
Integration
Version 5.0.17.RELEASE

Table of Contents
1. Remoting and web services using Spring. 2

1.1. Introduction . 2

1.2. Exposing services using RMI . 3

1.2.1. Exporting the service using the RmiServiceExporter . 3

1.2.2. Linking in the service at the client . 4

1.3. Using Hessian to remotely call services via HTTP . 5

1.3.1. Wiring up the DispatcherServlet for Hessian and co. 5

1.3.2. Exposing your beans by using the HessianServiceExporter . 6

1.3.3. Linking in the service on the client . 6

1.3.4. Applying HTTP basic authentication to a service exposed through Hessian 7

1.4. Exposing services using HTTP invokers . 7

1.4.1. Exposing the service object. 8

1.4.2. Linking in the service at the client . 9

1.5. Web services . 10

1.5.1. Exposing servlet-based web services using JAX-WS. 10

1.5.2. Exporting standalone web services using JAX-WS . 11

1.5.3. Exporting web services using the JAX-WS RI’s Spring support . 12

1.5.4. Accessing web services using JAX-WS . 13

1.6. JMS . 14

1.6.1. Server-side configuration . 15

1.6.2. Client-side configuration. 16

1.7. AMQP. 17

1.8. Auto-detection is not implemented for remote interfaces . 17

1.9. Considerations when choosing a technology. 18

1.10. REST Endpoints . 18

1.10.1. RestTemplate . 19

Initialization. 19

URIs . 20

Headers . 20

Body . 21

Message Conversion . 21

Jackson JSON Views . 23

Multipart . 23

1.10.2. Async RestTemplate . 24

2. Enterprise JavaBeans (EJB) integration . 25

2.1. Introduction. 25

2.2. Accessing EJBs . 25

2.2.1. Concepts . 25

2.2.2. Accessing local SLSBs. 26

2.2.3. Accessing remote SLSBs . 27

2.2.4. Accessing EJB 2.x SLSBs versus EJB 3 SLSBs. 28

3. JMS (Java Message Service) . 29

3.1. Introduction. 29

3.2. Using Spring JMS. 30

3.2.1. JmsTemplate. 30

3.2.2. Connections . 31

Caching Messaging Resources . 31

SingleConnectionFactory . 31

CachingConnectionFactory. 31

3.2.3. Destination Management . 32

3.2.4. Message Listener Containers . 32

SimpleMessageListenerContainer . 33

DefaultMessageListenerContainer . 33

3.2.5. Transaction management . 34

3.3. Sending a Message . 35

3.3.1. Using Message Converters . 36

3.3.2. SessionCallback and ProducerCallback. 38

3.4. Receiving a message . 38

3.4.1. Synchronous reception . 38

3.4.2. Asynchronous reception: Message-Driven POJOs. 38

3.4.3. SessionAwareMessageListener interface . 39

3.4.4. MessageListenerAdapter. 40

3.4.5. Processing messages within transactions . 42

3.5. Support for JCA Message Endpoints. 43

3.6. Annotation-driven listener endpoints . 45

3.6.1. Enable listener endpoint annotations . 45

3.6.2. Programmatic endpoints registration . 46

3.6.3. Annotated endpoint method signature . 47

3.6.4. Response management . 48

3.7. JMS namespace support . 50

4. JMX. 56

4.1. Introduction. 56

4.2. Exporting your beans to JMX. 56

4.2.1. Creating an MBeanServer. 58

4.2.2. Reusing an existing MBeanServer . 59

4.2.3. Lazy-initialized MBeans . 60

4.2.4. Automatic registration of MBeans . 60

4.2.5. Controlling the registration behavior . 61

4.3. Controlling the management interface of your beans. 62

4.3.1. MBeanInfoAssembler interface. 62

4.3.2. Using source-level metadata: Java annotations. 62

4.3.3. Source-level metadata types. 65

4.3.4. AutodetectCapableMBeanInfoAssembler interface . 66

4.3.5. Defining management interfaces using Java interfaces . 67

4.3.6. Using MethodNameBasedMBeanInfoAssembler. 69

4.4. Controlling the ObjectNames for your beans . 69

4.4.1. Reading ObjectNames from Properties . 70

4.4.2. Using the MetadataNamingStrategy. 71

4.4.3. Configuring annotation based MBean export . 71

4.5. JSR-160 Connectors. 72

4.5.1. Server-side connectors . 72

4.5.2. Client-side connectors . 74

4.5.3. JMX over Hessian or SOAP . 74

4.6. Accessing MBeans via proxies . 74

4.7. Notifications. 75

4.7.1. Registering listeners for notifications . 75

4.7.2. Publishing Notifications . 80

4.8. Further resources . 81

5. JCA CCI . 82

5.1. Introduction. 82

5.2. Configuring CCI . 82

5.2.1. Connector configuration . 82

5.2.2. ConnectionFactory configuration in Spring . 83

5.2.3. Configuring CCI connections . 83

5.2.4. Using a single CCI connection . 84

5.3. Using Spring’s CCI access support . 85

5.3.1. Record conversion . 85

5.3.2. CciTemplate . 86

5.3.3. DAO support . 88

5.3.4. Automatic output record generation . 89

5.3.5. Summary. 90

5.3.6. Using a CCI Connection and Interaction directly . 90

5.3.7. Example for CciTemplate usage . 91

5.4. Modeling CCI access as operation objects. 94

5.4.1. MappingRecordOperation . 94

5.4.2. MappingCommAreaOperation . 95

5.4.3. Automatic output record generation . 96

5.4.4. Summary. 96

5.4.5. Example for MappingRecordOperation usage. 96

5.4.6. Example for MappingCommAreaOperation usage. 99

5.5. Transactions . 101

6. Email . 102

6.1. Introduction. 102

6.2. Usage . 102

6.2.1. Basic MailSender and SimpleMailMessage usage. 103

6.2.2. Using the JavaMailSender and the MimeMessagePreparator . 104

6.3. Using the JavaMail MimeMessageHelper . 106

6.3.1. Sending attachments and inline resources . 106

Attachments . 106

Inline resources. 107

6.3.2. Creating email content using a templating library . 107

7. Task Execution and Scheduling . 108

7.1. Introduction. 108

7.2. The Spring TaskExecutor abstraction . 108

7.2.1. TaskExecutor types . 108

7.2.2. Using a TaskExecutor. 109

7.3. The Spring TaskScheduler abstraction . 111

7.3.1. Trigger interface . 111

7.3.2. Trigger implementations . 112

7.3.3. TaskScheduler implementations. 112

7.4. Annotation Support for Scheduling and Asynchronous Execution . 113

7.4.1. Enable scheduling annotations . 113

7.4.2. The @Scheduled annotation . 114

7.4.3. The @Async annotation . 115

7.4.4. Executor qualification with @Async . 116

7.4.5. Exception management with @Async . 117

7.5. The task namespace. 117

7.5.1. The 'scheduler' element . 117

7.5.2. The 'executor' element . 118

7.5.3. The 'scheduled-tasks' element . 119

7.6. Using the Quartz Scheduler . 120

7.6.1. Using the JobDetailFactoryBean . 120

7.6.2. Using the MethodInvokingJobDetailFactoryBean. 121

7.6.3. Wiring up jobs using triggers and the SchedulerFactoryBean . 122

8. Cache Abstraction . 124

8.1. Introduction. 124

8.2. Understanding the cache abstraction . 124

8.3. Declarative annotation-based caching . 125

8.3.1. @Cacheable annotation . 125

Default Key Generation . 126

Custom Key Generation Declaration . 127

Default Cache Resolution . 128

Custom cache resolution. 128

Synchronized caching . 128

Conditional caching . 129

Available caching SpEL evaluation context . 129

8.3.2. @CachePut annotation . 130

8.3.3. @CacheEvict annotation . 131

8.3.4. @Caching annotation. 132

8.3.5. @CacheConfig annotation . 132

8.3.6. Enable caching annotations . 132

8.3.7. Using custom annotations . 135

8.4. JCache (JSR-107) annotations. 136

8.4.1. Feature summary . 136

8.4.2. Enabling JSR-107 support . 138

8.5. Declarative XML-based caching . 138

8.6. Configuring the cache storage. 139

8.6.1. JDK ConcurrentMap-based Cache. 139

8.6.2. Ehcache-based Cache. 140

8.6.3. Caffeine Cache . 140

8.6.4. GemFire-based Cache . 141

8.6.5. JSR-107 Cache. 141

8.6.6. Dealing with caches without a backing store . 141

8.7. Plugging-in different back-end caches . 142

8.8. How can I set the TTL/TTI/Eviction policy/XXX feature? . 142

9. Appendix . 143

9.1. XML Schemas . 143

9.1.1. The jee schema . 143

<jee:jndi-lookup/> (simple) . 143

<jee:jndi-lookup/> (with single JNDI environment setting) . 144

<jee:jndi-lookup/> (with multiple JNDI environment settings) . 144

<jee:jndi-lookup/> (complex) . 145

<jee:local-slsb/> (simple) . 145

<jee:local-slsb/> (complex) . 146

<jee:remote-slsb/> . 146

9.1.2. The jms schema. 147

9.1.3. <context:mbean-export/> . 147

9.1.4. The cache schema. 147

This part of the reference documentation covers the Spring Framework’s
integration with a number of Java EE (and related) technologies.

1

Chapter 1. Remoting and web services using
Spring

1.1. Introduction
Spring features integration classes for remoting support using various technologies. The remoting
support eases the development of remote-enabled services, implemented by your usual (Spring)
POJOs. Currently, Spring supports the following remoting technologies:

• Remote Method Invocation (RMI). Through the use of the RmiProxyFactoryBean and the
RmiServiceExporter Spring supports both traditional RMI (with java.rmi.Remote interfaces and
java.rmi.RemoteException) and transparent remoting via RMI invokers (with any Java interface).

• Spring’s HTTP invoker. Spring provides a special remoting strategy which allows for Java
serialization via HTTP, supporting any Java interface (just like the RMI invoker). The
corresponding support classes are HttpInvokerProxyFactoryBean and HttpInvokerServiceExporter.

• Hessian. By using Spring’s HessianProxyFactoryBean and the HessianServiceExporter you can
transparently expose your services using the lightweight binary HTTP-based protocol provided
by Caucho.

• JAX-WS. Spring provides remoting support for web services via JAX-WS.

• JMS. Remoting using JMS as the underlying protocol is supported via the
JmsInvokerServiceExporter and JmsInvokerProxyFactoryBean classes.

• AMQP. Remoting using AMQP as the underlying protocol is supported by the Spring AMQP
project.

While discussing the remoting capabilities of Spring, we’ll use the following domain model and
corresponding services:

public class Account implements Serializable{

 private String name;

 public String getName(){
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

2

public interface AccountService {

 public void insertAccount(Account account);

 public List<Account> getAccounts(String name);

}

// the implementation doing nothing at the moment
public class AccountServiceImpl implements AccountService {

 public void insertAccount(Account acc) {
 // do something...
 }

 public List<Account> getAccounts(String name) {
 // do something...
 }

}

We will start exposing the service to a remote client by using RMI and talk a bit about the
drawbacks of using RMI. We’ll then continue to show an example using Hessian as the protocol.

1.2. Exposing services using RMI
Using Spring’s support for RMI, you can transparently expose your services through the RMI
infrastructure. After having this set up, you basically have a configuration similar to remote EJBs,
except for the fact that there is no standard support for security context propagation or remote
transaction propagation. Spring does provide hooks for such additional invocation context when
using the RMI invoker, so you can for example plug in security frameworks or custom security
credentials here.

1.2.1. Exporting the service using the RmiServiceExporter

Using the RmiServiceExporter, we can expose the interface of our AccountService object as RMI
object. The interface can be accessed by using RmiProxyFactoryBean, or via plain RMI in case of a
traditional RMI service. The RmiServiceExporter explicitly supports the exposing of any non-RMI
services via RMI invokers.

Of course, we first have to set up our service in the Spring container:

<bean id="accountService" class="example.AccountServiceImpl">
 <!-- any additional properties, maybe a DAO? -->
</bean>

3

Next we’ll have to expose our service using the RmiServiceExporter:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
 <!-- does not necessarily have to be the same name as the bean to be exported -->
 <property name="serviceName" value="AccountService"/>
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
 <!-- defaults to 1099 -->
 <property name="registryPort" value="1199"/>
</bean>

As you can see, we’re overriding the port for the RMI registry. Often, your application server also
maintains an RMI registry and it is wise to not interfere with that one. Furthermore, the service
name is used to bind the service under. So right now, the service will be bound at
'rmi://HOST:1199/AccountService'. We’ll use the URL later on to link in the service at the client side.


The servicePort property has been omitted (it defaults to 0). This means that an
anonymous port will be used to communicate with the service.

1.2.2. Linking in the service at the client

Our client is a simple object using the AccountService to manage accounts:

public class SimpleObject {

 private AccountService accountService;

 public void setAccountService(AccountService accountService) {
 this.accountService = accountService;
 }

 // additional methods using the accountService

}

To link in the service on the client, we’ll create a separate Spring container, containing the simple
object and the service linking configuration bits:

4

<bean class="example.SimpleObject">
 <property name="accountService" ref="accountService"/>
</bean>

<bean id="accountService" class="org.springframework.remoting.rmi.RmiProxyFactoryBean
">
 <property name="serviceUrl" value="rmi://HOST:1199/AccountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

That’s all we need to do to support the remote account service on the client. Spring will
transparently create an invoker and remotely enable the account service through the
RmiServiceExporter. At the client we’re linking it in using the RmiProxyFactoryBean.

1.3. Using Hessian to remotely call services via HTTP
Hessian offers a binary HTTP-based remoting protocol. It is developed by Caucho and more
information about Hessian itself can be found at https://www.caucho.com/.

1.3.1. Wiring up the DispatcherServlet for Hessian and co.

Hessian communicates via HTTP and does so using a custom servlet. Using Spring’s
DispatcherServlet principles, as known from Spring Web MVC usage, you can easily wire up such a
servlet exposing your services. First we’ll have to create a new servlet in your application (this is an
excerpt from 'web.xml'):

<servlet>
 <servlet-name>remoting</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>remoting</servlet-name>
 <url-pattern>/remoting/*</url-pattern>
</servlet-mapping>

You’re probably familiar with Spring’s DispatcherServlet principles and if so, you know that now
you’ll have to create a Spring container configuration resource named 'remoting-servlet.xml'
(after the name of your servlet) in the 'WEB-INF' directory. The application context will be used in
the next section.

Alternatively, consider the use of Spring’s simpler HttpRequestHandlerServlet. This allows you to
embed the remote exporter definitions in your root application context (by default in 'WEB-
INF/applicationContext.xml'), with individual servlet definitions pointing to specific exporter
beans. Each servlet name needs to match the bean name of its target exporter in this case.

5

https://www.caucho.com/

1.3.2. Exposing your beans by using the HessianServiceExporter

In the newly created application context called remoting-servlet.xml, we’ll create a
HessianServiceExporter exporting your services:

<bean id="accountService" class="example.AccountServiceImpl">
 <!-- any additional properties, maybe a DAO? -->
</bean>

<bean name="/AccountService" class=
"org.springframework.remoting.caucho.HessianServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

Now we’re ready to link in the service at the client. No explicit handler mapping is specified,
mapping request URLs onto services, so BeanNameUrlHandlerMapping will be used: Hence, the service
will be exported at the URL indicated through its bean name within the containing
DispatcherServlet's mapping (as defined above): 'http://HOST:8080/remoting/AccountService'.

Alternatively, create a HessianServiceExporter in your root application context (e.g. in 'WEB-
INF/applicationContext.xml'):

<bean name="accountExporter" class=
"org.springframework.remoting.caucho.HessianServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

In the latter case, define a corresponding servlet for this exporter in 'web.xml', with the same end
result: The exporter getting mapped to the request path /remoting/AccountService. Note that the
servlet name needs to match the bean name of the target exporter.

