Core Technologies

Version 5.0.17.RELEASE



Table of Contents

1. The IoC container
1.1. Introduction to the Spring IoC container and beans
1.2. Container overview
1.2.1. Configuration metadata
1.2.2. Instantiating a container
Composing XML-based configuration metadata
The Groovy Bean Definition DSL
1.2.3. Using the container
1.3. Bean overview
1.3.1. Naming beans
Aliasing a bean outside the bean definition
1.3.2. Instantiating beans
Instantiation with a constructor
Instantiation with a static factory method
Instantiation using an instance factory method
1.4. Dependencies
1.4.1. Dependency Injection
Constructor-based dependency injection
Setter-based dependency injection
Dependency resolution process
Examples of dependency injection
1.4.2. Dependencies and configuration in detail
Straight values (primitives, Strings, and so on)
References to other beans (collaborators)
Inner beans
Collections
Null and empty string values
XML shortcut with the p-namespace
XML shortcut with the c-namespace
Compound property names
1.4.3. Using depends-on
1.4.4. Lazy-initialized beans
1.4.5. Autowiring collaborators
Limitations and disadvantages of autowiring
Excluding a bean from autowiring
1.4.6. Method injection
Lookup method injection
Arbitrary method replacement

© 00 3 O B W DD DN DD

W W W W W W W W W W WNNDNNDNDDNDN R e
N © 00 9 3 U U1 b bk W R, R, 00T RN OO OO DWW NN, O



1.5. Bean scopes
1.5.1. The singleton scope
1.5.2. The prototype scope
1.5.3. Singleton beans with prototype-bean dependencies
1.5.4. Request, session, application, and WebSocket scopes
Initial web configuration
Request scope
Session scope
Application scope
Scoped beans as dependencies
1.5.5. Custom scopes
Creating a custom scope
Using a custom scope
1.6. Customizing the nature of a bean
1.6.1. Lifecycle callbacks
Initialization callbacks
Destruction callbacks
Default initialization and destroy methods
Combining lifecycle mechanisms
Startup and shutdown callbacks
Shutting down the Spring IoC container gracefully in non-web applications
1.6.2. ApplicationContextAware and BeanNameAware
1.6.3. Other Aware interfaces
1.7. Bean definition inheritance
1.8. Container Extension Points
1.8.1. Customizing beans using a BeanPostProcessor
Example: Hello World, BeanPostProcessor-style
Example: The RequiredAnnotationBeanPostProcessor
1.8.2. Customizing configuration metadata with a BeanFactoryPostProcessor
Example: the Class name substitution PropertyPlaceholderConfigurer
Example: the PropertyOverrideConfigurer
1.8.3. Customizing instantiation logic with a FactoryBean
1.9. Annotation-based container configuration
1.9.1. @Required
1.9.2. @Autowired
1.9.3. Fine-tuning annotation-based autowiring with @Primary
1.9.4. Fine-tuning annotation-based autowiring with qualifiers
1.9.5. Using generics as autowiring qualifiers
1.9.6. CustomAutowireConfigurer
1.9.7. @Resource
1.9.8. @PostConstruct and @PreDestroy

43
44
45
46
46
46
47
48
48
49
52
52
52
54
54
35
56
57
39
39
61
62
63
64
65
65
67
69
69
70
72
73
74
75
76
81
82
90
91
92
93



1.10. Classpath scanning and managed components
1.10.1. @Component and further stereotype annotations
1.10.2. Meta-annotations
1.10.3. Automatically detecting classes and registering bean definitions
1.10.4. Using filters to customize scanning
1.10.5. Defining bean metadata within components
1.10.6. Naming autodetected components
1.10.7. Providing a scope for autodetected components
1.10.8. Providing qualifier metadata with annotations
1.10.9. Generating an index of candidate components
1.11. Using JSR 330 Standard Annotations
1.11.1. Dependency Injection with @Inject and @Named

94
94
95
96
98
99
102
103
105
105
106
107

1.11.2. @Named and @ManagedBean: standard equivalents to the @Component annotation 108

1.11.3. Limitations of JSR-330 standard annotations
1.12. Java-based container configuration
1.12.1. Basic concepts: @Bean and @Configuration
1.12.2. Instantiating the Spring container using AnnotationConfigApplicationContext
Simple construction
Building the container programmatically using register(Class<?>...)
Enabling component scanning with scan(String...)
Support for web applications with AnnotationConfigWebApplicationContext
1.12.3. Using the @Bean annotation
Declaring a bean
Bean dependencies
Receiving lifecycle callbacks
Specifying bean scope
Customizing bean naming
Bean aliasing
Bean description
1.12.4. Using the @Configuration annotation
Injecting inter-bean dependencies
Lookup method injection
Further information about how Java-based configuration works internally
1.12.5. Composing Java-based configurations
Using the @Import annotation
Conditionally include @Configuration classes or @Bean methods
Combining Java and XML configuration
1.13. Environment abstraction
1.13.1. Bean definition profiles
@Profile
XML bean definition profiles

110
111
111
112
112
113
113
114
115
116
117
117
119
120
121
121
121
122
122
123
124
124
131
131
135
135
136
139



Activating a profile 140

Default profile 141
1.13.2. PropertySource abstraction 141
1.13.3. @PropertySource 142
1.13.4. Placeholder resolution in statements 144

1.14. Registering a LoadTimeWeaver 144
1.15. Additional capabilities of the ApplicationContext 144
1.15.1. Internationalization using MessageSource 145
1.15.2. Standard and custom events 148

Annotation-based event listeners 152

Asynchronous Listeners 154

Ordering listeners 154

Generic events 154
1.15.3. Convenient access to low-level resources 155
1.15.4. Convenient ApplicationContext instantiation for web applications 155
1.15.5. Deploying a Spring ApplicationContext as a Java EE RAR file 156

1.16. The BeanFactory 157
1.16.1. BeanFactory or ApplicationContext? 157

2. Resources 160
2.1. Introduction 160
2.2. The Resource interface 160
2.3. Built-in Resource implementations 161
2.3.1. UrlResource 161
2.3.2. ClassPathResource 162
2.3.3. FileSystemResource 162
2.3.4. ServletContextResource 162
2.3.5. InputStreamResource 162
2.3.6. ByteArrayResource 162
2.4. The ResourceLoader 163
2.5. The ResourceLoaderAware interface 164
2.6. Resources as dependencies 164
2.7. Application contexts and Resource paths 165
2.7.1. Constructing application contexts 165

Constructing ClassPathXmlApplicationContext instances - shortcuts 166
2.7.2. Wildcards in application context constructor resource paths 166

Ant-style Patterns 167

The classpath™*: prefix 168

Other notes relating to wildcards 168
2.7.3. FileSystemResource caveats 169

3. Validation, Data Binding, and Type Conversion 171

3.1. Introduction 171



3.2. Validation using Spring’s Validator interface
3.3. Resolving codes to error messages

3.4. Bean manipulation and the BeanWrapper

3.4.1. Setting and getting basic and nested properties

3.4.2. Built-in PropertyEditor implementations
Registering additional custom PropertyEditors
3.5. Spring Type Conversion
3.5.1. Converter SPI
3.5.2. ConverterFactory
3.5.3. GenericConverter
ConditionalGenericConverter
3.5.4. ConversionService API
3.5.5. Configuring a ConversionService
3.5.6. Using a ConversionService programmatically
3.6. Spring Field Formatting
3.6.1. Formatter SPI
3.6.2. Annotation-driven Formatting
Format Annotation API
3.6.3. FormatterRegistry SPI
3.6.4. FormatterRegistrar SPI
3.6.5. Configuring Formatting in Spring MVC
3.7. Configuring a global date & time format
3.8. Spring Validation
3.8.1. Overview of the JSR-303 Bean Validation API
3.8.2. Configuring a Bean Validation Provider
Injecting a Validator
Configuring Custom Constraints
Spring-driven Method Validation
Additional Configuration Options
3.8.3. Configuring a DataBinder
3.8.4. Spring MVC 3 Validation
4. Spring Expression Language (SpEL)
4.1. Introduction
4.2. Evaluation
4.2.1. EvaluationContext
Type conversion
4.2.2. Parser configuration
4.2.3. SpEL compilation
Compiler configuration
Compiler limitations

4.3. Expressions in bean definitions

171
174
174
174
176
179
183
183
184
185
186
186
187
188
189
189
191
193
194
194
195
195
197
198
198
199
199
200
200
200
201
202
202
203
205
205
206
207
208
209
209



4.3.1. XML configuration 209

4.3.2. Annotation config 210
4.4. Language Reference 212
4.4.1. Literal expressions 212
4.4.2. Properties, Arrays, Lists, Maps, Indexers 212
4.4.3. Inline lists 213
4.4.4. Inline Maps 214
4.4.5. Array construction 214
4.4.6. Methods 214
4.4.7. Operators 215
Relational operators 215
Logical operators 216
Mathematical operators 216
4.4.8. Assignment 217
4.4.9. Types 217
4.4.10. Constructors 218
4.4.11. Variables 218
The #this and #root variables 218
4.4.12. Functions 219
4.4.13. Bean references 220
4.4.14. Ternary Operator (If-Then-Else) 220
4.4.15. The Elvis Operator 221
4.4.16. Safe Navigation operator 222
4.4.17. Collection Selection 222
4.4.18. Collection Projection 223
4.4.19. Expression templating 223
4.5. Classes used in the examples 224
5. Aspect Oriented Programming with Spring 228
5.1. Introduction 228
5.1.1. AOP concepts 228
5.1.2. Spring AOP capabilities and goals 230
5.1.3. AOP Proxies 231
5.2. @Aspect] support 231
5.2.1. Enabling @Aspect] Support 232
Enabling @Aspect] Support with Java configuration 232
Enabling @Aspect] Support with XML configuration 232
5.2.2. Declaring an aspect 232
5.2.3. Declaring a pointcut 233
Supported Pointcut Designators 234
Combining pointcut expressions 235

Sharing common pointcut definitions 236



Examples
Writing good pointcuts
5.2.4. Declaring advice
Before advice
After returning advice
After throwing advice
After (finally) advice
Around advice
Advice parameters
Advice ordering
5.2.5. Introductions
5.2.6. Aspect instantiation models
5.2.7. Example
5.3. Schema-based AOP support
5.3.1. Declaring an aspect
5.3.2. Declaring a pointcut
5.3.3. Declaring advice
Before advice
After returning advice
After throwing advice
After (finally) advice
Around advice
Advice parameters
Advice ordering
5.3.4. Introductions
5.3.5. Aspect instantiation models
5.3.6. Advisors
5.3.7. Example
5.4. Choosing which AOP declaration style to use
5.4.1. Spring AOP or full Aspect]?
5.4.2. @Aspect] or XML for Spring AOP?
5.5. Mixing aspect types
5.6. Proxying mechanisms
5.6.1. Understanding AOP proxies
5.7. Programmatic creation of @Aspect] Proxies
5.8. Using Aspect] with Spring applications
5.8.1. Using Aspect] to dependency inject domain objects with Spring
Unit testing @Configurable objects
Working with multiple application contexts
5.8.2. Other Spring aspects for Aspect]
5.8.3. Configuring Aspect] aspects using Spring IoC

238
240
241
241
242
243
244
245
246
250
250
251
252
254
255
255
257
257
258
259
260
260
261
264
264
265
265
266
268
269
269
270
270
271
274
274
275
278
278
279
280



5.8.4. Load-time weaving with Aspect] in the Spring Framework 280

A first example 281
Aspects 285
'META-INF/aop.xml' 285
Required libraries (JARS) 285
Spring configuration 285
Environment-specific configuration 288

5.9. Further Resources 290
6. Spring AOP APIs 291
6.1. Introduction 291
6.2. Pointcut API in Spring 291
6.2.1. Concepts 291
6.2.2. Operations on pointcuts 292
6.2.3. Aspect] expression pointcuts 292
6.2.4. Convenience pointcut implementations 292
Static pointcuts 293
Dynamic pointcuts 294
6.2.5. Pointcut superclasses 294
6.2.6. Custom pointcuts 294
6.3. Advice API in Spring 295
6.3.1. Advice lifecycles 295
6.3.2. Advice types in Spring 295
Interception around advice 295
Before advice 296
Throws advice 297
After Returning advice 298
Introduction advice 299

6.4. Advisor API in Spring 302
6.5. Using the ProxyFactoryBean to create AOP proxies 302
6.5.1. Basics 303
6.5.2. JavaBean properties 303
6.5.3. JDK- and CGLIB-based proxies 304
6.5.4. Proxying interfaces 305
6.5.5. Proxying classes 307
6.5.6. Using 'global' advisors 308
6.6. Concise proxy definitions 308
6.7. Creating AOP proxies programmatically with the ProxyFactory 310
6.8. Manipulating advised objects 310
6.9. Using the "auto-proxy" facility 312
6.9.1. Autoproxy bean definitions 313

BeanNameAutoProxyCreator 313



DefaultAdvisorAutoProxyCreator 313

6.10. Using TargetSources 314
6.10.1. Hot swappable target sources 315
6.10.2. Pooling target sources 316
6.10.3. Prototype target sources 317
6.10.4. ThreadLocal target sources 317

6.11. Defining new Advice types 318

7. Null-safety 319
7.1. Use cases 319
7.2.JSR 305 meta-annotations 319

8. Data Buffers and Codecs 320

8.1. Introduction 320

8.2. DataBufferFactory 320

8.3. The DataBuffer interface 320
8.3.1. PooledDataBuffer 321

Reference Counting 321
8.3.2. DataBufferUtils 322

Codecs 322

9. Appendix 324

9.1. XML Schemas 324

9.1.1. The util schema 324
<util:constant/> 324
<util:property-path/> 326
<util:properties/> 328
<util:list/> 329
<util:map/> 330
<util:set/> 331

9.1.2. The aop schema 332

9.1.3. The context schema 332
<property-placeholder/> 333
<annotation-config/> 333
<component-scan/> 333
<load-time-weaver/> 333
<spring-configured/> 333
<mbean-export/> 333

9.1.4. The beans schema 333

9.2. XML Schema Authoring 334
9.2.1. Introduction 334
9.2.2. Authoring the schema 335
9.2.3. Coding a NamespaceHandler 336

9.2.4. BeanDefinitionParser 337



9.2.5. Registering the handler and the schema
'META-INF/spring.handlers'
'META-INF/spring.schemas'
9.2.6. Using a custom extension in your Spring XML configuration
9.2.7. Meatier examples
Nesting custom tags within custom tags

Custom attributes on 'normal' elements

338
339
339
339
340
340
346



This part of the reference documentation covers all of those technologies that
are absolutely integral to the Spring Framework.

Foremost amongst these is the Spring Framework’s Inversion of Control (IoC) container. A thorough
treatment of the Spring Framework’s IoC container is closely followed by comprehensive coverage
of Spring’s Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own
AOP framework, which is conceptually easy to understand, and which successfully addresses the
80% sweet spot of AOP requirements in Java enterprise programming.

Coverage of Spring’s integration with Aspect] (currently the richest - in terms of features - and
certainly most mature AOP implementation in the Java enterprise space) is also provided.



Chapter 1. The IoC container

1.1. Introduction to the Spring IoC container and
beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) [1: See
Inversion of Control] principle. IoC is also known as dependency injection (DI). It is a process
whereby objects define their dependencies, that is, the other objects they work with, only through
constructor arguments, arguments to a factory method, or properties that are set on the object
instance after it is constructed or returned from a factory method. The container then injects those
dependencies when it creates the bean. This process is fundamentally the inverse, hence the name
Inversion of Control (IoC), of the bean itself controlling the instantiation or location of its
dependencies by using direct construction of classes, or a mechanism such as the Service Locator
pattern.

The org.springframework.beans and org.springframework.context packages are the basis for Spring
Framework’s IoC container. The BeanFactory interface provides an advanced configuration
mechanism capable of managing any type of object. ApplicationContext is a sub-interface of
BeanFactory. It adds easier integration with Spring’s AOP features; message resource handling (for
use in internationalization), event publication; and application-layer specific contexts such as the
WebApplicationContext for use in web applications.

In short, the BeanFactory provides the configuration framework and basic functionality, and the
ApplicationContext adds more enterprise-specific functionality. The ApplicationContext is a
complete superset of the BeanFactory, and is used exclusively in this chapter in descriptions of
Spring’s IoC container. For more information on wusing the BeanFactory instead of the
ApplicationContext, refer to The BeanFactory.

In Spring, the objects that form the backbone of your application and that are managed by the
Spring IoC container are called beans. A bean is an object that is instantiated, assembled, and
otherwise managed by a Spring IoC container. Otherwise, a bean is simply one of many objects in
your application. Beans, and the dependencies among them, are reflected in the configuration
metadata used by a container.

1.2. Container overview

The interface org.springframework.context.ApplicationContext represents the Spring IoC container
and is responsible for instantiating, configuring, and assembling the aforementioned beans. The
container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or
Java code. It allows you to express the objects that compose your application and the rich
interdependencies between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-box with
Spring. In standalone applications it is common to create an instance of
ClassPathXmlApplicationContext or FileSystemXmlApplicationContext. While XML has been the
traditional format for defining configuration metadata you can instruct the container to use Java


overview.pdf#background-ioc
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/BeanFactory.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/ApplicationContext.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html

annotations or code as the metadata format by providing a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more
instances of a Spring IoC container. For example, in a web application scenario, a simple eight (or
so) lines of boilerplate web descriptor XML in the web.xml file of the application will typically suffice
(see Convenient ApplicationContext instantiation for web applications). If you are using the Spring
Tool Suite Eclipse-powered development environment this boilerplate configuration can be easily
created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are
combined with configuration metadata so that after the ApplicationContext is created and
initialized, you have a fully configured and executable system or application.

Your Business Objects (POJOs)

* The Sprin
Configuration Cnntapineg
Metadata
procuces

Fully configured

Ready for Use

Figure 1. The Spring IoC container

1.2.1. Configuration metadata

As the preceding diagram shows, the Spring IoC container consumes a form of configuration
metadata; this configuration metadata represents how you as an application developer tell the
Spring container to instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is
what most of this chapter uses to convey key concepts and features of the Spring IoC container.

XML-based metadata is not the only allowed form of configuration metadata. The

0 Spring IoC container itself is totally decoupled from the format in which this
configuration metadata is actually written. These days many developers choose
Java-based configuration for their Spring applications.

For information about using other forms of metadata with the Spring container, see:

* Annotation-based configuration: Spring 2.5 introduced support for annotation-based
configuration metadata.


https://spring.io/tools/sts
https://spring.io/tools/sts

* Java-based configuration: Starting with Spring 3.0, many features provided by the Spring
JavaConfig project became part of the core Spring Framework. Thus you can define beans
external to your application classes by using Java rather than XML files. To use these new
features, see the @Configuration, @Bean, @Import and @DependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the
container must manage. XML-based configuration metadata shows these beans configured as
<bean/> elements inside a top-level <beans/> element. Java configuration typically uses @Bean
annotated methods within a @Configuration class.

These bean definitions correspond to the actual objects that make up your application. Typically
you define service layer objects, data access objects (DAOs), presentation objects such as Struts
Action instances, infrastructure objects such as Hibernate SessionFactories, JMS Queues, and so
forth. Typically one does not configure fine-grained domain objects in the container, because it is
usually the responsibility of DAOs and business logic to create and load domain objects. However,
you can use Spring’s integration with Aspect] to configure objects that have been created outside
the control of an IoC container. See Using Aspect] to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="..." class="...">

<!-- collaborators and confiquration for this bean go here -->
</bean>
<bean id="..." class="...">

<!-- collaborators and configuration for this bean go here -->
</bean>

<!-- more bean definitions go here -->

</beans>

The id attribute is a string that you use to identify the individual bean definition. The class
attribute defines the type of the bean and uses the fully qualified classname. The value of the id
attribute refers to collaborating objects. The XML for referring to collaborating objects is not shown
in this example; see Dependencies for more information.

1.2.2. Instantiating a container

Instantiating a Spring IoC container is straightforward. The location path or paths supplied to an
ApplicationContext constructor are actually resource strings that allow the container to load
configuration metadata from a variety of external resources such as the local file system, from the
Java CLASSPATH, and so on.



ApplicationContext context = new ClassPathXmlApplicationContext("services.xml",
"daos.xml");

After you learn about Spring’s IoC container, you may want to know more about
Spring’s Resource abstraction, as described in Resources, which provides a

ﬂ convenient mechanism for reading an InputStream from locations defined in a
URI syntax. In particular, Resource paths are used to construct applications
contexts as described in Application contexts and Resource paths.

The following example shows the service layer objects (services.xml) configuration file:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- services -->

<bean id="petStore" class=
"org.springframework.samples.jpetstore.services.PetStoreServiceImpl">
<property name="accountDao" ref="accountDao"/>
<property name="itemDao" ref="1itemDao"/>
<!-- additional collaborators and configuration for this bean go here -->
</bean>

<!-- more bean definitions for services go here -->

</beans>

The following example shows the data access objects daos.xml file:



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="accountDao"
class="org.springframework.samples.jpetstore.dao.jpa.JpaAccountDao">
<!-- additional collaborators and configuration for this bean go here -->
</bean>

<bean id="itemDao" class="
org.springframework.samples.jpetstore.dao.jpa.JpaltemDao">
<!-- additional collaborators and configuration for this bean go here -->
</bean>

<!-- more bean definitions for data access objects go here -->

</beans>

In the preceding example, the service layer consists of the class PetStoreServicelImpl, and two data
access objects of the type JpaAccountDao and JpaltemDao (based on the JPA Object/Relational mapping
standard). The property name element refers to the name of the JavaBean property, and the ref
element refers to the name of another bean definition. This linkage between id and ref elements
expresses the dependency between collaborating objects. For details of configuring an object’s
dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML
configuration file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML
fragments. This constructor takes multiple Resource locations, as was shown in the previous section.
Alternatively, use one or more occurrences of the <import/> element to load bean definitions from
another file or files. For example:

<beans>
<import resource="services.xml"/>
<import resource="resources/messageSource.xml"/>
<import resource="/resources/themeSource.xml"/>

<bean id="bean1" class="..."/>
<bean id="bean2" class="..."/>
</beans>

In the preceding example, external bean definitions are loaded from three files: services.xml,
messageSource.xml, and themeSource.xml. All location paths are relative to the definition file doing



the importing, so services.xml must be in the same directory or classpath location as the file doing
the importing, while messageSource.xml and themeSource.xml must be in a resources location below
the location of the importing file. As you can see, a leading slash is ignored, but given that these
paths are relative, it is better form not to use the slash at all. The contents of the files being
imported, including the top level <beans/> element, must be valid XML bean definitions according
to the Spring Schema.

It is possible, but not recommended, to reference files in parent directories using a

relative "../" path. Doing so creates a dependency on a file that is outside the

current application. In particular, this reference is not recommended for

"classpath:" URLs (for example, "classpath:../services.xml"), where the runtime

resolution process chooses the "nearest" classpath root and then looks into its

parent directory. Classpath configuration changes may lead to the choice of a
ﬁ different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for
example, "file:C:/config/services.xml" or "classpath:/config/services.xml". However,
be aware that you are coupling your application’s configuration to specific
absolute locations. It is generally preferable to keep an indirection for such
absolute locations, for example, through "${...}" placeholders that are resolved
against JVM system properties at runtime.

The import directive is a feature provided by the beans namespace itself. Further configuration
features beyond plain bean definitions are available in a selection of XML namespaces provided by
Spring, e.g. the "context" and the "util" namespace.

The Groovy Bean Definition DSL

As a further example for externalized configuration metadata, bean definitions can also be
expressed in Spring’s Groovy Bean Definition DSL, as known from the Grails framework. Typically,
such configuration will live in a ".groovy" file with a structure as follows:



beans {
dataSource(BasicDataSource) {
driverClassName = "org.hsqldb.jdbcDriver"
url = "jdbc:hsqldb:mem:grailsDB"
username = "sa"
password = ""
settings = [mynew:"setting"]

}
sessionFactory(SessionFactory) {
dataSource = dataSource

}
myService(MyService) {
nestedBean = { AnotherBean bean ->
dataSource = dataSource

This configuration style is largely equivalent to XML bean definitions and even supports Spring’s
XML configuration namespaces. It also allows for importing XML bean definition files through an
"importBeans"” directive.

1.2.3. Using the container

The ApplicationContext is the interface for an advanced factory capable of maintaining a registry of
different beans and their dependencies. Using the method T getBean(String name, C(lass<T>
requiredType) you can retrieve instances of your beans.

The ApplicationContext enables you to read bean definitions and access them as follows:

// create and configure beans
ApplicationContext context = new ClassPathXmlApplicationContext("services.xml",
"daos.xml");

// retrieve configured instance
PetStoreService service = context.getBean("petStore", PetStoreService.class);

// use configured instance
List<String> userList = service.getUsernamelList();

With Groovy configuration, bootstrapping looks very similar, just a different context
implementation class which is Groovy-aware (but also understands XML bean definitions):

ApplicationContext context = new GenericGroovyApplicationContext("services.groovy",
"daos.groovy");

The most flexible variant is GenericApplicationContext in combination with reader delegates, e.g.



with Xm1BeanDefinitionReader for XML files:

GenericApplicationContext context = new GenericApplicationContext();
new XmlBeanDefinitionReader(context).loadBeanDefinitions("services.xml", "daos.xml");
context.refresh();

Or with GroovyBeanDefinitionReader for Groovy files:

GenericApplicationContext context = new GenericApplicationContext();

new GroovyBeanDefinitionReader(context).loadBeanDefinitions("services.groovy",
"daos.groovy");

context.refresh();

Such reader delegates can be mixed and matched on the same ApplicationContext, reading bean
definitions from diverse configuration sources, if desired.

You can then use getBean to retrieve instances of your beans. The ApplicationContext interface has a
few other methods for retrieving beans, but ideally your application code should never use them.
Indeed, your application code should have no calls to the getBean() method at all, and thus no
dependency on Spring APIs at all. For example, Spring’s integration with web frameworks provides
dependency injection for various web framework components such as controllers and JSF-managed
beans, allowing you to declare a dependency on a specific bean through metadata (e.g. an
autowiring annotation).

1.3. Bean overview

A Spring IoC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/> definitions.

Within the container itself, these bean definitions are represented as BeanDefinition objects, which
contain (among other information) the following metadata:

* A package-qualified class name: typically the actual implementation class of the bean being
defined.

* Bean behavioral configuration elements, which state how the bean should behave in the
container (scope, lifecycle callbacks, and so forth).

» References to other beans that are needed for the bean to do its work; these references are also
called collaborators or dependencies.

* Other configuration settings to set in the newly created object, for example, the number of
connections to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 1. The bean definition



Property Explained in...

class Instantiating beans
name Naming beans

scope Bean scopes

constructor arguments Dependency Injection
properties Dependency Injection
autowiring mode Autowiring collaborators
lazy-initialization mode Lazy-initialized beans
initialization method Initialization callbacks
destruction method Destruction callbacks

In addition to bean definitions that contain information on how to create a specific bean, the
ApplicationContext implementations also permit the registration of existing objects that are created
outside the container, by users. This is done by accessing the ApplicationContext’s BeanFactory via
the method  getBeanFactory() which returns the BeanFactory implementation
DefaultlListableBeanFactory. DefaultlListableBeanFactory supports this registration through the
methods registerSingleton(..) and registerBeanDefinition(..). However, typical applications
work solely with beans defined through metadata bean definitions.

Bean metadata and manually supplied singleton instances need to be registered as
early as possible, in order for the container to properly reason about them during
autowiring and other introspection steps. While overriding of existing metadata

0 and existing singleton instances is supported to some degree, the registration of
new beans at runtime (concurrently with live access to factory) is not officially
supported and may lead to concurrent access exceptions and/or inconsistent state
in the bean container.

1.3.1. Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that
hosts the bean. A bean usually has only one identifier, but if it requires more than one, the extra
ones can be considered aliases.

In XML-based configuration metadata, you use the id and/or name attributes to specify the bean
identifier(s). The id attribute allows you to specify exactly one id. Conventionally these names are
alphanumeric (‘'myBean’, 'fooService', etc.), but may contain special characters as well. If you want
to introduce other aliases to the bean, you can also specify them in the name attribute, separated by
a comma (,), semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, the
id attribute was defined as an xsd:ID type, which constrained possible characters. As of 3.1, it is
defined as an xsd:string type. Note that bean id uniqueness is still enforced by the container,
though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the
container generates a unique name for that bean. However, if you want to refer to that bean by
name, through the use of the ref element or Service Locator style lookup, you must provide a name.

10



Motivations for not supplying a name are related to using inner beans and autowiring
collaborators.

Bean Naming Conventions

The convention is to use the standard Java convention for instance field names when naming
beans. That is, bean names start with a lowercase letter, and are camel-cased from then on.
Examples of such names would be (without quotes) 'accountManager', 'accountService',
'userDao’', 'loginController ', and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if
you are using Spring AOP it helps a lot when applying advice to a set of beans related by
name.

With component scanning in the classpath, Spring generates bean names for
unnamed components, following the rules above: essentially, taking the simple
class name and turning its initial character to lower-case. However, in the

0 (unusual) special case when there is more than one character and both the first
and second characters are upper case, the original casing gets preserved. These are
the same rules as defined by java.beans.Introspector.decapitalize (which Spring
is using here).

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a
combination of up to one name specified by the id attribute, and any number of other names in the
name attribute. These names can be equivalent aliases to the same bean, and are useful for some
situations, such as allowing each component in an application to refer to a common dependency by
using a bean name that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is
sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly
the case in large systems where configuration is split amongst each subsystem, each subsystem
having its own set of object definitions. In XML-based configuration metadata, you can use the
<alias/> element to accomplish this.

<alias name="fromName" alias="toName"/>

In this case, a bean (in the same container) named fromName may also, after the use of this alias
definition, be referred to as toName.

For example, the configuration metadata for subsystem A may refer to a DataSource by the name of
subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource by
the name of subsystemB-dataSource. When composing the main application that uses both these
subsystems, the main application refers to the DataSource by the name of myApp-dataSource. To have
all three names refer to the same object, you can add the following alias definitions to the

11



configuration metadata:

<alias name="myApp-dataSource" alias="subsystemA-dataSource"/>
<alias name="myApp-dataSource" alias="subsystemB-dataSource"/>

Now each component and the main application can refer to the dataSource through a name that is
unique and guaranteed not to clash with any other definition (effectively creating a namespace),
yet they refer to the same bean.

Java-configuration

If you are using Java-configuration, the @Bean annotation can be used to provide aliases see
Using the @Bean annotation for details.

1.3.2. Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the
recipe for a named bean when asked, and uses the configuration metadata encapsulated by that
bean definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the class attribute of the <bean/> element. This class attribute, which internally is a
(lass property on a BeanDefinition instance, is usually mandatory. (For exceptions, see Instantiation
using an instance factory method and Bean definition inheritance.) You use the (lass property in
one of two ways:

 Typically, to specify the bean class to be constructed in the case where the container itself
directly creates the bean by calling its constructor reflectively, somewhat equivalent to Java
code using the new operator.

* To specify the actual class containing the static factory method that will be invoked to create
the object, in the less common case where the container invokes a static factory method on a
class to create the bean. The object type returned from the invocation of the static factory
method may be the same class or another class entirely.

12



Inner class names

If you want to configure a bean definition for a static nested class, you have to use the binary
name of the nested class.

For example, if you have a class called Foo in the com.example package, and this Foo class has a
static nested class called Bar, the value of the 'class' attribute on a bean definition would
be...

com.example.Foo$Bar

Notice the use of the § character in the name to separate the nested class name from the outer
class name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and
compatible with Spring. That is, the class being developed does not need to implement any specific
interfaces or to be coded in a specific fashion. Simply specifying the bean class should suffice.
However, depending on what type of IoC you use for that specific bean, you may need a default
(empty) constructor.

The Spring IoC container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-
argument) constructor and appropriate setters and getters modeled after the properties in the
container. You can also have more exotic non-bean-style classes in your container. If, for example,
you need to use a legacy connection pool that absolutely does not adhere to the JavaBean
specification, Spring can manage it as well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean id="exampleBean" class="examples.ExampleBean"/>

<bean name="anotherExample" class="examples.ExampleBeanTwo"/>

For details about the mechanism for supplying arguments to the constructor (if required) and
setting object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the class attribute to
specify the class containing the static factory method and an attribute named factory-method to
specify the name of the factory method itself. You should be able to call this method (with optional
arguments as described later) and return a live object, which subsequently is treated as if it had
been created through a constructor. One use for such a bean definition is to call static factories in
legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method.

13



The definition does not specify the type (class) of the returned object, only the class containing the
factory method. In this example, the createInstance() method must be a static method.

<bean id="clientService"
class="examples.ClientService"
factory-method="createInstance"/>

public class ClientService {
private static ClientService clientService = new ClientService();
private ClientService() {}

public static ClientService createlnstance() {
return clientService;

}

For details about the mechanism for supplying (optional) arguments to the factory method and
setting object instance properties after the object is returned from the factory, see Dependencies
and configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory
method invokes a non-static method of an existing bean from the container to create a new bean.
To use this mechanism, leave the class attribute empty, and in the factory-bean attribute, specify
the name of a bean in the current (or parent/ancestor) container that contains the instance method
that is to be invoked to create the object. Set the name of the factory method itself with the factory-
method attribute.

<!-- the factory bean, which contains a method called createlnstance() -->
<bean id="servicelocator" class="examples.DefaultServicelocator">

<!-- inject any dependencies required by this locator bean -->
</bean>

<!-- the bean to be created via the factory bean -->

<bean id="clientService"
factory-bean="servicelLocator"
factory-method="createClientServiceInstance"/>

14



public class DefaultServicelocator {
private static ClientService clientService = new ClientServiceImpl();

public ClientService createClientServiceInstance() {
return clientService;

}

One factory class can also hold more than one factory method as shown here:

<bean id="servicelocator" class="examples.DefaultServicelocator">
<!-- inject any dependencies required by this locator bean -->
</bean>

<bean id="clientService"
factory-bean="servicelLocator"
factory-method="createClientServiceInstance"/>

<bean id="accountService"
factory-bean="servicelLocator"
factory-method="createAccountServicelnstance"/>

public class DefaultServicelocator {
private static ClientService clientService = new ClientServiceImpl();
private static AccountService accountService = new AccountServiceImpl();

public ClientService createClientServiceInstance() {
return clientService;

}

public AccountService createAccountServiceInstance() {
return accountService;

}

This approach shows that the factory bean itself can be managed and configured through
dependency injection (DI). See Dependencies and configuration in detail.

In Spring documentation, factory bean refers to a bean that is configured in the

0 Spring container that will create objects through an instance or static factory
method. By contrast, FactoryBean (notice the capitalization) refers to a Spring-
specific FactoryBean .

15



1.4. Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance).
Even the simplest application has a few objects that work together to present what the end-user
sees as a coherent application. This next section explains how you go from defining a number of
bean definitions that stand alone to a fully realized application where objects collaborate to achieve
a goal.

1.4.1. Dependency Injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or
properties that are set on the object instance after it is constructed or returned from a factory
method. The container then injects those dependencies when it creates the bean. This process is
fundamentally the inverse, hence the name Inversion of Control (10C), of the bean itself controlling
the instantiation or location of its dependencies on its own by using direct construction of classes,
or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided
with their dependencies. The object does not look up its dependencies, and does not know the
location or class of the dependencies. As such, your classes become easier to test, in particular
when the dependencies are on interfaces or abstract base classes, which allow for stub or mock
implementations to be used in unit tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based
dependency injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of
arguments, each representing a dependency. Calling a static factory method with specific
arguments to construct the bean is nearly equivalent, and this discussion treats arguments to a
constructor and to a static factory method similarly. The following example shows a class that can
only be dependency-injected with constructor injection. Notice that there is nothing special about
this class, it is a POJO that has no dependencies on container specific interfaces, base classes or
annotations.

16



public class SimpleMovielister {

// the SimpleMovielister has a dependency on a MovieFinder
private MovieFinder movieFinder;

// a constructor so that the Spring container can inject a MovieFinder
public SimpleMovielister(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

// business logic that actually uses the injected MovieFinder is omitted...

Constructor argument resolution

Constructor argument resolution matching occurs using the argument’s type. If no potential
ambiguity exists in the constructor arguments of a bean definition, then the order in which the
constructor arguments are defined in a bean definition is the order in which those arguments are
supplied to the appropriate constructor when the bean is being instantiated. Consider the following
class:

package x.y;
public class Foo {

public Foo(Bar bar, Baz baz) {
/] ...
}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance.
Thus the following configuration works fine, and you do not need to specify the constructor
argument indexes and/or types explicitly in the <constructor-arg/> element.

<beans>
<bean id="foo" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</bean>

<bean id="bar" class="x.y.Bar"/>

<bean id="baz" class="x.y.Baz"/>
</beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with
the preceding example). When a simple type is used, such as <value>true</value>, Spring cannot

17



determine the type of the value, and so cannot match by type without help. Consider the following
class:

package examples;
public class ExampleBean {

// Number of years to calculate the Ultimate Answer
private int years;

// The Answer to Life, the Universe, and Everything
private String ultimateAnswer;

public ExampleBean(int years, String ultimateAnswer) {
this.years = years;
this.ultimateAnswer = ultimateAnswer;

Constructor argument type matching

In the preceding scenario, the container can use type matching with simple types if you explicitly
specify the type of the constructor argument using the type attribute. For example:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg type="int" value="7500000"/>
<constructor-arg type="java.lang.String" value="42"/>
</bean>

Constructor argument index

Use the index attribute to specify explicitly the index of constructor arguments. For example:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg index="0" value="7500000"/>
<constructor-arg index="1" value="42"/>

</bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves
ambiguity where a constructor has two arguments of the same type. Note that the index is 0 based.

Constructor argument name

You can also use the constructor parameter name for value disambiguation:

18



<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg name="years" value="7500000"/>
<constructor-arg name="ultimateAnswer" value="42"/>
</bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can’t compile
your code with debug flag (or don’t want to) you can use @ConstructorProperties JDK annotation to
explicitly name your constructor arguments. The sample class would then have to look as follows:

package examples;
public class ExampleBean {

// Fields omitted

@ConstructorProperties({"years", "ultimateAnswer"})
public ExampleBean(int years, String ultimateAnswer) {
this.years = years;
this.ultimateAnswer = ultimateAnswer;

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after
invoking a no-argument constructor or no-argument static factory method to instantiate your
bean.

The following example shows a class that can only be dependency-injected using pure setter
injection. This class is conventional Java. It is a POJO that has no dependencies on container specific
interfaces, base classes or annotations.

public class SimpleMovielister {

// the SimpleMovielister has a dependency on the MovieFinder
private MovieFinder movieFinder;

// a setter method so that the Spring container can inject a MovieFinder

public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

// business logic that actually uses the injected MovieFinder is omitted...

The ApplicationContext supports constructor-based and setter-based DI for the beans it manages. It

19


https://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

also supports setter-based DI after some dependencies have already been injected through the
constructor approach. You configure the dependencies in the form of a BeanDefinition, which you
use in conjunction with PropertyEditor instances to convert properties from one format to another.
However, most Spring users do not work with these classes directly (i.e., programmatically) but
rather with XML bean definitions, annotated components (i.e., classes annotated with @Component,
@Controller, etc.), or @Bean methods in Java-based @Configuration classes. These sources are then
converted internally into instances of BeanDefinition and used to load an entire Spring IoC
container instance.

Constructor-based or setter-based DI?

Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to use
constructors for mandatory dependencies and setter methods or configuration methods for
optional dependencies. Note that use of the @Required annotation on a setter method can be
used to make the property a required dependency.

The Spring team generally advocates constructor injection as it enables one to implement
application components as immutable objects and to ensure that required dependencies are
not null. Furthermore constructor-injected components are always returned to client (calling)
code in a fully initialized state. As a side note, a large number of constructor arguments is a
bad code smell, implying that the class likely has too many responsibilities and should be
refactored to better address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be assigned
reasonable default values within the class. Otherwise, not-null checks must be performed
everywhere the code uses the dependency. One benefit of setter injection is that setter
methods make objects of that class amenable to reconfiguration or re-injection later.
Management through JMX MBeans is therefore a compelling use case for setter injection.

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing
with third-party classes for which you do not have the source, the choice is made for you. For
example, if a third-party class does not expose any setter methods, then constructor injection
may be the only available form of DI.

Dependency resolution process

The container performs bean dependency resolution as follows:
» The ApplicationContext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified via XML, Java code, or annotations.

» For each bean, its dependencies are expressed in the form of properties, constructor arguments,
or arguments to the static-factory method if you are using that instead of a normal constructor.
These dependencies are provided to the bean, when the bean is actually created.

» Each property or constructor argument is an actual definition of the value to set, or a reference
to another bean in the container.

» Each property or constructor argument which is a value is converted from its specified format
to the actual type of that property or constructor argument. By default Spring can convert a

20


integration.pdf#jmx

value supplied in string format to all built-in types, such as int, long, String, boolean, etc.

The Spring container validates the configuration of each bean as the container is created. However,
the bean properties themselves are not set until the bean is actually created. Beans that are
singleton-scoped and set to be pre-instantiated (the default) are created when the container is
created. Scopes are defined in Bean scopes. Otherwise, the bean is created only when it is
requested. Creation of a bean potentially causes a graph of beans to be created, as the bean’s
dependencies and its dependencies' dependencies (and so on) are created and assigned. Note that
resolution mismatches among those dependencies may show up late, i.e. on first creation of the
affected bean.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable
circular dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for
classes A and B to be injected into each other, the Spring IoC container detects this circular
reference at runtime, and throws a BeanCurrentlyInCreationException.

One possible solution is to edit the source code of some classes to be configured by setters
rather than constructors. Alternatively, avoid constructor injection and use setter injection
only. In other words, although it is not recommended, you can configure circular
dependencies with setter injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean
A and bean B forces one of the beans to be injected into the other prior to being fully
initialized itself (a classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as
references to non-existent beans and circular dependencies, at container load-time. Spring sets
properties and resolves dependencies as late as possible, when the bean is actually created. This
means that a Spring container which has loaded correctly can later generate an exception when
you request an object if there is a problem creating that object or one of its dependencies. For
example, the bean throws an exception as a result of a missing or invalid property. This potentially
delayed visibility of some configuration issues is why ApplicationContext implementations by
default pre-instantiate singleton beans. At the cost of some upfront time and memory to create
these beans before they are actually needed, you discover configuration issues when the
ApplicationContext is created, not later. You can still override this default behavior so that singleton
beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the
dependent bean. This means that if bean A has a dependency on bean B, the Spring IoC container
completely configures bean B prior to invoking the setter method on bean A. In other words, the
bean is instantiated (if not a pre-instantiated singleton), its dependencies are set, and the relevant
lifecycle methods (such as a configured init method or the InitializingBean callback method) are

21



invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of
a Spring XML configuration file specifies some bean definitions:

<bean id="exampleBean" class="examples.ExampleBean">
<!-- setter injection using the nested ref element -->
<property name="beanOne">
<ref bean="anotherExampleBean"/>
</property>

<!-- setter injection using the neater ref attribute -->
<property name="beanTwo" ref="yetAnotherBean"/>
<property name="integerProperty" value="1"/>

</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {
private AnotherBean beanOne;
private YetAnotherBean beanTwo;
private int i;

public void setBeanOne(AnotherBean beanOne) {
this.beanOne = beanOne;

}

public void setBeanTwo(YetAnotherBean beanTwo) {
this.beanTwo = beanTwo;

}

public void setIntegerProperty(int i) {
this.i = i;

}

In the preceding example, setters are declared to match against the properties specified in the XML
file. The following example uses constructor-based DI:

22



<bean id="exampleBean" class="examples.ExampleBean">
<!-- constructor injection using the nested ref element -->
<constructor-arg>
<ref bean="anotherExampleBean"/>
</constructor-arg>

<!-- constructor injection using the neater ref attribute -->
<constructor-arg ref="yetAnotherBean"/>

<constructor-arg type="int" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {
private AnotherBean beanOne;
private YetAnotherBean beanTwo;
private int i;

public ExampleBean(
AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {
this.beanOne = anotherBean;
this.beanTwo = yetAnotherBean;
this.i = i;

The constructor arguments specified in the bean definition will be used as arguments to the
constructor of the ExampleBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a
static factory method to return an instance of the object:

<bean id="exampleBean" class="examples.ExampleBean" factory-method="createInstance">
<constructor-arg ref="anotherExampleBean"/>
<constructor-arg ref="yetAnotherBean"/>
<constructor-arg value="1"/>

</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

23



public class ExampleBean {

// a private constructor
private ExampleBean(...) {

}

// a static factory method; the arguments to this method can be
// considered the dependencies of the bean that is returned,
// regardless of how those arguments are actually used.
public static ExampleBean createlnstance (
AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

ExampleBean eb = new ExampleBean (...);
// some other operations...
return eb;

Arguments to the static factory method are supplied via <constructor-arg/> elements, exactly the
same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the static factory method,
although in this example it is. An instance (non-static) factory method would be used in an
essentially identical fashion (aside from the use of the factory-bean attribute instead of the class
attribute), so details will not be discussed here.

1.4.2. Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring’s XML-based
configuration metadata supports sub-element types within its <property/> and <constructor-arg/>
elements for this purpose.

Straight values (primitives, Strings, and so on)

The value attribute of the <property/> element specifies a property or constructor argument as a
human-readable string representation. Spring’s conversion service is used to convert these values
from a String to the actual type of the property or argument.

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">

<!-- results in a setDriverClassName(String) call -->

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>

<property name="url" value="jdbc:mysql://localhost:3306/mydb"/>

<property name="username" value="root"/>

<property name="password" value="masterkaoli"/>
</bean>

24



The following example uses the p-namespace for even more succinct XML configuration.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close"
p:driverClassName="com.mysql.jdbc.Driver"
p:url="jdbc:mysql://1localhost:3306/mydb"
p:username="root"
p:password="masterkaoli"/>

</beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design
time, unless you use an IDE such as Intelli] IDEA or the Spring Tool Suite (STS) that support
automatic property completion when you create bean definitions. Such IDE assistance is highly
recommended.

You can also configure a java.util.Properties instance as:

<bean id="mappings"
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<!-- typed as a java.util.Properties -->
<property name="properties">
<value>
jdbc.driver.className=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/mydb
</value>
</property>
</bean>

The Spring container converts the text inside the <value/> element into a java.util.Properties
instance by using the JavaBeans PropertyEditor mechanism. This is a nice shortcut, and is one of a
few places where the Spring team do favor the use of the nested <value/> element over the value
attribute style.

The idref element

The idref element is simply an error-proof way to pass the id (string value - not a reference) of
another bean in the container to a <constructor-arg/> or <property/> element.

25


https://www.jetbrains.com/idea/
https://spring.io/tools/sts

<bean id="theTargetBean" class="..."/>

<bean id="the(ClientBean" class="...
<property name="targetName">
<idref bean="theTargetBean"/>
</property>
</bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="theTargetBean" class="..." />

<bean id="client" class="...">
<property name="targetName" value="theTargetBean"/>
</bean>

The first form is preferable to the second, because using the idref tag allows the container to
validate at deployment time that the referenced, named bean actually exists. In the second
variation, no validation is performed on the value that is passed to the targetName property of the
client bean. Typos are only discovered (with most likely fatal results) when the client bean is
actually instantiated. If the client bean is a prototype bean, this typo and the resulting exception
may only be discovered long after the container is deployed.

The local attribute on the idref element is no longer supported in the 4.0 beans

0 xsd since it does not provide value over a regular bean reference anymore. Simply
change your existing idref local references to idref bean when upgrading to the
4.0 schema.

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element brings
value is in the configuration of AOP interceptors in a ProxyFactoryBean bean definition. Using
<idref/> elements when you specify the interceptor names prevents you from misspelling an
interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <constructor-arg/> or <property/> definition element.
Here you set the value of the specified property of a bean to be a reference to another bean (a
collaborator) managed by the container. The referenced bean is a dependency of the bean whose
property will be set, and it is initialized on demand as needed before the property is set. (If the
collaborator is a singleton bean, it may be initialized already by the container.) All references are
ultimately a reference to another object. Scoping and validation depend on whether you specify the
id/name of the other object through the bean, local, or parent attributes.

Specifying the target bean through the bean attribute of the <ref/> tag is the most general form, and
allows creation of a reference to any bean in the same container or parent container, regardless of
whether it is in the same XML file. The value of the bean attribute may be the same as the id
attribute of the target bean, or as one of the values in the name attribute of the target bean.

26



<ref bean="someBean"/>

Specifying the target bean through the parent attribute creates a reference to a bean that is in a
parent container of the current container. The value of the parent attribute may be the same as
either the id attribute of the target bean, or one of the values in the name attribute of the target
bean, and the target bean must be in a parent container of the current one. You use this bean
reference variant mainly when you have a hierarchy of containers and you want to wrap an
existing bean in a parent container with a proxy that will have the same name as the parent bean.

<!--1in the parent context -->

<bean id="accountService" class="com.foo.SimpleAccountService">
<!-- insert dependencies as required as here -->

</bean>

<!-- 1in the child (descendant) context -->
<bean id="accountService" <!-- bean name is the same as the parent bean -->
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target">
<ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
</property>
<!-- insert other configuration and dependencies as required here -->
</bean>

The local attribute on the ref element is no longer supported in the 4.0 beans xsd

0 since it does not provide value over a regular bean reference anymore. Simply
change your existing ref local references to ref bean when upgrading to the 4.0
schema.

Inner beans

A <bean/> element inside the <property/> or <constructor-arg/> elements defines a so-called inner
bean.

<bean id="outer" class="...">
<!-- instead of using a reference to a target bean, simply define the target bean
inline -->
<property name="target">
<bean class="com.example.Person"> <!-- this is the inner bean -->
<property name="name" value="Fiona Apple"/>
<property name="age" value="25"/>
</bean>
</property>
</bean>

An inner bean definition does not require a defined id or name; if specified, the container does not

27



use such a value as an identifier. The container also ignores the scope flag on creation: Inner beans
are always anonymous and they are always created with the outer bean. It is not possible to inject
inner beans into collaborating beans other than into the enclosing bean or to access them
independently.

As a corner case, it is possible to receive destruction callbacks from a custom scope, e.g. for a
request-scoped inner bean contained within a singleton bean: The creation of the inner bean
instance will be tied to its containing bean, but destruction callbacks allow it to participate in the
request scope’s lifecycle. This is not a common scenario; inner beans typically simply share their
containing bean’s scope.

Collections

In the <list/>, <set/>, <map/>, and <props/> elements, you set the properties and arguments of the
Java Collection types List, Set, Map, and Properties, respectively.

<bean id="moreComplexObject" class="example.ComplexObject">
<!-- results in a setAdminEmails(java.util.Properties) call -->
<property name="adminEmails">
<props>
<prop key="administrator">administrator@example.org</prop>
<prop key="support">support@example.org</prop>
<prop key="development">development@example.org</prop>
</props>
</property>
<!-- results in a setSomelist(java.util.List) call -->
<property name="someList">
<list>
<value>a list element followed by a reference</value>
<ref bean="myDataSource" />
</list>
</property>
<!-- results in a setSomeMap(java.util.Map) call -->
<property name="someMap">
<map>
<entry key="an entry" value="just some string"/>
<entry key ="a ref" value-ref="myDataSource"/>
</map>
</property>
<!-- results in a setSomeSet(java.util.Set) call -->
<property name="someSet">
<set>
<value>just some string</value>
<ref bean="myDataSource" />
</set>
</property>
</bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

28



bean | ref | idref | list | set | map | props | value | null

Collection merging

The Spring container also supports the merging of collections. An application developer can define
a parent-style <list/>, <map/>, <set/> or <props/> element, and have child-style <list/>, <map/>,
<set/> or <props/> elements inherit and override values from the parent collection. That is, the child
collection’s values are the result of merging the elements of the parent and child collections, with
the child’s collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent
and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

<beans>
<bean id="parent" abstract="true" class="example.ComplexObject">
<property name="adminEmails">
<props>
<prop key="administrator">administrator@example.com</prop>
<prop key="support">support@example.com</prop>
</props>
</property>
</bean>
<bean id="child" parent="parent">
<property name="adminEmails">
<!-- the merge is specified on the child collection definition -->
<props merge="true">
<prop key="sales">sales@example.com</prop>
<prop key="support">support@example.co.uk</prop>
</props>
</property>
</bean>
<beans>

Notice the use of the merge=true attribute on the <props/> element of the adminEmails property of the
child bean definition. When the child bean is resolved and instantiated by the container, the
resulting instance has an adminEmails Properties collection that contains the result of the merging of
the child’s adminEmails collection with the parent’s adminEmails collection.

administrator=administrator@example.com
sales=sales@example.com
support=support@example.co.uk

The child Properties collection’s value set inherits all property elements from the parent <props/>,
and the child’s value for the support value overrides the value in the parent collection.

29



This merging behavior applies similarly to the <list/>, <map/>, and <set/> collection types. In the
specific case of the <list/> element, the semantics associated with the List collection type, that is,
the notion of an ordered collection of values, is maintained; the parent’s values precede all of the
child list’s values. In the case of the Map, Set, and Properties collection types, no ordering exists.
Hence no ordering semantics are in effect for the collection types that underlie the associated Map,
Set, and Properties implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a List), and if you do attempt to do
so an appropriate Exception is thrown. The merge attribute must be specified on the lower,
inherited, child definition; specifying the merge attribute on a parent collection definition is
redundant and will not result in the desired merging.

Strongly-typed collection

With the introduction of generic types in Java 5, you can use strongly typed collections. That is, it is
possible to declare a Collection type such that it can only contain String elements (for example). If
you are using Spring to dependency-inject a strongly-typed Collection into a bean, you can take
advantage of Spring’s type-conversion support such that the elements of your strongly-typed
Collection instances are converted to the appropriate type prior to being added to the Collection.

public class Foo {
private Map<String, Float> accounts;

public void setAccounts(Map<String, Float> accounts) {
this.accounts = accounts;

}
}
<beans>
<bean id="foo" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" value="9.99"/>
<entry key="two" value="2.75"/>
<entry key="six" value="3.99"/>
</map>
</property>
</bean>
</beans>

When the accounts property of the foo bean is prepared for injection, the generics information
about the element type of the strongly-typed Map<String, Float> is available by reflection. Thus
Spring’s type conversion infrastructure recognizes the various value elements as being of type
Float, and the string values 9.99, 2.75, and 3.99 are converted into an actual Float type.

30



Null and empty string values

Spring treats empty arguments for properties and the like as empty Strings. The following XML-
based configuration metadata snippet sets the email property to the empty String value ("").

<bean class="ExampleBean">
<Pr0Perty name="email" value=""/>
</bean>

The preceding example is equivalent to the following Java code:

exampleBean.setEmail("");

The <null/> element handles null values. For example:

<bean class="ExampleBean">
<property name="email">
<null/>
</property>
</bean>

The above configuration is equivalent to the following Java code:

exampleBean.setEmail(null);

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element’s attributes, instead of nested <property/>
elements, to describe your property values and/or collaborating beans.

Spring supports extensible configuration formats with namespaces, which are based on an XML
Schema definition. The beans configuration format discussed in this chapter is defined in an XML
Schema document. However, the p-namespace is not defined in an XSD file and exists only in the
core of Spring.

The following example shows two XML snippets that resolve to the same result: The first uses
standard XML format and the second uses the p-namespace.

31



<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean name="classic" class="com.example.ExampleBean">
<property name="email" value="foo@bar.com"/>
</bean>

<bean name="p-namespace" class="com.example.ExampleBean"
p:email="foo@bar.com"/>
</beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells
Spring to include a property declaration. As previously mentioned, the p-namespace does not have
a schema definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean name="john-classic" class="com.example.Person">
<property name="name" value="John Doe"/>
<property name="spouse" ref="jane"/>

</bean>

<bean name="john-modern"
class="com.example.Person"
p:name="John Doe"
p:spouse-ref="jane"/>

<bean name="jane" class="com.example.Person">
<property name="name" value="Jane Doe"/>
</bean>
</beans>

As you can see, this example includes not only a property value using the p-namespace, but also
uses a special format to declare property references. Whereas the first bean definition uses
<property name="spouse" ref="jane"/> to create a reference from bean john to bean jane, the second
bean definition uses p:spouse-ref="jane" as an attribute to do the exact same thing. In this case
spouse 1s the property name, whereas the -ref part indicates that this is not a straight value but
rather a reference to another bean.

32



The p-namespace is not as flexible as the standard XML format. For example, the
format for declaring property references clashes with properties that end in Ref,
0 whereas the standard XML format does not. We recommend that you choose your
approach carefully and communicate this to your team members, to avoid
producing XML documents that use all three approaches at the same time.

XML shortcut with the c-namespace

Similar to the XML shortcut with the p-namespace, the c-namespace, newly introduced in Spring
3.1, allows usage of inlined attributes for configuring the constructor arguments rather then nested
constructor-arg elements.

Let’s review the examples from Constructor-based dependency injection with the c: namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

<!-- traditional declaration -->

<bean id="foo" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg value="foo@bar.com"/>

</bean>

<!-- c-namespace declaration -->
<bean id="foo" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email=
"foo@bar.com"/>

</beans>

The c: namespace uses the same conventions as the p: one (trailing -ref for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even
though it is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode
was compiled without debugging information), one can use fallback to the argument indexes:

<!-- c-namespace index declaration -->
<bean id="foo" class="x.y.Foo" c:_0-ref="bar" c:_1-ref="baz"/>

33



Due to the XML grammar, the index notation requires the presence of the leading _
0 as XML attribute names cannot start with a number (even though some IDE allow
it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so
unless one really needs to, we recommend using the name notation through-out your
configuration.

Compound property names

You can use compound or nested property names when you set bean properties, as long as all
components of the path except the final property name are not null. Consider the following bean
definition.

<bean id="foo" class="foo.Bar">
<property name="fred.bob.sammy" value="123" />
</bean>

The foo bean has a fred property, which has a bob property, which has a sammy property, and that
final sammy property is being set to the value 123. In order for this to work, the fred property of foo,
and the bob property of fred must not be null after the bean is constructed, or a
NullPointerException is thrown.

1.4.3. Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a property of
another. Typically you accomplish this with the <ref/> element in XML-based configuration
metadata. However, sometimes dependencies between beans are less direct; for example, a static
initializer in a class needs to be triggered, such as database driver registration. The depends-on
attribute can explicitly force one or more beans to be initialized before the bean using this element
is initialized. The following example uses the depends-on attribute to express a dependency on a
single bean:

<bean id="beanOne" class="ExampleBean" depends-on="manager"/>
<bean id="manager" class="ManagerBean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-
on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao">
<property name="manager" ref="manager" />
</bean>

<bean id="manager" class="ManagerBean" />
<bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />

34



The depends-on attribute in the bean definition can specify both an initialization-
time dependency and, in the case of singleton beans only, a corresponding

0 destruction-time dependency. Dependent beans that define a depends-on
relationship with a given bean are destroyed first, prior to the given bean itself
being destroyed. Thus depends-on can also control shutdown order.

1.4.4. Lazy-initialized beans

By default, ApplicationContext implementations eagerly create and configure all singleton beans as
part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or
even days later. When this behavior is not desirable, you can prevent pre-instantiation of a
singleton bean by marking the bean definition as lazy-initialized. A lazy-initialized bean tells the
IoC container to create a bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the lazy-init attribute on the <bean/> element; for example:

<bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/>
<bean name="not.lazy" class="com.foo.AnotherBean"/>

When the preceding configuration is consumed by an ApplicationContext, the bean named lazy is
not eagerly pre-instantiated when the ApplicationContext is starting up, whereas the not.lazy bean
is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-
initialized, the ApplicationContext creates the lazy-initialized bean at startup, because it must
satisfy the singleton’s dependencies. The lazy-initialized bean is injected into a singleton bean
elsewhere that is not lazy-initialized.

You can also control lazy-initialization at the container level by using the default-lazy-init
attribute on the <beans/> element; for example:

<beans default-lazy-init="true">
<!-- no beans will be pre-instantiated... -->
</beans>

1.4.5. Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring
to resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
ApplicationContext. Autowiring has the following advantages:

* Autowiring can significantly reduce the need to specify properties or constructor arguments.
(Other mechanisms such as a bean template discussed elsewhere in this chapter are also
valuable in this regard.)

* Autowiring can update a configuration as your objects evolve. For example, if you need to add a

35



dependency to a class, that dependency can be satisfied automatically without you needing to
modify the configuration. Thus autowiring can be especially useful during development,
without negating the option of switching to explicit wiring when the code base becomes more

stable.

When using XML-based configuration metadata [2: See Dependency Injection], you specify
autowire mode for a bean definition with the autowire attribute of the <bean/> element. The
autowiring functionality has four modes. You specify autowiring per bean and thus can choose

which ones to autowire.

Table 2. Autowiring modes

Mode

no

byName

byType

constructor

Explanation

(Default) No autowiring. Bean references must
be defined via a ref element. Changing the
default setting is not recommended for larger
deployments, because specifying collaborators
explicitly gives greater control and clarity. To
some extent, it documents the structure of a
system.

Autowiring by property name. Spring looks for a
bean with the same name as the property that
needs to be autowired. For example, if a bean
definition is set to autowire by name, and it
contains a master property (that is, it has a
setMaster(..) method), Spring looks for a bean
definition named master, and uses it to set the
property.

Allows a property to be autowired if exactly one
bean of the property type exists in the container.
If more than one exists, a fatal exception is
thrown, which indicates that you may not use
byType autowiring for that bean. If there are no
matching beans, nothing happens; the property
is not set.

Analogous to byType, but applies to constructor
arguments. If there is not exactly one bean of
the constructor argument type in the container,
a fatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such
cases all autowire candidates within the container that match the expected type are provided to
satisfy the dependency. You can autowire strongly-typed Maps if the expected key type is String. An
autowired Maps values will consist of all bean instances that match the expected type, and the
Maps keys will contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after

autowiring completes.

36



Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in
general, it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and constructor-arg settings always override autowiring. You
cannot autowire so-called simple properties such as primitives, Strings, and Classes (and arrays
of such simple properties). This limitation is by-design.

* Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is
careful to avoid guessing in case of ambiguity that might have unexpected results, the
relationships between your Spring-managed objects are no longer documented explicitly.

