocket server is running behind a web server (e.g. nginx) you will likely need to
configure it to pass WebSocket upgrade requests on to the WebSocket server. Likewise if the
application runs in a cloud environment, check the instructions of the cloud provider related to
WebSocket support.

134

web-reactive.pdf#webflux-websocket
https://tools.ietf.org/html/rfc6455

4.1.1. HTTP vs WebSocket

Even though WebSocket is designed to be HTTP compatible and starts with an HTTP request, it is
important to understand that the two protocols lead to very different architectures and application
programming models.

In HTTP and REST, an application is modeled as many URLs. To interact with the application clients
access those URLs, request-response style. Servers route requests to the appropriate handler based
on the HTTP URL, method, and headers.

By contrast in WebSockets there is usually just one URL for the initial connect and subsequently all
application messages flow on that same TCP connection. This points to an entirely different
asynchronous, event-driven, messaging architecture.

WebSocket is also a low-level transport protocol which unlike HTTP does not prescribe any
semantics to the content of messages. That means there is no way to route or process a message
unless client and server agree on message semantics.

WebSocket clients and servers can negotiate the use of a higher-level, messaging protocol (e.g.
STOMP), via the "Sec-WebSocket-Protocol" header on the HTTP handshake request, or in the absence
of that they need to come up with their own conventions.

4.1.2. When to use it?

WebSockets can make a web page dynamic and interactive. However in many cases a combination
of Ajax and HTTP streaming and/or long polling could provide a simple and effective solution.

For example news, mail, and social feeds need to update dynamically but it may be perfectly okay
to do so every few minutes. Collaboration, games, and financial apps on the other hand need to be
much closer to real time.

Latency alone is not a deciding factor. If the volume of messages is relatively low (e.g. monitoring
network failures) HTTP streaming or polling may provide an effective solution. It is the
combination of low latency, high frequency and high volume that make the best case for the use
WebSocket.

Keep in mind also that over the Internet, restrictive proxies outside your control, may preclude
WebSocket interactions either because they are not configured to pass on the Upgrade header or
because they close long lived connections that appear idle? This means that the use of WebSocket
for internal applications within the firewall is a more straight-forward decision than it is for public
facing applications.

4.2. WebSocket API

Same in Spring WebFlux

The Spring Framework provides a WebSocket API that can be used to write client and server side
applications that handle WebSocket messages.

135

web-reactive.pdf#webflux-websocket-server

4.2.1. WebSocketHandler
Same in Spring WebFlux
Creating a WebSocket server is as simple as implementing WebSocketHandler or more likely

extending either TextWebSocketHandler or BinaryWebSocketHandler:

import org.springframework.web.socket.WebSocketHandler;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.TextMessage;

public class MyHandler extends TextWebSocketHandler {

public void handleTextMessage(WebSocketSession session, TextMessage message) {
/] ...
}

There is dedicated WebSocket Java-config and XML namespace support for mapping the above
WebSocket handler to a specific URL:

import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfiqurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

public class WebSocketConfig implements WebSocketConfigurer {

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (myHandler(), "/myHandler");
}

public WebSocketHandler myHandler() {
return new MyHandler();

}

XML configuration equivalent:

136

web-reactive.pdf#webflux-websocket-server-handler

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/myHandler" handler="myHandler"/>
</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

The above is for use in Spring MVC applications and should be included in the configuration of a
DispatcherServlet. However, Spring’s WebSocket support does not depend on Spring MVC. It is
relatively simple to integrate a WebSocketHandler into other HTTP serving environments with the
help of WebSocketHttpRequestHandler.

4.2.2. WebSocket Handshake
Same in Spring WebFlux

The easiest way to customize the initial HTTP WebSocket handshake request is through a
HandshakeInterceptor, which exposes "before" and "after" the handshake methods. Such an
interceptor can be used to preclude the handshake or to make any attributes available to the
WebSocketSession. For example, there is a built-in interceptor for passing HTTP session attributes to
the WebSocket session:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@0verride
public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {

registry.addHandler (new MyHandler(), "/myHandler")
.addInterceptors(new HttpSessionHandshakeInterceptor());

And the XML configuration equivalent:

137

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/socket/server/support/WebSocketHttpRequestHandler.html
web-reactive.pdf#webflux-websocket-server-handshake

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/myHandler" handler="myHandler"/>
<websocket:handshake-interceptors>
<bean class=
"org.springframework.web.socket.server.support.HttpSessionHandshakeInterceptor"/>
</websocket:handshake-interceptors>
</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

A more advanced option is to extend the DefaultHandshakeHandler that performs the steps of the
WebSocket handshake, including validating the client origin, negotiating a sub-protocol, and others.
An application may also need to use this option if it needs to configure a custom
RequestUpgradeStrategy in order to adapt to a WebSocket server engine and version that is not yet
supported (also see Deployment for more on this subject). Both the Java-config and XML namespace
make it possible to configure a custom HandshakeHandler.

Spring provides a WebSocketHandlerDecorator base class that can be used to
decorate a WebSocketHandler with additional behavior. Logging and exception
handling implementations are provided and added by default when using the

Q WebSocket Java-config or XML namespace. The
ExceptionWebSocketHandlerDecorator catches all uncaught exceptions arising from
any WebSocketHandler method and closes the WebSocket session with status 1011
that indicates a server error.

4.2.3. Deployment

The Spring WebSocket API is easy to integrate into a Spring MVC application where the
DispatcherServlet serves both HTTP WebSocket handshake as well as other HTTP requests. It is also
easy to integrate into other HTTP processing scenarios by invoking WebSocketHttpRequestHandler.
This is convenient and easy to understand. However, special considerations apply with regards to
JSR-356 runtimes.

The Java WebSocket API (JSR-356) provides two deployment mechanisms. The first involves a
Servlet container classpath scan (Servlet 3 feature) at startup; and the other is a registration API to
use at Servlet container initialization. Neither of these mechanism makes it possible to use a single
"front controller" for all HTTP processing —including WebSocket handshake and all other HTTP

138

requests — such as Spring MVC’s DispatcherServlet.

This is a significant limitation of JSR-356 that Spring’s WebSocket support addresses server-specific
RequestUpgradeStrategy's even when running in a JSR-356 runtime. Such strategies currently exist
for Tomcat, Jetty, GlassFish, WebLogic, WebSphere, and Undertow (and WildFly).

A request to overcome the above limitation in the Java WebSocket API has been
created and can be followed at WEBSOCKET_SPEC-211. Tomcat, Undertow and

0 WebSphere provide their own API alternatives that makes it possible to this, and
it’s also possible with Jetty. We are hopeful that more servers will follow do the
same.

A secondary consideration is that Servlet containers with JSR-356 support are expected to perform
a ServletContainerInitializer (SCI) scan that can slow down application startup, in some cases
dramatically. If a significant impact is observed after an upgrade to a Servlet container version with
JSR-356 support, it should be possible to selectively enable or disable web fragments (and SCI
scanning) through the use of the <absolute-ordering /> element in web.xml:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
https://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

<absolute-ordering/>

</web-app>

You can then selectively enable web fragments by name, such as Spring’s own
SpringServletContainerInitializer that provides support for the Servlet 3 Java initialization API, if
required:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
https://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

<absolute-ordering>
<name>spring_web</name>

</absolute-ordering>

</web-app>

139

https://github.com/eclipse-ee4j/websocket-api/issues/211

4.2.4. Server config

Same in Spring WebFlux

Each underlying WebSocket engine exposes configuration properties that control runtime

characteristics such as the size of message buffer sizes, idle timeout, and others.

For Tomcat, WildFly, and GlassFish add a ServletServerContainerFactoryBean to your WebSocket

Java config:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@Bean
public ServletServerContainerFactoryBean createWebSocketContainer() {
ServletServerContainerFactoryBean container = new
ServletServerContainerFactoryBean();
container.setMaxTextMessageBufferSize(8192);
container.setMaxBinaryMessageBufferSize(8192);
return container;

or WebSocket XML namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<bean class="org.springframework...ServletServerContainerFactoryBean">
<property name="maxTextMessageBufferSize" value="8192"/>
<property name="maxBinaryMessageBufferSize" value="8192"/>

</bean>

</beans>
For client side WebSocket configuration, you should

0 WebSocketContainerFactoryBean (XML)
ContainerProvider.getWebSocketContainer() (Java config).

use
or

For Jetty, you’ll need to supply a pre-configured Jetty WebSocketServerFactory and plug that into

140

web-reactive.pdf#webflux-websocket-server-config

Spring’s DefaultHandshakeHandler through your WebSocket Java config:

public class WebSocketConfig implements WebSocketConfigurer {

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (echoWebSocketHandler(),
"/echo").setHandshakeHandler (handshakeHandler());

public DefaultHandshakeHandler handshakeHandler() {

WebSocketPolicy policy = new WebSocketPolicy(WebSocketBehavior.SERVER);
policy.setInputBufferSize(8192);

policy.setIdleTimeout(600000);

return new DefaultHandshakeHandler (
new JettyRequestUpgradeStrategy(new WebSocketServerFactory(policy)));

or WebSocket XML namespace:

141

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/echo" handler="echoHandler"/>
<websocket:handshake-handler ref="handshakeHandler"/>
</websocket:handlers>

<bean id="handshakeHandler" class="org.springframework...DefaultHandshakeHandler">
<constructor-arg ref="upgradeStrategy"/>
</bean>

<bean id="upgradeStrategy" class=
"org.springframework...JettyRequestUpgradeStrategy">
<constructor-arg ref="serverFactory"/>
</bean>

<bean id="serverFactory" class="org.eclipse.jetty...WebSocketServerFactory">
<constructor-arg>
<bean class="org.eclipse.jetty...WebSocketPolicy">
<constructor-arg value="SERVER"/>
<property name="1inputBufferSize" value="8092"/>
<property name="idleTimeout" value="600000"/>
</bean>
</constructor-arg>
</bean>

</beans>

4.2.5. Allowed origins
Same in Spring WebFlux

As of Spring Framework 4.1.5, the default behavior for WebSocket and SocK]S is to accept only same
origin requests. It is also possible to allow all or a specified list of origins. This check is mostly
designed for browser clients. There is nothing preventing other types of clients from modifying the
Origin header value (see RFC 6454: The Web Origin Concept for more details).

The 3 possible behaviors are:

* Allow only same origin requests (default): in this mode, when Sock]S is enabled, the Iframe
HTTP response header X-Frame-Options is set to SAMEORIGIN, and JSONP transport is disabled
since it does not allow to check the origin of a request. As a consequence, IE6 and IE7 are not

142

web-reactive.pdf#webflux-websocket-server-cors
https://tools.ietf.org/html/rfc6454

supported when this mode is enabled.