<servlet>
 <servlet-name>accountExporter</servlet-name>
 <servlet-class>
org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>accountExporter</servlet-name>
 <url-pattern>/remoting/AccountService</url-pattern>
</servlet-mapping>

1.3.3. Linking in the service on the client

Using the HessianProxyFactoryBean we can link in the service at the client. The same principles apply

6

as with the RMI example. We’ll create a separate bean factory or application context and mention
the following beans where the SimpleObject is using the AccountService to manage accounts:

<bean class="example.SimpleObject">
 <property name="accountService" ref="accountService"/>
</bean>

<bean id="accountService" class=
"org.springframework.remoting.caucho.HessianProxyFactoryBean">
 <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService
"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

1.3.4. Applying HTTP basic authentication to a service exposed through
Hessian

One of the advantages of Hessian is that we can easily apply HTTP basic authentication, because
both protocols are HTTP-based. Your normal HTTP server security mechanism can easily be applied
through using the web.xml security features, for example. Usually, you don’t use per-user security
credentials here, but rather shared credentials defined at the HessianProxyFactoryBean level (similar
to a JDBC DataSource).

<bean class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
 <property name="interceptors" ref="authorizationInterceptor"/>
</bean>

<bean id="authorizationInterceptor"
 class=
"org.springframework.web.servlet.handler.UserRoleAuthorizationInterceptor">
 <property name="authorizedRoles" value="administrator,operator"/>
</bean>

This is an example where we explicitly mention the BeanNameUrlHandlerMapping and set an
interceptor allowing only administrators and operators to call the beans mentioned in this
application context.


Of course, this example doesn’t show a flexible kind of security infrastructure. For
more options as far as security is concerned, have a look at the Spring Security
project at https://projects.spring.io/spring-security/.

1.4. Exposing services using HTTP invokers
As opposed to Hessian, which are both lightweight protocols using their own slim serialization
mechanisms, Spring HTTP invokers use the standard Java serialization mechanism to expose
services through HTTP. This has a huge advantage if your arguments and return types are complex

7

https://projects.spring.io/spring-security/

types that cannot be serialized using the serialization mechanisms Hessian uses (refer to the next
section for more considerations when choosing a remoting technology).

Under the hood, Spring uses either the standard facilities provided by the JDK or Apache
HttpComponents to perform HTTP calls. Use the latter if you need more advanced and easier-to-use
functionality. Refer to hc.apache.org/httpcomponents-client-ga/ for more information.



Be aware of vulnerabilities due to unsafe Java deserialization: Manipulated input
streams could lead to unwanted code execution on the server during the
deserialization step. As a consequence, do not expose HTTP invoker endpoints to
untrusted clients but rather just between your own services. In general, we
strongly recommend any other message format (e.g. JSON) instead.

If you are concerned about security vulnerabilities due to Java serialization,
consider the general-purpose serialization filter mechanism at the core JVM level,
originally developed for JDK 9 but backported to JDK 8, 7 and 6 in the meantime:
https://blogs.oracle.com/java-platform-group/entry/
incoming_filter_serialization_data_a https://openjdk.java.net/jeps/290

1.4.1. Exposing the service object

Setting up the HTTP invoker infrastructure for a service object resembles closely the way you
would do the same using Hessian. Just as Hessian support provides the HessianServiceExporter,
Spring’s HttpInvoker support provides the
org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter.

To expose the AccountService (mentioned above) within a Spring Web MVC DispatcherServlet, the
following configuration needs to be in place in the dispatcher’s application context:

<bean name="/AccountService" class=
"org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

Such an exporter definition will be exposed through the DispatcherServlet's standard mapping
facilities, as explained in the section on Hessian.

Alternatively, create an HttpInvokerServiceExporter in your root application context (e.g. in 'WEB-
INF/applicationContext.xml'):

<bean name="accountExporter" class=
"org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

8

https://hc.apache.org/httpcomponents-client-ga/
https://blogs.oracle.com/java-platform-group/entry/incoming_filter_serialization_data_a
https://blogs.oracle.com/java-platform-group/entry/incoming_filter_serialization_data_a
https://openjdk.java.net/jeps/290

In addition, define a corresponding servlet for this exporter in 'web.xml', with the servlet name
matching the bean name of the target exporter:

<servlet>
 <servlet-name>accountExporter</servlet-name>
 <servlet-class>
org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>accountExporter</servlet-name>
 <url-pattern>/remoting/AccountService</url-pattern>
</servlet-mapping>

If you are running outside of a servlet container and are using Oracle’s Java 6, then you can use the
built-in HTTP server implementation. You can configure the SimpleHttpServerFactoryBean together
with a SimpleHttpInvokerServiceExporter as is shown in this example:

<bean name="accountExporter"
 class=
"org.springframework.remoting.httpinvoker.SimpleHttpInvokerServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

<bean id="httpServer"
 class="org.springframework.remoting.support.SimpleHttpServerFactoryBean">
 <property name="contexts">
 <util:map>
 <entry key="/remoting/AccountService" value-ref="accountExporter"/>
 </util:map>
 </property>
 <property name="port" value="8080"/>
</bean>

1.4.2. Linking in the service at the client

Again, linking in the service from the client much resembles the way you would do it when using
Hessian. Using a proxy, Spring will be able to translate your calls to HTTP POST requests to the URL
pointing to the exported service.

<bean id="httpInvokerProxy" class=
"org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean">
 <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService
"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

9

As mentioned before, you can choose what HTTP client you want to use. By default, the
HttpInvokerProxy uses the JDK’s HTTP functionality, but you can also use the Apache HttpComponents
client by setting the httpInvokerRequestExecutor property:

<property name="httpInvokerRequestExecutor">
 <bean class=
"org.springframework.remoting.httpinvoker.HttpComponentsHttpInvokerRequestExecutor"/>
</property>

1.5. Web services
Spring provides full support for standard Java web services APIs:

• Exposing web services using JAX-WS

• Accessing web services using JAX-WS

In addition to stock support for JAX-WS in Spring Core, the Spring portfolio also features Spring
Web Services, a solution for contract-first, document-driven web services - highly recommended for
building modern, future-proof web services.

1.5.1. Exposing servlet-based web services using JAX-WS

Spring provides a convenient base class for JAX-WS servlet endpoint implementations -
SpringBeanAutowiringSupport. To expose our AccountService we extend Spring’s
SpringBeanAutowiringSupport class and implement our business logic here, usually delegating the
call to the business layer. We’ll simply use Spring’s @Autowired annotation for expressing such
dependencies on Spring-managed beans.

10

http://www.springframework.org/spring-ws
http://www.springframework.org/spring-ws

/**
 * JAX-WS compliant AccountService implementation that simply delegates
 * to the AccountService implementation in the root web application context.
 *
 * This wrapper class is necessary because JAX-WS requires working with dedicated
 * endpoint classes. If an existing service needs to be exported, a wrapper that
 * extends SpringBeanAutowiringSupport for simple Spring bean autowiring (through
 * the @Autowired annotation) is the simplest JAX-WS compliant way.
 *
 * This is the class registered with the server-side JAX-WS implementation.
 * In the case of a Java EE 5 server, this would simply be defined as a servlet
 * in web.xml, with the server detecting that this is a JAX-WS endpoint and reacting
 * accordingly. The servlet name usually needs to match the specified WS service name.
 *
 * The web service engine manages the lifecycle of instances of this class.
 * Spring bean references will just be wired in here.
 */
import org.springframework.web.context.support.SpringBeanAutowiringSupport;

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint extends SpringBeanAutowiringSupport {

 @Autowired
 private AccountService biz;

 @WebMethod
 public void insertAccount(Account acc) {
 biz.insertAccount(acc);
 }

 @WebMethod
 public Account[] getAccounts(String name) {
 return biz.getAccounts(name);
 }

}

Our AccountServiceEndpoint needs to run in the same web application as the Spring context to allow
for access to Spring’s facilities. This is the case by default in Java EE 5 environments, using the
standard contract for JAX-WS servlet endpoint deployment. See Java EE 5 web service tutorials for
details.

1.5.2. Exporting standalone web services using JAX-WS

The built-in JAX-WS provider that comes with Oracle’s JDK supports exposure of web services using
the built-in HTTP server that’s included in the JDK as well. Spring’s SimpleJaxWsServiceExporter
detects all @WebService annotated beans in the Spring application context, exporting them through
the default JAX-WS server (the JDK HTTP server).

11

In this scenario, the endpoint instances are defined and managed as Spring beans themselves; they
will be registered with the JAX-WS engine but their lifecycle will be up to the Spring application
context. This means that Spring functionality like explicit dependency injection may be applied to
the endpoint instances. Of course, annotation-driven injection through @Autowired will work as well.

<bean class="org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter">
 <property name="baseAddress" value="http://localhost:8080/"/>
</bean>

<bean id="accountServiceEndpoint" class="example.AccountServiceEndpoint">
 ...
</bean>

...

The AccountServiceEndpoint may derive from Spring’s SpringBeanAutowiringSupport but doesn’t have
to since the endpoint is a fully Spring-managed bean here. This means that the endpoint
implementation may look like as follows, without any superclass declared - and Spring’s @Autowired
configuration annotation still being honored:

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint {

 @Autowired
 private AccountService biz;

 @WebMethod
 public void insertAccount(Account acc) {
 biz.insertAccount(acc);
 }

 @WebMethod
 public List<Account> getAccounts(String name) {
 return biz.getAccounts(name);
 }

}

1.5.3. Exporting web services using the JAX-WS RI’s Spring support

Oracle’s JAX-WS RI, developed as part of the GlassFish project, ships Spring support as part of its
JAX-WS Commons project. This allows for defining JAX-WS endpoints as Spring-managed beans,
similar to the standalone mode discussed in the previous section - but this time in a Servlet
environment. Note that this is not portable in a Java EE 5 environment; it is mainly intended for non-
EE environments such as Tomcat, embedding the JAX-WS RI as part of the web application.

The difference to the standard style of exporting servlet-based endpoints is that the lifecycle of the
endpoint instances themselves will be managed by Spring here, and that there will be only one JAX-

12

WS servlet defined in web.xml. With the standard Java EE 5 style (as illustrated above), you’ll have
one servlet definition per service endpoint, with each endpoint typically delegating to Spring beans
(through the use of @Autowired, as shown above).

Check out https://jax-ws-commons.java.net/spring/ for details on setup and usage style.

1.5.4. Accessing web services using JAX-WS

Spring provides two factory beans to create JAX-WS web service proxies, namely
LocalJaxWsServiceFactoryBean and JaxWsPortProxyFactoryBean. The former can only return a JAX-WS
service class for us to work with. The latter is the full-fledged version that can return a proxy that
implements our business service interface. In this example we use the latter to create a proxy for
the AccountService endpoint (again):

<bean id="accountWebService" class=
"org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
 <property name="serviceInterface" value="example.AccountService"/>
 <property name="wsdlDocumentUrl" value=
"http://localhost:8888/AccountServiceEndpoint?WSDL"/>
 <property name="namespaceUri" value="http://example/"/>
 <property name="serviceName" value="AccountService"/>
 <property name="portName" value="AccountServiceEndpointPort"/>
</bean>

Where serviceInterface is our business interface the clients will use. wsdlDocumentUrl is the URL for
the WSDL file. Spring needs this a startup time to create the JAX-WS Service. namespaceUri
corresponds to the targetNamespace in the .wsdl file. serviceName corresponds to the service name
in the .wsdl file. portName corresponds to the port name in the .wsdl file.

Accessing the web service is now very easy as we have a bean factory for it that will expose it as
AccountService interface. We can wire this up in Spring:

<bean id="client" class="example.AccountClientImpl">
 ...
 <property name="service" ref="accountWebService"/>
</bean>

From the client code we can access the web service just as if it was a normal class:

13

https://jax-ws-commons.java.net/spring/

public class AccountClientImpl {

 private AccountService service;

 public void setService(AccountService service) {
 this.service = service;
 }

 public void foo() {
 service.insertAccount(...);
 }
}



The above is slightly simplified in that JAX-WS requires endpoint interfaces and
implementation classes to be annotated with @WebService, @SOAPBinding etc
annotations. This means that you cannot (easily) use plain Java interfaces and
implementation classes as JAX-WS endpoint artifacts; you need to annotate them
accordingly first. Check the JAX-WS documentation for details on those
requirements.

1.6. JMS
It is also possible to expose services transparently using JMS as the underlying communication
protocol. The JMS remoting support in the Spring Framework is pretty basic - it sends and receives
on the same thread and in the same non-transactional Session, and as such throughput will be very
implementation dependent. Note that these single-threaded and non-transactional constraints
apply only to Spring’s JMS remoting support. See JMS (Java Message Service) for information on
Spring’s rich support for JMS-based messaging.

The following interface is used on both the server and the client side.

package com.foo;

public interface CheckingAccountService {

 public void cancelAccount(Long accountId);

}

The following simple implementation of the above interface is used on the server-side.

14

package com.foo;

public class SimpleCheckingAccountService implements CheckingAccountService {

 public void cancelAccount(Long accountId) {
 System.out.println("Cancelling account [" + accountId + "]");
 }

}

This configuration file contains the JMS-infrastructure beans that are shared on both the client and
server.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory
">
 <property name="brokerURL" value="tcp://ep-t43:61616"/>
 </bean>

 <bean id="queue" class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg value="mmm"/>
 </bean>

</beans>

1.6.1. Server-side configuration

On the server, you just need to expose the service object using the JmsInvokerServiceExporter.

15

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="checkingAccountService"
 class="org.springframework.jms.remoting.JmsInvokerServiceExporter">
 <property name="serviceInterface" value="com.foo.CheckingAccountService"/>
 <property name="service">
 <bean class="com.foo.SimpleCheckingAccountService"/>
 </property>
 </bean>

 <bean class="org.springframework.jms.listener.SimpleMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="queue"/>
 <property name="concurrentConsumers" value="3"/>
 <property name="messageListener" ref="checkingAccountService"/>
 </bean>

</beans>

package com.foo;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Server {

 public static void main(String[] args) throws Exception {
 new ClassPathXmlApplicationContext(new String[]{"com/foo/server.xml",
"com/foo/jms.xml"});
 }

}

1.6.2. Client-side configuration

The client merely needs to create a client-side proxy that will implement the agreed upon interface
(CheckingAccountService). The resulting object created off the back of the following bean definition
can be injected into other client side objects, and the proxy will take care of forwarding the call to
the server-side object via JMS.

16

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="checkingAccountService"
 class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean">
 <property name="serviceInterface" value="com.foo.CheckingAccountService"/>
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="queue" ref="queue"/>
 </bean>

</beans>

package com.foo;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Client {

 public static void main(String[] args) throws Exception {
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 new String[] {"com/foo/client.xml", "com/foo/jms.xml"});
 CheckingAccountService service = (CheckingAccountService) ctx.getBean(
"checkingAccountService");
 service.cancelAccount(new Long(10));
 }

}

1.7. AMQP
Refer to the Spring AMQP Reference Document 'Spring Remoting with AMQP' section for more
information.

1.8. Auto-detection is not implemented for remote
interfaces
The main reason why auto-detection of implemented interfaces does not occur for remote
interfaces is to avoid opening too many doors to remote callers. The target object might implement
internal callback interfaces like InitializingBean or DisposableBean which one would not want to
expose to callers.

Offering a proxy with all interfaces implemented by the target usually does not matter in the local

17

https://docs.spring.io/spring-amqp/docs/current/reference/html/_reference.html#remoting

case. But when exporting a remote service, you should expose a specific service interface, with
specific operations intended for remote usage. Besides internal callback interfaces, the target might
implement multiple business interfaces, with just one of them intended for remote exposure. For
these reasons, we require such a service interface to be specified.