* Wiring information may not be available to tools that may generate documentation from a
Spring container.

* Multiple bean definitions within the container may match the type specified by the setter
method or constructor argument to be autowired. For arrays, collections, or Maps, this is not
necessarily a problem. However for dependencies that expect a single value, this ambiguity is
not arbitrarily resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:

* Abandon autowiring in favor of explicit wiring.

» Avoid autowiring for a bean definition by setting its autowire-candidate attributes to false as
described in the next section.

* Designate a single bean definition as the primary candidate by setting the primary attribute of its
<bean/> element to true.

* Implement the more fine-grained control available with annotation-based configuration, as
described in Annotation-based container configuration.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set the
autowire-candidate attribute of the <bean/> element to false; the container makes that specific bean
definition unavailable to the autowiring infrastructure (including annotation style configurations
such as @Autowired).

The autowire-candidate attribute is designed to only affect type-based autowiring.
ﬁ It does not affect explicit references by name, which will get resolved even if the

specified bean is not marked as an autowire candidate. As a consequence,

autowiring by name will nevertheless inject a bean if the name matches.

You can also limit autowire candidates based on pattern-matching against bean names. The top-
level <beans/> element accepts one or more patterns within its default-autowire-candidates
attribute. For example, to limit autowire candidate status to any bean whose name ends with
Repository, provide a value of *Repository. To provide multiple patterns, define them in a comma-
separated list. An explicit value of true or false for a bean definitions autowire-candidate attribute

37



always takes precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by
autowiring. It does not mean that an excluded bean cannot itself be configured using autowiring.
Rather, the bean itself is not a candidate for autowiring other beans.

1.4.6. Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean
needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with
another non-singleton bean, you typically handle the dependency by defining one bean as a
property of the other. A problem arises when the bean lifecycles are different. Suppose singleton
bean A needs to use non-singleton (prototype) bean B, perhaps on each method invocation on A.
The container only creates the singleton bean A once, and thus only gets one opportunity to set the
properties. The container cannot provide bean A with a new instance of bean B every time one is
needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the ApplicationContextAware interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

38



// a class that uses a stateful Command-style class to perform some processing
package fiona.apple;

// Spring-API imports

import org.springframework.beans.BeansException;

import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;

public class CommandManager implements ApplicationContextAware {
private ApplicationContext applicationContext;

public Object process(Map commandState) {
// grab a new instance of the appropriate Command
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();

}

protected Command createCommand() {
// notice the Spring API dependency!
return this.applicationContext.getBean("command”, Command.class);

}

public void setApplicationContext(
ApplicationContext applicationContext) throws BeansException {
this.applicationContext = applicationContext;

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring IoC container, allows
this use case to be handled in a clean fashion.

You can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed
beans, to return the lookup result for another named bean in the container. The lookup typically
involves a prototype bean as in the scenario described in the preceding section. The Spring
Framework implements this method injection by using bytecode generation from the CGLIB library
to generate dynamically a subclass that overrides the method.

39


https://spring.io/blog/2004/08/06/method-injection/

 For this dynamic subclassing to work, the class that the Spring bean container
will subclass cannot be final, and the method to be overridden cannot be final
either.

» Unit-testing a class that has an abstract method requires you to subclass the
class yourself and to supply a stub implementation of the abstract method.

0 * Concrete methods are also necessary for component scanning which requires
concrete classes to pick up.

* A further key limitation is that lookup methods won’t work with factory
methods and in particular not with @Bean methods in configuration classes,
since the container is not in charge of creating the instance in that case and
therefore cannot create a runtime-generated subclass on the fly.

Looking at the CommandManager class in the previous code snippet, you see that the Spring container
will dynamically override the implementation of the createCommand() method. Your CommandManager
class will not have any Spring dependencies, as can be seen in the reworked example:

package fiona.apple;
// no more Spring imports!
public abstract class CommandManager {

public Object process(Object commandState) {
// grab a new instance of the appropriate Command interface
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();

// okay... but where is the implementation of this method?
protected abstract Command createCommand();

In the client class containing the method to be injected (the CommandManager in this case), the method
to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodName(no-arguments);

If the method is abstract, the dynamically-generated subclass implements the method. Otherwise,
the dynamically-generated subclass overrides the concrete method defined in the original class. For
example:

40



<!-- a stateful bean deployed as a prototype (non-singleton) -->

<bean id="myCommand" class="fiona.apple.AsyncCommand" scope="prototype">
<!-- inject dependencies here as required -->

</bean>

<!-- commandProcessor uses statefulCommandHelper -->

<bean id="commandManager" class="fiona.apple.CommandManager">
<lookup-method name="createCommand" bean="myCommand"/>

</bean>

The bean identified as commandManager calls its own method createCommand() whenever it needs a
new instance of the myCommand bean. You must be careful to deploy the myCommand bean as a
prototype, if that is actually what is needed. If it is as a singleton, the same instance of the myCommand
bean is returned each time.

Alternatively, within the annotation-based component model, you may declare a lookup method
through the @Lookup annotation:

public abstract class CommandManager {

public Object process(Object commandState) {
Command command = createCommand();
command.setState(commandState);
return command.execute();

}

@Lookup("myCommand")
protected abstract Command createCommand();

Or, more idiomatically, you may rely on the target bean getting resolved against the declared return
type of the lookup method:

public abstract class CommandManager {

public Object process(Object commandState) {
MyCommand command = createCommand();
command.setState(commandState);
return command.execute();

}

@Lookup
protected abstract MyCommand createCommand();

Note that you will typically declare such annotated lookup methods with a concrete stub
implementation, in order for them to be compatible with Spring’s component scanning rules where

41



abstract classes get ignored by default. This limitation does not apply in case of explicitly registered
or explicitly imported bean classes.

Another way of accessing differently scoped target beans is an ObjectFactory/
Provider injection point. Check out Scoped beans as dependencies.

v

The interested reader may also find the ServicelocatorFactoryBean (in the
org.springframework.beans.factory.config package) to be of use.

Arbitrary method replacement

A less useful form of method injection than lookup method injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip
the rest of this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the replaced-method element to replace an
existing method implementation with another, for a deployed bean. Consider the following class,
with a method computeValue, which we want to override:

public class MyValueCalculator {

public String computeValue(String input) {
// some real code...

}

// some other methods...

A class implementing the org.springframework.beans.factory.support.MethodReplacer interface
provides the new method definition.

/**

* meant to be used to override the existing computeValue(String)
* implementation in MyValueCalculator
*/
public class ReplacementComputeValue implements MethodReplacer {
public Object reimplement(Object o, Method m, Object[] args) throws Throwable {
// get the input value, work with it, and return a computed result

String input = (String) args[0];

return ...;

The bean definition to deploy the original class and specify the method override would look like
this:

42



<bean id="myValueCalculator" class="x.y.z.MyValueCalculator">
<!-- arbitrary method replacement -->
<replaced-method name="computeValue" replacer="replacementComputeValue">
<arg-type>String</arg-type>
</replaced-method>
</bean>

<bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>

You can use one or more contained <arg-type/> elements within the <replaced-method/> element to
indicate the method signature of the method being overridden. The signature for the arguments is
necessary only if the method is overloaded and multiple variants exist within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name.
For example, the following all match java.lang.String:

java.lang.String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an
argument type.

1.5. Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class
defined by that bean definition. The idea that a bean definition is a recipe is important, because it
means that, as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged
into an object that is created from a particular bean definition, but also the scope of the objects
created from a particular bean definition. This approach is powerful and flexible in that you can
choose the scope of the objects you create through configuration instead of having to bake in the
scope of an object at the Java class level. Beans can be defined to be deployed in one of a number of
scopes: out of the box, the Spring Framework supports six scopes, four of which are available only
if you use a web-aware ApplicationContext.

The following scopes are supported out of the box. You can also create a custom scope.

Table 3. Bean scopes

Scope Description

singleton (Default) Scopes a single bean definition to a
single object instance per Spring IoC container.

prototype Scopes a single bean definition to any number of
object instances.

43



Scope Description

request Scopes a single bean definition to the lifecycle of
a single HTTP request; that is, each HTTP
request has its own instance of a bean created
off the back of a single bean definition. Only
valid in the context of a web-aware Spring
ApplicationContext.

session Scopes a single bean definition to the lifecycle of
an HTTP Session. Only valid in the context of a
web-aware Spring ApplicationContext.

application Scopes a single bean definition to the lifecycle of
a ServletContext. Only valid in the context of a
web-aware Spring ApplicationContext.

websocket Scopes a single bean definition to the lifecycle of
a WebSocket. Only valid in the context of a web-
aware Spring ApplicationContext.

As of Spring 3.0, a thread scope is available, but is not registered by default. For
more information, see the documentation for SimpleThreadScope. For instructions
on how to register this or any other custom scope, see Using a custom scope.

1.5.1. The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or
ids matching that bean definition result in that one specific bean instance being returned by the
Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring
IoC container creates exactly one instance of the object defined by that bean definition. This single
instance is stored in a cache of such singleton beans, and all subsequent requests and references for
that named bean return the cached object.

Only one instance is ever created...

<bean id="accountDac" soa A

... and this same shared instance is injected into each collaborating object

44


web.pdf#websocket-stomp-websocket-scope
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring’s concept of a singleton bean differs from the Singleton pattern as defined in the Gang of
Four (GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and
only one instance of a particular class is created per ClassLoader. The scope of the Spring singleton
is best described as per container and per bean. This means that if you define one bean for a
particular class in a single Spring container, then the Spring container creates one and only one
instance of the class defined by that bean definition. The singleton scope is the default scope in
Spring. To define a bean as a singleton in XML, you would write, for example:

<bean id="accountService" class="com.foo.DefaultAccountService"/>

<!-- the following is equivalent, though redundant (singleton scope is the default)
-->
<bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>

1.5.2. The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean
instance every time a request for that specific bean is made. That is, the bean is injected into
another bean or you request it through a getBean() method call on the container. As a rule, use the
prototype scope for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not
typically configured as a prototype, because a typical DAO does not hold any conversational state; it
was just easier for this author to reuse the core of the singleton diagram.

A brand new bean instance is created...

<bean id="accountDao® class=".__"
scope="prototype" />
* @

... each and every time the prototype is referenced by collaborating beans

The following example defines a bean as a prototype in XML:

<bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean:

45



the container instantiates, configures, and otherwise assembles a prototype object, and hands it to
the client, with no further record of that prototype instance. Thus, although initialization lifecycle
callback methods are called on all objects regardless of scope, in the case of prototypes, configured
destruction lifecycle callbacks are not called. The client code must clean up prototype-scoped
objects and release expensive resources that the prototype bean(s) are holding. To get the Spring
container to release resources held by prototype-scoped beans, try using a custom bean post-
processor, which holds a reference to beans that need to be cleaned up.

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a replacement
for the Java new operator. All lifecycle management past that point must be handled by the client.
(For details on the lifecycle of a bean in the Spring container, see Lifecycle callbacks.)

1.5.3. Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped
bean into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-
injected into the singleton bean. The prototype instance is the sole instance that is ever supplied to
the singleton-scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-
scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into
your singleton bean, because that injection occurs only once, when the Spring container is
instantiating the singleton bean and resolving and injecting its dependencies. If you need a new
instance of a prototype bean at runtime more than once, see Method injection

1.5.4. Request, session, application, and WebSocket scopes

The request, session, application, and websocket scopes are only available if you use a web-aware
Spring ApplicationContext implementation (such as XmlWebApplicationContext). If you use these
scopes with regular Spring IoC containers such as the ClassPathXmlApplicationContext, an
I1legalStateException will be thrown complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the request, session, application, and websocket levels (web-
scoped beans), some minor initial configuration is required before you define your beans. (This
initial setup is not required for the standard scopes, singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment.

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed by
the Spring DispatcherServlet, then no special setup is necessary: DispatcherServlet already exposes
all relevant state.

If you use a Servlet 2.5 web container, with requests processed outside of Spring’s
DispatcherServlet (for example, when using JSF or Struts), you need to register the
org.springframework.web.context.request.RequestContextListener ServletRequestlListener.  For
Servlet 3.0+, this can be done programmatically via the WebApplicationInitializer interface.

46



Alternatively, or for older containers, add the following declaration to your web application’s
web. xml file:

<web-app>

<listener>
<listener-class>
org.springframework.web.context.request.RequestContextListener
</listener-class>
</listener>

</web-app>

Alternatively, if there are issues with your listener setup, consider using Spring’s
RequestContextFilter. The filter mapping depends on the surrounding web application
configuration, so you have to change it as appropriate.

<web-app>

<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-

class>

</filter>

<filter-mapping>
<filter-name>requestContextFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

DispatcherServlet, RequestContextListener, and RequestContextFilter all do exactly the same thing,
namely bind the HTTP request object to the Thread that is servicing that request. This makes beans
that are request- and session-scoped available further down the call chain.

Request scope

Consider the following XML configuration for a bean definition:
<bean id="loginAction" class="com.foo.LoginAction" scope="request"/>

The Spring container creates a new instance of the LoginAction bean by using the loginAction bean
definition for each and every HTTP request. That is, the loginAction bean is scoped at the HTTP
request level. You can change the internal state of the instance that is created as much as you want,
because other instances created from the same loginAction bean definition will not see these
changes in state; they are particular to an individual request. When the request completes
processing, the bean that is scoped to the request is discarded.

47



When using annotation-driven components or Java Config, the @RequestScope annotation can be
used to assign a component to the request scope.

<strong> </strong>

public class LoginAction {
/] ...

Session scope

Consider the following XML configuration for a bean definition:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

The Spring container creates a new instance of the UserPreferences bean by using the
userPreferences bean definition for the lifetime of a single HTTP Session. In other words, the
userPreferences bean is effectively scoped at the HTTP Session level. As with request-scoped beans,
you can change the internal state of the instance that is created as much as you want, knowing that
other HTTP Session instances that are also using instances created from the same userPreferences
bean definition do not see these changes in state, because they are particular to an individual HTTP
Session. When the HTTP Session is eventually discarded, the bean that is scoped to that particular
HTTP Session is also discarded.

When using annotation-driven components or Java Config, the @SessionScope annotation can be

used to assign a component to the session scope.

<strong> </strong>

public class UserPreferences {
/] ...

Application scope

Consider the following XML configuration for a bean definition:

<bean id="appPreferences" class="com.foo.AppPreferences" scope="application"/>

The Spring container creates a new instance of the AppPreferences bean by using the appPreferences
bean definition once for the entire web application. That is, the appPreferences bean is scoped at the
ServletContext level, stored as a regular ServletContext attribute. This is somewhat similar to a
Spring singleton bean but differs in two important ways: It is a singleton per ServletContext, not per
Spring 'ApplicationContext' (for which there may be several in any given web application), and it is
actually exposed and therefore visible as a ServletContext attribute.

48



When using annotation-driven components or Java Config, the @ApplicationScope annotation can be
used to assign a component to the application scope.

<strong> </strong>

public class AppPreferences {
/] ...
}

Scoped beans as dependencies

The Spring IoC container manages not only the instantiation of your objects (beans), but also the
wiring up of collaborators (or dependencies). If you want to inject (for example) an HTTP request
scoped bean into another bean of a longer-lived scope, you may choose to inject an AOP proxy in
place of the scoped bean. That is, you need to inject a proxy object that exposes the same public
interface as the scoped object but that can also retrieve the real target object from the relevant
scope (such as an HTTP request) and delegate method calls onto the real object.

You may also use <aop:scoped-proxy/> between beans that are scoped as singleton,
with the reference then going through an intermediate proxy that is serializable
and therefore able to re-obtain the target singleton bean on deserialization.

When declaring <aop:scoped-proxy/> against a bean of scope prototype, every
method call on the shared proxy will lead to the creation of a new target instance
which the call is then being forwarded to.

Also, scoped proxies are not the only way to access beans from shorter scopes in a
lifecycle-safe fashion. You may also simply declare your injection point (i.e. the

0 constructor/setter argument or autowired field) as ObjectFactory<MyTargetBean>,
allowing for a getObject() call to retrieve the current instance on demand every
time it is needed - without holding on to the instance or storing it separately.

As an extended variant, you may declare ObjectProvider<MyTargetBean> which
delivers several additional access variants, including getIfAvailable and
getIfUnique.

The JSR-330 variant of this is called Provider, used with a Provider<MyTargetBean>
declaration and a corresponding get() call for every retrieval attempt. See here for
more details on JSR-330 overall.

The configuration in the following example is only one line, but it is important to understand the
"why" as well as the "how" behind it.

49



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<!-- an HTTP Session-scoped bean exposed as a proxy -->

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
<!-- instructs the container to proxy the surrounding bean -->
<aop:scoped-proxy/>

</bean>

<!-- 3 singleton-scoped bean injected with a proxy to the above bean -->
<bean id="userService" class="com.foo.SimpleUserService">
<!-- a3 reference to the proxied userPreferences bean -->
<property name="userPreferences" ref="userPreferences"/>
</bean>
</beans>

To create such a proxy, you insert a child <aop:scoped-proxy/> element into a scoped bean definition
(see Choosing the type of proxy to create and XML Schema-based configuration). Why do
definitions of beans scoped at the request, session and custom-scope levels require the <aop:scoped-
proxy/> element? Let’s examine the following singleton bean definition and contrast it with what
you need to define for the aforementioned scopes (note that the following userPreferences bean
definition as it stands is incomplete).

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

<bean id="userManager" class="com.foo.UserManager">
<property name="userPreferences" ref="userPreferences"/>
</bean>

In the preceding example, the singleton bean userManager is injected with a reference to the HTTP
Session-scoped bean userPreferences. The salient point here is that the userManager bean is a
singleton: it will be instantiated exactly once per container, and its dependencies (in this case only
one, the userPreferences bean) are also injected only once. This means that the userManager bean
will only operate on the exact same userPreferences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-lived
scoped bean, for example injecting an HTTP Session-scoped collaborating bean as a dependency
into singleton bean. Rather, you need a single userManager object, and for the lifetime of an HTTP
Session, you need a userPreferences object that is specific to said HTTP Session. Thus the container
creates an object that exposes the exact same public interface as the UserPreferences class (ideally

50



an object that is a UserPreferences instance) which can fetch the real UserPreferences object from
the scoping mechanism (HTTP request, Session, etc.). The container injects this proxy object into the
userManager bean, which is unaware that this UserPreferences reference is a proxy. In this example,
when a UserManager instance invokes a method on the dependency-injected UserPreferences object,
it actually is invoking a method on the proxy. The proxy then fetches the real UserPreferences object
from (in this case) the HTTP Session, and delegates the method invocation onto the retrieved real
UserPreferences object.

Thus you need the following, correct and complete, configuration when injecting request- and
session-scoped beans into collaborating objects:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
<aop:scoped-proxy/>
</bean>

<bean id="userManager" class="com.foo.UserManager">
<property name="userPreferences" ref="userPreferences"/>
</bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop:scoped-proxy/> element, a CGLIB-based class proxy is created.

0 CGLIB proxies only intercept public method calls! Do not call non-public methods
on such a proxy; they will not be delegated to the actual scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based
proxies for such scoped beans, by specifying false for the value of the proxy-target-class attribute
of the <aop:scoped-proxy/> element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it also means
that the class of the scoped bean must implement at least one interface, and that all collaborators
into which the scoped bean is injected must reference the bean through one of its interfaces.

<!-- DefaultUserPreferences implements the UserPreferences interface -->

<bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session">
<aop:scoped-proxy proxy-target-class="false"/>

</bean>

<bean id="userManager" class="com.foo.UserManager">

<property name="userPreferences" ref="userPreferences"/>
</bean>

For more detailed information about choosing class-based or interface-based proxying, see
Proxying mechanisms.

51



1.5.5. Custom scopes

The bean scoping mechanism is extensible; You can define your own scopes, or even redefine
existing scopes, although the latter is considered bad practice and you cannot override the built-in
singleton and prototype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org.springframework.beans.factory.config.Scope interface, which is described in this section. For an
idea of how to implement your own scopes, see the Scope implementations that are supplied with
the Spring Framework itself and the Scope javadocs, which explains the methods you need to
implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope,
and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope
implementation, for example, returns the session-scoped bean (and if it does not exist, the method
returns a new instance of the bean, after having bound it to the session for future reference).

Object get(String name, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope
implementation for example, removes the session-scoped bean from the underlying session. The
object should be returned, but you can return null if the object with the specified name is not
found.

Object remove(String name)

The following method registers the callbacks the scope should execute when it is destroyed or when
the specified object in the scope is destroyed. Refer to the javadocs or a Spring scope
implementation for more information on destruction callbacks.

void registerDestructionCallback(String name, Runnable destructionCallback)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, this identifier can be the session
identifier.

String getConversationId()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring

52


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/config/Scope.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/config/Scope.html

container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

void registerScope(String scopeName, Scope scope);

This method is declared on the ConfigurableBeanFactory interface, which is available on most of the
concrete ApplicationContext implementations that ship with Spring via the BeanFactory property.

The first argument to the registerScope(..) method is the unique name associated with a scope;
examples of such names in the Spring container itself are singleton and prototype. The second
argument to the registerScope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

The example below uses SimpleThreadScope which is included with Spring, but not
registered by default. The instructions would be the same for your own custom
Scope implementations.

Scope threadScope = new SimpleThreadScope();
beanFactory.registerScope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, using the CustomScopeConfigurer class:

53



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="thread">
<bean class="
org.springframework.context.support.SimpleThreadScope"/>
</entry>
</map>
</property>
</bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="name" value="Rick"/>
<aop:scoped-proxy/>

</bean>

<bean id="foo" class="x.y.Foo">
<property name="bar" ref="bar"/>

</bean>
</beans>
9 When you place <aop:scoped-proxy/> in a FactoryBean implementation, it is the

factory bean itself that is scoped, not the object returned from getObject().

1.6. Customizing the nature of a bean

1.6.1. Lifecycle callbacks

To interact with the container’s management of the bean lifecycle, you can implement the Spring
InitializingBean and DisposableBean interfaces. The container calls afterPropertiesSet() for the
former and destroy() for the latter to allow the bean to perform certain actions upon initialization
and destruction of your beans.

54



The JSR-250 @PostConstruct and @PreDestroy annotations are generally considered

best practice for receiving lifecycle callbacks in a modern Spring application. Using

these annotations means that your beans are not coupled to Spring specific
Q interfaces. For details see @PostConstruct and @PreDestroy.

If you don’t want to use the JSR-250 annotations but you are still looking to remove
coupling consider the use of init-method and destroy-method object definition
metadata.

Internally, the Spring Framework uses BeanPostProcessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other
lifecycle behavior Spring does not offer out-of-the-box, you can implement a BeanPostProcessor
yourself. For more information, see Container Extension Points.

In addition to the initialization and destruction callbacks, Spring-managed objects may also
implement the Lifecycle interface so that those objects can participate in the startup and shutdown
process as driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization callbacks

The org.springframework.beans.factory.InitializingBean interface allows a bean to perform
initialization work after all necessary properties on the bean have been set by the container. The
InitializingBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

It is recommended that you do not use the InitializingBean interface because it unnecessarily
couples the code to Spring. Alternatively, use the @PostConstruct annotation or specify a POJO
initialization method. In the case of XML-based configuration metadata, you use the init-method
attribute to specify the name of the method that has a void no-argument signature. With Java
config, you use the initMethod attribute of @Bean, see Receiving lifecycle callbacks. For example, the
following:

<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>

public class ExampleBean {

public void init() {
// do some initialization work

}

...Is exactly the same as...

55



<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements InitializingBean {
public void afterPropertiesSet() {

// do some initialization work

}

but does not couple the code to Spring.

Destruction callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface allows a bean to get
a callback when the container containing it is destroyed. The DisposableBean interface specifies a
single method:

void destroy() throws Exception;

It is recommended that you do not use the DisposableBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, use the @PreDestroy annotation or specify a
generic method that is supported by bean definitions. With XML-based configuration metadata, you
use the destroy-method attribute on the <bean/>. With Java config, you use the destroyMethod
attribute of @Bean, see Receiving lifecycle callbacks. For example, the following definition:

<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>

public class ExampleBean {

public void cleanup() {
// do some destruction work (like releasing pooled connections)

}

is exactly the same as:

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

56



public class AnotherExampleBean implements DisposableBean {

public void destroy() {
// do some destruction work (like releasing pooled connections)

}

but does not couple the code to Spring.

The destroy-method attribute of a <bean> element can be assigned a special
(inferred) value which instructs Spring to automatically detect a public close or
shutdown method on the specific bean class (any class that implements

Q java.lang.AutoCloseable or java.io.(Closeable would therefore match). This special
(inferred) value can also be set on the default-destroy-method attribute of a
<beans> element to apply this behavior to an entire set of beans (see Default
initialization and destroy methods). Note that this is the default behavior with Java
config.

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and DisposableBean callback interfaces, you typically write methods with names
such as init(), initialize(), dispose(), and so on. Ideally, the names of such lifecycle callback
methods are standardized across a project so that all developers use the same method names and
ensure consistency.

You can configure the Spring container to look for named initialization and destroy callback
method names on every bean. This means that you, as an application developer, can write your
application classes and use an initialization callback called init(), without having to configure an
init-method="init" attribute with each bean definition. The Spring IoC container calls that method
when the bean is created (and in accordance with the standard lifecycle callback contract described
previously). This feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named init() and destroy callback methods
are named destroy(). Your class will resemble the class in the following example.

57



public class DefaultBlogService implements BlogService {
private BlogDao blogDao;

public void setBlogDao(BlogDao blogDao) {
this.blogDao = blogDao;
}

// this is (unsurprisingly) the initialization callback method
public void init() {
if (this.blogDao == null) {
throw new I1legalStateException("The [blogDao] property must be set.");
}

<beans default-init-method="1init">

<bean id="blogService" class="com.foo.DefaultBlogService">
<property name="blogDao" ref="blogDao" />
</bean>

</beans>

The presence of the default-init-method attribute on the top-level <beans/> element attribute causes
the Spring IoC container to recognize a method called init on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it is invoked
at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the default-destroy-
method attribute on the top-level <beans/> element.

Where existing bean classes already have callback methods that are named at variance with the
convention, you can override the default by specifying (in XML, that is) the method name using the
init-method and destroy-method attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after
a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target
bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If
the target bean and the proxy are defined separately, your code can even interact with the raw
target bean, bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the
init method, because doing so would couple the lifecycle of the target bean with its
proxy/interceptors and leave strange semantics when your code interacts directly to the raw target
bean.

58



Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the
InitializingBean and DisposableBean callback interfaces; custom init() and destroy() methods; and
the @PostConstruct and @PreDestroy annotations. You can combine these mechanisms to control a
given bean.

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is
configured with a different method name, then each configured method is

ﬁ executed in the order listed below. However, if the same method name is
configured - for example, init() for an initialization method - for more than one of
these lifecycle mechanisms, that method is executed once, as explained in the
preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods,
are called as follows:

* Methods annotated with @PostConstruct
o afterPropertiesSet() as defined by the InitializingBean callback interface

* A custom configured init() method
Destroy methods are called in the same order:

e Methods annotated with @PreDestroy
* destroy() as defined by the DisposableBean callback interface

* A custom configured destroy() method

Startup and shutdown callbacks

The Lifecycle interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):

public interface Lifecycle {
void start();
void stop();

boolean isRunning();

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself
receives start and stop signals, e.g. for a stop/restart scenario at runtime, it will cascade those calls
to all Lifecycle implementations defined within that context. It does this by delegating to a
LifecycleProcessor:

59



public interface LifecycleProcessor extends Lifecycle {
void onRefresh();

void onClose();

Notice that the LifecycleProcessor is itself an extension of the Lifecycle interface. It also adds two
other methods for reacting to the context being refreshed and closed.

Note that the regular org.springframework.context.Lifecycle interface is just a
plain contract for explicit start/stop notifications and does NOT imply auto-startup
at context refresh time. Consider implementing
org.springframework.context.SmartLifecycle instead for fine-grained control over

Q auto-startup of a specific bean (including startup phases). Also, please note that
stop notifications are not guaranteed to come before destruction: On regular
shutdown, all Lifecycle beans will first receive a stop notification before the
general destruction callbacks are being propagated; however, on hot refresh
during a context’s lifetime or on aborted refresh attempts, only destroy methods
will be called.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship
exists between any two objects, the dependent side will start after its dependency, and it will stop
before its dependency. However, at times the direct dependencies are unknown. You may only
know that objects of a certain type should start prior to objects of another type. In those cases, the
SmartLifecycle interface defines another option, namely the getPhase() method as defined on its
super-interface, Phased.

public interface Phased {

int getPhase();

public interface SmartLifecycle extends Lifecycle, Phased {
boolean isAutoStartup();

void stop(Runnable callback);

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is
followed. Therefore, an object that implements SmartLifecycle and whose getPhase() method
returns Integer.MIN_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of Integer.MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When

60



considering the phase value, it’s also important to know that the default phase for any "normal"
Lifecycle object that does not implement SmartLifecycle would be 0. Therefore, any negative phase
value would indicate that an object should start before those standard components (and stop after
them), and vice versa for any positive phase value.

As you can see the stop method defined by SmartLifecycle accepts a callback. Any implementation
must invoke that callback’s run() method after that implementation’s shutdown process is
complete. That enables asynchronous shutdown where necessary since the default implementation
of the LifecycleProcessor interface, DefaultLifecycleProcessor, will wait up to its timeout value for
the group of objects within each phase to invoke that callback. The default per-phase timeout is 30
seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the
following would be sufficient:

<bean id="lifecycleProcessor" class=
"org.springframework.context.support.DefaultLifecycleProcessor">
<!-- timeout value in milliseconds -->
<property name="timeoutPerShutdownPhase" value="10000"/>
</bean>

As mentioned, the LifecycleProcessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if stop() had
been called explicitly, but it will happen when the context is closing. The 'refresh' callback on the
other hand enables another feature of SmartLifecycle beans. When the context is refreshed (after
all objects have been instantiated and initialized), that callback will be invoked, and at that point
the default lifecycle processor will check the boolean value returned by each SmartLifecycle
object’s isAutoStartup() method. If "true", then that object will be started at that point rather than
waiting for an explicit invocation of the context’s or its own start() method (unlike the context
refresh, the context start does not happen automatically for a standard context implementation).
The "phase” value as well as any "depends-on" relationships will determine the startup order in the
same way as described above.

Shutting down the Spring IoC container gracefully in non-web applications

This section applies only to non-web applications. Spring’s web-based
ApplicationContext implementations already have code in place to shut down the
Spring IoC container gracefully when the relevant web application is shut down.

If you are using Spring’s IoC container in a non-web application environment; for example, in a
rich client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a
graceful shutdown and calls the relevant destroy methods on your singleton beans so that all
resources are released. Of course, you must still configure and implement these destroy callbacks
correctly.

To register a shutdown hook, you call the registerShutdownHook() method that is declared on the
ConfigurableApplicationContext interface:

61



import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Boot {

public static void main(final String[] args) throws Exception {
ConfigurableApplicationContext ctx = new ClassPathXmlApplicationContext(
"beans.xml");

// add a shutdown hook for the above context...
ctx.registerShutdownHook();

// app runs here...

// main method exits, hook is called prior to the app shutting down...

1.6.2. ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the
org.springframework.context.ApplicationContextAware interface, the instance is provided with a
reference to that ApplicationContext.

public interface ApplicationContextAware {

void setApplicationContext(ApplicationContext applicationContext) throws
BeansException;

}

Thus beans can manipulate programmatically the ApplicationContext that created them, through
the ApplicationContext interface, or by casting the reference to a known subclass of this interface,
such as ConfigurableApplicationContext, which exposes additional functionality. One use would be
the programmatic retrieval of other beans. Sometimes this capability is useful; however, in general
you should avoid it, because it couples the code to Spring and does not follow the Inversion of
Control style, where collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and accessing a
MessageSource. These additional features are described in Additional capabilities of the
ApplicationContext

As of Spring 2.5, autowiring is another alternative to obtain reference to the ApplicationContext.
The "traditional" constructor and byType autowiring modes (as described in Autowiring
collaborators) can provide a dependency of type ApplicationContext for a constructor argument or
setter method parameter, respectively. For more flexibility, including the ability to autowire fields
and multiple parameter methods, use the new annotation-based autowiring features. If you do, the
ApplicationContext is autowired into a field, constructor argument, or method parameter that is
expecting the ApplicationContext type if the field, constructor, or method in question carries the

62



@Autowired annotation. For more information, see @Autowired.

When an ApplicationContext creates a class that implements the
org.springframework.beans.factory.BeanNameAware interface, the class is provided with a reference to
the name defined in its associated object definition.

public interface BeanNameAware {

void setBeanName(String name) throws BeansException;

The callback is invoked after population of normal bean properties but before an initialization
callback such as InitializingBean afterPropertiesSet or a custom init-method.

1.6.3. Other Aware interfaces

Besides ApplicationContextAware and BeanNameAware discussed above, Spring offers a wide range of
Aware callback interfaces that allow beans to indicate to the container that they require a certain
infrastructure dependency. The most important Aware interfaces are summarized below - as a
general rule, the name is a good indication of the dependency type:

Table 4. Aware interfaces

Name Injected Dependency Explained in...
ApplicationContextAware Declaring ApplicationContext ~ ApplicationContextAware and
BeanNameAware
ApplicationEventPublisherAware Event publisher of the enclosing Additional capabilities of the
ApplicationContext ApplicationContext
BeanClassLoaderAware Class loader used to load the ~ Instantiating beans
bean classes.
BeanFactoryAware Declaring BeanFactory ApplicationContextAware and
BeanNameAware
BeanNameAware Name of the declaring bean ApplicationContextAware and
BeanNameAware
Bootst rapContextAwa re Resource adapter ]CA CCI

BootstrapContext the container
runs in. Typically available only
in JCA aware

ApplicationContexts
LoadTimeWeaverAware Defined weaver for processing Load-time weaving with Aspect]
class definition at load time in the Spring Framework
MessageSourceAware Configured strategy for Additional capabilities of the
resolving messages (with ApplicationContext

support for parametrization
and internationalization)

NotificationPublisherAware Spring JMX notification Notifications
publisher

63


integration.pdf#cci
integration.pdf#jmx-notifications

Name Injected Dependency Explained in...

ResourceloaderAware Configured loader for low-level Resources
access to resources
ServletConfigAware Current ServletConfig the Spring MVC

container runs in. Valid only in

a web-aware Spring
ApplicationContext

ServletContextAware Current ServletContext the Spring MVC
container runs in. Valid only in

a web-aware Spring
ApplicationContext

Note again that usage of these interfaces ties your code to the Spring API and does not follow the
Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmatic access to the container.

1.7. Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments,
property values, and container-specific information such as initialization method, static factory
method name, and so on. A child bean definition inherits configuration data from a parent
definition. The child definition can override some values, or add others, as needed. Using parent
and child bean definitions can save a lot of typing. Effectively, this is a form of templating.

If you work with an ApplicationContext interface programmatically, child bean definitions are
represented by the ChildBeanDefinition class. Most users do not work with them on this level,
instead configuring  bean definitions declaratively in  something  like the
(lassPathXmlApplicationContext. When you use XML-based configuration metadata, you indicate a
child bean definition by using the parent attribute, specifying the parent bean as the value of this
attribute.

<bean id="inheritedTestBean" abstract="true"
class="org.springframework.beans.TestBean">
<property name="name" value="parent"/>
<property name="age" value="1"/>
</bean>

<bean id="1inheritsWithDifferentClass"
class="org.springframework.beans.DerivedTestBean"
<strong>parent="1inheritedTestBean"</strong> init-method="initialize">
<property name="name" value="override"/>
<!-- the age property value of 1 will be inherited from parent -->
</bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can
also override it. In the latter case, the child bean class must be compatible with the parent, that is, it
must accept the parent’s property values.

64


web.pdf#mvc
web.pdf#mvc

A child bean definition inherits scope, constructor argument values, property values, and method
overrides from the parent, with the option to add new values. Any scope, initialization method,
destroy method, and/or static factory method settings that you specify will override the
corresponding parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the
abstract attribute. If the parent definition does not specify a class, explicitly marking the parent
bean definition as abstract is required, as follows:

<bean id="1inheritedTestBeanWithoutClass" abstract="true">
<property name="name" value="parent"/>
<property name="age" value="1"/>

</bean>

<bean id="1inheritsWithClass" class="org.springframework.beans.DerivedTestBean"
parent="1inheritedTestBeanWithoutClass" init-method="initialize">
<property name="name" value="override"/>
<!-- age will inherit the value of 1 from the parent bean definition-->
</bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly
marked as abstract. When a definition is abstract like this, it is usable only as a pure template bean
definition that serves as a parent definition for child definitions. Trying to use such an abstract
parent bean on its own, by referring to it as a ref property of another bean or doing an explicit
getBean() call with the parent bean id, returns an error. Similarly, the container’s internal
prelnstantiateSingletons() method ignores bean definitions that are defined as abstract.

ApplicationContext pre-instantiates all singletons by default. Therefore, it is
important (at least for singleton beans) that if you have a (parent) bean definition

0 which you intend to use only as a template, and this definition specifies a class,
you must make sure to set the abstract attribute to true, otherwise the application
context will actually (attempt to) pre-instantiate the abstract bean.

1.8. Container Extension Points

Typically, an application developer does not need to subclass ApplicationContext implementation
classes. Instead, the Spring IoC container can be extended by plugging in implementations of
special integration interfaces. The next few sections describe these integration interfaces.

1.8.1. Customizing beans using a BeanPostProcessor

The BeanPostProcessor interface defines callback methods that you can implement to provide your
own (or override the container’s default) instantiation logic, dependency-resolution logic, and so
forth. If you want to implement some custom logic after the Spring container finishes instantiating,

65



configuring, and initializing a bean, you can plug in one or more custom BeanPostProcessor
implementations.

You can configure multiple BeanPostProcessor instances, and you can control the order in which
these BeanPostProcessors execute by setting the order property. You can set this property only if the
BeanPostProcessor implements the Ordered interface; if you write your own BeanPostProcessor you
should consider implementing the Ordered interface too. For further details, consult the javadocs of
the BeanPostProcessor and Ordered interfaces. See also the note below on programmatic registration
of BeanPostProcessors.

BeanPostProcessors operate on bean (or object) instances; that is to say, the Spring
IoC container instantiates a bean instance and then BeanPostProcessors do their
work.

BeanPostProcessors are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPostProcessor in one container, it will

0 only post-process the beans in that container. In other words, beans that are
defined in one container are not post-processed by a BeanPostProcessor defined in
another container, even if both containers are part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you
instead need to use a BeanFactoryPostProcessor as described in Customizing
configuration metadata with a BeanFactoryPostProcessor.

The org.springframework.beans.factory.config.BeanPostProcessor interface consists of exactly two
callback methods. When such a class is registered as a post-processor with the container, for each
bean instance that is created by the container, the post-processor gets a callback from the container
both before container initialization methods (such as InitializingBean’s afterPropertiesSet() or any
declared init method) are called as well as after any bean initialization callbacks. The post-
processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide
proxy-wrapping logic.

An ApplicationContext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPostProcessor interface. The ApplicationContext registers these
beans as post-processors so that they can be called later upon bean creation. Bean post-processors
can be deployed in the container just like any other beans.

Note that when declaring a BeanPostProcessor using an @Bean factory method on a configuration
class, the return type of the factory method should be the implementation class itself or at least the
org.springframework.beans.factory.config.BeanPostProcessor interface, clearly indicating the post-
processor nature of that bean. Otherwise, the ApplicationContext won’t be able to autodetect it by
type before fully creating it. Since a BeanPostProcessor needs to be instantiated early in order to
apply to the initialization of other beans in the context, this early type detection is critical.

66



Programmatically registering BeanPostProcessors

While the recommended approach for BeanPostProcessor registration is through
ApplicationContext auto-detection (as described above), it is also possible to
register them programmatically against a ConfigurableBeanFactory using the
addBeanPostProcessor method. This can be useful when needing to evaluate

0 conditional logic before registration, or even for copying bean post processors
across contexts in a hierarchy. Note however that BeanPostProcessors added
programmatically do not respect the Ordered interface. Here it is the order of
registration that dictates the order of execution. Note also that BeanPostProcessors
registered programmatically are always processed before those registered through
auto-detection, regardless of any explicit ordering.

BeanPostProcessors and AOP auto-proxying

Classes that implement the BeanPostProcessor interface are special and are treated
differently by the container. All BeanPostProcessors and beans that they reference
directly are instantiated on startup, as part of the special startup phase of the
ApplicationContext. Next, all BeanPostProcessors are registered in a sorted fashion
and applied to all further beans in the container. Because AOP auto-proxying is
implemented as a BeanPostProcessor itself, neither BeanPostProcessors nor the
beans they reference directly are eligible for auto-proxying, and thus do not have
aspects woven into them.

0 For any such bean, you should see an informational log message: "Bean foo is not
eligible for getting processed by all BeanPostProcessor interfaces (for example: not
eligible for auto-proxying)".

Note that if you have beans wired into your BeanPostProcessor using autowiring or
@Resource (which may fall back to autowiring), Spring might access unexpected
beans when searching for type-matching dependency candidates, and therefore
make them ineligible for auto-proxying or other kinds of bean post-processing. For
example, if you have a dependency annotated with @Resource where the field/setter
name does not directly correspond to the declared name of a bean and no name
attribute is used, then Spring will access other beans for matching them by type.

The following examples show how to write, register, and use BeanPostProcessors in an
ApplicationContext.

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPostProcessor
implementation that invokes the toString() method of each bean as it is created by the container
and prints the resulting string to the system console.

Find below the custom BeanPostProcessor implementation class definition:

67



package scripting;
import org.springframework.beans.factory.config.BeanPostProcessor;
public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor {

// simply return the instantiated bean as-is
public Object postProcessBeforelnitialization(Object bean, String beanName) {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterInitialization(Object bean, String beanName) {
System.out.println("Bean '" + beanName + created : " + bean.toString());
return bean;

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:lang="http://www.springframework.org/schema/1lang"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/lang
https://www.springframework.org/schema/lang/spring-lang.xsd">

<lang:groovy id="messenger"
script-source=
"classpath:org/springframework/scripting/groovy/Messenger.groovy">
<lang:property name="message" value="Fiona Apple Is Just So Dreamy."/>
</lang:groovy>

<!--

when the above bean (messenger) is instantiated, this custom
BeanPostProcessor implementation will output the fact to the system console
-->

<bean class="scripting.InstantiationTracingBeanPostProcessor"/>

</beans>

Notice how the InstantiationTracingBeanPostProcessor is simply defined. It does not even have a
name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring dynamic
language support is detailed in the chapter entitled Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

68


languages.pdf#dynamic-language

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.scripting.Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
ApplicationContext ctx = new ClassPathXmlApplicationContext(
"scripting/beans.xml");
Messenger messenger = (Messenger) ctx.getBean("messenger");
System.out.println(messenger);

The output of the preceding application resembles the following:

Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961
org.springframework.scripting.groovy.GroovyMessenger@272961

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPostProcessor
implementation is a common means of extending the Spring IoC container. An example is Spring’s
RequiredAnnotationBeanPostProcessor - a BeanPostProcessor implementation that ships with the
Spring distribution which ensures that JavaBean properties on beans that are marked with an
(arbitrary) annotation are actually (configured to be) dependency-injected with a value.

1.8.2. Customizing configuration metadata with a
BeanFactoryPostProcessor

The next extension point that we will look at is the
org.springframework.beans.factory.config.BeanFactoryPostProcessor. The semantics of this
interface are similar to those of the BeanPostProcessor, with one major difference:
BeanFactoryPostProcessor operates on the bean configuration metadata; that is, the Spring IoC
container allows a BeanFactoryPostProcessor to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFactoryPostProcessors.

You can configure multiple BeanFactoryPostProcessors, and you can control the order in which these
BeanFactoryPostProcessors execute by setting the order property. However, you can only set this
property if the BeanFactoryPostProcessor implements the Ordered interface. If you write your own
BeanFactoryPostProcessor, you should consider implementing the Ordered interface too. Consult the
javadocs of the BeanFactoryPostProcessor and Ordered interfaces for more details.

69



If you want to change the actual bean instances (i.e., the objects that are created

from the configuration metadata), then you instead need to wuse a

BeanPostProcessor  (described above in Customizing beans using a

BeanPostProcessor). While it is technically possible to work with bean instances

within a BeanFactoryPostProcessor (e.g., using BeanFactory.getBean()), doing so

causes premature bean instantiation, violating the standard container lifecycle.
0 This may cause negative side effects such as bypassing bean post processing.

Also, BeanFactoryPostProcessors are scoped per-container. This is only relevant if
you are using container hierarchies. If you define a BeanFactoryPostProcessor in
one container, it will only be applied to the bean definitions in that container. Bean
definitions in one container will not be  post-processed by
BeanFactoryPostProcessors in another container, even if both containers are part of
the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that define the
container. Spring includes a number of predefined bean factory post-processors, such as
PropertyOverrideConfigurer and PropertyPlaceholderConfigurer. A custom BeanFactoryPostProcessor
can also be used, for example, to register custom property editors.

An ApplicationContext automatically detects any beans that are deployed into it that implement the
BeanFactoryPostProcessor interface. It uses these beans as bean factory post-processors, at the
appropriate time. You can deploy these post-processor beans as you would any other bean.

As with BeanPostProcessors , you typically do not want to configure
BeanFactoryPostProcessors for lazy initialization. If no other bean references a

0 Bean(Factory)PostProcessor, that post-processor will not get instantiated at all.
Thus, marking it for lazy initialization will be ignored, and the
Bean(Factory)PostProcessor will be instantiated eagerly even if you set the default-
lazy-init attribute to true on the declaration of your <beans /> element.

Example: the Class name substitution PropertyPlaceholderConfigurer

You use the PropertyPlaceholderConfigurer to externalize property values from a bean definition in
a separate file using the standard Java Properties format. Doing so enables the person deploying an
application to customize environment-specific properties such as database URLs and passwords,
without the complexity or risk of modifying the main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a DataSource with
placeholder values is defined. The example shows properties configured from an external
Properties file. At runtime, a PropertyPlaceholderConfigurer is applied to the metadata that will
replace some properties of the DataSource. The values to replace are specified as placeholders of
the form ${property-name} which follows the Ant/log4j/]JSP EL style.

70



<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="locations" value="classpath:com/foo/jdbc.properties"/>
</bean>

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.ur1}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>

The actual values come from another file in the standard Java Properties format:

jdbc.driverClassName=org.hsqldb.jdbcDriver
jdbc.url=jdbc:hsqldb:hsql://production:9002
jdbc.username=sa

jdbc.password=root

Therefore, the string ${jdbc.username} is replaced at runtime with the value 'sa’, and the same
applies for other placeholder values that match keys in the properties file. The
PropertyPlaceholderConfigurer checks for placeholders in most properties and attributes of a bean
definition. Furthermore, the placeholder prefix and suffix can be customized.

With the context namespace introduced in Spring 2.5, it is possible to configure property
placeholders with a dedicated configuration element. One or more locations can be provided as a
comma-separated list in the location attribute.

<context:property-placeholder location="classpath:com/foo/jdbc.properties"/>

The PropertyPlaceholderConfigurer not only looks for properties in the Properties file you specify.
By default it also checks against the Java System properties if it cannot find a property in the
specified properties files. You can customize this behavior by setting the systemPropertieshiode
property of the configurer with one of the following three supported integer values:

* never (0): Never check system properties

* fallback (1): Check system properties if not resolvable in the specified properties files. This is the
default.

» override (2): Check system properties first, before trying the specified properties files. This
allows system properties to override any other property source.

Consult the PropertyPlaceholderConfigurer javadocs for more information.

71



You can use the PropertyPlaceholderConfigurer to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at
runtime. For example:

<bean class=
"org.springframework.beans.factory.config.PropertyPlaceholderConfigurer
">
<property name="locations">
<value>classpath:com/foo/strategy.properties</value>
Q </property>
<property name="properties">
<value>custom.strategy.class=com.foo.DefaultStrategy</value>
</property>
</bean>

<bean id="serviceStrategy" class="${custom.strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean
fails when it is about to be created, which is during the preInstantiateSingletons()
phase of an ApplicationContext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertyPlaceholderConfigurer, but unlike the latter, the original definitions can have default values
or no values at all for bean properties. If an overriding Properties file does not have an entry for a
certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious
from the XML definition file that the override configurer is being used. In case of multiple
PropertyOverrideConfigurer instances that define different values for the same bean property, the
last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:
beanName.property=value
For example:

dataSource.driverClassName=com.mysql.jdbc.Driver
dataSource.url=jdbc:mysql:mydb

This example file can be used with a container definition that contains a bean called dataSource,
which has driver and url properties.

Compound property names are also supported, as long as every component of the path except the

72



final property being overridden is already non-null (presumably initialized by the constructors). In
this example...

foo.fred.bob.sammy=123

1. the sammy property of the bob property of the fred property of the foo bean is set to the scalar
value 123.

Specified override values are always literal values; they are not translated into
0 bean references. This convention also applies when the original value in the XML
bean definition specifies a bean reference.

With the context namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<context:property-override location="classpath:override.properties"/>

1.8.3. Customizing instantiation logic with a FactoryBean

Implement the org.springframework.beans.factory.FactoryBean interface for objects that are
themselves factories.

The FactoryBean interface is a point of pluggability into the Spring IoC container’s instantiation
logic. If you have complex initialization code that is better expressed in Java as opposed to a
(potentially) verbose amount of XML, you can create your own FactoryBean, write the complex
initialization inside that class, and then plug your custom FactoryBean into the container.

The FactoryBean interface provides three methods:
* Object getObject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.
* boolean isSingleton(): returns true if this FactoryBean returns singletons, false otherwise.
* (lass getObjectType(): returns the object type returned by the getObject() method or null if the

type is not known in advance.

The FactoryBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the FactoryBean interface ship with Spring itself.

When you need to ask a container for an actual FactoryBean instance itself instead of the bean it
produces, preface the bean’s id with the ampersand symbol ( & when calling the getBean() method
of the ApplicationContext. So for a given FactoryBean with an id of myBean, invoking
getBean("myBean") on the container returns the product of the FactoryBean; whereas, invoking
getBean("&myBean") returns the FactoryBean instance itself.

73



1.9. Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this
approach is 'better' than XML. The short answer is it depends. The long answer is that each
approach has its pros and cons, and usually it is up to the developer to decide which strategy
suits them better. Due to the way they are defined, annotations provide a lot of context in
their declaration, leading to shorter and more concise configuration. However, XML excels at
wiring up components without touching their source code or recompiling them. Some
developers prefer having the wiring close to the source while others argue that annotated
classes are no longer POJOs and, furthermore, that the configuration becomes decentralized
and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It’s
worth pointing out that through its JavaConfig option, Spring allows annotations to be used in
a non-invasive way, without touching the target components source code and that in terms of
tooling, all configuration styles are supported by the Spring Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the
bytecode metadata for wiring up components instead of angle-bracket declarations. Instead of
using XML to describe a bean wiring, the developer moves the configuration into the component
class itself by using annotations on the relevant class, method, or field declaration. As mentioned in
Example: The RequiredAnnotationBeanPostProcessor, using a BeanPostProcessor in conjunction
with annotations is a common means of extending the Spring IoC container. For example, Spring
2.0 introduced the possibility of enforcing required properties with the @Required annotation.
Spring 2.5 made it possible to follow that same general approach to drive Spring’s dependency
injection. Essentially, the @Autowired annotation provides the same capabilities as described in
Autowiring collaborators but with more fine-grained control and wider applicability. Spring 2.5 also
added support for JSR-250 annotations such as @PostConstruct, and @PreDestroy. Spring 3.0 added
support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @Inject and @Named. Details about those annotations can be found in the relevant
section.

Annotation injection is performed before XML injection, thus the latter
0 configuration will override the former for properties wired through both
approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly

registered by including the following tag in an XML-based Spring configuration (notice the
inclusion of the context namespace):

74


https://spring.io/tools/sts

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:annotation-config/>

</beans>

(The implicitly registered post-processors include AutowiredAnnotationBeanPostProcessor,
CommonAnnotationBeanPostProcessor, PersistenceAnnotationBeanPostProcessor, as well as the
aforementioned RequiredAnnotationBeanPostProcessor.)

<context:annotation-config/> only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put

0 <context:annotation-config/> in a WebApplicationContext for a DispatcherServlet, it
only checks for @Autowired beans in your controllers, and not your services. See
The DispatcherServlet for more information.

1.9.1. @Required

The @Required annotation applies to bean property setter methods, as in the following example:

public class SimpleMovielister {
private MovieFinder movieFinder;

@Required
public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

/] ...

This annotation simply indicates that the affected bean property must be populated at
configuration time, through an explicit property value in a bean definition or through autowiring.
The container throws an exception if the affected bean property has not been populated; this
allows for eager and explicit failure, avoiding NullPointerExceptions or the like later on. It is still
recommended that you put assertions into the bean class itself, for example, into an init method.
Doing so enforces those required references and values even when you use the class outside of a
container.

75


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html
web.pdf#mvc-servlet

1.9.2. @Autowired

0 JSR 330’s @Inject annotation can be used in place of Spring’s @Autowired annotation
in the examples below. See here for more details.

You can apply the @Autowired annotation to constructors:
public class MovieRecommender {

private final CustomerPreferenceDao customerPreferenceDao;

public MovieRecommender (CustomerPreferenceDao customerPreferenceDao) {
this.customerPreferenceDao = customerPreferenceDao;

/] ...

As of Spring Framework 4.3, an @Autowired annotation on such a constructor is no

O longer necessary if the target bean only defines one constructor to begin with.
However, if several constructors are available, at least one must be annotated to
teach the container which one to use.

As expected, you can also apply the @Autowired annotation to "traditional" setter methods:

public class SimpleMovielister {

private MovieFinder movieFinder;

public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

/] ...

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

76



public class MovieRecommender {
private MovieCatalog movieCatalog;

private CustomerPreferenceDao customerPreferenceDao;

public void prepare(MovieCatalog movieCatalog,
CustomerPreferenceDao customerPreferenceDao) {
this.movieCatalog = movieCatalog;
this.customerPreferenceDao = customerPreferenceDao;

/] ...

You can apply @Autowired to fields as well and even mix it with constructors:

public class MovieRecommender {

private final CustomerPreferenceDao customerPreferenceDao;

private MovieCatalog movieCatalog;

public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
this.customerPreferenceDao = customerPreferenceDao;

}
/] ...
}
Make sure that your target components (e.g. MovieCatalog, CustomerPreferenceDao)
are consistently declared by the type that you are using for your @Autowired
-annotated injection points. Otherwise injection may fail due to no type match
found at runtime.
For XML-defined beans or component classes found through a classpath scan, the
Q container usually knows the concrete type upfront. However, for @Bean factory

methods, you need to make sure that the declared return type is sufficiently
expressive. For components implementing several interfaces or for components
potentially referred to by their implementation type, consider declaring the most
specific return type on your factory method (at least as specific as required by the
injection points referring to your bean).

It is also possible to provide all beans of a particular type from the ApplicationContext by adding the

77



annotation to a field or method that expects an array of that type:

public class MovieRecommender {

private MovieCatalog[] movieCatalogs;

/] ...

The same applies for typed collections:

public class MovieRecommender {

private Set<MovieCatalog> movieCatalogs;

public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {
this.movieCatalogs = movieCatalogs;

}

/] ...

Your target beans can implement the org.springframework.core.Ordered interface
or use the @0rder or standard @Priority annotation if you want items in the array
or list to be sorted in a specific order. Otherwise their order will follow the
registration order of the corresponding target bean definitions in the container.

The @0rder annotation may be declared at target class level but also on @Bean
methods, potentially being very individual per bean definition (in case of multiple

Q definitions with the same bean class). @0rder values may influence priorities at
injection points, but please be aware that they do not influence singleton startup
order which is an orthogonal concern determined by dependency relationships
and @DependsOn declarations.

Note that the standard javax.annotation.Priority annotation is not available at the
@Bean level since it cannot be declared on methods. Its semantics can be modeled
through @0rder values in combination with @Primary on a single bean per type.

Even typed Maps can be autowired as long as the expected key type is String. The Map values will
contain all beans of the expected type, and the keys will contain the corresponding bean names:

78



public class MovieRecommender {

private Map<String, MovieCatalog> movieCatalogs;

public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {
this.movieCatalogs = movieCatalogs;

/] ...

By default, the autowiring fails whenever zero candidate beans are available; the default behavior
is to treat annotated methods, constructors, and fields as indicating required dependencies. This
behavior can be changed as demonstrated below.

public class SimpleMovielister {
private MovieFinder movieFinder;

(required = false)
public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

/] ...

Only one constructor of any given bean class may declare @Autowired with the
required attribute set to true, indicating the constructor to autowire when used as
a Spring bean. Furthermore, if the required attribute is set to true, only a single
constructor may be annotated with @EAutowired. If multiple non-required
constructors declare the annotation, they will be considered as candidates for
autowiring. The constructor with the greatest number of dependencies that can be
satisfied by matching beans in the Spring container will be chosen. If none of the
candidates can be satisfied, then a primary/default constructor (if present) will be
ﬁ used. If a class only declares a single constructor to begin with, it will always be
used, even if not annotated. An annotated constructor does not have to be public.

The required attribute of @EAutowired is recommended over the @Required
annotation on setter methods. The required attribute indicates that the property is
not required for autowiring purposes. The property is ignored if it cannot be
autowired. @Required, on the other hand, is stronger in that it enforces the property
to be set by any means supported by the container. If no value is defined, a
corresponding exception is raised.

Alternatively, you may express the non-required nature of a particular dependency through Java

79



8’s java.util.Optional:

public class SimpleMovielister {

@Autowired
public void setMovieFinder(Optional<MovieFinder> movieFinder) {

}

As of Spring Framework 5.0, you may also use an @Nullable annotation (of any kind in any package,
e.g. javax.annotation.Nullable from JSR-305):

public class SimpleMovielister {

@Autowired
public void setMovieFinder(@Nullable MovieFinder movieFinder) {

}

You can also use @Autowired for interfaces that are well-known resolvable dependencies:
BeanFactory, ApplicationContext, Environment, Resourceloader, ApplicationEventPublisher, and
MessageSource. These interfaces and their extended interfaces, such as
ConfigurableApplicationContext or ResourcePatternResolver, are automatically resolved, with no
special setup necessary.

public class MovieRecommender {

@Autowired
private ApplicationContext context;

public MovieRecommender() {

}

/] ...

@Autowired, @Inject, @Resource, and @Value annotations are handled by Spring
BeanPostProcessor implementations which in turn means that you cannot apply

0 these annotations within your own BeanPostProcessor or BeanFactoryPostProcessor
types (if any). These types must be 'wired up' explicitly via XML or using a Spring
@Bean method.

80



1.9.3. Fine-tuning annotation-based autowiring with @Primary

Because autowiring by type may lead to multiple candidates, it is often necessary to have more
control over the selection process. One way to accomplish this is with Spring’s @Primary annotation.
@Primary indicates that a particular bean should be given preference when multiple beans are
candidates to be autowired to a single-valued dependency. If exactly one 'primary' bean exists
among the candidates, it will be the autowired value.

Let’s assume we have the following configuration that defines firstMovieCatalog as the primary
MovieCatalog.

public class MovieConfiguration {

<strong> </strong>
public MovieCatalog firstMovieCatalog() { ... }

public MovieCatalog secondMovieCatalog() { ... }

/] ...

With such configuration, the following MovieRecommender will be autowired with the
firstMovieCatalog.

public class MovieRecommender {

private MovieCatalog movieCatalog;

/] ...

The corresponding bean definitions appear as follows.

81



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:annotation-config/>

<bean class="example.SimpleMovieCatalog" <strong>primary="true"</strong>>
<!-- inject any dependencies required by this bean -->
</bean>

<bean class="example.SimpleMovieCatalog">
<!-- inject any dependencies required by this bean -->
</bean>

<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

1.9.4. Fine-tuning annotation-based autowiring with qualifiers

@Primary is an effective way to use autowiring by type with several instances when one primary
candidate can be determined. When more control over the selection process is required, Spring’s
@Qualifier annotation can be used. You can associate qualifier values with specific arguments,
narrowing the set of type matches so that a specific bean is chosen for each argument. In the
simplest case, this can be a plain descriptive value:

public class MovieRecommender {
@Autowired
<strong>@Qualifier("main")</strong>

private MovieCatalog movieCatalog;

/] ...

The @Qualifier annotation can also be specified on individual constructor arguments or method
parameters:

82



public class MovieRecommender {
private MovieCatalog movieCatalog;
private CustomerPreferenceDao customerPreferenceDao;

@Autowired
public void prepare(<strong>@Qualifier("main")</strong>MovieCatalog movieCatalog,
CustomerPreferenceDao customerPreferenceDao) {
this.movieCatalog = movieCatalog;
this.customerPreferenceDao = customerPreferenceDao;

/] ...

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is
wired with the constructor argument that is qualified with the same value.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:annotation-config/>

<bean class="example.SimpleMovieCatalog">
<strong><qualifier value="main"/></strong>

<!-- inject any dependencies required by this bean -->
</bean>

<bean class="example.SimpleMovieCatalog">
<strong><qualifier value="action"/></strong>

<!-- inject any dependencies required by this bean -->
</bean>

<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the
bean with an id "main" instead of the nested qualifier element, leading to the same matching result.

83



However, although you can use this convention to refer to specific beans by name, @Autowired is
fundamentally about type-driven injection with optional semantic qualifiers. This means that
qualifier values, even with the bean name fallback, always have narrowing semantics within the
set of type matches; they do not semantically express a reference to a unique bean id. Good
qualifier values are "main" or "EMEA" or "persistent", expressing characteristics of a specific
component that are independent from the bean id, which may be auto-generated in case of an
anonymous bean definition like the one in the preceding example.

Quualifiers also apply to typed collections, as discussed above, for example, to Set<MovieCatalog>. In
this case, all matching beans according to the declared qualifiers are injected as a collection. This
implies that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For
example, you can define multiple MovieCatalog beans with the same qualifier value "action", all of
which would be injected into a Set<MovieCatalog> annotated with @Qualifier("action").