* Allow a specified list of origins: each provided allowed origin must start with http:// or
https://. In this mode, when Sock]JS is enabled, both IFrame and JSONP based transports are
disabled. As a consequence, IE6 through IE9 are not supported when this mode is enabled.

» Allow all origins: to enable this mode, you should provide * as the allowed origin value. In this

mode, all transports are available.

WebSocket and Sock]S allowed origins can be configured as shown bellow:

import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfiqurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

public class WebSocketConfig implements WebSocketConfigurer {

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (myHandler(), "/myHandler").setAllowedOrigins(
"https://mydomain.com");
}

public WebSocketHandler myHandler() {
return new MyHandler();

}

XML configuration equivalent:

143

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers allowed-origins="https://mydomain.com">
<websocket:mapping path="/myHandler" handler="myHandler" />
</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

4.3. Sock]JS Fallback

Over the public Internet, restrictive proxies outside your control may preclude WebSocket
interactions either because they are not configured to pass on the Upgrade header or because they
close long lived connections that appear idle.

The solution to this problem is WebSocket emulation, i.e. attempting to use WebSocket first and
then falling back on HTTP-based techniques that emulate a WebSocket interaction and expose the
same application-level API.

On the Servlet stack the Spring Framework provides both server (and also client) support for the
Sock]JS protocol.

4.3.1. Overview

The goal of Sock]S is to let applications use a WebSocket API but fall back to non-WebSocket
alternatives when necessary at runtime, i.e. without the need to change application code.

SockK]JS consists of:

The Sock]JS protocol defined in the form of executable narrated tests.

The Sock]JS JavaScript client - a client library for use in browsers.

Sock]JS server implementations including one in the Spring Framework spring-websocket
module.

As of 4.1 spring-websocket also provides a Sock]JS Java client.

Sock]JS is designed for use in browsers. It goes to great lengths to support a wide range of browser
versions using a variety of techniques. For the full list of Sock]S transport types and browsers see
the Sock]S client page. Transports fall in 3 general categories: WebSocket, HTTP Streaming, and
HTTP Long Polling. For an overview of these categories see this blog post.

144

https://github.com/sockjs/sockjs-protocol
https://sockjs.github.io/sockjs-protocol/sockjs-protocol-0.3.3.html
https://github.com/sockjs/sockjs-client/
https://github.com/sockjs/sockjs-client/
https://spring.io/blog/2012/05/08/spring-mvc-3-2-preview-techniques-for-real-time-updates/

The SocK]S client begins by sending "GET /info" to obtain basic information from the server. After
that it must decide what transport to use. If possible WebSocket is used. If not, in most browsers
there is at least one HTTP streaming option and if not then HTTP (long) polling is used.

All transport requests have the following URL structure:
http://host:port/myApp/myEndpoint/{server-id}/{session-id}/{transport}

» {server-id} - useful for routing requests in a cluster but not used otherwise.

» {session-id} - correlates HTTP requests belonging to a Sock]S session.

"o

» {transport} - indicates the transport type, e.g. "websocket", "xhr-streaming", etc.

The WebSocket transport needs only a single HTTP request to do the WebSocket handshake. All
messages thereafter are exchanged on that socket.

HTTP transports require more requests. Ajax/XHR streaming for example relies on one long-
running request for server-to-client messages and additional HTTP POST requests for client-to-
server messages. Long polling is similar except it ends the current request after each server-to-
client send.

Sock]JS adds minimal message framing. For example the server sends the letter o ("open" frame)
initially, messages are sent as a['messagel”,"message2"] (JSON-encoded array), the letter h
("heartbeat" frame) if no messages flow for 25 seconds by default, and the letter c¢ ("close" frame) to
close the session.

To learn more, run an example in a browser and watch the HTTP requests. The Sock]S client allows
fixing the list of transports so it is possible to see each transport one at a time. The Sock]JS client also
provides a debug flag which enables helpful messages in the browser console. On the server side
enable TRACE logging for org.springframework.web.socket. For even more detail refer to the Sock]S
protocol narrated test.

4.3.2. Enable Sock]S

SocK]JS is easy to enable through Java configuration:

145

https://sockjs.github.io/sockjs-protocol/sockjs-protocol-0.3.3.html

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@Override

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (myHandler(), "/myHandler").withSockJS();

}

@Bean
public WebSocketHandler myHandler() {
return new MyHandler();

}

and the XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/myHandler" handler="myHandler"/>
<websocket:sockjs/>

</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

The above is for use in Spring MVC applications and should be included in the configuration of a
DispatcherServlet. However, Spring’s WebSocket and Sock]S support does not depend on Spring
MVC. It is relatively simple to integrate into other HTTP serving environments with the help of
SockJsHttpRequestHandler.

On the browser side, applications can use the sockjs-client (version 1.0.x) that emulates the W3C
WebSocket API and communicates with the server to select the best transport option depending on
the browser it’s running in. Review the sockjs-client page and the list of transport types supported
by browser. The client also provides several configuration options, for example, to specify which
transports to include.

146

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/socket/sockjs/support/SockJsHttpRequestHandler.html
https://github.com/sockjs/sockjs-client/
https://github.com/sockjs/sockjs-client/

43.3.1IE8,9

Internet Explorer 8 and 9 are and will remain common for some time. They are a key reason for
having Sock]S. This section covers important considerations about running in those browsers.

The SocK]S client supports Ajax/XHR streaming in IE 8 and 9 via Microsoft’s XDomainRequest. That
works across domains but does not support sending cookies. Cookies are very often essential for
Java applications. However since the Sock]S client can be used with many server types (not just
Java ones), it needs to know whether cookies matter. If so the Sock]S client prefers Ajax/XHR for
streaming or otherwise it relies on a iframe-based technique.

The very first "/info" request from the Sock]S client is a request for information that can influence
the client’s choice of transports. One of those details is whether the server application relies on
cookies, e.g. for authentication purposes or clustering with sticky sessions. Spring’s Sock]S support
includes a property called sessionCookieNeeded. It is enabled by default since most Java applications
rely on the JSESSIONID cookie. If your application does not need it, you can turn off this option and
the Sock]JS client should choose xdr-streaming in IE 8 and 9.

If you do use an iframe-based transport, and in any case, it is good to know that browsers can be
instructed to block the use of IFrames on a given page by setting the HTTP response header X-
Frame-Options to DENY, SAMEORIGIN, or ALLOW-FROM <origin>. This is used to prevent clickjacking.

Spring Security 3.2+ provides support for setting X-Frame-Options on every

response. By default the Spring Security Java config sets it to DENY. In 3.2 the Spring

Security XML namespace does not set that header by default but may be
9 configured to do so, and in the future it may set it by default.

See Section 7.1. "Default Security Headers" of the Spring Security documentation
for details on how to configure the setting of the X-Frame-Options header. You may
also check or watch SEC-2501 for additional background.

If your application adds the X-Frame-Options response header (as it should!) and relies on an iframe-
based transport, you will need to set the header value to SAMEORIGIN or ALLOW-FROM <origin>. Along
with that the Spring Sock]S support also needs to know the location of the Sock]JS client because it is
loaded from the iframe. By default the iframe is set to download the Sock]S client from a CDN
location. It is a good idea to configure this option to a URL from the same origin as the application.

In Java config this can be done as shown below. The XML namespace provides a similar option via
the <websocket:sockjs> element:

147

https://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
https://www.owasp.org/index.php/Clickjacking
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers
https://jira.spring.io/browse/SEC-2501

public class WebSocketConfig implements WebSocketConfigurer {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio").withSockJS()
.setClientLibraryUr1("http://localhost:8080/myapp/js/sockjs-client.js

During initial development, do enable the Sock]S client devel mode that prevents
the browser from caching Sock]JS requests (like the iframe) that would otherwise
be cached. For details on how to enable it see the Sock]S client page.

4.3.4. Heartbeats

The Sock]JS protocol requires servers to send heartbeat messages to preclude proxies from
concluding a connection is hung. The Spring Sock]S configuration has a property called
heartbeatTime that can be used to customize the frequency. By default a heartbeat is sent after 25
seconds assuming no other messages were sent on that connection. This 25 seconds value is in line
with the following IETF recommendation for public Internet applications.

0 When using STOMP over WebSocket/Sock]S, if the STOMP client and server
negotiate heartbeats to be exchanged, the Sock]S heartbeats are disabled.

The Spring Sock]JS support also allows configuring the TaskScheduler to use for scheduling
heartbeats tasks. The task scheduler is backed by a thread pool with default settings based on the
number of available processors. Applications should consider customizing the settings according to
their specific needs.

4.3.5. Client disconnects

HTTP streaming and HTTP long polling SocKk]S transports require a connection to remain open
longer than usual. For an overview of these techniques see this blog post.

In Servlet containers this is done through Servlet 3 async support that allows exiting the Servlet
container thread processing a request and continuing to write to the response from another thread.

A specific issue is that the Servlet API does not provide notifications for a client that has gone away,
see SERVLET_SPEC-44. However, Servlet containers raise an exception on subsequent attempts to
write to the response. Since Spring’s Sock]S Service supports sever-sent heartbeats (every 25
seconds by default), that means a client disconnect is usually detected within that time period or
earlier if messages are sent more frequently.

148

https://github.com/sockjs/sockjs-client/
https://tools.ietf.org/html/rfc6202
https://spring.io/blog/2012/05/08/spring-mvc-3-2-preview-techniques-for-real-time-updates/
https://java.net/jira/browse/SERVLET_SPEC-44

As a result network IO failures may occur simply because a client has
disconnected, which can fill the log with unnecessary stack traces. Spring makes a

0 best effort to identify such network failures that represent client disconnects
(specific to each server) and log a minimal message using the dedicated log
category DISCONNECTED_CLIENT_LOG_CATEGORY defined in AbstractSockJsSession. If you
need to see the stack traces, set that log category to TRACE.

4.3.6. Sock]JS and CORS

If you allow cross-origin requests (see Allowed origins), the Sock]JS protocol uses CORS for cross-
domain support in the XHR streaming and polling transports. Therefore CORS headers are added
automatically unless the presence of CORS headers in the response is detected. So if an application
is already configured to provide CORS support, e.g. through a Servlet Filter, Spring’s Sock]sService
will skip this part.

It is also possible to disable the addition of these CORS headers via the suppressCors property in
Spring’s Sock]JsService.