This is a trade-off between configuration convenience and the risk of accidental exposure of
internal methods. Always specifying a service interface is not too much effort, and puts you on the
safe side regarding controlled exposure of specific methods.

1.9. Considerations when choosing a technology
Each and every technology presented here has its drawbacks. You should carefully consider your
needs, the services you are exposing and the objects you’ll be sending over the wire when choosing
a technology.

When using RMI, it’s not possible to access the objects through the HTTP protocol, unless you’re
tunneling the RMI traffic. RMI is a fairly heavy-weight protocol in that it supports full-object
serialization which is important when using a complex data model that needs serialization over the
wire. However, RMI-JRMP is tied to Java clients: It is a Java-to-Java remoting solution.

Spring’s HTTP invoker is a good choice if you need HTTP-based remoting but also rely on Java
serialization. It shares the basic infrastructure with RMI invokers, just using HTTP as transport.
Note that HTTP invokers are not only limited to Java-to-Java remoting but also to Spring on both the
client and server side. (The latter also applies to Spring’s RMI invoker for non-RMI interfaces.)

Hessian might provide significant value when operating in a heterogeneous environment, because
they explicitly allow for non-Java clients. However, non-Java support is still limited. Known issues
include the serialization of Hibernate objects in combination with lazily-initialized collections. If
you have such a data model, consider using RMI or HTTP invokers instead of Hessian.

JMS can be useful for providing clusters of services and allowing the JMS broker to take care of load
balancing, discovery and auto-failover. By default: Java serialization is used when using JMS
remoting but the JMS provider could use a different mechanism for the wire formatting, such as
XStream to allow servers to be implemented in other technologies.

Last but not least, EJB has an advantage over RMI in that it supports standard role-based
authentication and authorization and remote transaction propagation. It is possible to get RMI
invokers or HTTP invokers to support security context propagation as well, although this is not
provided by core Spring: There are just appropriate hooks for plugging in third-party or custom
solutions here.

1.10. REST Endpoints
The Spring Framework provides two choices for making calls to REST endpoints:

• RestTemplate — the original Spring REST client with a synchronous, template method API.

• WebClient — non-blocking, reactive alternative that supports both sync and async, as well as
streaming scenarios.

18

web-reactive.pdf#webflux-client


As of 5.0 the RestTemplate is in maintenance mode, with only minor requests for
changes and bugs to be accepted going forward. Please, consider using the
WebClient which offers a more modern API and supports sync, async, and
streaming scenarios.

1.10.1. RestTemplate

The RestTemplate provides a higher level API over HTTP client libraries. It makes it easy to invoke
REST endpoints in a single line. It exposes the following groups of overloaded methods:

Table 1. RestTemplate methods

Method group Description

getForObject Retrieve a representation via GET.

getForEntity Retrieve a ResponseEntity, i.e. status, headers, and body, via GET.

headForHeaders Retrieve all headers for a resource via HEAD.

postForLocation Create a new resource via POST and return the Location header from the
response.

postForObject Create a new resource via POST and return the representation from the
response.

postForEntity Create a new resource via POST and return the representation from the
response.

put Create or update a resource via PUT.

patchForObject Update a resource via PATCH and return the representation from the
response. Note that the JDK HttpURLConnection does not support the PATCH
but Apache HttpComponents, and others do.

delete Delete the resources at the specified URI via DELETE.

optionsForAllow Retrieve allowed HTTP methods for a resource via ALLOW.

exchange More generalized, and less opinionated version, of the above methods
that provides extra flexibility when needed. It accepts RequestEntity,
including HTTP method, URL, headers, and body as input, and returns a
ResponseEntity.

These methods allow the use of ParameterizedTypeReference instead of
Class to specify a response type with generics.

execute The most generalized way to perform a request, with full control over
request preparation and response extraction via callback interfaces.

Initialization

The default constructor uses java.net.HttpURLConnection to perform requests. You can switch to a
different HTTP library with an implementation of ClientHttpRequestFactory. There is built-in
support for the following:

• Apache HttpComponents

• Netty

19

web-reactive.pdf#webflux-client

• OkHttp

For example to switch to Apache HttpComponents use:

RestTemplate template = new RestTemplate(new HttpComponentsClientHttpRequestFactory()
);

Each ClientHttpRequestFactory exposes configuration options specific to the underlying HTTP client
library, e.g. for credentials, connection pooling, etc.


Note that the java.net implementation for HTTP requests may raise an exception
when accessing the status of a response that represents an error (e.g. 401). If this is
an issue, switch to another HTTP client library.

URIs

Many of the RestTemplate methods accepts a URI template and URI template variables, either as a
String vararg, or as Map<String,String>.

For example with a String vararg:

String result = restTemplate.getForObject(
 "https://example.com/hotels/{hotel}/bookings/{booking}", String.class, "42",
"21");

Or with a Map<String, String>:

Map<String, String> vars = Collections.singletonMap("hotel", "42");

String result = restTemplate.getForObject(
 "https://example.com/hotels/{hotel}/rooms/{hotel}", String.class, vars);

Keep in mind URI templates are automatically encoded. For example:

restTemplate.getForObject("https://example.com/hotel list", String.class);

// Results in request to "https://example.com/hotel%20list"

You can use the uriTemplateHandler property of RestTemplate to customize how URIs are encoded. Or
you can prepare a java.net.URI and pass it into one of the RestTemplate methods that accept a URI.

For more details on working with and encoding URIs, see URI Links.

Headers

Use the exchange() methods to specify request headers. For example:

20

web.pdf#mvc-uri-building

String uriTemplate = "https://example.com/hotels/{hotel}";
URI uri = UriComponentsBuilder.fromUriString(uriTemplate).build(42);

RequestEntity<Void> requestEntity = RequestEntity.get(uri)
 .header(("MyRequestHeader", "MyValue")
 .build();

ResponseEntity<String> response = template.exchange(requestEntity, String.class);

String responseHeader = response.getHeaders().getFirst("MyResponseHeader");
String body = response.getBody();

Response headers can be obtained through many RestTemplate method variants that return
ResponseEntity.

Body

Object passed into and returned from RestTemplate methods are converted to and from raw content
with the help of an HttpMessageConverter.

On a POST, an input object is serialized to the request body:

URI location = template.postForLocation("https://example.com/people", person);

The "Content-Type" header of the request does not need to be set explicitly. In most cases a
compatible message converter can be found based on the source Object type, and the chosen
message converter will set the content type accordingly. If necessary, you can use the exchange
methods to provide the "Content-Type" request header explicitly, and that in turn will influence
what message converter is selected.

On a GET, the body of the response is deserialized to an output Object:

Person person = restTemplate.getForObject("https://example.com/people/{id}",
Person.class, 42);

The "Accept" header of the request does not need to be set explicitly. In most cases a compatible
message converter can be found based on the expected response type, which then helps to populate
the "Accept" header. If necessary, you can use the exchange methods to provide the "Accept" header
explicitly.

By default RestTemplate registers all built-in message converters, depending on classpath checks
that help to determine what optional conversion libraries are present. You can also set the message
converters to use explicitly.

Message Conversion

Same in Spring WebFlux

21

web-reactive.pdf#webflux-codecs

The spring-web module contains the HttpMessageConverter contract for reading and writing the body
of HTTP requests and responses via InputStream and OutputStream. HttpMessageConverter's are used
on the client side, e.g. in the RestTemplate, and also on the server side, e.g. in Spring MVC REST
controllers.

Concrete implementations for the main media (MIME) types are provided in the framework and
are registered by default with the RestTemplate on the client-side and with
RequestMethodHandlerAdapter on the server-side (see Configuring Message Converters).

The implementations of HttpMessageConverters are described in the following sections. For all
converters a default media type is used but can be overridden by setting the supportedMediaTypes
bean property

Table 2. HttpMessageConverter Implementations

MessageConverter Description

StringHttpMessageConve
rter

An HttpMessageConverter implementation that can read and write Strings
from the HTTP request and response. By default, this converter supports
all text media types (text/*), and writes with a Content-Type of
text/plain.

FormHttpMessageConvert
er

An HttpMessageConverter implementation that can read and write form
data from the HTTP request and response. By default, this converter
reads and writes the media type application/x-www-form-urlencoded. Form
data is read from and written into a MultiValueMap<String, String>.

ByteArrayHttpMessageCo
nverter

An HttpMessageConverter implementation that can read and write byte
arrays from the HTTP request and response. By default, this converter
supports all media types (*/*), and writes with a Content-Type of
application/octet-stream. This can be overridden by setting the
supportedMediaTypes property, and overriding getContentType(byte[]).

MarshallingHttpMessage
Converter

An HttpMessageConverter implementation that can read and write XML
using Spring’s Marshaller and Unmarshaller abstractions from the
org.springframework.oxm package. This converter requires a Marshaller
and Unmarshaller before it can be used. These can be injected via
constructor or bean properties. By default this converter supports (
text/xml) and (application/xml).

MappingJackson2HttpMes
sageConverter

An HttpMessageConverter implementation that can read and write JSON
using Jackson’s ObjectMapper. JSON mapping can be customized as needed
through the use of Jackson’s provided annotations. When further control
is needed, a custom ObjectMapper can be injected through the ObjectMapper
property for cases where custom JSON serializers/deserializers need to be
provided for specific types. By default this converter supports (
application/json).

MappingJackson2XmlHttp
MessageConverter

An HttpMessageConverter implementation that can read and write XML
using Jackson XML extension’s XmlMapper. XML mapping can be
customized as needed through the use of JAXB or Jackson’s provided
annotations. When further control is needed, a custom XmlMapper can be
injected through the ObjectMapper property for cases where custom XML
serializers/deserializers need to be provided for specific types. By default
this converter supports (application/xml).

22

web.pdf#mvc-config-message-converters
https://github.com/FasterXML/jackson-dataformat-xml

MessageConverter Description

SourceHttpMessageConve
rter

An HttpMessageConverter implementation that can read and write
javax.xml.transform.Source from the HTTP request and response. Only
DOMSource, SAXSource, and StreamSource are supported. By default, this
converter supports (text/xml) and (application/xml).

BufferedImageHttpMessa
geConverter

An HttpMessageConverter implementation that can read and write
java.awt.image.BufferedImage from the HTTP request and response. This
converter reads and writes the media type supported by the Java I/O API.

Jackson JSON Views

It is possible to specify a Jackson JSON View to serialize only a subset of the object properties. For
example:

MappingJacksonValue value = new MappingJacksonValue(new User("eric", "7!jd#h23"));
value.setSerializationView(User.WithoutPasswordView.class);

RequestEntity<MappingJacksonValue> requestEntity =
 RequestEntity.post(new URI("https://example.com/user")).body(value);

ResponseEntity<String> response = template.exchange(requestEntity, String.class);

Multipart

To send multipart data, you need to provide a MultiValueMap<String, ?> whose values are either
Objects representing part content, or HttpEntity representing the content and headers for a part.
MultipartBodyBuilder provides a convenient API to prepare a multipart request:

 MultipartBodyBuilder builder = new MultipartBodyBuilder();
 builder.part("fieldPart", "fieldValue");
 builder.part("filePart", new FileSystemResource("...logo.png"));
 builder.part("jsonPart", new Person("Jason"));

 MultiValueMap<String, HttpEntity<?>> parts = builder.build();

In most cases you do not have to specify the Content-Type for each part. The content type is
determined automatically based on the HttpMessageConverter chosen to serialize it, or in the case of
a Resource based on the file extension. If necessary you can explicitly provide the MediaType to use
for each part through one fo the overloaded builder part methods.

Once the MultiValueMap is ready, you can pass it to the RestTemplate:

 MultipartBodyBuilder builder = ...;
 template.postForObject("https://example.com/upload", builder.build(), Void.class);

If the MultiValueMap contains at least one non-String value, which could also be represent regular

23

https://wiki.fasterxml.com/JacksonJsonViews

form data (i.e. "application/x-www-form-urlencoded"), you don’t have to set the Content-Type to
"multipart/form-data". This is always the case when using MultipartBodyBuilder which ensures an
HttpEntity wrapper.

1.10.2. Async RestTemplate

The AsyncRestTemplate is deprecated. For all use cases where the AsyncRestTemplate is considered for
use, please use the WebClient instead.

24

web-reactive.pdf#webflux-client

Chapter 2. Enterprise JavaBeans (EJB)
integration

2.1. Introduction
As a lightweight container, Spring is often considered an EJB replacement. We do believe that for
many if not most applications and use cases, Spring as a container, combined with its rich
supporting functionality in the area of transactions, ORM and JDBC access, is a better choice than
implementing equivalent functionality via an EJB container and EJBs.

However, it is important to note that using Spring does not prevent you from using EJBs. In fact,
Spring makes it much easier to access EJBs and implement EJBs and functionality within them.
Additionally, using Spring to access services provided by EJBs allows the implementation of those
services to later transparently be switched between local EJB, remote EJB, or POJO (plain old Java
object) variants, without the client code having to be changed.

In this chapter, we look at how Spring can help you access and implement EJBs. Spring provides
particular value when accessing stateless session beans (SLSBs), so we’ll begin by discussing this.

2.2. Accessing EJBs

2.2.1. Concepts

To invoke a method on a local or remote stateless session bean, client code must normally perform
a JNDI lookup to obtain the (local or remote) EJB Home object, then use a 'create' method call on
that object to obtain the actual (local or remote) EJB object. One or more methods are then invoked
on the EJB.

To avoid repeated low-level code, many EJB applications use the Service Locator and Business
Delegate patterns. These are better than spraying JNDI lookups throughout client code, but their
usual implementations have significant disadvantages. For example:

• Typically code using EJBs depends on Service Locator or Business Delegate singletons, making it
hard to test.

• In the case of the Service Locator pattern used without a Business Delegate, application code
still ends up having to invoke the create() method on an EJB home, and deal with the resulting
exceptions. Thus it remains tied to the EJB API and the complexity of the EJB programming
model.

• Implementing the Business Delegate pattern typically results in significant code duplication,
where we have to write numerous methods that simply call the same method on the EJB.

The Spring approach is to allow the creation and use of proxy objects, normally configured inside a
Spring container, which act as codeless business delegates. You do not need to write another
Service Locator, another JNDI lookup, or duplicate methods in a hand-coded Business Delegate
unless you are actually adding real value in such code.

25

2.2.2. Accessing local SLSBs

Assume that we have a web controller that needs to use a local EJB. We’ll follow best practice and
use the EJB Business Methods Interface pattern, so that the EJB’s local interface extends a non EJB-
specific business methods interface. Let’s call this business methods interface MyComponent.

public interface MyComponent {
 ...
}

One of the main reasons to use the Business Methods Interface pattern is to ensure that
synchronization between method signatures in local interface and bean implementation class is
automatic. Another reason is that it later makes it much easier for us to switch to a POJO (plain old
Java object) implementation of the service if it makes sense to do so. Of course we’ll also need to
implement the local home interface and provide an implementation class that implements
SessionBean and the MyComponent business methods interface. Now the only Java coding we’ll need to
do to hook up our web tier controller to the EJB implementation is to expose a setter method of type
MyComponent on the controller. This will save the reference as an instance variable in the controller:

private MyComponent myComponent;

public void setMyComponent(MyComponent myComponent) {
 this.myComponent = myComponent;
}

We can subsequently use this instance variable in any business method in the controller. Now
assuming we are obtaining our controller object out of a Spring container, we can (in the same
context) configure a LocalStatelessSessionProxyFactoryBean instance, which will be the EJB proxy
object. The configuration of the proxy, and setting of the myComponent property of the controller is
done with a configuration entry such as:

<bean id="myComponent"
 class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/myBean"/>
 <property name="businessInterface" value="com.mycom.MyComponent"/>
</bean>

<bean id="myController" class="com.mycom.myController">
 <property name="myComponent" ref="myComponent"/>
</bean>

There’s a lot of work happening behind the scenes, courtesy of the Spring AOP framework, although
you aren’t forced to work with AOP concepts to enjoy the results. The myComponent bean definition
creates a proxy for the EJB, which implements the business method interface. The EJB local home is
cached on startup, so there’s only a single JNDI lookup. Each time the EJB is invoked, the proxy
invokes the classname method on the local EJB and invokes the corresponding business method on

26

the EJB.