84



Letting qualifier values select against target bean names, within the type-matching
candidates, doesn’t even require a @Qualifier annotation at the injection point. If
there is no other resolution indicator (e.g. a qualifier or a primary marker), for a
non-unique dependency situation, Spring will match the injection point name (i.e.
field name or parameter name) against the target bean names and choose the
same-named candidate, if any.

That said, if you intend to express annotation-driven injection by name, do not
primarily use @Autowired, even if is capable of selecting by bean name among type-
matching candidates. Instead, use the JSR-250 @Resource annotation, which is
semantically defined to identify a specific target component by its unique name,
with the declared type being irrelevant for the matching process. @Autowired has
rather different semantics: After selecting candidate beans by type, the specified
String qualifier value will be considered within those type-selected candidates
only, e.g. matching an "account" qualifier against beans marked with the same
qualifier label.

For beans that are themselves defined as a collection/map or array type, @Resource
is a fine solution, referring to the specific collection or array bean by unique name.
That said, as of 4.3, collection/map and array types can be matched through

Q Spring’s @Autowired type matching algorithm as well, as long as the element type
information is preserved in @Bean return type signatures or collection inheritance
hierarchies. In this case, qualifier values can be used to select among same-typed
collections, as outlined in the previous paragraph.

As of 4.3, @Autowired also considers self references for injection, i.e. references back
to the bean that is currently injected. Note that self injection is a fallback; regular
dependencies on other components always have precedence. In that sense, self
references do not participate in regular candidate selection and are therefore in
particular never primary; on the contrary, they always end up as lowest
precedence. In practice, use self references as a last resort only, e.g. for calling
other methods on the same instance through the bean’s transactional proxy:
Consider factoring out the affected methods to a separate delegate bean in such a
scenario. Alternatively, use @Resource which may obtain a proxy back to the
current bean by its unique name.

@Autowired applies to fields, constructors, and multi-argument methods, allowing
for narrowing through qualifier annotations at the parameter level. By contrast,
@Resource is supported only for fields and bean property setter methods with a
single argument. As a consequence, stick with qualifiers if your injection target is a
constructor or a multi-argument method.

You can create your own custom qualifier annotations. Simply define an annotation and provide
the @Qualifier annotation within your definition:

85



({ElementType.FIELD, ElementType.PARAMETER})
(RetentionPolicy.RUNTIME)
<strong> </strong>
public Genre {

String value();

Then you can provide the custom qualifier on autowired fields and parameters:

public class MovieRecommender {

<strong> ("Action")</strong>
private MovieCatalog actionCatalog;

private MovieCatalog comedyCatalog;

public void setComedyCatalog(<strong> ("Comedy")</strong> MovieCatalog
comedyCatalog) {
this.comedyCatalog = comedyCatalog;
}

/] ...

Next, provide the information for the candidate bean definitions. You can add <qualifier/> tags as
sub-elements of the <bean/> tag and then specify the type and value to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both
approaches are demonstrated in the following example.

86



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:annotation-config/>

<bean class="example.SimpleMovieCatalog">
<strong><qualifier type="Genre" value="Action"/></strong>
<!-- inject any dependencies required by this bean -->
</bean>

<bean class="example.SimpleMovieCatalog">
<strong><qualifier type="example.Genre" value="Comedy"/></strong>
<!-- inject any dependencies required by this bean -->

</bean>

<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

In Classpath scanning and managed components, you will see an annotation-based alternative to
providing the qualifier metadata in XML. Specifically, see Providing qualifier metadata with
annotations.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when
the annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no
Internet connection is available. First define the simple annotation:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)

@Qualifier

public @interface Offline {

}

Then add the annotation to the field or property to be autowired:

87



public class MovieRecommender {

@Autowired
<strong>@0ffline</strong>
private MovieCatalog offlineCatalog;

/] ...

Now the bean definition only needs a qualifier type:

<bean class="example.SimpleMovieCatalog">
<strong><qualifier type="0ffline"/></strong>
<!-- inject any dependencies required by this bean -->
</bean>

You can also define custom qualifier annotations that accept named attributes in addition to or
instead of the simple value attribute. If multiple attribute values are then specified on a field or
parameter to be autowired, a bean definition must match all such attribute values to be considered
an autowire candidate. As an example, consider the following annotation definition:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)

@Qualifier

public @interface MovieQualifier {

String genre();

Format format();

In this case Format is an enum:

public enum Format {
VHS, DVD, BLURAY

}

The fields to be autowired are annotated with the custom qualifier and include values for both
attributes: genre and format.

88



public class MovieRecommender {

@Autowired
@MovieQualifier(format=Format.VHS, genre="Action")
private MovieCatalog actionVhsCatalog;

@Autowired
@MovieQualifier(format=Format.VHS, genre="Comedy")
private MovieCatalog comedyVhsCatalog;

@Autowired
@MovieQualifier(format=Format.DVD, genre="Action")
private MovieCatalog actionDvdCatalog;

@Autowired
@MovieQualifier(format=Format.BLURAY, genre="Comedy")
private MovieCatalog comedyBluRayCatalog;

/] ...

Finally, the bean definitions should contain matching qualifier values. This example also
demonstrates that bean meta attributes may be used instead of the <qualifier/> sub-elements. If
available, the <qualifier/> and its attributes take precedence, but the autowiring mechanism falls
back on the values provided within the <meta/> tags if no such qualifier is present, as in the last two
bean definitions in the following example.

89



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:annotation-config/>

<bean class="example.SimpleMovieCatalog">
<qualifier type="MovieQualifier">
<attribute key="format" value="VHS"/>
<attribute key="genre" value="Action"/>

</qualifier>
<!-- inject any dependencies required by this bean -->
</bean>

<bean class="example.SimpleMovieCatalog">
<qualifier type="MovieQualifier">
<attribute key="format" value="VHS"/>
<attribute key="genre" value="Comedy"/>

</qualifier>
<!-- inject any dependencies required by this bean -->
</bean>

<bean class="example.SimpleMovieCatalog">

<meta key="format" value="DVD"/>

<meta key="genre" value="Action"/>

<!-- inject any dependencies required by this bean -->
</bean>

<bean class="example.SimpleMovieCatalog">

<meta key="format" value="BLURAY"/>

<meta key="genre" value="Comedy"/>

<!-- inject any dependencies required by this bean -->
</bean>

</beans>

1.9.5. Using generics as autowiring qualifiers

In addition to the @Qualifier annotation, it is also possible to use Java generic types as an implicit
form of qualification. For example, suppose you have the following configuration:

90



@Configuration
public class MyConfiguration {

@Bean
public StringStore stringStore() {
return new StringStore();

}

@Bean
public IntegerStore integerStore() {
return new IntegerStore();

}

Assuming that beans above implement a generic interface, i.e. Store<String> and Store<Integer>,
you can @Autowire the Store interface and the generic will be used as a qualifier:

@Autowired
private Store<String> s1; // <String> qualifier, injects the stringStore bean

@Autowired
private Store<Integer> s2; // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

// Inject all Store beans as long as they have an <Integer> generic
// Store<String> beans will not appear in this list

@Autowired

private List<Store<Integer>> s;

1.9.6. CustomAutowireConfigurer

The CustomAutowireConfigurer is a BeanFactoryPostProcessor that enables you to register your own
custom qualifier annotation types even if they are not annotated with Spring’s @Qualifier
annotation.

<bean id="customAutowireConfigurer"
class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer">
<property name="customQualifierTypes">
<set>
<value>example.CustomQualifier</value>
</set>
</property>
</bean>

The AutowireCandidateResolver determines autowire candidates by:

91


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

* the autowire-candidate value of each bean definition
* any default-autowire-candidates pattern(s) available on the <beans/> element

* the presence of @Qualifier annotations and any custom annotations registered with the
CustomAutowireConfigurer

When multiple beans qualify as autowire candidates, the determination of a "primary" is the
following: if exactly one bean definition among the candidates has a primary attribute set to true, it
will be selected.

1.9.7. @Resource

Spring also supports injection using the JSR-250 @Resource annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans
or JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@Resource takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SimpleMovielister {
private MovieFinder movieFinder;

<strong> (name="myMovieFinder")</strong>
public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

If no name is specified explicitly, the default name is derived from the field name or setter method.
In case of a field, it takes the field name; in case of a setter method, it takes the bean property name.
So the following example is going to have the bean with name "movieFinder" injected into its setter
method:

public class SimpleMovielister {
private MovieFinder movieFinder;
<strong> </strong>

public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

92



The name provided with the annotation is resolved as a bean name by the
ApplicationContext of which the CommonAnnotationBeanPostProcessor is aware. The

0 names can be resolved through JNDI if you configure Spring’s
SimpleJndiBeanFactory explicitly. However, it is recommended that you rely on the
default behavior and simply use Spring’s JNDI lookup capabilities to preserve the
level of indirection.

In the exclusive case of @Resource usage with no explicit name specified, and similar to @Autowired,
@Resource finds a primary type match instead of a specific named bean and resolves well-known
resolvable dependencies: the BeanFactory, ApplicationContext, Resourceloader,
ApplicationEventPublisher, and MessageSource interfaces.

Thus in the following example, the customerPreferenceDao field first looks for a bean named
customerPreferenceDao, then falls back to a primary type match for the type
CustomerPreferenceDao. The "context" field is injected based on the known resolvable dependency
type ApplicationContext.

ublic class MovieRecommender
bl 1 M R der {
private CustomerPreferenceDao customerPreferenceDao;

private ApplicationContext context;

public MovieRecommender() {

}

/] ...

1.9.8. @PostConstruct and @PreDestroy

The CommonAnnotationBeanPostProcessor not only recognizes the @Resource annotation but also the
JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these annotations offers yet
another alternative to those described in initialization callbacks and destruction callbacks.
Provided that the CommonAnnotationBeanPostProcessor is registered within the Spring
ApplicationContext, a method carrying one of these annotations is invoked at the same point in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback
method. In the example below, the cache will be pre-populated upon initialization and cleared
upon destruction.

93


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

public class CachingMovielister {

public void populateMovieCache() {
// populates the movie cache upon initialization...

}

public void clearMovieCache() {
// clears the movie cache upon destruction...

0 For details about the effects of combining various lifecycle mechanisms, see
Combining lifecycle mechanisms.

1.10. Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDefinition within the Spring container. The previous section (Annotation-based container
configuration) demonstrates how to provide a lot of the configuration metadata through source-
level annotations. Even in those examples, however, the "base" bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section
describes an option for implicitly detecting the candidate components by scanning the classpath.
Candidate components are classes that match against a filter criteria and have a corresponding
bean definition registered with the container. This removes the need to use XML to perform bean
registration; instead you can use annotations (for example @Component), Aspect] type expressions, or
your own custom filter criteria to select which classes will have bean definitions registered with the
container.

Starting with Spring 3.0, many features provided by the Spring JavaConfig project
are part of the core Spring Framework. This allows you to define beans using Java

0 rather than using the traditional XML files. Take a look at the @Configuration, @Bean,
@Import, and @DependsOn annotations for examples of how to use these new
features.

1.10.1. @Component and further stereotype annotations

The @Repository annotation is a marker for any class that fulfills the role or stereotype of a
repository (also known as Data Access Object or DAO). Among the uses of this marker is the
automatic translation of exceptions as described in Exception translation.

Spring provides further stereotype annotations: @Component, @Service, and @Controller. @Component is
a generic stereotype for any Spring-managed component. @Repository, @Service, and @Controller are
specializations of @Component for more specific use cases, for example, in the persistence, service,
and presentation layers, respectively. Therefore, you can annotate your component classes with

94


data-access.pdf#orm-exception-translation

@Component, but by annotating them with @Repository, @Service, or @Controller instead, your classes
are more properly suited for processing by tools or associating with aspects. For example, these
stereotype annotations make ideal targets for pointcuts. It is also possible that @Repository, @Service,
and @Controller may carry additional semantics in future releases of the Spring Framework. Thus,
if you are choosing between using @Component or @Service for your service layer, @Service is clearly
the better choice. Similarly, as stated above, @Repository is already supported as a marker for
automatic exception translation in your persistence layer.

1.10.2. Meta-annotations

Many of the annotations provided by Spring can be used as meta-annotations in your own code. A
meta-annotation is simply an annotation that can be applied to another annotation. For example,
the @Service annotation mentioned above is meta-annotated with @Component:

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)

@Documented

<strong>@Component</strong> // Spring will see this and treat @Service in the same way
as @Component

public @interface Service {

/] ...

Meta-annotations can also be combined to create composed annotations. For example, the
@RestController annotation from Spring MVC is composed of @Controller and @ResponseBody.

In addition, composed annotations may optionally redeclare attributes from meta-annotations to
allow user customization. This can be particularly useful when you want to only expose a subset of
the meta-annotation’s attributes. For example, Spring’s @SessionScope annotation hardcodes the
scope name to session but still allows customization of the proxyMode.

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)

@Documented
@Scope(WebApplicationContext.SCOPE_SESSION)
public @interface SessionScope {

/**

* Alias for {@link Scope#proxyMode}.
* <p>Defaults to {@link ScopedProxyMode#TARGET_CLASS}.
*
/
@AliasFor(annotation = Scope.class)
ScopedProxyMode proxyMode() default ScopedProxyMode.TARGET_CLASS;

@SessionScope can then be used without declaring the proxyMode as follows:

95



@Service

<strong>@SessionScope</strong>

public class SessionScopedService {
/] ...

}

Or with an overridden value for the proxyMode as follows:

@Service
<strong>@SessionScope(proxyMode = ScopedProxyMode.INTERFACES)</strong>
public class SessionScopedUserService implements UserService {

/] ...

}

For further details, consult the Spring Annotation Programming Model wiki page.

1.10.3. Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDefinitions
with the ApplicationContext. For example, the following two classes are eligible for such
autodetection:

@Service
public class SimpleMovielister {

private MovieFinder movieFinder;

@Autowired
public SimpleMovielister(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

@Repository

public class JpaMovieFinder implements MovieFinder {
// implementation elided for clarity

¥

To autodetect these classes and register the corresponding beans, you need to add @ComponentScan to
your @Configuration class, where the basePackages attribute is a common parent package for the two
classes. (Alternatively, you can specify a comma/semicolon/space-separated list that includes the
parent package of each class.)

96


https://github.com/spring-projects/spring-framework/wiki/Spring-Annotation-Programming-Model

@Configuration
@ComponentScan(basePackages = "org.example")
public class AppConfig {

}

0 For concision, the above may have used the value attribute of the annotation, i.e.
@ComponentScan("org.example")

The following is an alternative using XML

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan base-package="org.example"/>

</beans>

The use of <context:component-scan> implicitly enables the functionality of
Q <context:annotation-config>. There is wusually no need to include the
<context:annotation-config> element when using <context:component-scan>.

The scanning of classpath packages requires the presence of corresponding

directory entries in the classpath. When you build JARs with Ant, make sure that

you do not activate the files-only switch of the JAR task. Also, classpath directories

may not get exposed based on security policies in some environments, e.g.

standalone apps on JDK 1.7.0_45 and higher (which requires 'Trusted-Library'

setup in your manifests; see https://stackoverflow.com/questions/19394570/java-
0 jre-7u45-breaks-classloader-getresources).

On JDK 9’s module path (Jigsaw), Spring’s classpath scanning generally works as
expected. However, please make sure that your component classes are exported in
your module-info descriptors; if you expect Spring to invoke non-public members
of your classes, make sure that they are 'opened' (i.e. using an opens declaration
instead of an exports declaration in your module-info descriptor).

Furthermore, the AutowiredAnnotationBeanPostProcessor and CommonAnnotationBeanPostProcessor are
both included implicitly when you use the component-scan element. That means that the two
components are autodetected and wired together - all without any bean configuration metadata
provided in XML.

97


https://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
https://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

You can disable the registration of AutowiredAnnotationBeanPostProcessor and
0 CommonAnnotationBeanPostProcessor by including the annotation-config attribute
with a value of false.

1.10.4. Using filters to customize scanning

By default, classes annotated with @Component, @Repository, @Service, @Controller, or a custom
annotation that itself is annotated with @Component are the only detected candidate components.
However, you can modify and extend this behavior simply by applying custom filters. Add them as
includeFilters or excludeFilters parameters of the @ComponentScan annotation (or as include-filter or
exclude-filter sub-elements of the component-scan element). Each filter element requires the type and
expression attributes. The following table describes the filtering options.

Table 5. Filter Types
Filter Type

annotation (default)

assignable

aspectj

regex

custom

Example Expression

org.example.SomeAnnotation

org.example.Some(Class

org.example..*Service+

org\.example\.Default.*

org.example.MyTypeFilter

Description

An annotation to be present at
the type level in target
components.

A class (or interface) that the
target components are
assignable to
(extend/implement).

An Aspect] type expression to
be matched by the target
components.

A regex expression to be
matched by the target
components class names.

A custom implementation of the
org.springframework.core.type
.TypeFilter interface.

The following example shows the configuration ignoring all @Repository annotations and using

"stub” repositories instead.

(basePackages

includeFilters =
".*Stub.*Repository"),

excludeFilters =
public class AppConfig {

}

and the equivalent using XML

98

= "org.example",

(type = FilterType.REGEX, pattern =

(Repository.class))



<beans>
<context:component-scan base-package="org.example">
<context:include-filter type="regex"
expression=".*Stub.*Repository"/>
<context:exclude-filter type="annotation"
expression="org.springframework.stereotype.Repository"/>
</context:component-scan>
</beans>

You can also disable the default filters by setting useDefaultFilters=false on the
0 annotation or providing use-default-filters="false" as an attribute of the

<component-scan/> element. This will in effect disable automatic detection of classes

annotated with @Component, @Repository, @Service, @Controller, or @Configuration.

1.10.5. Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with
the same @Bean annotation used to define bean metadata within @Configuration annotated classes.
Here is a simple example:

@Component
public class FactoryMethodComponent {

@Bean
@Qualifier("public")
public TestBean publicInstance() {
return new TestBean("publicInstance");

}

public void doWork() {
// Component method implementation omitted

}

This class is a Spring component that has application-specific code contained in its doWork()
method. However, it also contributes a bean definition that has a factory method referring to the
method publicInstance(). The @Bean annotation identifies the factory method and other bean
definition properties, such as a qualifier value through the @Qualifier annotation. Other method
level annotations that can be specified are @Scope, @Lazy, and custom qualifier annotations.

In addition to its role for component initialization, the @Lazy annotation may also
be placed on injection points marked with @Autowired or @Inject. In this context, it

leads to the injection of a lazy-resolution proxy.

Autowired fields and methods are supported as previously discussed, with additional support for
autowiring of @Bean methods:

99



public class FactoryMethodComponent {

private static int i;

("public")
public TestBean publicInstance() {
return new TestBean("publicInstance");

}
// use of a custom qualifier and autowiring of method parameters

protected TestBean protectedInstance(
("public") TestBean spouse,
("#{privateInstance.age}") String country) {
TestBean tb = new TestBean("protectedInstance", 1);
tb.setSpouse(spouse);
tb.setCountry(country);
return tb;

private TestBean privateInstance() {
return new TestBean("privateInstance", i++);

}

public TestBean requestScopedInstance() {
return new TestBean("requestScopedInstance", 3);

}

The example autowires the String method parameter country to the value of the age property on
another bean named privateInstance. A Spring Expression Language element defines the value of
the property through the notation #{ <expression> }. For @Value annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

As of Spring Framework 4.3, you may also declare a factory method parameter of type
InjectionPoint (or its more specific subclass DependencyDescriptor) in order to access the requesting
injection point that triggers the creation of the current bean. Note that this will only apply to the
actual creation of bean instances, not to the injection of existing instances. As a consequence, this
feature makes most sense for beans of prototype scope. For other scopes, the factory method will
only ever see the injection point which triggered the creation of a new bean instance in the given
scope: for example, the dependency that triggered the creation of a lazy singleton bean. Use the
provided injection point metadata with semantic care in such scenarios.

100



public class FactoryMethodComponent {

("prototype")
public TestBean prototypelnstance(InjectionPoint injectionPoint) {
return new TestBean("prototypelnstance for " + injectionPoint.getMember());

}

The @Bean methods in a regular Spring component are processed differently than their counterparts
inside a Spring @Configuration class. The difference is that @Component classes are not enhanced with
CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which
invoking methods or fields within @Bean methods in @Configuration classes creates bean metadata
references to collaborating objects; such methods are not invoked with normal Java semantics but
rather go through the container in order to provide the usual lifecycle management and proxying
of Spring beans even when referring to other beans via programmatic calls to @Bean methods. In
contrast, invoking a method or field in an @Bean method within a plain @Component class has
standard Java semantics, with no special CGLIB processing or other constraints applying.

101



You may declare @Bean methods as static, allowing for them to be called without
creating their containing configuration class as an instance. This makes particular
sense when defining post-processor beans, e.g. of type BeanFactoryPostProcessor or
BeanPostProcessor, since such beans will get initialized early in the container
lifecycle and should avoid triggering other parts of the configuration at that point.

Note that calls to static @Bean methods will never get intercepted by the container,
not even within @Configuration classes (see above). This is due to technical
limitations: CGLIB subclassing can only override non-static methods. As a
consequence, a direct call to another @Bean method will have standard Java
semantics, resulting in an independent instance being returned straight from the
factory method itself.

The Java language visibility of @Bean methods does not have an immediate impact
on the resulting bean definition in Spring’s container. You may freely declare your
factory methods as you see fit in non-@Configuration classes and also for static
methods anywhere. However, regular @Bean methods in @Configuration classes
need to be overridable, i.e. they must not be declared as private or final.

@Bean methods will also be discovered on base classes of a given component or
configuration class, as well as on Java 8 default methods declared in interfaces
implemented by the component or configuration class. This allows for a lot of
flexibility in composing complex configuration arrangements, with even multiple
inheritance being possible through Java 8 default methods as of Spring 4.2.

Finally, note that a single class may hold multiple @Bean methods for the same
bean, as an arrangement of multiple factory methods to use depending on
available dependencies at runtime. This is the same algorithm as for choosing the
"greediest” constructor or factory method in other configuration scenarios: The
variant with the largest number of satisfiable dependencies will be picked at
construction time, analogous to how the container selects between multiple
@Autowired constructors.

1.10.6. Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by
the BeanNameGenerator strategy known to that scanner. By default, any Spring stereotype annotation

(eComponent, @Repository, @Service, and @Controller) that contains a name value will thereby provide
that name to the corresponding bean definition.

If such an annotation contains no name value or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-

qualified class name. For example, if the following component classes were detected, the names
would be myMovielister and movieFinderImpl:

102



("myMovielister™")
public class SimpleMovielister {
/] ...
}

public class MovieFinderImpl implements MovieFinder {
/] ...
}

If you do not want to rely on the default bean-naming strategy, you can provide a

0 custom bean-naming strategy. First, implement the BeanNameGenerator interface,
and be sure to include a default no-arg constructor. Then, provide the fully-
qualified class name when configuring the scanner:

(basePackages = "org.example", nameGenerator = MyNameGenerator.class)
public class AppConfig {

}
<beans>
<context:component-scan base-package="org.example"
name-generator="org.example.MyNameGenerator" />
</beans>

As a general rule, consider specifying the name with the annotation whenever other components
may be making explicit references to it. On the other hand, the auto-generated names are adequate
whenever the container is responsible for wiring.

1.10.7. Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for
autodetected components is singleton. However, sometimes you need a different scope which can
be specified via the @Scope annotation. Simply provide the name of the scope within the annotation:

("prototype")
public class MovieFinderImpl implements MovieFinder {

/] ...
}

103


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html

@Scope annotations are only introspected on the concrete bean class (for annotated

0 components) or the factory method (for @Bean methods). In contrast to XML bean
definitions, there is no notion of bean definition inheritance, and inheritance
hierarchies at the class level are irrelevant for metadata purposes.

For details on web-specific scopes such as "request"/"session" in a Spring context, see Request,
session, application, and WebSocket scopes. Like the pre-built annotations for those scopes, you
may also compose your own scoping annotations using Spring’s meta-annotation approach: e.g. a
custom annotation meta-annotated with @Scope("prototype"), possibly also declaring a custom
scoped-proxy mode.

To provide a custom strategy for scope resolution rather than relying on the

0 annotation-based approach, implement the ScopeMetadataResolver interface, and
be sure to include a default no-arg constructor. Then, provide the fully-qualified
class name when configuring the scanner:

(basePackages = "org.example", scopeResolver = MyScopeResolver.class)
public class AppConfig {

}

<beans>

<context:component-scan base-package="org.example" scope-resolver=
"org.example.MyScopeResolver"/>
</beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped
objects. The reasoning is described in Scoped beans as dependencies. For this purpose, a scoped-
proxy attribute is available on the component-scan element. The three possible values are: no,
interfaces, and targetClass. For example, the following configuration will result in standard JDK
dynamic proxies:

(basePackages = "org.example", scopedProxy = ScopedProxyMode.INTERFACES)
public class AppConfig {

}

<beans>
<context:component-scan base-package="org.example" scoped-proxy="interfaces"/>
</beans>

104


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

1.10.8. Providing qualifier metadata with annotations

The @Qualifier annotation is discussed in Fine-tuning annotation-based autowiring with qualifiers.
The examples in that section demonstrate the use of the @Qualifier annotation and custom qualifier
annotations to provide fine-grained control when you resolve autowire candidates. Because those
examples were based on XML bean definitions, the qualifier metadata was provided on the
candidate bean definitions using the qualifier or meta sub-elements of the bean element in the XML.
When relying upon classpath scanning for autodetection of components, you provide the qualifier
metadata with type-level annotations on the candidate class. The following three examples
demonstrate this technique:

<strong> ("Action")</strong>

public class ActionMovieCatalog implements MovieCatalog {
/] ...

}

<strong> ("Action")</strong>

public class ActionMovieCatalog implements MovieCatalog {
/] ...

}

<strong> </strong>

public class CachingMovieCatalog implements MovieCatalog {
/] ...

}

As with most annotation-based alternatives, keep in mind that the annotation

0 metadata is bound to the class definition itself, while the use of XML allows for
multiple beans of the same type to provide variations in their qualifier metadata,
because that metadata is provided per-instance rather than per-class.

1.10.9. Generating an index of candidate components

While classpath scanning is very fast, it is possible to improve the startup performance of large
applications by creating a static list of candidates at compilation time. In this mode, all modules of
the application must use this mechanism as, when the ApplicationContext detects such index, it will
automatically use it rather than scanning the classpath.

To generate the index, simply add an additional dependency to each module that contains
components that are target for component scan directives:

105



<dependencies>
<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-context-indexer</artifactId>
<version>5.0.17.RELEASE</version>
<optional>true</optional>
</dependency>
</dependencies>

Or, using Gradle:

dependencies {
compileOnly("org.springframework:spring-context-indexer:5.0.17.RELEASE")
}

That process will generate a META-INF/spring.components file that is going to be included in the jar.

When working with this mode in your IDE, the spring-context-indexer must be
O registered as an annotation processor to make sure the index is up to date when
candidate components are updated.

The index is enabled automatically when a META-INF/spring.components is found on
the classpath. If an index is partially available for some libraries (or use cases) but

Q couldn’t be built for the whole application, you can fallback to a regular classpath
arrangement (i.e. as no index was present at all) by setting spring.index.ignore to
true, either as a system property or in a spring.properties file at the root of the
classpath.

1.11. Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency
Injection). Those annotations are scanned in the same way as the Spring annotations. You just need
to have the relevant jars in your classpath.

If you are using Maven, the javax.inject artifact is available in the standard
Maven repository ( https://repol.maven.org/maven2/javax/inject/javax.inject/1/).
You can add the following dependency to your file pom.xml:

0 <dependency>

<groupId>javax.inject</groupld>
<artifactId>javax.inject</artifactId>
<version>1</version>

</dependency>

106


https://repo1.maven.org/maven2/javax/inject/javax.inject/1/

1.11.1. Dependency Injection with @Inject and @Named

Instead of @Autowired, @javax.inject.Inject may be used as follows:

import javax.inject.Inject;
public class SimpleMovielister {
private MovieFinder movieFinder;
public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

public void listMovies() {
this.movieFinder.findMovies(...);

As with @Autowired, it is possible to use @Inject at the field level, method level and constructor-
argument level. Furthermore, you may declare your injection point as a Provider, allowing for on-
demand access to beans of shorter scopes or lazy access to other beans through a Provider.get()
call. As a variant of the example above:

import javax.inject.Inject;
import javax.inject.Provider;

public class SimpleMovielister {
private Provider<MovieFinder> movieFinder;
public void setMovieFinder(Provider<MovieFinder> movieFinder) {

this.movieFinder = movieFinder;

}

public void listMovies() {
this.movieFinder.get().findMovies(...);

If you would like to use a qualified name for the dependency that should be injected, you should
use the @Named annotation as follows:

107



import javax.inject.Inject;
import javax.inject.Named;

public class SimpleMovielister {

private MovieFinder movieFinder;

public void setMovieFinder( ("main") MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

/] ...

Like @Autowired, @Inject can also be used with java.util.Optional or @Nullable. This is even more
applicable here since @Inject does not have a required attribute.

public class SimpleMovielister {

public void setMovieFinder(Optional<MovieFinder> movieFinder) {

}

public class SimpleMovielister {
public void setMovieFinder( MovieFinder movieFinder) {

}

1.11.2. @Named and @ManagedBean: standard equivalents to the
@Component annotation

Instead of @Component, @javax.inject.Named or javax.annotation.ManagedBean may be used as follows:

108



import javax.inject.Inject;
import javax.inject.Named;

@Named("movieListener") // @ManagedBean("movielistener") could be used as well
public class SimpleMovielister {

private MovieFinder movieFinder;
@Inject

public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

/] ...

It is very common to use @Component without specifying a name for the component. @Named can be
used in a similar fashion:

import javax.inject.Inject;
import javax.inject.Named;

@Named
public class SimpleMovielister {

private MovieFinder movieFinder;
@Inject
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;

}

/] ...

When using @Named or @ManagedBean, it is possible to use component scanning in the exact same way
as when using Spring annotations:

@Configuration
@ComponentScan(basePackages = "org.example")
public class AppConfig {

}

109



In contrast to @Component, the JSR-330 @Named and the JSR-250 ManagedBean
0 annotations are not composable. Please use Spring’s stereotype model for building
custom component annotations.

1.11.3. Limitations of JSR-330 standard annotations

When working with standard annotations, it is important to know that some significant features
are not available as shown in the table below:

Table 6. Spring component model elements vs. JSR-330 variants

Spring

@Autowired

@Component

@Scope("singleton")

@Qualifier

@Value
@Required
@Lazy

110

javax.inject.*

@Inject

@Named / @ManagedBean

@Singleton

@Qualifier / @Named

javax.inject restrictions /
comments

@Inject has no required'
attribute; can be used with Java
8’s Optional instead.

JSR-330 does not provide a
composable model, just a way
to identify named components.

The JSR-330 default scope is like
Spring’s prototype. However, in
order to keep it consistent with
Spring’s general defaults, a JSR-
330 bean declared in the Spring
container is a singleton by
default. In order to use a scope
other than singleton, you
should use Spring’s @Scope
annotation. javax.inject also
provides a @Scope annotation.
Nevertheless, this one is only
intended to be used for creating
your own annotations.

javax.inject.Qualifier isjusta
meta-annotation for building
custom qualifiers. Concrete
String qualifiers (like Spring’s
@Qualifier with a value) can be
associated through
javax.inject.Named.

no equivalent
no equivalent

no equivalent


https://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring javax.inject.* javax.inject restrictions /
comments

ObjectFactory Provider javax.inject.Provider is a
direct alternative to Spring’s
ObjectFactory, just with a
shorter get() method name. It
can also be used in combination
with Spring’s @Autowired or with
non-annotated constructors and
setter methods.

1.12. Java-based container configuration

1.12.1. Basic concepts: @Bean and @Configuration

The central artifacts in Spring’s new Java-configuration support are @Configuration-annotated
classes and @Bean-annotated methods.

The @Bean annotation is used to indicate that a method instantiates, configures and initializes a new
object to be managed by the Spring IoC container. For those familiar with Spring’s <beans/> XML
configuration the @Bean annotation plays the same role as the <bean/> element. You can use @Bean
annotated methods with any Spring @Component, however, they are most often used with
@Configuration beans.

Annotating a class with @Configuration indicates that its primary purpose is as a source of bean
definitions. Furthermore, @Configuration classes allow inter-bean dependencies to be defined by
simply calling other @Bean methods in the same class. The simplest possible @Configuration class
would read as follows:

public class AppConfig {

public MyService myService() {
return new MyServiceImpl();

}

The AppConfig class above would be equivalent to the following Spring <beans/> XML:

<beans>
<bean id="myService" class="com.acme.services.MyServiceImpl"/>
</beans>

111



Full @Configuration vs 'lite' @Bean mode?

When @Bean methods are declared within classes that are not annotated with @Configuration
they are referred to as being processed in a 'lite’ mode. Bean methods declared in a
@Component or even in a plain old class will be considered 'lite', with a different primary
purpose of the containing class and an @Bean method just being a sort of bonus there. For
example, service components may expose management views to the container through an
additional @Bean method on each applicable component class. In such scenarios, @Bean
methods are a simple general-purpose factory method mechanism.

Unlike full @Configuration, lite @Bean methods cannot declare inter-bean dependencies.
Instead, they operate on their containing component’s internal state and optionally on
arguments that they may declare. Such an @Bean method should therefore not invoke other
@Bean methods; each such method is literally just a factory method for a particular bean
reference, without any special runtime semantics. The positive side-effect here is that no
CGLIB subclassing has to be applied at runtime, so there are no limitations in terms of class
design (i.e. the containing class may nevertheless be final etc).

In common scenarios, @Bean methods are to be declared within @Configuration classes,
ensuring that 'full' mode is always used and that cross-method references will therefore get
redirected to the container’s lifecycle management. This will prevent the same @Bean method
from accidentally being invoked through a regular Java call which helps to reduce subtle
bugs that can be hard to track down when operating in 'lite' mode.

The @Bean and @Configuration annotations will be discussed in depth in the sections below. First,
however, we’ll cover the various ways of creating a spring container using Java-based
configuration.

1.12.2. Instantiating the Spring container using
AnnotationConfigApplicationContext

The sections below document Spring’s AnnotationConfigApplicationContext, new in Spring 3.0. This
versatile ApplicationContext implementation is capable of accepting not only @Configuration classes
as input, but also plain @Component classes and classes annotated with JSR-330 metadata.

When @Configuration classes are provided as input, the @Configuration class itself is registered as a
bean definition, and all declared @Bean methods within the class are also registered as bean
definitions.

When @Component and JSR-330 classes are provided, they are registered as bean definitions, and it is
assumed that DI metadata such as @Autowired or @Inject are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
(lassPathXmlApplicationContext, @Configuration classes may be used as input when instantiating an
AnnotationConfigApplicationContext. This allows for completely XML-free usage of the Spring

112



container:

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
MyService myService = ctx.getBean(MyService.class);
myService.doStuff();

As mentioned above, AnnotationConfigApplicationContext is not limited to working only with
@Configuration classes. Any @Component or JSR-330 annotated class may be supplied as input to the
constructor. For example:

public static void main(String[] args) {

ApplicationContext ctx = new AnnotationConfigApplicationContext(MyServiceImpl
.class, Dependencyl.class, Dependency2.class);

MyService myService = ctx.getBean(MyService.class);

myService.doStuff();

The above assumes that MyServiceImpl, Dependencyl and Dependency? use Spring dependency
injection annotations such as @Autowired.

Building the container programmatically using register(Class<?>...)

An AnnotationConfigApplicationContext may be instantiated using a no-arg constructor and then
configured wusing the register() method. This approach 1is particularly useful when
programmatically building an AnnotationConfigApplicationContext.

public static void main(String[] args) {
AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
ctx.register(AppConfig.class, OtherConfig.class);
ctx.register(AdditionalConfig.class);
ctx.refresh();
MyService myService = ctx.getBean(MyService.class);
myService.doStuff();

Enabling component scanning with scan(String...)

To enable component scanning, just annotate your @Configuration class as follows:

(basePackages = "com.acme")
public class AppConfig {

}

113



Experienced Spring users will be familiar with the XML declaration equivalent
from Spring’s context: namespace

Q <beans>

<context:component-scan base-package="com.acme"/>
</beans>

In the example above, the com.acme package will be scanned, looking for any @Component-annotated
classes, and those classes will be registered as Spring bean definitions within the container.
AnnotationConfigApplicationContext exposes the scan(String::-) method to allow for the same
component-scanning functionality:

public static void main(String[] args) {
AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
ctx.scan("com.acme");
ctx.refresh();
MyService myService = ctx.getBean(MyService.class);

Remember that @Configuration classes are meta-annotated with @Component, so they
are candidates for component-scanning! In the example above, assuming that
0 AppConfig is declared within the com.acme package (or any package underneath), it
will be picked up during the call to scan(), and upon refresh() all its @Bean
methods will be processed and registered as bean definitions within the container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebApplicationContext wvariant of AnnotationConfigApplicationContext 1is available with
AnnotationConfigWebApplicationContext. This implementation may be used when configuring the
Spring ContextlLoaderListener servlet listener, Spring MVC DispatcherServlet, etc. What follows is a
web.xml snippet that configures a typical Spring MVC web application. Note the use of the
contextClass context-param and init-param:

<web-app>
<!-- Configure ContextlLoaderListener to use AnnotationConfigWebApplicationContext
instead of the default XmlWebApplicationContext -->
<context-param>
<param-name>contextClass</param-name>
<param-value>

org.springframework.web.context.support.AnnotationConfigWebApplicationContext
</param-value>

</context-param>

<!-- Configuration locations must consist of one or more comma- or space-delimited
fully-qualified @Configuration classes. Fully-qualified packages may also be

114



specified for component-scanning -->
<context-param>

<param-name>contextConfiglLocation</param-name>

<param-value>com.acme.AppConfig</param-value>
</context-param>

<!-- Bootstrap the root application context as usual using ContextlLoaderListener

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

<!-- Declare a Spring MVC DispatcherServlet as usual -->
<servlet>
<servlet-name>dispatcher</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>

<!-- Confiqgure DispatcherServlet to use AnnotationConfigWebApplicationContext

instead of the default XmlWebApplicationContext -->
<init-param>

<param-name>contextClass</param-name>

<param-value>

org.springframework.web.context.support.AnnotationConfigWebApplicationContext
</param-value>
</init-param>
<!-- Again, config locations must consist of one or more comma- or space-
delimited
and fully-qualified @Configuration classes -->
<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value>com.acme.web.MvcConfig</param-value>
</init-param>
</servlet>

<!-- map all requests for /app/* to the dispatcher servlet -->
<servlet-mapping>
<servlet-name>dispatcher</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>
</web-app>

1.12.3. Using the @Bean annotation

@Bean is a method-level annotation and a direct analog of the XML <bean/> element. The annotation
supports some of the attributes offered by <bean/>, such as: init-method, destroy-method,

autowiring and name.

You can use the @Bean annotation in a @Configuration-annotated or in a @Component-annotated class.



Declaring a bean

To declare a bean, simply annotate a method with the @Bean annotation. You use this method to
register a bean definition within an ApplicationContext of the type specified as the method’s return
value. By default, the bean name will be the same as the method name. The following is a simple
example of a @Bean method declaration:

public class AppConfig {

public TransferServiceImpl transferService() {
return new TransferServiceImpl();

}

The preceding configuration is exactly equivalent to the following Spring XML:

<beans>
<bean id="transferService" class="com.acme.TransferServiceImpl"/>
</beans>

Both declarations make a bean named transferService available in the ApplicationContext, bound
to an object instance of type TransferServiceImpl:

transferService -> com.acme.TransferServiceImpl

You may also declare your @Bean method with an interface (or base class) return type:

public class AppConfig {

public TransferService transferService() {
return new TransferServiceImpl();

}

However, this limits the visibility for advance type prediction to the specified interface type
(TransferService) then, with the full type (TransferServiceImpl) only known to the container once
the affected singleton bean has been instantiated. Non-lazy singleton beans get instantiated
according to their declaration order, so you may see different type matching results depending on
when another component tries to match by a non-declared type (such as @Autowired
TransferServiceImpl which will only resolve once the "transferService" bean has been instantiated).

116



If you consistently refer to your types by a declared service interface, your @Bean
return types may safely join that design decision. However, for components

Q implementing several interfaces or for components potentially referred to by their
implementation type, it is safer to declare the most specific return type possible (at
least as specific as required by the injection points referring to your bean).

Bean dependencies

A @Bean annotated method can have an arbitrary number of parameters describing the
dependencies required to build that bean. For instance if our TransferService requires an
AccountRepository we can materialize that dependency via a method parameter:

public class AppConfig {

public TransferService transferService(AccountRepository accountRepository) {
return new TransferServiceImpl(accountRepository);

}

The resolution mechanism is pretty much identical to constructor-based dependency injection, see
the relevant section for more details.

Receiving lifecycle callbacks

Any classes defined with the @Bean annotation support the regular lifecycle callbacks and can use
the EPostConstruct and @PreDestroy annotations from JSR-250, see JSR-250 annotations for further
details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
InitializingBean, DisposableBean, or Lifecycle, their respective methods are called by the container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNameAware,
MessageSourceAware, ApplicationContextAware, and so on are also fully supported.

The @Bean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML’s init-method and destroy-method attributes on the bean element:

117



public class Foo {

public void init() {
// initialization logic
}
}

public class Bar {

public void cleanup() {
// destruction logic
}
}

@Configuration
public class AppConfig {

@Bean(initMethod = "init")
public Foo foo() {
return new Foo();

}

@Bean(destroyMethod = "cleanup")
public Bar bar() {
return new Bar();

}

118



By default, beans defined using Java config that have a public close or shutdown
method are automatically enlisted with a destruction callback. If you have a public
close or shutdown method and you do not wish for it to be called when the
container shuts down, simply add @Bean(destroyMethod="") to your bean definition
to disable the default (inferred) mode.

You may want to do that by default for a resource that you acquire via JNDI as its
lifecycle is managed outside the application. In particular, make sure to always do
it for a DataSource as it is known to be problematic on Java EE application servers.

9 (destroyMethod="")

public DataSource dataSource() throws NamingException {
return (DataSource) jndiTemplate.lookup("MyDS");

}

Also, with @Bean methods, you will typically choose to use programmatic JNDI
lookups: either using Spring’s JndiTemplate/IndilLocatorDelegate helpers or straight
JNDI InitialContext usage, but not the IJndiObjectFactoryBean variant which would
force you to declare the return type as the FactoryBean type instead of the actual
target type, making it harder to use for cross-reference calls in other @Bean
methods that intend to refer to the provided resource here.

Of course, in the case of Foo above, it would be equally as valid to call the init() method directly
during construction:

public class AppConfig {

public Foo foo() {
Foo foo = new Foo();
foo.init();
return foo;

}
/] ...
}
Q When you work directly in Java, you can do anything you like with your objects
and do not always need to rely on the container lifecycle!
Specifying bean scope

Using the @Scope annotation

You can specify that your beans defined with the @Bean annotation should have a specific scope. You
can use any of the standard scopes specified in the Bean Scopes section.

119



The default scope is singleton, but you can override this with the @Scope annotation:

@Configuration
public class MyConfiguration {

@Bean
<strong>@Scope("prototype")</strong>
public Encryptor encryptor() {

/] ...
}

@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The
easiest way to create such a proxy when using the XML configuration is the <aop:scoped-proxy/>
element. Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy ( ScopedProxyMode.NO), but you can specify
ScopedProxyMode. TARGET_CLASS or ScopedProxyMode. INTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link)
to our @Bean using Java, it would look like the following:

// an HTTP Session-scoped bean exposed as a proxy
@Bean
<strong>@SessionScope</strong>
public UserPreferences userPreferences() {
return new UserPreferences();

}

@Bean

public Service userService() {
UserService service = new SimpleUserService();
// a reference to the proxied userPreferences bean
service.setUserPreferences(userPreferences());
return service;

Customizing bean naming

By default, configuration classes use a @Bean method’s name as the name of the resulting bean. This
functionality can be overridden, however, with the name attribute.

120



@Configuration
public class AppConfig {

@Bean(name = "myFoo")
public Foo foo() {
return new Foo();

}

Bean aliasing

As discussed in Naming beans, it is sometimes desirable to give a single bean multiple names,
otherwise known as bean aliasing. The name attribute of the @Bean annotation accepts a String array
for this purpose.

@Configuration
public class AppConfig {

@Bean({"dataSource", "subsystemA-dataSource", "subsystemB-dataSource"})
public DataSource dataSource() {
// instantiate, configure and return DataSource bean...

}

Bean description

Sometimes it is helpful to provide a more detailed textual description of a bean. This can be
particularly useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a @Bean the @Description annotation can be used:

@Configuration
public class AppConfig {

@Bean
<strong>@Description("Provides a basic example of a bean")</strong>
public Foo foo() {

return new Foo();

}

1.12.4. Using the @Configuration annotation

@Configuration is a class-level annotation indicating that an object is a source of bean definitions.
@Configuration classes declare beans via public @Bean annotated methods. Calls to @Bean methods on
@Configuration classes can also be used to define inter-bean dependencies. See Basic concepts:
@Bean and @Configuration for a general introduction.

121


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/Description.html

Injecting inter-bean dependencies

When @Beans have dependencies on one another, expressing that dependency is as simple as having
one bean method call another:

@Configuration
public class AppConfig {

@Bean
public Foo foo() {
return new Foo(bar());

}

@Bean
public Bar bar() {
return new Bar();

}

In the example above, the foo bean receives a reference to bar via constructor injection.

This method of declaring inter-bean dependencies only works when the @Bean
method is declared within a @Configuration class. You cannot declare inter-bean
dependencies using plain @Component classes.

Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is
useful in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using
Java for this type of configuration provides a natural means for implementing this pattern.

public abstract class CommandManager {
public Object process(Object commandState) {
// grab a new instance of the appropriate Command interface
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();

}

// okay... but where is the implementation of this method?
protected abstract Command createCommand();

Using Java-configuration support , you can create a subclass of CommandManager where the abstract
createCommand() method is overridden in such a way that it looks up a new (prototype) command
object:

122



@Bean

@Scope("prototype")

public AsyncCommand asyncCommand() {
AsyncCommand command = new AsyncCommand();
// inject dependencies here as required
return command;

@Bean
public CommandManager commandManager() {
// return new anonymous implementation of CommandManager with command() overridden
// to return a new prototype Command object
return new CommandManager() {
protected Command createCommand() {
return asyncCommand();

}

Further information about how Java-based configuration works internally

The following example shows a @Bean annotated method being called twice:

@Configuration
public class AppConfig {

@Bean

public ClientService clientServicel() {
ClientServiceImpl clientService = new ClientServiceImpl();
clientService.setClientDao(clientDao());
return clientService;

@Bean

public ClientService clientService2() {
ClientServiceImpl clientService = new ClientServiceImpl();
clientService.setClientDao(clientDao());
return clientService;

@Bean
public ClientDao clientDao() {
return new ClientDaoImpl();

}

clientDao() has been called once in clientServicel() and once in clientService2(). Since this
method creates a new instance of ClientDaoImpl and returns it, you would normally expect having 2

123



instances (one for each service). That definitely would be problematic: in Spring, instantiated beans
have a singleton scope by default. This is where the magic comes in: All @Configuration classes are
subclassed at startup-time with CGLIB. In the subclass, the child method checks the container first
for any cached (scoped) beans before it calls the parent method and creates a new instance. Note
that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because CGLIB classes
have been repackaged under org.springframework.cglib and included directly within the spring-
core JAR.

9 The behavior could be different according to the scope of your bean. We are
talking about singletons here.

There are a few restrictions due to the fact that CGLIB dynamically adds features
at startup-time, in particular that configuration classes must not be final. However,
as of 4.3, any constructors are allowed on configuration classes, including the use
of @Autowired or a single non-default constructor declaration for default injection.

Q If you prefer to avoid any CGLIB-imposed limitations, consider declaring your
@Bean methods on non-@Configuration classes, e.g. on plain @Component classes
instead. Cross-method calls between @Bean methods won’t get intercepted then, so
yowll have to exclusively rely on dependency injection at the constructor or
method level there.

1.12.5. Composing Java-based configurations

Using the @Import annotation

Much as the <import/> element is used within Spring XML files to aid in modularizing
configurations, the @Import annotation allows for loading @Bean definitions from another
configuration class:

public class ConfigA {

public A a() {
return new A();

}

(ConfigA.class)
public class ConfigB {

public B b() {
return new B();

}

124



Now, rather than needing to specify both ConfigA.class and ConfigB.class when instantiating the
context, only ConfigB needs to be supplied explicitly:

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(ConfigB.class);

// now both beans A and B will be available...
A a = ctx.getBean(A.class);
B b = ctx.getBean(B.class);

This approach simplifies container instantiation, as only one class needs to be dealt with, rather
than requiring the developer to remember a potentially large number of @Configuration classes
during construction.

As of Spring Framework 4.2, @Import also supports references to regular
component classes, analogous to the AnnotationConfigApplicationContext.register

Q method. This is particularly useful if you’d like to avoid component scanning,
using a few configuration classes as entry points for explicitly defining all your
components.

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have
dependencies on one another across configuration classes. When using XML, this is not an issue,
per se, because there is no compiler involved, and one can simply declare ref="someBean" and trust
that Spring will work it out during container initialization. Of course, when using @Configuration
classes, the Java compiler places constraints on the configuration model, in that references to other
beans must be valid Java syntax.

Fortunately, solving this problem is simple. As we already discussed, @Bean method can have an
arbitrary number of parameters describing the bean dependencies. Let’s consider a more real-
world scenario with several @Configuration classes, each depending on beans declared in the
others:

125



@Configuration
public class ServiceConfig {

@Bean
public TransferService transferService(AccountRepository accountRepository) {
return new TransferServiceImpl(accountRepository);
}
}

@Configuration
public class RepositoryConfig {

@Bean
public AccountRepository accountRepository(DataSource dataSource) {
return new JdbcAccountRepository(dataSource);
}
by

@Configuration
@Import({ServiceConfig.class, RepositoryConfig.class})
public class SystemTestConfig {

@Bean
public DataSource dataSource() {
// return new DataSource
Iy
+

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig
.class);
// everything wires up across configuration classes...
TransferService transferService = ctx.getBean(TransferService.class);
transferService.transfer(100.00, "A123", "C456");

There is another way to achieve the same result. Remember that @Configuration classes are
ultimately just another bean in the container: This means that they can take advantage of
@Autowired and @Value injection etc just like any other bean!

126



Make sure that the dependencies you inject that way are of the simplest kind only.
@Configuration classes are processed quite early during the initialization of the
context and forcing a dependency to be injected this way may lead to unexpected
early initialization. Whenever possible, resort to parameter-based injection as in
the example above.

Also, be particularly careful with BeanPostProcessor and BeanFactoryPostProcessor
definitions via @Bean. Those should usually be declared as static @Bean methods,
not triggering the instantiation of their containing configuration class. Otherwise,
@Autowired and @Value won’t work on the configuration class itself since it is being
created as a bean instance too early.

127



@Configuration
public class ServiceConfig {

@Autowired
private AccountRepository accountRepository;

@Bean
public TransferService transferService() {
return new TransferServiceImpl(accountRepository);
}
}

@Configuration
public class RepositoryConfig {

private final DataSource dataSource;

@Autowired
public RepositoryConfig(DataSource dataSource) {
this.dataSource = dataSource;

}

@Bean
public AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);
Iy
+

@Configuration
@Import({ServiceConfig.class, RepositoryConfig.class})
public class SystemTestConfig {

@Bean
public DataSource dataSource() {
// return new DataSource
}
}

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig
.class);
// everything wires up across configuration classes...
TransferService transferService = ctx.getBean(TransferService.class);
transferService.transfer(100.00, "A123", "C456");

128



Constructor injection in @Configuration classes is only supported as of Spring

Q Framework 4.3. Note also that there is no need to specify @Autowired if the target
bean defines only one constructor; in the example above, @Autowired is not
necessary on the RepositoryConfig constructor.

Fully-qualifying imported beans for ease of navigation

In the scenario above, using @Autowired works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat
ambiguous. For example, as a developer looking at ServiceConfig, how do you know exactly where
the @Autowired AccountRepository bean is declared? It’s not explicit in the code, and this may be just
fine. Remember that the Spring Tool Suite provides tooling that can render graphs showing how
everything is wired up - that may be all you need. Also, your Java IDE can easily find all
declarations and uses of the AccountRepository type, and will quickly show you the location of @Bean
methods that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within
your IDE from one @Configuration class to another, consider autowiring the configuration classes
themselves:

public class ServiceConfig {
private RepositoryConfig repositoryConfig;

public TransferService transferService() {
// navigate 'through' the config class to the @Bean method!
return new TransferServiceImpl(repositoryConfig.accountRepository());

In the situation above, it is completely explicit where AccountRepository is defined. However,
ServiceConfig is now tightly coupled to RepositoryConfig; that’s the tradeoff. This tight coupling can
be somewhat mitigated by using interface-based or abstract class-based @Configuration classes.
Consider the following:

129


https://spring.io/tools/sts

@Configuration
public class ServiceConfig {

@Autowired
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
return new TransferServiceImpl(repositoryConfig.accountRepository());
}
}

@Configuration
public interface RepositoryConfig {

@Bean

AccountRepository accountRepository();
}
@Configuration

public class DefaultRepositoryConfig implements RepositoryConfig {

@Bean
public AccountRepository accountRepository() {
return new JdbcAccountRepository(...);
}
+

@Configuration

@Import({ServiceConfig.class, DefaultRepositoryConfig.class}) // import the concrete
config!

public class SystemTestConfig {

@Bean
public DataSource dataSource() {
// return DataSource

}
}

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig
.class);
TransferService transferService = ctx.getBean(TransferService.class);
transferService.transfer(100.00, "A123", "C456");

Now ServiceConfig is loosely coupled with respect to the concrete DefaultRepositoryConfig, and
built-in IDE tooling is still useful: it will be easy for the developer to get a type hierarchy of

130



RepositoryConfig implementations. In this way, navigating @Configuration classes and their
dependencies becomes no different than the usual process of navigating interface-based code.

If you would like to influence the startup creation order of certain beans, consider
declaring some of them as @Lazy (for creation on first access instead of on startup)
Q or as @DependsOn on certain other beans (making sure that specific other beans will
be created before the current bean, beyond what the latter’s direct dependencies

imply).

Conditionally include @Configuration classes or @Bean methods

It is often useful to conditionally enable or disable a complete @Configuration class, or even
individual @Bean methods, based on some arbitrary system state. One common example of this is to
use the @Profile annotation to activate beans only when a specific profile has been enabled in the
Spring Environment (see Bean definition profiles for details).

The @Profile annotation is actually implemented using a much more flexible annotation called
@Conditional. The @Conditional annotation indicates specific
org.springframework.context.annotation.Condition implementations that should be consulted
before a @Bean is registered.

Implementations of the Condition interface simply provide a matches(:--) method that returns true
or false. For example, here is the actual Condition implementation used for @Profile:

public boolean matches(ConditionContext context, AnnotatedTypeMetadata metadata) {
if (context.getEnvironment() != null) {

// Read the @Profile annotation attributes

MultiValueMap<String, Object> attrs = metadata.getAllAnnotationAttributes
(Profile.class.getName());

if (attrs != null) {

for (Object value : attrs.get("value")) {
if (context.getEnvironment().acceptsProfiles(((String[]) value))) {
return true;

}
}

return false;

}

return true;

See the @Conditional javadocs for more detail.

Combining Java and XML configuration

Spring’s @Configuration class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the
container. In cases where XML is convenient or necessary, you have a choice: either instantiate the

131


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html

container in an "XML-centric" way using, for example, ClassPathXmlApplicationContext, or in a
"Java-centric" fashion using AnnotationConfigApplicationContext and the @ImportResource
annotation to import XML as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include @Configuration classes
in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be
easier to create @Configuration classes on an as-needed basis and include them from the existing
XML files. Below youw’ll find the options for using @Configuration classes in this kind of "XML-
centric” situation.

Declaring @Configuration classes as plain Spring <bean/> elements

Remember that @Configuration classes are ultimately just bean definitions in the container. In this
example, we create a @Configuration class named AppConfig and include it within system-test-
config.xml as a <bean/> definition. Because <context:annotation-config/> is switched on, the
container will recognize the @Configuration annotation and process the @Bean methods declared in
AppConfig properly.

public class AppConfig {

private DataSource dataSource;

public AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);

}

public TransferService transferService() {
return new TransferService(accountRepository());

}

system-test-config.xml:

132



<beans>
<!-- enable processing of annotations such as @Autowired and @Configuration -->
<context:annotation-config/>
<context:property-placeholder location="classpath:/com/acme/jdbc.properties”/>

<bean class="com.acme.AppConfig"/>

<bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="url" value="${jdbc.ur1}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>
</beans>

jdbc.properties:

jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=

public static void main(String[] args) {
ApplicationContext ctx = new ClassPathXmlApplicationContext(
"classpath:/com/acme/system-test-config.xml");
TransferService transferService = ctx.getBean(TransferService.class);
/] ...

In system-test-config.xml above, the AppConfig <bean/> does not declare an id
element. While it would be acceptable to do so, it is unnecessary given that no

0 other bean will ever refer to it, and it is unlikely that it will be explicitly fetched
from the container by name. Likewise with the DataSource bean - it is only ever
autowired by type, so an explicit bean id is not strictly required.

Using <context:component-scan/> to pick up @Configuration classes

Because @Configuration is meta-annotated with @Component, @Configuration-annotated classes are
automatically candidates for component scanning. Using the same scenario as above, we can
redefine system-test-config.xml to take advantage of component-scanning. Note that in this case,
we don’t need to explicitly declare <context:annotation-config/>, because <context:component-
scan/> enables the same functionality.

system-test-config.xml:

133



<beans>
<!-- picks up and registers AppConfig as a bean definition -->
<context:component-scan base-package="com.acme"/>
<context:property-placeholder location="classpath:/com/acme/jdbc.properties”/>

<bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="url" value="${jdbc.ur1}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>
</beans>

@Configuration class-centric use of XML with @ImportResource

In applications where @Configuration classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ImportResource and define only as much XML as is needed. Doing so achieves a "Java-centric"
approach to configuring the container and keeps XML to a bare minimum.

@Configuration
@ImportResource("classpath:/com/acme/properties-config.xml")
public class AppConfig {

@Value("${jdbc.ur1}")
private String url;

@Value("${jdbc.username}")
private String username;

@Value("${jdbc.password}")
private String password;

@Bean
public DataSource dataSource() {
return new DriverManagerDataSource(url, username, password);

}

properties-config.xml
<beans>

<context:property-placeholder location="classpath:/com/acme/jdbc.properties”/>
</beans>

134



jdbc.properties
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa

jdbc.password=

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
TransferService transferService = ctx.getBean(TransferService.class);
/] ...

1.13. Environment abstraction

The Environment is an abstraction integrated in the container that models two key aspects of the
application environment: profiles and properties.

A profile is a named, logical group of bean definitions to be registered with the container only if the
given profile is active. Beans may be assigned to a profile whether defined in XML or via
annotations. The role of the Environment object with relation to profiles is in determining which
profiles (if any) are currently active, and which profiles (if any) should be active by default.

Properties play an important role in almost all applications, and may originate from a variety of
sources: properties files, JVM system properties, system environment variables, JNDI, servlet
context parameters, ad-hoc Properties objects, Maps, and so on. The role of the Environment object
with relation to properties is to provide the user with a convenient service interface for configuring
property sources and resolving properties from them.

1.13.1. Bean definition profiles

Bean definition profiles is a mechanism in the core container that allows for registration of
different beans in different environments. The word environment can mean different things to
different users and this feature can help with many use cases, including:

* working against an in-memory datasource in development vs looking up that same datasource
from JNDI when in QA or production

* registering monitoring infrastructure only when deploying an application into a performance
environment

* registering customized implementations of beans for customer A vs. customer B deployments

Let’s consider the first use case in a practical application that requires a DataSource. In a test
environment, the configuration may look like this:

135


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/core/env/Environment.html

public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("my-schema.sql")
.addScript("my-test-data.sql")
.build();

Let’s now consider how this application will be deployed into a QA or production environment,
assuming that the datasource for the application will be registered with the production application
server’s JNDI directory. Our dataSource bean now looks like this:

(destroyMethod="")
public DataSource dataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");

The problem is how to switch between using these two variations based on the current
environment. Over time, Spring users have devised a number of ways to get this done, usually
relying on a combination of system environment variables and XML <import/> statements
containing ${placeholder} tokens that resolve to the correct configuration file path depending on
the value of an environment variable. Bean definition profiles is a core container feature that
provides a solution to this problem.

If we generalize the example use case above of environment-specific bean definitions, we end up
with the need to register certain bean definitions in certain contexts, while not in others. You could
say that you want to register a certain profile of bean definitions in situation A, and a different
profile in situation B. Let’s first see how we can update our configuration to reflect this need.

@Profile

The @Profile annotation allows you to indicate that a component is eligible for registration when
one or more specified profiles are active. Using our example above, we can rewrite the dataSource
configuration as follows:

136


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/Profile.html

@Configuration
<strong>@Profile("development")</strong>
public class StandaloneDataConfig {

@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build();

@Configuration
<strong>@Profile("production")</strong>
public class JndiDataConfig {

@Bean(destroyMethod="")
public DataSource dataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");

As mentioned before, with @Bean methods, you will typically choose to use
programmatic  JNDI  lookups: either using  Spring’s  JIndiTemplate

0 /IndilocatorDelegate helpers or the straight JNDI InitialContext usage shown
above, but not the IJndiObjectFactoryBean variant which would force you to declare
the return type as the FactoryBean type.

@Profile can be used as a meta-annotation for the purpose of creating a custom composed
annotation. The following example defines a custom @Production annotation that can be used as a
drop-in replacement for @Profile("production"):

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
<strong>@Profile("production")</strong>
public @interface Production {

}

137



If a @Configuration class is marked with @Profile, all of the @Bean methods and
@Import annotations associated with that class will be bypassed unless one or more
of the specified profiles are active. If a @Component or @Configuration class is marked

Q with @Profile({"p1", "p2"}), that class will not be registered/processed unless
profiles 'p1' and/or 'p2' have been activated. If a given profile is prefixed with the
NOT operator (!), the annotated element will be registered if the profile is not
active. For example, given @Profile({"p1", "!p2"}), registration will occur if
profile 'p1' is active or if profile 'p2' is not active.