The following is the list of headers and values expected by Sock]S:

* "Access-Control-Allow-Origin" - initialized from the value of the "Origin" request header.
* "Access-Control-Allow-Credentials" - always set to true.
* "Access-Control-Request-Headers" - initialized from values from the equivalent request header.

* "Access-Control-Allow-Methods" - the HTTP methods a transport supports (see TransportType
enum).

* "Access-Control-Max-Age" - set to 31536000 (1 year).

For the exact implementation see addCorsHeaders in AbstractSock]sService as well as the
TransportType enum in the source code.

Alternatively if the CORS configuration allows it consider excluding URLs with the Sock]S endpoint
prefix thus letting Spring’s SockJsService handle it.

4.3.7. SocKk]JsClient

A SocK]S Java client is provided in order to connect to remote Sock]JS endpoints without using a
browser. This can be especially useful when there is a need for bidirectional communication
between 2 servers over a public network, i.e. where network proxies may preclude the use of the
WebSocket protocol. A Sock]S Java client is also very useful for testing purposes, for example to
simulate a large number of concurrent users.

The Sock]S Java client supports the "websocket", "xhr-streaming"”, and "xhr-polling" transports. The
remaining ones only make sense for use in a browser.

The WebSocketTransport can be configured with:

» StandardWebSocketClient in a JSR-356 runtime

149

o JettyWebSocket(Client using the Jetty 9+ native WebSocket API

* Any implementation of Spring’s WebSocketClient
An XhrTransport by definition supports both "xhr-streaming" and "xhr-polling" since from a client
perspective there is no difference other than in the URL used to connect to the server. At present
there are two implementations:

* RestTemplateXhrTransport uses Spring’s RestTemplate for HTTP requests.

» JettyXhrTransport uses Jetty’s HttpClient for HTTP requests.

The example below shows how to create a Sock]S client and connect to a Sock]S endpoint:

List<Transport> transports = new ArraylList<>(2);
transports.add(new WebSocketTransport(new StandardWebSocketClient()));
transports.add(new RestTemplateXhrTransport());

SockJsClient sockJsClient = new Sock]sClient(transports);
sockJsClient.doHandshake(new MyWebSocketHandler(), "ws://example.com:8080/sockjs");

Sock]JS uses JSON formatted arrays for messages. By default Jackson 2 is used and
needs to be on the classpath. Alternatively you can configure a custom
implementation of SockJsMessageCodec and configure it on the SockJsClient.

To use the SockJsClient for simulating a large number of concurrent users you will need to
configure the underlying HTTP client (for XHR transports) to allow a sufficient number of
connections and threads. For example with Jetty:

HttpClient jettyHttpClient = new HttpClient();
jettyHttpClient.setMaxConnectionsPerDestination(1000);
jettyHttpClient.setExecutor(new QueuedThreadPool(1000));

Consider also customizing these server-side Sock]JS related properties (see Javadoc for details):

public class WebSocketConfig extends WebSocketMessageBrokerConfigurationSupport {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/sockjs").withSock]S()
.setStreamBytesLimit(512 * 1024)
.setHttpMessageCacheSize(1000)
.setDisconnectDelay(30 * 1000);

/] ...

150

4.4. STOMP

The WebSocket protocol defines two types of messages, text and binary, but their content is
undefined. The defines a mechanism for client and server to negotiate a sub-protocol —i.e. a higher
level messaging protocol, to use on top of WebSocket to define what kind of messages each can
send, what is the format and content for each message, and so on. The use of a sub-protocol is
optional but either way client and server will need to agree on some protocol that defines message
content.

4.4.1. Overview

STOMP is a simple, text-oriented messaging protocol that was originally created for scripting
languages such as Ruby, Python, and Perl to connect to enterprise message brokers. It is designed to
address a minimal subset of commonly used messaging patterns. STOMP can be used over any
reliable, 2-way streaming network protocol such as TCP and WebSocket. Although STOMP is a text-
oriented protocol, message payloads can be either text or binary.

STOMP is a frame based protocol whose frames are modeled on HTTP. The structure of a STOMP
frame:

COMMAND
header1:valuel
header2:value2

Body”@

Clients can use the SEND or SUBSCRIBE commands to send or subscribe for messages along with a
"destination" header that describes what the message is about and who should receive it. This
enables a simple publish-subscribe mechanism that can be used to send messages through the
broker to other connected clients or to send messages to the server to request that some work be
performed.

When using Spring’s STOMP support, the Spring WebSocket application acts as the STOMP broker to
clients. Messages are routed to @Controller message-handling methods or to a simple, in-memory
broker that keeps track of subscriptions and broadcasts messages to subscribed users. You can also
configure Spring to work with a dedicated STOMP broker (e.g. RabbitMQ, ActiveMQ, etc) for the
actual broadcasting of messages. In that case Spring maintains TCP connections to the broker,
relays messages to it, and also passes messages from it down to connected WebSocket clients. Thus
Spring web applications can rely on unified HTTP-based security, common validation, and a
familiar programming model message-handling work.

Here is an example of a client subscribing to receive stock quotes which the server may emit
periodically e.g. via a scheduled task sending messages through a SimpMessagingTemplate to the
broker:

151

https://stomp.github.io/stomp-specification-1.2.html#Abstract

SUBSCRIBE
id:sub-1
destination:/topic/price.stock.*

¢

Here is an example of a client sending a trade request, which the server may handle through an
@MessageMapping method and later on, after the execution, broadcast a trade confirmation message
and details down to the client:

SEND

destination:/queue/trade
content-type:application/json
content-length:44

{"action":"BUY", "ticker":"MMM","shares",44}@

The meaning of a destination is intentionally left opaque in the STOMP spec. It can be any string,
and it’s entirely up to STOMP servers to define the semantics and the syntax of the destinations that
they support. It is very common, however, for destinations to be path-like strings where "/topic/.."
implies publish-subscribe (one-to-many) and "/queuve/" implies point-to-point (one-to-one) message
exchanges.

STOMP servers can use the MESSAGE command to broadcast messages to all subscribers. Here is an
example of a server sending a stock quote to a subscribed client:

MESSAGE

message-id:nxahk1f6-1
subscription:sub-1
destination:/topic/price.stock.MMM

{"ticker":"MMM","price":129.45}"@

It is important to know that a server cannot send unsolicited messages. All messages from a server
must be in response to a specific client subscription, and the "subscription-id" header of the server
message must match the "id" header of the client subscription.

The above overview is intended to provide the most basic understanding of the STOMP protocol. It
is recommended to review the protocol specification in full.

4.4.2. Benefits

Use of STOMP as a sub-protocol enables the Spring Framework and Spring Security to provide a
richer programming model vs using raw WebSockets. The same point can be made about how HTTP
vs raw TCP and how it enables Spring MVC and other web frameworks to provide rich functionality.
The following is a list of benefits:

152

https://stomp.github.io/stomp-specification-1.2.html

* No need to invent a custom messaging protocol and message format.
» STOMP clients are available including a Java client in the Spring Framework.

* Message brokers such as RabbitMQ, ActiveMQ, and others can be used (optionally) to manage
subscriptions and broadcast messages.

» Application logic can be organized in any number of @Controller's and messages routed to them
based on the STOMP destination header vs handling raw WebSocket messages with a single
WebSocketHandler for a given connection.

» Use Spring Security to secure messages based on STOMP destinations and message types.

4.4.3. Enable STOMP

STOMP over WebSocket support is available in the spring-messaging and the spring-websocket
modules. Once you have those dependencies, you can expose a STOMP endpoints, over WebSocket
with Sock]S Fallback, as shown below:

import org.springframework.web.socket.config.annotation.EnableWebSocketMessageBroker;
import org.springframework.web.socket.config.annotation.StompEndpointRegistry;

public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio").withSock]S(); @
}

public void configureMessageBroker (MessageBrokerRegistry config) {
config.setApplicationDestinationPrefixes("/app"); @
config.enableSimpleBroker("/topic", "/queue"); @

@ "/portfolio" is the HTTP URL for the endpoint to which a WebSocket (or Sock]S) client will need
to connect to for the WebSocket handshake.

@ STOMP messages whose destination header begins with "/app" are routed to @MessageMapping
methods in @Controller classes.

® Use the built-in, message broker for subscriptions and broadcasting; Route messages whose
destination header begins with "/topic" or "/queue" to the broker.

The same configuration in XML:

153

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:message-broker application-destination-prefix="/app">
<websocket:stomp-endpoint path="/portfolio">
<websocket:sockjs/>
</websocket:stomp-endpoint>
<websocket:simple-broker prefix="/topic, /queue"/>
</websocket:message-broker>

</beans>

For the built-in, simple broker the "/topic" and "/queue" prefixes do not have any
special meaning. They’re merely a convention to differentiate between pub-sub vs

0 point-to-point messaging (i.e. many subscribers vs one consumer). When using an
external broker, please check the STOMP page of the broker to understand what
kind of STOMP destinations and prefixes it supports.

To connect from a browser, for Sock]S you can use the sockjs-client. For STOMP many applications
have used the jmesnil/stomp-websocket library (also known as stomp.js) which is feature complete
and has been used in production for years but is no longer maintained. At present the
JSteunou/webstomp-client is the most actively maintained and evolving successor of that library
and the example code below is based on it:

var socket = new Sock]S("/spring-websocket-portfolio/portfolio");
var stompClient = webstomp.over(socket);

stompClient.connect({}, function(frame) {

}

Or if connecting via WebSocket (without Sock]S):

var socket = new WebSocket("/spring-websocket-portfolio/portfolio”);
var stompClient = Stomp.over(socket);

stompClient.connect({}, function(frame) {

}

Note that the stompClient above does not need to specify login and passcode headers. Even if it did,
they would be ignored, or rather overridden, on the server side. See the sections Connect to Broker

154

https://github.com/sockjs/sockjs-client
https://github.com/jmesnil/stomp-websocket
https://github.com/JSteunou/webstomp-client

and Authentication for more information on authentication.
For a more example code see:

» Using WebSocket to build an interactive web application getting started guide.

 Stock Portfolio sample application.

4.4.4. Flow of Messages

Once a STOMP endpoint is exposed, the Spring application becomes a STOMP broker for connected
clients. This section describes the flow of messages on the server side.

The spring-messaging module contains foundational support for messaging applications that
originated in Spring Integration and was later extracted and incorporated into the Spring
Framework for broader use across many Spring projects and application scenarios. Below is a list
of a few of the available messaging abstractions:

* Message — simple representation for a message including headers and payload.