The myController bean definition sets the myComponent property of the controller class to the EJB
proxy.

Alternatively (and preferably in case of many such proxy definitions), consider using the
<jee:local-slsb> configuration element in Spring’s "jee" namespace:

<jee:local-slsb id="myComponent" jndi-name="ejb/myBean"
 business-interface="com.mycom.MyComponent"/>

<bean id="myController" class="com.mycom.myController">
 <property name="myComponent" ref="myComponent"/>
</bean>

This EJB access mechanism delivers huge simplification of application code: the web tier code (or
other EJB client code) has no dependence on the use of EJB. If we want to replace this EJB reference
with a POJO or a mock object or other test stub, we could simply change the myComponent bean
definition without changing a line of Java code. Additionally, we haven’t had to write a single line of
JNDI lookup or other EJB plumbing code as part of our application.

Benchmarks and experience in real applications indicate that the performance overhead of this
approach (which involves reflective invocation of the target EJB) is minimal, and is typically
undetectable in typical use. Remember that we don’t want to make fine-grained calls to EJBs
anyway, as there’s a cost associated with the EJB infrastructure in the application server.

There is one caveat with regards to the JNDI lookup. In a bean container, this class is normally best
used as a singleton (there simply is no reason to make it a prototype). However, if that bean
container pre-instantiates singletons (as do the various XML ApplicationContext variants) you may
have a problem if the bean container is loaded before the EJB container loads the target EJB. That is
because the JNDI lookup will be performed in the init() method of this class and then cached, but
the EJB will not have been bound at the target location yet. The solution is to not pre-instantiate this
factory object, but allow it to be created on first use. In the XML containers, this is controlled via the
lazy-init attribute.

Although this will not be of interest to the majority of Spring users, those doing programmatic AOP
work with EJBs may want to look at LocalSlsbInvokerInterceptor.

2.2.3. Accessing remote SLSBs

Accessing remote EJBs is essentially identical to accessing local EJBs, except that the
SimpleRemoteStatelessSessionProxyFactoryBean or <jee:remote-slsb> configuration element is used.
Of course, with or without Spring, remote invocation semantics apply; a call to a method on an
object in another VM in another computer does sometimes have to be treated differently in terms
of usage scenarios and failure handling.

Spring’s EJB client support adds one more advantage over the non-Spring approach. Normally it is
problematic for EJB client code to be easily switched back and forth between calling EJBs locally or
remotely. This is because the remote interface methods must declare that they throw

27

RemoteException, and client code must deal with this, while the local interface methods don’t. Client
code written for local EJBs which needs to be moved to remote EJBs typically has to be modified to
add handling for the remote exceptions, and client code written for remote EJBs which needs to be
moved to local EJBs, can either stay the same but do a lot of unnecessary handling of remote
exceptions, or needs to be modified to remove that code. With the Spring remote EJB proxy, you can
instead not declare any thrown RemoteException in your Business Method Interface and
implementing EJB code, have a remote interface which is identical except that it does throw
RemoteException, and rely on the proxy to dynamically treat the two interfaces as if they were the
same. That is, client code does not have to deal with the checked RemoteException class. Any actual
RemoteException that is thrown during the EJB invocation will be re-thrown as the non-checked
RemoteAccessException class, which is a subclass of RuntimeException. The target service can then be
switched at will between a local EJB or remote EJB (or even plain Java object) implementation,
without the client code knowing or caring. Of course, this is optional; there is nothing stopping you
from declaring RemoteExceptions in your business interface.

2.2.4. Accessing EJB 2.x SLSBs versus EJB 3 SLSBs

Accessing EJB 2.x Session Beans and EJB 3 Session Beans via Spring is largely transparent. Spring’s
EJB accessors, including the <jee:local-slsb> and <jee:remote-slsb> facilities, transparently adapt
to the actual component at runtime. They handle a home interface if found (EJB 2.x style), or
perform straight component invocations if no home interface is available (EJB 3 style).

Note: For EJB 3 Session Beans, you could effectively use a JndiObjectFactoryBean / <jee:jndi-lookup>
as well, since fully usable component references are exposed for plain JNDI lookups there. Defining
explicit <jee:local-slsb> / <jee:remote-slsb> lookups simply provides consistent and more explicit
EJB access configuration.

28

Chapter 3. JMS (Java Message Service)

3.1. Introduction
Spring provides a JMS integration framework that simplifies the use of the JMS API much like
Spring’s integration does for the JDBC API.

JMS can be roughly divided into two areas of functionality, namely the production and
consumption of messages. The JmsTemplate class is used for message production and synchronous
message reception. For asynchronous reception similar to Java EE’s message-driven bean style,
Spring provides a number of message listener containers that are used to create Message-Driven
POJOs (MDPs). Spring also provides a declarative way of creating message listeners.

The package org.springframework.jms.core provides the core functionality for using JMS. It contains
JMS template classes that simplify the use of the JMS by handling the creation and release of
resources, much like the JdbcTemplate does for JDBC. The design principle common to Spring
template classes is to provide helper methods to perform common operations and for more
sophisticated usage, delegate the essence of the processing task to user implemented callback
interfaces. The JMS template follows the same design. The classes offer various convenience
methods for the sending of messages, consuming a message synchronously, and exposing the JMS
session and message producer to the user.

The package org.springframework.jms.support provides JMSException translation functionality. The
translation converts the checked JMSException hierarchy to a mirrored hierarchy of unchecked
exceptions. If there are any provider specific subclasses of the checked javax.jms.JMSException, this
exception is wrapped in the unchecked UncategorizedJmsException.

The package org.springframework.jms.support.converter provides a MessageConverter abstraction to
convert between Java objects and JMS messages.

The package org.springframework.jms.support.destination provides various strategies for managing
JMS destinations, such as providing a service locator for destinations stored in JNDI.

The package org.springframework.jms.annotation provides the necessary infrastructure to support
annotation-driven listener endpoints using @JmsListener.

The package org.springframework.jms.config provides the parser implementation for the jms
namespace as well the java config support to configure listener containers and create listener
endpoints.

Finally, the package org.springframework.jms.connection provides an implementation of the
ConnectionFactory suitable for use in standalone applications. It also contains an implementation of
Spring’s PlatformTransactionManager for JMS (the cunningly named JmsTransactionManager). This
allows for seamless integration of JMS as a transactional resource into Spring’s transaction
management mechanisms.

29



As of Spring Framework 5, Spring’s JMS package fully supports JMS 2.0 and
requires the JMS 2.0 API to be present at runtime. We recommend the use of a JMS
2.0 compatible provider.

If you happen to use an older message broker in your system, you may try
upgrading to a JMS 2.0 compatible driver for your existing broker generation.
Alternatively, you may also try to run against a JMS 1.1 based driver, simply
putting the JMS 2.0 API jar on the classpath but only using JMS 1.1 compatible API
against your driver. Spring’s JMS support adheres to JMS 1.1 conventions by
default, so with corresponding configuration it does support such a scenario.
However, please consider this for transition scenarios only.

3.2. Using Spring JMS

3.2.1. JmsTemplate

The JmsTemplate class is the central class in the JMS core package. It simplifies the use of JMS since it
handles the creation and release of resources when sending or synchronously receiving messages.

Code that uses the JmsTemplate only needs to implement callback interfaces giving them a clearly
defined high level contract. The MessageCreator callback interface creates a message given a Session
provided by the calling code in JmsTemplate. In order to allow for more complex usage of the JMS
API, the callback SessionCallback provides the user with the JMS session and the callback
ProducerCallback exposes a Session and MessageProducer pair.

The JMS API exposes two types of send methods, one that takes delivery mode, priority, and time-to-
live as Quality of Service (QOS) parameters and one that takes no QOS parameters which uses
default values. Since there are many send methods in JmsTemplate, the setting of the QOS
parameters have been exposed as bean properties to avoid duplication in the number of send
methods. Similarly, the timeout value for synchronous receive calls is set using the property
setReceiveTimeout.

Some JMS providers allow the setting of default QOS values administratively through the
configuration of the ConnectionFactory. This has the effect that a call to MessageProducer's send
method send(Destination destination, Message message) will use different QOS default values than
those specified in the JMS specification. In order to provide consistent management of QOS values,
the JmsTemplate must therefore be specifically enabled to use its own QOS values by setting the
boolean property isExplicitQosEnabled to true.

For convenience, JmsTemplate also exposes a basic request-reply operation that allows to send a
message and wait for a reply on a temporary queue that is created as part of the operation.



Instances of the JmsTemplate class are thread-safe once configured. This is important
because it means that you can configure a single instance of a JmsTemplate and
then safely inject this shared reference into multiple collaborators. To be clear, the
JmsTemplate is stateful, in that it maintains a reference to a ConnectionFactory, but
this state is not conversational state.

30

As of Spring Framework 4.1, JmsMessagingTemplate is built on top of JmsTemplate and provides an
integration with the messaging abstraction, i.e. org.springframework.messaging.Message. This allows
you to create the message to send in generic manner.

3.2.2. Connections

The JmsTemplate requires a reference to a ConnectionFactory. The ConnectionFactory is part of the
JMS specification and serves as the entry point for working with JMS. It is used by the client
application as a factory to create connections with the JMS provider and encapsulates various
configuration parameters, many of which are vendor specific such as SSL configuration options.

When using JMS inside an EJB, the vendor provides implementations of the JMS interfaces so that
they can participate in declarative transaction management and perform pooling of connections
and sessions. In order to use this implementation, Java EE containers typically require that you
declare a JMS connection factory as a resource-ref inside the EJB or servlet deployment descriptors.
To ensure the use of these features with the JmsTemplate inside an EJB, the client application should
ensure that it references the managed implementation of the ConnectionFactory.

Caching Messaging Resources

The standard API involves creating many intermediate objects. To send a message the following
'API' walk is performed

ConnectionFactory->Connection->Session->MessageProducer->send

Between the ConnectionFactory and the Send operation there are three intermediate objects that
are created and destroyed. To optimise the resource usage and increase performance two
implementations of ConnectionFactory are provided.

SingleConnectionFactory

Spring provides an implementation of the ConnectionFactory interface, SingleConnectionFactory,
that will return the same Connection on all createConnection() calls and ignore calls to close(). This
is useful for testing and standalone environments so that the same connection can be used for
multiple JmsTemplate calls that may span any number of transactions. SingleConnectionFactory takes
a reference to a standard ConnectionFactory that would typically come from JNDI.

CachingConnectionFactory

The CachingConnectionFactory extends the functionality of SingleConnectionFactory and adds the
caching of Sessions, MessageProducers, and MessageConsumers. The initial cache size is set to 1,
use the property sessionCacheSize to increase the number of cached sessions. Note that the number
of actual cached sessions will be more than that number as sessions are cached based on their
acknowledgment mode, so there can be up to 4 cached session instances when sessionCacheSize is
set to one, one for each acknowledgment mode. MessageProducers and MessageConsumers are
cached within their owning session and also take into account the unique properties of the
producers and consumers when caching. MessageProducers are cached based on their destination.
MessageConsumers are cached based on a key composed of the destination, selector, noLocal

31

delivery flag, and the durable subscription name (if creating durable consumers).

3.2.3. Destination Management

Destinations, like ConnectionFactories, are JMS administered objects that can be stored and
retrieved in JNDI. When configuring a Spring application context you can use the JNDI factory class
JndiObjectFactoryBean / <jee:jndi-lookup> to perform dependency injection on your object’s
references to JMS destinations. However, often this strategy is cumbersome if there are a large
number of destinations in the application or if there are advanced destination management
features unique to the JMS provider. Examples of such advanced destination management would
be the creation of dynamic destinations or support for a hierarchical namespace of destinations.
The JmsTemplate delegates the resolution of a destination name to a JMS destination object to an
implementation of the interface DestinationResolver. DynamicDestinationResolver is the default
implementation used by JmsTemplate and accommodates resolving dynamic destinations. A
JndiDestinationResolver is also provided that acts as a service locator for destinations contained in
JNDI and optionally falls back to the behavior contained in DynamicDestinationResolver.

Quite often the destinations used in a JMS application are only known at runtime and therefore
cannot be administratively created when the application is deployed. This is often because there is
shared application logic between interacting system components that create destinations at
runtime according to a well-known naming convention. Even though the creation of dynamic
destinations is not part of the JMS specification, most vendors have provided this functionality.
Dynamic destinations are created with a name defined by the user which differentiates them from
temporary destinations and are often not registered in JNDI. The API used to create dynamic
destinations varies from provider to provider since the properties associated with the destination
are vendor specific. However, a simple implementation choice that is sometimes made by vendors
is to disregard the warnings in the JMS specification and to use the TopicSession method
createTopic(String topicName) or the QueueSession method createQueue(String queueName) to create
a new destination with default destination properties. Depending on the vendor implementation,
DynamicDestinationResolver may then also create a physical destination instead of only resolving
one.

The boolean property pubSubDomain is used to configure the JmsTemplate with knowledge of what
JMS domain is being used. By default the value of this property is false, indicating that the point-to-
point domain, Queues, will be used. This property used by JmsTemplate determines the behavior of
dynamic destination resolution via implementations of the DestinationResolver interface.

You can also configure the JmsTemplate with a default destination via the property
defaultDestination. The default destination will be used with send and receive operations that do
not refer to a specific destination.

3.2.4. Message Listener Containers

One of the most common uses of JMS messages in the EJB world is to drive message-driven beans
(MDBs). Spring offers a solution to create message-driven POJOs (MDPs) in a way that does not tie a
user to an EJB container. (See Asynchronous reception: Message-Driven POJOs for detailed coverage
of Spring’s MDP support.) As from Spring Framework 4.1, endpoint methods can be simply
annotated using @JmsListener see Annotation-driven listener endpoints for more details.

32

A message listener container is used to receive messages from a JMS message queue and drive the
MessageListener that is injected into it. The listener container is responsible for all threading of
message reception and dispatches into the listener for processing. A message listener container is
the intermediary between an MDP and a messaging provider, and takes care of registering to
receive messages, participating in transactions, resource acquisition and release, exception
conversion and suchlike. This allows you as an application developer to write the (possibly
complex) business logic associated with receiving a message (and possibly responding to it), and
delegates boilerplate JMS infrastructure concerns to the framework.

There are two standard JMS message listener containers packaged with Spring, each with its
specialised feature set.

SimpleMessageListenerContainer

This message listener container is the simpler of the two standard flavors. It creates a fixed number
of JMS sessions and consumers at startup, registers the listener using the standard JMS
MessageConsumer.setMessageListener() method, and leaves it up the JMS provider to perform
listener callbacks. This variant does not allow for dynamic adaption to runtime demands or for
participation in externally managed transactions. Compatibility-wise, it stays very close to the spirit
of the standalone JMS specification - but is generally not compatible with Java EE’s JMS restrictions.



While SimpleMessageListenerContainer does not allow for the participation in
externally managed transactions, it does support native JMS transactions: simply
switch the 'sessionTransacted' flag to 'true' or, in the namespace, set the
'acknowledge' attribute to 'transacted': Exceptions thrown from your listener will
lead to a rollback then, with the message getting redelivered. Alternatively,
consider using 'CLIENT_ACKNOWLEDGE' mode which provides redelivery in case
of an exception as well but does not use transacted Sessions and therefore does not
include any other Session operations (such as sending response messages) in the
transaction protocol.