@Profile can also be declared at the method level to include only one particular bean of a
configuration class, e.g. for alternative variants of a particular bean:

@Configuration
public class AppConfig {

@Bean("dataSource")

<strong>@Profile("development")</strong>

public DataSource standaloneDataSource() {

return new EmbeddedDatabaseBuilder()

.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build();

}

@Bean("dataSource")
<strong>@Profile("production")</strong>
public DataSource jndiDataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");

138



With @Profile on @Bean methods, a special scenario may apply: In the case of
overloaded @Bean methods of the same Java method name (analogous to
constructor overloading), an @Profile condition needs to be consistently declared
on all overloaded methods. If the conditions are inconsistent, only the condition on
the first declaration among the overloaded methods will matter. @Profile can
therefore not be used to select an overloaded method with a particular argument
signature over another; resolution between all factory methods for the same bean
follows Spring’s constructor resolution algorithm at creation time.

If you would like to define alternative beans with different profile conditions, use
distinct Java method names pointing to the same bean name via the @Bean name
attribute, as indicated in the example above. If the argument signatures are all the
same (e.g. all of the variants have no-arg factory methods), this is the only way to
represent such an arrangement in a valid Java class in the first place (since there
can only be one method of a particular name and argument signature).

XML bean definition profiles

The XML counterpart is the profile attribute of the <beans> element. Our sample configuration
above can be rewritten in two XML files as follows:

<beans profile="development"
xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"

xsi:schemalocation="...

>

<jdbc:embedded-database id="dataSource">

<jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
<jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>

</jdbc:embedded-database>

</beans>

<beans profile="production"
xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jee="http://www.springframework.org/schema/jee"

xsi:schemalocation="...

>

<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>

</beans>

It is also possible to avoid that split and nest <beans/> elements within the same file:

139



<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemalocation="...">

<!-- other bean definitions -->

<beans profile="development">
<jdbc:embedded-database id="dataSource">
<jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
<jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>
</jdbc:embedded-database>
</beans>

<beans profile="production">
<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
</beans>
</beans>

The spring-bean.xsd has been constrained to allow such elements only as the last ones in the file.
This should help provide flexibility without incurring clutter in the XML files.

Activating a profile

Now that we have updated our configuration, we still need to instruct Spring which profile is
active. If we started our sample application right now, we would see a
NoSuchBeanDefinitionException thrown, because the container could not find the Spring bean
named dataSource.

Activating a profile can be done in several ways, but the most straightforward is to do it
programmatically against the Environment API which is available via an ApplicationContext:

AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
ctx.getEnvironment().setActiveProfiles("development");
ctx.register(SomeConfig.class, StandaloneDataConfig.class, JndiDataConfig.class);
ctx.refresh();

In addition, profiles may also be activated declaratively through the spring.profiles.active
property which may be specified through system environment variables, JVM system properties,
servlet context parameters in web.xml, or even as an entry in JNDI (see PropertySource abstraction).
In integration tests, active profiles can be declared via the @ActiveProfiles annotation in the spring-
test module (see Context configuration with environment profiles).

Note that profiles are not an "either-or" proposition; it is possible to activate multiple profiles at
once. Programmatically, simply provide multiple profile names to the setActiveProfiles() method,
which accepts String:- varargs:

140


testing.pdf#testcontext-ctx-management-env-profiles

ctx.getEnvironment().setActiveProfiles("profilel”, "profile2");
Declaratively, spring.profiles.active may accept a comma-separated list of profile names:

-Dspring.profiles.active="profilel,profile2"

Default profile

The default profile represents the profile that is enabled by default. Consider the following:

<strong> ("default")</strong>
public class DefaultDataConfig {

public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.build();

If no profile is active, the dataSource above will be created; this can be seen as a way to provide a
default definition for one or more beans. If any profile is enabled, the default profile will not apply.

The name of the default profile can be changed using setDefaultProfiles() on the Environment or
declaratively using the spring.profiles.default property.

1.13.2. PropertySource abstraction

Spring’s Environment abstraction provides search operations over a configurable hierarchy of
property sources. To explain fully, consider the following:

ApplicationContext ctx = new GenericApplicationContext();

Environment env = ctx.getEnvironment();

boolean containsFoo = env.containsProperty("foo");

System.out.println("Does my environment contain the 'foo' property? " + containsFoo);

In the snippet above, we see a high-level way of asking Spring whether the foo property is defined
for the current environment. To answer this question, the Environment object performs a search
over a set of PropertySource objects. A PropertySource is a simple abstraction over any source of key-
value pairs, and Spring’s StandardEnvironment is configured with two PropertySource objects — one
representing the set of JVM system properties (a la System.getProperties()) and one representing
the set of system environment variables (a la System.getenv()).

141


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/core/env/PropertySource.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/core/env/StandardEnvironment.html

These default property sources are present for StandardEnvironment, for use in

0 standalone applications. StandardServletEnvironment is populated with additional
default property sources including servlet config and servlet context parameters. It
can optionally enable a JndiPropertySource. See the javadocs for details.

Concretely, when using the StandardEnvironment, the call to env.containsProperty("foo") will return
true if a foo system property or foo environment variable is present at runtime.

The search performed is hierarchical. By default, system properties have
precedence over environment variables, so if the foo property happens to be set in
both places during a call to env.getProperty("foo"), the system property value will
'win' and be returned preferentially over the environment variable. Note that
property values will not get merged but rather completely overridden by a
preceding entry.

For a common StandardServletEnvironment, the full hierarchy looks as follows, with
Q the highest-precedence entries at the top:

» ServletConfig parameters (if applicable, e.g. in case of a DispatcherServlet
context)

* ServletContext parameters (web.xml context-param entries)

* JNDI environment variables ("java:comp/env/" entries)

* JVM system properties ("-D" command-line arguments)

* JVM system environment (operating system environment variables)

Most importantly, the entire mechanism is configurable. Perhaps you have a custom source of
properties that you’d like to integrate into this search. No problem —simply implement and
instantiate your own PropertySource and add it to the set of PropertySources for the current
Environment:

ConfigurableApplicationContext ctx = new GenericApplicationContext();
MutablePropertySources sources = ctx.getEnvironment().getPropertySources();
sources.addFirst(new MyPropertySource());

In the code above, MyPropertySource has been added with highest precedence in the search. If it
contains a foo property, it will be detected and returned ahead of any foo property in any other
PropertySource. The MutablePropertySources API exposes a number of methods that allow for precise
manipulation of the set of property sources.

1.13.3. @PropertySource

The @PropertySource annotation provides a convenient and declarative mechanism for adding a
PropertySource to Spring’s Environment.

Given a file "app.properties" containing the key/value pair testbean.name=myTestBean, the following
@Configuration class uses @PropertySource in such a way that a call to testBean.getName() will return

142


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/web/context/support/StandardServletEnvironment.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/jndi/JndiPropertySource.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/core/env/MutablePropertySources.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

"myTestBean".

<strong> ("classpath:/com/myco/app.properties")</strong>
public class AppConfig {

Environment env;

public TestBean testBean() {
TestBean testBean = new TestBean();
testBean.setName(env.getProperty("testbean.name"));
return testBean;

Any ${---} placeholders present in a @PropertySource resource location will be resolved against the
set of property sources already registered against the environment. For example:

("classpath:/com/${my.placeholder:default/path}/app.properties")
public class AppConfig {

Environment env;

public TestBean testBean() {
TestBean testBean = new TestBean();
testBean.setName(env.getProperty("testbean.name"));
return testBean;

Assuming that "my.placeholder” is present in one of the property sources already registered, e.g.
system properties or environment variables, the placeholder will be resolved to the corresponding
value. If not, then "default/path" will be used as a default. If no default is specified and a property
cannot be resolved, an I1legalArgumentException will be thrown.

The @PropertySource annotation is repeatable according to Java 8 conventions.
However, all such @PropertySource annotations need to be declared at the same
0 level: either directly on the configuration class or as meta-annotations within the
same custom annotation. Mixing of direct annotations and meta-annotations is not
recommended since direct annotations will effectively override meta-annotations.

143



1.13.4. Placeholder resolution in statements

Historically, the value of placeholders in elements could be resolved only against JVM system
properties or environment variables. No longer is this the case. Because the Environment
abstraction is integrated throughout the container, it’s easy to route resolution of placeholders
through it. This means that you may configure the resolution process in any way you like: change
the precedence of searching through system properties and environment variables, or remove
them entirely; add your own property sources to the mix as appropriate.

Concretely, the following statement works regardless of where the customer property is defined, as
long as it is available in the Environment:

<beans>
<import resource="com/bank/service/${customer}-config.xml"/>
</beans>

1.14. Registering a LoadTimeWeaver

The LoadTimelWeaver is used by Spring to dynamically transform classes as they are loaded into the
Java virtual machine (JVM).

To enable load-time weaving add the @EnableLoadTimeWeaving to one of your @Configuration classes:

public class AppConfig {
}

Alternatively for XML configuration use the context:load-time-weaver element:

<beans>
<context:load-time-weaver/>
</beans>

Once configured for the ApplicationContext. Any bean within that ApplicationContext may
implement LoadTimeWeaverAware, thereby receiving a reference to the load-time weaver instance.
This is particularly useful in combination with Spring’s JPA support where load-time weaving may
be necessary for JPA class transformation. Consult the LocalContainerEntityManagerFactoryBean
javadocs for more detail. For more on Aspect] load-time weaving, see Load-time weaving with
Aspect] in the Spring Framework.

1.15. Additional capabilities of the ApplicationContext

As was discussed in the chapter introduction, the org.springframework.beans.factory package
provides basic functionality for managing and manipulating beans, including in a programmatic

144


data-access.pdf#orm-jpa

way. The org.springframework.context package adds the ApplicationContext interface, which
extends the BeanFactory interface, in addition to extending other interfaces to provide additional
functionality in a more application framework-oriented style. Many people use the
ApplicationContext in a completely declarative fashion, not even creating it programmatically, but
instead relying on support classes such as ContextlLoader to automatically instantiate an
ApplicationContext as part of the normal startup process of a Java EE web application.

To enhance BeanFactory functionality in a more framework-oriented style the context package also
provides the following functionality:

» Access to messages in i18n-style, through the MessageSource interface.
» Access to resources, such as URLs and files, through the Resourceloader interface.

* Event publication to namely beans implementing the ApplicationlListener interface, through the
use of the ApplicationEventPublisher interface.

* Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer,
such as the web layer of an application, through the HierarchicalBeanFactory interface.

1.15.1. Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and therefore provides
internationalization (i18n) functionality. Spring also provides the interface
HierarchicalMessageSource, which can resolve messages hierarchically. Together these interfaces
provide the foundation upon which Spring effects message resolution. The methods defined on
these interfaces include:

* String getMessage(String code, Object[] args, String default, Locale loc): The basic method
used to retrieve a message from the MessageSource. When no message is found for the specified
locale, the default message is used. Any arguments passed in become replacement values, using
the MessageFormat functionality provided by the standard library.

» String getMessage(String code, Object[] args, Locale loc): Essentially the same as the
previous method, but with one difference: no default message can be specified; if the message
cannot be found, a NoSuchMessageException is thrown.

» String getMessage(MessageSourceResolvable resolvable, Locale locale): All properties used in
the preceding methods are also wrapped in a class named MessageSourceResolvable, which you
can use with this method.

When an ApplicationContext is loaded, it automatically searches for a MessageSource bean defined in
the context. The bean must have the name messageSource. If such a bean is found, all calls to the
preceding methods are delegated to the message source. If no message source is found, the
ApplicationContext attempts to find a parent containing a bean with the same name. If it does, it
uses that bean as the MessageSource. If the ApplicationContext cannot find any source for messages,
an empty DelegatinglessageSource is instantiated in order to be able to accept calls to the methods
defined above.

Spring provides two MessageSource implementations, ResourceBundleMessageSource and
StaticMessageSource. Both implement HierarchicalMessageSource in order to do nested messaging.
The StaticMessageSource is rarely used but provides programmatic ways to add messages to the

145


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/context/ApplicationContext.html

source. The ResourceBundleMessageSource is shown in the following example:

<beans>
<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource">
<property name="basenames">
<list>
<value>format</value>
<value>exceptions</value>
<value>windows</value>
</list>
</property>
</bean>
</beans>

In the example it is assumed you have three resource bundles defined in your classpath called
format, exceptions and windows. Any request to resolve a message will be handled in the JDK
standard way of resolving messages through ResourceBundles. For the purposes of the example,
assume the contents of two of the above resource bundle files are...

# in format.properties
message=Alligators rock!

# in exceptions.properties
argument.required=The {0} argument is required.

A program to execute the MessageSource functionality is shown in the next example. Remember that
all ApplicationContext implementations are also MessageSource implementations and so can be cast
to the MessageSource interface.

public static void main(String[] args) {
MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
String message = resources.getMessage("message”, null, "Default", null);
System.out.println(message);

The resulting output from the above program will be...

Alligators rock!

So to summarize, the MessageSource is defined in a file called beans.xml, which exists at the root of
your classpath. The messageSource bean definition refers to a number of resource bundles through
its basenames property. The three files that are passed in the list to the basenames property exist as
files at the root of your classpath and are called format.properties, exceptions.properties, and

146



windows.properties respectively.

The next example shows arguments passed to the message lookup; these arguments will be
converted into Strings and inserted into placeholders in the lookup message.

<beans>

<!-- this MessageSource is being used in a web application -->
<bean id="messageSource" class=
"org.springframework.context.support.ResourceBundleMessageSource">
<property name="basename" value="exceptions"/>
</bean>

<!-- lets inject the above MessageSource into this P0JO -->
<bean id="example" class="com.foo.Example">

<property name="messages" ref="messageSource"/>
</bean>

</beans>

public class Example {
private MessageSource messages;

public void setMessages(MessageSource messages) {
this.messages = messages;

}

public void execute() {
String message = this.messages.getMessage("argument.required",
new Object [] {"userDao"}, "Required", null);
System.out.println(message);

The resulting output from the invocation of the execute() method will be...

The userDao argument is required.

With regard to internationalization (i18n), Spring’s various MessageSource implementations follow
the same locale resolution and fallback rules as the standard JDK ResourceBundle. In short, and
continuing with the example messageSource defined previously, if you want to resolve messages
against the British (en-GB) locale, you would create files called format_en_GB.properties,
exceptions_en_GB.properties, and windows_en_GB.properties respectively.

Typically, locale resolution is managed by the surrounding environment of the application. In this
example, the locale against which (British) messages will be resolved is specified manually.

147



# in exceptions_en_GB.properties
argument.required=Ebagum lad, the {0} argument is required, I say, required.

public static void main(final String[] args) {
MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
String message = resources.getMessage("arqument.required"”,
new Object [] {"userDao"}, "Required", Locale.UK);
System.out.println(message);

The resulting output from the running of the above program will be...
Ebagum lad, the 'userDao' argument is required, I say, required.

You can also use the MessageSourceAware interface to acquire a reference to any MessageSource that
has been defined. Any bean that is defined in an ApplicationContext that implements the
MessageSourceAware interface is injected with the application context’s MessageSource when the bean
is created and configured.

As an alternative to ResourceBundleMessageSource, Spring provides a
ReloadableResourceBundleMessageSource class. This variant supports the same bundle
file format but is more flexible than the standard JDK based

0 ResourceBundleMessageSource implementation. In particular, it allows for reading
files from any Spring resource location (not just from the classpath) and supports
hot reloading of bundle property files (while efficiently caching them in between).
Check out the ReloadableResourceBundleMessageSource javadocs for details.

1.15.2. Standard and custom events

Event handling in the ApplicationContext is provided through the ApplicationEvent class and
ApplicationListener interface. If a bean that implements the ApplicationlListener interface is
deployed into the context, every time an ApplicationEvent gets published to the ApplicationContext,
that bean is notified. Essentially, this is the standard Observer design pattern.

As of Spring 4.2, the event infrastructure has been significantly improved and

Q offer an annotation-based model as well as the ability to publish any arbitrary
event, that is an object that does not necessarily extend from ApplicationEvent.
When such an object is published we wrap it in an event for you.

Spring provides the following standard events:

Table 7. Built-in Events

148



Event Explanation

ContextRefreshedEvent Published when the ApplicationContext is
initialized or refreshed, for example, using the
refresh() method on the
ConfigurableApplicationContext interface.
"Initialized" here means that all beans are
loaded, post-processor beans are detected and
activated, singletons are pre-instantiated, and
the ApplicationContext object is ready for use. As
long as the context has not been closed, a refresh
can be triggered multiple times, provided that
the chosen ApplicationContext actually supports
such "hot" refreshes. For example,
XmlWebApplicationContext supports hot refreshes,
but GenericApplicationContext does not.

ContextStartedEvent Published when the ApplicationContext is
started, using the start() method on the
ConfigurableApplicationContext interface.
"Started" here means that all Lifecycle beans
receive an explicit start signal. Typically this
signal is used to restart beans after an explicit
stop, but it may also be used to start components
that have not been configured for autostart, for
example, components that have not already
started on initialization.

ContextStoppedEvent Published when the ApplicationContext is
stopped, using the stop() method on the
ConfigurableApplicationContext interface.
"Stopped" here means that all Lifecycle beans
receive an explicit stop signal. A stopped context
may be restarted through a start() call.

ContextClosedEvent Published when the ApplicationContext is closed,
using the close() method on the
ConfigurableApplicationContext interface.
"Closed" here means that all singleton beans are
destroyed. A closed context reaches its end of
life; it cannot be refreshed or restarted.

RequestHandledEvent A web-specific event telling all beans that an
HTTP request has been serviced. This event is
published after the request is complete. This
event is only applicable to web applications
using Spring’s DispatcherServlet.

You can also create and publish your own custom events. This example demonstrates a simple class
that extends Spring’s ApplicationEvent base class:

149



public class BlackListEvent extends ApplicationEvent {

private final String address;
private final String content;

public BlackListEvent(Object source, String address, String content) {
super(source);
this.address = address;
this.content = content;

// accessor and other methods...

To publish a custom ApplicationEvent, call the publishEvent() method on an
ApplicationEventPublisher. Typically this is done by creating a class that implements
ApplicationEventPublisherAware and registering it as a Spring bean. The following example
demonstrates such a class:

public class EmailService implements ApplicationEventPublisherAware {

private List<String> blacklList;
private ApplicationEventPublisher publisher;

public void setBlackList(List<String> blackList) {
this.blackList = blackList;
}

public void setApplicationEventPublisher(ApplicationEventPublisher publisher) {
this.publisher = publisher;
}

public void sendEmail(String address, String content) {
if (blackList.contains(address)) {
publisher.publishEvent(new BlackListEvent(this, address, content));
return;

}

// send email...

At configuration time, the Spring container will detect that EmailService implements
ApplicationEventPublisherAware and will automatically call setApplicationEventPublisher(). In
reality, the parameter passed in will be the Spring container itself; you're simply interacting with
the application context via its ApplicationEventPublisher interface.

To receive the custom ApplicationEvent, create a class that implements ApplicationListener and
register it as a Spring bean. The following example demonstrates such a class:

150



public class BlackListNotifier implements ApplicationListener<BlackListEvent> {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificationAddress;

}

public void onApplicationEvent(BlackListEvent event) {
// notify appropriate parties via notificationAddress...

}

Notice that ApplicationListener is generically parameterized with the type of your custom event,
BlackListEvent. This means that the onApplicationEvent() method can remain type-safe, avoiding
any need for downcasting. You may register as many event listeners as you wish, but note that by
default event listeners receive events synchronously. This means the publishEvent() method blocks
until all listeners have finished processing the event. One advantage of this synchronous and single-
threaded approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for event
publication becomes necessary, refer to the javadoc for Spring’s ApplicationEventMulticaster
interface.

The following example shows the bean definitions used to register and configure each of the classes
above:

<bean id="emailService" class="example.EmailService">
<property name="blackList">
<list>
<value>known.spammer@example.org</value>
<value>known.hacker@example.org</value>
<value>john.doe@example.org</value>
</list>
</property>
</bean>

<bean id="blackListNotifier" class="example.BlackListNotifier">
<property name="notificationAddress" value="blacklist@example.org"/>
</bean>

Putting it all together, when the sendEmail() method of the emailService bean is called, if there are
any emails that should be blacklisted, a custom event of type BlackListEvent is published. The
blackListNotifier bean 1is registered as an ApplicationListener and thus receives the
BlackListEvent, at which point it can notify appropriate parties.

151



Spring’s eventing mechanism is designed for simple communication between
Spring beans within the same application context. However, for more

0 sophisticated enterprise integration needs, the separately-maintained Spring
Integration project provides complete support for building lightweight, pattern-
oriented, event-driven architectures that build upon the well-known Spring
programming model.

Annotation-based event listeners

As of Spring 4.2, an event listener can be registered on any public method of a managed bean via
the EventListener annotation. The BlackListNotifier can be rewritten as follows:

public class BlackListNotifier {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificationAddress;

}

public void processBlackListEvent(BlackListEvent event) {
// notify appropriate parties via notificationAddress...

}

As you can see above, the method signature once again declares the event type it listens to, but this
time with a flexible name and without implementing a specific listener interface. The event type
can also be narrowed through generics as long as the actual event type resolves your generic
parameter in its implementation hierarchy.

If your method should listen to several events or if you want to define it with no parameter at all,
the event type(s) can also be specified on the annotation itself:

({ContextStartedEvent.class, ContextRefreshedEvent.class})
public void handleContextStart() {

}

It is also possible to add additional runtime filtering via the condition attribute of the annotation
that defines a SpEL expression that should match to actually invoke the method for a particular
event.

For instance, our notifier can be rewritten to be only invoked if the content attribute of the event is
equal to foo:

152


https://projects.spring.io/spring-integration/
https://projects.spring.io/spring-integration/
https://www.enterpriseintegrationpatterns.com
https://www.enterpriseintegrationpatterns.com

@EventListener(condition = "#blEvent.content == 'foo'")
public void processBlackListEvent(BlackListEvent blEvent) {
// notify appropriate parties via notificationAddress...

}

Each SpEL expression evaluates against a dedicated context. The next table lists the items made
available to the context so one can use them for conditional event processing:

Table 8. Event SpEL available metadata

Name Location

Event root object
Arguments array root object
Argument name evaluation context

Description Example
The actual firoot.event
ApplicationEvent

The arguments (as #root.args[0]

array) used for
invoking the target

Name of any of the #blEvent or #a0 (one can
method arguments. If  also use #p@ or #p<#arg>
for some reason the notation as an alias).

names are not
available (e.g. no debug
information), the
argument names are
also available under
the #a<#arg> where
#arg stands for the
argument index
(starting from 0).

Note that #root.event allows you to access to the underlying event, even if your method signature
actually refers to an arbitrary object that was published.

If you need to publish an event as the result of processing another, just change the method
signature to return the event that should be published, something like:

@EventListener

public ListUpdateEvent handleBlackListEvent(BlackListEvent event) {
// notify appropriate parties via notificationAddress and

// then publish a ListUpdateEvent...

0 This feature is not supported for asynchronous listeners.

This new method will publish a new ListUpdateEvent for every BlacklListEvent handled by the
method above. If you need to publish several events, just return a Collection of events instead.

153



Asynchronous Listeners

If you want a particular listener to process events asynchronously, simply reuse the regular @Async
support:

public void processBlackListEvent(BlackListEvent event) {
// BlackListEvent is processed in a separate thread

}

Be aware of the following limitations when using asynchronous events:
1. If the event listener throws an Exception it will not be propagated to the caller, check
AsyncUncaughtExceptionHandler for more details.

2. Such event listener cannot send replies. If you need to send another event as the result of the
processing, inject ApplicationEventPublisher to send the event manually.

Ordering listeners

If you need the listener to be invoked before another one, just add the @0rder annotation to the
method declaration:

(42)
public void processBlackListEvent(BlackListEvent event) {
// notify appropriate parties via notificationAddress...

}

Generic events

You may also use generics to further define the structure of your event. Consider an
EntityCreatedEvent<T> where T is the type of the actual entity that got created. You can create the
following listener definition to only receive EntityCreatedEvent for a Person:

public void onPersonCreated(EntityCreatedEvent<Person> event) {

}

Due to type erasure, this will only work if the event that is fired resolves the generic parameter(s)
on which the event listener filters on (that is something like class PersonCreatedEvent extends
EntityCreatedEvent<Person> { - }).

In certain circumstances, this may become quite tedious if all events follow the same structure (as it
should be the case for the event above). In such a case, you can implement ResolvableTypeProvider
to guide the framework beyond what the runtime environment provides:

154


integration.pdf#scheduling-annotation-support-async
integration.pdf#scheduling-annotation-support-async
integration.pdf#scheduling-annotation-support-async
integration.pdf#scheduling-annotation-support-async

public class EntityCreatedEvent<T> extends ApplicationEvent implements
ResolvableTypeProvider {

public EntityCreatedEvent(T entity) {
super(entity);
}

public ResolvableType getResolvableType() {
return ResolvableType.forClassWithGenerics(getClass(),
ResolvableType.forInstance(getSource()));

Q This works not only for ApplicationEvent but any arbitrary object that you’d send
as an event.

1.15.3. Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize
themselves with Spring’s Resource abstraction, as described in the chapter Resources.

An application context is a Resourceloader, which can be used to load Resources. A Resource is
essentially a more feature rich version of the JDK class java.net.URL, in fact, the implementations of
the Resource wrap an instance of java.net.URL where appropriate. A Resource can obtain low-level
resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the
resource location string is a simple path without any special prefixes, where those resources come
from is specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback
interface, ResourcelLoaderAware, to be automatically called back at initialization time with the
application context itself passed in as the Resourceloader. You can also expose properties of type
Resource, to be used to access static resources; they will be injected into it like any other properties.
You can specify those Resource properties as simple String paths, and rely on a special JavaBean
PropertyEditor that is automatically registered by the context, to convert those text strings to actual
Resource objects when the bean is deployed.

The location path or paths supplied to an ApplicationContext constructor are actually resource
strings, and in simple form are treated appropriately to the specific context implementation.
(lassPathXmlApplicationContext treats a simple location path as a classpath location. You can also
use location paths (resource strings) with special prefixes to force loading of definitions from the
classpath or a URL, regardless of the actual context type.

1.15.4. Convenient ApplicationContext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a ContextLoader. Of
course you can also create ApplicationContext instances programmatically by using one of the

155



ApplicationContext implementations.

You can register an ApplicationContext using the ContextLoaderListener as follows:

<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value>
</context-param>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-

class>

</listener>

The listener inspects the contextConfiglocation parameter. If the parameter does not exist, the
listener uses /WEB-INF/applicationContext.xml as a default. When the parameter does exist, the
listener separates the String by using predefined delimiters (comma, semicolon and whitespace)
and uses the values as locations where application contexts will be searched. Ant-style path
patterns are supported as well. Examples are /WEB-INF/*Context.xml for all files with names ending
with "Context.xml", residing in the "WEB-INF" directory, and /WEB-INF/**/*Context.xml, for all such
files in any subdirectory of "WEB-INF".

1.15.5. Deploying a Spring ApplicationContext as a Java EE RAR file

It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context and all
of its required bean classes and library JARs in a Java EE RAR deployment unit. This is the
equivalent of bootstrapping a standalone ApplicationContext, just hosted in Java EE environment,
being able to access the Java EE servers facilities. RAR deployment is more natural alternative to
scenario of deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that
is used only for bootstrapping a Spring ApplicationContext in a Java EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather
consist only of message endpoints and scheduled jobs. Beans in such a context can use application
server resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS
ConnectionFactory instances, and may also register with the platform’s JMX server - all through
Spring’s standard transaction management and JNDI and JMX support facilities. Application
components can also interact with the application server’s JCA WorkManager through Spring’s
TaskExecutor abstraction.

Check out the javadoc of the SpringContextResourceAdapter class for the configuration details
involved in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a Java EE RAR file: package all application
classes into a RAR file, which is a standard JAR file with a different file extension. Add all required
library JARs into the root of the RAR archive. Add a "META-INF/ra.xml" deployment descriptor (as
shown in SpringContextResourceAdapters javadoc) and the corresponding Spring XML bean
definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into
your application server’s deployment directory.

156


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/jca/context/SpringContextResourceAdapter.html

Such RAR deployment units are usually self-contained; they do not expose
components to the outside world, not even to other modules of the same
application. Interaction with a RAR-based ApplicationContext usually occurs

O through JMS destinations that it shares with other modules. A RAR-based
ApplicationContext may also, for example, schedule some jobs, reacting to new
files in the file system (or the like). If it needs to allow synchronous access from the
outside, it could for example export RMI endpoints, which of course may be used
by other application modules on the same machine.

1.16. The BeanFactory

The BeanFactory API provides the underlying basis for Spring’s IoC functionality. Its specific
contracts are mostly used in integration with other parts of Spring and related third-party
frameworks, and its DefaultlListableBeanFactory implementation is a key delegate within the
higher-level GenericApplicationContext container.

BeanFactory and related interfaces such as BeanFactoryAware, InitializingBean, DisposableBean are
important integration points for other framework components: not requiring any annotations or
even reflection, they allow for very efficient interaction between the container and its components.
Application-level beans may use the same callback interfaces but will typically prefer declarative
dependency injection instead, either via annotations or through programmatic configuration.

Note that the core BeanFactory API level and its DefaultListableBeanFactory implementation do not
make assumptions about the configuration format or any component annotations to be used. All of
these flavors come in through extensions such as XmlBeanDefinitionReader and
AutowiredAnnotationBeanPostProcessor, operating on shared BeanDefinition objects as a core
metadata representation. This is the essence of what makes Spring’s container so flexible and
extensible.

The following section explains the differences between the BeanFactory and ApplicationContext
container levels and the implications on bootstrapping.

1.16.1. BeanFactory or ApplicationContext?

Use an ApplicationContext wunless you have a good reason for not doing so, with
GenericApplicationContext and its subclass AnnotationConfigApplicationContext as the common
implementations for custom bootstrapping. These are the primary entry points to Spring’s core
container for all common purposes: loading of configuration files, triggering a classpath scan,
programmatically registering bean definitions and annotated classes, and as of 5.0 also registering
functional bean definitions.

Because an ApplicationContext includes all functionality of a BeanFactory, it is generally
recommended over a plain BeanFactory, except for a scenarios where full control over bean
processing is needed. Within an ApplicationContext such as the GenericApplicationContext
implementation, several kinds of beans will be detected by convention (i.e. by bean name or by
bean type), in particular post-processors, whereas a plain DefaultListableBeanFactory is agnostic
about any special beans.

157



For many extended container features such as annotation processing and AOP proxying, the
BeanPostProcessor extension point is essential. If you use only a plain DefaultListableBeanFactory,
such post-processors will not get detected and activated by default. This situation could be
confusing because nothing is actually wrong with your bean configuration; it is rather the
container which needs to be fully bootstrapped through additional setup in such a scenario.

The following table lists features provided by the BeanFactory and ApplicationContext interfaces and

implementations.

Table 9. Feature Matrix
Feature
Bean instantiation/wiring

Integrated lifecycle
management

Automatic BeanPostProcessor
registration

Automatic
BeanFactoryPostProcessor
registration

Convenient MessageSource
access (for internalization)

Built-in ApplicationEvent
publication mechanism

BeanFactory

Yes
No

No

No

No

No

ApplicationContext

Yes
Yes

Yes

Yes

Yes

Yes

To explicitly register a bean post-processor with a DefaultlListableBeanFactory, you need to
programmatically call addBeanPostProcessor:

DefaultListableBeanFactory factory = new DefaultListableBeanFactory();

// populate the factory with bean definitions

// now register any needed BeanPostProcessor instances

factory.addBeanPostProcessor(new AutowiredAnnotationBeanPostProcessor());

factory.addBeanPostProcessor(new MyBeanPostProcessor());

// now start using the factory

To apply a BeanFactoryPostProcessor to a plain DefaultListableBeanFactory, you need to call its

postProcessBeanFactory method:

158



DefaultListableBeanFactory factory = new DefaultListableBeanFactory();
Xm1BeanDefinitionReader reader = new XmlBeanDefinitionReader(factory);
reader.loadBeanDefinitions(new FileSystemResource("beans.xml"));

// bring in some property values from a Properties file
PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer();
cfg.setlocation(new FileSystemResource("jdbc.properties"));

// now actually do the replacement
cfg.postProcessBeanFactory(factory);

In both cases, the explicit registration steps are inconvenient, which is why the various
ApplicationContext variants are preferred over a plain DefaultListableBeanFactory in Spring-backed
applications, especially when relying on BeanFactoryPostProcessors and BeanPostProcessors for
extended container functionality in a typical enterprise setup.

An AnnotationConfigApplicationContext has all common annotation post-
processors registered out of the box and may bring in additional processors

0 underneath the covers through configuration annotations such as
@EnableTransactionManagement. At the abstraction level of Spring’s annotation-based
configuration model, the notion of bean post-processors becomes a mere internal
container detail.

159



Chapter 2. Resources

2.1. Introduction

Java’s standard java.net.URL class and standard handlers for various URL prefixes unfortunately
are not quite adequate enough for all access to low-level resources. For example, there is no
standardized URL implementation that may be used to access a resource that needs to be obtained
from the classpath, or relative to a ServletContext. While it is possible to register new handlers for
specialized URL prefixes (similar to existing handlers for prefixes such as http:), this is generally
quite complicated, and the URL interface still lacks some desirable functionality, such as a method to
check for the existence of the resource being pointed to.

2.2. The Resource interface

Spring’s Resource interface is meant to be a more capable interface for abstracting access to low-
level resources.

public interface Resource extends InputStreamSource {
boolean exists();
boolean isOpen();
URL getURL() throws IOException;
File getFile() throws IOException;
Resource createRelative(String relativePath) throws IOException;
String getFilename();

String getDescription();

public interface InputStreamSource {

InputStream getInputStream() throws IOException;

Some of the most important methods from the Resource interface are:

* getInputStream(): locates and opens the resource, returning an InputStream for reading from the
resource. It is expected that each invocation returns a fresh InputStream. It is the responsibility
of the caller to close the stream.

160



» exists(): returns a boolean indicating whether this resource actually exists in physical form.

* isOpen(): returns a boolean indicating whether this resource represents a handle with an open
stream. If true, the InputStream cannot be read multiple times, and must be read once only and
then closed to avoid resource leaks. Will be false for all usual resource implementations, with
the exception of InputStreamResource.

* getDescription(): returns a description for this resource, to be used for error output when
working with the resource. This is often the fully qualified file name or the actual URL of the
resource.

Other methods allow you to obtain an actual URL or File object representing the resource (if the
underlying implementation is compatible, and supports that functionality).

The Resource abstraction is used extensively in Spring itself, as an argument type in many method
signatures when a resource is needed. Other methods in some Spring APIs (such as the constructors
to various ApplicationContext implementations), take a String which in unadorned or simple form
is used to create a Resource appropriate to that context implementation, or via special prefixes on
the String path, allow the caller to specify that a specific Resource implementation must be created
and used.

While the Resource interface is used a lot with Spring and by Spring, it’s actually very useful to use
as a general utility class by itself in your own code, for access to resources, even when your code
doesn’t know or care about any other parts of Spring. While this couples your code to Spring, it
really only couples it to this small set of utility classes, which are serving as a more capable
replacement for URL, and can be considered equivalent to any other library you would use for this
purpose.

It is important to note that the Resource abstraction does not replace functionality: it wraps it where
possible. For example, a UrlResource wraps a URL, and uses the wrapped URL to do its work.

2.3. Built-in Resource implementations

There are a number of Resource implementations that come supplied straight out of the box in
Spring:

2.3.1. UrlResource

The UrlResource wraps a java.net.URL, and may be used to access any object that is normally
accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized
String representation, such that appropriate standardized prefixes are used to indicate one URL
type from another. This includes file: for accessing filesystem paths, http: for accessing resources
via the HTTP protocol, ftp: for accessing resources via FTP, etc.

A UrlResource is created by Java code explicitly using the UrlResource constructor, but will often be
created implicitly when you call an API method which takes a String argument which is meant to
represent a path. For the latter case, a JavaBeans PropertyEditor will ultimately decide which type
of Resource to create. If the path string contains a few well-known (to it, that is) prefixes such as
classpath:, it will create an appropriate specialized Resource for that prefix. However, if it doesn’t
recognize the prefix, it will assume the this is just a standard URL string, and will create a

161



Ur1Resource.

2.3.2. ClassPathResource

This class represents a resource which should be obtained from the classpath. This uses either the
thread context class loader, a given class loader, or a given class for loading resources.

This Resource implementation supports resolution as java.io.File if the class path resource resides
in the file system, but not for classpath resources which reside in a jar and have not been expanded
(by the servlet engine, or whatever the environment is) to the filesystem. To address this the
various Resource implementations always support resolution as a java.net.URL.

A (lassPathResource is created by Java code explicitly using the ClassPathResource constructor, but
will often be created implicitly when you call an API method which takes a String argument which
is meant to represent a path. For the latter case, a JavaBeans PropertyEditor will recognize the
special prefix classpath: on the string path, and create a ClassPathResource in that case.

2.3.3. FileSystemResource

This is a Resource implementation for java.io.File handles. It obviously supports resolution as a
File, and as a URL.

2.3.4. ServletContextResource

This is a Resource implementation for ServletContext resources, interpreting relative paths within
the relevant web application’s root directory.

This always supports stream access and URL access, but only allows java.io.File access when the
web application archive is expanded and the resource is physically on the filesystem. Whether or
not it’s expanded and on the filesystem like this, or accessed directly from the JAR or somewhere
else like a DB (it’s conceivable) is actually dependent on the Servlet container.

2.3.5. InputStreamResource

A Resource implementation for a given InputStream. This should only be used if no specific Resource
implementation is applicable. In particular, prefer ByteArrayResource or any of the file-based
Resource implementations where possible.

In contrast to other Resource implementations, this is a descriptor for an already opened resource -
therefore returning true from isOpen(). Do not use it if you need to keep the resource descriptor
somewhere, or if you need to read a stream multiple times.

2.3.6. ByteArrayResource

This is a Resource implementation for a given byte array. It creates a ByteArrayInputStream for the
given byte array.

It’s useful for loading content from any given byte array, without having to resort to a single-use
InputStreamResource.

162



2.4. The ResourceLoader

The Resourceloader interface is meant to be implemented by objects that can return (i.e. load)
Resource instances.

public interface Resourceloader {

Resource getResource(String location);

All application contexts implement the Resourceloader interface, and therefore all application
contexts may be used to obtain Resource instances.

When you call getResource() on a specific application context, and the location path specified
doesn’t have a specific prefix, you will get back a Resource type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
(lassPathXmlApplicationContext instance:

Resource template = ctx.getResource("some/resource/path/myTemplate.txt");

What would be returned would be a ClassPathResource; if the same method was executed against a
FileSystemXmlApplicationContext instance, you’d get back a FileSystemResource. For a
WebApplicationContext, you’d get back a ServletContextResource, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force ClassPathResource to be used, regardless of the application
context type, by specifying the special classpath: prefix:

Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt");

Similarly, one can force a UrlResource to be used by specifying any of the standard java.net.URL
prefixes:

ctx.getResource("file:///some/resource/path/myTemplate.txt");

Resource template

ctx.getResource("https://myhost.com/resource/path/myTemplate. txt"

Resource template

)

The following table summarizes the strategy for converting Strings to Resources:

Table 10. Resource strings

163



Prefix Example Explanation
classpath: classpath:com/myapp/config.xml Ioaded from the classpath.

file: file:///data/config.xml Loaded as a URL, from the
filesystem. [3: But see also
FileSystemResource caveats.]

http: https://myserver/logo.png Loaded as a URL.
(none) /data/config.xml Depends on the underlying
ApplicationContext.

2.5. The ResourceLoaderAware interface

The ResourceloaderAware interface is a special callback interface which identifies components that
expect to be provided with a ResourcelLoader reference:

public interface ResourceloaderAware {

void setResourceloader(Resourceloader resourceloader);

When a class implements ResourcelLoaderAware and is deployed into an application context (as a
Spring-managed bean), it is recognized as ResourcelLoaderAware by the application context. The
application context will then invoke the setResourceloader (Resourceloader), supplying itself as the
argument (remember, all application contexts in Spring implement the ResourcelLoader interface).

Of course, since an ApplicationContext is a Resourceloader, the bean could also implement the
ApplicationContextAware interface and use the supplied application context directly to load
resources, but in general, it’s better to use the specialized Resourceloader interface if that’s all that’s
needed. The code would just be coupled to the resource loading interface, which can be considered
a utility interface, and not the whole Spring ApplicationContext interface.

As of Spring 2.5, you can rely upon autowiring of the Resourceloader as an alternative to
implementing the ResourceloaderAware interface. The "traditional" constructor and byType
autowiring modes (as described in Autowiring collaborators) are now capable of providing a
dependency of type Resourceloader for either a constructor argument or setter method parameter
respectively. For more flexibility (including the ability to autowire fields and multiple parameter
methods), consider using the new annotation-based autowiring features. In that case, the
Resourceloader will be autowired into a field, constructor argument, or method parameter that is
expecting the Resourceloader type as long as the field, constructor, or method in question carries the
@Autowired annotation. For more information, see @Autowired.

2.6. Resources as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic
process, it probably makes sense for the bean to use the Resourceloader interface to load resources.
Consider as an example the loading of a template of some sort, where the specific resource that is
needed depends on the role of the user. If the resources are static, it makes sense to eliminate the

164


file:///data/config.xml
file:///data/config.xml
file:///data/config.xml
file:///data/config.xml
file:///data/config.xml
https://myserver/logo.png
https://myserver/logo.png
https://myserver/logo.png

use of the Resourceloader interface completely, and just have the bean expose the Resource
properties it needs, and expect that they will be injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use
a special JavaBeans PropertyEditor which can convert String paths to Resource objects. So if myBean
has a template property of type Resource, it can be configured with a simple string for that resource,
as follows:

<bean id="myBean" class="...">
<property name="template" value="some/resource/path/myTemplate.txt"/>
</bean>

Note that the resource path has no prefix, so because the application context itself is going to be
used as the Resourceloader, the resource itself will be loaded via a C(lassPathResource,
FileSystemResource, or ServletContextResource (as appropriate) depending on the exact type of the
context.

If there is a need to force a specific Resource type to be used, then a prefix may be used. The
following two examples show how to force a ClassPathResource and a UrlResource (the latter being
used to access a filesystem file).

<property name="template" value="classpath:some/resource/path/myTemplate.txt">

<property name="template" value="file:///some/resource/path/myTemplate.txt"/>

2.7. Application contexts and Resource paths

2.7.1. Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string
or array of strings as the location path(s) of the resource(s) such as XML files that make up the
definition of the context.

When such a location path doesn’t have a prefix, the specific Resource type built from that path and
used to load the bean definitions, depends on and is appropriate to the specific application context.
For example, if you create a ClassPathXmlApplicationContext as follows:

ApplicationContext ctx = new ClassPathXmlApplicationContext("conf/appContext.xml");

The bean definitions will be loaded from the classpath, as a ClassPathResource will be used. But if
you create a FileSystemXmlApplicationContext as follows:

165



ApplicationContext ctx =
new FileSystemXmlApplicationContext("conf/appContext.xml");

The bean definition will be loaded from a filesystem location, in this case relative to the current
working directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will
override the default type of Resource created to load the definition. So this
FileSystemXmlApplicationContext...

ApplicationContext ctx =
new FileSystemXmlApplicationContext("classpath:conf/appContext.xml");

L will actually load its bean definitions from the classpath. However, it is still a
FileSystemXmlApplicationContext. If it is subsequently used as a Resourceloader, any unprefixed
paths will still be treated as filesystem paths.

Constructing ClassPathXmlApplicationContext instances - shortcuts

The C(lassPathXmlApplicationContext exposes a number of constructors to enable convenient
instantiation. The basic idea is that one supplies merely a string array containing just the filenames
of the XML files themselves (without the leading path information), and one also supplies a Class;
the ClassPathXmlApplicationContext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:
com/
foo/
services.xml

daos.xml
MessengerService.class

A (lassPathXmlApplicationContext instance composed of the beans defined in the 'services.xml'
and 'daos.xml' could be instantiated like so...

ApplicationContext ctx = new ClassPathXmlApplicationContext(
new String[] {"services.xml", "daos.xml"}, MessengerService.class);

Please do consult the (lassPathXmlApplicationContext javadocs for details on the various
constructors.

2.7.2. Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown
above) which has a one-to-one mapping to a target Resource, or alternately may contain the special

166



"classpath™:" prefix and/or internal Ant-style regular expressions (matched using Spring’s
PathMatcher utility). Both of the latter are effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components
can 'publish’' context definition fragments to a well-known location path, and when the final
application context is created using the same path prefixed via classpath*:, all component
fragments will be picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or
when using the PathMatcher utility class hierarchy directly), and is resolved at construction time. It
has nothing to do with the Resource type itself. It’s not possible to use the classpath*: prefix to
construct an actual Resource, as a resource points to just one resource at a time.

Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/WEB-INF/*-context.xml
com/mycompany/**/applicationContext.xml
file:C:/some/path/*-context.xml
classpath:com/mycompany/**/applicationContext.xml

The resolver follows a more complex but defined procedure to try to resolve the wildcard. It
produces a Resource for the path up to the last non-wildcard segment and obtains a URL from it. If
this URL is not a jar: URL or container-specific variant (e.g. zip: in WebLogic, wsjar in WebSphere,
etc.), then a java.io.File is obtained from it and used to resolve the wildcard by traversing the
filesystem. In the case of a jar URL, the resolver either gets a java.net.JarURLConnection from it or
manually parses the jar URL and then traverses the contents of the jar file to resolve the wildcards.

Implications on portability

If the specified path is already a file URL (either explicitly, or implicitly because the base
Resourceloader is a filesystem one), then wildcarding is guaranteed to work in a completely portable
fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path
segment URL via a Classloader.getResource() call. Since this is just a node of the path (not the file at
the end) it is actually undefined (in the ClassLoader javadocs) exactly what sort of a URL is returned
in this case. In practice, it is always a java.io.File representing the directory, where the classpath
resource resolves to a filesystem location, or a jar URL of some sort, where the classpath resource
resolves to a jar location. Still, there is a portability concern on this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a
java.net.JarURLConnection from it, or manually parse the jar URL, to be able to walk the contents of
the jar, and resolve the wildcard. This will work in most environments, but will fail in others, and it
is strongly recommended that the wildcard resolution of resources coming from jars be thoroughly
tested in your specific environment before you rely on it.

167



The classpath*: prefix

When constructing an XML-based application context, a location string may use the special
classpath*: prefix:

ApplicationContext ctx =
new ClassPathXmlApplicationContext("classpath*:conf/appContext.xml");

This special prefix specifies that all classpath resources that match the given name must be
obtained (internally, this essentially happens via a (lassLoader.getResources(::-) call), and then
merged to form the final application context definition.

The wildcard classpath relies on the getResources() method of the underlying
classloader. As most application servers nowadays supply their own classloader
implementation, the behavior might differ especially when dealing with jar files. A
simple test to check if classpath* works is to use the classloader to load a file from
0 within a jar on the classpath:
getClass().getClassLoader().getResources("<someFileInsideTheJar>"). Try this test
with files that have the same name but are placed inside two different locations. In
case an inappropriate result is returned, check the application server
documentation for settings that might affect the classloader behavior.

The classpath*: prefix can also be combined with a PathMatcher pattern in the rest of the location
path, for example classpath*:META-INF/*-beans.xml. In this case, the resolution strategy is fairly
simple: a ClassLoader.getResources() call is used on the last non-wildcard path segment to get all
the matching resources in the class loader hierarchy, and then off each resource the same
PathMatcher resolution strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that classpath*: when combined with Ant-style patterns will only work reliably with at
least one root directory before the pattern starts, unless the actual target files reside in the file
system. This means that a pattern like classpath*:*.xml might not retrieve files from the root of jar
files but rather only from the root of expanded directories.

Spring’s ability to retrieve classpath entries originates from the JDK’s ClassLoader.getResources()
method which only returns file system locations for a passed-in empty string (indicating potential
roots to search). Spring evaluates URLClassLoader runtime configuration and the "java.class.path”
manifest in jar files as well but this is not guaranteed to lead to portable behavior.

168



The scanning of classpath packages requires the presence of corresponding
directory entries in the classpath. When you build JARs with Ant, make sure that
you do not activate the files-only switch of the JAR task. Also, classpath directories
may not get exposed based on security policies in some environments, e.g.
standalone apps on JDK 1.7.0_45 and higher (which requires 'Trusted-Library'
0 setup in your manifests; see https://stackoverflow.com/questions/19394570/java-
jre-7u45-breaks-classloader-getresources).

On JDK 9’s module path (Jigsaw), Spring’s classpath scanning generally works as
expected. Putting resources into a dedicated directory is highly recommendable
here as well, avoiding the aforementioned portability problems with searching the
jar file root level.

Ant-style patterns with classpath: resources are not guaranteed to find matching resources if the
root package to search is available in multiple class path locations. This is because a resource such
as

com/mycompany/packagel/service-context.xml
may be in only one location, but when a path such as
classpath:com/mycompany/**/service-context.xml

is used to try to resolve it, the resolver will work off the (first) URL returned by
getResource("com/mycompany");. If this base package node exists in multiple classloader locations, the
actual end resource may not be underneath. Therefore, preferably, use " “classpath™:"" with the
same Ant-style pattern in such a case, which will search all class path locations that contain the root
package.

2.7.3. FileSystemResource caveats

A FileSystemResource that is not attached to a FileSystemApplicationContext (that is, a
FileSystemApplicationContext is not the actual Resourceloader) will treat absolute vs. relative paths
as you would expect. Relative paths are relative to the current working directory, while absolute
paths are relative to the root of the filesystem.

For Dbackwards compatibility (historical) reasons however, this changes when the
FileSystemApplicationContext is the Resourceloader. The FileSystemApplicationContext simply forces
all attached FileSystemResource instances to treat all location paths as relative, whether they start
with a leading slash or not. In practice, this means the following are equivalent:

ApplicationContext ctx =
new FileSystemXmlApplicationContext("conf/context.xml");

169


https://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
https://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

ApplicationContext ctx =
new FileSystemXmlApplicationContext("/conf/context.xml");

As are the following: (Even though it would make sense for them to be different, as one case is
relative and the other absolute.)

FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("some/resource/path/myTemplate.txt");

FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("/some/resource/path/myTemplate.txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute
paths with FileSystemResource / FileSystemXmlApplicationContext, and just force the use of a
UrlResource, by using the file: URL prefix.

// actual context type doesn't matter, the Resource will always be UrlResource
ctx.getResource("file:///some/resource/path/myTemplate.txt");

// force this FileSystemXmlApplicationContext to load its definition via a UrlResource
ApplicationContext ctx =
new FileSystemXmlApplicationContext("file:///conf/context.xml");

170



Chapter 3. Validation, Data Binding, and
Type Conversion

3.1. Introduction

JSR-303/JSR-349 Bean Validation

Spring Framework 4.0 supports Bean Validation 1.0 (JSR-303) and Bean Validation 1.1 (JSR-
349) in terms of setup support, also adapting it to Spring’s Validator interface.

An application can choose to enable Bean Validation once globally, as described in Spring
Validation, and use it exclusively for all validation needs.

An application can also register additional Spring Validator instances per DataBinder
instance, as described in Configuring a DataBinder. This may be useful for plugging in
validation logic without the use of annotations.

There are pros and cons for considering validation as business logic, and Spring offers a design for
validation (and data binding) that does not exclude either one of them. Specifically validation
should not be tied to the web tier, should be easy to localize and it should be possible to plug in any
validator available. Considering the above, Spring has come up with a Validator interface that is
both basic and eminently usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an
application (or whatever objects you use to process user input). Spring provides the so-called
DataBinder to do exactly that. The Validator and the DataBinder make up the validation package,
which is primarily used in but not limited to the MVC framework.

The BeanWrapper is a fundamental concept in the Spring Framework and is used in a lot of places.
However, you probably will not have the need to use the BeanWrapper directly. Because this is
reference documentation however, we felt that some explanation might be in order. We will
explain the BeanWrapper in this chapter since, if you were going to use it at all, you would most likely
do so when trying to bind data to objects.

Spring’s DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and
format property values. The PropertyEditor concept is part of the JavaBeans specification, and is
also explained in this chapter. Spring 3 introduces a "core.convert" package that provides a general
type conversion facility, as well as a higher-level "format" package for formatting UI field values.
These new packages may be used as simpler alternatives to PropertyEditors, and will also be
discussed in this chapter.

3.2. Validation using Spring’s Validator interface

Spring features a Validator interface that you can use to validate objects. The Validator interface
works using an Errors object so that while validating, validators can report validation failures to

171



the Errors object.

Let’s consider a small data object:

public class Person {

private String name;
private int age;

// the usual getters and setters...

We’re going to provide validation behavior for the Person class by implementing the following two
methods of the org.springframework.validation.Validator interface:

» supports(Class) - Can this Validator validate instances of the supplied Class?

* validate(Object, org.springframework.validation.Errors) - validates the given object and in
case of validation errors, registers those with the given Errors object

Implementing a Validator is fairly straightforward, especially when you know of the
ValidationUtils helper class that the Spring Framework also provides.

public class PersonValidator implements Validator {

/**
* This Validator validates *just* Person instances
*/
public boolean supports(Class clazz) {
return Person.class.equals(clazz);

}

public void validate(Object obj, Errors e) {
ValidationUtils.rejectIfEmpty(e, "name", "name.empty");
Person p = (Person) obj;
if (p.getAge() < 0) {
e.rejectValue("age", "negativevalue");
} else if (p.getAge() > 110) {
e.rejectValue("age", "too.darn.old");

}

As you can see, the static rejectIfEmpty(..) method on the ValidationUtils class is used to reject
the "name' property if it is null or the empty string. Have a look at the ValidationUtils javadocs to
see what functionality it provides besides the example shown previously.

While it is certainly possible to implement a single Validator class to validate each of the nested
objects in a rich object, it may be better to encapsulate the validation logic for each nested class of

172



object in its own Validator implementation. A simple example of a rich' object would be a Customer
that is composed of two String properties (a first and second name) and a complex Address object.
Address objects may be used independently of Customer objects, and so a distinct AddressValidator
has been implemented. If you want your CustomerValidator to reuse the logic contained within the
AddressValidator class without resorting to copy-and-paste, you can dependency-inject or
instantiate an AddressValidator within your CustomerValidator, and use it like so:

public class CustomerValidator implements Validator {
private final Validator addressValidator;

public CustomerValidator(Validator addressValidator) {
if (addressValidator == null) {
throw new I1legalArgumentException("The supplied [Validator] is
"required and must not be null.");

+

}
if (laddressValidator.supports(Address.class)) {

throw new I1legalArqumentException("The supplied [Validator] must " +
"support the validation of [Address] instances.");

}

this.addressValidator = addressValidator;

}

/**
* This Validator validates Customer instances, and any subclasses of Customer too
*/
public boolean supports(Class clazz) {
return Customer.class.isAssignableFrom(clazz);

}

public void validate(Object target, Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName",
field.required");
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "surname", "field.required"

)i
Customer customer = (Customer) target;
try {
errors.pushNestedPath("address");
ValidationUtils.invokeValidator(this.addressValidator, customer.
getAddress(), errors);
} finally {
errors.popNestedPath();
}

Validation errors are reported to the Errors object passed to the validator. In case of Spring Web
MVC you can use <spring:bind/> tag to inspect the error messages, but of course you can also
inspect the errors object yourself. More information about the methods it offers can be found in the

173



javadocs.

3.3. Resolving codes to error messages

We’ve talked about databinding and validation. Outputting messages corresponding to validation
errors is the last thing we need to discuss. In the example we’ve shown above, we rejected the name
and the age field. If we’re going to output the error messages by using a MessageSource, we will do so
using the error code we’ve given when rejecting the field (‘'name' and 'age' in this case). When you
call (either directly, or indirectly, using for example the ValidationUtils class) rejectValue or one of
the other reject methods from the Errors interface, the underlying implementation will not only
register the code you’ve passed in, but also a number of additional error codes. What error codes it
registers is determined by the MessageCodesResolver that is wused. By default, the
DefaultMessageCodesResolver is used, which for example not only registers a message with the code
you gave, but also messages that include the field name you passed to the reject method. So in case
you reject a field using rejectValue("age", "too.darn.old"), apart from the too.darn.old code,
Spring will also register too.darn.old.age and too.darn.old.age.int (so the first will include the
field name and the second will include the type of the field); this is done as a convenience to aid
developers in targeting error messages and suchlike.

More information on the MessageCodesResolver and the default strategy can be found online in the
javadocs of MessageCodesResolver and DefaultMessageCodesResolver, respectively.

3.4. Bean manipulation and the BeanWrapper

The org.springframework.beans package adheres to the JavaBeans standard provided by Oracle. A
JavaBean is simply a class with a default no-argument constructor, which follows a naming
convention where (by way of an example) a property named bingoMadness would have a setter
method setBingoMadness(..) and a getter method getBingoMadness(). For more information about
JavaBeans and the specification, please refer to Oracle’s website ( javabeans).

One quite important class in the beans package is the BeanWrapper interface and its corresponding
implementation ( BeanWrapperImpl). As quoted from the javadocs, the BeanWrapper offers
functionality to set and get property values (individually or in bulk), get property descriptors, and
to query properties to determine if they are readable or writable. Also, the BeanWrapper offers
support for nested properties, enabling the setting of properties on sub-properties to an unlimited
depth. Then, the BeanWrapper supports the ability to add standard JavaBeans
PropertyChangelListeners and VetoableChangelListeners, without the need for supporting code in the
target class. Last but not least, the BeanWrapper provides support for the setting of indexed
properties. The BeanWrapper usually isn’t used by application code directly, but by the DataBinder and
the BeanFactory.

The way the BeanWrapper works is partly indicated by its name: it wraps a bean to perform actions
on that bean, like setting and retrieving properties.

3.4.1. Setting and getting basic and nested properties

Setting and getting properties is done using the setPropertyValue(s) and getPropertyValue(s)
methods that both come with a couple of overloaded variants. They’re all described in more detail

174


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/validation/MessageCodesResolver.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.html
https://docs.oracle.com/javase/6/docs/api/java/beans/package-summary.html

in the javadocs Spring comes with. What’s important to know is that there are a couple of
conventions for indicating properties of an object. A couple of examples:

Table 11. Examples of properties

Expression

name

account.name

account[2]

account[ COMPANYNAME ]

Explanation

Indicates the property name corresponding to the
methods getName() or isName() and setName(..)

Indicates the nested property name of the
property account corresponding e.g. to the

methods getAccount().setName() or
getAccount().getName()

Indicates the third element of the indexed
property account. Indexed properties can be of
type array, list or other naturally ordered
collection

Indicates the value of the map entry indexed by

the key COMPANYNAME of the Map property
account

Below you’ll find some examples of working with the BeanWirapper to get and set properties.

(This next section is not vitally important to you if you’re not planning to work with the BeanlWirapper
directly. If you’re just using the DataBinder and the BeanFactory and their out-of-the-box
implementation, you should skip ahead to the section about PropertyEditors.)

Consider the following two classes:

public class Company {

private String name;

private Employee managingDirector;

public String getName() {

return this.name;

}

public void setName(String name) {

this.name = name;

}

public Employee getManagingDirector() {
return this.managingDirector;

}

public void setManagingDirector (Employee managingDirector) {
this.managingDirector = managingDirector;

}

175



public class Employee {
private String name;
private float salary;

public String getName() {
return this.name;

}

public void setName(String name) {
this.name = name;

}

public float getSalary() {
return salary;

}

public void setSalary(float salary) {
this.salary = salary;

}

The following code snippets show some examples of how to retrieve and manipulate some of the
properties of instantiated Companies and Employees:

BeanWrapper company = new BeanWrapperImpl(new Company());

// setting the company name..

company.setPropertyValue("name", "Some Company Inc.");

// ... can also be done like this:

PropertyValue value = new PropertyValue("name", "Some Company Inc.");
company.setPropertyValue(value);

// ok, let's create the director and tie it to the company:

BeanWrapper jim = new BeanWrapperImpl(new Employee());
jim.setPropertyValue("name", "Jim Stravinsky");
company.setPropertyValue("managingDirector”, jim.getWrappedInstance());

// retrieving the salary of the managingDirector through the company
Float salary = (Float) company.getPropertyValue("managingDirector.salary");

3.4.2. Built-in PropertyEditor implementations

Spring uses the concept of PropertyEditors to effect the conversion between an Object and a String.
If you think about it, it sometimes might be handy to be able to represent properties in a different
way than the object itself. For example, a Date can be represented in a human readable way (as the
String '2007-14-09"), while we’re still able to convert the human readable form back to the original
date (or even better: convert any date entered in a human readable form, back to Date objects). This

176



behavior can be achieved by registering custom editors, of type java.beans.PropertyEditor.
Registering custom editors on a BeanWrapper or alternately in a specific IoC container as mentioned
in the previous chapter, gives it the knowledge of how to convert properties to the desired type.
Read more about PropertyEditors in the javadocs of the java.beans package provided by Oracle.

A couple of examples where property editing is used in Spring:

* setting properties on beans is done using PropertyEditors. When mentioning String as the value
of a property of some bean you’re declaring in XML file, Spring will (if the setter of the
corresponding property has (lass parameter) use the (lassEditor to try to resolve the
parameter to a Class object.

» parsing HTTP request parameters in Spring’s MVC framework is done using all kinds of
PropertyEditors that you can manually bind in all subclasses of the CommandController.

Spring has a number of built-in PropertyEditors to make life easy. Each of those is listed below and
they are all located in the org.springframework.beans.propertyeditors package. Most, but not all (as
indicated below), are registered by default by BeanWrapperImpl. Where the property editor is
configurable in some fashion, you can of course still register your own variant to override the
default one:

Table 12. Built-in PropertyEditors

Class Explanation

ByteArrayPropertyEditor Editor for byte arrays. Strings will simply be
converted to their corresponding byte
representations. Registered by default by
BeanWrapperImpl.

ClassEditor Parses Strings representing classes to actual
classes and the other way around. When a class
is not found, an I11egalArgumentException is
thrown. Registered by default by
BeanWrapperImpl.