* MessageHandler — contract for handling a message.

* MessageChannel — contract for sending a message that enables loose coupling between
producers and consumers.

» SubscribableChannel —MessageChannel with MessageHandler subscribers.
» ExecutorSubscribableChannel — SubscribableChannel that uses an Executor for delivering

messages.

Both the Java config (i.e. @EnableWebSocketMessageBroker) and the XML namespace config (i.e.
<websocket:message-broker>) use the above components to assemble a message workflow. The
diagram below shows the components used when the simple, built-in message broker is enabled:

SENP) impAnnotationMethod broker
destination:/app/a MessageHandler channel

SEND
destination:/topic/a —*@
4

WebSocket client messages

SimpleBroker
geHandler

MESSAGE

MESSAGE response
destination:/topic/a ' (_Chaml z

There are 3 message channels in the above diagram:

* "clientInboundChannel” — for passing messages received from WebSocket clients.
» "clientOutboundChannel” — for sending server messages to WebSocket clients.

* "brokerChannel" —for sending messages to the message broker from within server-side,

155

https://spring.io/guides/gs/messaging-stomp-websocket/
https://github.com/rstoyanchev/spring-websocket-portfolio
https://spring.io/spring-integration
https://spring.io/projects
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/messaging/Message.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/messaging/MessageHandler.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/messaging/MessageChannel.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/messaging/SubscribableChannel.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/messaging/support/ExecutorSubscribableChannel.html

application code.

The next diagram shows the components used when an external broker (e.g. RabbitMQ) is
configured for managing subscriptions and broadcasting messages:

SENF’) SimpAnnotationMethod broker
destination:/app/a MessageHandler channel

SEND
destination:/topic/a 4@ y

WebSocket client messages

StompBrokerRelay

MESSAGE
MESSAGE response C ST;%I;"P C:______,_
destination:/topic/a | channel 4 Message
Broker

The main difference in the above diagram is the use of the "broker relay" for passing messages up
to the external STOMP broker over TCP, and for passing messages down from the broker to
subscribed clients.

When messages are received from a WebSocket connectin, they’re decoded to STOMP frames, then
turned into a Spring Message representation, and sent to the "clientInboundChannel” for further
processing. For example STOMP messages whose destination header starts with "/app" may be
routed to @MessageMapping methods in annotated controllers, while "/topic" and "/queue" messages
may be routed directly to the message broker.

An annotated @Controller handling a STOMP message from a client may send a message to the
message broker through the "brokerChannel", and the broker will broadcast the message to
matching subscribers through the "clientOutboundChannel”. The same controller can also do the
same in response to HTTP requests, so a client may perform an HTTP POST and then an
@PostMapping method can send a message to the message broker to broadcast to subscribed clients.

Let’s trace the flow through a simple example. Given the following server setup:

156

public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio");
}

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.setApplicationDestinationPrefixes("/app");
registry.enableSimpleBroker("/topic");

public class GreetingController {

("/greeting") {
public String handle(String greeting) {
return "[" + getTimestamp() + ": " + greeting;

}

1. Client connects to "http://localhost:8080/portfolio” and once a WebSocket connection is
established, STOMP frames begin to flow on it.

2. Client sends SUBSCRIBE frame with destination header "/topic/greeting". Once received and
decoded, the message is sent to the "clientInboundChannel”, then routed to the message broker
which stores the client subscription.

3. Client sends SEND frame to "/app/greeting". The "/app" prefix helps to route it to annotated
controllers. After the "/app" prefix is stripped, the remaining "/greeting" part of the destination
is mapped to the @MessageMapping method in GreetingController.

4. The value returned from GreetingController is turned into a Spring Message with a payload
based on the return value and a default destination header of "/topic/greeting" (derived from
the input destination with "/app" replaced by "/topic"). The resulting message is sent to the
"brokerChannel" and handled by the message broker.

5. The message broker finds all matching subscribers, and sends a MESSAGE frame to each
through the "clientOutboundChannel” from where messages are encoded as STOMP frames and
sent on the WebSocket connection.

The next section provides more details on annotated methods including the kinds of arguments and
return values supported.

157

4.4.5. Annotated Controllers

Applications can use annotated @Controller classes to handle messages from clients. Such classes
can declare @MessageMapping, @SubscribeMapping, and @ExceptionHandler methods as described next.

@MessageMapping

The @MessageMapping annotation can be used on methods to route messages based on their
destination. It is supported at the method level as well as at the type level. At type level
@MessageMapping is used to express shared mappings across all methods in a controller.

By default destination mappings are expected to be Ant-style, path patterns, e.g. "/foo™", "/foo/**".
The patterns include support for template variables, e.g. "/foo/{id}", that can be referenced with
@DestinationVariable method arguments.

Q Applications can choose to switch to a dot-separated destination convention. See

Dot as Separator.

@MessageMapping methods can have flexible signatures with the following arguments:

Method argument

Message

MessageHeaders

MessageHeaderAccessor,

SimpMessageHeaderAccessor,
StompHeaderAccessor

@Payload

@Header

@Headers

@DestinationVariable

java.security.Principal

Description
For access to the complete message.
For access to the headers within the Message.

For access to the headers via typed accessor methods.

For access to the payload of the message, converted (e.g. from
JSON) via a configured MessageConverter.

The presence of this annotation is not required since it is
assumed by default if no other argument is matched.

Payload arguments may be annotated with
@javax.validation.Valid or Spring’s @Validated in order to be
automatically validated.

For access to a specific header value along with type conversion
using an org.springframework.core.convert.converter.Converter
if necessary.

For access to all headers in the message. This argument must be
assignable to java.util.Map.

For access to template variables extracted from the message
destination. Values will be converted to the declared method
argument type as necessary.

Reflects the user logged in at the time of the WebSocket HTTP
handshake.

When an @MessageMapping method returns a value, by default the value is serialized to a payload
through a configured MessageConverter, and then sent as a Message to the "brokerChannel” from

158

where it is broadcast to subscribers. The destination of the outbound message is the same as that of
the inbound message but prefixed with "/topic".

You can use the @SendTo method annotation to customize the destination to send the payload to.
@SendTo can also be used at the class level to share a default target destination to send messages to.
@SendToUser is an variant for sending messages only to the user associated with a message. See User
Destinations for details.

The return value from an @MessageMapping method may be wrapped with ListenableFuture,
CompletableFuture, or CompletionStage in order to produce the payload asynchronously.

As an alternative to returning a payload from an @MessageMapping method you can also send
messages using the SimpMessagingTemplate, which is also how return values are handled under the
covers. See Send Messages.

@SubscribeMapping

@SubscribeMapping is similar to @MessageMapping but narrows the mapping to subscription messages
only. It supports the same method arguments as @MessageMapping does. However for the return
value, by default a message is sent directly to the client via "clientOutboundChannel” in response to
the subscription, and not to the broker via "brokerChannel" as a broadcast to matching
subscriptions. Adding @SendTo or @SendToUser overrides this behavior and sends to the broker
instead.

When is this useful? Let’s assume the broker is mapped to "/topic" and "/queue" while application
controllers are mapped to "/app". In this setup, the broker stores all subscriptions to "/topic" and
"/queue” that are intended for repeated broadcasts, and there is no need for the application to get
involved. A client could also also subscribe to some "/app" destination and a controller could return
a value in response to that subscription without involving the broker, effectively a one-off,
request-reply exchange, without storing or using the subscription again. One case for this is
populating a UI with initial data on startup.

When is this not useful? Do not try to map broker and controllers to the same destination prefix
unless you want both to process messages, including subscriptions, independently for some reason.
Inbound messages are handled in parallel. There are no guarantees whether broker or controller
will process a given message first. If the goal is to be notified when a subscription is stored and
ready for broadcasts, then a client should ask for a receipt if the server supports it (simple broker
does not). For example with the Java STOMP Client:

159

private TaskScheduler messageBrokerTaskScheduler;

// During initialization..
stompClient.setTaskScheduler(this.messageBrokerTaskScheduler);

// When subscribing..

StompHeaders headers = new StompHeaders();

headers.setDestination("/topic/...");

headers.setReceipt("r1");

FrameHandler handler = ...;

stompSession.subscribe(headers, handler).addReceiptTask(() -> {
// Subscription ready...

1}

A server side option is to register an ExecutorChannellnterceptor on the brokerChannel and
implement the afterMessageHandled method that is invoked after messages, including subscriptions,
have been handled.

@MessageExceptionHandler

An application can wuse @MessageExceptionHandler methods to handle exceptions from
@MessageMapping methods. Exceptions of interest can be declared in the annotation itself, or through
a method argument if you want to get access to the exception instance:

public class MyController {

VA

public ApplicationError handleException(MyException exception) {
/] ...
return appError;

@MessageExceptionHandler methods support flexible method signatures and support the same
method argument types and return values as @MessageMapping methods.

Typically @MessageExceptionHandler methods apply within the @Controller class (or class hierarchy)
they are declared in. If you want such methods to apply more globally, across controllers, you can
declare them in a class marked with @ControllerAdvice. This is comparable to similar support in
Spring MVC.

4.4.6. Send Messages

What if you want to send messages to connected clients from any part of the application? Any

160

application component can send messages to the "brokerChannel”. The easiest way to do that is to
have a SimpMessagingTemplate injected, and use it to send messages. Typically it should be easy to
have it injected by type, for example:

public class GreetingController {

private SimpMessagingTemplate template;

public GreetingController(SimpMessagingTemplate template) {
this.template = template;

}

(path="/greetings", method=POST)
public void greet(String greeting) {
String text = "[" + getTimestamp() + "]:" + greeting;
this.template.convertAndSend("/topic/greetings”, text);

But it can also be qualified by its name "brokerMessagingTemplate" if another bean of the same
type exists.

4.4.7. Simple Broker

The built-in, simple message broker handles subscription requests from clients, stores them in
memory, and broadcasts messages to connected clients with matching destinations. The broker
supports path-like destinations, including subscriptions to Ant-style destination patterns.

O Applications can also use dot-separated destinations (vs slash). See Dot as
Separator.
4.4.8. External Broker

The simple broker is great for getting started but supports only a subset of STOMP commands (e.g.
no acks, receipts, etc.), relies on a simple message sending loop, and is not suitable for clustering. As
an alternative, applications can upgrade to using a full-featured message broker.

Check the STOMP documentation for your message broker of choice (e.g. RabbitMQ, ActiveMQ, etc.),
install the broker, and run it with STOMP support enabled. Then enable the STOMP broker relay in
the Spring configuration instead of the simple broker.