The default 'AUTO_ACKNOWLEDGE' mode does not provide proper reliability
guarantees. Messages may get lost when listener execution fails (since the
provider will automatically acknowledge each message after listener invocation,
with no exceptions to be propagated to the provider) or when the listener
container shuts down (this may be configured through the
'acceptMessagesWhileStopping' flag). Make sure to use transacted sessions in case
of reliability needs, e.g. for reliable queue handling and durable topic
subscriptions.

DefaultMessageListenerContainer

This message listener container is the one used in most cases. In contrast to
SimpleMessageListenerContainer, this container variant allows for dynamic adaptation to runtime
demands and is able to participate in externally managed transactions. Each received message is
registered with an XA transaction when configured with a JtaTransactionManager; so processing
may take advantage of XA transaction semantics. This listener container strikes a good balance
between low requirements on the JMS provider, advanced functionality such as the participation in
externally managed transactions, and compatibility with Java EE environments.

33

The cache level of the container can be customized. Note that when no caching is enabled, a new
connection and a new session is created for each message reception. Combining this with a non
durable subscription with high loads may lead to message lost. Make sure to use a proper cache
level in such case.

This container also has recoverable capabilities when the broker goes down. By default, a simple
BackOff implementation retries every 5 seconds. It is possible to specify a custom BackOff
implementation for more fine-grained recovery options, see ExponentialBackOff for an example.



Like its sibling SimpleMessageListenerContainer, DefaultMessageListenerContainer
supports native JMS transactions and also allows for customizing the
acknowledgment mode. This is strongly recommended over externally managed
transactions if feasible for your scenario: that is, if you can live with occasional
duplicate messages in case of the JVM dying. Custom duplicate message detection
steps in your business logic may cover such situations, e.g. in the form of a
business entity existence check or a protocol table check. Any such arrangements
will be significantly more efficient than the alternative: wrapping your entire
processing with an XA transaction (through configuring your
DefaultMessageListenerContainer with an JtaTransactionManager), covering the
reception of the JMS message as well as the execution of the business logic in your
message listener (including database operations etc).

The default 'AUTO_ACKNOWLEDGE' mode does not provide proper reliability
guarantees. Messages may get lost when listener execution fails (since the
provider will automatically acknowledge each message before listener invocation)
or when the listener container shuts down (this may be configured through the
'acceptMessagesWhileStopping' flag). Make sure to use transacted sessions in case
of reliability needs, e.g. for reliable queue handling and durable topic
subscriptions.

3.2.5. Transaction management

Spring provides a JmsTransactionManager that manages transactions for a single JMS
ConnectionFactory. This allows JMS applications to leverage the managed transaction features of
Spring as described in Transaction Management. The JmsTransactionManager performs local
resource transactions, binding a JMS Connection/Session pair from the specified ConnectionFactory
to the thread. JmsTemplate automatically detects such transactional resources and operates on them
accordingly.

In a Java EE environment, the ConnectionFactory will pool Connections and Sessions, so those
resources are efficiently reused across transactions. In a standalone environment, using Spring’s
SingleConnectionFactory will result in a shared JMS Connection, with each transaction having its
own independent Session. Alternatively, consider the use of a provider-specific pooling adapter
such as ActiveMQ’s PooledConnectionFactory class.

JmsTemplate can also be used with the JtaTransactionManager and an XA-capable JMS
ConnectionFactory for performing distributed transactions. Note that this requires the use of a JTA
transaction manager as well as a properly XA-configured ConnectionFactory! (Check your Java EE

34

data-access.pdf#transaction

server’s / JMS provider’s documentation.)

Reusing code across a managed and unmanaged transactional environment can be confusing when
using the JMS API to create a Session from a Connection. This is because the JMS API has only one
factory method to create a Session and it requires values for the transaction and acknowledgment
modes. In a managed environment, setting these values is the responsibility of the environment’s
transactional infrastructure, so these values are ignored by the vendor’s wrapper to the JMS
Connection. When using the JmsTemplate in an unmanaged environment you can specify these
values through the use of the properties sessionTransacted and sessionAcknowledgeMode. When using
a PlatformTransactionManager with JmsTemplate, the template will always be given a transactional
JMS Session.

3.3. Sending a Message
The JmsTemplate contains many convenience methods to send a message. There are send methods
that specify the destination using a javax.jms.Destination object and those that specify the
destination using a string for use in a JNDI lookup. The send method that takes no destination
argument uses the default destination.

35

import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Queue;
import javax.jms.Session;

import org.springframework.jms.core.MessageCreator;
import org.springframework.jms.core.JmsTemplate;

public class JmsQueueSender {

 private JmsTemplate jmsTemplate;
 private Queue queue;

 public void setConnectionFactory(ConnectionFactory cf) {
 this.jmsTemplate = new JmsTemplate(cf);
 }

 public void setQueue(Queue queue) {
 this.queue = queue;
 }

 public void simpleSend() {
 this.jmsTemplate.send(this.queue, new MessageCreator() {
 public Message createMessage(Session session) throws JMSException {
 return session.createTextMessage("hello queue world");
 }
 });
 }
}

This example uses the MessageCreator callback to create a text message from the supplied Session
object. The JmsTemplate is constructed by passing a reference to a ConnectionFactory. As an
alternative, a zero argument constructor and connectionFactory is provided and can be used for
constructing the instance in JavaBean style (using a BeanFactory or plain Java code). Alternatively,
consider deriving from Spring’s JmsGatewaySupport convenience base class, which provides pre-built
bean properties for JMS configuration.

The method send(String destinationName, MessageCreator creator) lets you send a message using
the string name of the destination. If these names are registered in JNDI, you should set the
destinationResolver property of the template to an instance of JndiDestinationResolver.

If you created the JmsTemplate and specified a default destination, the send(MessageCreator c) sends
a message to that destination.

3.3.1. Using Message Converters

In order to facilitate the sending of domain model objects, the JmsTemplate has various send
methods that take a Java object as an argument for a message’s data content. The overloaded

36

methods convertAndSend() and receiveAndConvert() in JmsTemplate delegate the conversion process
to an instance of the MessageConverter interface. This interface defines a simple contract to convert
between Java objects and JMS messages. The default implementation SimpleMessageConverter
supports conversion between String and TextMessage, byte[] and BytesMesssage, and java.util.Map
and MapMessage. By using the converter, you and your application code can focus on the business
object that is being sent or received via JMS and not be concerned with the details of how it is
represented as a JMS message.

The sandbox currently includes a MapMessageConverter which uses reflection to convert between a
JavaBean and a MapMessage. Other popular implementation choices you might implement yourself
are Converters that use an existing XML marshalling package, such as JAXB, Castor or XStream, to
create a TextMessage representing the object.

To accommodate the setting of a message’s properties, headers, and body that can not be
generically encapsulated inside a converter class, the MessagePostProcessor interface gives you
access to the message after it has been converted, but before it is sent. The example below
demonstrates how to modify a message header and a property after a java.util.Map is converted to
a message.

public void sendWithConversion() {
 Map map = new HashMap();
 map.put("Name", "Mark");
 map.put("Age", new Integer(47));
 jmsTemplate.convertAndSend("testQueue", map, new MessagePostProcessor() {
 public Message postProcessMessage(Message message) throws JMSException {
 message.setIntProperty("AccountID", 1234);
 message.setJMSCorrelationID("123-00001");
 return message;
 }
 });
}

This results in a message of the form:

MapMessage={
 Header={
 ... standard headers ...
 CorrelationID={123-00001}
 }
 Properties={
 AccountID={Integer:1234}
 }
 Fields={
 Name={String:Mark}
 Age={Integer:47}
 }
}

37

3.3.2. SessionCallback and ProducerCallback

While the send operations cover many common usage scenarios, there are cases when you want to
perform multiple operations on a JMS Session or MessageProducer. The SessionCallback and
ProducerCallback expose the JMS Session and Session / MessageProducer pair respectively. The
execute() methods on JmsTemplate execute these callback methods.

3.4. Receiving a message

3.4.1. Synchronous reception

While JMS is typically associated with asynchronous processing, it is possible to consume messages
synchronously. The overloaded receive(..) methods provide this functionality. During a
synchronous receive, the calling thread blocks until a message becomes available. This can be a
dangerous operation since the calling thread can potentially be blocked indefinitely. The property
receiveTimeout specifies how long the receiver should wait before giving up waiting for a message.

3.4.2. Asynchronous reception: Message-Driven POJOs


Spring also supports annotated-listener endpoints through the use of the
@JmsListener annotation and provides an open infrastructure to register endpoints
programmatically. This is by far the most convenient way to setup an
asynchronous receiver, see Enable listener endpoint annotations for more details.

In a fashion similar to a Message-Driven Bean (MDB) in the EJB world, the Message-Driven POJO
(MDP) acts as a receiver for JMS messages. The one restriction (but see also below for the discussion
of the MessageListenerAdapter class) on an MDP is that it must implement the
javax.jms.MessageListener interface. Please also be aware that in the case where your POJO will be
receiving messages on multiple threads, it is important to ensure that your implementation is
thread-safe.

Below is a simple implementation of an MDP:

38

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class ExampleListener implements MessageListener {

 public void onMessage(Message message) {
 if (message instanceof TextMessage) {
 try {
 System.out.println(((TextMessage) message).getText());
 }
 catch (JMSException ex) {
 throw new RuntimeException(ex);
 }
 }
 else {
 throw new IllegalArgumentException("Message must be of type TextMessage");
 }
 }
}

Once you’ve implemented your MessageListener, it’s time to create a message listener container.

Find below an example of how to define and configure one of the message listener containers that
ships with Spring (in this case the DefaultMessageListenerContainer).

<!-- this is the Message Driven POJO (MDP) -->
<bean id="messageListener" class="jmsexample.ExampleListener"/>

<!-- and this is the message listener container -->
<bean id="jmsContainer" class=
"org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
</bean>

Please refer to the Spring javadocs of the various message listener containers for a full description
of the features supported by each implementation.

3.4.3. SessionAwareMessageListener interface

The SessionAwareMessageListener interface is a Spring-specific interface that provides a similar
contract to the JMS MessageListener interface, but also provides the message handling method with
access to the JMS Session from which the Message was received.

39

package org.springframework.jms.listener;

public interface SessionAwareMessageListener {

 void onMessage(Message message, Session session) throws JMSException;
}

You can choose to have your MDPs implement this interface (in preference to the standard JMS
MessageListener interface) if you want your MDPs to be able to respond to any received messages
(using the Session supplied in the onMessage(Message, Session) method). All of the message listener
container implementations that ship with Spring have support for MDPs that implement either the
MessageListener or SessionAwareMessageListener interface. Classes that implement the
SessionAwareMessageListener come with the caveat that they are then tied to Spring through the
interface. The choice of whether or not to use it is left entirely up to you as an application developer
or architect.

Please note that the 'onMessage(..)' method of the SessionAwareMessageListener interface throws
JMSException. In contrast to the standard JMS MessageListener interface, when using the
SessionAwareMessageListener interface, it is the responsibility of the client code to handle any
exceptions thrown.

3.4.4. MessageListenerAdapter

The MessageListenerAdapter class is the final component in Spring’s asynchronous messaging
support: in a nutshell, it allows you to expose almost any class as a MDP (there are of course some
constraints).

Consider the following interface definition. Notice that although the interface extends neither the
MessageListener nor SessionAwareMessageListener interfaces, it can still be used as a MDP via the use
of the MessageListenerAdapter class. Notice also how the various message handling methods are
strongly typed according to the contents of the various Message types that they can receive and
handle.

public interface MessageDelegate {

 void handleMessage(String message);

 void handleMessage(Map message);

 void handleMessage(byte[] message);

 void handleMessage(Serializable message);
}

40

public class DefaultMessageDelegate implements MessageDelegate {
 // implementation elided for clarity...
}

In particular, note how the above implementation of the MessageDelegate interface (the above
DefaultMessageDelegate class) has no JMS dependencies at all. It truly is a POJO that we will make
into an MDP via the following configuration.

<!-- this is the Message Driven POJO (MDP) -->
<bean id="messageListener" class=
"org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="jmsexample.DefaultMessageDelegate"/>
 </constructor-arg>
</bean>

<!-- and this is the message listener container... -->
<bean id="jmsContainer" class=
"org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
</bean>

Below is an example of another MDP that can only handle the receiving of JMS TextMessage
messages. Notice how the message handling method is actually called 'receive' (the name of the
message handling method in a MessageListenerAdapter defaults to 'handleMessage'), but it is
configurable (as you will see below). Notice also how the 'receive(..)' method is strongly typed to
receive and respond only to JMS TextMessage messages.

public interface TextMessageDelegate {

 void receive(TextMessage message);
}

public class DefaultTextMessageDelegate implements TextMessageDelegate {
 // implementation elided for clarity...
}

The configuration of the attendant MessageListenerAdapter would look like this:

41

<bean id="messageListener" class=
"org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="jmsexample.DefaultTextMessageDelegate"/>
 </constructor-arg>
 <property name="defaultListenerMethod" value="receive"/>
 <!-- we don't want automatic message context extraction -->
 <property name="messageConverter">
 <null/>
 </property>
</bean>

Please note that if the above 'messageListener' receives a JMS Message of a type other than
TextMessage, an IllegalStateException will be thrown (and subsequently swallowed). Another of the
capabilities of the MessageListenerAdapter class is the ability to automatically send back a response
Message if a handler method returns a non-void value. Consider the interface and class:

public interface ResponsiveTextMessageDelegate {

 // notice the return type...
 String receive(TextMessage message);
}

public class DefaultResponsiveTextMessageDelegate implements
ResponsiveTextMessageDelegate {
 // implementation elided for clarity...
}

If the above DefaultResponsiveTextMessageDelegate is used in conjunction with a
MessageListenerAdapter then any non-null value that is returned from the execution of the
'receive(..)' method will (in the default configuration) be converted into a TextMessage. The
resulting TextMessage will then be sent to the Destination (if one exists) defined in the JMS Reply-To
property of the original Message, or the default Destination set on the MessageListenerAdapter (if one
has been configured); if no Destination is found then an InvalidDestinationException will be
thrown (and please note that this exception will not be swallowed and will propagate up the call
stack).

3.4.5. Processing messages within transactions

Invoking a message listener within a transaction only requires reconfiguration of the listener
container.

Local resource transactions can simply be activated through the sessionTransacted flag on the
listener container definition. Each message listener invocation will then operate within an active
JMS transaction, with message reception rolled back in case of listener execution failure. Sending a
response message (via SessionAwareMessageListener) will be part of the same local transaction, but

42

any other resource operations (such as database access) will operate independently. This usually
requires duplicate message detection in the listener implementation, covering the case where
database processing has committed but message processing failed to commit.

<bean id="jmsContainer" class=
"org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
 <property name="sessionTransacted" value="true"/>
</bean>

For participating in an externally managed transaction, you will need to configure a transaction
manager and use a listener container which supports externally managed transactions: typically
DefaultMessageListenerContainer.

To configure a message listener container for XA transaction participation, you’ll want to configure
a JtaTransactionManager (which, by default, delegates to the Java EE server’s transaction subsystem).
Note that the underlying JMS ConnectionFactory needs to be XA-capable and properly registered
with your JTA transaction coordinator! (Check your Java EE server’s configuration of JNDI
resources.) This allows message reception as well as e.g. database access to be part of the same
transaction (with unified commit semantics, at the expense of XA transaction log overhead).

<bean id="transactionManager" class=
"org.springframework.transaction.jta.JtaTransactionManager"/>

Then you just need to add it to our earlier container configuration. The container will take care of
the rest.