CustomBooleanEditor Customizable property editor for Boolean
properties. Registered by default by
BeanWrapperImpl, but, can be overridden by
registering custom instance of it as custom

editor.

CustomCollectionEditor Property editor for Collections, converting any
source Collection to a given target Collection
type.

CustomDateEditor Customizable property editor for java.util.Date,

supporting a custom DateFormat. NOT
registered by default. Must be user registered as
needed with appropriate format.

CustomNumberEditor Customizable property editor for any Number
subclass like Integer, Long, Float, Double.
Registered by default by BeanlWrapperImpl, but
can be overridden by registering custom
instance of it as a custom editor.

177



Class
FileEditor

InputStreamEditor

LocaleEditor

PatternEditor

PropertiesEditor

StringTrimmerEditor

URLEditor

Explanation

Capable of resolving Strings to java.io.File
objects. Registered by default by
BeanWrapperImpl.

One-way property editor, capable of taking a
text string and producing (via an intermediate
ResourceEditor and Resource) an InputStream, so
InputStream properties may be directly set as
Strings. Note that the default usage will not close
the InputStream for you! Registered by default by
BeanWrapperImpl.

Capable of resolving Strings to Locale objects
and vice versa (the String format is
[country][variant], which is the same thing the
toString() method of Locale provides). Registered
by default by BeanWrapperImpl.

Capable of resolving Strings to
java.util.regex.Pattern objects and vice versa.

Capable of converting Strings (formatted using
the format as defined in the javadocs of the
java.util.Properties class) to Properties objects.
Registered by default by BeanWrapperImpl.

Property editor that trims Strings. Optionally
allows transforming an empty string into a null
value. NOT registered by default; must be user
registered as needed.

Capable of resolving a String representation of a
URL to an actual URL object. Registered by default
by BeanWrapperImpl.

Spring uses the java.beans.PropertyEditorManager to set the search path for property editors that
might be needed. The search path also includes sun.bean.editors, which includes PropertyEditor
implementations for types such as Font, Color, and most of the primitive types. Note also that the
standard JavaBeans infrastructure will automatically discover PropertyEditor classes (without you
having to register them explicitly) if they are in the same package as the class they handle, and
have the same name as that class, with 'Editor' appended; for example, one could have the
following class and package structure, which would be sufficient for the FooEditor class to be
recognized and used as the PropertyEditor for Foo-typed properties.

com
chank

pop
Foo

FooEditor // the PropertyEditor for the Foo class

Note that you can also use the standard BeanInfo JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the BeanInfo mechanism for explicitly

178


https://docs.oracle.com/javase/tutorial/javabeans/advanced/customization.html
https://docs.oracle.com/javase/tutorial/javabeans/advanced/customization.html

registering one or more PropertyEditor instances with the properties of an associated class.

com
chank
pop
Foo
FooBeanInfo // the BeanInfo for the Foo class

Here is the Java source code for the referenced FooBeanInfo class. This would associate a
CustomNumberEditor with the age property of the Foo class.

public class FooBeanInfo extends SimpleBeanInfo {

public PropertyDescriptor[] getPropertyDescriptors() {

try {
final PropertyEditor numberPE = new CustomNumberEditor(Integer.class,

true);
PropertyDescriptor ageDescriptor = new PropertyDescriptor("age", Foo.
class) {
public PropertyEditor createPropertyEditor(Object bean) {
return numberPE;
}i
i
return new PropertyDescriptor[] { ageDescriptor };
}

catch (IntrospectionException ex) {
throw new Error(ex.toString());

}

Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring IoC container ultimately uses standard
JavaBeans PropertyEditors to convert these Strings to the complex type of the property. Spring pre-
registers a number of custom PropertyEditors (for example, to convert a classname expressed as a
string into a real Class object). Additionally, Java’s standard JavaBeans PropertyEditor lookup
mechanism allows a PropertyEditor for a class simply to be named appropriately and placed in the
same package as the class it provides support for, to be found automatically.

If there is a need to register other custom PropertyEditors, there are several mechanisms available.
The most manual approach, which is not normally convenient or recommended, is to simply use
the registerCustomEditor() method of the ConfigurableBeanFactory interface, assuming you have a
BeanFactory reference. Another, slightly more convenient, mechanism is to use a special bean
factory post-processor called CustomEditorConfigurer. Although bean factory post-processors can be
used with BeanFactory implementations, the CustomtEditorConfigurer has a nested property setup, so
it is strongly recommended that it is used with the ApplicationContext, where it may be deployed in
similar fashion to any other bean, and automatically detected and applied.

179



Note that all bean factories and application contexts automatically use a number of built-in
property editors, through their use of something called a BeanWrapper to handle property
conversions. The standard property editors that the BeanWrapper registers are listed in the previous
section. Additionally, ApplicationContexts also override or add an additional number of editors to
handle resource lookups in a manner appropriate to the specific application context type.

Standard JavaBeans PropertyEditor instances are used to convert property values expressed as
strings to the actual complex type of the property. CustomEditorConfigurer, a bean factory post-
processor, may be used to conveniently add support for additional PropertyEditor instances to an
ApplicationContext.

Consider a user class ExoticType, and another class DependsOnExoticType which needs ExoticType set
as a property:

package example;
public class ExoticType {
private String name;
public ExoticType(String name) {
this.name = name;

}
}

public class DependsOnExoticType {
private ExoticType type;
public void setType(ExoticType type) {

this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
PropertyEditor will behind the scenes convert into an actual ExoticType instance:

<bean id="sample" class="example.DependsOnExoticType">
<property name="type" value="aNameForExoticType"/>
</bean>

The PropertyEditor implementation could look similar to this:

180



// converts string representation to ExoticType object
package example;

public class ExoticTypeEditor extends PropertyEditorSupport {

public void setAsText(String text) {
setValue(new ExoticType(text.toUpperCase()));

}

Finally, we wuse CustomEditorConfigurer to register the new PropertyEditor with the
ApplicationContext, which will then be able to use it as needed:

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="customEditors">
<map>
<entry key="example.ExoticType" value="example.ExoticTypeEditor"/>
</map>
</property>
</bean>

Using PropertyEditorRegistrars

Another mechanism for registering property editors with the Spring container is to create and use a
PropertyEditorRegistrar. This interface is particularly useful when you need to use the same set of
property editors in several different situations: write a corresponding registrar and reuse that in
each case. PropertyEditorRegistrars work in conjunction with an interface called
PropertyEditorRegistry, an interface that is implemented by the Spring BeanWrapper (and
DataBinder). PropertyEditorRegistrars are particularly convenient when used in conjunction with
the  CustomEditorConfigurer  (introduced here), which exposes a property called
setPropertyEditorRegistrars(..): PropertyEditorRegistrars added to a CustomEditorConfigurer in
this fashion can easily be shared with DataBinder and Spring MVC Controllers. Furthermore, it
avoids the need for synchronization on custom editors: a PropertyEditorRegistrar is expected to
create fresh PropertyEditor instances for each bean creation attempt.

Using a PropertyEditorRegistrar is perhaps best illustrated with an example. First off, you need to
create your own PropertyEditorRegistrar implementation:

181



package com.foo.editors.spring;
public final class CustomPropertyEditorRegistrar implements PropertyEditorRegistrar {
public void registerCustomEditors(PropertyEditorRegistry registry) {

// it is expected that new PropertyEditor instances are created
registry.registerCustomEditor(ExoticType.class, new ExoticTypeEditor());

// you could register as many custom property editors as are required here...

See also the org.springframework.beans.support.ResourceEditorRegistrar for an example
PropertyEditorRegistrar implementation. Notice how in its implementation of the
registerCustomEditors(..) method it creates new instances of each property editor.

Next we configure a CustomEditorConfigurer and inject an instance of our
CustomPropertyEditorRegistrar into it:

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="propertyEditorRegistrars">
<list>
<ref bean="customPropertyEditorRegistrar"/>
</list>
</property>
</bean>

<bean id="customPropertyEditorRegistrar"
class="com.foo.editors.spring.CustomPropertyEditorReqgistrar"/>

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring’s
MVC web framework, using PropertyEditorRegistrars in conjunction with data-binding Controllers
(such as SimpleFormController) can be very convenient. Find below an example of using a
PropertyEditorRegistrar in the implementation of an initBinder(..) method:

182


web.pdf#mvc
web.pdf#mvc

public final class RegisterUserController extends SimpleFormController {
private final PropertyEditorRegistrar customPropertyEditorRegistrar;

public RegisterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
this.customPropertyEditorRegistrar = propertyEditorRegistrar;
}

protected void initBinder(HttpServletRequest request,
ServletRequestDataBinder binder) throws Exception {
<strong>this.customPropertyEditorRegistrar.registerCustomEditors(binder);<
/strong>

}

// other methods to do with registering a User

This style of PropertyEditor registration can lead to concise code (the implementation of
initBinder(..) is just one line long!), and allows common PropertyEditor registration code to be
encapsulated in a class and then shared amongst as many Controllers as needed.

3.5. Spring Type Conversion

Spring 3 introduces a core.convert package that provides a general type conversion system. The
system defines an SPI to implement type conversion logic, as well as an API to execute type
conversions at runtime. Within a Spring container, this system can be used as an alternative to
PropertyEditors to convert externalized bean property value strings to required property types.
The public API may also be used anywhere in your application where type conversion is needed.

3.5.1. Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org.springframework.core.convert.converter;
public interface Converter<S, T> {

T convert(S source);

To create your own converter, simply implement the interface above. Parameterize S as the type
you are converting from, and T as the type you are converting to. Such a converter can also be
applied transparently if a collection or array of S needs to be converted to an array or collection of
T, provided that a delegating array/collection converter has been registered as well (which
DefaultConversionService does by default).

For each call to convert(S), the source argument is guaranteed to be NOT null. Your Converter may

183



throw any unchecked exception if conversion fails; specifically, an I1legalArgumentException should
be thrown to report an invalid source value. Take care to ensure that your Converter
implementation is thread-safe.

Several converter implementations are provided in the core.convert.support package as a
convenience. These include converters from Strings to Numbers and other common types. Consider
StringToInteger as an example for a typical Converter implementation:

package org.springframework.core.convert.support;
final class StringToInteger implements Converter<String, Integer> {
public Integer convert(String source) {

return Integer.valueOf(source);

}

3.5.2. ConverterFactory

When you need to centralize the conversion logic for an entire class hierarchy (for example, when

converting from String to Enum objects), you can implement ConverterFactory, as the following
example shows:

package org.springframework.core.convert.converter;
public interface ConverterFactory<S, R> {

<T extends R> Converter<S, T> getConverter(Class<T> targetType);

Parameterize S to be the type you are converting from and R to be the base type defining the range
of classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.

Consider the StringToEnumConverterFactory as an example:

184



package org.springframework.core.convert.support;
final class StringToEnumConverterFactory implements ConverterFactory<String, Enum> {

public <T extends Enum> Converter<String, T> getConverter(Class<T> targetType) {
return new StringToEnumConverter(targetType);

}

private final class StringToEnumConverter<T extends Enum> implements Converter
<String, T> {

private Class<T> enumType;

public StringToEnumConverter(Class<T> enumType) {
this.enumType = enumType;

}

public T convert(String source) {
return (T) Enum.valueOf(this.enumType, source.trim());

}

3.5.3. GenericConverter

When you require a sophisticated Converter implementation, consider using the GenericConverter
interface. With a more flexible but less strongly typed signature than Converter, a GenericConverter
supports converting between multiple source and target types. In addition, a GenericConverter
makes available source and target field context that you can use when you implement your
conversion logic. Such context lets a type conversion be driven by a field annotation or by generic
information declared on a field signature. The following listing shows the interface definition of
GenericConverter

package org.springframework.core.convert.converter;
public interface GenericConverter {
public Set<ConvertiblePair> getConvertibleTypes();
Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor

targetType);
}

To implement a GenericConverter, have getConvertibleTypes() return the supported source - target
type pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to contain your
conversion logic. The source TypeDescriptor provides access to the source field that holds the value
being converted. The target TypeDescriptor provides access to the target field where the converted

185



value is to be set.

A good example of a GenericConverter is a converter that converts between a Java array and a
collection. Such an ArrayToCollectionConverter introspects the field that declares the target
collection type to resolve the collection’s element type. This lets each element in the source array be
converted to the collection element type before the collection is set on the target field.

0 Because GenericConverter is a more complex SPI interface, only use it when you
need it. Favor Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Converter to execute if a specific condition holds true. For example, you
might only want to execute a Converter if a specific annotation is present on the target field. Or you
might only want to execute a Converter if a specific method, such as a static valueOf method, is
defined on the target class. ConditionalGenericConverter is the union of the GenericConverter and
ConditionalConverter interfaces that allows you to define such custom matching criteria:

public interface ConditionalConverter {

boolean matches(TypeDescriptor sourceType, TypeDescriptor targetType);

public interface ConditionalGenericConverter extends GenericConverter,
ConditionalConverter {

}

A good example of a ConditionalGenericConverter is an EntityConverter that converts between an
persistent entity identifier and an entity reference. Such a EntityConverter might only match if the
target entity type declares a static finder method e.g. findAccount(Long). You would perform such a
finder method check in the implementation of matches(TypeDescriptor, TypeDescriptor).

3.5.4. ConversionService API

The ConversionService defines a unified API for executing type conversion logic at runtime.
Converters are often executed behind this facade interface:

186



package org.springframework.core.convert;
public interface ConversionService {
boolean canConvert(Class<?> sourceType, Class<?> targetType);
<T> T convert(Object source, Class<T> targetType);
boolean canConvert(TypeDescriptor sourceType, TypeDescriptor targetType);

Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor
targetType);

Most ConversionService implementations also implement ConverterRegistry, which provides an SPI
for registering converters. Internally, a ConversionService implementation delegates to its
registered converters to carry out type conversion logic.

A robust ConversionService implementation is provided in the core.convert.support package.
GenericConversionService is the general-purpose implementation suitable for use in most
environments. ConversionServiceFactory provides a convenient factory for creating common
ConversionService configurations.

3.5.5. Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application startup, then
shared between multiple threads. In a Spring application, you typically configure a
ConversionService instance per Spring container (or ApplicationContext). That ConversionService
will be picked up by Spring and then used whenever a type conversion needs to be performed by
the framework. You may also inject this ConversionService into any of your beans and invoke it
directly.

O If no ConversionService is registered with Spring, the original PropertyEditor-
based system is used.

To register a default ConversionService with Spring, add the following bean definition with id
conversionService:

<bean id="conversionService"
class="org.springframework.context.support.ConversionServiceFactoryBean"/>

A default ConversionService can convert between strings, numbers, enums, collections, maps, and
other common types. To supplement or override the default converters with your own custom
converter(s), set the converters property. Property values may implement either of the Converter,
ConverterFactory, or GenericConverter interfaces.

187



<bean id="conversionService"
class="org.springframework.context.support.ConversionServiceFactoryBean">
<property name="converters">
<set>
<bean class="example.MyCustomConverter"/>
</set>
</property>
</bean>

It is also common to use a ConversionService within a Spring MVC application. See Conversion and
Formatting in the Spring MVC chapter.

In certain situations you may wish to apply formatting during conversion. See FormatterRegistry
SPI for details on using FormattingConversionServiceFactoryBean.

3.5.6. Using a ConversionService programmatically

To work with a ConversionService instance programmatically, simply inject a reference to it like
you would for any other bean:

public class MyService {

public MyService(ConversionService conversionService) {
this.conversionService = conversionService;

}

public void doIt() {
this.conversionService.convert(...)

}

For most use cases, the convert method specifying the targetType can be used but it will not work
with more complex types such as a collection of a parameterized element. If you want to convert a
List of Integer to a List of String programmatically, for instance, you need to provide a formal
definition of the source and target types.

Fortunately, TypeDescriptor provides various options to make that straightforward:

DefaultConversionService cs = new DefaultConversionService();

List<Integer> input = ....

cs.convert(input,
TypeDescriptor.forObject(input), // List<Integer> type descriptor
TypeDescriptor.collection(List.class, TypeDescriptor.valueOf(String.class)));

188


web.pdf#mvc-config-conversion
web.pdf#mvc-config-conversion

Note that DefaultConversionService registers converters automatically which are appropriate for
most environments. This includes collection converters, scalar converters, and also basic Object to
String converters. The same converters can be registered with any ConverterRegistry using the
static addDefaultConverters method on the DefaultConversionService class.

Converters for value types will be reused for arrays and collections, so there is no need to create a
specific converter to convert from a Collection of S to a Collection of T, assuming that standard
collection handling is appropriate.

3.6. Spring Field Formatting

As discussed in the previous section, core.convert is a general-purpose type conversion system. It
provides a unified ConversionService API as well as a strongly-typed Converter SPI for
implementing conversion logic from one type to another. A Spring Container uses this system to
bind bean property values. In addition, both the Spring Expression Language (SpEL) and
DataBinder use this system to bind field values. For example, when SpEL needs to coerce a Short to
a Long to complete an expression.setValue(Object bean, Object value) attempt, the core.convert
system performs the coercion.

Now consider the type conversion requirements of a typical client environment such as a web or
desktop application. In such environments, you typically convert from String to support the client
postback process, as well as back to String to support the view rendering process. In addition, you
often need to localize String values. The more general core.convert Converter SPI does not address
such formatting requirements directly. To directly address them, Spring 3 introduces a convenient
Formatter SPI that provides a simple and robust alternative to PropertyEditors for client
environments.

In general, you can use the Converter SPI when you need to implement general-purpose type
conversion logic — for example, for converting between a java.util.Date and a Long. You can use
the Formatter SPI when you work in a client environment (such as a web application) and need to
parse and print localized field values. The ConversionService provides a unified type conversion API
for both SPIs.

3.6.1. Formatter SPI

The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org.springframework.format;

public interface Formatter<T> extends Printer<T>, Parser<T> {

}

Where Formatter extends from the Printer and Parser building-block interfaces:

189



public interface Printer<T> {

String print(T fieldValue, Locale locale);

import java.text.ParseException;
public interface Parser<T> {

T parse(String clientValue, Locale locale) throws ParseException;

To create your own Formatter, implement the Formatter interface shown earlier. Parameterize T to
be the type of object you wish to format— for example, java.util.Date. Implement the print()
operation to print an instance of T for display in the client locale. Implement the parse() operation
to parse an instance of T from the formatted representation returned from the client locale. Your
Formatter should throw a ParseException or an IllegalArgumentException if a parse attempt fails.
Take care to ensure that your Formatter implementation is thread-safe.

The format subpackages provide several Formatter implementations as a convenience. The number
package provides NumberStyleFormatter, CurrencyStyleFormatter, and PercentStyleFormatter to
format Number objects that use a java.text.NumberFormat. The datetime package provides a
DateFormatter to format java.util.Date objects with a java.text.DateFormat. The datetime.joda
package provides comprehensive datetime formatting support based on the Joda-Time library.

The following DateFormatter is an example Formatter implementation:

190


http://joda-time.sourceforge.net

package org.springframework.format.datetime;
public final class DateFormatter implements Formatter<Date> {
private String pattern;

public DateFormatter(String pattern) {
this.pattern = pattern;
}

public String print(Date date, Locale locale) {
if (date == null) {

nn

return ;

}
return getDateFormat(locale).format(date);

}

public Date parse(String formatted, Locale locale) throws ParseException {
if (formatted.length() == 0) {
return null;

}

return getDateFormat(locale).parse(formatted);

}

protected DateFormat getDateFormat(Locale locale) {
DateFormat dateFormat = new SimpleDateFormat(this.pattern, locale);
dateFormat.setLenient(false);
return dateFormat;

The Spring team welcomes community-driven Formatter contributions; see jira.spring.io to
contribute.

3.6.2. Annotation-driven Formatting

As you will see, field formatting can be configured by field type or annotation. To bind an
Annotation to a formatter, implement AnnotationFormatterFactory:

191


https://jira.spring.io/browse/SPR

package org.springframework.format;

public interface AnnotationFormatterFactory<A extends Annotation> {
Set<(Class<?>> getFieldTypes();
Printer<?> getPrinter(A annotation, Class<?> fieldType);

Parser<?> getParser(A annotation, (Class<?> fieldType);

Parameterize A to be the field annotationType you wish to associate formatting logic with, for
example org.springframework.format.annotation.DateTimeFormat. Have getFieldTypes() return the
types of fields the annotation may be used on. Have getPrinter() return a Printer to print the value
of an annotated field. Have getParser() return a Parser to parse a clientValue for an annotated
field.

The example AnnotationFormatterFactory implementation below binds the @NumberFormat
Annotation to a formatter. This annotation allows either a number style or pattern to be specified:

192



public final class NumberFormatAnnotationFormatterFactory
implements AnnotationFormatterFactory<NumberFormat> {

public Set<Class<?>> getFieldTypes() {
return new HashSet<(Class<?>>(asList(new Class<?>[] {
Short.class, Integer.class, Long.class, Float.class,
Double.class, BigDecimal.class, BigInteger.class }));

}

public Printer<Number> getPrinter(NumberFormat annotation, Class<?> fieldType) {
return confiqureFormatterFrom(annotation, fieldType);

}

public Parser<Number> getParser(NumberFormat annotation, Class<?> fieldType) {
return confiqureFormatterFrom(annotation, fieldType);

}

private Formatter<Number> configureFormatterFrom(NumberFormat annotation, Class<?>
fieldType) {
if (lannotation.pattern().isEmpty()) {
return new NumberStyleFormatter(annotation.pattern());
} else {
Style style = annotation.style();
if (style == Style.PERCENT) {
return new PercentStyleFormatter();
} else if (style == Style.CURRENCY) {
return new CurrencyStyleFormatter();
} else {
return new NumberStyleFormatter();

}

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyModel {

(style=Style.CURRENCY)
private BigDecimal decimal;

Format Annotation API

A portable format annotation API exists in the org.springframework.format.annotation package. You
can use @NumberFormat to format Number fields such as Double and Long, and @DateTimeFormat to format
java.util.Date, java.util.Calendar, Long (for millisecond timestamps) as well as JSR-310 java.time
and Joda-Time value types.

193



The following example uses @DateTimeFormat to format a java.util.Date as an ISO Date (yyyy-MM-
dd):

public class MyModel {

(is0=IS0.DATE)
private Date date;

3.6.3. FormatterRegistry SPI

The FormatterRegistry is an SPI  for registering formatters and converters.
FormattingConversionService is an implementation of FormatterRegistry suitable for most
environments. This implementation may be configured programmatically or declaratively as a
Spring bean using FormattingConversionServiceFactoryBean. Because this implementation also
implements ConversionService, it can be directly configured for use with Spring’s DataBinder and
the Spring Expression Language (SpEL).

Review the FormatterRegistry SPI below:

package org.springframework.format;
public interface FormatterRegistry extends ConverterRegistry {

void addFormatterForFieldType(Class<?> fieldType, Printer<?> printer, Parser<?>
parser);

void addFormatterForFieldType(Class<?> fieldType, Formatter<?> formatter);
void addFormatterForFieldType(Formatter<?> formatter);

void addFormatterForAnnotation(AnnotationFormatterFactory<?, 7> factory);

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of duplicating
such configuration across your Controllers. For example, you might want to enforce that all Date
fields are formatted a certain way, or fields with a specific annotation are formatted in a certain
way. With a shared FormatterRegistry, you define these rules once and they are applied whenever
formatting is needed.

3.6.4. FormatterRegistrar SPI

The FormatterRegistrar is an SPI for registering formatters and converters through the
FormatterRegistry:

194



package org.springframework.format;
public interface FormatterRegistrar {

void registerFormatters(FormatterRegistry registry);

A FormatterRegistrar is useful when registering multiple related converters and formatters for a
given formatting category, such as Date formatting. It can also be useful where declarative
registration is insufficient. For example when a formatter needs to be indexed under a specific field
type different from its own <T> or when registering a Printer/Parser pair. The next section provides
more information on converter and formatter registration.

3.6.5. Configuring Formatting in Spring MVC

See Conversion and Formatting in the Spring MVC chapter.

3.7. Configuring a global date & time format

By default, date and time fields that are not annotated with @DateTimeFormat are converted from
strings using the DateFormat.SHORT style. If you prefer, you can change this by defining your own
global format.

You will need to ensure that Spring does not register default formatters, and instead you should
register all formatters manually. Use the
org.springframework.format.datetime.joda.JodaTimeFormatterRegistrar or
org.springframework.format.datetime.DateFormatterRegistrar class depending on whether you use
the Joda-Time library.

For example, the following Java configuration will register a global ' "yyyyMMdd’ format. This
example does not depend on the Joda-Time library:

195


web.pdf#mvc-config-conversion

@Configuration
public class AppConfig {

@Bean
public FormattingConversionService conversionService() {

// Use the DefaultFormattingConversionService but do not register defaults
DefaultFormattingConversionService conversionService = new
DefaultFormattingConversionService(false);

// Ensure @NumberFormat is still supported
conversionService.addFormatterForFieldAnnotation(new
NumberFormatAnnotationFormatterFactory());

// Register date conversion with a specific global format
DateFormatterRegistrar registrar = new DateFormatterRegistrar();
registrar.setFormatter(new DateFormatter("yyyyMMdd"));

registrar.registerFormatters(conversionService);

return conversionService;

If you prefer XML based configuration you can use a FormattingConversionServiceFactoryBean. Here
is the same example, this time using Joda Time:

196



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd>

<bean id="conversionService" class=
"org.springframework.format.support.FormattingConversionServiceFactoryBean">
<property name="registerDefaultFormatters" value="false" />
<property name="formatters">
<set>
<bean class=
"org.springframework.format.number.NumberFormatAnnotationFormatterFactory" />
</set>
</property>
<property name="formatterRegistrars">
<set>
<bean class=
"org.springframework.format.datetime.joda.JodaTimeFormatterRegistrar">
<property name="dateFormatter">
<bean class=
"org.springframework.format.datetime.joda.DateTimeFormatterFactoryBean">
<property name="pattern" value="yyyyMMdd"/>
</bean>
</property>
</bean>
</set>
</property>
</bean>
</beans>

Joda-Time provides separate distinct types to represent date, time and date-time
values. The dateFormatter, timeFormatter and dateTimeFormatter properties of the

O JodaTimeFormatterRegistrar should be used to configure the different formats for
each type. The DateTimeFormatterFactoryBean provides a convenient way to create
formatters.

If you are using Spring MVC remember to explicitly configure the conversion service that is used.
For Java based @Configuration this means extending the WebMvcConfigurationSupport class and
overriding the mvcConversionService() method. For XML you should use the 'conversion-service'
attribute of the mvc:annotation-driven element. See Conversion and Formatting for details.

3.8. Spring Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303 Bean
Validation API is now fully supported. Second, when used programmatically, Spring’s DataBinder
can now validate objects as well as bind to them. Third, Spring MVC now has support for

197


web.pdf#mvc-config-conversion

declaratively validating @Controller inputs.

3.8.1. Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using
this API, you annotate domain model properties with declarative validation constraints and the
runtime enforces them. There are a number of built-in constraints you can take advantage of. You
may also define your own custom constraints.

To illustrate, consider a simple PersonForm model with two properties:
public class PersonForm {

private String name;
private int age;

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

(max=64)
private String name;

(9)

private int age;

When an instance of this class is validated by a JSR-303 Validator, these constraints will be
enforced.

For general information on JSR-303/JSR-349, see the Bean Validation website. For information on
the specific capabilities of the default reference implementation, see the Hibernate Validator
documentation. To learn how to setup a Bean Validation provider as a Spring bean, keep reading.

3.8.2. Configuring a Bean Validation Provider

Spring provides full support for the Bean Validation API. This includes convenient support for
bootstrapping a JSR-303/JSR-349 Bean Validation provider as a Spring bean. This allows for a
javax.validation.ValidatorFactory or javax.validation.Validator to be injected wherever
validation is needed in your application.

Use the LocalValidatorFactoryBean to configure a default Validator as a Spring bean:

<bean id="validator"
class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"/>

198


https://beanvalidation.org/
https://www.hibernate.org/412.html

The basic configuration above will trigger Bean Validation to initialize using its default bootstrap
mechanism. A JSR-303/JSR-349 provider, such as Hibernate Validator, is expected to be present in
the classpath and will be detected automatically.

Injecting a Validator

LocalValidatorFactoryBean implements both javax.validation.ValidatorFactory and
javax.validation.Validator, as well as Spring’s org.springframework.validation.Validator. You may
inject a reference to either of these interfaces into beans that need to invoke validation logic.

Inject a reference to javax.validation.Validator if you prefer to work with the Bean Validation API

directly:

import javax.validation.Validator;

public class MyService {

private Validator validator;

Inject a reference to org.springframework.validation.Validator if your bean requires the Spring
Validation API:

import org.springframework.validation.Validator;

public class MyService {

private Validator validator;

Configuring Custom Constraints

Each Bean Validation constraint consists of two parts. First, a @Constraint annotation that declares
the constraint and its configurable properties. Second, an implementation of the
javax.validation.ConstraintValidator interface that implements the constraint’s behavior. To
associate a declaration with an implementation, each @Constraint annotation references a
corresponding ConstraintValidator implementation class. At runtime, a ConstraintValidatorFactory
instantiates the referenced implementation when the constraint annotation is encountered in your
domain model.

By default, the LocalValidatorFactoryBean configures a SpringConstraintValidatorFactory that uses
Spring to create ConstraintValidator instances. This allows your custom ConstraintValidators to
benefit from dependency injection like any other Spring bean.

Shown below is an example of a custom @Constraint declaration, followed by an associated

199



ConstraintValidator implementation that uses Spring for dependency injection:

({ElementType.METHOD, ElementType.FIELD})
(RetentionPolicy.RUNTIME)
(validatedBy=MyConstraintValidator.class)
public MyConstraint {

}

import javax.validation.ConstraintValidator;

public class MyConstraintValidator implements ConstraintValidator {

.
I

private Foo aDependency;

As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like
any other Spring bean.

Spring-driven Method Validation

The method validation feature supported by Bean Validation 1.1, and as a custom extension also by
Hibernate Validator 4.3, can be integrated into a Spring context through a
MethodValidationPostProcessor bean definition:

<bean class=
"org.springframework.validation.beanvalidation.MethodValidationPostProcessor"/>

In order to be eligible for Spring-driven method validation, all target classes need to be annotated
with Spring’s @Validated annotation, optionally declaring the validation groups to use. Check out
the MethodValidationPostProcessor javadocs for setup details with Hibernate Validator and Bean
Validation 1.1 providers.

Additional Configuration Options

The default LocalValidatorFactoryBean configuration should prove sufficient for most cases. There
are a number of configuration options for various Bean Validation constructs, from message
interpolation to traversal resolution. See the LocalValidatorFactoryBean javadocs for more
information on these options.

3.8.3. Configuring a DataBinder

Since Spring 3, a DataBinder instance can be configured with a Validator. Once configured, the
Validator may be invoked by calling binder.validate(). Any validation Errors are automatically
added to the binder’s BindingResult.

200



When working with the DataBinder programmatically, this can be used to invoke validation logic
after binding to a target object:

Foo target = new Foo();
DataBinder binder = new DataBinder(target);
binder.setValidator(new FooValidator());

// bind to the target object
binder.bind(propertyValues);

// validate the target object
binder.validate();

// get BindingResult that includes any validation errors
BindingResult results = binder.getBindingResult();

A DataBinder can also be configured with multiple Validator instances via
dataBinder.addValidators and dataBinder.replaceValidators. This is useful when combining globally
configured Bean Validation with a Spring Validator configured locally on a DataBinder instance.
See [validation-mvc-configuring].

3.8.4. Spring MVC 3 Validation

See Validation in the Spring MVC chapter.

201


web.pdf#mvc-config-validation

Chapter 4. Spring Expression Language
(SpEL)

4.1. Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that supports
querying and manipulating an object graph at runtime. The language syntax is similar to Unified EL
but offers additional features, most notably method invocation and basic string templating
functionality.

While there are several other Java expression languages available — OGNL, MVEL, and JBoss EL, to
name a few —the Spring Expression Language was created to provide the Spring community with
a single well supported expression language that can be used across all the products in the Spring
portfolio. Its language features are driven by the requirements of the projects in the Spring
portfolio, including tooling requirements for code completion support within the Eclipse based
Spring Tool Suite. That said, SpEL is based on a technology agnostic API allowing other expression
language implementations to be integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring portfolio, it is not
directly tied to Spring and can be used independently. In order to be self contained, many of the
examples in this chapter use SpEL as if it were an independent expression language. This requires
creating a few bootstrapping infrastructure classes such as the parser. Most Spring users will not
need to deal with this infrastructure and will instead only author expression strings for evaluation.
An example of this typical use is the integration of SpEL into creating XML or annotated based bean
definitions as shown in the section Expression support for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language syntax. In
several places an Inventor and Inventor’s Society classes are used as the target objects for
expression evaluation. These class declarations and the data used to populate them are listed at the
end of the chapter.

The expression language supports the following functionality:

* Literal expressions

* Boolean and relational operators

* Regular expressions

* Class expressions

» Accessing properties, arrays, lists, maps
* Method invocation

* Relational operators

» Assignment

* Calling constructors

* Bean references

202



* Array construction

* Inline lists

* Inline maps

* Ternary operator

» Variables

» User defined functions
* Collection projection

* Collection selection

* Templated expressions

4.2. Evaluation

This section introduces the simple use of SpEL interfaces and its expression language. The complete
language reference can be found in the section Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression 'Hello World'.
ExpressionParser parser = new SpelExpressionParser();

Expression exp = parser.parseExpression("<strong>'Hello World'</strong>");
String message = (String) exp.getValue();

The value of the message variable is simply 'Hello World'.

The SpEL classes and interfaces you are most likely to use are located in the packages
org.springframework.expression and its sub packages such as spel.support.

The interface ExpressionParser is responsible for parsing an expression string. In this example the
expression string is a string literal denoted by the surrounding single quotes. The interface
Expression is responsible for evaluating the previously defined expression string. There are two
exceptions that can be thrown, ParseException and EvaluationException when calling
parser.parseExpression and exp.getValue respectively.

SpEL supports a wide range of features, such as calling methods, accessing properties, and calling
constructors.

As an example of method invocation, we call the concat method on the string literal.
ExpressionParser parser = new SpelExpressionParser();

Expression exp = parser.parseExpression("<strong>'Hello World'.concat('!")</strong>");
String message = (String) exp.getValue();

The value of message is now 'Hello World!'.

As an example of calling a JavaBean property, the String property Bytes can be called as shown

203



below.

ExpressionParser parser = new SpelExpressionParser();

// invokes 'getBytes()'
Expression exp = parser.parseExpression("<strong>'Hello World'.bytes</strong>");
byte[] bytes = (byte[]) exp.getValue();

SpEL also supports nested properties by using the standard dot notation (such as prop1.prop2.prop3)
and also the corresponding setting of property values. Public fields may also be accessed.

The following example shows how to use dot notation to get the length of a literal:

ExpressionParser parser = new SpelExpressionParser();

// invokes 'getBytes().length'

Expression exp = parser.parseExpression("<strong>'Hello World'.bytes.length</strong>"
);

int length = (Integer) exp.getValue();

The String’s constructor can be called instead of using a string literal.

ExpressionParser parser = new SpelExpressionParser();

Expression exp = parser.parseExpression("<strong>new String('hello
world').toUpperCase()</strong>");

String message = exp.getValue(String.class);

Note the use of the generic method public <T> T getValue(Class<T> desiredResultType). Using this
method removes the need to cast the value of the expression to the desired result type. An
EvaluationException will be thrown if the value cannot be cast to the type T or converted using the
registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated against a
specific object instance (called the root object). The example shows how to retrieve the name
property from an instance of the Inventor class or create a boolean condition:

204



// Create and set a calendar
GregorianCalendar ¢ = new GregorianCalendar();
c.set(1856, 7, 9);

// The constructor arqguments are name, birthday, and nationality.
Inventor tesla = new Inventor("Nikola Tesla", c.getTime(), "Serbian");

ExpressionParser parser = new SpelExpressionParser();

Expression exp = parser.parseExpression("<strong>name</strong>");
String name = (String) exp.getValue(tesla);
// name == "Nikola Tesla"

exp = parser.parseExpression("name == 'Nikola Tesla'");
boolean result = exp.getValue(tesla, Boolean.class);
// result == true

4.2.1. EvaluationContext

The interface EvaluationContext is used when evaluating an expression to resolve properties,
methods, or fields and to help perform type conversion. There are two out-of-the-box
implementations.

» SimpleEvaluationContext —exposes a subset of essential SpEL language features and
configuration options, for categories of expressions that do not require the full extent of the
SpEL language syntax and should be meaningfully restricted. Examples include but are not
limited to data binding expressions, property-based filters, and others.

 StandardEvaluationContext —exposes the full set of SpEL language features and configuration
options. You may use it to specify a default root object and to configure every available
evaluation-related strategy.

SimpleEvaluationContext is designed to support only a subset of the SpEL language syntax. It
excludes Java type references, constructors, and bean references. It also requires that one explicitly
choose the level of support for properties and methods in expressions. By default, the create()
static factory method enables only read access to properties. You can also obtain a builder to
configure the exact level of support needed, targeting one or some combination of the following:

1. Custom PropertyAccessor only (no reflection)
2. Data binding properties for read-only access

3. Data binding properties for read and write

Type conversion

By default SpEL uses the conversion service available in  Spring core
(org.springframework.core.convert.ConversionService). This conversion service comes with many
converters built in for common conversions but is also fully extensible so custom conversions
between types can be added. Additionally it has the key capability that it is generics aware. This

205



means that when working with generic types in expressions, SpEL will attempt conversions to
maintain type correctness for any objects it encounters.

What does this mean in practice? Suppose assignment, using setValue(), is being used to set a List
property. The type of the property is actually List<Boolean>. SpEL will recognize that the elements
of the list need to be converted to Boolean before being placed in it. A simple example:

class Simple {
public List<Boolean> booleanlList = new ArraylList<Boolean>();

}

Simple simple = new Simple();
simple.booleanlList.add(true);

EvaluationContext context = SimpleEvaluationContext.forReadOnlyDataBinding().build();

// "false" is passed in here as a String. SpEL and the conversion service
// will recognize that it needs to be a Boolean and convert it accordingly.
parser.parseExpression(“booleanList[@]").setValue(context, simple, "false");

// b will be false
Boolean b = simple.booleanlList.get(0);

4.2.2. Parser configuration

It is possible to configure the SpEL expression parser using a parser configuration object
(org.springframework.expression.spel.SpelParserConfiguration). The configuration object controls
the behavior of some of the expression components. For example, if indexing into an array or
collection and the element at the specified index is null it is possible to automatically create the
element. This is useful when using expressions made up of a chain of property references. If
indexing into an array or list and specifying an index that is beyond the end of the current size of
the array or list it is possible to automatically grow the array or list to accommodate that index.

206



class Demo {
public List<String> list;

// Turn on:

// - auto null reference initialization

// - auto collection growing

SpelParserConfiguration config = new SpelParserConfiquration(true,true);

ExpressionParser parser = new SpelExpressionParser(config);
Expression expression = parser.parseExpression("list[3]");
Demo demo = new Demo();

Object o = expression.getValue(demo);

// demo.list will now be a real collection of 4 entries
// Each entry is a new empty String

It is also possible to configure the behaviour of the SpEL expression compiler.

4.2.3. SpEL compilation

Spring Framework 4.1 includes a basic expression compiler. Expressions are usually interpreted,
which provides a lot of dynamic flexibility during evaluation but does not provide optimum
performance. For occasional expression usage, this is fine, but, when used by other components
such as Spring Integration, performance can be very important, and there is no real need for the
dynamism.

The SpEL compiler is intended to address this need. During evaluation, the compiler generates a
Java class that embodies the expression behavior at runtime and uses that class to achieve much
faster expression evaluation. Due to the lack of typing around expressions, the compiler uses
information gathered during the interpreted evaluations of an expression when performing
compilation. For example, it does not know the type of a property reference purely from the
expression, but during the first interpreted evaluation, it finds out what it is. Of course, basing
compilation on such derived information can cause trouble later if the types of the various
expression elements change over time. For this reason, compilation is best suited to expressions
whose type information is not going to change on repeated evaluations.

For a basic expression like this:
someArray[0].someProperty.someOtherProperty < 0.1

which involves array access, some property derefencing and numeric operations, the performance
gain can be very noticeable. In an example micro benchmark run of 50000 iterations, it was taking
75ms to evaluate using only the interpreter and just 3ms using the compiled version of the
expression.

207



Compiler configuration

The compiler is not turned on by default, but there are two ways to turn it on. It can be turned on
using the parser configuration process discussed earlier or via a system property when SpEL usage
is embedded inside another component. This section discusses both of these options.

It is important to understand that there are a few modes the compiler can operate in, captured in
an enum (org.springframework.expression.spel.SpelCompilerMode). The modes are as follows:

* OFF - The compiler is switched off; this is the default.

o IMMEDIATE - In immediate mode the expressions are compiled as soon as possible. This is
typically after the first interpreted evaluation. If the compiled expression fails (typically due to
a type changing, as described above) then the caller of the expression evaluation will receive an
exception.

o MIXED - In mixed mode the expressions silently switch between interpreted and compiled mode
over time. After some number of interpreted runs they will switch to compiled form and if
something goes wrong with the compiled form (like a type changing, as described above) then
the expression will automatically switch back to interpreted form again. Sometime later it may
generate another compiled form and switch to it. Basically the exception that the user gets in
IMMEDIATE mode is instead handled internally.

IMMEDIATE mode exists because MIXED mode could cause issues for expressions that have side effects.
If a compiled expression blows up after partially succeeding it may have already done something
that has affected the state of the system. If this has happened the caller may not want it to silently
re-run in interpreted mode since part of the expression may be running twice.

After selecting a mode, use the SpelParserConfiguration to configure the parser:

SpelParserConfiguration config = new SpelParserConfiguration(SpelCompilerMode
. IMMEDIATE,
this.getClass().getClassLoader());

SpelExpressionParser parser = new SpelExpressionParser(config);
Expression expr = parser.parseExpression("payload");
MyMessage message = new MyMessage();

Object payload = expr.getValue(message);

When you specify the compiler mode, you can also specify a classloader (passing null is allowed).
Compiled expressions are defined in a child classloader created under any that is supplied. It is
important to ensure that, if a classloader is specified, it can see all the types involved in the
expression evaluation process. If you do not specify a classloader, a default classloader is used
(typically the context classloader for the thread that is running during expression evaluation).

The second way to configure the compiler is for use when SpEL is embedded inside some other
component and it may not be possible to configure it through a configuration object. In these cases,

208



it is possible to use a system property. You can set the spring.expression.compiler.mode property to
one of the SpelCompilerMode enum values (off, immediate, or mixed).

Compiler limitations

Since Spring Framework 4.1, the basic compilation framework is in place. However, the framework
does not yet support compiling every kind of expression. The initial focus has been on the common
expressions that are likely to be used in performance-critical contexts. The following kinds of
expression cannot be compiled at the moment:

* expressions involving assignment
 expressions relying on the conversion service
* expressions using custom resolvers or accessors

* expressions using selection or projection

More and more types of expression will be compilable in the future.

4.3. Expressions in bean definitions

SpEL expressions can be used with XML or annotation-based configuration metadata for defining
BeanDefinitions. In both cases the syntax to define the expression is of the form #{ <expression
string> }.

4.3.1. XML configuration

A property or constructor-arg value can be set using expressions as shown below.

<bean id="numberGuess" class="org.spring.samples.NumberGuess">
<property name="randomNumber" value="#{ T(java.lang.Math).random() * 100.0 }"/>

<!-- other properties -->
</bean>

The variable systemProperties is predefined, so you can use it in your expressions as shown below.
Note that you do not have to prefix the predefined variable with the # symbol in this context.

<bean id="tax(Calculator" class="org.spring.samples.TaxCalculator">
<property name="defaultLocale" value="#{ systemProperties['user.region'] }"/>

<!-- other properties -->
</bean>

You can also refer to other bean properties by name, for example.

209



<bean id="numberGuess" class="org.spring.samples.NumberGuess">
<property name="randomNumber" value="#{ T(java.lang.Math).random() * 100.0 }"/>

<!-- other properties -->
</bean>

<bean id="shapeGuess" class="org.spring.samples.ShapeGuess">
<property name="initialShapeSeed" value="#{ numberGuess.randomNumber }"/>

<!-- other properties -->
</bean>

4.3.2. Annotation config

The @Value annotation can be placed on fields, methods and method/constructor parameters to
specify a default value.

Here is an example to set the default value of a field variable.

public static class FieldValueTestBean

@Value("#{ systemProperties['user.region'] }")
private String defaultlLocale;

public void setDefaultLocale(String defaultLocale) {
this.defaultlLocale = defaultlLocale;
}

public String getDefaultlocale() {
return this.defaultlLocale;

}

The equivalent but on a property setter method is shown below.

210



public static class PropertyValueTestBean
private String defaultlocale;
("#{ systemProperties['user.region'] }")

public void setDefaultLocale(String defaultLocale) {
this.defaultlLocale = defaultlLocale;

}

public String getDefaultlLocale() {
return this.defaultlLocale;

}

Autowired methods and constructors can also use the @Value annotation.

public class SimpleMovielister {
private MovieFinder movieFinder;

private String defaultlLocale;

public void configure(MovieFinder movieFinder,
("#{ systemProperties['user.region'] }") String defaultlLocale) {
this.movieFinder = movieFinder;
this.defaultLocale = defaultlocale;

/] ...

public class MovieRecommender {
private String defaultlLocale;
private CustomerPreferenceDao customerPreferenceDao;
public MovieRecommender (CustomerPreferenceDao customerPreferenceDao,
("#{systemProperties['user.country']}") String defaultlLocale) {

this.customerPreferenceDao = customerPreferenceDao;
this.defaultlocale = defaultlocale;

/] ...

211



4.4. Language Reference

4.4.1. Literal expressions

The types of literal expressions supported are strings, numeric values (int, real, hex), boolean and
null. Strings are delimited by single quotes. To put a single quote itself in a string, use two single
quote characters.

The following listing shows simple usage of literals. Typically they would not be used in isolation
like this but rather as part of a more complex expression, for example using a literal on one side of
a logical comparison operator.

ExpressionParser parser = new SpelExpressionParser();

// evals to "Hello World"
String helloWorld = (String) parser.parseExpression("'Hello World'").getValue();

double avogadrosNumber = (Double) parser.parseExpression("6.0221415E+23").qgetValue();

// evals to 2147483647
int maxValue = (Integer) parser.parseExpression("@x7FFFFFFF").getValue();

boolean trueValue = (Boolean) parser.parseExpression("true").getValue();

Object nullValue = parser.parseExpression("null").getValue();

Numbers support the use of the negative sign, exponential notation, and decimal points. By default
real numbers are parsed using Double.parseDouble().

4.4.2. Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy: just use a period to indicate a nested property value.
The instances of the Inventor class, pupin, and tesla, were populated with data listed in the section
Classes used in the examples. To navigate "down" and get Tesla’s year of birth and Pupin’s city of
birth the following expressions are used.

// evals to 1856
int year = (Integer) parser.parseExpression("Birthdate.Year + 1900").getValue(context

)

String city = (String) parser.parseExpression("place0fBirth.City").getValue(context);

Case insensitivity is allowed for the first letter of property names. The contents of arrays and lists
are obtained using square bracket notation.

212



ExpressionParser parser = new SpelExpressionParser();
EvaluationContext context = SimpleEvaluationContext.forReadOnlyDataBinding().build();

// Inventions Array

// evaluates to "Induction motor"
String invention = parser.parseExpression("inventions[3]").getValue(
context, tesla, String.class);

// Members List

// evaluates to "Nikola Tesla"
String name = parser.parseExpression("Members[@].Name").getValue(
context, ieee, String.class);

// List and Array navigation

// evaluates to "Wireless communication"

String invention = parser.parseExpression("Members[0].Inventions[6]").getValue(
context, ieee, String.class);

The contents of maps are obtained by specifying the literal key value within the brackets. In this
case, because keys for the Officers map are strings, we can specify string literals.

// Officer's Dictionary

Inventor pupin = parser.parseExpression("0Officers['president’]").qgetValue(
societyContext, Inventor.class);

// evaluates to "Idvor"
String city = parser.parseExpression("Officers['president'].Place0fBirth.City")
.getValue(

societyContext, String.class);

// setting values

parser.parseExpression("Officers['advisors'][0].Place0fBirth.Country").setValue(
societyContext, "Croatia");

4.4.3. Inline lists

Lists can be expressed directly in an expression using {} notation.

// evaluates to a Java list containing the four numbers
List numbers = (List) parser.parseExpression("{1,2,3,4}").qetValue(context);

List 1istOfLists = (List) parser.parseExpression("{{"'a",'b"},{"x","y"'}}").qetValue
(context);

213



{} by itself means an empty list. For performance reasons, if the list is itself entirely composed of
fixed literals then a constant list is created to represent the expression, rather than building a new
list on each evaluation.

4.4.4. Inline Maps
Maps can also be expressed directly in an expression using {key:value} notation.
// evaluates to a Java map containing the two entries

Map inventorInfo = (Map) parser.parseExpression("{name:'Nikola',dob:'10-July-1856"'}")
.getValue(context);

Map mapOfMaps = (Map) parser.parseExpression(
"{name:{first:'Nikola',last:'Tesla'},dob:{day:10,month:"'July',year:1856}}").getValue(c
ontext);

{:} by itself means an empty map. For performance reasons, if the map is itself composed of fixed
literals or other nested constant structures (lists or maps) then a constant map is created to
represent the expression, rather than building a new map on each evaluation. Quoting of the map
keys is optional, the examples above are not using quoted keys.

4.4.5. Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer to have the
array populated at construction time.

int[] numbers1 = (int[]) parser.parseExpression("new int[4]").getValue(context);

// Array with initializer
int[] numbers2 = (int[]) parser.parseExpression("new int[]{1,2,3}").getValue(context);

// Multi dimensional array

int[ ][] numbers3 = (int[][]) parser.parseExpression("new int[4][5]").getValue(context
¥

It is not currently allowed to supply an initializer when constructing a multi-dimensional array.

4.4.6. Methods

Methods are invoked using typical Java programming syntax. You may also invoke methods on
literals. Varargs are also supported.

214



// string literal, evaluates to "bc"
String bc = parser.parseExpression("'abc'.substring(1, 3)").getValue(String.class);

// evaluates to true
boolean isMember = parser.parseExpression("isMember('Mihajlo Pupin')").getValue(
societyContext, Boolean.class);

4.4.7. Operators

Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater
than or equal are supported using standard operator notation.

// evaluates to true
boolean trueValue = parser.parseExpression("2 == 2").getValue(Boolean.class);

// evaluates to false
boolean falseValue = parser.parseExpression("2 < -5.0").getValue(Boolean.class);

// evaluates to true
boolean trueValue = parser.parseExpression("'black' < 'block'").getValue(Boolean.
class);

Greater/less-than comparisons against null follow a simple rule: null is treated as

nothing here (i.e. NOT as zero). As a consequence, any other value is always

greater than null (X > null is always true) and no other value is ever less than
0 nothing (X < null is always false).

If you prefer numeric comparisons instead, please avoid number-based null
comparisons in favor of comparisons against zero (e.g. X > @ or X < 0).

In addition to standard relational operators SpEL supports the instanceof and regular expression
based matches operator.

// evaluates to false
boolean falseValue = parser.parseExpression(

xyz' instanceof T(Integer)").getValue(Boolean.class);

// evaluates to true
boolean trueValue = parser.parseExpression(
"'5.00" matches "A-2\\d+(\\.\\d{2})?$'").getValue(Boolean.class);

//evaluates to false
boolean falseValue = parser.parseExpression(
"'5.0067' matches 'A-2\\d+(\\.\\d{2})?$'").getValue(Boolean.class);

215



Be careful with primitive types as they are immediately boxed up to the wrapper
0 type, so 1 instanceof T(int) evaluates to false while 1 instanceof T(Integer)
evaluates to true, as expected.

Each symbolic operator can also be specified as a purely alphabetic equivalent. This avoids
problems where the symbols used have special meaning for the document type in which the
expression is embedded (eg. an XML document). The textual equivalents are shown here: 1t (<), gt
(>), le (=), ge (>=), eq (==), ne (!=), div (/), mod (%), not (!). These are case insensitive.

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below.

// -- AND --

// evaluates to false
boolean falseValue = parser.parseExpression("true and false").getValue(Boolean.class);

// evaluates to true

String expression = "isMember('Nikola Tesla') and isMember('Mihajlo Pupin')";
boolean trueValue = parser.parseExpression(expression).getValue(societyContext,
Boolean.class);

== TR

// evaluates to true
boolean trueValue = parser.parseExpression("true or false").getValue(Boolean.class);

// evaluates to true

String expression = "isMember('Nikola Tesla') or isMember('Albert Einstein")";
boolean trueValue = parser.parseExpression(expression).getValue(societyContext,
Boolean.class);

// -- NOT --

// evaluates to false
boolean falseValue = parser.parseExpression("!true").getValue(Boolean.class);

// -- AND and NOT --

String expression = "isMember('Nikola Tesla') and !isMember('Mihajlo Pupin')";
boolean falseValue = parser.parseExpression(expression).getValue(societyContext,
Boolean.class);

Mathematical operators

The addition operator can be used on both numbers and strings. Subtraction, multiplication and
division can be used only on numbers. Other mathematical operators supported are modulus (%)
and exponential power (7). Standard operator precedence is enforced. These operators are
demonstrated below.

216



// Addition
int two = parser.parseExpression("1 + 1").getValue(Integer.class); // 2

String testString = parser.parseExpression(
"'test' + " ' + 'string'").getValue(String.class); // 'test string'

// Subtraction
int four = parser.parseExpression("1 - -3").getValue(Integer.class); // 4

double d = parser.parseExpression("1000.00 - 1e4").getValue(Double.class); // -9000

// Multiplication
int six = parser.parseExpression("-2 * -3").getValue(Integer.class); // 6

double twentyFour = parser.parseExpression("2.0 * 3e@ * 4").getValue(Double.class);
// 24.0

// Division
int minusTwo = parser.parseExpression("6 / -3").getValue(Integer.class); // -2

double one = parser.parseExpression("8.0 / 4e@ / 2").getValue(Double.class); // 1.0

// Modulus
int three = parser.parseExpression("7 % 4").getValue(Integer.class); // 3

int one = parser.parseExpression("8 / 5 % 2").getValue(Integer.class); // 1
// Operator precedence

int minusTwentyOne = parser.parseExpression("1+2-3*8").qgetValue(Integer.class); //
=21

4.4.8. Assignment

Setting of a property is done by using the assignment operator. This would typically be done within
a call to setValue but can also be done inside a call to getValue.

Inventor inventor = new Inventor();
EvaluationContext context = SimpleEvaluationContext.forReadWriteDataBinding().build();

parser.parseExpression("Name").setValue(context, inventor, "Aleksandar Seovic");
// alternatively

String aleks = parser.parseExpression(
"Name = 'Aleksandar Seovic'").getValue(context, inventor, String.class);

4.4.9. Types

The special T operator can be used to specify an instance of java.lang.Class (the type). Static methods

217



are invoked using this operator as well. The StandardEvaluationContext uses a Typelocator to find
types and the StandardTypelocator (which can be replaced) is built with an understanding of the
java.lang package. This means T() references to types within java.lang do not need to be fully
qualified, but all other type references must be.

(lass dateClass = parser.parseExpression("T(java.util.Date)").getValue(Class.class);

(lass stringClass = parser.parseExpression("T(String)").getValue(Class.class);

boolean trueValue = parser.parseExpression(
"T(java.math.RoundingMode).CEILING < T(java.math.RoundingMode).FLOOR")
.getValue(Boolean.class);

4.4.10. Constructors

Constructors can be invoked using the new operator. The fully qualified class name should be used
for all but the primitive type and String (where int, float, etc, can be used).

Inventor einstein = p.parseExpression(
"new org.spring.samples.spel.inventor.Inventor('Albert Einstein', 'German')")
.getValue(Inventor.class);

//create new inventor instance within add method of List
p.parseExpression(
"Members.add(new org.spring.samples.spel.inventor.Inventor(
'Albert Einstein', 'German'))").getValue(societyContext);

4.4.11. Variables

Variables can be referenced in the expression using the syntax #variableName. Variables are set
using the method setVariable on EvaluationContext implementations.

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");

EvaluationContext context = SimpleEvaluationContext.forReadWriteDataBinding().build();
context.setVariable("newName", "Mike Tesla");

parser.parseExpression("Name = #newName").getValue(context, tesla);
System.out.println(tesla.getName()) // "Mike Tesla"

The #this and #root variables

The variable #this is always defined and refers to the current evaluation object (against which
unqualified references are resolved). The variable #root is always defined and refers to the root
context object. Although #this may vary as components of an expression are evaluated, #root
always refers to the root.

218



// create an array of integers
List<Integer> primes = new ArraylList<Integer>();
primes.addAl1(Arrays.aslList(2,3,5,7,11,13,17));

// create parser and set variable 'primes' as the array of integers
ExpressionParser parser = new SpelExpressionParser();

EvaluationContext context = SimpleEvaluationContext.forReadOnlyDataAccess();
context.setVariable("primes", primes);

// all prime numbers > 10 from the list (using selection 7{...})

// evaluates to [11, 13, 17]

List<Integer> primesGreaterThanTen = (List<Integer>) parser.parseExpression(
"#primes.?[#this>10]").getValue(context);

4.4.12. Functions

You can extend SpEL by registering user defined functions that can be called within the expression
string. The function is registered through the EvaluationContext.

Method method = ...;

EvaluationContext context = SimpleEvaluationContext.forReadOnlyDataBinding().build();
context.setVariable("myFunction", method);

For example, given a utility method to reverse a string is shown below:

public abstract class StringUtils {

public static String reverseString(String input) {
StringBuilder backwards = new StringBuilder(input.length());
for (int 1 = 0; 1 < input.length(); i++)
backwards.append(input.charAt(input.length() - 1 - 1));
}

return backwards.toString();

The above method can then be registered and used as follows:

219



ExpressionParser parser = new SpelExpressionParser();

EvaluationContext context = SimpleEvaluationContext.forReadOnlyDataBinding().build();
context.setVariable("reverseString",
StringUtils.class.getDeclaredMethod("reverseString", String.class));

String helloWorldReversed = parser.parseExpression(
"#ireverseString('hello')").qgetValue(context, String.class);

4.4.13. Bean references
If the evaluation context has been configured with a bean resolver it is possible to look up beans

from an expression using the @ symbol.

ExpressionParser parser = new SpelExpressionParser();
StandardEvaluationContext context = new StandardEvaluationContext();
context.setBeanResolver(new MyBeanResolver());

// This will end up calling resolve(context,"foo") on MyBeanResolver during evaluation
Object bean = parser.parseExpression("@foo").getValue(context);

To access a factory bean itself, the bean name should instead be prefixed with an & symbol.

ExpressionParser parser = new SpelExpressionParser();
StandardEvaluationContext context = new StandardEvaluationContext();
context.setBeanResolver(new MyBeanResolver());

// This will end up calling resolve(context,"&foo") on MyBeanResolver during

evaluation
Object bean = parser.parseExpression("&foo").getValue(context);

4.4.14. Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside the expression.
A minimal example is:

String falseString = parser.parseExpression(
"false ? "trueExp' : 'falseExp'").getValue(String.class);

In this case, the boolean false results in returning the string value 'falseExp'. A more realistic
example is shown below.

220



parser.parseExpression("Name").setValue(societyContext, "IEEE");
societyContext.setVariable("queryName", "Nikola Tesla");
expression = "isMember (#queryName)? #queryName + ' is a member of the " " +

"+ Name + ' Society' : #queryName + ' is not a member of the ' + Name +

Society'";

String queryResultString = parser.parseExpression(expression)
.getValue(societyContext, String.class);
// queryResultString = "Nikola Tesla is a member of the IEEE Society"

Also see the next section on the Elvis operator for an even shorter syntax for the ternary operator.

4.4.15. The Elvis Operator

The Elvis operator is a shortening of the ternary operator syntax and is used in the Groovy
language. With the ternary operator syntax, you usually have to repeat a variable twice, as the
following example shows:

String name = "Elvis Presley";
String displayName = (name != null ? name : "Unknown");

Instead, you can use the Elvis operator (named for the resemblance to Elvis' hair style). The
following example shows how to use the Elvis operator:

ExpressionParser parser = new SpelExpressionParser();

String name = parser.parseExpression("name?: 'Unknown'").getValue(String.class);
System.out.println(name); // 'Unknown'

The following listing shows a more complex example:

ExpressionParser parser = new SpelExpressionParser();
EvaluationContext context = SimpleEvaluationContext.forReadOnlyDataBinding().build();

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
String name = parser.parseExpression("“Name?:'Elvis Presley
String.class);

System.out.println(name); // Nikola Tesla

).getValue(context, tesla,

tesla.setName(null);

name = parser.parseExpression("Name?:'Elvis Presley
String.class);

System.out.println(name); // Elvis Presley

).getValue(context, tesla,

221


http://www.groovy-lang.org/operators.html#_elvis_operator

4.4.16. Safe Navigation operator

The Safe Navigation operator is used to avoid a NullPointerException and comes from the Groovy
language. Typically when you have a reference to an object you might need to verify that it is not
null before accessing methods or properties of the object. To avoid this, the safe navigation
operator will simply return null instead of throwing an exception.

ExpressionParser parser = new SpelExpressionParser();
EvaluationContext context = SimpleEvaluationContext.forReadOnlyDataBinding().build();

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
tesla.setPlaceOfBirth(new PlaceOfBirth("Smiljan"));

String city = parser.parseExpression("Place0fBirth?.City").getValue(context, tesla,
String.class);
System.out.println(city); // Smiljan

tesla.setPlaceOfBirth(null);

city = parser.parseExpression("Place0OfBirth?.City").qgetValue(context, tesla, String
.class);

System.out.println(city); // null - does not throw NullPointerException!!!

The Elvis operator can be used to apply default values in expressions, e.g. in an
@Value expression:

0 ("#{systemProperties['pop3.port'] ?: 25}")
This will inject a system property pop3.port if it is defined or 25 if not.

4.4.17. Collection Selection

Selection is a powerful expression language feature that allows you to transform some source
collection into another by selecting from its entries.