Below is example configuration that enables a full-featured broker:

161

https://www.rabbitmq.com/stomp.html
https://activemq.apache.org/stomp.html

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

@0verride

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio").withSockJS();

}

@Override

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.enableStompBrokerRelay("/topic", "/queue");
registry.setApplicationDestinationPrefixes("/app");

XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:message-broker application-destination-prefix="/app">
<websocket:stomp-endpoint path="/portfolio" />
<websocket:sockjs/>
</websocket:stomp-endpoint>
<websocket:stomp-broker-relay prefix="/topic,/queue" />
</websocket:message-broker>

</beans>

The "STOMP broker relay" in the above configuration is a Spring MessageHandler that handles
messages by forwarding them to an external message broker. To do so it establishes TCP
connections to the broker, forwards all messages to it, and then forwards all messages received
from the broker to clients through their WebSocket sessions. Essentially it acts as a "relay" that
forwards messages in both directions.

0 Please add io.projectreactor.ipc:reactor-netty and io.netty:netty-all
dependencies to your project for TCP connection management.

Furthermore, application components (e.g. HTTP request handling methods, business services, etc.)
can also send messages to the broker relay, as described in Send Messages, in order to broadcast

162

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/messaging/MessageHandler.html

messages to subscribed WebSocket clients.

In effect, the broker relay enables robust and scalable message broadcasting.

4.4.9. Connect to Broker

A STOMP broker relay maintains a single "system" TCP connection to the broker. This connection is
used for messages originating from the server-side application only, not for receiving messages. You
can configure the STOMP credentials for this connection, i.e. the STOMP frame login and passcode
headers. This is exposed in both the XML namespace and the Java config as the systemlLogin
/systemPasscode properties with default values guest/quest.

The STOMP broker relay also creates a separate TCP connection for every connected WebSocket
client. You can configure the STOMP credentials to use for all TCP connections created on behalf of
clients. This is exposed in both the XML namespace and the Java config as the clientlLogin
/clientPasscode properties with default values guest/quest.

The STOMP broker relay always sets the login and passcode headers on every
CONNECT frame that it forwards to the broker on behalf of clients. Therefore
0 WebSocket clients need not set those headers; they will be ignored. As the
Authentication section explains, instead WebSocket clients should rely on HTTP
authentication to protect the WebSocket endpoint and establish the client identity.

The STOMP broker relay also sends and receives heartbeats to and from the message broker over
the "system" TCP connection. You can configure the intervals for sending and receiving heartbeats
(10 seconds each by default). If connectivity to the broker is lost, the broker relay will continue to
try to reconnect, every 5 seconds, until it succeeds.

Any Spring bean can implement ApplicationListener<BrokerAvailabilityEvent> in order to receive
notifications when the "system" connection to the broker is lost and re-established. For example a
Stock Quote service broadcasting stock quotes can stop trying to send messages when there is no
active "system" connection.

By default, the STOMP broker relay always connects, and reconnects as needed if connectivity is
lost, to the same host and port. If you wish to supply multiple addresses, on each attempt to
connect, you can configure a supplier of addresses, instead of a fixed host and port. For example:

163

public class WebSocketConfig extends AbstractWebSocketMessageBrokerConfigurer {

/] ...

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.enableStompBrokerRelay("/queue/", "/topic/").setTcpClient
(createTepClient());
registry.setApplicationDestinationPrefixes("/app");

}
private ReactorNettyTcpClient<byte[]> createTcpClient() {

Consumer<ClientOptions.Builder<?>> builderConsumer = builder -> {
builder.connectAddress(()-> {
// Select address to connect to ...

H;
};

return new ReactorNettyTcpClient<>(builderConsumer, new
StompReactorNettyCodec());
}
}

The STOMP broker relay can also be configured with a virtualHost property. The value of this
property will be set as the host header of every CONNECT frame and may be useful for example in a
cloud environment where the actual host to which the TCP connection is established is different
from the host providing the cloud-based STOMP service.

4.4.10. Dot as Separator

When messages are routed to @MessageMapping methods, they’re matched with AntPathMatcher and
by default patterns are expected to use slash "/" as separator. This is a good convention in a web
applications and similar to HTTP URLs. However if you are more used to messaging conventions,
you can switch to using dot "." as separator.

In Java config:

164

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

/] ...

@0verride

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.setPathMatcher(new AntPathMatcher("."));
registry.enableStompBrokerRelay("/queue", "/topic");

registry.setApplicationDestinationPrefixes("/app");

In XML:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd

<websocket:message-broker application-destination-prefix="/app" path-matcher=
"pathMatcher">
<websocket:stomp-endpoint path="/stomp"/>
<websocket:stomp-broker-relay prefix="/topic,/queue" />
</websocket:message-broker>

<bean id="pathMatcher" class="org.springframework.util.AntPathMatcher">
<constructor-arg index="0" value="."/>

</bean>

</beans>

After that a controller may use dot "." as separator in @MessageMapping methods:

165

(llfooll)
public class FooController {

("bar.{baz}")
public void handleBaz(String baz) {
/] ...
}

The client can now send a message to "/app/foo.bar.baz123".

In the example above we did not change the prefixes on the "broker relay" because those depend
entirely on the external message broker. Check the STOMP documentation pages of the broker
you’re using to see what conventions it supports for the destination header.

The "simple broker" on the other hand does rely on the configured PathMatcher so if you switch the
separator that will also apply to the broker and the way matches destinations from a message to
patterns in subscriptions.

4.4.11. Authentication

Every STOMP over WebSocket messaging session begins with an HTTP request—that can be a
request to upgrade to WebSockets (i.e. a WebSocket handshake) or in the case of Sock]S fallbacks a
series of Sock]JS HTTP transport requests.

Web applications already have authentication and authorization in place to secure HTTP requests.
Typically a user is authenticated via Spring Security using some mechanism such as a login page,
HTTP basic authentication, or other. The security context for the authenticated user is saved in the
HTTP session and is associated with subsequent requests in the same cookie-based session.

Therefore for a WebSocket handshake, or for Sock]S HTTP transport requests, typically there will
already be an authenticated user accessible via HttpServletRequest#getUserPrincipal(). Spring
automatically associates that user with a WebSocket or Sock]S session created for them and
subsequently with all STOMP messages transported over that session through a user header.

In short there is nothing special a typical web application needs to do above and beyond what it
already does for security. The user is authenticated at the HTTP request level with a security
context maintained through a cookie-based HTTP session which is then associated with WebSocket
or Sock]S sessions created for that user and results in a user header stamped on every Message
flowing through the application.

Note that the STOMP protocol does have a "login" and "passcode" headers on the CONNECT frame.
Those were originally designed for and are still needed for example for STOMP over TCP. However
for STOMP over WebSocket by default Spring ignores authorization headers at the STOMP protocol
level and assumes the user is already authenticated at the HTTP transport level and expects that the
WebSocket or SocK]JS session contain the authenticated user.

166

Spring Security provides WebSocket sub-protocol authorization that uses a

0 Channellnterceptor to authorize messages based on the user header in them. Also
Spring Session provides a WebSocket integration that ensures the user HTTP
session does not expire when the WebSocket session is still active.

4.4.12. Token Authentication

Spring Security OAuth provides support for token based security including JSON Web Token (JWT).
This can be used as the authentication mechanism in Web applications including STOMP over
WebSocket interactions just as described in the previous section, i.e. maintaining identity through a
cookie-based session.

At the same time cookie-based sessions are not always the best fit for example in applications that
don’t wish to maintain a server-side session at all or in mobile applications where it’s common to
use headers for authentication.

The WebSocket protocol RFC 6455 "doesn’t prescribe any particular way that servers can
authenticate clients during the WebSocket handshake." In practice however browser clients can
only use standard authentication headers (i.e. basic HTTP authentication) or cookies and cannot for
example provide custom headers. Likewise the Sock]S JavaScript client does not provide a way to
send HTTP headers with SocK]JS transport requests, see sockjs-client issue 196. Instead it does allow
sending query parameters that can be used to send a token but that has its own drawbacks, for
example as the token may be inadvertently logged with the URL in server logs.

The above limitations are for browser-based clients and do not apply to the Spring
Java-based STOMP client which does support sending headers with both
WebSocket and SocK]S requests.

Therefore applications that wish to avoid the use of cookies may not have any good alternatives for
authentication at the HTTP protocol level. Instead of using cookies they may prefer to authenticate
with headers at the STOMP messaging protocol level There are 2 simple steps to doing that:

1. Use the STOMP client to pass authentication header(s) at connect time.

2. Process the authentication header(s) with a ChannelInterceptor.

Below is the example server-side configuration to register a custom authentication interceptor.
Note that an interceptor only needs to authenticate and set the user header on the CONNECT

Message. Spring will note and save the authenticated user and associate it with subsequent STOMP
messages on the same session:

167

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#websocket
https://docs.spring.io/spring-session/docs/current/reference/html5/#websocket
https://github.com/spring-projects/spring-security-oauth
https://tools.ietf.org/html/rfc6455#section-10.5
https://github.com/sockjs/sockjs-client/issues/196

public class MyConfig implements WebSocketMessageBrokerConfigurer {

public void configureClientInboundChannel(ChannelRegistration registration) {
registration.interceptors(new ChannelInterceptor() {

public Message<?> preSend(Message<?> message, MessageChannel channel) {
StompHeaderAccessor accessor =
MessageHeaderAccessor.getAccessor(message,
StompHeaderAccessor.class);
if (StompCommand.CONNECT.equals(accessor.getCommand())) {
Authentication user = ... ; // access authentication header(s)
accessor.setUser(user);

}

return message;

b

Also note that when using Spring Security’s authorization for messages, at present you will need to
ensure that the authentication ChannelInterceptor config is ordered ahead of Spring Security’s. This
is best done by declaring the custom interceptor in its own implementation of
WebSocketMessageBrokerConfigurer marked with @0rder (Ordered.HIGHEST_PRECEDENCE + 99).

4.4.13. User Destinations

An application can send messages targeting a specific user, and Spring’s STOMP support recognizes
destinations prefixed with "/user/" for this purpose. For example, a client might subscribe to the
destination "/user/queue/position-updates”. This destination will be handled by the
UserDestinationMessageHandler and transformed into a destination unique to the user session, e.g.
"/queue/position-updates-user123". This provides the convenience of subscribing to a generically
named destination while at the same time ensuring no collisions with other users subscribing to the
same destination so that each user can receive unique stock position updates.