<bean id="jmsContainer" class=
"org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
 <property name="transactionManager" ref="transactionManager"/>
</bean>

3.5. Support for JCA Message Endpoints
Beginning with version 2.5, Spring also provides support for a JCA-based MessageListener container.
The JmsMessageEndpointManager will attempt to automatically determine the ActivationSpec class
name from the provider’s ResourceAdapter class name. Therefore, it is typically possible to just
provide Spring’s generic JmsActivationSpecConfig as shown in the following example.

43

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
 <property name="resourceAdapter" ref="resourceAdapter"/>
 <property name="activationSpecConfig">
 <bean class="
org.springframework.jms.listener.endpoint.JmsActivationSpecConfig">
 <property name="destinationName" value="myQueue"/>
 </bean>
 </property>
 <property name="messageListener" ref="myMessageListener"/>
</bean>

Alternatively, you may set up a JmsMessageEndpointManager with a given ActivationSpec object. The
ActivationSpec object may also come from a JNDI lookup (using <jee:jndi-lookup>).

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
 <property name="resourceAdapter" ref="resourceAdapter"/>
 <property name="activationSpec">
 <bean class="org.apache.activemq.ra.ActiveMQActivationSpec">
 <property name="destination" value="myQueue"/>
 <property name="destinationType" value="javax.jms.Queue"/>
 </bean>
 </property>
 <property name="messageListener" ref="myMessageListener"/>
</bean>

Using Spring’s ResourceAdapterFactoryBean, the target ResourceAdapter may be configured locally as
depicted in the following example.

<bean id="resourceAdapter" class=
"org.springframework.jca.support.ResourceAdapterFactoryBean">
 <property name="resourceAdapter">
 <bean class="org.apache.activemq.ra.ActiveMQResourceAdapter">
 <property name="serverUrl" value="tcp://localhost:61616"/>
 </bean>
 </property>
 <property name="workManager">
 <bean class="org.springframework.jca.work.SimpleTaskWorkManager"/>
 </property>
</bean>

The specified WorkManager may also point to an environment-specific thread pool - typically through
SimpleTaskWorkManager's "asyncTaskExecutor" property. Consider defining a shared thread pool for
all your ResourceAdapter instances if you happen to use multiple adapters.

In some environments (e.g. WebLogic 9 or above), the entire ResourceAdapter object may be
obtained from JNDI instead (using <jee:jndi-lookup>). The Spring-based message listeners can then
interact with the server-hosted ResourceAdapter, also using the server’s built-in WorkManager.

44

Please consult the javadoc for JmsMessageEndpointManager, JmsActivationSpecConfig, and
ResourceAdapterFactoryBean for more details.

Spring also provides a generic JCA message endpoint manager which is not tied to JMS:
org.springframework.jca.endpoint.GenericMessageEndpointManager. This component allows for using
any message listener type (e.g. a CCI MessageListener) and any provider-specific ActivationSpec
object. Check out your JCA provider’s documentation to find out about the actual capabilities of
your connector, and consult GenericMessageEndpointManager's javadoc for the Spring-specific
configuration details.



JCA-based message endpoint management is very analogous to EJB 2.1 Message-
Driven Beans; it uses the same underlying resource provider contract. Like with
EJB 2.1 MDBs, any message listener interface supported by your JCA provider can
be used in the Spring context as well. Spring nevertheless provides explicit
'convenience' support for JMS, simply because JMS is the most common endpoint
API used with the JCA endpoint management contract.

3.6. Annotation-driven listener endpoints
The easiest way to receive a message asynchronously is to use the annotated listener endpoint
infrastructure. In a nutshell, it allows you to expose a method of a managed bean as a JMS listener
endpoint.

@Component
public class MyService {

 @JmsListener(destination = "myDestination")
 public void processOrder(String data) { ... }
}

The idea of the example above is that whenever a message is available on the
javax.jms.Destination "myDestination", the processOrder method is invoked accordingly (in this
case, with the content of the JMS message similarly to what the MessageListenerAdapter provides).

The annotated endpoint infrastructure creates a message listener container behind the scenes for
each annotated method, using a JmsListenerContainerFactory. Such a container is not registered
against the application context but can be easily located for management purposes using the
JmsListenerEndpointRegistry bean.


@JmsListener is a repeatable annotation on Java 8, so it is possible to associate
several JMS destinations to the same method by adding additional @JmsListener
declarations to it.

3.6.1. Enable listener endpoint annotations

To enable support for @JmsListener annotations add @EnableJms to one of your @Configuration
classes.

45

@Configuration
@EnableJms
public class AppConfig {

 @Bean
 public DefaultJmsListenerContainerFactory jmsListenerContainerFactory() {
 DefaultJmsListenerContainerFactory factory = new
DefaultJmsListenerContainerFactory();
 factory.setConnectionFactory(connectionFactory());
 factory.setDestinationResolver(destinationResolver());
 factory.setSessionTransacted(true);
 factory.setConcurrency("3-10");
 return factory;
 }
}

By default, the infrastructure looks for a bean named jmsListenerContainerFactory as the source for
the factory to use to create message listener containers. In this case, and ignoring the JMS
infrastructure setup, the processOrder method can be invoked with a core poll size of 3 threads and
a maximum pool size of 10 threads.

It is possible to customize the listener container factory to use per annotation or an explicit default
can be configured by implementing the JmsListenerConfigurer interface. The default is only
required if at least one endpoint is registered without a specific container factory. See the javadoc
for full details and examples.

If you prefer XML configuration use the <jms:annotation-driven> element.

<jms:annotation-driven/>

<bean id="jmsListenerContainerFactory"
 class="org.springframework.jms.config.DefaultJmsListenerContainerFactory">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="sessionTransacted" value="true"/>
 <property name="concurrency" value="3-10"/>
</bean>

3.6.2. Programmatic endpoints registration

JmsListenerEndpoint provides a model of an JMS endpoint and is responsible for configuring the
container for that model. The infrastructure allows you to configure endpoints programmatically in
addition to the ones that are detected by the JmsListener annotation.

46

@Configuration
@EnableJms
public class AppConfig implements JmsListenerConfigurer {

 @Override
 public void configureJmsListeners(JmsListenerEndpointRegistrar registrar) {
 SimpleJmsListenerEndpoint endpoint = new SimpleJmsListenerEndpoint();
 endpoint.setId("myJmsEndpoint");
 endpoint.setDestination("anotherQueue");
 endpoint.setMessageListener(message -> {
 // processing
 });
 registrar.registerEndpoint(endpoint);
 }
}

In the example above, we used SimpleJmsListenerEndpoint which provides the actual
MessageListener to invoke but you could just as well build your own endpoint variant describing a
custom invocation mechanism.

It should be noted that you could just as well skip the use of @JmsListener altogether and only
register your endpoints programmatically through JmsListenerConfigurer.

3.6.3. Annotated endpoint method signature

So far, we have been injecting a simple String in our endpoint but it can actually have a very
flexible method signature. Let’s rewrite it to inject the Order with a custom header:

@Component
public class MyService {

 @JmsListener(destination = "myDestination")
 public void processOrder(Order order, @Header("order_type") String orderType) {
 ...
 }
}

These are the main elements you can inject in JMS listener endpoints:

• The raw javax.jms.Message or any of its subclasses (provided of course that it matches the
incoming message type).

• The javax.jms.Session for optional access to the native JMS API e.g. for sending a custom reply.

• The org.springframework.messaging.Message representing the incoming JMS message. Note that
this message holds both the custom and the standard headers (as defined by JmsHeaders).

• @Header-annotated method arguments to extract a specific header value, including standard JMS
headers.

47

• @Headers-annotated argument that must also be assignable to java.util.Map for getting access to
all headers.

• A non-annotated element that is not one of the supported types (i.e. Message and Session) is
considered to be the payload. You can make that explicit by annotating the parameter with
@Payload. You can also turn on validation by adding an extra @Valid.

The ability to inject Spring’s Message abstraction is particularly useful to benefit from all the
information stored in the transport-specific message without relying on transport-specific API.

@JmsListener(destination = "myDestination")
public void processOrder(Message<Order> order) { ... }

Handling of method arguments is provided by DefaultMessageHandlerMethodFactory which can be
further customized to support additional method arguments. The conversion and validation
support can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @Valid and configure the necessary validator as follows:

@Configuration
@EnableJms
public class AppConfig implements JmsListenerConfigurer {

 @Override
 public void configureJmsListeners(JmsListenerEndpointRegistrar registrar) {
 registrar.setMessageHandlerMethodFactory(myJmsHandlerMethodFactory());
 }

 @Bean
 public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {
 DefaultMessageHandlerMethodFactory factory = new
DefaultMessageHandlerMethodFactory();
 factory.setValidator(myValidator());
 return factory;
 }
}

3.6.4. Response management

The existing support in MessageListenerAdapter already allows your method to have a non-void
return type. When that’s the case, the result of the invocation is encapsulated in a javax.jms.Message
sent either in the destination specified in the JMSReplyTo header of the original message or in the
default destination configured on the listener. That default destination can now be set using the
@SendTo annotation of the messaging abstraction.

Assuming our processOrder method should now return an OrderStatus, it is possible to write it as
follow to automatically send a response:

48

@JmsListener(destination = "myDestination")
@SendTo("status")
public OrderStatus processOrder(Order order) {
 // order processing
 return status;
}


If you have several @JmsListener-annotated methods, you can also place the
@SendTo annotation at the class level to share a default reply destination.

If you need to set additional headers in a transport-independent manner, you could return a
Message instead, something like:

@JmsListener(destination = "myDestination")
@SendTo("status")
public Message<OrderStatus> processOrder(Order order) {
 // order processing
 return MessageBuilder
 .withPayload(status)
 .setHeader("code", 1234)
 .build();
}

If you need to compute the response destination at runtime, you can encapsulate your response in
a JmsResponse instance that also provides the destination to use at runtime. The previous example
can be rewritten as follows:

@JmsListener(destination = "myDestination")
public JmsResponse<Message<OrderStatus>> processOrder(Order order) {
 // order processing
 Message<OrderStatus> response = MessageBuilder
 .withPayload(status)
 .setHeader("code", 1234)
 .build();
 return JmsResponse.forQueue(response, "status");
}

Finally if you need to specify some QoS values for the response such as the priority or the time to
live, you can configure the JmsListenerContainerFactory accordingly:

49

@Configuration
@EnableJms
public class AppConfig {

 @Bean
 public DefaultJmsListenerContainerFactory jmsListenerContainerFactory() {
 DefaultJmsListenerContainerFactory factory = new
DefaultJmsListenerContainerFactory();
 factory.setConnectionFactory(connectionFactory());
 QosSettings replyQosSettings = new QosSettings();
 replyQosSettings.setPriority(2);
 replyQosSettings.setTimeToLive(10000);
 factory.setReplyQosSettings(replyQosSettings);
 return factory;
 }
}

3.7. JMS namespace support
Spring provides an XML namespace for simplifying JMS configuration. To use the JMS namespace
elements you will need to reference the JMS schema:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms="http://www.springframework.org/schema/jms"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jms
https://www.springframework.org/schema/jms/spring-jms.xsd">

 <!-- bean definitions here -->

</beans>

The namespace consists of three top-level elements: <annotation-driven/>, <listener-container/>
and <jca-listener-container/>. <annotation-driven enables the use of annotation-driven listener
endpoints. <listener-container/> and <jca-listener-container/> defines shared listener container
configuration and may contain <listener/> child elements. Here is an example of a basic
configuration for two listeners.

50

<jms:listener-container>

 <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

 <jms:listener destination="queue.confirmations" ref="confirmationLogger" method=
"log"/>

</jms:listener-container>

The example above is equivalent to creating two distinct listener container bean definitions and
two distinct MessageListenerAdapter bean definitions as demonstrated in MessageListenerAdapter.
In addition to the attributes shown above, the listener element may contain several optional ones.
The following table describes all available attributes:

Table 3. Attributes of the JMS <listener> element

Attribute Description

id A bean name for the hosting listener container. If not specified, a bean name will be
automatically generated.

destination
(required)

The destination name for this listener, resolved through the DestinationResolver
strategy.

ref (required) The bean name of the handler object.

method The name of the handler method to invoke. If the ref points to a MessageListener or
Spring SessionAwareMessageListener, this attribute may be omitted.

response-
destination

The name of the default response destination to send response messages to. This will
be applied in case of a request message that does not carry a "JMSReplyTo" field. The
type of this destination will be determined by the listener-container’s "response-
destination-type" attribute. Note: This only applies to a listener method with a
return value, for which each result object will be converted into a response
message.

subscription The name of the durable subscription, if any.

selector An optional message selector for this listener.

concurrency The number of concurrent sessions/consumers to start for this listener. Can either
be a simple number indicating the maximum number (e.g. "5") or a range indicating
the lower as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just
a hint and might be ignored at runtime. Default is the value provided by the
container

The <listener-container/> element also accepts several optional attributes. This allows for
customization of the various strategies (for example, taskExecutor and destinationResolver) as well
as basic JMS settings and resource references. Using these attributes, it is possible to define highly-
customized listener containers while still benefiting from the convenience of the namespace.

Such settings can be automatically exposed as a JmsListenerContainerFactory by specifying the id of
the bean to expose through the factory-id attribute.

51

<jms:listener-container connection-factory="myConnectionFactory"
 task-executor="myTaskExecutor"
 destination-resolver="myDestinationResolver"
 transaction-manager="myTransactionManager"
 concurrency="10">

 <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

 <jms:listener destination="queue.confirmations" ref="confirmationLogger" method=
"log"/>

</jms:listener-container>

The following table describes all available attributes. Consult the class-level javadocs of the
AbstractMessageListenerContainer and its concrete subclasses for more details on the individual
properties. The javadocs also provide a discussion of transaction choices and message redelivery
scenarios.

Table 4. Attributes of the JMS <listener-container> element

Attribute Description

container-
type

The type of this listener container. Available options are: default, simple, default102,
or simple102 (the default value is 'default').

container-
class

A custom listener container implementation class as fully qualified class name.
Default is Spring’s standard DefaultMessageListenerContainer or
SimpleMessageListenerContainer, according to the "container-type" attribute.

factory-id Exposes the settings defined by this element as a JmsListenerContainerFactory with
the specified id so that they can be reused with other endpoints.

connection-
factory

A reference to the JMS ConnectionFactory bean (the default bean name is
'connectionFactory').

task-
executor

A reference to the Spring TaskExecutor for the JMS listener invokers.

destination-
resolver

A reference to the DestinationResolver strategy for resolving JMS Destinations.

message-
converter

A reference to the MessageConverter strategy for converting JMS Messages to listener
method arguments. Default is a SimpleMessageConverter.

error-
handler

A reference to an ErrorHandler strategy for handling any uncaught Exceptions that
may occur during the execution of the MessageListener.

destination-
type

The JMS destination type for this listener: queue, topic, durableTopic, sharedTopic or
sharedDurableTopic. This enables potentially the pubSubDomain, subscriptionDurable
and subscriptionShared properties of the container. The default is queue (i.e.
disabling those 3 properties).

response-
destination-
type

The JMS destination type for responses: "queue", "topic". Default is the value of the
"destination-type" attribute.