Selection uses the syntax .?[selectionExpression]. This will filter the collection and return a new
collection containing a subset of the original elements. For example, selection would allow us to
easily get a list of Serbian inventors:

List<Inventor> list = (List<Inventor>) parser.parseExpression(
"Members.?[Nationality == 'Serbian']").getValue(societyContext);

Selection is possible upon both lists and maps. In the former case the selection criteria is evaluated
against each individual list element whilst against a map the selection criteria is evaluated against
each map entry (objects of the Java type Map.Entry). Map entries have their key and value accessible
as properties for use in the selection.

222


http://www.groovy-lang.org/operators.html#_safe_navigation_operator

This expression will return a new map consisting of those elements of the original map where the
entry value is less than 27.

Map newMap = parser.parseExpression("map.?[value<27]").getValue();

In addition to returning all the selected elements, it is possible to retrieve just the first or the last
value. To obtain the first entry matching the selection the syntax is .*[selectionExpression] whilst
to obtain the last matching selection the syntax is .$[selectionExpression].

4.4.18. Collection Projection

Projection allows a collection to drive the evaluation of a sub-expression and the result is a new
collection. The syntax for projection is .![projectionExpression]. Most easily understood by
example, suppose we have a list of inventors but want the list of cities where they were born.
Effectively we want to evaluate 'placeOfBirth.city’ for every entry in the inventor list. Using
projection:

// returns ['Smiljan', 'Idvor' ]
List placesOfBirth = (List)parser.parseExpression("Members.![place0fBirth.city]");

A map can also be used to drive projection and in this case the projection expression is evaluated
against each entry in the map (represented as a Java Map.Entry). The result of a projection across a
map is a list consisting of the evaluation of the projection expression against each map entry.

4.4.19. Expression templating

Expression templates allow a mixing of literal text with one or more evaluation blocks. Each
evaluation block is delimited with prefix and suffix characters that you can define, a common
choice is to use #{ } as the delimiters. For example,

String randomPhrase = parser.parseExpression(
"random number is #{T(java.lang.Math).random()}",
new TemplateParserContext()).getValue(String.class);

// evaluates to "random number is 0.7038186818312008"

The string is evaluated by concatenating the literal text 'random number is ' with the result of
evaluating the expression inside the #{ } delimiter, in this case the result of calling that random()
method. The second argument to the method parseExpression() is of the type ParserContext. The
ParserContext interface is used to influence how the expression is parsed in order to support the
expression templating functionality. The definition of TemplateParserContext is shown below.

223



public class TemplateParserContext implements ParserContext {

public String getExpressionPrefix() {
return "#{";

}

public String getExpressionSuffix() {

return "}";

}

public boolean isTemplate() {
return true;

}

4.5. Classes used in the examples

Inventor.java

package org.spring.samples.spel.inventor;

import java.util.Date;
import java.util.GregorianCalendar;

public class Inventor {

private String name;

private String nationality;
private String[] inventions;
private Date birthdate;

private PlaceOfBirth placeOfBirth;

public Inventor(String name, String nationality) {
GregorianCalendar c= new GregorianCalendar();
this.name = name;
this.nationality = nationality;
this.birthdate = c.qgetTime();

}

public Inventor(String name, Date birthdate, String nationality) {
this.name = name;
this.nationality = nationality;
this.birthdate = birthdate;

}

public Inventor() {
}

224



public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getNationality() {
return nationality;

}

public void setNationality(String nationality) {
this.nationality = nationality;

}

public Date getBirthdate() {
return birthdate;

}

public void setBirthdate(Date birthdate) {
this.birthdate = birthdate;
}

public PlaceOfBirth getPlaceOfBirth() {
return placeOfBirth;
}

public void setPlaceOfBirth(PlaceOfBirth placeOfBirth) {
this.placeOfBirth = placeOfBirth;
}

public void setInventions(String[] inventions) {
this.inventions = inventions;

}

public String[] getInventions() {
return inventions;

}

PlaceOfBirth.java

225



package org.spring.samples.spel.inventor;
public class PlaceOfBirth {

private String city;
private String country;

public PlaceOfBirth(String city) {
this.city=city;
}

public PlaceOfBirth(String city, String country) {
this(city);
this.country = country;

}

public String getCity() {
return city;

}

public void setCity(String s) {
this.city = s;
}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

Society.java

226



package org.spring.samples.spel.inventor;
import java.util.*;
public class Society {

private String name;

public static String Advisors = "advisors";
public static String President = "president";

private List<Inventor> members = new ArraylList<Inventor>();
private Map officers = new HashMap();

public List getMembers() {
return members;

}

public Map getOfficers() {
return officers;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public boolean isMember(String name) {
for (Inventor inventor : members) {
if (inventor.getName().equals(name)) {
return true;
}
}

return false;

227



Chapter 5. Aspect Oriented Programming
with Spring

5.1. Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by
providing another way of thinking about program structure. The key unit of modularity in OOP is
the class, whereas in AOP the unit of modularity is the aspect. Aspects enable the modularization of
concerns such as transaction management that cut across multiple types and objects. (Such
concerns are often termed crosscutting concerns in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring IoC container does
not depend on AOP, meaning you do not need to use AOP if you don’t want to, AOP complements
Spring IoC to provide a very capable middleware solution.

Spring 2.0+ AOP

Spring 2.0 introduced a simpler and more powerful way of writing custom aspects using
either a schema-based approach or the @Aspect] annotation style. Both of these styles offer
fully typed advice and use of the Aspect] pointcut language, while still using Spring AOP for
weaving.

The Spring 2.0+ schema- and @Aspect]J-based AOP support is discussed in this chapter. The
lower-level AOP support, as commonly exposed in Spring 1.2 applications, is discussed in the
following chapter.

AOP is used in the Spring Framework to...
» ... provide declarative enterprise services, especially as a replacement for EJB declarative
services. The most important such service is declarative transaction management.

* ... allow users to implement custom aspects, complementing their use of OOP with AOP.

If you are interested only in generic declarative services or other pre-packaged
declarative middleware services such as pooling, you do not need to work directly
with Spring AOP, and can skip most of this chapter.

5.1.1. AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-
specific... unfortunately, AOP terminology is not particularly intuitive; however, it would be even
more confusing if Spring used its own terminology.

» Aspect: a modularization of a concern that cuts across multiple classes. Transaction
management is a good example of a crosscutting concern in enterprise Java applications. In
Spring AOP, aspects are implemented using regular classes (the schema-based approach) or

228



regular classes annotated with the @Aspect annotation (the @Aspect] style).

* Join point: a point during the execution of a program, such as the execution of a method or the
handling of an exception. In Spring AOP, a join point always represents a method execution.

* Advice: action taken by an aspect at a particular join point. Different types of advice include
"around", "before" and "after" advice. (Advice types are discussed below.) Many AOP
frameworks, including Spring, model an advice as an interceptor, maintaining a chain of
interceptors around the join point.

* Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression
and runs at any join point matched by the pointcut (for example, the execution of a method
with a certain name). The concept of join points as matched by pointcut expressions is central to
AOP, and Spring uses the Aspect] pointcut expression language by default.

* Introduction: declaring additional methods or fields on behalf of a type. Spring AOP allows you
to introduce new interfaces (and a corresponding implementation) to any advised object. For
example, you could use an introduction to make a bean implement an IsModified interface, to
simplify caching. (An introduction is known as an inter-type declaration in the Aspect]
community.)

» Target object: object being advised by one or more aspects. Also referred to as the advised
object. Since Spring AOP is implemented using runtime proxies, this object will always be a
proxied object.

» AOP proxy: an object created by the AOP framework in order to implement the aspect contracts
(advise method executions and so on). In the Spring Framework, an AOP proxy will be a JDK
dynamic proxy or a CGLIB proxy.

* Weaving: linking aspects with other application types or objects to create an advised object. This
can be done at compile time (using the Aspect] compiler, for example), load time, or at runtime.
Spring AOP, like other pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

* Before advice: Advice that executes before a join point, but which does not have the ability to
prevent execution flow proceeding to the join point (unless it throws an exception).

» After returning advice: Advice to be executed after a join point completes normally: for example,
if a method returns without throwing an exception.

* After throwing advice: Advice to be executed if a method exits by throwing an exception.

* After (finally) advice: Advice to be executed regardless of the means by which a join point exits
(normal or exceptional return).

* Around advice: Advice that surrounds a join point such as a method invocation. This is the most
powerful kind of advice. Around advice can perform custom behavior before and after the
method invocation. It is also responsible for choosing whether to proceed to the join point or to
shortcut the advised method execution by returning its own return value or throwing an
exception.

Around advice is the most general kind of advice. Since Spring AOP, like Aspect], provides a full
range of advice types, we recommend that you use the least powerful advice type that can
implement the required behavior. For example, if you need only to update a cache with the return

229



value of a method, you are better off implementing an after returning advice than an around
advice, although an around advice can accomplish the same thing. Using the most specific advice
type provides a simpler programming model with less potential for errors. For example, you do not
need to invoke the proceed() method on the JoinPoint used for around advice, and hence cannot
fail to invoke it.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of
the appropriate type (the type of the return value from a method execution for example) rather
than Object arrays.

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from
older technologies offering only interception. Pointcuts enable advice to be targeted independently
of the Object-Oriented hierarchy. For example, an around advice providing declarative transaction
management can be applied to a set of methods spanning multiple objects (such as all business
operations in the service layer).

5.1.2. Spring AOP capabilities and goals

Spring AOP is implemented in pure Java. There is no need for a special compilation process. Spring
AOP does not need to control the class loader hierarchy, and is thus suitable for use in a Servlet
container or application server.

Spring AOP currently supports only method execution join points (advising the execution of
methods on Spring beans). Field interception is not implemented, although support for field
interception could be added without breaking the core Spring AOP APIs. If you need to advise field
access and update join points, consider a language such as Aspect].

Spring AOP’s approach to AOP differs from that of most other AOP frameworks. The aim is not to
provide the most complete AOP implementation (although Spring AOP is quite capable); it is rather
to provide a close integration between AOP implementation and Spring IoC to help solve common
problems in enterprise applications.

Thus, for example, the Spring Framework’s AOP functionality is normally used in conjunction with
the Spring IoC container. Aspects are configured using normal bean definition syntax (although this
allows powerful "autoproxying" capabilities): this is a crucial difference from other AOP
implementations. There are some things you cannot do easily or efficiently with Spring AOP, such
as advise very fine-grained objects (such as domain objects typically): Aspect] is the best choice in
such cases. However, our experience is that Spring AOP provides an excellent solution to most
problems in enterprise Java applications that are amenable to AOP.

Spring AOP will never strive to compete with Aspect] to provide a comprehensive AOP solution. We
believe that both proxy-based frameworks like Spring AOP and full-blown frameworks such as
Aspect] are valuable, and that they are complementary, rather than in competition. Spring
seamlessly integrates Spring AOP and IoC with Aspect], to enable all uses of AOP to be catered for
within a consistent Spring-based application architecture. This integration does not affect the
Spring AOP API or the AOP Alliance API: Spring AOP remains backward-compatible. See the
following chapter for a discussion of the Spring AOP APIs.

230



One of the central tenets of the Spring Framework is that of non-invasiveness; this
is the idea that you should not be forced to introduce framework-specific classes
and interfaces into your business/domain model. However, in some places the
Spring Framework does give you the option to introduce Spring Framework-
specific dependencies into your codebase: the rationale in giving you such options
is because in certain scenarios it might be just plain easier to read or code some
specific piece of functionality in such a way. The Spring Framework (almost)
always offers you the choice though: you have the freedom to make an informed
decision as to which option best suits your particular use case or scenario.

ﬁ One such choice that is relevant to this chapter is that of which AOP framework
(and which AOP style) to choose. You have the choice of Aspect] and/or Spring AOP,
and you also have the choice of either the @Aspect] annotation-style approach or
the Spring XML configuration-style approach. The fact that this chapter chooses to
introduce the @Aspect]-style approach first should not be taken as an indication
that the Spring team favors the @Aspect] annotation-style approach over the
Spring XML configuration-style.

See Choosing which AOP declaration style to use for a more complete discussion of
the whys and wherefores of each style.

5.1.3. AOP Proxies

Spring AOP defaults to using standard JDK dynamic proxies for AOP proxies. This enables any
interface (or set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes rather than interfaces.
CGLIB is used by default if a business object does not implement an interface. As it is good practice
to program to interfaces rather than classes; business classes normally will implement one or more
business interfaces. It is possible to force the use of CGLIB, in those (hopefully rare) cases where
you need to advise a method that is not declared on an interface, or where you need to pass a
proxied object to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See Understanding AOP proxies for
a thorough examination of exactly what this implementation detail actually means.

5.2. @Aspect] support

@Aspect] refers to a style of declaring aspects as regular Java classes annotated with annotations.
The @Aspect] style was introduced by the Aspect] project as part of the Aspect] 5 release. Spring
interprets the same annotations as Aspect] 5, using a library supplied by Aspect] for pointcut
parsing and matching. The AOP runtime is still pure Spring AOP though, and there is no
dependency on the Aspect] compiler or weaver.

0 Using the Aspect] compiler and weaver enables use of the full Aspect] language,
and is discussed in Using Aspect] with Spring applications.

231


https://www.eclipse.org/aspectj

5.2.1. Enabling @Aspect] Support

To use @Aspect] aspects in a Spring configuration you need to enable Spring support for
configuring Spring AOP based on @Aspect] aspects, and autoproxying beans based on whether or
not they are advised by those aspects. By autoproxying we mean that if Spring determines that a
bean is advised by one or more aspects, it will automatically generate a proxy for that bean to
intercept method invocations and ensure that advice is executed as needed.

The @Aspect] support can be enabled with XML or Java style configuration. In either case you will
also need to ensure that Aspect]’s aspectjweaver.jar library is on the classpath of your application
(version 1.8 or later). This library is available in the '1ib"' directory of an Aspect] distribution or via
the Maven Central repository.

Enabling @Aspect] Support with Java configuration

To enable @Aspect] support with Java @Configuration add the @EnableAspectJAutoProxy annotation:

public class AppConfig {

}

Enabling @Aspect] Support with XML configuration

To enable @Aspect] support with XML based configuration use the aop:aspectj-autoproxy element:
<aop:aspectj-autoproxy/>

This assumes that you are using schema support as described in XML Schema-based configuration.
See the AOP schema for how to import the tags in the aop namespace.

5.2.2. Declaring an aspect

With the @Aspect] support enabled, any bean defined in your application context with a class that
is an @Aspect] aspect (has the @Aspect annotation) will be automatically detected by Spring and
used to configure Spring AOP. The following example shows the minimal definition required for a
not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @Aspect
annotation:

<bean id="myAspect" class="org.xyz.NotVeryUsefulAspect">
<!-- configure properties of aspect here as normal -->
</bean>

And the NotVeryUsefulAspect class definition, annotated with org.aspectj.lang.annotation.Aspect

232



annotation;

package org.xyz;
import org.aspectj.lang.annotation.Aspect;

public class NotVeryUsefulAspect {

Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They
may also contain pointcut, advice, and introduction (inter-type) declarations.

Autodetecting aspects through component scanning

You may register aspect classes as regular beans in your Spring XML configuration,
or autodetect them through classpath scanning - just like any other Spring-

0 managed bean. However, note that the @Aspect annotation is not sufficient for
autodetection in the classpath: For that purpose, you need to add a separate
@Component annotation (or alternatively a custom stereotype annotation that
qualifies, as per the rules of Spring’s component scanner).

Advising aspects with other aspects?

9 In Spring AOP, it is not possible to have aspects themselves be the target of advice
from other aspects. The @Aspect annotation on a class marks it as an aspect, and
hence excludes it from auto-proxying.

5.2.3. Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice
executes. Spring AOP only supports method execution join points for Spring beans, so you can think
of a pointcut as matching the execution of methods on Spring beans. A pointcut declaration has two
parts: a signature comprising a name and any parameters, and a pointcut expression that
determines exactly which method executions we are interested in. In the @Aspect] annotation-style
of AOP, a pointcut signature is provided by a regular method definition, and the pointcut expression
is indicated using the @Pointcut annotation (the method serving as the pointcut signature must have
a void return type).

An example will help make this distinction between a pointcut signature and a pointcut expression
clear. The following example defines a pointcut named 'anyOldTransfer' that will match the
execution of any method named 'transfer':

("execution(* transfer(..))")// the pointcut expression
private void anyOldTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @Pointcut annotation is a regular Aspect] 5
pointcut expression. For a full discussion of Aspect]’s pointcut language, see the Aspect]

233


https://www.eclipse.org/aspectj/doc/released/progguide/index.html

Programming Guide (and for extensions, the Aspect] 5 Developers Notebook) or one of the books on
Aspect] such as "Eclipse Aspect]" by Colyer et. al. or "Aspect] in Action" by Ramnivas Laddad.

Supported Pointcut Designators

Spring AOP supports the following Aspect] pointcut designators (PCD) for use in pointcut
expressions:

Other pointcut types

The full Aspect] pointcut language supports additional pointcut designators that are not
supported in Spring. These are: call, get, set, preinitialization, staticinitialization,
initialization, handler, adviceexecution, withincode, cflow, cflowbelow, if, @this, and
@withincode. Use of these pointcut designators in pointcut expressions interpreted by Spring
AOP will result in an IllegalArgumentException being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases
to support more of the Aspect] pointcut designators.

* execution - for matching method execution join points, this is the primary pointcut designator
you will use when working with Spring AOP

* within - limits matching to join points within certain types (simply the execution of a method
declared within a matching type when using Spring AOP)

e this - limits matching to join points (the execution of methods when using Spring AOP) where
the bean reference (Spring AOP proxy) is an instance of the given type

* target - limits matching to join points (the execution of methods when using Spring AOP) where
the target object (application object being proxied) is an instance of the given type

* args - limits matching to join points (the execution of methods when using Spring AOP) where
the arguments are instances of the given types

* @target - limits matching to join points (the execution of methods when using Spring AOP)
where the class of the executing object has an annotation of the given type

* @args - limits matching to join points (the execution of methods when using Spring AOP) where
the runtime type of the actual arguments passed have annotations of the given type(s)

* @within - limits matching to join points within types that have the given annotation (the
execution of methods declared in types with the given annotation when using Spring AOP)

* @annotation - limits matching to join points where the subject of the join point (method being
executed in Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the
pointcut designators above gives a narrower definition than you will find in the Aspect]
programming guide. In addition, Aspect] itself has type-based semantics and at an execution join
point both this and target refer to the same object - the object executing the method. Spring AOP is
a proxy-based system and differentiates between the proxy object itself (bound to this) and the
target object behind the proxy (bound to target).

234


https://www.eclipse.org/aspectj/doc/released/progguide/index.html
https://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Due to the proxy-based nature of Spring’s AOP framework, calls within the target
object are by definition not intercepted. For JDK proxies, only public interface
method calls on the proxy can be intercepted. With CGLIB, public and protected
method calls on the proxy will be intercepted, and even package-visible methods if
necessary. However, common interactions through proxies should always be
designed through public signatures.

Note that pointcut definitions are generally matched against any intercepted

0 method. If a pointcut is strictly meant to be public-only, even in a CGLIB proxy
scenario with potential non-public interactions through proxies, it needs to be
defined accordingly.

If your interception needs include method calls or even constructors within the
target class, consider the use of Spring-driven native Aspect] weaving instead of
Spring’s proxy-based AOP framework. This constitutes a different mode of AOP
usage with different characteristics, so be sure to make yourself familiar with
weaving first before making a decision.

Spring AOP also supports an additional PCD named bean. This PCD allows you to limit the matching
of join points to a particular named Spring bean, or to a set of named Spring beans (when using
wildcards). The bean PCD has the following form:

bean(id0OrNameOfBean)

The 1d0rNameOfBean token can be the name of any Spring bean: limited wildcard support using the *
character is provided, so if you establish some naming conventions for your Spring beans you can
quite easily write a bean PCD expression to pick them out. As is the case with other pointcut
designators, the bean PCD can be &&'ed, | |'ed, and ! (negated) too.

Please note that the bean PCD is only supported in Spring AOP - and not in native
Aspect] weaving. It is a Spring-specific extension to the standard PCDs that Aspect]
defines and therefore not available for aspects declared in the @Aspect model.

ﬂ The bean PCD operates at the instance level (building on the Spring bean name
concept) rather than at the type level only (which is what weaving-based AOP is
limited to). Instance-based pointcut designators are a special capability of Spring’s
proxy-based AOP framework and its close integration with the Spring bean factory,
where it is natural and straightforward to identify specific beans by name.

Combining pointcut expressions

Pointcut expressions can be combined using '&&', '| |' and '!'. It is also possible to refer to pointcut
expressions by name. The following example shows three pointcut expressions: anyPublicOperation
(which matches if a method execution join point represents the execution of any public method);
inTrading (which matches if a method execution is in the trading module), and tradingOperation
(which matches if a method execution represents any public method in the trading module).

235



@Pointcut("execution(public * *(..))")
private void anyPublicOperation() {}

@Pointcut("within(com.xyz.someapp.trading..*)")
private void inTrading() {}

@Pointcut("anyPublicOperation() && inTrading()")
private void tradingOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components
as shown above. When referring to pointcuts by name, normal Java visibility rules apply (you can
see private pointcuts in the same type, protected pointcuts in the hierarchy, public pointcuts
anywhere and so on). Visibility does not affect pointcut matching.

Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application
and particular sets of operations from within several aspects. We recommend defining a
"SystemArchitecture" aspect that captures common pointcut expressions for this purpose. A typical
such aspect would look as follows:

package com.xyz.someapp;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class SystemArchitecture {

/**
* A join point is in the web layer if the method is defined
* in a type in the com.xyz.someapp.web package or any sub-package
* under that.
*/
@Pointcut("within(com.xyz.someapp.web..*)")
public void inWebLayer() {}

/**

* A join point is in the service layer if the method is defined

* in a type in the com.xyz.someapp.service package or any sub-package
under that.

*

*

/
@Pointcut("within(com.xyz.someapp.service..*)")
public void inServicelayer() {}

/**

* A join point is in the data access layer if the method is defined
* in a type in the com.xyz.someapp.dao package or any sub-package

* under that.

236



*/
@Pointcut("within(com.xyz.someapp.dao..*)")
public void inDataAccessLayer() {}

/**
* A business service is the execution of any method defined on a service

* interface. This definition assumes that interfaces are placed in the
* "service" package, and that implementation types are in sub-packages.

*

If you group service interfaces by functional area (for example,

in packages com.xyz.someapp.abc.service and com.xyz.someapp.def.service) then
the pointcut expression "execution(* com.xyz.someapp..service.*.*(..))"

* could be used instead.

* X

*

* Alternatively, you can write the expression using the 'bean'
* PCD, like so "bean(*Service)". (This assumes that you have
* named your Spring service beans in a consistent fashion.)
*/
@Pointcut("execution(* com.xyz.someapp..service.*.*(..))")
public void businessService() {}

/**

* A data access operation is the execution of any method defined on a

* dao interface. This definition assumes that interfaces are placed in the
* "dao" package, and that implementation types are in sub-packages.

*/
@Pointcut("execution(* com.xyz.someapp.dao.*.*(..))")

public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut
expression. For example, to make the service layer transactional, you could write:

<aop:config>
<aop:advisor
pointcut="com.xyz.someapp.SystemArchitecture.businessService()"
advice-ref="tx-advice"/>
</aop:config>

<tx:advice id="tx-advice">
<tx:attributes>
<tx:method name="*" propagation="REQUIRED"/>
</tx:attributes>
</tx:advice>

The <aop:config> and <aop:advisor> elements are discussed in Schema-based AOP support. The
transaction elements are discussed in Transaction Management.

237


data-access.pdf#transaction

Examples
Spring AOP users are likely to use the execution pointcut designator the most often. The format of

an execution expression is:

execution(modifiers-pattern? ret-type-pattern declaring-type-pattern?name-pattern
(param-pattern)
throws-pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern,
and parameters pattern are optional. The returning type pattern determines what the return type
of the method must be in order for a join point to be matched. Most frequently you will use * as the
returning type pattern, which matches any return type. A fully-qualified type name will match only
when the method returns the given type. The name pattern matches the method name. You can use
the * wildcard as all or part of a name pattern. If specifying a declaring type pattern then include a
trailing . to join it to the name pattern component. The parameters pattern is slightly more
complex: () matches a method that takes no parameters, whereas (..) matches any number of
parameters (zero or more). The pattern (*) matches a method taking one parameter of any type,
(*,String) matches a method taking two parameters, the first can be of any type, the second must
be a String. Consult the Language Semantics section of the Aspect] Programming Guide for more
information.

Some examples of common pointcut expressions are given below.

* the execution of any public method:

execution(public * *(..))

* the execution of any method with a name beginning with "set":

execution(* set*(..))

* the execution of any method defined by the AccountService interface:

execution(* com.xyz.service.AccountService.*(..))

* the execution of any method defined in the service package:

execution(* com.xyz.service.*.*(..))

* the execution of any method defined in the service package or a sub-package:

execution(* com.xyz.service..*.*(..))

238


https://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

* any join point (method execution only in Spring AOP) within the service package:
within(com.xyz.service.*)

* any join point (method execution only in Spring AOP) within the service package or a sub-
package:

within(com.xyz.service..*)

* any join point (method execution only in Spring AOP) where the proxy implements the
AccountService interface:

this(com.xyz.service.AccountService)

ﬁ 'this' is more commonly used in a binding form :- see the following section on
advice for how to make the proxy object available in the advice body.

* any join point (method execution only in Spring AOP) where the target object implements the
AccountService interface:

target(com.xyz.service.AccountService)

0 'target' is more commonly used in a binding form :- see the following section on
advice for how to make the target object available in the advice body.

* any join point (method execution only in Spring AOP) which takes a single parameter, and
where the argument passed at runtime is Serializable:

args(java.io.Serializable)

0 'args' is more commonly used in a binding form :- see the following section on
advice for how to make the method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(* *(java.io.Serializable)):
the args version matches if the argument passed at runtime is Serializable, the execution version
matches if the method signature declares a single parameter of type Serializable.

* any join point (method execution only in Spring AOP) where the target object has an
@Transactional annotation:

(org.springframework.transaction.annotation.Transactional)

239



ﬁ '@target’ can also be used in a binding form :- see the following section on advice
for how to make the annotation object available in the advice body.

* any join point (method execution only in Spring AOP) where the declared type of the target
object has an @Transactional annotation:

(org.springframework.transaction.annotation.Transactional)

0 '‘@within' can also be used in a binding form :- see the following section on advice
for how to make the annotation object available in the advice body.

* any join point (method execution only in Spring AOP) where the executing method has an
@Transactional annotation:

(org.springframework.transaction.annotation.Transactional)

0 '‘@annotation’ can also be used in a binding form :- see the following section on
advice for how to make the annotation object available in the advice body.

* any join point (method execution only in Spring AOP) which takes a single parameter, and
where the runtime type of the argument passed has the @Classified annotation:

(com.xyz.security.Classified)

O '@args' can also be used in a binding form :- see the following section on advice for
how to make the annotation object(s) available in the advice body.

* any join point (method execution only in Spring AOP) on a Spring bean named tradeService:
bean(tradeService)

* any join point (method execution only in Spring AOP) on Spring beans having names that match
the wildcard expression *Service:

bean(*Service)

Writing good pointcuts

During compilation, Aspect] processes pointcuts in order to try and optimize matching
performance. Examining code and determining if each join point matches (statically or
dynamically) a given pointcut is a costly process. (A dynamic match means the match cannot be
fully determined from static analysis and a test will be placed in the code to determine if there is an

240



actual match when the code is running). On first encountering a pointcut declaration, Aspect] will
rewrite it into an optimal form for the matching process. What does this mean? Basically pointcuts
are rewritten in DNF (Disjunctive Normal Form) and the components of the pointcut are sorted
such that those components that are cheaper to evaluate are checked first. This means you do not
have to worry about understanding the performance of various pointcut designators and may
supply them in any order in a pointcut declaration.

However, Aspect] can only work with what it is told, and for optimal performance of matching you
should think about what they are trying to achieve and narrow the search space for matches as
much as possible in the definition. The existing designators naturally fall into one of three groups:
kinded, scoping and context:

* Kinded designators are those which select a particular kind of join point. For example:
execution, get, set, call, handler

» Scoping designators are those which select a group of join points of interest (of probably many
kinds). For example: within, withincode

* Contextual designators are those that match (and optionally bind) based on context. For
example: this, target, @annotation

A well written pointcut should try and include at least the first two types (kinded and scoping),
whilst the contextual designators may be included if wishing to match based on join point context,
or bind that context for use in the advice. Supplying either just a kinded designator or just a
contextual designator will work but could affect weaving performance (time and memory used)
due to all the extra processing and analysis. Scoping designators are very fast to match and their
usage means Aspect] can very quickly dismiss groups of join points that should not be further
processed - that is why a good pointcut should always include one if possible.

5.2.4. Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method
executions matched by the pointcut. The pointcut expression may be either a simple reference to a
named pointcut, or a pointcut expression declared in place.

Before advice

Before advice is declared in an aspect using the @Before annotation:

241



import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class BeforeExample {

@Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doAccessCheck() {

/] ...
}

If using an in-place pointcut expression we could rewrite the above example as:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class BeforeExample {

@Before("execution(* com.xyz.myapp.dao.*.*(..))")
public void doAccessCheck() {

/] ...
}

After returning advice

After returning advice runs when a matched method execution returns normally. It is declared
using the @AfterReturning annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterReturning;

@Aspect
public class AfterReturningExample {

@AfterReturning("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doAccessCheck() {

/] ...
}

242



Note: it is of course possible to have multiple advice declarations, and other
members as well, all inside the same aspect. We’re just showing a single advice
declaration in these examples to focus on the issue under discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. You can use
the form of @AfterReturning that binds the return value for this:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterReturning;

public class AfterReturningExample {

(
pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
returning="retVal")

public void doAccessCheck(Object retVal) {
/] ...

}

The name used in the returning attribute must correspond to the name of a parameter in the advice
method. When a method execution returns, the return value will be passed to the advice method as
the corresponding argument value. A returning clause also restricts matching to only those method
executions that return a value of the specified type ( Object in this case, which will match any
return value).

Please note that it is not possible to return a totally different reference when using after-returning
advice.

After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is
declared using the @AfterThrowing annotation:

243



import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterThrowing;

public class AfterThrowingExample {

("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doRecoveryActions() {
/] ...
}

Often you want the advice to run only when exceptions of a given type are thrown, and you also
often need access to the thrown exception in the advice body. Use the throwing attribute to both
restrict matching (if desired, use Throwable as the exception type otherwise) and bind the thrown
exception to an advice parameter.

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterThrowing;

public class AfterThrowingExample {

(
pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
throwing="ex")

public void doRecoveryActions(DataAccessException ex) {
/] ...

}

The name used in the throwing attribute must correspond to the name of a parameter in the advice
method. When a method execution exits by throwing an exception, the exception will be passed to
the advice method as the corresponding argument value. A throwing clause also restricts matching
to only those method executions that throw an exception of the specified type ( DataAccessException
in this case).

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the
@After annotation. After advice must be prepared to handle both normal and exception return
conditions. It is typically used for releasing resources, etc.

244



import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.After;

public class AfterFinallyExample {

("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doReleaselock() {
/] ...
}

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method
execution. It has the opportunity to do work both before and after the method executes, and to
determine when, how, and even if, the method actually gets to execute at all. Around advice is often
used if you need to share state before and after a method execution in a thread-safe manner
(starting and stopping a timer for example). Always use the least powerful form of advice that
meets your requirements (i.e. don’t use around advice if simple before advice would do).

Around advice is declared using the @Around annotation. The first parameter of the advice method
must be of type ProceedingloinPoint. Within the body of the advice, calling proceed() on the
ProceedingJoinPoint causes the underlying method to execute. The proceed method may also be
called passing in an Object[] - the values in the array will be used as the arguments to the method
execution when it proceeds.

The behavior of proceed when called with an Object[] is a little different than the
behavior of proceed for around advice compiled by the Aspect] compiler. For
around advice written using the traditional Aspect] language, the number of
arguments passed to proceed must match the number of arguments passed to the
around advice (not the number of arguments taken by the underlying join point),
and the value passed to proceed in a given argument position supplants the

O original value at the join point for the entity the value was bound to (Don’t worry
if this doesn’t make sense right now!). The approach taken by Spring is simpler
and a better match to its proxy-based, execution only semantics. You only need to
be aware of this difference if you are compiling @Aspect] aspects written for
Spring and using proceed with arguments with the Aspect] compiler and weaver.
There is a way to write such aspects that is 100% compatible across both Spring
AOP and Aspect], and this is discussed in the following section on advice
parameters.

245



import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.ProceedingJoinPoint;

public class AroundExample {

("com.xyz.myapp.SystemArchitecture.businessService()")
public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
// start stopwatch
Object retVal = pjp.proceed();
// stop stopwatch
return retVal;

The value returned by the around advice will be the return value seen by the caller of the method.
A simple caching aspect for example could return a value from a cache if it has one, and invoke
proceed() if it does not. Note that proceed may be invoked once, many times, or not at all within the
body of the around advice, all of these are quite legal.

Advice parameters

Spring offers fully typed advice - meaning that you declare the parameters you need in the advice
signature (as we saw for the returning and throwing examples above) rather than work with
Object[] arrays all the time. We’ll see how to make argument and other contextual values available
to the advice body in a moment. First let’s take a look at how to write generic advice that can find
out about the method the advice is currently advising.

Access to the current JoinPoint

Any advice method may declare as its first parameter, a parameter of type
org.aspectj.lang.JoinPoint (please note that around advice is required to declare a first parameter
of type ProceedingJoinPoint, which is a subclass of JoinPoint. The JoinPoint interface provides a
number of useful methods such as getArgs() (returns the method arguments), getThis() (returns
the proxy object), getTarget() (returns the target object), getSignature() (returns a description of
the method that is being advised) and toString() (prints a useful description of the method being
advised). Please do consult the javadocs for full details.

Passing parameters to advice

We’ve already seen how to bind the returned value or exception value (using after returning and
after throwing advice). To make argument values available to the advice body, you can use the
binding form of args. If a parameter name is used in place of a type name in an args expression,
then the value of the corresponding argument will be passed as the parameter value when the
advice is invoked. An example should make this clearer. Suppose you want to advise the execution
of dao operations that take an Account object as the first parameter, and you need access to the
account in the advice body. You could write the following:

246



("com.xyz.myapp.SystemArchitecture.dataAccessOperation() && args(account,..)")
public void validateAccount(Account account) {
/] ...

}

The args(account,..) part of the pointcut expression serves two purposes: firstly, it restricts
matching to only those method executions where the method takes at least one parameter, and the
argument passed to that parameter is an instance of Account; secondly, it makes the actual Account
object available to the advice via the account parameter.

Another way of writing this is to declare a pointcut that "provides" the Account object value when it
matches a join point, and then just refer to the named pointcut from the advice. This would look as
follows:

("com.xyz.myapp.SystemArchitecture.dataAccessOperation() && args(account,..)
Il)

private void accountDataAccessOperation(Account account) {}

("accountDataAccessOperation(account)")
public void validateAccount(Account account) {
/] ...
}

The interested reader is once more referred to the Aspect] programming guide for more details.

The proxy object ( this), target object ( target), and annotations ( @within, @target, @annotation,
@args) can all be bound in a similar fashion. The following example shows how you could match the
execution of methods annotated with an @Auditable annotation, and extract the audit code.

First the definition of the @Auditable annotation:

(RetentionPolicy.RUNTIME)
(ElementType.METHOD)
public Auditable {
AuditCode value();
}

And then the advice that matches the execution of @Auditable methods:

("com.xyz.lib.Pointcuts.anyPublicMethod() && @annotation(auditable)")
public void audit(Auditable auditable) {
AuditCode code = auditable.value();
/] ...

247



Advice parameters and generics

Spring AOP can handle generics used in class declarations and method parameters. Suppose you
have a generic type like this:

public interface Sample<T> {
void sampleGenericMethod(T param);
void sampleGenericCollectionMethod(Collection<T> param);

You can restrict interception of method types to certain parameter types by simply typing the
advice parameter to the parameter type you want to intercept the method for:

("execution(* ..Sample+.sampleGenericMethod(*)) && args(param)")
public void beforeSampleMethod(MyType param) {
// Advice implementation

}

That this works is pretty obvious as we already discussed above. However, it’s worth pointing out
that this won’t work for generic collections. So you cannot define a pointcut like this:

("execution(* ..Sample+.sampleGenericCollectionMethod(*)) && args(param)")
public void beforeSampleMethod(Collection<MyType> param) {
// Advice implementation

}

To make this work we would have to inspect every element of the collection, which is not
reasonable as we also cannot decide how to treat null values in general. To achieve something
similar to this you have to type the parameter to Collection<?> and manually check the type of the
elements.

Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut
expressions to declared parameter names in (advice and pointcut) method signatures. Parameter
names are not available through Java reflection, so Spring AOP uses the following strategies to
determine parameter names:

« If the parameter names have been specified by the user explicitly, then the specified parameter
names are used: both the advice and the pointcut annotations have an optional "argNames"
attribute which can be used to specify the argument names of the annotated method - these
argument names are available at runtime. For example:

248



(value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) &&
@annotation(auditable)",
argNames="bean, auditable")
public void audit(Object bean, Auditable auditable) {
AuditCode code = auditable.value();
// ... use code and bean

If the first parameter is of the JoinPoint, ProceedingJoinPoint, or JoinPoint.StaticPart type, you
may leave out the name of the parameter from the value of the "argNames" attribute. For example,
if you modify the preceding advice to receive the join point object, the "argNames" attribute need
not include it:

(value="com.xyz.1lib.Pointcuts.anyPublicMethod() && target(bean) &&
@annotation(auditable)",
argNames="bean,auditable")
public void audit(JoinPoint jp, Object bean, Auditable auditable) {
AuditCode code = auditable.value();
// ... use code, bean, and jp

The special treatment given to the first parameter of the JoinPoint, ProceedingloinPoint, and
JoinPoint.StaticPart types is particularly convenient for advice that do not collect any other join
point context. In such situations, you may simply omit the "argNames" attribute. For example, the
following advice need not declare the "argNames" attribute:

("com.xyz.lib.Pointcuts.anyPublicMethod()")
public void audit(JoinPoint jp) {
// ... use jp
}

» Using the 'argNames' attribute is a little clumsy, so if the 'argNames' attribute has not been
specified, then Spring AOP will look at the debug information for the class and try to determine
the parameter names from the local variable table. This information will be present as long as
the classes have been compiled with debug information ( '-g:vars' at a minimum). The
consequences of compiling with this flag on are: (1) your code will be slightly easier to
understand (reverse engineer), (2) the class file sizes will be very slightly bigger (typically
inconsequential), (3) the optimization to remove unused local variables will not be applied by
your compiler. In other words, you should encounter no difficulties building with this flag on.

If an @Aspect] aspect has been compiled by the Aspect] compiler (ajc) even
without the debug information then there is no need to add the argNames

attribute as the compiler will retain the needed information.

* If the code has been compiled without the necessary debug information, then Spring AOP will
attempt to deduce the pairing of binding variables to parameters (for example, if only one

249



variable is bound in the pointcut expression, and the advice method only takes one parameter,
the pairing is obvious!). If the binding of variables is ambiguous given the available
information, then an AmbiguousBindingException will be thrown.

« If all of the above strategies fail then an I1legalArgumentException will be thrown.

Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works
consistently across Spring AOP and Aspect]. The solution is simply to ensure that the advice
signature binds each of the method parameters in order. For example:

("execution(List<Account> find*(..)) && " +
"com.xyz.myapp.SystemArchitecture.inDataAccessLayer() && " +
"args(accountHolderNamePattern)")

public Object preProcessQueryPattern(ProceedingloinPoint pjp,
String accountHolderNamePattern) throws Throwable {
String newPattern = preProcess(accountHolderNamePattern);
return pjp.proceed(new Object[] {newPattern});

In many cases you will be doing this binding anyway (as in the example above).

Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP
follows the same precedence rules as Aspect] to determine the order of advice execution. The
highest precedence advice runs first "on the way in" (so given two pieces of before advice, the one
with highest precedence runs first). "On the way out" from a join point, the highest precedence
advice runs last (so given two pieces of after advice, the one with the highest precedence will run
second).

When two pieces of advice defined in different aspects both need to run at the same join point,
unless you specify otherwise the order of execution is undefined. You can control the order of
execution by specifying precedence. This is done in the normal Spring way by either implementing
the org.springframework.core.Ordered interface in the aspect class or annotating it with the Order
annotation. Given two aspects, the aspect returning the lower value from Ordered.getValue() (or the
annotation value) has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the
ordering is undefined (since there is no way to retrieve the declaration order via reflection for
javac-compiled classes). Consider collapsing such advice methods into one advice method per join
point in each aspect class, or refactor the pieces of advice into separate aspect classes - which can
be ordered at the aspect level.

5.2.5. Introductions

Introductions (known as inter-type declarations in Aspect]) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf

250



of those objects.

An introduction is made using the @DeclareParents annotation. This annotation is used to declare
that matching types have a new parent (hence the name). For example, given an interface
UsageTracked, and an implementation of that interface DefaultUsageTracked, the following aspect
declares that all implementors of service interfaces also implement the UsageTracked interface. (In
order to expose statistics via JMX for example.)

public class UsageTracking {

(value="com.xzy.myapp.service.*+", defaultImpl=DefaultUsageTracked
.class)
public static UsageTracked mixin;

("com.xyz.myapp.SystemArchitecture.businessService() && this(usageTracked)
I|)
public void recordUsage(UsageTracked usageTracked) {
usageTracked.incrementUseCount();

}

The interface to be implemented is determined by the type of the annotated field. The value
attribute of the @DeclareParents annotation is an Aspect] type pattern :- any bean of a matching type
will implement the UsageTracked interface. Note that in the before advice of the above example,
service beans can be directly used as implementations of the UsageTracked interface. If accessing a
bean programmatically you would write the following:

UsageTracked usageTracked = (UsageTracked) context.getBean("myService");

5.2.6. Aspect instantiation models

0 (This is an advanced topic, so if you are just starting out with AOP you can safely
skip it until later.)

By default there will be a single instance of each aspect within the application context. Aspect] calls
this the singleton instantiation model. It is possible to define aspects with alternate lifecycles :-
Spring supports Aspect]’s perthis and pertarget instantiation models ( percflow, percflowbelow,
and pertypewithin are not currently supported).

A "perthis" aspect is declared by specifying a perthis clause in the @Aspect annotation. Let’s look at
an example, and then we’ll explain how it works.

251



("perthis(com.xyz.myapp.SystemArchitecture.businessService())")
public class MyAspect {

private int someState;

(com.xyz.myapp.SystemArchitecture.businessService())
public void recordServiceUsage() {
/] ...

The effect of the 'perthis' clause is that one aspect instance will be created for each unique service
object executing a business service (each unique object bound to 'this' at join points matched by the
pointcut expression). The aspect instance is created the first time that a method is invoked on the
service object. The aspect goes out of scope when the service object goes out of scope. Before the
aspect instance is created, none of the advice within it executes. As soon as the aspect instance has
been created, the advice declared within it will execute at matched join points, but only when the
service object is the one this aspect is associated with. See the Aspect] programming guide for more
information on per-clauses.

The 'pertarget' instantiation model works in exactly the same way as perthis, but creates one
aspect instance for each unique target object at matched join points.

5.2.7. Example

Now that you have seen how all the constituent parts work, let’s put them together to do something
useful!

The execution of business services can sometimes fail due to concurrency issues (for example,
deadlock loser). If the operation is retried, it is quite likely to succeed next time round. For business
services where it is appropriate to retry in such conditions (idempotent operations that don’t need
to go back to the user for conflict resolution), we’d like to transparently retry the operation to avoid
the client seeing a PessimisticLockingFailureException. This is a requirement that clearly cuts
across multiple services in the service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call
proceed multiple times. Here’s how the basic aspect implementation looks:

252



public class ConcurrentOperationExecutor implements Ordered {
private static final int DEFAULT_MAX_RETRIES = 2;

private int maxRetries = DEFAULT_MAX_RETRIES;
private int order = 1;

public void setMaxRetries(int maxRetries) {
this.maxRetries = maxRetries;

}

public int getOrder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

("com.xyz.myapp.SystemArchitecture.businessService()")
public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
int numAttempts = 0;
PessimisticLockingFailureException lockFailureException;
do {
numAttempts++;
try {
return pjp.proceed();
¥

catch(PessimisticLockingFailureException ex) {
lockFailureException = ex;

}
} while(numAttempts <= this.maxRetries);
throw lockFailureException;

Note that the aspect implements the Ordered interface so we can set the precedence of the aspect
higher than the transaction advice (we want a fresh transaction each time we retry). The maxRetries
and order properties will both be configured by Spring. The main action happens in the
doConcurrentOperation around advice. Notice that for the moment we’re applying the retry logic to
all businessService()s. We try to proceed, and if we fail with an PessimisticLockingFailureException
we simply try again unless we have exhausted all of our retry attempts.

The corresponding Spring configuration is:

253



<aop:aspectj-autoproxy/>

<bean id="concurrentOperationExecutor" class=
"com.xyz.myapp.service.impl.ConcurrentOperationExecutor">
<property name="maxRetries" value="3"/>
<property name="order" value="100"/>
</bean>

To refine the aspect so that it only retries idempotent operations, we might define an Idempotent
annotation:

(RetentionPolicy.RUNTIME)
public Idempotent {
// marker annotation

}

and use the annotation to annotate the implementation of service operations. The change to the
aspect to only retry idempotent operations simply involves refining the pointcut expression so that
only @Idempotent operations match:

("com.xyz.myapp.SystemArchitecture.businessService() && " +
"@annotation(com.xyz.myapp.service.Idempotent)")
public Object doConcurrentOperation(ProceedingloinPoint pjp) throws Throwable {

}

5.3. Schema-based AOP support

If you prefer an XML-based format, then Spring also offers support for defining aspects using the
new "aop" namespace tags. The exact same pointcut expressions and advice kinds are supported as
when using the @Aspect] style, hence in this section we will focus on the new syntax and refer the
reader to the discussion in the previous section (@Aspect] support) for an understanding of writing
pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spring-aop schema
as described in XML Schema-based configuration. See the AOP schema for how to import the tags in
the aop namespace.

Within your Spring configurations, all aspect and advisor elements must be placed within an
<aop:config> element (you can have more than one <aop:config> element in an application context
configuration). An <aop:config> element can contain pointcut, advisor, and aspect elements (note
these must be declared in that order).

254



The <aop:config> style of configuration makes heavy use of Spring’s auto-proxying
mechanism. This can cause issues (such as advice not being woven) if you are

A already using explicit auto-proxying via the use of BeanNameAutoProxyCreator or
suchlike. The recommended usage pattern is to use either just the <aop:config>
style, or just the AutoProxyCreator style.

5.3.1. Declaring an aspect

Using the schema support, an aspect is simply a regular Java object defined as a bean in your
Spring application context. The state and behavior is captured in the fields and methods of the
object, and the pointcut and advice information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the
ref attribute:
<aop:config>

<aop:aspect id="myAspect" ref="aBean">

</aop:aspect>
</aop:config>

<bean id="aBean" class="...">

</bean>

The bean backing the aspect ("aBean" in this case) can of course be configured and dependency
injected just like any other Spring bean.

5.3.2. Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition
to be shared across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined
as follows:

<aop:config>

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

</aop:config>

Note that the pointcut expression itself is using the same Aspect] pointcut expression language as
described in @Aspect] support. If you are using the schema based declaration style, you can refer to
named pointcuts defined in types (@Aspects) within the pointcut expression. Another way of
defining the above pointcut would be:

255



<aop:config>

<aop:pointcut id="businessService"
expression="com.xyz.myapp.SystemArchitecture.businessService()"/>

</aop:config>

Assuming you have a SystemArchitecture aspect as described in Sharing common pointcut
definitions.

Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut:

<aop:config>
<aop:aspect id="myAspect" ref="aBean">

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

</aop:aspect>

</aop:config>

Much the same way in an @Aspect] aspect, pointcuts declared using the schema based definition
style may collect join point context. For example, the following pointcut collects the 'this' object as
the join point context and passes it to advice

<aop:config>
<aop:aspect id="myAspect" ref="aBean">
<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..)) &amp;&amp;

this(service)"/>

<aop:before pointcut-ref="businessService" method="monitor"/>

</aop:aspect>

</aop:config>

The advice must be declared to receive the collected join point context by including parameters of
the matching names:

256



public void monitor(Object service) {

}

When combining pointcut sub-expressions, && is awkward within an XML document, and so the
keywords and, or, and not can be used in place of &&, ||, and ! respectively. For example, the
previous pointcut may be better written as:

<aop:config>
<aop:aspect id="myAspect" ref="aBean">
<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.<strong>.</strong>(..))
<strong>and</strong> this(service)"/>
<aop:before pointcut-ref="businessService" method="monitor"/>

</aop:aspect>
</aop:config>

Note that pointcuts defined in this way are referred to by their XML id and cannot be used as
named pointcuts to form composite pointcuts. The named pointcut support in the schema based
definition style is thus more limited than that offered by the @Aspect] style.

5.3.3. Declaring advice

The same five advice kinds are supported as for the @Aspect] style, and they have exactly the same
semantics.

Before advice

Before advice runs before a matched method execution. It is declared inside an <aop:aspect> using
the <aop:before> element.

<aop:aspect id="beforeExample" ref="aBean">

<aop:before
pointcut-ref="dataAccessOperation"
method="doAccessCheck"/>

</aop:aspect>

Here dataAccessOperation is the id of a pointcut defined at the top ( <aop:config>) level. To define the

257



pointcut inline instead, replace the pointcut-ref attribute with a pointcut attribute:

<aop:aspect id="beforeExample" ref="aBean">

<aop:before
pointcut="execution(* com.xyz.myapp.dao.*.*(..))"
method="doAccessCheck"/>

</aop:aspect>

As we noted in the discussion of the @Aspect] style, using named pointcuts can significantly
improve the readability of your code.

The method attribute identifies a method ( doAccessCheck) that provides the body of the advice. This
method must be defined for the bean referenced by the aspect element containing the advice.
Before a data access operation is executed (a method execution join point matched by the pointcut
expression), the "doAccessCheck" method on the aspect bean will be invoked.

After returning advice

After returning advice runs when a matched method execution completes normally. It is declared
inside an <aop:aspect> in the same way as before advice. For example:

<aop:aspect id="afterReturningExample" ref="aBean">
<aop:after-returning

pointcut-ref="dataAccessOperation"
method="doAccessCheck"/>

</aop:aspect>

Just as in the @Aspect] style, it is possible to get hold of the return value within the advice body. Use
the returning attribute to specify the name of the parameter to which the return value should be
passed:

258



<aop:aspect id="afterReturningExample" ref="aBean">

<aop:after-returning
pointcut-ref="dataAccessOperation’
returning="retVal"
method="doAccessCheck"/>

</aop:aspect>

The doAccessCheck method must declare a parameter named retVal. The type of this parameter
constrains matching in the same way as described for @AfterReturning. For example, the method
signature may be declared as:

public void doAccessCheck(Object retVal) {...

After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception.
It is declared inside an <aop:aspect> using the after-throwing element:

<aop:aspect id="afterThrowingExample" ref="aBean">

<aop:after-throwing
pointcut-ref="dataAccessOperation’
method="doRecoveryActions"/>

</aop:aspect>

Just as in the @Aspect] style, it is possible to get hold of the thrown exception within the advice
body. Use the throwing attribute to specify the name of the parameter to which the exception
should be passed:

259



<aop:aspect id="afterThrowingExample" ref="aBean">

<aop:after-throwing
pointcut-ref="dataAccessOperation"
throwing="dataAccessEx"
method="doRecoveryActions"/>

</aop:aspect>

The doRecoveryActions method must declare a parameter named dataAccessEx. The type of this
parameter constrains matching in the same way as described for @AfterThrowing. For example,
the method signature may be declared as:

public void doRecoveryActions(DataAccessException dataAccessEx) {...

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the after
element:

<aop:aspect id="afterFinallyExample" ref="aBean">

<aop:after
pointcut-ref="dataAccessOperation"
method="doReleaselock"/>

</aop:aspect>

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method
execution. It has the opportunity to do work both before and after the method executes, and to
determine when, how, and even if, the method actually gets to execute at all. Around advice is often
used if you need to share state before and after a method execution in a thread-safe manner
(starting and stopping a timer for example). Always use the least powerful form of advice that
meets your requirements; don’t use around advice if simple before advice would do.

Around advice is declared using the aop:around element. The first parameter of the advice method
must be of type ProceedingloinPoint. Within the body of the advice, calling proceed() on the
ProceedingJoinPoint causes the underlying method to execute. The proceed method may also be
calling passing in an Object[] - the values in the array will be used as the arguments to the method
execution when it proceeds. See Around advice for notes on calling proceed with an Object[].

260



<aop:aspect id="aroundExample" ref="aBean">

<aop:around
pointcut-ref="businessService"
method="doBasicProfiling"/>

</aop:aspect>

The implementation of the doBasicProfiling advice would be exactly the same as in the @Aspect]
example (minus the annotation of course):

public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
// start stopwatch
Object retVal = pjp.proceed();
// stop stopwatch
return retVal;

Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for
the @Aspect] support - by matching pointcut parameters by name against advice method
parameters. See Advice parameters for details. If you wish to explicitly specify argument names for
the advice methods (not relying on the detection strategies previously described) then this is done
using the arg-names attribute of the advice element, which is treated in the same manner to the
"argNames" attribute in an advice annotation as described in Determining argument names. For
example:

<aop:before
pointcut="com.xyz.lib.Pointcuts.anyPublicMethod() and @annotation(auditable)"
method="audit"
arg-names="auditable"/>

The arg-names attribute accepts a comma-delimited list of parameter names.

Find below a slightly more involved example of the XSD-based approach that illustrates some
around advice used in conjunction with a number of strongly typed parameters.

261



package x.y.service;
public interface FooService {

Foo getFoo(String fooName, int age);

}
public class DefaultFooService implements FooService {

public Foo getFoo(String name, int age) {
return new Foo(name, age);

}

Next up is the aspect. Notice the fact that the profile(..) method accepts a number of strongly-
typed parameters, the first of which happens to be the join point used to proceed with the method
call: the presence of this parameter is an indication that the profile(..) is to be used as around
advice:

package x.y;

import org.aspectj.lang.ProceedingJoinPoint;
import org.springframework.util.StopWatch;

public class SimpleProfiler {
public Object profile(ProceedingloinPoint call, String name, int age) throws

Throwable {
StopWatch clock = new StopWatch("Profiling for '" + name + "' and '" + age +

s
try {
clock.start(call.toShortString());
return call.proceed();
} finally {
clock.stop();
System.out.println(clock.prettyPrint());
}
}

Finally, here is the XML configuration that is required to effect the execution of the above advice
for a particular join point:

262



<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<!-- this is the object that will be proxied by Spring's AOP infrastructure -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SimpleProfiler"/>

<aop:config>
<aop:aspect ref="profiler">

<aop:pointcut id="theExecutionOfSomeFooServiceMethod"
expression="execution(* x.y.service.FooService.getFoo(String,int))

and args(name, age)"/>

<aop:around pointcut-ref="theExecutionOfSomeFooServiceMethod"
method="profile"/>

</aop:aspect>
</aop:config>

</beans>

If we had the following driver script, we would get output something like this on standard output:

import org.springframework.beans.factory.BeanFactory;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import x.y.service.FooService;

public final class Boot {
public static void main(final String[] args) throws Exception {
BeanFactory ctx = new ClassPathXmlApplicationContext("x/y/plain.xml");

FooService foo = (FooService) ctx.getBean("fooService");
foo.getFoo("Pengo", 12);

263



StopWatch 'Profiling for 'Pengo' and '12'': running time (millis) = 0

00000 ? execution(getFoo)

Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering
rules are as described in Advice ordering. The precedence between aspects is determined by either
adding the Order annotation to the bean backing the aspect or by having the bean implement the
Ordered interface.

5.3.4. Introductions

Introductions (known as inter-type declarations in Aspect]) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf
of those objects.

An introduction is made using the aop:declare-parents element inside an aop:aspect This element is
used to declare that matching types have a new parent (hence the name). For example, given an
interface UsageTracked, and an implementation of that interface DefaultUsageTracked, the following
aspect declares that all implementors of service interfaces also implement the UsageTracked
interface. (In order to expose statistics via JMX for example.)

<aop:aspect id="usageTrackerAspect" ref="usageTracking">

<aop:declare-parents
types-matching="com.xzy.myapp.service.*+"
implement-interface="com.xyz.myapp.service.tracking.UsageTracked"
default-impl="com.xyz.myapp.service.tracking.DefaultUsageTracked"/>

<aop:before
pointcut="com.xyz.myapp.SystemArchitecture.businessService()
and this(usageTracked)"
method="recordUsage"/>

</aop:aspect>

The class backing the usageTracking bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
usageTracked.incrementUseCount();

}

The interface to be implemented is determined by implement-interface attribute. The value of the

264



types-matching attribute is an Aspect] type pattern :- any bean of a matching type will implement
the UsageTracked interface. Note that in the before advice of the above example, service beans can
be directly used as implementations of the UsageTracked interface. If accessing a bean
programmatically you would write the following:

UsageTracked usageTracked = (UsageTracked) context.getBean("myService");

5.3.5. Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other
instantiation models may be supported in future releases.

5.3.6. Advisors

The concept of "advisors" is brought forward from the AOP support defined in Spring and does not
have a direct equivalent in Aspect]. An advisor is like a small self-contained aspect that has a single
piece of advice. The advice itself is represented by a bean, and must implement one of the advice
interfaces described in Advice types in Spring. Advisors can take advantage of Aspect] pointcut
expressions though.

Spring supports the advisor concept with the <aop:advisor> element. You will most commonly see it
used in conjunction with transactional advice, which also has its own namespace support in Spring.
Here’s how it looks:

<aop:config>

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

<aop:advisor
pointcut-ref="businessService"
advice-ref="tx-advice"/>

</aop:config>

<tx:advice id="tx-advice">
<tx:attributes>
<tx:method name="*" propagation="REQUIRED"/>
</tx:attributes>
</tx:advice>

As well as the pointcut-ref attribute used in the above example, you can also use the pointcut
attribute to define a pointcut expression inline.

To define the precedence of an advisor so that the advice can participate in ordering, use the order
attribute to define the Ordered value of the advisor.

265



5.3.7. Example

Let’s see how the concurrent locking failure retry example from Example looks when rewritten
using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example,
deadlock loser). If the operation is retried, it is quite likely it will succeed next time round. For
business services where it is appropriate to retry in such conditions (idempotent operations that
don’t need to go back to the user for conflict resolution), we’d like to transparently retry the
operation to avoid the client seeing a PessimisticLockingFailureException. This is a requirement
that clearly cuts across multiple services in the service layer, and hence is ideal for implementing
via an aspect.

Because we want to retry the operation, we’ll need to use around advice so that we can call proceed
multiple times. Here’s how the basic aspect implementation looks (it’s just a regular Java class using
the schema support):

266



public class ConcurrentOperationExecutor implements Ordered {
private static final int DEFAULT_MAX_RETRIES = 2;

private int maxRetries = DEFAULT_MAX_RETRIES;
private int order = 1;

public void setMaxRetries(int maxRetries) {
this.maxRetries = maxRetries;

}

public int getOrder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

public Object doConcurrentOperation(ProceedingloinPoint pjp) throws Throwable {
int numAttempts = 0;
PessimisticLockingFailureException lockFailureException;
do {
numAttempts++;
try {
return pjp.proceed();

}
catch(PessimisticlLockingFailureException ex) {
lockFailureException = ex;

+
} while(numAttempts <= this.maxRetries);
throw lockFailureException;

Note that the aspect implements the Ordered interface so we can set the precedence of the aspect
higher than the transaction advice (we want a fresh transaction each time we retry). The maxRetries
and order properties will both be configured by Spring. The main action happens in the
doConcurrentOperation around advice method. We try to proceed, and if we fail with a
PessimisticLockingFailureException we simply try again unless we have exhausted all of our retry
attempts.

0 This class is identical to the one used in the @Aspect] example, but with the
annotations removed.

The corresponding Spring configuration is:

267



<aop:config>
<aop:aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor">

<aop:pointcut id="idempotentOperation”
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

<aop:around
pointcut-ref="idempotentOperation”
method="doConcurrentOperation"/>

</aop:aspect>
</aop:config>

<bean id="concurrentOperationExecutor"
class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor">
<property name="maxRetries" value="3"/>
<property name="order" value="100"/>
</bean>

Notice that for the time being we assume that all business services are idempotent. If this is not the
case we can refine the aspect so that it only retries genuinely idempotent operations, by
introducing an Idempotent annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface Idempotent {
// marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the
aspect to retry only idempotent operations simply involves refining the pointcut expression so that
only @Idempotent operations match:

<aop:pointcut id="idempotentOperation"
expression="execution(* com.xyz.myapp.service.*.*(..)) and
@annotation(com.xyz.myapp.service.Idempotent)"/>

5.4. Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement,
how do you decide between using Spring AOP or Aspect], and between the Aspect language (code)
style, @Aspect] annotation style, or the Spring XML style? These decisions are influenced by a
number of factors including application requirements, development tools, and team familiarity
with AOP.

268



5.4.1. Spring AOP or full Aspect]?

Use the simplest thing that can work. Spring AOP is simpler than using full Aspect] as there is no
requirement to introduce the Aspect] compiler / weaver into your development and build
processes. If you only need to advise the execution of operations on Spring beans, then Spring AOP
is the right choice. If you need to advise objects not managed by the Spring container (such as
domain objects typically), then you will need to use Aspect]. You will also need to use Aspect] if you
wish to advise join points other than simple method executions (for example, field get or set join
points, and so on).

When using Aspect], you have the choice of the Aspect] language syntax (also known as the "code
style") or the @Aspect] annotation style. Clearly, if you are not using Java 5+ then the choice has
been made for you... use the code style. If aspects play a large role in your design, and you are able
to use the Aspect] Development Tools (AJDT) plugin for Eclipse, then the Aspect] language syntax is
the preferred option: it is cleaner and simpler because the language was purposefully designed for
writing aspects. If you are not using Eclipse, or have only a few aspects that do not play a major role
in your application, then you may want to consider using the @Aspect] style and sticking with a
regular Java compilation in your IDE, and adding an aspect weaving phase to your build script.