On the sending side messages can be sent to a destination such as
"/user/{username}/queue/position-updates”, which in turn will be translated by the
UserDestinationMessageHandler into one or more destinations, one for each session associated with
the user. This allows any component within the application to send messages targeting a specific
user without necessarily knowing anything more than their name and the generic destination. This
is also supported through an annotation as well as a messaging template.

For example, a message-handling method can send messages to the user associated with the
message being handled through the @SendToUser annotation (also supported on the class-level to
share a common destination):

168

public class PortfolioController {

("/trade")
("/queue/position-updates")
public TradeResult executeTrade(Trade trade, Principal principal) {
/] ...
return tradeResult;

If the user has more than one session, by default all of the sessions subscribed to the given
destination are targeted. However sometimes, it may be necessary to target only the session that
sent the message being handled. This can be done by setting the broadcast attribute to false, for
example:

public class MyController {

("/action")
public void handleAction() throws Exception{
// raise MyBusinessException here

}

(destinations="/queue/errors", broadcast=false)
public ApplicationError handleException(MyBusinessException exception) {
/] ...
return appError;

While user destinations generally imply an authenticated user, it isn’t required
strictly. A WebSocket session that is not associated with an authenticated user can

0 subscribe to a user destination. In such cases the @SendToUser annotation will
behave exactly the same as with broadcast=false, i.e. targeting only the session
that sent the message being handled.

It is also possible to send a message to user destinations from any application component by

injecting the SimpMessagingTemplate created by the Java config or XML namespace, for example (the
bean name is "brokerMessagingTemplate" if required for qualification with @Qualifier):

169

public class TradeServiceImpl implements TradeService {

In a multi-application server scenario a user destination may remain unresolved because the user
is connected to a different server. In such cases you can configure a destination to broadcast
unresolved messages to so that other servers have a chance to try. This can be done through the

private final SimpMessagingTemplate messagingTemplate;

public TradeServiceImpl(SimpMessagingTemplate messagingTemplate) {

}

/] ...

this.messagingTemplate = messagingTemplate;

public void afterTradeExecuted(Trade trade) {

i

this.messagingTemplate.convertAndSendToUser (

trade.getUserName(), "/queue/position-updates”, trade.getResult());

When using user destinations with an external message broker, check the broker
documentation on how to manage inactive queues, so that when the user session is
over, all unique user queues are removed. For example, RabbitMQ creates auto-
delete queues when destinations like /exchange/amq.direct/position-updates are
used. So in that case the client could subscribe to
/user/exchange/amq.direct/position-updates. Similarly, ActiveMQ has
configuration options for purging inactive destinations.

userDestinationBroadcast property of the MessageBrokerRegistry in Java config and the user-
destination-broadcast attribute of the message-broker element in XML.

4.4.14. Events

Several ApplicationContext events (listed below) are published and can be received by

implementing Spring’s ApplicationListener interface.

* BrokerAvailabilityEvent —indicates when the broker becomes available/unavailable. While the
"simple" broker becomes available immediately on startup and remains so while the
application is running, the STOMP "broker relay" may lose its connection to the full featured
broker, for example if the broker is restarted. The broker relay has reconnect logic and will re-
establish the "system" connection to the broker when it comes back, hence this event is
published whenever the state changes from connected to disconnected and vice versa.
Components using the SimpMessagingTemplate should subscribe to this event and avoid sending
messages at times when the broker is not available. In any case they should be prepared to
handle MessageDeliveryException when sending a message.

* SessionConnectEvent — published when a new STOMP CONNECT is received indicating the start

170

https://activemq.apache.org/delete-inactive-destinations.html

of a new client session. The event contains the message representing the connect including the
session id, user information (if any), and any custom headers the client may have sent. This is
useful for tracking client sessions. Components subscribed to this event can wrap the contained
message using SimpMessageHeaderAccessor or StompMessageHeaderAccessor.

» SessionConnectedEvent — published shortly after a SessionConnectEvent when the broker has sent
a STOMP CONNECTED frame in response to the CONNECT. At this point the STOMP session can
be considered fully established.

* SessionSubscribeEvent — published when a new STOMP SUBSCRIBE is received.
» SessionUnsubscribeEvent — published when a new STOMP UNSUBSCRIBE is received.

» SessionDisconnectEvent — published when a STOMP session ends. The DISCONNECT may have
been sent from the client, or it may also be automatically generated when the WebSocket
session is closed. In some cases this event may be published more than once per session.
Components should be idempotent with regard to multiple disconnect events.

When using a full-featured broker, the STOMP "broker relay" automatically
reconnects the "system" connection in case the broker becomes temporarily

9 unavailable. Client connections however are not automatically reconnected.
Assuming heartbeats are enabled, the client will typically notice the broker is not
responding within 10 seconds. Clients need to implement their own reconnect
logic.

4.4.15. Interception

Events provide notifications for the lifecycle of a STOMP connection and not for every client
message. Applications can also register a ChannelInterceptor to intercept any message, and in any
part of the processing chain. For example to intercept inbound messages from clients:

public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

public void configureClientInboundChannel(ChannelRegistration registration) {
registration.interceptors(new MyChannelInterceptor());

}

A custom ChannelInterceptor can use StompHeaderAccessor or SimpMessageHeaderAccessor to access
information about the message.

171

public class MyChannelInterceptor implements Channellnterceptor {

public Message<?> preSend(Message<?> message, MessageChannel channel) {
StompHeaderAccessor accessor = StompHeaderAccessor.wrap(message);
StompCommand command = accessor.getStompCommand();
/] ...
return message;

Applications may also implement ExecutorChannellnterceptor which is a sub-interface of
ChannelInterceptor with callbacks in the thread in which the messages are handled. While a
Channellnterceptor is invoked once for per message sent to a channel, the
ExecutorChannelInterceptor provides hooks in the thread of each MessageHandler subscribed to
messages from the channel.

Note that just like with the SesionDisconnectEvent above, a DISCONNECT message may have been
sent from the client, or it may also be automatically generated when the WebSocket session is
closed. In some cases an interceptor may intercept this message more than once per session.
Components should be idempotent with regard to multiple disconnect events.

4.4.16. STOMP Client
Spring provides a STOMP over WebSocket client and a STOMP over TCP client.

To begin create and configure WebSocketStompClient:

WebSocketClient webSocketClient = new StandardWebSocketClient();
WebSocketStompClient stompClient = new WebSocketStompClient(webSocketClient);
stompClient.setMessageConverter(new StringMessageConverter());
stompClient.setTaskScheduler(taskScheduler); // for heartbeats

In the above example StandardWebSocket(Client could be replaced with SockJsClient since that is also
an implementation of WebSocketClient. The SockJsClient can use WebSocket or HTTP-based
transport as a fallback. For more details see Sock]JsClient.

Next establish a connection and provide a handler for the STOMP session:

String url = "ws://127.0.0.1:8080/endpoint";
StompSessionHandler sessionHandler = new MyStompSessionHandler();
stompClient.connect(url, sessionHandler);

When the session is ready for use the handler is notified:

172

public class MyStompSessionHandler extends StompSessionHandlerAdapter {

public void afterConnected(StompSession session, StompHeaders connectedHeaders) {
/] ...
}

Once the session is established any payload can be sent and that will be serialized with the
configured MessageConverter:

session.send("/topic/foo", "payload");

You can also subscribe to destinations. The subscribe methods require a handler for messages on
the subscription and return a Subscription handle that can be used to unsubscribe. For each
received message the handler can specify the target Object type the payload should be deserialized
to:

session.subscribe("/topic/foo", new StompFrameHandler() {

public Type getPayloadType(StompHeaders headers) {
return String.class;

}

public void handleFrame(StompHeaders headers, Object payload) {
/] ...
}

D

To enable STOMP heartbeat configure WebSocketStompClient with a TaskScheduler and optionally
customize the heartbeat intervals, 10 seconds for write inactivity which causes a heartbeat to be
sent and 10 seconds for read inactivity which closes the connection.

When using WebSocketStompClient for performance tests to simulate thousands of

O clients from the same machine consider turning off heartbeats since each
connection schedules its own heartbeat tasks and that’s not optimized for a a large
number of clients running on the same machine.

The STOMP protocol also supports receipts where the client must add a "receipt” header to which
the server responds with a RECEIPT frame after the send or subscribe are processed. To support
this the StompSession offers setAutoReceipt(boolean) that causes a "receipt” header to be added on
every subsequent send or subscribe. Alternatively you can also manually add a "receipt" header to
the StompHeaders. Both send and subscribe return an instance of Receiptable that can be used to

173

register for receipt success and failure callbacks. For this feature the client must be configured with
a TaskScheduler and the amount of time before a receipt expires (15 seconds by default).

Note that StompSessionHandler itself is a StompFrameHandler which allows it to handle ERROR frames
in addition to the handleException callback for exceptions from the handling of messages, and
handleTransportError for transport-level errors including ConnectionLostException.

4.4.17. WebSocket Scope

Each WebSocket session has a map of attributes. The map is attached as a header to inbound client
messages and may be accessed from a controller method, for example:

public class MyController {

("/action")
public void handle(SimpMessageHeaderAccessor headerAccessor) {

Map<String, Object> attrs = headerAccessor.getSessionAttributes();
/] ...

It is also possible to declare a Spring-managed bean in the websocket scope. WebSocket-scoped
beans can be injected into controllers and any channel interceptors registered on the
"clientinboundChannel". Those are typically singletons and live longer than any individual
WebSocket session. Therefore you will need to use a scope proxy mode for WebSocket-scoped
beans:

174

(scopeName = "websocket", proxyMode = ScopedProxyMode.TARGET_CLASS)
public class MyBean {

public void init() {
// Invoked after dependencies injected

}

/] ...

public void destroy() {
// Invoked when the WebSocket session ends

}

public class MyController {

private final MyBean myBean;

public MyController(MyBean myBean) {
this.myBean = myBean;

}

("/action")
public void handle() {
// this.myBean from the current WebSocket session

}

As with any custom scope, Spring initializes a new MyBean instance the first time it is accessed from
the controller and stores the instance in the WebSocket session attributes. The same instance is
returned subsequently until the session ends. WebSocket-scoped beans will have all Spring lifecycle
methods invoked as shown in the examples above.

4.4.18. Performance

There is no silver bullet when it comes to performance. Many factors may affect it including the
size of messages, the volume, whether application methods perform work that requires blocking, as
well as external factors such as network speed and others. The goal of this section is to provide an
overview of the available configuration options along with some thoughts on how to reason about
scaling.