52

Attribute Description

client-id The JMS client id for this listener container. Needs to be specified when using
durable subscriptions.

cache The cache level for JMS resources: none, connection, session, consumer or auto. By
default (auto), the cache level will effectively be "consumer", unless an external
transaction manager has been specified - in which case the effective default will be
none (assuming Java EE-style transaction management where the given
ConnectionFactory is an XA-aware pool).

acknowledge The native JMS acknowledge mode: auto, client, dups-ok or transacted. A value of
transacted activates a locally transacted Session. As an alternative, specify the
transaction-manager attribute described below. Default is auto.

transaction-
manager

A reference to an external PlatformTransactionManager (typically an XA-based
transaction coordinator, e.g. Spring’s JtaTransactionManager). If not specified, native
acknowledging will be used (see "acknowledge" attribute).

concurrency The number of concurrent sessions/consumers to start for each listener. Can either
be a simple number indicating the maximum number (e.g. "5") or a range indicating
the lower as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just
a hint and might be ignored at runtime. Default is 1; keep concurrency limited to 1
in case of a topic listener or if queue ordering is important; consider raising it for
general queues.

prefetch The maximum number of messages to load into a single session. Note that raising
this number might lead to starvation of concurrent consumers!

receive-
timeout

The timeout to use for receive calls (in milliseconds). The default is 1000 ms (1 sec);
-1 indicates no timeout at all.

back-off Specify the BackOff instance to use to compute the interval between recovery
attempts. If the BackOffExecution implementation returns BackOffExecution#STOP, the
listener container will not further attempt to recover. The recovery-interval value is
ignored when this property is set. The default is a FixedBackOff with an interval of
5000 ms, that is 5 seconds.

recovery-
interval

Specify the interval between recovery attempts, in milliseconds. Convenience way to
create a FixedBackOff with the specified interval. For more recovery options,
consider specifying a BackOff instance instead. The default is 5000 ms, that is 5
seconds.

phase The lifecycle phase within which this container should start and stop. The lower the
value the earlier this container will start and the later it will stop. The default is
Integer.MAX_VALUE meaning the container will start as late as possible and stop as
soon as possible.

Configuring a JCA-based listener container with the "jms" schema support is very similar.

53

<jms:jca-listener-container resource-adapter="myResourceAdapter"
 destination-resolver="myDestinationResolver"
 transaction-manager="myTransactionManager"
 concurrency="10">

 <jms:listener destination="queue.orders" ref="myMessageListener"/>

</jms:jca-listener-container>

The available configuration options for the JCA variant are described in the following table:

Table 5. Attributes of the JMS <jca-listener-container/> element

Attribute Description

factory-id Exposes the settings defined by this element as a JmsListenerContainerFactory with
the specified id so that they can be reused with other endpoints.

resource-
adapter

A reference to the JCA ResourceAdapter bean (the default bean name is
'resourceAdapter').

activation-
spec-factory

A reference to the JmsActivationSpecFactory. The default is to autodetect the JMS
provider and its ActivationSpec class (see DefaultJmsActivationSpecFactory)

destination-
resolver

A reference to the DestinationResolver strategy for resolving JMS Destinations.

message-
converter

A reference to the MessageConverter strategy for converting JMS Messages to listener
method arguments. Default is a SimpleMessageConverter.

destination-
type

The JMS destination type for this listener: queue, topic, durableTopic, sharedTopic or
sharedDurableTopic. This enables potentially the pubSubDomain, subscriptionDurable
and subscriptionShared properties of the container. The default is queue (i.e.
disabling those 3 properties).

response-
destination-
type

The JMS destination type for responses: "queue", "topic". Default is the value of the
"destination-type" attribute.

client-id The JMS client id for this listener container. Needs to be specified when using
durable subscriptions.

acknowledge The native JMS acknowledge mode: auto, client, dups-ok or transacted. A value of
transacted activates a locally transacted Session. As an alternative, specify the
transaction-manager attribute described below. Default is auto.

transaction-
manager

A reference to a Spring JtaTransactionManager or a
javax.transaction.TransactionManager for kicking off an XA transaction for each
incoming message. If not specified, native acknowledging will be used (see the
"acknowledge" attribute).

concurrency The number of concurrent sessions/consumers to start for each listener. Can either
be a simple number indicating the maximum number (e.g. "5") or a range indicating
the lower as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just
a hint and will typically be ignored at runtime when using a JCA listener container.
Default is 1.

54

Attribute Description

prefetch The maximum number of messages to load into a single session. Note that raising
this number might lead to starvation of concurrent consumers!

55

Chapter 4. JMX

4.1. Introduction
The JMX support in Spring provides you with the features to easily and transparently integrate your
Spring application into a JMX infrastructure.

JMX?

This chapter is not an introduction to JMX… it doesn’t try to explain the motivations of why
one might want to use JMX (or indeed what the letters JMX actually stand for). If you are new
to JMX, check out Further resources at the end of this chapter.

Specifically, Spring’s JMX support provides four core features:

• The automatic registration of any Spring bean as a JMX MBean

• A flexible mechanism for controlling the management interface of your beans

• The declarative exposure of MBeans over remote, JSR-160 connectors

• The simple proxying of both local and remote MBean resources

These features are designed to work without coupling your application components to either Spring
or JMX interfaces and classes. Indeed, for the most part your application classes need not be aware
of either Spring or JMX in order to take advantage of the Spring JMX features.

4.2. Exporting your beans to JMX
The core class in Spring’s JMX framework is the MBeanExporter. This class is responsible for taking
your Spring beans and registering them with a JMX MBeanServer. For example, consider the
following class:

56

package org.springframework.jmx;

public class JmxTestBean implements IJmxTestBean {

 private String name;
 private int age;
 private boolean isSuperman;

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public int add(int x, int y) {
 return x + y;
 }

 public void dontExposeMe() {
 throw new RuntimeException();
 }
}

To expose the properties and methods of this bean as attributes and operations of an MBean you
simply configure an instance of the MBeanExporter class in your configuration file and pass in the
bean as shown below:

57

<beans>
 <!-- this bean must not be lazily initialized if the exporting is to happen -->
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter" lazy-
init="false">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 </bean>
 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>
</beans>

The pertinent bean definition from the above configuration snippet is the exporter bean. The beans
property tells the MBeanExporter exactly which of your beans must be exported to the JMX
MBeanServer. In the default configuration, the key of each entry in the beans Map is used as the
ObjectName for the bean referenced by the corresponding entry value. This behavior can be changed
as described in Controlling the ObjectNames for your beans.

With this configuration the testBean bean is exposed as an MBean under the ObjectName

bean:name=testBean1. By default, all public properties of the bean are exposed as attributes and all
public methods (bar those inherited from the Object class) are exposed as operations.


MBeanExporter is a Lifecycle bean (see Startup and shutdown callbacks) and
MBeans are exported as late as possible during the application lifecycle by default.
It is possible to configure the phase at which the export happens or disable
automatic registration by setting the autoStartup flag.

4.2.1. Creating an MBeanServer

The above configuration assumes that the application is running in an environment that has one
(and only one) MBeanServer already running. In this case, Spring will attempt to locate the running
MBeanServer and register your beans with that server (if any). This behavior is useful when your
application is running inside a container such as Tomcat or IBM WebSphere that has its own
MBeanServer.

However, this approach is of no use in a standalone environment, or when running inside a
container that does not provide an MBeanServer. To address this you can create an MBeanServer
instance declaratively by adding an instance of the
org.springframework.jmx.support.MBeanServerFactoryBean class to your configuration. You can also
ensure that a specific MBeanServer is used by setting the value of the MBeanExporter's server property
to the MBeanServer value returned by an MBeanServerFactoryBean; for example:

58

core.pdf#beans-factory-lifecycle-processor

<beans>

 <bean id="mbeanServer" class=
"org.springframework.jmx.support.MBeanServerFactoryBean"/>

 <!--
 this bean needs to be eagerly pre-instantiated in order for the exporting to
occur;
 this means that it must not be marked as lazily initialized
 -->
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="server" ref="mbeanServer"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

Here an instance of MBeanServer is created by the MBeanServerFactoryBean and is supplied to the
MBeanExporter via the server property. When you supply your own MBeanServer instance, the
MBeanExporter will not attempt to locate a running MBeanServer and will use the supplied MBeanServer
instance. For this to work correctly, you must (of course) have a JMX implementation on your
classpath.

4.2.2. Reusing an existing MBeanServer

If no server is specified, the MBeanExporter tries to automatically detect a running MBeanServer. This
works in most environment where only one MBeanServer instance is used, however when multiple
instances exist, the exporter might pick the wrong server. In such cases, one should use the
MBeanServer agentId to indicate which instance to be used:

59

<beans>
 <bean id="mbeanServer" class=
"org.springframework.jmx.support.MBeanServerFactoryBean">
 <!-- indicate to first look for a server -->
 <property name="locateExistingServerIfPossible" value="true"/>
 <!-- search for the MBeanServer instance with the given agentId -->
 <property name="agentId" value="MBeanServer_instance_agentId>"/>
 </bean>
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="server" ref="mbeanServer"/>
 ...
 </bean>
</beans>

For platforms/cases where the existing MBeanServer has a dynamic (or unknown) agentId which is
retrieved through lookup methods, one should use factory-method:

<beans>
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="server">
 <!-- Custom MBeanServerLocator -->
 <bean class="platform.package.MBeanServerLocator" factory-method=
"locateMBeanServer"/>
 </property>
 </bean>

 <!-- other beans here -->

</beans>

4.2.3. Lazy-initialized MBeans

If you configure a bean with the MBeanExporter that is also configured for lazy initialization, then
the MBeanExporter will not break this contract and will avoid instantiating the bean. Instead, it will
register a proxy with the MBeanServer and will defer obtaining the bean from the container until the
first invocation on the proxy occurs.

4.2.4. Automatic registration of MBeans

Any beans that are exported through the MBeanExporter and are already valid MBeans are registered
as-is with the MBeanServer without further intervention from Spring. MBeans can be automatically
detected by the MBeanExporter by setting the autodetect property to true:

60

core.pdf#beans-factory-class-static-factory-method

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="autodetect" value="true"/>
</bean>

<bean name="spring:mbean=true" class="org.springframework.jmx.export.TestDynamicMBean
"/>

Here, the bean called spring:mbean=true is already a valid JMX MBean and will be automatically
registered by Spring. By default, beans that are autodetected for JMX registration have their bean
name used as the ObjectName. This behavior can be overridden as detailed in Controlling the
ObjectNames for your beans.

4.2.5. Controlling the registration behavior

Consider the scenario where a Spring MBeanExporter attempts to register an MBean with an
MBeanServer using the ObjectName 'bean:name=testBean1'. If an MBean instance has already been
registered under that same ObjectName, the default behavior is to fail (and throw an
InstanceAlreadyExistsException).

It is possible to control the behavior of exactly what happens when an MBean is registered with an
MBeanServer. Spring’s JMX support allows for three different registration behaviors to control the
registration behavior when the registration process finds that an MBean has already been registered
under the same ObjectName; these registration behaviors are summarized on the following table:

Table 6. Registration Behaviors

Registration
behavior

Explanation

FAIL_ON_EXISTING This is the default registration behavior. If an MBean instance has already been
registered under the same ObjectName, the MBean that is being registered will
not be registered and an InstanceAlreadyExistsException will be thrown. The
existing MBean is unaffected.

IGNORE_EXISTING If an MBean instance has already been registered under the same ObjectName,
the MBean that is being registered will not be registered. The existing MBean is
unaffected, and no Exception will be thrown. This is useful in settings where
multiple applications want to share a common MBean in a shared MBeanServer.

REPLACE_EXISTING If an MBean instance has already been registered under the same ObjectName,
the existing MBean that was previously registered will be unregistered and the
new MBean will be registered in its place (the new MBean effectively replaces the
previous instance).

The above values are defined as enums on the RegistrationPolicy class. If you want to change the
default registration behavior, you simply need to set the value of the registrationPolicy property
on your MBeanExporter definition to one of those values.

The following example illustrates how to effect a change from the default registration behavior to
the REPLACE_EXISTING behavior:

61

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="registrationPolicy" value="REPLACE_EXISTING"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

4.3. Controlling the management interface of your
beans
In the previous example, you had little control over the management interface of your bean; all of
the public properties and methods of each exported bean was exposed as JMX attributes and
operations respectively. To exercise finer-grained control over exactly which properties and
methods of your exported beans are actually exposed as JMX attributes and operations, Spring JMX
provides a comprehensive and extensible mechanism for controlling the management interfaces of
your beans.

4.3.1. MBeanInfoAssembler interface

Behind the scenes, the MBeanExporter delegates to an implementation of the
org.springframework.jmx.export.assembler.MBeanInfoAssembler interface which is responsible for
defining the management interface of each bean that is being exposed. The default implementation,
org.springframework.jmx.export.assembler.SimpleReflectiveMBeanInfoAssembler, simply defines a
management interface that exposes all public properties and methods (as you saw in the previous
examples). Spring provides two additional implementations of the MBeanInfoAssembler interface that
allow you to control the generated management interface using either source-level metadata or any
arbitrary interface.

4.3.2. Using source-level metadata: Java annotations

Using the MetadataMBeanInfoAssembler you can define the management interfaces for your beans
using source level metadata. The reading of metadata is encapsulated by the
org.springframework.jmx.export.metadata.JmxAttributeSource interface. Spring JMX provides a
default implementation which uses Java annotations, namely
org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource. The
MetadataMBeanInfoAssembler must be configured with an implementation instance of the

62

JmxAttributeSource interface for it to function correctly (there is no default).

To mark a bean for export to JMX, you should annotate the bean class with the ManagedResource
annotation. Each method you wish to expose as an operation must be marked with the
ManagedOperation annotation and each property you wish to expose must be marked with the
ManagedAttribute annotation. When marking properties you can omit either the annotation of the
getter or the setter to create a write-only or read-only attribute respectively.


A ManagedResource annotated bean must be public as well as the methods exposing
an operation or an attribute.

The example below shows the annotated version of the JmxTestBean class that you saw earlier:

package org.springframework.jmx;

import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedAttribute;

@ManagedResource(
 objectName="bean:name=testBean4",
 description="My Managed Bean",
 log=true,
 logFile="jmx.log",
 currencyTimeLimit=15,
 persistPolicy="OnUpdate",
 persistPeriod=200,
 persistLocation="foo",
 persistName="bar")
public class AnnotationTestBean implements IJmxTestBean {

 private String name;
 private int age;

 @ManagedAttribute(description="The Age Attribute", currencyTimeLimit=15)
 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 @ManagedAttribute(description="The Name Attribute",
 currencyTimeLimit=20,
 defaultValue="bar",
 persistPolicy="OnUpdate")
 public void setName(String name) {
 this.name = name;
 }

63

 @ManagedAttribute(defaultValue="foo", persistPeriod=300)
 public String getName() {
 return name;
 }

 @ManagedOperation(description="Add two numbers")
 @ManagedOperationParameters({
 @ManagedOperationParameter(name = "x", description = "The first number"),
 @ManagedOperationParameter(name = "y", description = "The second number")})
 public int add(int x, int y) {
 return x + y;
 }

 public void dontExposeMe() {
 throw new RuntimeException();
 }

}

Here you can see that the JmxTestBean class is marked with the ManagedResource annotation and that
this ManagedResource annotation is configured with a set of properties. These properties can be used
to configure various aspects of the MBean that is generated by the MBeanExporter, and are explained
in greater detail later in section entitled Source-level metadata types.

You will also notice that both the age and name properties are annotated with the ManagedAttribute
annotation, but in the case of the age property, only the getter is marked. This will cause both of
these properties to be included in the management interface as attributes, but the age attribute will
be read-only.

Finally, you will notice that the add(int, int) method is marked with the ManagedOperation attribute
whereas the dontExposeMe() method is not. This will cause the management interface to contain
only one operation, add(int, int), when using the MetadataMBeanInfoAssembler.

The configuration below shows how you configure the MBeanExporter to use the
MetadataMBeanInfoAssembler:

64

<beans>
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="assembler" ref="assembler"/>
 <property name="namingStrategy" ref="namingStrategy"/>
 <property name="autodetect" value="true"/>
 </bean>

 <bean id="jmxAttributeSource"
 class=
"org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>

 <!-- will create management interface using annotation metadata -->
 <bean id="assembler"
 class="
org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
 <property name="attributeSource" ref="jmxAttributeSource"/>
 </bean>

 <!-- will pick up the ObjectName from the annotation -->
 <bean id="namingStrategy"
 class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
 <property name="attributeSource" ref="jmxAttributeSource"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.AnnotationTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>
</beans>

Here you can see that an MetadataMBeanInfoAssembler bean has been configured with an instance of
the AnnotationJmxAttributeSource class and passed to the MBeanExporter through the assembler
property. This is all that is required to take advantage of metadata-driven management interfaces
for your Spring-exposed MBeans.