5.4.2. @Aspect] or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @Aspect] or XML style. There are
various tradeoffs to consider.

The XML style will be most familiar to existing Spring users and it is backed by genuine POJOs.
When using AOP as a tool to configure enterprise services then XML can be a good choice (a good
test is whether you consider the pointcut expression to be a part of your configuration you might
want to change independently). With the XML style arguably it is clearer from your configuration
what aspects are present in the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of
the requirement it addresses in a single place. The DRY principle says that there should be a single,
unambiguous, authoritative representation of any piece of knowledge within a system. When using
the XML style, the knowledge of how a requirement is implemented is split across the declaration of
the backing bean class, and the XML in the configuration file. When using the @Aspect] style there
is a single module - the aspect - in which this information is encapsulated. Secondly, the XML style is
slightly more limited in what it can express than the @Aspect] style: only the "singleton" aspect
instantiation model is supported, and it is not possible to combine named pointcuts declared in
XML. For example, in the @Aspect] style you can write something like:

(execution(* get*()))
public void propertyAccess() {}

(execution(org.xyz.Account+ *(..))
public void operationReturningAnAccount() {}

(propertyAccess() && operationReturningAnAccount())
public void accountPropertyAccess() {}

269


https://www.eclipse.org/ajdt/

In the XML style I can declare the first two pointcuts:

<aop:pointcut id="propertyAccess"
expression="execution(* get*())"/>

<aop:pointcut id="operationReturningAnAccount"”
expression="execution(org.xyz.Account+ *(..))"/>

The downside of the XML approach is that you cannot define the accountPropertyAccess pointcut by
combining these definitions.

The @Aspect] style supports additional instantiation models, and richer pointcut composition. It
has the advantage of keeping the aspect as a modular unit. It also has the advantage the @Aspect]
aspects can be understood (and thus consumed) both by Spring AOP and by Aspect] - so if you later
decide you need the capabilities of Aspect] to implement additional requirements then it is very
easy to migrate to an Aspect]-based approach. On balance the Spring team prefer the @Aspect] style
whenever you have aspects that do more than simple "configuration" of enterprise services.

5.5. Mixing aspect types

It is perfectly possible to mix @Aspect] style aspects using the autoproxying support, schema-
defined <aop:aspect> aspects, <aop:advisor> declared advisors and even proxies and interceptors
defined using the Spring 1.2 style in the same configuration. All of these are implemented using the
same underlying support mechanism and will co-exist without any difficulty.

5.6. Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object.
(JDK dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic proxy will
be used. All of the interfaces implemented by the target type will be proxied. If the target object
does not implement any interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the
target object, not just those implemented by its interfaces) you can do so. However, there are some
issues to consider:

» final methods cannot be advised, as they cannot be overridden.

* As of Spring 3.2, it is no longer necessary to add CGLIB to your project classpath, as CGLIB
classes are repackaged under org.springframework and included directly in the spring-core
JAR. This means that CGLIB-based proxy support 'just works' in the same way that JDK dynamic
proxies always have.

* As of Spring 4.0, the constructor of your proxied object will NOT be called twice anymore since
the CGLIB proxy instance will be created via Objenesis. Only if your JVM does not allow for
constructor bypassing, you might see double invocations and corresponding debug log entries
from Spring’s AOP support.

270



To force the use of CGLIB proxies set the value of the proxy-target-class attribute of the
<aop:config> element to true:

<aop:config proxy-target-class="true">
<!-- other beans defined here... -->
</aop:config>

To force CGLIB proxying when using the @Aspect] autoproxy support, set the 'proxy-target-class’
attribute of the <aop:aspectj-autoproxy> element to true:

<aop:aspectj-autoproxy proxy-target-class="true"/>

Multiple <aop:config/> sections are collapsed into a single unified auto-proxy
creator at runtime, which applies the strongest proxy settings that any of the
<aop:config/> sections (typically from different XML bean definition files)
specified. This also applies to the <tx:annotation-driven/> and <aop:aspectj-

O autoproxy/> elements.

To be clear: using proxy-target-class="true" on <tx:annotation-driven/>,
<aop:aspectj-autoproxy/> or <aop:config/> elements will force the use of CGLIB
proxies for all three of them.

5.6.1. Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last
statement actually means before you write your own aspects or use any of the Spring AOP-based
aspects supplied with the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it,

straight object reference, as illustrated by the following code snippet.

public class SimplePojo implements Pojo {

public void foo() {
// this next method invocation is a direct call on the 'this' reference

this.bar();

public void bar() {
// some logic...

}

If you invoke a method on an object reference, the method is invoked directly on that object
reference, as can be seen below.

271



[ Caimgcode ] pojo. £000

A J

| Plain Object p———b foo() on the cbject

public class Main {
public static void main(String[] args) {
Pojo pojo = new SimplePojo();

// this is a direct method call on the 'pojo' reference
pojo.foo();

Things change slightly when the reference that client code has is a proxy. Consider the following
diagram and code snippet.

pojo.foo()

foo() on the proxy

Flain Object

then foo() on the cobject

272



public class Main {
public static void main(String[] args) {

ProxyFactory factory = new ProxyFactory(new SimplePojo());
factory.addInterface(Pojo.class);
factory.addAdvice(new RetryAdvice());

Pojo pojo = (Pojo) factory.getProxy();

// this is a method call on the proxy!
pojo.foo();

The key thing to understand here is that the client code inside the main(..) of the Main class has a
reference to the proxy. This means that method calls on that object reference will be calls on the
proxy, and as such the proxy will be able to delegate to all of the interceptors (advice) that are
relevant to that particular method call. However, once the call has finally reached the target object,
the SimplePojo reference in this case, any method calls that it may make on itself, such as this.bar()
or this.foo(), are going to be invoked against the this reference, and not the proxy. This has
important implications. It means that self-invocation is not going to result in the advice associated
with a method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to
refactor your code such that the self-invocation does not happen. For sure, this does entail some
work on your part, but it is the best, least-invasive approach. The next approach is absolutely
horrendous, and I am almost reticent to point it out precisely because it is so horrendous. You can
(choke!) totally tie the logic within your class to Spring AOP by doing this:

public class SimplePojo implements Pojo {

public void foo() {
// this works, but... gah!
((Pojo) AopContext.currentProxy()).bar();

}

public void bar() {
// some logic...

}

This totally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is
being used in an AOP context, which flies in the face of AOP. It also requires some additional
configuration when the proxy is being created:

273



public class Main {
public static void main(String[] args) {

ProxyFactory factory = new ProxyFactory(new SimplePojo());
factory.adddInterface(Pojo.class);

factory.addAdvice(new RetryAdvice());
factory.setExposeProxy(true);

Pojo pojo = (Pojo) factory.getProxy();

// this is a method call on the proxy!
pojo.foo();

Finally, it must be noted that Aspect] does not have this self-invocation issue because it is not a
proxy-based AOP framework.

5.7. Programmatic creation of @Aspect] Proxies

In addition to declaring aspects in your configuration using either <aop:config> or <aop:aspectj-
autoproxy>, it is also possible programmatically to create proxies that advise target objects. For the
full details of Spring’s AOP API, see the next chapter. Here we want to focus on the ability to
automatically create proxies using @Aspect] aspects.

The class org.springframework.aop.aspectj.annotation.AspectJProxyFactory can be used to create a
proxy for a target object that is advised by one or more @Aspect] aspects. Basic usage for this class
is very simple, as illustrated below. See the javadocs for full information.

// create a factory that can generate a proxy for the given target object
Aspect]JProxyFactory factory = new Aspect]ProxyFactory(targetObject);

// add an aspect, the class must be an @Aspect] aspect

// you can call this as many times as you need with different aspects
factory.addAspect(SecurityManager.class);

// you can also add existing aspect instances, the type of the object supplied must be
an @Aspect] aspect

factory.addAspect(usageTracker);

// now get the proxy object...
MyInterfaceType proxy = factory.getProxy();

5.8. Using Aspect] with Spring applications

Everything we’ve covered so far in this chapter is pure Spring AOP. In this section, we’re going to

274



look at how you can use the Aspect] compiler/weaver instead of, or in addition to, Spring AOP if
your needs go beyond the facilities offered by Spring AOP alone.

Spring ships with a small Aspect] aspect library, which is available standalone in your distribution
as spring-aspects.jar; you’ll need to add this to your classpath in order to use the aspects in it.
Using Aspect] to dependency inject domain objects with Spring and Other Spring aspects for Aspect]
discuss the content of this library and how you can use it. Configuring Aspect] aspects using Spring
IoC discusses how to dependency inject Aspect] aspects that are woven using the Aspect] compiler.
Finally, Load-time weaving with Aspect] in the Spring Framework provides an introduction to load-
time weaving for Spring applications using Aspect].

5.8.1. Using Aspect] to dependency inject domain objects with Spring

The Spring container instantiates and configures beans defined in your application context. It is
also possible to ask a bean factory to configure a pre-existing object given the name of a bean
definition containing the configuration to be applied. The spring-aspects.jar contains an
annotation-driven aspect that exploits this capability to allow dependency injection of any object.
The support is intended to be used for objects created outside of the control of any container.
Domain objects often fall into this category because they are often created programmatically using
the new operator, or by an ORM tool as a result of a database query.

The @Configurable annotation marks a class as eligible for Spring-driven configuration. In the
simplest case it can be used just as a marker annotation:

package com.xyz.myapp.domain;

import org.springframework.beans.factory.annotation.Confiqurable;

public class Account {
/] ...
}

When used as a marker interface in this way, Spring will configure new instances of the annotated
type (Account in this case) using a bean definition (typically prototype-scoped) with the same name
as the fully-qualified type name ( com.xyz.myapp.domain.Account). Since the default name for a bean
is the fully-qualified name of its type, a convenient way to declare the prototype definition is simply
to omit the id attribute:

<bean class="com.xyz.myapp.domain.Account" scope="prototype">
<property name="fundsTransferService" ref="fundsTransferService"/>
</bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so
directly in the annotation:

275



package com.xyz.myapp.domain;
import org.springframework.beans.factory.annotation.Confiqurable;

("account")
public class Account {
/] ...
}

Spring will now look for a bean definition named "account" and use that as the definition to
configure new Account instances.

You can also use autowiring to avoid having to specify a dedicated bean definition at all. To have
Spring apply autowiring use the autowire property of the @Configurable annotation: specify either
@Configurable(autowire=Autowire.BY_TYPE) or @Configurable(autowire=Autowire.BY_NAME for
autowiring by type or by name respectively. As an alternative, as of Spring 2.5 it is preferable to
specify explicit, annotation-driven dependency injection for your @Configurable beans by using
@Autowired or @Inject at the field or method level (see Annotation-based container configuration for
further details).

Finally you can enable Spring dependency checking for the object references in the newly created
and configured object by using the dependencyCheck attribute (for example:
@Configurable(autowire=Autowire.BY_NAME,dependencyCheck=true)). If this attribute is set to true, then
Spring will validate after configuration that all properties (which are not primitives or collections)
have been set.

Using the annotation on its own does nothing of course. It is the AnnotationBeanConfigurerAspect in
spring-aspects.jar that acts on the presence of the annotation. In essence the aspect says "after
returning from the initialization of a new object of a type annotated with @Configurable, configure
the newly created object using Spring in accordance with the properties of the annotation". In this
context, initialization refers to newly instantiated objects (e.g., objects instantiated with the new
operator) as well as to Serializable objects that are undergoing deserialization (e.g., via
readResolve()).

276


https://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html

One of the key phrases in the above paragraph is 'in essence'. For most cases, the
exact semantics of 'after returning from the initialization of a new object' will be
fine... in this context, 'after initialization' means that the dependencies will be
injected after the object has been constructed - this means that the dependencies
will not be available for use in the constructor bodies of the class. If you want the
dependencies to be injected before the constructor bodies execute, and thus be

0 available for use in the body of the constructors, then you need to define this on
the @Configurable declaration like so:

(preConstruction=true)

You can find out more information about the language semantics of the various
pointcut types in Aspect] in this appendix of the Aspect] Programming Guide.

For this to work the annotated types must be woven with the Aspect] weaver - you can either use a
build-time Ant or Maven task to do this (see for example the Aspect] Development Environment
Guide) or load-time weaving (see Load-time weaving with Aspect] in the Spring Framework). The
AnnotationBeanConfigurerAspect itself needs configuring by Spring (in order to obtain a reference to
the bean factory that is to be used to configure new objects). If you are using Java based
configuration simply add @EnableSpringConfigured to any @Configuration class.

public class AppConfig {

}

If you prefer XML based configuration, the Spring context namespace defines a convenient
context:spring-configured element:

<context:spring-configured/>

Instances of @Configurable objects created before the aspect has been configured will result in a
message being issued to the debug log and no configuration of the object taking place. An example
might be a bean in the Spring configuration that creates domain objects when it is initialized by
Spring. In this case you can use the "depends-on" bean attribute to manually specify that the bean
depends on the configuration aspect.

277


https://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
https://www.eclipse.org/aspectj/doc/next/progguide/index.html
https://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html
https://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

<bean id="myService"

class="com.xzy.myapp.service.MyService"

depends-on=
"org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect">

<l-- .. -

</bean>

Do not activate @Configurable processing through the bean configurer aspect
unless you really mean to rely on its semantics at runtime. In particular, make

0 sure that you do not use @Configurable on bean classes which are registered as
regular Spring beans with the container: You would get double initialization
otherwise, once through the container and once through the aspect.

Unit testing @Configurable objects

One of the goals of the @Configurable support is to enable independent unit testing of domain
objects without the difficulties associated with hard-coded lookups. If @Configurable types have not
been woven by Aspect], the annotation has no affect during unit testing, and you can simply set
mock or stub property references in the object under test and proceed as normal. If @Configurable
types have been woven by Aspect] then you can still unit test outside of the container as normal,
but you will see a warning message each time that you construct a @Configurable object indicating
that it has not been configured by Spring.

Working with multiple application contexts

The AnnotationBeanConfigurerAspect used to implement the @Configurable support is an Aspect]
singleton aspect. The scope of a singleton aspect is the same as the scope of static members, that is
to say there is one aspect instance per classloader that defines the type. This means that if you
define multiple application contexts within the same classloader hierarchy you need to consider
where to define the @EnableSpringConfigured bean and where to place spring-aspects.jar on the
classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining
common business services and everything needed to support them, and one child application
context per servlet containing definitions particular to that servlet. All of these contexts will co-
exist within the same classloader hierarchy, and so the AnnotationBeanConfigurerAspect can only
hold a reference to one of them. In this case we recommend defining the @EnableSpringConfigured
bean in the shared (parent) application context: this defines the services that you are likely to want
to inject into domain objects. A consequence is that you cannot configure domain objects with
references to beans defined in the child (servlet-specific) contexts using the @Configurable
mechanism (probably not something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application
loads the types in spring-aspects.jar using its own classloader (for example, by placing spring-
aspects.jar in '"WEB-INF/1ib"). If spring-aspects.jar is only added to the container wide classpath
(and hence loaded by the shared parent classloader), all web applications will share the same

278



aspect instance which is probably not what you want.

5.8.2. Other Spring aspects for Aspect]

In addition to the @Configurable aspect, spring-aspects.jar contains an Aspect] aspect that can be
used to drive Spring’s transaction management for types and methods annotated with the
@Transactional annotation. This is primarily intended for users who want to use the Spring
Framework’s transaction support outside of the Spring container.

The aspect that interprets @Transactional annotations is the AnnotationTransactionAspect. When
using this aspect, you must annotate the implementation class (and/or methods within that class),
not the interface (if any) that the class implements. Aspect] follows Java’s rule that annotations on
interfaces are not inherited.

A @Transactional annotation on a class specifies the default transaction semantics for the execution
of any public operation in the class.

A @Transactional annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). Methods of any visibility may be annotated,
including private methods. Annotating non-public methods directly is the only way to get
transaction demarcation for the execution of such methods.

Since Spring Framework 4.2, spring-aspects provides a similar aspect that offers
Q the exact same features for the standard javax.transaction.Transactional
annotation. Check JtaAnnotationTransactionAspect for more details.

For Aspect] programmers that want to use the Spring configuration and transaction management
support but don’t want to (or cannot) use annotations, spring-aspects.jar also contains abstract
aspects you can extend to provide your own pointcut definitions. See the sources for the
AbstractBeanConfigurerAspect and AbstractTransactionAspect aspects for more information. As an
example, the following excerpt shows how you could write an aspect to configure all instances of
objects defined in the domain model using prototype bean definitions that match the fully-qualified
class names:

public aspect DomainObjectConfiguration extends AbstractBeanConfigurerAspect {

public DomainObjectConfiguration() {
setBeanWiringInfoResolver(new ClassNameBeanWiringInfoResolver());

// the creation of a new bean (any object in the domain model)
protected pointcut beanCreation(Object beanInstance) :
initialization(new(..)) &&
SystemArchitecture.inDomainModel() &&
this(beanInstance);

279



5.8.3. Configuring Aspect] aspects using Spring IoC

When using Aspect] aspects with Spring applications, it is natural to both want and expect to be
able to configure such aspects using Spring. The Aspect] runtime itself is responsible for aspect
creation, and the means of configuring the Aspect] created aspects via Spring depends on the
Aspect] instantiation model (the per-xxx clause) used by the aspect.

The majority of Aspect] aspects are singleton aspects. Configuration of these aspects is very easy:
simply create a bean definition referencing the aspect type as normal, and include the bean
attribute 'factory-method="aspectOf"'. This ensures that Spring obtains the aspect instance by
asking Aspect] for it rather than trying to create an instance itself. For example:

<bean id="profiler" class="com.xyz.profiler.Profiler"
<strong>factory-method="aspect0f"</strong>>

<property name="profilingStrategy" ref="jamonProfilingStrategy"/>
</bean>

Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype
bean definitions and using the @Configurable support from spring-aspects.jar to configure the
aspect instances once they have bean created by the Aspect] runtime.

If you have some @Aspect] aspects that you want to weave with Aspect] (for example, using load-
time weaving for domain model types) and other @Aspect] aspects that you want to use with Spring
AOP, and these aspects are all configured using Spring, then you will need to tell the Spring AOP
@Aspect] autoproxying support which exact subset of the @Aspect] aspects defined in the
configuration should be used for autoproxying. You can do this by using one or more <include/>
elements inside the <aop:aspectj-autoproxy/> declaration. Each <include/> element specifies a name
pattern, and only beans with names matched by at least one of the patterns will be used for Spring
AOP autoproxy configuration:

<aop:aspectj-autoproxy>
<aop:include name="thisBean"/>
<aop:include name="thatBean"/>

</aop:aspectj-autoproxy>

Do not be misled by the name of the <aop:aspectj-autoproxy/> element: using it
will result in the creation of Spring AOP proxies. The @Aspect] style of aspect
declaration is just being used here, but the Aspect] runtime is not involved.

5.8.4. Load-time weaving with Aspect] in the Spring Framework

Load-time weaving (LTW) refers to the process of weaving Aspect] aspects into an application’s
class files as they are being loaded into the Java virtual machine (JVM). The focus of this section is
on configuring and using LTW in the specific context of the Spring Framework: this section is not
an introduction to LTW though. For full details on the specifics of LTW and configuring LTW with
just Aspect] (with Spring not being involved at all), see the LTW section of the Aspect] Development

280


https://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

Environment Guide.

The value-add that the Spring Framework brings to Aspect] LTW is in enabling much finer-grained
control over the weaving process. 'Vanilla' Aspect] LTW is effected using a Java (5+) agent, which is
switched on by specifying a VM argument when starting up a JVM. It is thus a JVM-wide setting,
which may be fine in some situations, but often is a little too coarse. Spring-enabled LTW enables
you to switch on LTW on a per-ClassLoader basis, which obviously is more fine-grained and which
can make more sense in a 'single-JVM-multiple-application’ environment (such as is found in a
typical application server environment).

Further, in certain environments, this support enables load-time weaving without making any
modifications to the application server’s launch script that will be needed to add
-javaagent:path/to/aspectjweaver.jar or (as we describe later in this section)
-javaagent:path/to/org.springframework.instrument-{version}.jar (previously named spring-
agent.jar). Developers simply modify one or more files that form the application context to enable
load-time weaving instead of relying on administrators who typically are in charge of the
deployment configuration such as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of Aspect] LTW using
Spring, followed by detailed specifics about elements introduced in the following example. For a
complete example, please see the Petclinic sample application.

A first example

Let us assume that you are an application developer who has been tasked with diagnosing the
cause of some performance problems in a system. Rather than break out a profiling tool, what we
are going to do is switch on a simple profiling aspect that will enable us to very quickly get some
performance metrics, so that we can then apply a finer-grained profiling tool to that specific area
immediately afterwards.

The example presented here uses XML style configuration, it is also possible to

0 configure and wuse @Aspect] with Java Configuration. Specifically the
@EnablelLoadTimeWeaving annotation can be used as an alternative to <context:load-
time-weaver/> (see below for details).

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@Aspect]-style of aspect declaration.

281


https://www.eclipse.org/aspectj/doc/released/devguide/ltw.html
https://github.com/spring-projects/spring-petclinic

package foo;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Around;

import org.aspectj.lang.annotation.Pointcut;
import org.springframework.util.StopWatch;

import org.springframework.core.annotation.Order;

@Aspect
public class ProfilingAspect {

@Around("methodsToBeProfiled()")
public Object profile(ProceedingJloinPoint pjp) throws Throwable {
StopWatch sw = new StopWatch(getClass().getSimpleName());
try {
sw.start(pjp.getSignature().getName());
return pjp.proceed();
} finally {
sw.stop();
System.out.println(sw.prettyPrint());

}

@Pointcut("execution(public * foo..*.*(..))")
public void methodsToBeProfiled(){}

We will also need to create an META-INF/aop.xml file, to inform the Aspect] weaver that we want to
weave our ProfilingAspect into our classes. This file convention, namely the presence of a file (or
files) on the Java classpath called META-INF/aop.xml is standard Aspect].

<!DOCTYPE aspectj PUBLIC "-//Aspect]//DTD//EN"
"https://www.eclipse.org/aspectj/dtd/aspectj.dtd">
<aspectj>

<weaver>
<!-- only weave classes in our application-specific packages -->
<include within="foo.*"/>

</weaver>

<aspects>
<!-- weave in just this aspect -->
<aspect name="foo.ProfilingAspect"/>

</aspects>

</aspectj>

282



Now to the Spring-specific portion of the configuration. We need to configure a LoadTimeWeaver (all
explained later, just take it on trust for now). This load-time weaver is the essential component
responsible for weaving the aspect configuration in one or more META-INF/aop.xml files into the
classes in your application. The good thing is that it does not require a lot of configuration, as can

be seen below (there are some more options that you can specify, but these are detailed later).

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<!-- 3 service object; we will be profiling its methods -->
<bean id="entitlementCalculationService"
class="foo.StubEntitlementCalculationService"/>

<!-- this switches on the load-time weaving -->
<strong><context:load-time-weaver/></strong>
</beans>

Now that all the required artifacts are in place - the aspect, the META-INF/aop.xml file, and the Spring
configuration -, let us create a simple driver class with a main(..) method to demonstrate the LTW

in action.

package foo;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public final class Main {

public static void main(String[] args) {

ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml", Main

.class);

EntitlementCalculationService entitlementCalculationService
= (EntitlementCalculationService) ctx.getBean(
"entitlementCalculationService");

// the profiling aspect is 'woven' around this method execution
entitlementCalculationService.calculateEntitlement();

283



There is one last thing to do. The introduction to this section did say that one could switch on LTW
selectively on a per- ClassLoader basis with Spring, and this is true. However, just for this example,
we are going to use a Java agent (supplied with Spring) to switch on the LTW. This is the command
line we will use to run the above Main class:

java -javaagent:C:/projects/foo/lib/global/spring-instrument.jar foo.Main

The -javaagent is a flag for specifying and enabling agents to instrument programs running on the
JVM. The Spring Framework ships with such an agent, the InstrumentationSavingAgent, which is
packaged in the spring-instrument.jar that was supplied as the value of the -javaagent argument in
the above example.

The output from the execution of the Main program will look something like that below. (I have
introduced a Thread.sleep(..) statement into the calculateEntitlement() implementation so that
the profiler actually captures something other than 0 milliseconds - the 01234 milliseconds is not an
overhead introduced by the AOP :))

Calculating entitlement

StopWatch 'ProfilingAspect': running time (millis) = 1234

01234 100% calculateEntitlement

Since this LTW is effected using full-blown Aspect], we are not just limited to advising Spring beans;
the following slight variation on the Main program will yield the same result.

package foo;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public final class Main {
public static void main(String[] args) {
new ClassPathXmlApplicationContext("beans.xml", Main.class);

EntitlementCalculationService entitlementCalculationService =
new StubEntitlementCalculationService();

// the profiling aspect will be 'woven' around this method execution
entitlementCalculationService.calculateEntitlement();

Notice how in the above program we are simply bootstrapping the Spring container, and then

284


https://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html

creating a new instance of the StubEntitlementCalculationService totally outside the context of
Spring... the profiling advice still gets woven in.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all
been introduced in the above example, and the rest of this section will explain the 'why' behind
each bit of configuration and usage in detail.

The ProfilingAspect used in this example may be basic, but it is quite useful. It is a

0 nice example of a development-time aspect that developers can use during
development (of course), and then quite easily exclude from builds of the
application being deployed into UAT or production.

Aspects

The aspects that you use in LTW have to be Aspect] aspects. They can be written in either the
Aspect] language itself or you can write your aspects in the @Aspect]-style. It means that your
aspects are then both valid Aspect] and Spring AOP aspects. Furthermore, the compiled aspect
classes need to be available on the classpath.

'"META-INF/aop.xml'

The Aspect] LTW infrastructure is configured using one or more META-INF/aop.xml files, that are on
the Java classpath (either directly, or more typically in jar files).

The structure and contents of this file is detailed in the main Aspect] reference documentation, and
the interested reader is referred to that resource. (I appreciate that this section is brief, but the
aop.xml file is 100% Aspect] - there is no Spring-specific information or semantics that apply to it,
and so there is no extra value that I can contribute either as a result), so rather than rehash the
quite satisfactory section that the Aspect] developers wrote, I am just directing you there.)

Required libraries (JARS)

At a minimum you will need the following libraries to use the Spring Framework’s support for
Aspect] LTW:

* spring-aop.jar (version 2.5 or later, plus all mandatory dependencies)

* aspectjweaver.jar (version 1.6.8 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:

o spring-instrument.jar

Spring configuration

The key component in Spring’s LTW support is the LoadTimeWeaver interface (in the
org.springframework.instrument.classloading package), and the numerous implementations of it
that ship with the Spring distribution. A LoadTimeWeaver is responsible for adding one or more
java.lang.instrument.ClassFileTransformers to a ClassLoader at runtime, which opens the door to
all manner of interesting applications, one of which happens to be the LTW of aspects.

285


https://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html

If you are unfamiliar with the idea of runtime class file transformation, you are
encouraged to read the javadoc API documentation for the java.lang.instrument

Q package before continuing. This is not a huge chore because there is - rather
annoyingly - precious little documentation there... the key interfaces and classes
will at least be laid out in front of you for reference as you read through this
section.

Configuring a LoadTimeWeaver for a particular ApplicationContext can be as easy as adding one line.
(Please note that you almost certainly will need to be using an ApplicationContext as your Spring
container - typically a BeanFactory will not be enough because the LTW support makes use of
BeanFactoryPostProcessors.)

To enable the Spring Framework’s LTW support, you need to configure a LoadTimeWeaver, which
typically is done using the @EnableLoadTimeWeaving annotation.

@Configuration
@EnableloadTimeWeaving
public class AppConfig {

}

Alternatively, if you prefer XML based configuration, use the <context:load-time-weaver/> element.
Note that the element is defined in the context namespace.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:load-time-weaver/>

</beans>

The above configuration will define and register a number of LTW-specific infrastructure beans for
you automatically, such as a LoadTimeWeaver and an Aspect]WeavingEnabler. The default
LoadTimeWeaver is the DefaultContextLoadTimeWeaver class, which attempts to decorate an
automatically detected LoadTimeWeaver: the exact type of LoadTimeWeaver that will be 'automatically
detected' is dependent upon your runtime environment (summarized in the following table).

Table 13. DefaultContextLoadTimeWeaver LoadTimeWeavers

286



Runtime Environment LoadTimeWeaver implementation

Running in Oracle’s WebLogic WebLogicLoadTimeWeaver
Running in Oracle’s GlassFish GlassFishLoadTimeWeaver
Running in Apache Tomcat TomcatLoadTimeWeaver

Running in Red Hat’s JBoss AS or WildFly JBossLoadTimeWeaver

Running in IBM’s WebSphere WebSphereLoadTimeWeaver

JVM started with Spring InstrumentationlLoadTimeWeaver

InstrumentationSavingAgent (java
-javaagent:path/to/spring-instrument.jar)

Fallback, expecting the underlying ClassLoader ReflectiveloadTimeWeaver
to follow common conventions (e.g. applicable to
TomcatInstrumentableClassLoader and Resin)

Note that these are just the LoadTimeWeavers that are autodetected when using the
DefaultContextLoadTimeWeaver: it is of course possible to specify exactly which LoadTimeWeaver
implementation that you wish to use.

To specify a specific LoadTimeWeaver with Java configuration implement the
LoadTimeWeavingConfigurer interface and override the getLoadTimeWeaver () method:

@Configuration
@EnablelLoadTimeWeaving
public class AppConfig implements LoadTimeWeavingConfigurer {

@0verride
public LoadTimeWeaver getlLoadTimeWeaver() {
return new ReflectiveloadTimeWeaver();

}

If you are using XML based configuration you can specify the fully-qualified classname as the value
of the weaver-class attribute on the <context:load-time-weaver/> element:

287


https://www.oracle.com/technetwork/middleware/weblogic/overview/index-085209.html
https://glassfish.dev.java.net/
https://tomcat.apache.org/
https://www.jboss.org/jbossas/
https://www.wildfly.org/
https://www-01.ibm.com/software/webservers/appserv/was/
https://www.caucho.com/

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:load-time-weaver
weaver-class=
"org.springframework.instrument.classloading.ReflectivelLoadTimeWeaver"/>

</beans>

The LoadTimeWeaver that is defined and registered by the configuration can be later retrieved from
the Spring container using the well-known name loadTimelleaver. Remember that the LoadTimeWeaver
exists just as a mechanism for Spring’s LTW infrastructure to add one or more
ClassFileTransformers. The actual C(lassFileTransformer that does the LTW is the
(lassPreProcessorAgentAdapter (from the org.aspectj.weaver.loadtime package) class. See the class-
level javadocs of the ClassPreProcessorAgentAdapter class for further details, because the specifics of
how the weaving is actually effected is beyond the scope of this section.

There is one final attribute of the configuration left to discuss: the aspectjWeaving attribute (or
aspectj-weaving if you are using XML). This is a simple attribute that controls whether LTW is
enabled or not; it is as simple as that. It accepts one of three possible values, summarized below,
with the default value being autodetect if the attribute is not present.

Table 14. Aspect] weaving attribute values

Annotation Value XML Value Explanation

ENABLED on Aspect] weaving is on, and
aspects will be woven at load-
time as appropriate.

DISABLED off LTW is off... no aspect will be
woven at load-time.

AUTODETECT autodetect If the Spring LTW

infrastructure can find at least
one META-INF/aop.xml file, then
Aspect] weaving is on, else it is
off. This is the default value.

Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using
Spring’s LTW support in environments such as application servers and web containers.

288



Tomcat

Historically, Apache Tomcat's default class loader did not support class transformation which is
why Spring provides an enhanced implementation that addresses this need. Named
TomcatInstrumentableClasslLoader, the loader works on Tomcat 6.0 and above.

Do not define TomcatInstrumentableClassLoader anymore on Tomcat 8.0 and higher.
Instead, let Spring automatically use Tomcat’s new native
InstrumentableClassLoader facility through the TomcatLoadTimeWeaver strategy.

If you still need to use TomcatInstrumentableClassLoader, it can be registered individually for each
web application as follows:

* Copy org.springframework.instrument.tomcat.jar  into  $CATALINA_HOME/lib,  where
$CATALINA_HOME represents the root of the Tomcat installation)

* Instruct Tomcat to use the custom class loader (instead of the default) by editing the web
application context file:

<Context path="/myWebApp" docBase="/my/webApp/location">
<Loader
loaderClass=
"org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/>
</Context>

Apache Tomcat (6.0+) supports several context locations:

* server configuration file - $CATALINA_HOME/conf/server.xml

» default context configuration - $CATALINA_HOME/conf/context.xml - that affects all deployed
web applications

* per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname]/[webapp]-context.xml or embedded inside the
web-app archive at META-INF/context.xml

For efficiency, the embedded per-web-app configuration style is recommended because it will
impact only applications that use the custom class loader and does not require any changes to the
server configuration. See the Tomcat 6.0.x documentation for more details about available context
locations.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat’s
launch script (see above). This will make instrumentation available to all deployed web
applications, no matter what ClassLoader they happen to run on.

WebLogic, WebSphere, Resin, GlassFish, JBoss

Recent versions of WebLogic Server (version 10 and above), IBM WebSphere Application Server
(version 7 and above), Resin (3.1 and above) and JBoss (6.x or above) provide a ClassLoader that is
capable of local instrumentation. Spring’s native LTW leverages such ClassLoaders to enable
Aspect] weaving. You can enable LTW by simply activating load-time weaving as described earlier.

289


https://tomcat.apache.org/
https://tomcat.apache.org/tomcat-6.0-doc/config/context.html

Specifically, you do not need to modify the launch script to add -javaagent:path/to/spring
-instrument.jar.

Note that GlassFish instrumentation-capable ClassLoader is available only in its EAR environment.
For GlassFish web applications, follow the Tomcat setup instructions as outlined above.

Note that on JBoss 6.x, the app server scanning needs to be disabled to prevent it from loading the
classes before the application actually starts. A quick workaround is to add to your artifact a file
named WEB-INF/jboss-scanning.xml with the following content:

<scanning xmlns="urn:jboss:scanning:1.0"/>

Generic Java applications

When class instrumentation is required in environments that do not support or are not supported
by the existing LoadTimeWeaver implementations, a JDK agent can be the only solution. For such
cases, Spring provides InstrumentationLoadTimeWeaver, which requires a Spring-specific (but very
general) VM agent, org.springframework.instrument-{version}.jar (previously named spring-
agent.jar).

To use it, you must start the virtual machine with the Spring agent, by supplying the following JVM
options:

-javaagent:/path/to/org.springframework.instrument-{version}.jar

Note that this requires modification of the VM launch script which may prevent you from using this
in application server environments (depending on your operation policies). Additionally, the JDK
agent will instrument the entire VM which can prove expensive.

For performance reasons, it is recommended to use this configuration only if your target
environment (such as Jetty) does not have (or does not support) a dedicated LTW.

5.9. Further Resources

More information on Aspect] can be found on the Aspect] website.

The book Eclipse Aspect] by Adrian Colyer et. al. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the Aspect] language.

The book Aspect] in Action, Second Edition by Ramnivas Laddad (Manning, 2009) comes highly
recommended; the focus of the book is on Aspect], but a lot of general AOP themes are explored (in
some depth).

290


https://www.eclipse.org/jetty/
https://www.eclipse.org/aspectj

Chapter 6. Spring AOP APIs

6.1. Introduction

The previous chapter described the Spring’s support for AOP using @Aspect] and schema-based
aspect definitions. In this chapter we discuss the lower-level Spring AOP APIs and the AOP support
typically used in Spring 1.2 applications. For new applications, we recommend the use of the Spring
2.0 and later AOP support described in the previous chapter, but when working with existing
applications, or when reading books and articles, you may come across Spring 1.2 style examples.
Spring 5 remains backwards compatible with Spring 1.2 and everything described in this chapter is
fully supported in Spring 5.

6.2. Pointcut API in Spring

Let’s look at how Spring handles the crucial pointcut concept.

6.2.1. Concepts

Spring’s pointcut model enables pointcut reuse independent of advice types. It’s possible to target
different advice using the same pointcut.

The org.springframework.aop.Pointcut interface is the central interface, used to target advices to
particular classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter get(ClassFilter();

MethodMatcher getMethodMatcher();

Splitting the Pointcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a "union" with another method matcher).

The ClassFilter interface is used to restrict the pointcut to a given set of target classes. If the
matches() method always returns true, all target classes will be matched:

public interface ClassFilter {

boolean matches(Class clazz);

The MethodMatcher interface is normally more important. The complete interface is shown below:

291



public interface MethodMatcher {
boolean matches(Method m, Class target(Class);
boolean isRuntime();

boolean matches(Method m, Class targetClass, Object[] args);

The matches(Method, (Class) method is used to test whether this pointcut will ever match a given
method on a target class. This evaluation can be performed when an AOP proxy is created, to avoid
the need for a test on every method invocation. If the 2-argument matches method returns true for
a given method, and the isRuntime() method for the MethodMatcher returns true, the 3-argument
matches method will be invoked on every method invocation. This enables a pointcut to look at the
arguments passed to the method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their isRuntime() method returns false. In this case,
the 3-argument matches method will never be invoked.

Q If possible, try to make pointcuts static, allowing the AOP framework to cache the
results of pointcut evaluation when an AOP proxy is created.

6.2.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.

* Union means the methods that either pointcut matches.
* Intersection means the methods that both pointcuts match.

* Union is usually more useful.

Pointcuts can be composed using the static methods in the
org.springframework.aop.support.Pointcuts class, or using the ComposablePointcut class in the
same package. However, using Aspect] pointcut expressions is usually a simpler approach.

6.2.3. Aspect] expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org.springframework.aop.aspectj.AspectJExpressionPointcut. This is a pointcut that uses an Aspect]
supplied library to parse an Aspect] pointcut expression string.

See the previous chapter for a discussion of supported Aspect] pointcut primitives.

6.2.4. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box;
others are intended to be subclassed in application-specific pointcuts.

292



Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method’s
arguments. Static pointcuts are sufficient - and best - for most usages. It’s possible for Spring to
evaluate a static pointcut only once, when a method is first invoked: after that, there is no need to
evaluate the pointcut again with each method invocation.

Let’s consider some static pointcut implementations included with Spring.

Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides
Spring make this possible. org.springframework.aop.support.JdkRegexpMethodPointcut is a generic
regular expression pointcut, using the regular expression support in the JDK.

Using the JdkRegexpMethodPointcut class, you can provide a list of pattern Strings. If any of these is a
match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean id="settersAndAbsquatulatePointcut"
class="org.springframework.aop.support.JdkRegexpMethodPointcut">
<property name="patterns">
<list>
<value>.*set.*</value>
<value>.*absquatulate</value>
</list>
</property>
</bean>

Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to also reference
an Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.).
Behind the scenes, Spring will use a JdkRegexpMethodPointcut. Using RegexpMethodPointcutAdvisor
simplifies wiring, as the one bean encapsulates both pointcut and advice, as shown below:

<bean id="settersAndAbsquatulateAdvisor"
class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
<property name="advice">
<ref bean="beanNameOfAopAllianceInterceptor"/>
</property>
<property name="patterns">
<list>
<value>.*set.*</value>
<value>.*absquatulate</value>
</list>
</property>
</bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

293



Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata
attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method
arguments, as well as static information. This means that they must be evaluated with every
method invocation; the result cannot be cached, as arguments will vary.

The main example is the control flow pointcut.

Control flow pointcuts

Spring control flow pointcuts are conceptually similar to Aspect] cflow pointcuts, although less
powerful. (There is currently no way to specify that a pointcut executes below a join point matched
by another pointcut.) A control flow pointcut matches the current call stack. For example, it might
fire if the join point was invoked by a method in the com.mycompany.web package, or by the
SomeCaller class. Control flow pointcuts are specified using the
org.springframework.aop.support.ControlFlowPointcut class.

Control flow pointcuts are significantly more expensive to evaluate at runtime
than even other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of
other dynamic pointcuts.

6.2.5. Pointcut superclasses
Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, youw’ll probably subclass StaticMethodMatcherPointcut, as
shown below. This requires implementing just one abstract method (although it’s possible to
override other methods to customize behavior):

class TestStaticPointcut extends StaticMethodMatcherPointcut {

public boolean matches(Method m, Class targetClass) {
// return true if custom criteria match

There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

6.2.6. Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in Aspect]) it’s
possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be

294



arbitrarily complex. However, using the Aspect] pointcut expression language is recommended if
possible.

0 Later versions of Spring may offer support for "semantic pointcuts" as offered by
JAC: for example, "all methods that change instance variables in the target object."

6.3. Advice API in Spring

Let’s now look at how Spring AOP handles advice.

6.3.1. Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique
to each advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors.
These do not depend on the state of the proxied object or add new state; they merely act on the
method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds
state to the proxied object.

It’s possible to use a mix of shared and per-instance advice in the same AOP proxy.

6.3.2. Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice
types. Let us look at the basic concepts and standard advice types.

Interception around advice
The most fundamental advice type in Spring is interception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
MethodInterceptors implementing around advice should implement the following interface:

public interface MethodInterceptor extends Interceptor {

Object invoke(MethodInvocation invocation) throws Throwable;

The MethodInvocation argument to the invoke() method exposes the method being invoked; the
target join point; the AOP proxy; and the arguments to the method. The invoke() method should
return the invocation’s result: the return value of the join point.

A simple MethodInterceptor implementation looks as follows:

295



public class DebugInterceptor implements MethodInterceptor {

public Object invoke(MethodInvocation invocation) throws Throwable {
System.out.println("Before: invocation=[" + invocation + "]");
Object rval = invocation.proceed();
System.out.println("Invocation returned");
return rval;

Note the call to the MethodInvocation’s proceed() method. This proceeds down the interceptor
chain towards the join point. Most interceptors will invoke this method, and return its return value.
However, a MethodInterceptor, like any around advice, can return a different value or throw an
exception rather than invoke the proceed method. However, you don’t want to do this without good
reason!

MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section
implement common AOP concepts, but in a Spring-specific way. While there is an
0 advantage in using the most specific advice type, stick with MethodInterceptor
around advice if you are likely to want to run the aspect in another AOP
framework. Note that pointcuts are not currently interoperable between
frameworks, and the AOP Alliance does not currently define pointcut interfaces.

Before advice

A simpler advice type is a before advice. This does not need a MethodInvocation object, since it will
only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and
therefore no possibility of inadvertently failing to proceed down the interceptor chain.

The MethodBeforeAdvice interface is shown below. (Spring’s API design would allow for field before
advice, although the usual objects apply to field interception and it’s unlikely that Spring will ever
implement it).

public interface MethodBeforeAdvice extends BeforeAdvice {

void before(Method m, Object[] args, Object target) throws Throwable;

Note the return type is void. Before advice can insert custom behavior before the join point
executes, but cannot change the return value. If a before advice throws an exception, this will abort
further execution of the interceptor chain. The exception will propagate back up the interceptor
chain. If it is unchecked, or on the signature of the invoked method, it will be passed directly to the
client; otherwise it will be wrapped in an unchecked exception by the AOP proxy.

296



An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice implements MethodBeforeAdvice {
private int count;

public void before(Method m, Object[] args, Object target) throws Throwable {
++count;

}

public int getCount() {
return count;

}

Q Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception.
Spring offers typed  throws advice. Note that this means that the
org.springframework.aop.ThrowsAdvice interface does not contain any methods: It is a tag interface
identifying that the given object implements one or more typed throws advice methods. These
should be in the form of:

afterThrowing([Method, args, target], subclassOfThrowable)

Only the last argument is required. The method signatures may have either one or four arguments,
depending on whether the advice method is interested in the method and arguments. The following
classes are examples of throws advice.

The advice below is invoked if a RemoteException is thrown (including subclasses):

public class RemoteThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}

The following advice is invoked if a ServletException is thrown. Unlike the above advice, it declares
4 arguments, so that it has access to the invoked method, method arguments and target object:

297



public class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

public void afterThrowing(Method m, Object[] args, Object target, ServletException
ex) {

// Do something with all arguments

}

The final example illustrates how these two methods could be used in a single class, which handles
both RemoteException and ServletException. Any number of throws advice methods can be
combined in a single class.

public static class CombinedThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}

public void afterThrowing(Method m, Object[] args, Object target, ServletException
ex) {

// Do something with all arguments

}

If a throws-advice method throws an exception itself, it will override the original
exception (i.e. change the exception thrown to the user). The overriding exception
will typically be a RuntimeException; this is compatible with any method

t’ signature. However, if a throws-advice method throws a checked exception, it will
have to match the declared exceptions of the target method and is hence to some
degree coupled to specific target method signatures. Do not throw an undeclared
checked exception that is incompatible with the target method’s signature!

Q Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the
org.springframework.aop.AfterReturningAdvice interface, shown below:

public interface AfterReturningAdvice extends Advice {

void afterReturning(Object returnValue, Method m, Object[] args, Object target)
throws Throwable;

An after returning advice has access to the return value (which it cannot modify), invoked method,

298



methods arguments and target.
The following after returning advice counts all successful method invocations that have not thrown

exceptions:

public class CountingAfterReturningAdvice implements AfterReturningAdvice {
private int count;

public void afterReturning(Object returnValue, Method m, Object[] args, Object
target)
throws Throwable {
++count;

public int getCount() {
return count;

}

This advice doesn’t change the execution path. If it throws an exception, this will be thrown up the
interceptor chain instead of the return value.

Q After returning advice can be used with any pointcut.

Introduction advice

Spring treats introduction advice as a special kind of interception advice.
Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor, implementing the

following interface:

public interface IntroductionInterceptor extends MethodInterceptor {

boolean implementsInterface(Class intf);

The invoke() method inherited from the AOP Alliance MethodInterceptor interface must implement
the introduction: that is, if the invoked method is on an introduced interface, the introduction
interceptor is responsible for handling the method call - it cannot invoke proceed().

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than
method, level. You can only use introduction advice with the IntroductionAdvisor, which has the
following methods:

299



public interface IntroductionAdvisor extends Advisor, IntroductionInfo {
ClassFilter getClassFilter();

void validateInterfaces() throws IllegalArgumentException;

public interface IntroductionInfo {

Class[] getInterfaces();

There is no MethodMatcher, and hence no Pointcut, associated with introduction advice. Only class
filtering is logical.

The getInterfaces() method returns the interfaces introduced by this advisor.

The validatelnterfaces() method is used internally to see whether or not the introduced interfaces
can be implemented by the configured IntroductionInterceptor.

Let’s look at a simple example from the Spring test suite. Let’s suppose we want to introduce the
following interface to one or more objects:

public interface Lockable {
void lock();
void unlock();
boolean locked();

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type,
and call lock and unlock methods. If we call the lock() method, we want all setter methods to throw
a LockedException. Thus we can add an aspect that provides the ability to make objects immutable,
without them having any knowledge of it: a good example of AOP.

Firstly, we’ll need an IntroductionInterceptor that does the heavy lifting. In this case, we extend the
org.springframework.aop.support.DelegatingIntroductionInterceptor convenience class. We could
implement IntroductionInterceptor directly, but using DelegatingIntroductionInterceptor is best for
most cases.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an actual
implementation of the introduced interface(s), concealing the use of interception to do so. The
delegate can be set to any object using a constructor argument; the default delegate (when the no-
arg constructor is used) is this. Thus in the example below, the delegate is the LockMixin subclass of
DelegatingIntroductionInterceptor. Given a delegate (by default itself), a
DelegatingIntroductionInterceptor instance looks for all interfaces implemented by the delegate
(other than IntroductionInterceptor), and will support introductions against any of them. It’s
possible for subclasses such as LockMixin to call the suppressInterface(Class intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an

300



IntroductionInterceptor is prepared to support, the IntroductionAdvisor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the
same interface by the target.

Thus LockMixin extends DelegatingIntroductionInterceptor and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don’t
need to specify that. We could introduce any number of interfaces in this way.

Note the use of the locked instance variable. This effectively adds additional state to that held in the
target object.

public class LockMixin extends DelegatingIntroductionInterceptor implements Lockable {
private boolean locked;

public void lock() {
this.locked = true;

}

public void unlock() {
this.locked = false;

}

public boolean locked() {
return this.locked;

}

public Object invoke(MethodInvocation invocation) throws Throwable {
if (locked() && invocation.getMethod().getName().index0f("set") == 0) {
throw new LockedException();

}

return super.invoke(invocation);

Often it isn’t necessary to override the invoke() method: the DelegatingIntroductionInterceptor
implementation - which calls the delegate method if the method is introduced, otherwise proceeds
towards the join point - is usually sufficient. In the present case, we need to add a check: no setter
method can be invoked if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockMixin instance,
and specify the introduced interfaces - in this case, just Lockable. A more complex example might
take a reference to the introduction interceptor (which would be defined as a prototype): in this
case, there’s no configuration relevant for a LockMixin, so we simply create it using new.

301



public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

public LockMixinAdvisor() {
super(new LockMixin(), Lockable.class);

}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It’s
impossible to use an IntroductionInterceptor without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We need a different instance of
LockMixinAdvisor, and hence LockMixin, for each advised object. The advisor comprises part of the
advised object’s state.

We can apply this advisor programmatically, using the Advised.addAdvisor() method, or (the
recommended way) in XML configuration, like any other advisor. All proxy creation choices
discussed below, including "auto proxy creators,” correctly handle introductions and stateful
mixins.

6.4. Advisor API in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut
expression.

Apart from the special case of introductions, any advisor can be used with any advice.
org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly used advisor class.
For example, it can be used with a MethodInterceptor, BeforeAdvice or ThrowsAdvice.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you
could use a interception around advice, throws advice and before advice in one proxy
configuration: Spring will automatically create the necessary interceptor chain.

6.5. Using the ProxyFactoryBean to create AOP proxies

If you’re using the Spring IoC container (an ApplicationContext or BeanFactory) for your business
objects - and you should be! - you will want to use one of Spring’s AOP FactoryBeans. (Remember
that a factory bean introduces a layer of indirection, enabling it to create objects of a different

type.)

0 The Spring AOP support also uses factory beans under the covers.
The basic way to create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the

pointcuts and advice that will apply, and their ordering. However, there are simpler options that
are preferable if you don’t need such control.

302



6.5.1. Basics

The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a level of
indirection. If you define a ProxyFactoryBean with name foo, what objects referencing foo see is not
the ProxyFactoryBean instance itself, but an object created by the ProxyFactoryBean's implementation
of the getObject() method. This method will create an AOP proxy wrapping a target object.

One of the most important benefits of using a ProxyFactoryBean or another IoC-aware class to create
AOP proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a
powerful feature, enabling certain approaches that are hard to achieve with other AOP
frameworks. For example, an advice may itself reference application objects (besides the target,
which should be available in any AOP framework), benefiting from all the pluggability provided by
Dependency Injection.

6.5.2. JavaBean properties

In common with most FactoryBean implementations provided with Spring, the ProxyFactoryBean
class is itself a JavaBean. Its properties are used to:

* Specify the target you want to proxy.
 Specify whether to use CGLIB (see below and also JDK- and CGLIB-based proxies).

Some key properties are inherited from org.springframework.aop.framework.ProxyConfig (the
superclass for all AOP proxy factories in Spring). These key properties include:

» proxyTarget(lass: true if the target class is to be proxied, rather than the target class' interfaces.
If this property value is set to true, then CGLIB proxies will be created (but see also JDK- and
CGLIB-based proxies).

* optimize: controls whether or not aggressive optimizations are applied to proxies created via
CGLIB. One should not blithely use this setting unless one fully understands how the relevant
AOP proxy handles optimization. This is currently used only for CGLIB proxies; it has no effect
with JDK dynamic proxies.

» frozen: if a proxy configuration is frozen, then changes to the configuration are no longer
allowed. This is useful both as a slight optimization and for those cases when you don’t want
callers to be able to manipulate the proxy (via the Advised interface) after the proxy has been
created. The default value of this property is false, so changes such as adding additional advice
are allowed.

* exposeProxy: determines whether or not the current proxy should be exposed in a ThreadlLocal so
that it can be accessed by the target. If a target needs to obtain the proxy and the exposeProxy
property is set to true, the target can use the AopContext.currentProxy() method.

Other properties specific to ProxyFactoryBean include:

 proxyInterfaces: array of String interface names. If this isn’t supplied, a CGLIB proxy for the
target class will be used (but see also JDK- and CGLIB-based proxies).

* interceptorNames: String array of Advisor, interceptor or other advice names to apply. Ordering
is significant, on a first come-first served basis. That is to say that the first interceptor in the list

303



will be the first to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories.
You can’t mention bean references here since doing so would result in the ProxyFactoryBean
ignoring the singleton setting of the advice.

You can append an interceptor name with an asterisk ( *). This will result in the application of all
advisor beans with names starting with the part before the asterisk to be applied. An example of
using this feature can be found in Using 'global’ advisors.

* singleton: whether or not the factory should return a single object, no matter how often the
getObject() method is called. Several FactoryBean implementations offer such a method. The
default value is true. If you want to use stateful advice - for example, for stateful mixins - use
prototype advices along with a singleton value of false.

6.5.3. JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFactoryBean chooses to create
one of either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based

9 proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean
now exhibits similar semantics with regard to auto-detecting interfaces as those of
the TransactionProxyFactoryBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class)
doesn’t implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest
scenario, because JDK proxies are interface based, and no interfaces means JDK proxying isn’t even
possible. One simply plugs in the target bean, and specifies the list of interceptors via the
interceptorNames property. Note that a CGLIB-based proxy will be created even if the
proxyTarget(Class property of the ProxyFactoryBean has been set to false. (Obviously this makes no
sense, and is best removed from the bean definition because it is at best redundant, and at worst
confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created
depends on the configuration of the ProxyFactoryBean.

If the proxyTarget(Class property of the ProxyFactoryBean has been set to true, then a CGLIB-based
proxy will be created. This makes sense, and is in keeping with the principle of least surprise. Even
if the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified
interface names, the fact that the proxyTarget(lass property is set to true will cause CGLIB-based
proxying to be in effect.

If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified
interface names, then a JDK-based proxy will be created. The created proxy will implement all of
the interfaces that were specified in the proxyInterfaces property; if the target class happens to
implement a whole lot more interfaces than those specified in the proxyInterfaces property, that is
all well and good but those additional interfaces will not be implemented by the returned proxy.

304



If the proxyInterfaces property of the ProxyFactoryBean has not been set, but the target class does
implement one (or more) interfaces, then the ProxyFactoryBean will auto-detect the fact that the
target class does actually implement at least one interface, and a JDK-based proxy will be created.
The interfaces that are actually proxied will be all of the interfaces that the target class implements;
in effect, this is the same as simply supplying a list of each and every interface that the target class
implements to the proxyInterfaces property. However, it is significantly less work, and less prone to

typos.

6.5.4. Proxying interfaces
Let’s look at a simple example of ProxyFactoryBean in action. This example involves:

* A target bean that will be proxied. This is the "personTarget" bean definition in the example
below.

* An Advisor and an Interceptor used to provide advice.

* An AOP proxy bean definition specifying the target object (the personTarget bean) and the
interfaces to proxy, along with the advices to apply.

<bean id="personTarget" class="com.mycompany.PersonImpl">
<property name="name" value="Tony"/>
<property name="age" value="51"/>

</bean>

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
<property name="someProperty" value="Custom string property value"/>
</bean>

<bean id="debugInterceptor" class=
"org.springframework.aop.interceptor.DebugInterceptor">
</bean>

<bean id="person"
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces" value="com.mycompany.Person"/>

<property name="target" ref="personTarget"/>
<property name="interceptorNames">
<list>
<value>myAdvisor</value>
<value>debuglInterceptor</value>
</list>
</property>
</bean>

Note that the interceptorNames property takes a list of String: the bean names of the interceptor or
advisors in the current factory. Advisors, interceptors, before, after returning and throws advice
objects can be used. The ordering of advisors is significant.

305



You might be wondering why the list doesn’t hold bean references. The reason for
this is that if the ProxyFactoryBean’s singleton property is set to false, it must be

0 able to return independent proxy instances. If any of the advisors is itself a
prototype, an independent instance would need to be returned, so it’s necessary to
be able to obtain an instance of the prototype from the factory; holding a reference
isn’t sufficient.

The "person” bean definition above can be used in place of a Person implementation, as follows:
Person person = (Person) factory.getBean("person");

Other beans in the same IoC context can express a strongly typed dependency on it, as with an
ordinary Java object:

<bean id="personUser" class="com.mycompany.PersonUser">
<property name="person"><ref bean="person"/></property>
</bean>

The PersonUser class in this example would expose a property of type Person. As far as it’s
concerned, the AOP proxy can be used transparently in place of a "real" person implementation.
However, its class would be a dynamic proxy class. It would be possible to cast it to the Advised
interface (discussed below).

It’s possible to conceal the distinction between target and proxy using an anonymous inner bean, as
follows. Only the ProxyFactoryBean definition is different; the advice is included only for
completeness:

306



<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
<property name="someProperty" value="Custom string property value"/>
</bean>

<bean id="debugInterceptor" class=
"org.springframework.aop.interceptor.DebugInterceptor"/>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces" value="com.mycompany.Person"/>
<!-- Use inner bean, not local reference to target -->
<property name="target">
<bean class="com.mycompany.PersonImpl">
<property name="name" value="Tony"/>
<property name="age" value="51"/>
</bean>
</property>
<property name="interceptorNames">
<list>
<value>myAdvisor</value>
<value>debugInterceptor</value>
</list>
</property>
</bean>

This has the advantage that there’s only one object of type Person: useful if we want to prevent
users of the application context from obtaining a reference to the un-advised object, or need to
avoid any ambiguity with Spring IoC autowiring. There’s also arguably an advantage in that the
ProxyFactoryBean definition is self-contained. However, there are times when being able to obtain
the un-advised target from the factory might actually be an advantage: for example, in certain test
scenarios.

6.5.5. Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Person interface: we needed to advise a class
called Person that didn’t implement any business interface. In this case, you can configure Spring to
use CGLIB proxying, rather than dynamic proxies. Simply set the proxyTargetClass property on the
ProxyFactoryBean above to true. While it’s best to program to interfaces, rather than classes, the
ability to advise classes that don’t implement interfaces can be useful when working with legacy
code. (In general, Spring isn’t prescriptive. While it makes it easy to apply good practices, it avoids
forcing a particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this
generated subclass to delegate method calls to the original target: the subclass is used to implement
the Decorator pattern, weaving in the advice.

307



CGLIB proxying should generally be transparent to users. However, there are some issues to
consider:

* Final methods can’t be advised, as they can’t be overridden.

» There is no need to add CGLIB to your classpath. As of Spring 3.2, CGLIB is repackaged and
included in the spring-core JAR. In other words, CGLIB-based AOP will work "out of the box" just
as do JDK dynamic proxies.

There’s little performance difference between CGLIB proxying and dynamic proxies. As of Spring
1.0, dynamic proxies are slightly faster. However, this may change in the future. Performance
should not be a decisive consideration in this case.

6.5.6. Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part
before the asterisk, will be added to the advisor chain. This can come in handy if you need to add a
standard set of 'global’ advisors:

<bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target" ref="service"/>
<property name="interceptorNames">
<list>
<value>global*</value>
</list>
</property>
</bean>

<bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/>
<bean id="global_performance" class=
"org.springframework.aop.interceptor.PerformanceMonitorInterceptor”/>

6.6. Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy
definitions. The use of parent and child bean definitions, along with inner bean definitions, can
result in much cleaner and more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

308



<bean id="txProxyTemplate" abstract="true"
class="
org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributes">
<props>
<prop key="*">PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs
to be created is just a child bean definition, which wraps the target of the proxy as an inner bean
definition, since the target will never be used on its own anyway.

<bean id="myService" parent="txProxyTemplate">
<property name="target">
<bean class="org.springframework.samples.MyServiceImpl">
</bean>
</property>
</bean>

It is of course possible to override properties from the parent template, such as in this case, the
transaction propagation settings:

<bean id="mySpecialService" parent="txProxyTemplate">
<property name="target">
<bean class="org.springframework.samples.MySpecialServiceImpl">
</bean>
</property>
<property name="transactionAttributes">
<props>
<prop key="get*">PROPAGATION_REQUIRED, readOnly</prop>
<prop key="find*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="load*">PROPAGATION_REQUIRED, readOnly</prop>
<prop key="store*">PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract
by using the abstract attribute, as described previously, so that it may not actually ever be
instantiated. Application contexts (but not simple bean factories) will by default pre-instantiate all
singletons. It is therefore important (at least for singleton beans) that if you have a (parent) bean
definition which you intend to use only as a template, and this definition specifies a class, you must
make sure to set the abstract attribute to true, otherwise the application context will actually try to
pre-instantiate it.

309



6.7. Creating AOP proxies programmatically with the
ProxyFactory

It’s easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP
without dependency on Spring IoC.

The following listing shows creation of a proxy for a target object, with one interceptor and one
advisor. The interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl);
factory.addAdvice(myMethodInterceptor);
factory.addAdvisor(myAdvisor);

MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();

The first step is to construct an object of type org.springframework.aop.framework.ProxyFactory. You
can create this with a target object, as in the above example, or specify the interfaces to be proxied
in an alternate constructor.

You can add advices (with interceptors as a specialized kind of advice) and/or advisors, and
manipulate  them  for the life of the  ProxyFactoryy If you add an
IntroductionInterceptionAroundAdvisor, you can cause the proxy to implement additional
interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) which allow
you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of
both ProxyFactory and ProxyFactoryBean.

Integrating AOP proxy creation with the IoC framework is best practice in most
applications. We recommend that you externalize configuration from Java code
with AOP, as in general.

6.8. Manipulating advised objects

However you create AOP proxies, you can manipulate them wusing the
org.springframework.aop.framework.Advised interface. Any AOP proxy can be cast to this interface,
whichever other interfaces it implements. This interface includes the following methods:

310



Advisor[] getAdvisors();

void addAdvice(Advice advice) throws AopConfigException;

void addAdvice(int pos, Advice advice) throws AopConfigException;

void addAdvisor(Advisor advisor) throws AopConfigException;

void addAdvisor(int pos, Advisor advisor) throws AopConfigException;
int indexOf(Advisor advisor);

boolean removeAdvisor(Advisor advisor) throws AopConfigException;

void removeAdvisor(int index) throws AopConfigException;

boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

boolean isFrozen();

The getAdvisors() method will return an Advisor for every advisor, interceptor or other advice type
that has been added to the factory. If you added an Advisor, the returned advisor at this index will
be the object that you added. If you added an interceptor or other advice type, Spring will have
wrapped this in an advisor with a pointcut that always returns true. Thus if you added a
MethodInterceptor, the advisor returned for this index will be an DefaultPointcutAdvisor returning
your MethodInterceptor and a pointcut that matches all classes and methods.