In a messaging application messages are passed through channels for asynchronous executions
backed by thread pools. Configuring such an application requires good knowledge of the channels
and the flow of messages. Therefore it is recommended to review Flow of Messages.

175

The obvious place to start is to configure the thread pools backing the "clientInboundChannel” and
the "clientOutboundChannel”. By default both are configured at twice the number of available
Pprocessors.

If the handling of messages in annotated methods is mainly CPU bound then the number of threads
for the "clientInboundChannel” should remain close to the number of processors. If the work they do
is more I0 bound and requires blocking or waiting on a database or other external system then the
thread pool size will need to be increased.

ThreadPoolExecutor has 3 important properties. Those are the core and the max
thread pool size as well as the capacity for the queue to store tasks for which there
are no available threads.

A common point of confusion is that configuring the core pool size (e.g. 10) and
0 max pool size (e.g. 20) results in a thread pool with 10 to 20 threads. In fact if the

capacity is left at its default value of Integer.MAX_VALUE then the thread pool will

never increase beyond the core pool size since all additional tasks will be queued.

Please review the Javadoc of ThreadPoolExecutor to learn how these properties
work and understand the various queuing strategies.

On the "clientOutboundChannel” side it is all about sending messages to WebSocket clients. If clients
are on a fast network then the number of threads should remain close to the number of available
processors. If they are slow or on low bandwidth they will take longer to consume messages and
put a burden on the thread pool. Therefore increasing the thread pool size will be necessary.

While the workload for the "clientinboundChannel" is possible to predict — after all it is based on
what the application does—how to configure the "clientOutboundChannel" is harder as it is based
on factors beyond the control of the application. For this reason there are two additional properties
related to the sending of messages. Those are the "sendTimeLimit" and the "sendBufferSizeLimit".
Those are used to configure how long a send is allowed to take and how much data can be buffered
when sending messages to a client.

The general idea is that at any given time only a single thread may be used to send to a client. All
additional messages meanwhile get buffered and you can use these properties to decide how long
sending a message is allowed to take and how much data can be buffered in the mean time. Please
review the Javadoc and documentation of the XML schema for this configuration for important
additional details.

Here is example configuration:

176

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

@0verride
public void configureWebSocketTransport(WebSocketTransportRegistration
registration) {
registration.setSendTimeLimit(15 * 1000).setSendBufferSizeLimit(512 * 1024);
}

/] ...

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket :message-broker>
<websocket:transport send-timeout="15000" send-buffer-size="524288" />
gll== oo ==&

</websocket:message-broker>

</beans>

The WebSocket transport configuration shown above can also be used to configure the maximum
allowed size for incoming STOMP messages. Although in theory a WebSocket message can be
almost unlimited in size, in practice WebSocket servers impose limits — for example, 8K on Tomcat
and 64K on Jetty. For this reason STOMP clients such as the JavaScript webstomp-client and others
split larger STOMP messages at 16K boundaries and send them as multiple WebSocket messages
thus requiring the server to buffer and re-assemble.

Spring’s STOMP over WebSocket support does this so applications can configure the maximum size
for STOMP messages irrespective of WebSocket server specific message sizes. Do keep in mind that
the WebSocket message size will be automatically adjusted if necessary to ensure they can carry
16K WebSocket messages at a minimum.

Here is example configuration:

177

https://github.com/JSteunou/webstomp-client

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

@Override
public void configureWebSocketTransport(WebSocketTransportRegistration
registration) {
registration.setMessageSizelLimit(128 * 1024);
}

/] ...

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
https://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket :message-broker>
<websocket:transport message-size="131072" />
== o0 ==&

</websocket:message-broker>

</beans>

An important point about scaling is using multiple application instances. Currently it is not possible
to do that with the simple broker. However when using a full-featured broker such as RabbitMQ,
each application instance connects to the broker and messages broadcast from one application
instance can be broadcast through the broker to WebSocket clients connected through any other
application instances.

4.4.19. Monitoring

When wusing @EnableWebSocketMessageBroker or <websocket:message-broker> key infrastructure
components automatically gather stats and counters that provide important insight into the
internal state of the application. The configuration also declares a bean of type
WebSocketMessageBrokerStats that gathers all available information in one place and by default logs
it at INFO level once every 30 minutes. This bean can be exported to JMX through Spring’s
MBeanExporter for viewing at runtime, for example through JDK’s jconsole. Below is a summary of
the available information.

Client WebSocket Sessions

178

Current

indicates how many client sessions there are currently with the count further broken down
by WebSocket vs HTTP streaming and polling SocK]JS sessions.

Total

indicates how many total sessions have been established.

Abnormally Closed
Connect Failures

these are sessions that got established but were closed after not having received any
messages within 60 seconds. This is usually an indication of proxy or network issues.

Send Limit Exceeded

sessions closed after exceeding the configured send timeout or the send buffer limits
which can occur with slow clients (see previous section).

Transport Errors

sessions closed after a transport error such as failure to read or write to a WebSocket
connection or HTTP request/response.

STOMP Frames

the total number of CONNECT, CONNECTED, and DISCONNECT frames processed indicating
how many clients connected on the STOMP level. Note that the DISCONNECT count may be
lower when sessions get closed abnormally or when clients close without sending a
DISCONNECT frame.

STOMP Broker Relay
TCP Connections

indicates how many TCP connections on behalf of client WebSocket sessions are established
to the broker. This should be equal to the number of client WebSocket sessions + 1 additional
shared "system" connection for sending messages from within the application.

STOMP Frames

the total number of CONNECT, CONNECTED, and DISCONNECT frames forwarded to or
received from the broker on behalf of clients. Note that a DISCONNECT frame is sent to the
broker regardless of how the client WebSocket session was closed. Therefore a lower
DISCONNECT frame count is an indication that the broker is pro-actively closing connections,
may be because of a heartbeat that didn’t arrive in time, an invalid input frame, or other.

Client Inbound Channel

stats from thread pool backing the "clientinboundChannel” providing insight into the health of
incoming message processing. Tasks queueing up here is an indication the application may be
too slow to handle messages. If there I/O bound tasks (e.g. slow database query, HTTP request to
3rd party REST API, etc) consider increasing the thread pool size.

Client Outbound Channel
stats from the thread pool backing the "clientOutboundChannel" providing insight into the

179

health of broadcasting messages to clients. Tasks queueing up here is an indication clients are
too slow to consume messages. One way to address this is to increase the thread pool size to
accommodate the number of concurrent slow clients expected. Another option is to reduce the
send timeout and send buffer size limits (see the previous section).

Sock]JS Task Scheduler

stats from thread pool of the Sock]S task scheduler which is used to send heartbeats. Note that
when heartbeats are negotiated on the STOMP level the Sock]S heartbeats are disabled.

4.4.20. Testing

There are two main approaches to testing applications using Spring’s STOMP over WebSocket
support. The first is to write server-side tests verifying the functionality of controllers and their
annotated message handling methods. The second is to write full end-to-end tests that involve
running a client and a server.

The two approaches are not mutually exclusive. On the contrary each has a place in an overall test
strategy. Server-side tests are more focused and easier to write and maintain. End-to-end
integration tests on the other hand are more complete and test much more, but they’re also more
involved to write and maintain.

The simplest form of server-side tests is to write controller unit tests. However this is not useful
enough since much of what a controller does depends on its annotations. Pure unit tests simply
can’t test that.

Ideally controllers under test should be invoked as they are at runtime, much like the approach to
testing controllers handling HTTP requests using the Spring MVC Test framework. i.e. without
running a Servlet container but relying on the Spring Framework to invoke the annotated
controllers. Just like with Spring MVC Test here there are two two possible alternatives, either using
a "context-based" or "standalone" setup:

1. Load the actual Spring configuration with the help of the Spring TestContext framework, inject
"clientiInboundChannel” as a test field, and use it to send messages to be handled by controller
methods.

2. Manually set up the minimum Spring framework infrastructure required to invoke controllers
(namely the SimpAnnotationMethodMessageHandler) and pass messages for controllers directly to
it.

Both of these setup scenarios are demonstrated in the tests for the stock portfolio sample
application.

The second approach is to create end-to-end integration tests. For that you will need to run a
WebSocket server in embedded mode and connect to it as a WebSocket client sending WebSocket
messages containing STOMP frames. The tests for the stock portfolio sample application also
demonstrates this approach using Tomcat as the embedded WebSocket server and a simple STOMP
client for test purposes.

180

https://github.com/rstoyanchev/spring-websocket-portfolio/tree/master/src/test/java/org/springframework/samples/portfolio/web
https://github.com/rstoyanchev/spring-websocket-portfolio/tree/master/src/test/java/org/springframework/samples/portfolio/web

Chapter 5. Other Web Frameworks

5.1. Introduction

This chapter details Spring’s integration with third party web frameworks.

One of the core value propositions of the Spring Framework is that of enabling choice. In a general
sense, Spring does not force one to use or buy into any particular architecture, technology, or
methodology (although it certainly recommends some over others). This freedom to pick and
choose the architecture, technology, or methodology that is most relevant to a developer and their
development team is arguably most evident in the web area, where Spring provides its own web
framework (Spring MVC), while at the same time providing integration with a number of popular
third party web frameworks.

5.2. Common config

Before diving into the integration specifics of each supported web framework, let us first take a
look at the Spring configuration that is not specific to any one web framework. (This section is
equally applicable to Spring’s own web framework, Spring MVC.)

One of the concepts (for want of a better word) espoused by (Spring’s) lightweight application
model is that of a layered architecture. Remember that in a 'classic' layered architecture, the web
layer is but one of many layers; it serves as one of the entry points into a server side application
and it delegates to service objects (facades) defined in a service layer to satisfy business specific
(and presentation-technology agnostic) use cases. In Spring, these service objects, any other
business-specific objects, data access objects, etc. exist in a distinct 'business context', which
contains no web or presentation layer objects (presentation objects such as Spring MVC controllers
are typically configured in a distinct 'presentation context’). This section details how one configures
a Spring container (a WebApplicationContext) that contains all of the 'business beans' in one’s
application.

On to specifics: all that one need do is to declare a ContextLoaderListener in the standard Java EE
servlet web.xml file of one’s web application, and add a contextConfiglLocation<context-param/>
section (in the same file) that defines which set of Spring XML configuration files to load.

Find below the <listener/> configuration:

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-

class>

</listener>

Find below the <context-param/> configuration:

181

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/context/ContextLoaderListener.html

<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>/WEB-INF/applicationContext*.xml</param-value>
</context-param>

If you don’t specify the contextConfiglocation context parameter, the ContextLoaderListener will
look for a file called /WEB-INF/applicationContext.xml to load. Once the context files are loaded,
Spring creates a WebApplicationContext object based on the bean definitions and stores it in the
ServletContext of the web application.

All Java web frameworks are built on top of the Servlet API, and so one can use the following code
snippet to get access to this ‘'business context' ApplicationContext created by the
ContextLoaderListener.

WebApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext
(servletContext);

The WebApplicationContextUtils class is for convenience, so you don’t have to remember the name
of the ServletContext attribute. Its getWebApplicationContext() method will return null if an object
doesn’t exist under the WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE key. Rather
than risk getting NullPointerExceptions in your application, it’'s better to wuse the
getRequiredWebApplicationContext() method. This method throws an exception when the
ApplicationContext is missing.

Once you have a reference to the WebApplicationContext, you can retrieve beans by their name or
type. Most developers retrieve beans by name and then cast them to one of their implemented
interfaces.

Fortunately, most of the frameworks in this section have simpler ways of looking up beans. Not only
do they make it easy to get beans from a Spring container, but they also allow you to use
dependency injection on their controllers. Each web framework section has more detail on its
specific integration strategies.

5.3. JSF

JavaServer Faces (JSF) is the JCP’s standard component-based, event-driven web user interface
framework. As of Java EE 5, it is an official part of the Java EE umbrella.

For a popular JSF runtime as well as for popular JSF component libraries, check out the Apache
MyFaces project. The MyFaces project also provides common JSF extensions such as MyFaces
Orchestra: a Spring-based JSF extension that provides rich conversation scope support.

Spring Web Flow 2.0 provides rich JSF support through its newly established

0 Spring Faces module, both for JSF-centric usage (as described in this section) and
for Spring-centric usage (using JSF views within a Spring MVC dispatcher). Check
out the Spring Web Flow website for details!

182

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/context/WebApplicationContext.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/context/support/WebApplicationContextUtils.html
https://myfaces.apache.org/
https://myfaces.apache.org/
https://myfaces.apache.org/orchestra/
https://myfaces.apache.org/orchestra/
https://projects.spring.io/spring-webflow

The key element in Spring’s JSF integration is the JSF ELResolver mechanism.

5.3.1. Spring Bean Resolver

SpringBeanFacesELResolver is a JSF 1.2+ compliant ELResolver implementation, integrating with the
standard Unified EL as used by JSF 1.2 and JSP 2.1. Like SpringBeanVariableResolver, it delegates to
the Spring’s 'business context' WebApplicationContext first, then to the default resolver of the
underlying JSF implementation.

Configuration-wise, simply define SpringBeanFacesELResolver in your JSF faces-context.xml file:
<faces-config>
<application>

<el-resolver>org.springframework.web.jsf.el.SpringBeanFacesELResolver</el-
resolver>

</application>
</faces-config>

5.3.2. FacesContextUtils

A custom VariableResolver works well when mapping one’s properties to beans in faces-config.xml,
but at times one may need to grab a bean explicitly. The FacesContextUtils class makes this easy. It
is similar to WebApplicationContextUtils, except that it takes a FacesContext parameter rather than a
ServletContext parameter.

ApplicationContext ctx = FacesContextUtils.getWebApplicationContext(FacesContext
.getCurrentInstance());

5.4. Apache Struts 2.x

Invented by Craig McClanahan, Struts is an open source project hosted by the Apache Software
Foundation. At the time, it greatly simplified the JSP/Servlet programming paradigm and won over
many developers who were using proprietary frameworks. It simplified the programming model, it
was open source (and thus free as in beer), and it had a large community, which allowed the project
to grow and become popular among Java web developers.

Check out the Struts Spring Plugin for the built-in Spring integration shipped with Struts.

5.5. Tapestry 5.x

From the Tapestry homepage:

Tapestry is a "Component oriented framework for creating dynamic, robust, highly scalable web
applications in Java."

183

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/jsf/FacesContextUtils.html
https://struts.apache.org
https://struts.apache.org/release/2.3.x/docs/spring-plugin.html
https://tapestry.apache.org/

While Spring has its own powerful web layer, there are a number of unique advantages to building

an enterprise Java application using a combination of Tapestry for the web user interface and the
Spring container for the lower layers.

For more information, check out Tapestry’s dedicated integration module for Spring.

5.6. Further Resources

Find below links to further resources about the various web frameworks described in this chapter.

* The JSF homepage
* The Struts homepage

* The Tapestry homepage

184

https://tapestry.apache.org/integrating-with-spring-framework.html
https://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://struts.apache.org/
https://tapestry.apache.org/

	Web on Servlet Stack
	Table of Contents
	Chapter 1. Spring Web MVC
	1.1. Introduction
	1.2. DispatcherServlet
	1.2.1. Context Hierarchy
	1.2.2. Special Bean Types
	1.2.3. Web MVC Config
	1.2.4. Servlet Config
	1.2.5. Processing
	1.2.6. Interception
	1.2.7. Exceptions
	Chain of resolvers
	Container error page

	1.2.8. View Resolution
	Handling
	Redirecting
	Forwarding
	Content negotiation

	1.2.9. Locale
	TimeZone
	Header resolver
	Cookie resolver
	Session resolver
	Locale interceptor

	1.2.10. Themes
	Define a theme
	Resolve themes

	1.2.11. Multipart resolver
	Apache Commons FileUpload
	Servlet 3.0

	1.3. Filters
	1.3.1. HTTP PUT Form
	1.3.2. Forwarded Headers
	1.3.3. Shallow ETag
	1.3.4. CORS

	1.4. Annotated Controllers
	1.4.1. Declaration
	AOP proxies

	1.4.2. Request Mapping
	URI patterns
	Pattern comparison
	Suffix match
	Suffix match and RFD
	Consumable media types
	Producible media types
	Parameters, headers
	HTTP HEAD, OPTIONS
	Custom Annotations

	1.4.3. Handler Methods
	Method Arguments
	Return Values
	Type Conversion
	Matrix variables
	@RequestParam
	@RequestHeader
	@CookieValue
	@ModelAttribute
	@SessionAttributes
	@SessionAttribute
	@RequestAttribute
	Redirect attributes
	Flash attributes
	Multipart
	@RequestBody
	HttpEntity
	@ResponseBody
	ResponseEntity
	Jackson JSON

	1.4.4. Model
	1.4.5. DataBinder
	1.4.6. Exceptions
	Method arguments
	Return Values
	REST API exceptions

	1.4.7. Controller Advice

	1.5. URI Links
	1.5.1. UriComponents
	1.5.2. UriBuilder
	1.5.3. URI Encoding
	1.5.4. Servlet request relative
	1.5.5. Links to controllers
	1.5.6. Links in views

	1.6. Async Requests
	1.6.1. DeferredResult
	1.6.2. Callable
	1.6.3. Processing
	Exception handling
	Interception
	Compared to WebFlux

	1.6.4. HTTP Streaming
	Objects
	SSE
	Raw data

	1.6.5. Reactive types
	1.6.6. Disconnects
	1.6.7. Configuration
	Servlet container
	Spring MVC

	1.7. CORS
	1.7.1. Introduction
	1.7.2. Processing
	1.7.3. @CrossOrigin
	1.7.4. Global Config
	Java Config
	XML Config

	1.7.5. CORS Filter

	1.8. Web Security
	1.9. HTTP Caching
	1.9.1. CacheControl
	1.9.2. Controllers
	1.9.3. Static resources
	1.9.4. ETag Filter

	1.10. View Technologies
	1.10.1. Thymeleaf
	1.10.2. FreeMarker
	View config
	FreeMarker config
	Form handling

	1.10.3. Groovy Markup
	Configuration
	Example

	1.10.4. Script Views
	Requirements
	Script templates

	1.10.5. JSP & JSTL
	View resolvers
	JSPs versus JSTL
	Spring’s JSP tag library
	Spring’s form tag library

	1.10.6. Tiles
	Dependencies
	Configuration

	1.10.7. RSS, Atom
	1.10.8. PDF, Excel
	Introduction to document views
	PDF views
	Excel views

	1.10.9. Jackson
	Jackson-based JSON views
	Jackson-based XML views

	1.10.10. XML marshalling
	1.10.11. XSLT views
	Beans
	Controller
	Transformation

	1.11. MVC Config
	1.11.1. Enable MVC Config
	1.11.2. MVC Config API
	1.11.3. Type conversion
	1.11.4. Validation
	1.11.5. Interceptors
	1.11.6. Content Types
	1.11.7. Message Converters
	1.11.8. View Controllers
	1.11.9. View Resolvers
	1.11.10. Static Resources
	1.11.11. Default Servlet
	1.11.12. Path Matching
	1.11.13. Advanced Java Config
	1.11.14. Advanced XML Config

	1.12. HTTP/2

	Chapter 2. REST Clients
	2.1. RestTemplate
	2.2. WebClient

	Chapter 3. Testing
	Chapter 4. WebSockets
	4.1. Introduction
	4.1.1. HTTP vs WebSocket
	4.1.2. When to use it?

	4.2. WebSocket API
	4.2.1. WebSocketHandler
	4.2.2. WebSocket Handshake
	4.2.3. Deployment
	4.2.4. Server config
	4.2.5. Allowed origins

	4.3. SockJS Fallback
	4.3.1. Overview
	4.3.2. Enable SockJS
	4.3.3. IE 8, 9
	4.3.4. Heartbeats
	4.3.5. Client disconnects
	4.3.6. SockJS and CORS
	4.3.7. SockJsClient

	4.4. STOMP
	4.4.1. Overview
	4.4.2. Benefits
	4.4.3. Enable STOMP
	4.4.4. Flow of Messages
	4.4.5. Annotated Controllers
	@MessageMapping
	@SubscribeMapping
	@MessageExceptionHandler

	4.4.6. Send Messages
	4.4.7. Simple Broker
	4.4.8. External Broker
	4.4.9. Connect to Broker
	4.4.10. Dot as Separator
	4.4.11. Authentication
	4.4.12. Token Authentication
	4.4.13. User Destinations
	4.4.14. Events
	4.4.15. Interception
	4.4.16. STOMP Client
	4.4.17. WebSocket Scope
	4.4.18. Performance
	4.4.19. Monitoring
	4.4.20. Testing

	Chapter 5. Other Web Frameworks
	5.1. Introduction
	5.2. Common config
	5.3. JSF
	5.3.1. Spring Bean Resolver
	5.3.2. FacesContextUtils

	5.4. Apache Struts 2.x
	5.5. Tapestry 5.x
	5.6. Further Resources