The addAdvisor () methods can be used to add any Advisor. Usually the advisor holding pointcut and
advice will be the generic DefaultPointcutAdvisor, which can be used with any advice or pointcut
(but not for introductions).

By default, it’s possible to add or remove advisors or interceptors even once a proxy has been
created. The only restriction is that it’s impossible to add or remove an introduction advisor, as
existing proxies from the factory will not show the interface change. (You can obtain a new proxy
from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advised interface and examining and
manipulating its advice:

311



Advised advised = (Advised) myObject;

Advisor[] advisors = advised.getAdvisors();

int oldAdvisorCount = advisors.length;
System.out.println(oldAdvisorCount + " advisors");

// Add an advice like an interceptor without a pointcut

// Will match all proxied methods

// Can use for interceptors, before, after returning or throws advice
advised.addAdvice(new DebugInterceptor());

// Add selective advice using a pointcut
advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice));

assertEquals("Added two advisors", oldAdvisorCount + 2, advised.getAdvisors().length);

It’s questionable whether it’s advisable (no pun intended) to modify advice on a
business object in production, although there are no doubt legitimate usage cases.
However, it can be very useful in development: for example, in tests. I have

0 sometimes found it very useful to be able to add test code in the form of an
interceptor or other advice, getting inside a method invocation I want to test. (For
example, the advice can get inside a transaction created for that method: for
example, to run SQL to check that a database was correctly updated, before
marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which case the
Advised isFrozen() method will return true, and any attempts to modify advice through addition or
removal will result in an AopConfigException. The ability to freeze the state of an advised object is
useful in some cases, for example, to prevent calling code removing a security interceptor. It may
also be used in Spring 1.1 to allow aggressive optimization if runtime advice modification is known
not to be required.

6.9. Using the "auto-proxy" facility

So far we’ve considered explicit creation of AOP proxies using a ProxyFactoryBean or similar factory
bean.

Spring also allows us to use "auto-proxy" bean definitions, which can automatically proxy selected
bean definitions. This is built on Spring "bean post processor" infrastructure, which enables
modification of any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to
configure the auto proxy infrastructure. This allows you just to declare the targets eligible for auto-
proxying: you don’t need to use ProxyFactoryBean.

There are two ways to do this:

» Using an auto-proxy creator that refers to specific beans in the current context.

312



* A special case of auto-proxy creation that deserves to be considered separately; auto-proxy
creation driven by source-level metadata attributes.

6.9.1. Autoproxy bean definitions

The org.springframework.aop.framework.autoproxy package provides the following standard auto-
proxy creators.

BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates AOP proxies
for beans with names matching literal values or wildcards.

<bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
<property name="beanNames" value="jdk*,onlyldk"/>
<property name="interceptorNames">
<list>
<value>myInterceptor</value>
</list>
</property>
</bean>

As with ProxyFactoryBean, there is an interceptorNames property rather than a list of interceptors, to
allow correct behavior for prototype advisors. Named "interceptors" can be advisors or any advice

type.

As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is to apply the
same configuration consistently to multiple objects, with minimal volume of configuration. It is a
popular choice for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example,
are plain old bean definitions with the target class. An AOP proxy will be created automatically by
the BeanNameAutoProxyCreator. The same advice will be applied to all matching beans. Note that if
advisors are used (rather than the interceptor in the above example), the pointcuts may apply
differently to different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is DefaultAdvisorAutoProxyCreator. This
will automagically apply eligible advisors in the current context, without the need to include
specific bean names in the auto-proxy advisor’s bean definition. It offers the same merit of
consistent configuration and avoidance of duplication as BeanNameAutoProxyCreator.

Using this mechanism involves:

* Specifying a DefaultAdvisorAutoProxyCreator bean definition.

» Specifying any number of Advisors in the same or related contexts. Note that these must be
Advisors, not just interceptors or other advices. This is necessary because there must be a
pointcut to evaluate, to check the eligibility of each advice to candidate bean definitions.

313



The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained in each
advisor, to see what (if any) advice it should apply to each business object (such as
"businessObject1" and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no
pointcut in any of the advisors matches any method in a business object, the object will not be
proxied. As bean definitions are added for new business objects, they will automatically be proxied
if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to
obtain an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will
return an AOP proxy, not the target business object. (The "inner bean" idiom shown earlier also
offers this benefit.)

<bean class=
"org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class=
"org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">

<property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="customAdvisor" class="com.mycompany.MyAdvisor"/>

<bean id="businessObject1" class="com.mycompany.BusinessObject1">
<!-- Properties omitted -->
</bean>

<bean id="businessObject2" class="com.mycompany.BusinessObject2"/>

The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice consistently
to many business objects. Once the infrastructure definitions are in place, you can simply add new
business objects without including specific proxy configuration. You can also drop in additional
aspects very easily - for example, tracing or performance monitoring aspects - with minimal change
to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so
that only certain advisors are evaluated, allowing use of multiple, differently configured,
AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the
org.springframework.core.Ordered interface to ensure correct ordering if this is an issue. The
TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the
default setting is unordered.

6.10. Using TargetSources

Spring offers the concept of a TargetSource, expressed in the org.springframework.aop.TargetSource
interface. This interface is responsible for returning the "target object" implementing the join point.
The TargetSource implementation is asked for a target instance each time the AOP proxy handles a

314



method invocation.

Developers using Spring AOP don’t normally need to work directly with TargetSources, but this
provides a powerful means of supporting pooling, hot swappable and other sophisticated targets.
For example, a pooling TargetSource can return a different target instance for each invocation,
using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The
same target is returned for each invocation (as you would expect).

Let’s look at the standard target sources provided with Spring, and how you can use them.

When using a custom target source, your target will usually need to be a prototype
rather than a singleton bean definition. This allows Spring to create a new target
instance when required.

6.10.1. Hot swappable target sources

The org.springframework.aop.target.HotSwappableTargetSource exists to allow the target of an AOP
proxy to be switched while allowing callers to keep their references to it.

Changing the target source’s target takes effect immediately. The HotSwappableTargetSource is
threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

HotSwappableTargetSource swapper = (HotSwappableTargetSource) beanFactory.getBean(
"swapper");
Object oldTarget = swapper.swap(newTarget);

The XML definitions required look as follows:

<bean id="initialTarget" class="mycompany.0ldTarget"/>

<bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource">
<constructor-arg ref="initialTarget"/>
</bean>

<bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="swapper"/>
</bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to
that bean will be unaware of the change, but will immediately start hitting the new target.

Although this example doesn’t add any advice - and it’s not necessary to add advice to use a
TargetSource - of course any TargetSource can be used in conjunction with arbitrary advice.

315



6.10.2. Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in
which a pool of identical instances is maintained, with method invocations going to free objects in
the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied
to any POJO. As with Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Commons Pool 2.2, which provides a fairly efficient
pooling implementation. Yow’ll need the commons-pool Jar on your application’s classpath to use
this feature. It’s also possible to subclass
org.springframework.aop.target.AbstractPoolingTargetSource to support any other pooling API.

O Commons Pool 1.5+ is also supported but deprecated as of Spring Framework 4.2.

Sample configuration is shown below:

<bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject"
scope="prototype">
. properties omitted
</bean>

<bean id="poolTargetSource" class=

"org.springframework.aop.target.CommonsPool2TargetSource">
<property name="targetBeanName" value="businessObjectTarget"/>
<property name="maxSize" value="25"/>

</bean>

<bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="poolTargetSource"/>
<property name="interceptorNames" value="myInterceptor"/>

</bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This
allows the PoolingTargetSource implementation to create new instances of the target to grow the
pool as necessary. See the javadocs of AbstractPoolingTargetSource and the concrete subclass you
wish to use for information about its properties: "maxSize" is the most basic, and always
guaranteed to be present.

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the
same IoC context. However, it isn’t necessary to specify interceptors to use pooling. If you want only
pooling, and no other advice, don’t set the interceptorNames property at all.

It’s possible to configure Spring so as to be able to cast any pooled object to the
org.springframework.aop.target.PoolingConfig interface, which exposes information about the
configuration and current size of the pool through an introduction. You’ll need to define an advisor
like this:

316



<bean id="poolConfigAdvisor" class=
"org.springframework.beans.factory.config.MethodInvokingFactoryBean">
<property name="targetObject" ref="poolTargetSource"/>
<property name="targetMethod" value="getPoolingConfigMixin"/>
</bean>

This advisor is obtained by calling a convenience method on the AbstractPoolingTargetSource class,
hence the use of MethodInvokingFactoryBean. This advisor’s name ("poolConfigAdvisor" here)
must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject");
System.out.println("Max pool size is " + conf.getMaxSize());

Pooling stateless service objects is not usually necessary. We don’t believe it should
be the default choice, as most stateless objects are naturally thread safe, and
instance pooling is problematic if resources are cached.

Simpler pooling is available using auto-proxying. It’s possible to set the TargetSources used by any
auto-proxy creator.

6.10.3. Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new
instance of the target will be created on every method invocation. Although the cost of creating a
new object isn’t high in a modern JVM, the cost of wiring up the new object (satisfying its IoC
dependencies) may be more expensive. Thus you shouldn’t use this approach without very good
reason.

To do this, you could modify the poolTargetSource definition shown above as follows. (I've also
changed the name, for clarity.)

<bean id="prototypeTargetSource" class=
"org.springframework.aop.target.PrototypeTargetSource">

<property name="targetBeanName" ref="businessObjectTarget"/>
</bean>

There’s only one property: the name of the target bean. Inheritance is used in the TargetSource
implementations to ensure consistent naming. As with the pooling target source, the target bean
must be a prototype bean definition.

6.10.4. ThreadLocal target sources

Threadlocal target sources are useful if you need an object to be created for each incoming request
(per thread that is). The concept of a ThreadLocal provide a JDK-wide facility to transparently store

317



resource alongside a thread. Setting up a ThreadlLocalTargetSource is pretty much the same as was
explained for the other types of target source:

<bean id="threadlocalTargetSource" class=
"org.springframework.aop.target.ThreadlLocalTargetSource">

<property name="targetBeanName" value="businessObjectTarget"/>
</bean>

ThreadLocals come with serious issues (potentially resulting in memory leaks)
when incorrectly using them in a multi-threaded and multi-classloader
environments. One should always consider wrapping a threadlocal in some other
class and never directly use the ThreadlLocal itself (except of course in the wrapper

0 class). Also, one should always remember to correctly set and unset (where the
latter simply involved a call to ThreadlLocal.set(null)) the resource local to the
thread. Unsetting should be done in any case since not unsetting it might result in
problematic behavior. Spring’s ThreadLocal support does this for you and should
always be considered in favor of using ThreadLocals without other proper
handling code.

6.11. Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy is
presently used internally, it is possible to support arbitrary advice types in addition to the out-of-
the-box interception around advice, before, throws advice and after returning advice.

The org.springframework.aop.framework.adapter package is an SPI package allowing support for new
custom advice types to be added without changing the core framework. The only constraint on a
custom Advice type is that it must implement the org.aopalliance.aop.Advice marker interface.

Please refer to the org.springframework.aop.framework.adapter javadocs for further information.

318



Chapter 7. Null-safety

Although Java does not allow to express null-safety with its type system, Spring Framework now
provides following annotations in the org.springframework.lang package to declare nullability of
APIs and fields:

@NonNull annotation where specific parameter, return value or field cannot be null (not needed
on parameter and return value where @NonNul1lApi and @NonNullFields apply) .

@Nullable annotation where specific parameter, return value or field can be null.

@NonNullApi annotation at package level declares non-null as the default behavior for
parameters and return values.

@NonNullFields annotation at package level declares non-null as the default behavior for fields.

Spring Framework leverages itself these annotations, but they can also be used in any Spring based
Java project to declare null-safe APIs and optionally null-safe fields. Generic type arguments,
varargs and array elements nullability are not supported yet, but should be in an upcoming release,
see SPR-15942 for up-to-date information. Nullability declaration are expected to be fine-tuned
between Spring Framework release, including minor ones. Nullability of types used inside method
bodies is outside of the scope of this feature.

0 Libraries like Reactor or Spring Data provide null-safe APIs leveraging this feature.

7.1. Use cases

In addition to providing an explicit declaration for Spring Framework API nullability, these
annotation can be used by IDE (such as IDEA or Eclipse) to provide useful warnings to Java
developers related to null-safety in order to avoid NullPointerException at runtime.

They are also used to make Spring API null-safe in Kotlin projects since Kotlin natively supports
null-safety. More details are available in Kotlin support documentation.

7.2. JSR 305 meta-annotations

Spring annotations are meta-annotated with JSR 305 annotations (a dormant but widely spread
JSR). JSR 305 meta-annotations allows tooling vendors like IDEA or Kotlin to provide null-safety
support in a generic way, without having to hard-code support for Spring annotations.

It is not necessary nor recommended to add JSR 305 dependency in project classpath to take
advantage of Spring null-safe API. Only projects like Spring-based libraries using null-safety
annotations in their codebase should add com.google.code.findbugs:jsr305:3.0.2 with compileOnly
Gradle configuration or Maven provided scope to avoid compile warnings.

319


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/lang/NonNull.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/lang/Nullable.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/lang/NonNullApi.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/lang/NonNullFields.html
https://jira.spring.io/browse/SPR-15942
https://kotlinlang.org/docs/reference/null-safety.html
languages.pdf#kotlin-null-safety
https://jcp.org/en/jsr/detail?id=305

Chapter 8. Data Buffers and Codecs

8.1. Introduction

The DataBuffer interface defines an abstraction over byte buffers. The main reason for introducing
it, and not use the standard java.nio.ByteBuffer instead, is Netty. Netty does not use ByteBuffer, but
instead offers ByteBuf as an alternative. Spring’s DataBuffer is a simple abstraction over ByteBuf that
can also be used on non-Netty platforms (i.e. Servlet 3.1+).

8.2. DataBufferFactory

The DataBufferFactory offers functionality to allocate new data buffers, as well as to wrap existing
data. The allocate methods allocate a new data buffer, with a default or given capacity. Though
DataBuffer implementation grow and shrink on demand, it is more efficient to give the capacity
upfront, if known. The wrap methods decorate an existing ByteBuffer or byte array. Wrapping does
not involve allocation: it simply decorates the given data with a DataBuffer implementation.

There are two implementation of DataBufferFactory: the NettyDataBufferFactory which is meant to
be wused on Netty platforms, such as Reactor Netty. The other implementation, the
DefaultDataBufferFactory, is used on other platforms, such as Servlet 3.1+ servers.

8.3. The DataBuffer interface

The DataBuffer interface is similar to ByteBuffer, but offers a number of advantages. Similar to
Netty’s ByteBuf, the DataBuffer abstraction offers independent read and write positions. This is
different from the JDK’s ByteBuffer, which only exposes one position for both reading and writing,
and a separate flip() operation to switch between the two I/O operations. In general, the following
invariant holds for the read position, write position, and the capacity:

0 <= read position <= write position <= capacity

When reading bytes from the DataBuffer, the read position is automatically updated in accordance
with the amount of data read from the buffer. Similarly, when writing bytes to the DataBuffer, the
write position is updated with the amount of data written to the buffer. Also, when writing data, the
capacity of a DataBuffer is automatically expanded, just like StringBuilder, ArrayList, and similar

types.

Besides the reading and writing functionality mentioned above, the DataBuffer also has methods to
view a (slice of a) buffer as ByteBuffer, InputStream, or OutputStream. Additionally, it offers methods
to determine the index of a given byte.

There are two implementation of DataBuffer: the NettyDataBuffer which is meant to be used on
Netty platforms, such as Reactor Netty. The other implementation, the DefaultDataBuffer, is used on
other platforms, such as Servlet 3.1+ servers.

320



8.3.1. PooledDataBuffer

The PooledDataBuffer is an extension to DataBuffer that adds methods for reference counting. The
retain method increases the reference count by one. The release method decreases the count by
one, and releases the buffer’s memory when the count reaches 0. Both of these methods are related
to reference counting, a mechanism that is explained below.

Note that DataBufferUtils offers useful utility methods for releasing and retaining pooled data
buffers. These methods take a plain DataBuffer as parameter, but only call retain or release if the
passed data buffer is an instance of PooledDataBuffer.

Reference Counting

Reference counting is not a common technique in Java; it is much more common in other
programming languages such as Object C and C++. In and of itself, reference counting is not
complex: it basically involves tracking the number of references that apply to an object. The
reference count of a PooledDataBuffer starts at 1, is incremented by calling retain, and decremented
by calling release. As long as the buffer’s reference count is larger than 0 the buffer will not be
released. When the number decreases to 0, the instance will be released. In practice, this means
that the reserved memory captured by the buffer will be returned back to the memory pool, ready
to be used for future allocations.

In general, the last component to access a DataBuffer is responsible for releasing it. Within Spring,
there are two sorts of components that release buffers: decoders and transports. Decoders are
responsible for transforming a stream of buffers into other types (see Codecs below), and
transports are responsible for sending buffers across a network boundary, typically as an HTTP
message. This means that if you allocate data buffers for the purpose of putting them into an
outbound HTTP message (i.e. client-side request or server-side response), they do not have to be
released. The other consequence of this rule is that if you allocate data buffers that do not end up in
the body, for instance because of a thrown exception, you will have to release them yourself. The
following snippet shows a typical DataBuffer usage scenario when dealing with methods that throw
exceptions:

321



DataBufferFactory factory = ...
DataBuffer buffer = factory.allocateBuffer(); @
boolean release = true; @
try {
writeDataToBuffer(buffer); ®
putBufferInHttpBody(buffer);
release = false; @

+
finally {
if (release) {
DataBufferUtils.release(buffer); ®
}
}

private void writeDataToBuffer(DataBuffer buffer) throws IOException { ®
}

@ A new buffer is allocated.
@ A boolean flag indicates whether the allocated buffer should be released.

® This example method loads data into the buffer. Note that the method can throw an I0Exception,
and therefore a finally block to release the buffer is required.

@ If no exception occurred, we switch the release flag to false as the buffer will now be released
as part of sending the HTTP body across the wire.

® If an exception did occur, the flag is still set to true, and the buffer will be released here.

8.3.2. DataBufferUtils

DataBufferUtils contains various utility methods that operate on data buffers. It contains methods
for reading a Flux of DataBuffer objects from an InputStream or NIO Channel, and methods for
writing a data buffer Flux to an OutputStream or Channel. DataBufferUtils also exposes retain and
release methods that operate on plain DataBuffer instances (so that casting to a PooledDataBuffer is
not required).

Additionally, DataBufferUtils exposes compose, which merges a stream of data buffers into one. For
instance, this method can be used to convert the entire HTTP body into a single buffer (and from
that, a String, or InputStream). This is particularly useful when dealing with older, blocking APIs.
Note, however, that this puts the entire body in memory, and therefore uses more memory than a
pure streaming solution would.

Codecs

The org.springframework.core.codec package contains the two main abstractions for converting a
stream of bytes into a stream of objects, or vice-versa. The Encoder is a strategy interface that
encodes a stream of objects into an output stream of data buffers. The Decoder does the reverse: it
turns a stream of data buffers into a stream of objects. Note that a decoder instance needs to

322



consider reference counting.

Spring comes with a wide array of default codecs, capable of converting from/to String, ByteBuffer,
byte arrays, and also codecs that support marshalling libraries such as JAXB and Jackson (with
Jackson 2.9+ support for non-blocking parsing). Within the context of Spring WebFlux, codecs are
used to convert the request body into a @RequestMapping parameter, or to convert the return type
into the response body that is sent back to the client. The default codecs are configured in the
WebFluxConfigurationSupport class, and can easily be changed by overriding the
configureHttpMessageCodecs when inheriting from that class. For more information about using
codecs in WebFlux, see this section.

323


https://github.com/FasterXML/jackson-core/issues/57
web-reactive.pdf#webflux-codecs

Chapter 9. Appendix

9.1. XML Schemas

This part of the appendix lists XML schemas related to the core container.

9.1.1. The util schema

As the name implies, the util tags deal with common, utility configuration issues, such as
configuring collections, referencing constants, and suchlike. To use the tags in the util schema, you
need to have the following preamble at the top of your Spring XML configuration file; the text in the
snippet below references the correct schema so that the tags in the util namespace are available to
you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
<em>xmlns:util="http://www.springframework.org/schema/util"</em>
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
<em>http://www.springframework.org/schema/util
https://www.springframework.org/schema/util/spring-util.xsd"</em>> <!-- bean
definitions here -->

</beans>

<util:constant/>

Before...

<bean id="..." class="...">
<property name="isolation">
<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class=
"org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the FieldRetrievingFactoryBean,
to set the value of the isolation property on a bean to the value of the
java.sql.Connection.TRANSACTION_SERIALIZABLE constant. This is all well and good, but it is a tad
verbose and (unnecessarily) exposes Spring’s internal plumbing to the end user.

The following XML Schema-based version is more concise and clearly expresses the developer’s
intent ('inject this constant value’), and it just reads better.

324



<bean id="..." class="...">
<property name="isolation">
<util:constant static-field="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
</property>
</bean>

Setting a bean property or constructor arg from a field value

FieldRetrievingFactoryBean is a FactoryBean which retrieves a static or non-static field value. It is
typically used for retrieving public static final constants, which may then be used to set a property
value or constructor arg for another bean.

Find below an example which shows how a static field is exposed, by using the staticField
property:

<bean id="myField"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
<property name="staticField" value="java.sql.Connection.TRANSACTION_SERIALIZABLE
"s
</bean>

There is also a convenience usage form where the static field is specified as the bean name:

<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"/>

This does mean that there is no longer any choice in what the bean id is (so any other bean that
refers to it will also have to use this longer name), but this form is very concise to define, and very
convenient to use as an inner bean since the id doesn’t have to be specified for the bean reference:

<bean id="..." class="...">
<property name="isolation">
<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class=
"org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
</property>
</bean>

It is also possible to access a non-static (instance) field of another bean, as described in the API
documentation for the FieldRetrievingFactoryBean class.

Injecting enum values into beans as either property or constructor arguments is very easy to do in
Spring, in that you don’t actually have to do anything or know anything about the Spring internals
(or even about classes such as the FieldRetrievingFactoryBean). Let’s look at an example to see how
easy injecting an enum value is; consider this enum:

325


https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html#setStaticField(java.lang.String)
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html

package javax.persistence;
public enum PersistenceContextType {

TRANSACTION,
EXTENDED

Now consider a setter of type PersistenceContextType:

package example;
public class Client {
private PersistenceContextType persistenceContextType;

public void setPersistenceContextType(PersistenceContextType type) {
this.persistenceContextType = type;
}

a. and the corresponding bean definition:

<bean class="example.(Client">
<property name="persistenceContextType" value="TRANSACTION"/>
</bean>

<util:property-path/>

Before...

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>
<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<bean id="testBean.age" class=
"org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

The above configuration uses a Spring FactoryBean implementation, the PropertyPathFactoryBean, to

326



create a bean (of type int) called testBean.age that has a value equal to the age property of the
testBean bean.

After...

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>

<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<util:property-path id="name" path="testBean.age"/>

The value of the path attribute of the <property-path/> tag follows the form beanName.beanProperty.

Using <util:property-path/> to set a bean property or constructor-argument

PropertyPathFactoryBean is a FactoryBean that evaluates a property path on a given target object. The
target object can be specified directly or via a bean name. This value may then be used in another
bean definition as a property value or constructor argument.

Here’s an example where a path is used against another bean, by name:

// target bean to be referenced by name
<bean id="person" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>

// will result in 11, which is the value of property 'spouse.age' of bean 'person'
<bean id="theAge"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetBeanName" value="person"/>
<property name="propertyPath" value="spouse.age"/>
</bean>

In this example, a path is evaluated against an inner bean:

327



<!I-- will result in 12, which is the value of property 'age' of the inner bean -->
<bean id="theAge"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetObject">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="12"/>
</bean>
</property>
<property name="propertyPath" value="age"/>
</bean>

There is also a shortcut form, where the bean name is the property path.

<!I-- will result in 10, which is the value of property 'age' of bean 'person' -->
<bean id="person.age"

class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

This form does mean that there is no choice in the name of the bean. Any reference to it will also
have to use the same id, which is the path. Of course, if used as an inner bean, there is no need to
refer to it at all:

<bean id="..." class="...
<property name="age">
<bean id="person.age"
class=
"org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
</property>
</bean>

>

The result type may be specifically set in the actual definition. This is not necessary for most use
cases, but can be of use for some. Please see the Javadocs for more info on this feature.

<util:properties/>

Before...

<!-- creates a java.util.Properties instance with values loaded from the supplied
location -->

<bean id="jdbcConfiguration" class=
"org.springframework.beans.factory.config.PropertiesFactoryBean">

<property name="location" value="classpath:com/foo/jdbc-production.properties"/>
</bean>

The above configuration uses a Spring FactoryBean implementation, the PropertiesFactoryBean, to
instantiate a java.util.Properties instance with values loaded from the supplied Resource location).

328



After...

<!-- creates a java.util.Properties instance with values loaded from the supplied
location -->

<util:properties id="jdbcConfiguration" location="classpath:com/foo/jdbc-
production.properties"/>

<util:list/>

Before...

<!-- creates a java.util.List instance with values loaded from the supplied
"sourcelList' -->
<bean id="emails" class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourcelist">
<list>
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>
</list>
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the ListFactoryBean, to create a
java.util.List instance initialized with values taken from the supplied sourcelist.

After...

<!-- creates a java.util.List instance with the supplied values -->
<util:list id="emails">
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>
</util:list>

You can also explicitly control the exact type of List that will be instantiated and populated via the
use of the list-class attribute on the <util:1list/> element. For example, if we really need a
java.util.LinkedList to be instantiated, we could use the following configuration:

329



<util:list id="emails" list-class="java.util.LinkedList">
<value>jackshaftoe@vagabond.org</value>
<value>eliza@thinkingmanscrumpet.org</value>
<value>vanhoek@pirate.org</value>
<value>d'Arcachon@nemesis.org</value>

</util:Tist>

If no list-class attribute is supplied, a List implementation will be chosen by the container.

<util:map/>

Before...

<!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap’
-->
<bean id="emails" class="org.springframework.beans.factory.config.MapFactoryBean">
<property name="sourceMap">
<map>
<entry key="pechorin" value="pechorin@hero.org"/>
<entry key="raskolnikov" value="raskolnikov@slums.org"/>
<entry key="stavrogin" value="stavrogin@gov.org"/>
<entry key="porfiry" value="porfiry@gov.org"/>
</map>
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the MapFactoryBean, to create a
java.util.Map instance initialized with key-value pairs taken from the supplied 'sourceMap’.

After...

<!-- creates a java.util.Map instance with the supplied key-value pairs -->
<util:map id="emails">

<entry key="pechorin" value="pechorin@hero.org"/>

<entry key="raskolnikov" value="raskolnikov@slums.org"/>

<entry key="stavrogin" value="stavrogin@gov.org"/>

<entry key="porfiry" value="porfiry@gov.org"/>
</util:map>

You can also explicitly control the exact type of Map that will be instantiated and populated via the
use of the 'map-class' attribute on the <util:map/> element. For example, if we really need a
java.util.TreeMap to be instantiated, we could use the following configuration:

330



<util:map id="emails" map-class="java.util.TreeMap">
<entry key="pechorin" value="pechorin@hero.org"/>
<entry key="raskolnikov" value="raskolnikov@slums.org"/>
<entry key="stavrogin" value="stavrogin@gov.org"/>
<entry key="porfiry" value="porfiry@gov.org"/>
</util:map>

If no 'map-class’' attribute is supplied, a Map implementation will be chosen by the container.

<util:set/>

Before...

<!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet'
-->
<bean id="emails" class="org.springframework.beans.factory.config.SetFactoryBean">
<property name="sourceSet">
<set>
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>
</set>
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the SetFactoryBean, to create a
java.util.Set instance initialized with values taken from the supplied 'sourceSet"'.

After...

<!-- creates a java.util.Set instance with the supplied values -->

<util:set id="emails">
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</util:set>

You can also explicitly control the exact type of Set that will be instantiated and populated via the
use of the 'set-class' attribute on the <util:set/> element. For example, if we really need a
java.util.TreeSet to be instantiated, we could use the following configuration:

331



<util:set id="emails" set-class="java.util.TreeSet">
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</util:set>

If no 'set-class' attribute is supplied, a Set implementation will be chosen by the container.

9.1.2. The aop schema

The aop tags deal with configuring all things AOP in Spring: this includes Spring’s own proxy-based
AOP framework and Spring’s integration with the Aspect] AOP framework. These tags are
comprehensively covered in the chapter entitled Aspect Oriented Programming with Spring.

In the interest of completeness, to use the tags in the aop schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet
references the correct schema so that the tags in the aop namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
<em>xmlns:aop="http://www.springframework.org/schema/aop"</em>
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
<em>http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd"</em>> <!-- bean definitions
here -->

</beans>

9.1.3. The context schema

The context tags deal with ApplicationContext configuration that relates to plumbing - that is, not
usually beans that are important to an end-user but rather beans that do a lot of grunt work in
Spring, such as BeanfactoryPostProcessors. The following snippet references the correct schema so
that the tags in the context namespace are available to you.

332



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
<em>xmlns:context="http://www.springframework.org/schema/context"</em>
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
<em>http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd"</em>> <!-- bean
definitions here -->

</beans>

<property-placeholder/>

This element activates the replacement of ${:-'} placeholders, resolved against the specified
properties file (as a Spring resource location). This element is a convenience mechanism that sets
up aPropertyPlaceholderConfigurer for you; if you need more control over the
PropertyPlaceholderConfigurer, just define one yourself explicitly.

<annotation-config/>

Activates the Spring infrastructure for various annotations to be detected in bean classes: Spring’s
@Required and @Autowired, as well as JSR 250’s @PostConstruct, @PreDestroy and @Resource (f
available), and JPA’s @PersistenceContext and @PersistenceUnit (if available). Alternatively, you can
choose to activate the individual BeanPostProcessors for those annotations explicitly.

0 This element does not activate processing of Spring’s @Transactional annotation.
Use the <tx:annotation-driven/> element for that purpose.

<component-scan/>

This element is detailed in Annotation-based container configuration.

<load-time-weaver/>

This element is detailed in Load-time weaving with Aspect] in the Spring Framework.

<spring-configured/>

This element is detailed in Using Aspect] to dependency inject domain objects with Spring.

<mbean-export/>

This element is detailed in Configuring annotation based MBean export.

9.1.4. The beans schema

Last but not least we have the tags in the beans schema. These are the same tags that have been in

333


data-access.pdf#transaction-declarative-annotations
data-access.pdf#tx-decl-explained
integration.pdf#jmx-context-mbeanexport

Spring since the very dawn of the framework. Examples of the various tags in the beans schema are
not shown here because they are quite comprehensively covered in Dependencies and
configuration in detail (and indeed in that entire chapter).

Note that it is possible to add zero or more key / value pairs to <bean/> XML definitions. What, if
anything, is done with this extra metadata is totally up to your own custom logic (and so is typically
only of use if you are writing your own custom tags as described in the appendix entitled XML
Schema Authoring).

Find below an example of the <meta/> tag in the context of a surrounding <bean/> (please note that
without any logic to interpret it the metadata is effectively useless as-is).

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="foo" class="x.y.Foo">
<em><meta key="cacheName" value="foo"/></em>
<property name="name" value="Rick"/>

</bean>

</beans>

In the case of the above example, you would assume that there is some logic that will consume the
bean definition and set up some caching infrastructure using the supplied metadata.

9.2. XML Schema Authoring

9.2.1. Introduction

Since version 2.0, Spring has featured a mechanism for schema-based extensions to the basic
Spring XML format for defining and configuring beans. This section is devoted to detailing how you
would go about writing your own custom XML bean definition parsers and integrating such parsers
into the Spring IoC container.

To facilitate the authoring of configuration files using a schema-aware XML editor, Spring’s
extensible XML configuration mechanism is based on XML Schema. If you are not familiar with
Spring’s current XML configuration extensions that come with the standard Spring distribution,
please first read the appendix entitled[xsd-config].

Creating new XML configuration extensions can be done by following these (relatively) simple
steps:

* Authoring an XML schema to describe your custom element(s).

* Coding a custom NamespaceHandler implementation (this is an easy step, don’t worry).

334



* Coding one or more BeanDefinitionParser implementations (this is where the real work is done).

* Registering the above artifacts with Spring (this too is an easy step).

What follows is a description of each of these steps. For the example, we will create an XML
extension (a custom XML element) that allows us to configure objects of the type SimpleDateFormat
(from the java.text package) in an easy manner. When we are done, we will be able to define bean
definitions of type SimpleDateFormat like this:

<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>

(Don’t worry about the fact that this example is very simple; much more detailed examples follow
afterwards. The intent in this first simple example is to walk you through the basic steps involved.)

9.2.2. Authoring the schema

Creating an XML configuration extension for use with Spring’s IoC container starts with authoring
an XML Schema to describe the extension. What follows is the schema we’ll use to configure
SimpleDateFormat objects.

<!-- myns.xsd (inside package org/springframework/samples/xml) -->

<?xml version="1.0" encoding="UTF-8"7>

<xsd:schema xmlns="http://www.mycompany.com/schema/myns"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:beans="http://www.springframework.org/schema/beans"
targetNamespace="http://www.mycompany.com/schema/myns"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:import namespace="http://www.springframework.org/schema/beans"/>

<xsd:element name="dateformat">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="beans:identifiedType">
<xsd:attribute name="lenient" type="xsd:boolean"/>
<xsd:attribute name="pattern" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>

(The emphasized line contains an extension base for all tags that will be identifiable (meaning they
have an id attribute that will be used as the bean identifier in the container). We are able to use this

335



attribute because we imported the Spring-provided 'beans' namespace.)

The above schema will be used to configure SimpleDateFormat objects, directly in an XML
application context file using the <myns:dateformat/> element.

<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>

Note that after we’ve created the infrastructure classes, the above snippet of XML will essentially be
exactly the same as the following XML snippet. In other words, we’re just creating a bean in the
container, identified by the name 'dateFormat' of type SimpleDateFormat, with a couple of properties
set.

<bean id="dateFormat" class="java.text.SimpleDateFormat">
<constructor-arg value="yyyy-HH-dd HH:mm"/>
<property name="lenient" value="true"/>

</bean>

The schema-based approach to creating configuration format allows for tight

9 integration with an IDE that has a schema-aware XML editor. Using a properly
authored schema, you can use autocompletion to have a user choose between
several configuration options defined in the enumeration.

9.2.3. Coding a NamespaceHandler

In addition to the schema, we need a NamespaceHandler that will parse all elements of this specific
namespace Spring encounters while parsing configuration files. The NamespaceHandler should in our
case take care of the parsing of the myns:dateformat element.

The NamespaceHandler interface is pretty simple in that it features just three methods:

* init() - allows for initialization of the NamespaceHandler and will be called by Spring before the
handler is used

» BeanDefinition parse(Element, ParserContext) - called when Spring encounters a top-level
element (not nested inside a bean definition or a different namespace). This method can
register bean definitions itself and/or return a bean definition.

e BeanDefinitionHolder decorate(Node, BeanDefinitionHolder, ParserContext) - called when
Spring encounters an attribute or nested element of a different namespace. The decoration of
one or more bean definitions is used for example with the out-of-the-box scopes Spring
supports. We’ll start by highlighting a simple example, without using decoration, after which we
will show decoration in a somewhat more advanced example.

Although it is perfectly possible to code your own NamespaceHandler for the entire namespace (and
hence provide code that parses each and every element in the namespace), it is often the case that
each top-level XML element in a Spring XML configuration file results in a single bean definition (as

336



in our case, where a single <myns:dateformat/> element results in a single SimpleDateFormat bean
definition). Spring features a number of convenience classes that support this scenario. In this
example, we’ll make use the NamespaceHandlerSupport class:

package org.springframework.samples.xml;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class MyNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
<strong>registerBeanDefinitionParser("dateformat”, new
SimpleDateFormatBeanDefinitionParser());</strong>

}

The observant reader will notice that there isn’t actually a whole lot of parsing logic in this class.
Indeed... the NamespaceHandlerSupport class has a built in notion of delegation. It supports the
registration of any number of BeanDefinitionParser instances, to which it will delegate to when it
needs to parse an element in its namespace. This clean separation of concerns allows a
NamespaceHandler to handle the orchestration of the parsing of all of the custom elements in its
namespace, while delegating to BeanDefinitionParsers to do the grunt work of the XML parsing; this
means that each BeanDefinitionParser will contain just the logic for parsing a single custom
element, as we can see in the next step

9.2.4. BeanDefinitionParser

A BeanDefinitionParser will be used if the NamespaceHandler encounters an XML element of the type
that has been mapped to the specific bean definition parser (which is 'dateformat' in this case). In
other words, the BeanDefinitionParser is responsible for parsing one distinct top-level XML element
defined in the schema. In the parser, we’ll have access to the XML element (and thus its
subelements too) so that we can parse our custom XML content, as can be seen in the following
example:

337



package org.springframework.samples.xml;

import org.springframework.beans.factory.support.BeanDefinitionBuilder;

import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
import org.springframework.util.StringUtils;

import org.w3c.dom.Element;

import java.text.SimpleDateFormat;

public class SimpleDateFormatBeanDefinitionParser extends
AbstractSingleBeanDefinitionParser { @

protected Class getBeanClass(Element element) {
return SimpleDateFormat.class; @

}

protected void doParse(Element element, BeanDefinitionBuilder bean) {
// this will never be null since the schema explicitly requires that a value
be supplied
String pattern = element.getAttribute("pattern”);
bean.addConstructorArg(pattern);

// this however is an optional property

String lenient = element.getAttribute("lenient");

if (StringUtils.hasText(lenient)) {
bean.addPropertyValue("lenient", Boolean.valueOf(lenient));

}

@ We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of the basic
grunt work of creating a single BeanDefinition.

@ We supply the AbstractSingleBeanDefinitionParser superclass with the type that our single
BeanDefinition will represent.

In this simple case, this is all that we need to do. The creation of our single BeanDefinition is
handled by the AbstractSingleBeanDefinitionParser superclass, as is the extraction and setting of
the bean definition’s unique identifier.

9.2.5. Registering the handler and the schema

The coding is finished! All that remains to be done is to somehow make the Spring XML parsing
infrastructure aware of our custom element; we do this by registering our custom namespaceHandler
and custom XSD file in two special purpose properties files. These properties files are both placed in
a 'META-INF' directory in your application, and can, for example, be distributed alongside your
binary classes in a JAR file. The Spring XML parsing infrastructure will automatically pick up your
new extension by consuming these special properties files, the formats of which are detailed below.

338



'META-INF/spring.handlers’

The properties file called 'spring.handlers' contains a mapping of XML Schema URIs to namespace
handler classes. So for our example, we need to write the following:

http\://www.mycompany.com/schema/myns=org.springframework.samples.xml.MyNamespaceHandl
er

(The ':' character is a valid delimiter in the Java properties format, and so the ':' character in the
URI needs to be escaped with a backslash.)

The first part (the key) of the key-value pair is the URI associated with your custom namespace
extension, and needs to match exactly the value of the 'targetNamespace' attribute as specified in
your custom XSD schema.

'META-INF/spring.schemas'

The properties file called 'spring.schemas' contains a mapping of XML Schema locations (referred
to along with the schema declaration in XML files that use the schema as part of the
'xsi:schemalocation' attribute) to classpath resources. This file is needed to prevent Spring from
absolutely having to use a default EntityResolver that requires Internet access to retrieve the
schema file. If you specify the mapping in this properties file, Spring will search for the schema on
the classpath (in this case "'myns.xsd' in the 'org.springframework.samples.xml' package):

http\://www.mycompany.com/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xs
d

The upshot of this is that you are encouraged to deploy your XSD file(s) right alongside the
NamespaceHandler and BeanDefinitionParser classes on the classpath.

9.2.6. Using a custom extension in your Spring XML configuration

Using a custom extension that you yourself have implemented is no different from using one of the
'custom' extensions that Spring provides straight out of the box. Find below an example of using the
custom <dateformat/> element developed in the previous steps in a Spring XML configuration file.

339



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:myns="http://www.mycompany.com/schema/myns"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.mycompany.com/schema/myns
http://www.mycompany.com/schema/myns/myns.xsd">

<!-- 3as a top-level bean -->
<myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true

I|/>
<bean id="jobDetailTemplate" abstract="true">
<property name="dateFormat">
<!-- as an inner bean -->
<myns:dateformat pattern="HH:mm MM-dd-yyyy"/>
</property>
</bean>
</beans>

9.2.7. Meatier examples

Find below some much meatier examples of custom XML extensions.

Nesting custom tags within custom tags

This example illustrates how you might go about writing the various artifacts required to satisfy a
target of the following configuration:

340



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:foo="http://www.foo.com/schema/component”
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.foo.com/schema/component
http://www.foo.com/schema/component/component.xsd">

<foo:component id="bionic-family" name="Bionic-1">
<foo:component name="Mother-1">
<foo:component name="Karate-1"/>
<foo:component name="Sport-1"/>
</foo:component>
<foo:component name="Rock-1"/>
</foo:component>

</beans>

The above configuration actually nests custom extensions within each other. The class that is
actually configured by the above <foo:component/> element is the Component class (shown directly
below). Notice how the Component class does not expose a setter method for the 'components’
property; this makes it hard (or rather impossible) to configure a bean definition for the Component
class using setter injection.

341



package com.foo;

import java.util.Arraylist;
import java.util.List;

public class Component {

private String name;
private List<Component> components = new ArraylList<Component> ();

// mmm, there is no setter method for the 'components'
public void addComponent(Component component) {
this.components.add(component);

}

public List<Component> getComponents() {
return components;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

The typical solution to this issue is to create a custom FactoryBean that exposes a setter property for
the 'components' property.

342



package com.foo;

import org.springframework.beans.factory.FactoryBean;

import java.util.List;

public class ComponentFactoryBean implements FactoryBean<Component> {

private Component parent;
private List<Component> children;

public void setParent(Component parent) {
this.parent = parent;

}

public void setChildren(List<Component> children) {
this.children = children;

}

public Component getObject() throws Exception {
if (this.children != null && this.children.size() > 0) {
for (Component child : children) {
this.parent.addComponent(child);
}
}

return this.parent;

}

public Class<Component> getObjectType() {
return Component.class;

}

public boolean isSingleton() {
return true;

}

This is all very well, and does work nicely, but exposes a lot of Spring plumbing to the end user.
What we are going to do is write a custom extension that hides away all of this Spring plumbing. If
we stick to the steps described previously, we’ll start off by creating the XSD schema to define the
structure of our custom tag.

343



<?xml version="1.0" encoding="UTF-8" standalone="no"?7>

<xsd:schema xmlns="http://www.foo.com/schema/component”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.foo.com/schema/component"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="component">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="component"/>
</xsd:choice>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="name" use="required" type="xsd:string"/>
</xsd:complexType>
</xsd:element>

</xsd:schema>

We’ll then create a custom NamespaceHandler.

package com.foo;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class ComponentNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
registerBeanDefinitionParser("component”, new ComponentBeanDefinitionParser()

Next up is the custom BeanDefinitionParser. Remember that what we are creating is
BeanDefinition describing a ComponentFactoryBean.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinition;

import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.support.ManagedlList;

import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser;
import org.springframework.beans.factory.xml.ParserContext;

import org.springframework.util.xml.DomUtils;

import org.w3c.dom.Element;

344



import java.util.List;
public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser {

protected AbstractBeanDefinition parselnternal(Element element, ParserContext

parserContext) {
return parseComponentElement(element);

}

private static AbstractBeanDefinition parseComponentElement(Element element) {
BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition
(ComponentFactoryBean.class);
factory.addPropertyValue("parent", parseComponent(element));

List<Element> childElements = DomUtils.getChildElementsByTagName(element,

"component");
if (childElements != null && childElements.size() > 0) {
parseChildComponents(childElements, factory);

}

return factory.getBeanDefinition();

}

private static BeanDefinition parseComponent(Element element) {
BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition
(Component.class);
component.addPropertyValue("name", element.getAttribute("name"));
return component.getBeanDefinition();

}

private static void parseChildComponents(List<Element> childElements,

BeanDefinitionBuilder factory) {
ManagedList<BeanDefinition> children = new ManagedList<BeanDefinition>

(childElements.size());
for (Element element : childElements) {
children.add(parseComponentElement(element));

}
factory.addPropertyValue("children", children);

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

# in 'META-INF/spring.handlers’
http\://www.foo.com/schema/component=com.foo.ComponentNamespaceHandler

345



# in "META-INF/spring.schemas’
http\://www.foo.com/schema/component/component.xsd=com/foo/component.xsd

Custom attributes on 'normal’ elements

Writing your own custom parser and the associated artifacts isn’t hard, but sometimes it is not the
right thing to do. Consider the scenario where you need to add metadata to already existing bean
definitions. In this case you certainly don’t want to have to go off and write your own entire custom
extension; rather you just want to add an additional attribute to the existing bean definition
element.

By way of another example, let’s say that the service class that you are defining a bean definition
for a service object that will (unknown to it) be accessing a clustered JCache, and you want to
ensure that the named JCache instance is eagerly started within the surrounding cluster:

<bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService"
jcache:cache-name="checking.account">
<!-- other dependencies here... -->
</bean>

What we are going to do here is create another BeanDefinition when the 'jcache:cache-name'
attribute is parsed; this BeanDefinition will then initialize the named JCache for us. We will also
modify the existing BeanDefinition for the 'checkingAccountService' so that it will have a
dependency on this new JCache-initializing BeanDefinition.

package com.foo;
public class JCacheInitializer {
private String name;
public JCachelInitializer(String name) {

this.name = name;

public void initialize() {
// lots of JCache API calls to initialize the named cache...

Now onto the custom extension. Firstly, the authoring of the XSD schema describing the custom
attribute (quite easy in this case).

346


https://jcp.org/en/jsr/detail?id=107

<?xml version="1.0" encoding="UTF-8" standalone="no"?7>

<xsd:schema xmlns="http://www.foo.com/schema/jcache"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.foo.com/schema/jcache
elementFormDefault="qualified">

<xsd:attribute name="cache-name" type="xsd:string"/>

</xsd:schema>

Next, the associated NamespaceHandler.

package com.foo;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class JCacheNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
super.registerBeanDefinitionDecoratorForAttribute("cache-name",
new JCacheInitializingBeanDefinitionDecorator());

Next, the parser. Note that in this case, because we are going to be parsing an XML attribute, we
write a BeanDefinitionDecorator rather than a BeanDefinitionParser.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinitionHolder;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.BeanDefinitionDecorator;
import org.springframework.beans.factory.xml.ParserContext;

import org.w3c.dom.Attr;

import org.w3c.dom.Node;

import java.util.Arraylist;
import java.util.Arrays;

import java.util.List;

public class JCacheInitializingBeanDefinitionDecorator implements
BeanDefinitionDecorator {

private static final String[] EMPTY_STRING_ARRAY = new String[0];

347



public BeanDefinitionHolder decorate(Node source, BeanDefinitionHolder holder,
ParserContext ctx) {
String initializerBeanName = registerJCachelInitializer(source, ctx);
createDependencyOnJCacheInitializer(holder, initializerBeanName);
return holder;

}

private void createDependencyOnJCachelnitializer(BeanDefinitionHolder holder,
String initializerBeanName) {
AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder
.getBeanDefinition());
String[] dependsOn = definition.getDependsOn();
if (dependsOn == null) {
dependsOn = new String[]{initializerBeanName};
} else {
List dependencies = new ArraylList(Arrays.asList(dependsOn));
dependencies.add(initializerBeanName);
dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY);
}
definition.setDependsOn(dependsOn);
}

private String registerJCachelnitializer(Node source, ParserContext ctx) {
String cacheName = ((Attr) source).getValue();
String beanName = cacheName + "-initializer";
if (lctx.getRegistry().containsBeanDefinition(beanName)) {
BeanDefinitionBuilder initializer = BeanDefinitionBuilder
.rootBeanDefinition(JCachelnitializer.class);
initializer.addConstructorArg(cacheName);
ctx.getRegistry().registerBeanDefinition(beanName, initializer
.getBeanDefinition());
}

return beanName;

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

# in 'META-INF/spring.handlers’
http\://www.foo.com/schema/jcache=com.foo.JCacheNamespaceHandler

# in 'META-INF/spring.schemas’
http\://www.foo.com/schema/jcache/jcache.xsd=com/foo/jcache.xsd

348



	Core Technologies
	Table of Contents
	Chapter 1. The IoC container
	1.1. Introduction to the Spring IoC container and beans
	1.2. Container overview
	1.2.1. Configuration metadata
	1.2.2. Instantiating a container
	Composing XML-based configuration metadata
	The Groovy Bean Definition DSL

	1.2.3. Using the container

	1.3. Bean overview
	1.3.1. Naming beans
	Aliasing a bean outside the bean definition

	1.3.2. Instantiating beans
	Instantiation with a constructor
	Instantiation with a static factory method
	Instantiation using an instance factory method


	1.4. Dependencies
	1.4.1. Dependency Injection
	Constructor-based dependency injection
	Setter-based dependency injection
	Dependency resolution process
	Examples of dependency injection

	1.4.2. Dependencies and configuration in detail
	Straight values (primitives, Strings, and so on)
	References to other beans (collaborators)
	Inner beans
	Collections
	Null and empty string values
	XML shortcut with the p-namespace
	XML shortcut with the c-namespace
	Compound property names

	1.4.3. Using depends-on
	1.4.4. Lazy-initialized beans
	1.4.5. Autowiring collaborators
	Limitations and disadvantages of autowiring
	Excluding a bean from autowiring

	1.4.6. Method injection
	Lookup method injection
	Arbitrary method replacement


	1.5. Bean scopes
	1.5.1. The singleton scope
	1.5.2. The prototype scope
	1.5.3. Singleton beans with prototype-bean dependencies
	1.5.4. Request, session, application, and WebSocket scopes
	Initial web configuration
	Request scope
	Session scope
	Application scope
	Scoped beans as dependencies

	1.5.5. Custom scopes
	Creating a custom scope
	Using a custom scope


	1.6. Customizing the nature of a bean
	1.6.1. Lifecycle callbacks
	Initialization callbacks
	Destruction callbacks
	Default initialization and destroy methods
	Combining lifecycle mechanisms
	Startup and shutdown callbacks
	Shutting down the Spring IoC container gracefully in non-web applications

	1.6.2. ApplicationContextAware and BeanNameAware
	1.6.3. Other Aware interfaces

	1.7. Bean definition inheritance
	1.8. Container Extension Points
	1.8.1. Customizing beans using a BeanPostProcessor
	Example: Hello World, BeanPostProcessor-style
	Example: The RequiredAnnotationBeanPostProcessor

	1.8.2. Customizing configuration metadata with a BeanFactoryPostProcessor
	Example: the Class name substitution PropertyPlaceholderConfigurer
	Example: the PropertyOverrideConfigurer

	1.8.3. Customizing instantiation logic with a FactoryBean

	1.9. Annotation-based container configuration
	1.9.1. @Required
	1.9.2. @Autowired
	1.9.3. Fine-tuning annotation-based autowiring with @Primary
	1.9.4. Fine-tuning annotation-based autowiring with qualifiers
	1.9.5. Using generics as autowiring qualifiers
	1.9.6. CustomAutowireConfigurer
	1.9.7. @Resource
	1.9.8. @PostConstruct and @PreDestroy

	1.10. Classpath scanning and managed components
	1.10.1. @Component and further stereotype annotations
	1.10.2. Meta-annotations
	1.10.3. Automatically detecting classes and registering bean definitions
	1.10.4. Using filters to customize scanning
	1.10.5. Defining bean metadata within components
	1.10.6. Naming autodetected components
	1.10.7. Providing a scope for autodetected components
	1.10.8. Providing qualifier metadata with annotations
	1.10.9. Generating an index of candidate components

	1.11. Using JSR 330 Standard Annotations
	1.11.1. Dependency Injection with @Inject and @Named
	1.11.2. @Named and @ManagedBean: standard equivalents to the @Component annotation
	1.11.3. Limitations of JSR-330 standard annotations

	1.12. Java-based container configuration
	1.12.1. Basic concepts: @Bean and @Configuration
	1.12.2. Instantiating the Spring container using AnnotationConfigApplicationContext
	Simple construction
	Building the container programmatically using register(Class<?>…​)
	Enabling component scanning with scan(String…​)
	Support for web applications with AnnotationConfigWebApplicationContext

	1.12.3. Using the @Bean annotation
	Declaring a bean
	Bean dependencies
	Receiving lifecycle callbacks
	Specifying bean scope
	Customizing bean naming
	Bean aliasing
	Bean description

	1.12.4. Using the @Configuration annotation
	Injecting inter-bean dependencies
	Lookup method injection
	Further information about how Java-based configuration works internally

	1.12.5. Composing Java-based configurations
	Using the @Import annotation
	Conditionally include @Configuration classes or @Bean methods
	Combining Java and XML configuration


	1.13. Environment abstraction
	1.13.1. Bean definition profiles
	@Profile
	XML bean definition profiles
	Activating a profile
	Default profile

	1.13.2. PropertySource abstraction
	1.13.3. @PropertySource
	1.13.4. Placeholder resolution in statements

	1.14. Registering a LoadTimeWeaver
	1.15. Additional capabilities of the ApplicationContext
	1.15.1. Internationalization using MessageSource
	1.15.2. Standard and custom events
	Annotation-based event listeners
	Asynchronous Listeners
	Ordering listeners
	Generic events

	1.15.3. Convenient access to low-level resources
	1.15.4. Convenient ApplicationContext instantiation for web applications
	1.15.5. Deploying a Spring ApplicationContext as a Java EE RAR file

	1.16. The BeanFactory
	1.16.1. BeanFactory or ApplicationContext?


	Chapter 2. Resources
	2.1. Introduction
	2.2. The Resource interface
	2.3. Built-in Resource implementations
	2.3.1. UrlResource
	2.3.2. ClassPathResource
	2.3.3. FileSystemResource
	2.3.4. ServletContextResource
	2.3.5. InputStreamResource
	2.3.6. ByteArrayResource

	2.4. The ResourceLoader
	2.5. The ResourceLoaderAware interface
	2.6. Resources as dependencies
	2.7. Application contexts and Resource paths
	2.7.1. Constructing application contexts
	Constructing ClassPathXmlApplicationContext instances - shortcuts

	2.7.2. Wildcards in application context constructor resource paths
	Ant-style Patterns
	The classpath*: prefix
	Other notes relating to wildcards

	2.7.3. FileSystemResource caveats


	Chapter 3. Validation, Data Binding, and Type Conversion
	3.1. Introduction
	3.2. Validation using Spring’s Validator interface
	3.3. Resolving codes to error messages
	3.4. Bean manipulation and the BeanWrapper
	3.4.1. Setting and getting basic and nested properties
	3.4.2. Built-in PropertyEditor implementations
	Registering additional custom PropertyEditors


	3.5. Spring Type Conversion
	3.5.1. Converter SPI
	3.5.2. ConverterFactory
	3.5.3. GenericConverter
	ConditionalGenericConverter

	3.5.4. ConversionService API
	3.5.5. Configuring a ConversionService
	3.5.6. Using a ConversionService programmatically

	3.6. Spring Field Formatting
	3.6.1. Formatter SPI
	3.6.2. Annotation-driven Formatting
	Format Annotation API

	3.6.3. FormatterRegistry SPI
	3.6.4. FormatterRegistrar SPI
	3.6.5. Configuring Formatting in Spring MVC

	3.7. Configuring a global date & time format
	3.8. Spring Validation
	3.8.1. Overview of the JSR-303 Bean Validation API
	3.8.2. Configuring a Bean Validation Provider
	Injecting a Validator
	Configuring Custom Constraints
	Spring-driven Method Validation
	Additional Configuration Options

	3.8.3. Configuring a DataBinder
	3.8.4. Spring MVC 3 Validation


	Chapter 4. Spring Expression Language (SpEL)
	4.1. Introduction
	4.2. Evaluation
	4.2.1. EvaluationContext
	Type conversion

	4.2.2. Parser configuration
	4.2.3. SpEL compilation
	Compiler configuration
	Compiler limitations


	4.3. Expressions in bean definitions
	4.3.1. XML configuration
	4.3.2. Annotation config

	4.4. Language Reference
	4.4.1. Literal expressions
	4.4.2. Properties, Arrays, Lists, Maps, Indexers
	4.4.3. Inline lists
	4.4.4. Inline Maps
	4.4.5. Array construction
	4.4.6. Methods
	4.4.7. Operators
	Relational operators
	Logical operators
	Mathematical operators

	4.4.8. Assignment
	4.4.9. Types
	4.4.10. Constructors
	4.4.11. Variables
	The #this and #root variables

	4.4.12. Functions
	4.4.13. Bean references
	4.4.14. Ternary Operator (If-Then-Else)
	4.4.15. The Elvis Operator
	4.4.16. Safe Navigation operator
	4.4.17. Collection Selection
	4.4.18. Collection Projection
	4.4.19. Expression templating

	4.5. Classes used in the examples

	Chapter 5. Aspect Oriented Programming with Spring
	5.1. Introduction
	5.1.1. AOP concepts
	5.1.2. Spring AOP capabilities and goals
	5.1.3. AOP Proxies

	5.2. @AspectJ support
	5.2.1. Enabling @AspectJ Support
	Enabling @AspectJ Support with Java configuration
	Enabling @AspectJ Support with XML configuration

	5.2.2. Declaring an aspect
	5.2.3. Declaring a pointcut
	Supported Pointcut Designators
	Combining pointcut expressions
	Sharing common pointcut definitions
	Examples
	Writing good pointcuts

	5.2.4. Declaring advice
	Before advice
	After returning advice
	After throwing advice
	After (finally) advice
	Around advice
	Advice parameters
	Advice ordering

	5.2.5. Introductions
	5.2.6. Aspect instantiation models
	5.2.7. Example

	5.3. Schema-based AOP support
	5.3.1. Declaring an aspect
	5.3.2. Declaring a pointcut
	5.3.3. Declaring advice
	Before advice
	After returning advice
	After throwing advice
	After (finally) advice
	Around advice
	Advice parameters
	Advice ordering

	5.3.4. Introductions
	5.3.5. Aspect instantiation models
	5.3.6. Advisors
	5.3.7. Example

	5.4. Choosing which AOP declaration style to use
	5.4.1. Spring AOP or full AspectJ?
	5.4.2. @AspectJ or XML for Spring AOP?

	5.5. Mixing aspect types
	5.6. Proxying mechanisms
	5.6.1. Understanding AOP proxies

	5.7. Programmatic creation of @AspectJ Proxies
	5.8. Using AspectJ with Spring applications
	5.8.1. Using AspectJ to dependency inject domain objects with Spring
	Unit testing @Configurable objects
	Working with multiple application contexts

	5.8.2. Other Spring aspects for AspectJ
	5.8.3. Configuring AspectJ aspects using Spring IoC
	5.8.4. Load-time weaving with AspectJ in the Spring Framework
	A first example
	Aspects
	'META-INF/aop.xml'
	Required libraries (JARS)
	Spring configuration
	Environment-specific configuration


	5.9. Further Resources

	Chapter 6. Spring AOP APIs
	6.1. Introduction
	6.2. Pointcut API in Spring
	6.2.1. Concepts
	6.2.2. Operations on pointcuts
	6.2.3. AspectJ expression pointcuts
	6.2.4. Convenience pointcut implementations
	Static pointcuts
	Dynamic pointcuts

	6.2.5. Pointcut superclasses
	6.2.6. Custom pointcuts

	6.3. Advice API in Spring
	6.3.1. Advice lifecycles
	6.3.2. Advice types in Spring
	Interception around advice
	Before advice
	Throws advice
	After Returning advice
	Introduction advice


	6.4. Advisor API in Spring
	6.5. Using the ProxyFactoryBean to create AOP proxies
	6.5.1. Basics
	6.5.2. JavaBean properties
	6.5.3. JDK- and CGLIB-based proxies
	6.5.4. Proxying interfaces
	6.5.5. Proxying classes
	6.5.6. Using 'global' advisors

	6.6. Concise proxy definitions
	6.7. Creating AOP proxies programmatically with the ProxyFactory
	6.8. Manipulating advised objects
	6.9. Using the "auto-proxy" facility
	6.9.1. Autoproxy bean definitions
	BeanNameAutoProxyCreator
	DefaultAdvisorAutoProxyCreator


	6.10. Using TargetSources
	6.10.1. Hot swappable target sources
	6.10.2. Pooling target sources
	6.10.3. Prototype target sources
	6.10.4. ThreadLocal target sources

	6.11. Defining new Advice types

	Chapter 7. Null-safety
	7.1. Use cases
	7.2. JSR 305 meta-annotations

	Chapter 8. Data Buffers and Codecs
	8.1. Introduction
	8.2. DataBufferFactory
	8.3. The DataBuffer interface
	8.3.1. PooledDataBuffer
	Reference Counting

	8.3.2. DataBufferUtils

	Codecs

	Chapter 9. Appendix
	9.1. XML Schemas
	9.1.1. The util schema
	<util:constant/>
	<util:property-path/>
	<util:properties/>
	<util:list/>
	<util:map/>
	<util:set/>

	9.1.2. The aop schema
	9.1.3. The context schema
	<property-placeholder/>
	<annotation-config/>
	<component-scan/>
	<load-time-weaver/>
	<spring-configured/>
	<mbean-export/>

	9.1.4. The beans schema

	9.2. XML Schema Authoring
	9.2.1. Introduction
	9.2.2. Authoring the schema
	9.2.3. Coding a NamespaceHandler
	9.2.4. BeanDefinitionParser
	9.2.5. Registering the handler and the schema
	'META-INF/spring.handlers'
	'META-INF/spring.schemas'

	9.2.6. Using a custom extension in your Spring XML configuration
	9.2.7. Meatier examples
	Nesting custom tags within custom tags
	Custom attributes on 'normal' elements