4.3.3. Source-level metadata types

The following source level metadata types are available for use in Spring JMX:

Table 7. Source-level metadata types

Purpose Annotation Annotation Type

Mark all instances of a Class as
JMX managed resources

@ManagedResource Class

Mark a method as a JMX
operation

@ManagedOperation Method

Mark a getter or setter as one
half of a JMX attribute

@ManagedAttribute Method (only getters and
setters)

65

Purpose Annotation Annotation Type

Define descriptions for
operation parameters

@ManagedOperationParameter and
@ManagedOperationParameters

Method

The following configuration parameters are available for use on these source-level metadata types:

Table 8. Source-level metadata parameters

Parameter Description Applies to

ObjectName Used by MetadataNamingStrategy to determine the
ObjectName of a managed resource

ManagedResource

description Sets the friendly description of the resource, attribute or
operation

ManagedResource,
ManagedAttribute,
ManagedOperation,
ManagedOperationPa
rameter

currencyTimeLimit Sets the value of the currencyTimeLimit descriptor field ManagedResource,
ManagedAttribute

defaultValue Sets the value of the defaultValue descriptor field ManagedAttribute

log Sets the value of the log descriptor field ManagedResource

logFile Sets the value of the logFile descriptor field ManagedResource

persistPolicy Sets the value of the persistPolicy descriptor field ManagedResource

persistPeriod Sets the value of the persistPeriod descriptor field ManagedResource

persistLocation Sets the value of the persistLocation descriptor field ManagedResource

persistName Sets the value of the persistName descriptor field ManagedResource

name Sets the display name of an operation parameter ManagedOperationPa
rameter

index Sets the index of an operation parameter ManagedOperationPa
rameter

4.3.4. AutodetectCapableMBeanInfoAssembler interface

To simplify configuration even further, Spring introduces the AutodetectCapableMBeanInfoAssembler
interface which extends the MBeanInfoAssembler interface to add support for autodetection of
MBean resources. If you configure the MBeanExporter with an instance of
AutodetectCapableMBeanInfoAssembler then it is allowed to "vote" on the inclusion of beans for
exposure to JMX.

Out of the box, the only implementation of the AutodetectCapableMBeanInfo interface is the
MetadataMBeanInfoAssembler which will vote to include any bean which is marked with the
ManagedResource attribute. The default approach in this case is to use the bean name as the
ObjectName which results in a configuration like this:

66

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <!-- notice how no 'beans' are explicitly configured here -->
 <property name="autodetect" value="true"/>
 <property name="assembler" ref="assembler"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="assembler" class=
"org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
 <property name="attributeSource">
 <bean class=
"org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>
 </property>
 </bean>

</beans>

Notice that in this configuration no beans are passed to the MBeanExporter; however, the JmxTestBean
will still be registered since it is marked with the ManagedResource attribute and the
MetadataMBeanInfoAssembler detects this and votes to include it. The only problem with this
approach is that the name of the JmxTestBean now has business meaning. You can address this issue
by changing the default behavior for ObjectName creation as defined in Controlling the ObjectNames
for your beans.

4.3.5. Defining management interfaces using Java interfaces

In addition to the MetadataMBeanInfoAssembler, Spring also includes the
InterfaceBasedMBeanInfoAssembler which allows you to constrain the methods and properties that
are exposed based on the set of methods defined in a collection of interfaces.

Although the standard mechanism for exposing MBeans is to use interfaces and a simple naming
scheme, the InterfaceBasedMBeanInfoAssembler extends this functionality by removing the need for
naming conventions, allowing you to use more than one interface and removing the need for your
beans to implement the MBean interfaces.

Consider this interface that is used to define a management interface for the JmxTestBean class that
you saw earlier:

67

public interface IJmxTestBean {

 public int add(int x, int y);

 public long myOperation();

 public int getAge();

 public void setAge(int age);

 public void setName(String name);

 public String getName();

}

This interface defines the methods and properties that will be exposed as operations and attributes
on the JMX MBean. The code below shows how to configure Spring JMX to use this interface as the
definition for the management interface:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean5" value-ref="testBean"/>
 </map>
 </property>
 <property name="assembler">
 <bean class=
"org.springframework.jmx.export.assembler.InterfaceBasedMBeanInfoAssembler">
 <property name="managedInterfaces">
 <value>org.springframework.jmx.IJmxTestBean</value>
 </property>
 </bean>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

Here you can see that the InterfaceBasedMBeanInfoAssembler is configured to use the IJmxTestBean
interface when constructing the management interface for any bean. It is important to understand
that beans processed by the InterfaceBasedMBeanInfoAssembler are not required to implement the

68

interface used to generate the JMX management interface.

In the case above, the IJmxTestBean interface is used to construct all management interfaces for all
beans. In many cases this is not the desired behavior and you may want to use different interfaces
for different beans. In this case, you can pass InterfaceBasedMBeanInfoAssembler a Properties
instance via the interfaceMappings property, where the key of each entry is the bean name and the
value of each entry is a comma-separated list of interface names to use for that bean.

If no management interface is specified through either the managedInterfaces or interfaceMappings
properties, then the InterfaceBasedMBeanInfoAssembler will reflect on the bean and use all of the
interfaces implemented by that bean to create the management interface.

4.3.6. Using MethodNameBasedMBeanInfoAssembler

The MethodNameBasedMBeanInfoAssembler allows you to specify a list of method names that will be
exposed to JMX as attributes and operations. The code below shows a sample configuration for this:

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean5" value-ref="testBean"/>
 </map>
 </property>
 <property name="assembler">
 <bean class=
"org.springframework.jmx.export.assembler.MethodNameBasedMBeanInfoAssembler">
 <property name="managedMethods">
 <value>add,myOperation,getName,setName,getAge</value>
 </property>
 </bean>
 </property>
</bean>

Here you can see that the methods add and myOperation will be exposed as JMX operations and
getName(), setName(String) and getAge() will be exposed as the appropriate half of a JMX attribute.
In the code above, the method mappings apply to beans that are exposed to JMX. To control method
exposure on a bean-by-bean basis, use the methodMappings property of MethodNameMBeanInfoAssembler
to map bean names to lists of method names.

4.4. Controlling the ObjectNames for your beans
Behind the scenes, the MBeanExporter delegates to an implementation of the ObjectNamingStrategy to
obtain ObjectNames for each of the beans it is registering. The default implementation,
KeyNamingStrategy, will, by default, use the key of the beans Map as the ObjectName. In addition, the
KeyNamingStrategy can map the key of the beans Map to an entry in a Properties file (or files) to
resolve the ObjectName. In addition to the KeyNamingStrategy, Spring provides two additional
ObjectNamingStrategy implementations: the IdentityNamingStrategy that builds an ObjectName based
on the JVM identity of the bean and the MetadataNamingStrategy that uses source level metadata to

69

obtain the ObjectName.

4.4.1. Reading ObjectNames from Properties

You can configure your own KeyNamingStrategy instance and configure it to read ObjectNames from a
Properties instance rather than use bean key. The KeyNamingStrategy will attempt to locate an entry
in the Properties with a key corresponding to the bean key. If no entry is found or if the Properties
instance is null then the bean key itself is used.

The code below shows a sample configuration for the KeyNamingStrategy:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="testBean" value-ref="testBean"/>
 </map>
 </property>
 <property name="namingStrategy" ref="namingStrategy"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="namingStrategy" class=
"org.springframework.jmx.export.naming.KeyNamingStrategy">
 <property name="mappings">
 <props>
 <prop key="testBean">bean:name=testBean1</prop>
 </props>
 </property>
 <property name="mappingLocations">
 <value>names1.properties,names2.properties</value>
 </property>
 </bean>

</beans>

Here an instance of KeyNamingStrategy is configured with a Properties instance that is merged from
the Properties instance defined by the mapping property and the properties files located in the
paths defined by the mappings property. In this configuration, the testBean bean will be given the
ObjectName bean:name=testBean1 since this is the entry in the Properties instance that has a key
corresponding to the bean key.

If no entry in the Properties instance can be found then the bean key name is used as the
ObjectName.

70

4.4.2. Using the MetadataNamingStrategy

The MetadataNamingStrategy uses the objectName property of the ManagedResource attribute on each
bean to create the ObjectName. The code below shows the configuration for the
MetadataNamingStrategy:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="testBean" value-ref="testBean"/>
 </map>
 </property>
 <property name="namingStrategy" ref="namingStrategy"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="namingStrategy" class=
"org.springframework.jmx.export.naming.MetadataNamingStrategy">
 <property name="attributeSource" ref="attributeSource"/>
 </bean>

 <bean id="attributeSource"
 class=
"org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>

</beans>

If no objectName has been provided for the ManagedResource attribute, then an ObjectName will be
created with the following format:[fully-qualified-package-name]:type=[short-
classname],name=[bean-name]. For example, the generated ObjectName for the following bean would
be: com.foo:type=MyClass,name=myBean.

<bean id="myBean" class="com.foo.MyClass"/>

4.4.3. Configuring annotation based MBean export

If you prefer using the annotation based approach to define your management interfaces, then a
convenience subclass of MBeanExporter is available: AnnotationMBeanExporter. When defining an
instance of this subclass, the namingStrategy, assembler, and attributeSource configuration is no
longer needed, since it will always use standard Java annotation-based metadata (autodetection is
always enabled as well). In fact, rather than defining an MBeanExporter bean, an even simpler syntax
is supported by the @EnableMBeanExport @Configuration annotation.

71

@Configuration
@EnableMBeanExport
public class AppConfig {

}

If you prefer XML based configuration the 'context:mbean-export' element serves the same
purpose.

<context:mbean-export/>

You can provide a reference to a particular MBean server if necessary, and the defaultDomain
attribute (a property of AnnotationMBeanExporter) accepts an alternate value for the generated
MBean `ObjectNames’ domains. This would be used in place of the fully qualified package name as
described in the previous section on MetadataNamingStrategy.

@EnableMBeanExport(server="myMBeanServer", defaultDomain="myDomain")
@Configuration
ContextConfiguration {

}

<context:mbean-export server="myMBeanServer" default-domain="myDomain"/>



Do not use interface-based AOP proxies in combination with autodetection of JMX
annotations in your bean classes. Interface-based proxies 'hide' the target class,
which also hides the JMX managed resource annotations. Hence, use target-class
proxies in that case: through setting the 'proxy-target-class' flag on <aop:config/>,
<tx:annotation-driven/>, etc. Otherwise, your JMX beans might be silently ignored
at startup…

4.5. JSR-160 Connectors
For remote access, Spring JMX module offers two FactoryBean implementations inside the
org.springframework.jmx.support package for creating both server- and client-side connectors.

4.5.1. Server-side connectors

To have Spring JMX create, start and expose a JSR-160 JMXConnectorServer use the following
configuration:

72

<bean id="serverConnector" class=
"org.springframework.jmx.support.ConnectorServerFactoryBean"/>

By default ConnectorServerFactoryBean creates a JMXConnectorServer bound to
"service:jmx:jmxmp://localhost:9875". The serverConnector bean thus exposes the local MBeanServer
to clients through the JMXMP protocol on localhost, port 9875. Note that the JMXMP protocol is
marked as optional by the JSR 160 specification: currently, the main open-source JMX
implementation, MX4J, and the one provided with the JDK do not support JMXMP.

To specify another URL and register the JMXConnectorServer itself with the MBeanServer use the
serviceUrl and ObjectName properties respectively:

<bean id="serverConnector"
 class="org.springframework.jmx.support.ConnectorServerFactoryBean">
 <property name="objectName" value="connector:name=rmi"/>
 <property name="serviceUrl"
 value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector
"/>
</bean>

If the ObjectName property is set Spring will automatically register your connector with the
MBeanServer under that ObjectName. The example below shows the full set of parameters which you
can pass to the ConnectorServerFactoryBean when creating a JMXConnector:

<bean id="serverConnector"
 class="org.springframework.jmx.support.ConnectorServerFactoryBean">
 <property name="objectName" value="connector:name=iiop"/>
 <property name="serviceUrl"
 value="service:jmx:iiop://localhost/jndi/iiop://localhost:900/myconnector"/>
 <property name="threaded" value="true"/>
 <property name="daemon" value="true"/>
 <property name="environment">
 <map>
 <entry key="someKey" value="someValue"/>
 </map>
 </property>
</bean>

Note that when using a RMI-based connector you need the lookup service (tnameserv or
rmiregistry) to be started in order for the name registration to complete. If you are using Spring to
export remote services for you via RMI, then Spring will already have constructed an RMI registry.
If not, you can easily start a registry using the following snippet of configuration:

73

<bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean">
 <property name="port" value="1099"/>
</bean>

4.5.2. Client-side connectors

To create an MBeanServerConnection to a remote JSR-160 enabled MBeanServer use the
MBeanServerConnectionFactoryBean as shown below:

<bean id="clientConnector" class=
"org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
 <property name="serviceUrl" value=
"service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxrmi"/>
</bean>

4.5.3. JMX over Hessian or SOAP

JSR-160 permits extensions to the way in which communication is done between the client and the
server. The examples above are using the mandatory RMI-based implementation required by the
JSR-160 specification (IIOP and JRMP) and the (optional) JMXMP. By using other providers or JMX
implementations (such as MX4J) you can take advantage of protocols like SOAP or Hessian over
simple HTTP or SSL and others:

<bean id="serverConnector" class=
"org.springframework.jmx.support.ConnectorServerFactoryBean">
 <property name="objectName" value="connector:name=burlap"/>
 <property name="serviceUrl" value="service:jmx:burlap://localhost:9874"/>
</bean>

In the case of the above example, MX4J 3.0.0 was used; see the official MX4J documentation for
more information.

4.6. Accessing MBeans via proxies
Spring JMX allows you to create proxies that re-route calls to MBeans registered in a local or remote
MBeanServer. These proxies provide you with a standard Java interface through which you can
interact with your MBeans. The code below shows how to configure a proxy for an MBean running
in a local MBeanServer:

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
 <property name="objectName" value="bean:name=testBean"/>
 <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
</bean>

74

http://mx4j.sourceforge.net

Here you can see that a proxy is created for the MBean registered under the ObjectName:
bean:name=testBean. The set of interfaces that the proxy will implement is controlled by the
proxyInterfaces property and the rules for mapping methods and properties on these interfaces to
operations and attributes on the MBean are the same rules used by the
InterfaceBasedMBeanInfoAssembler.

The MBeanProxyFactoryBean can create a proxy to any MBean that is accessible via an
MBeanServerConnection. By default, the local MBeanServer is located and used, but you can override
this and provide an MBeanServerConnection pointing to a remote MBeanServer to cater for proxies
pointing to remote MBeans:

<bean id="clientConnector"
 class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
 <property name="serviceUrl" value="service:jmx:rmi://remotehost:9875"/>
</bean>

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
 <property name="objectName" value="bean:name=testBean"/>
 <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
 <property name="server" ref="clientConnector"/>
</bean>

Here you can see that we create an MBeanServerConnection pointing to a remote machine using the
MBeanServerConnectionFactoryBean. This MBeanServerConnection is then passed to the
MBeanProxyFactoryBean via the server property. The proxy that is created will forward all invocations
to the MBeanServer via this MBeanServerConnection.

4.7. Notifications
Spring’s JMX offering includes comprehensive support for JMX notifications.

4.7.1. Registering listeners for notifications

Spring’s JMX support makes it very easy to register any number of NotificationListeners with any
number of MBeans (this includes MBeans exported by Spring’s MBeanExporter and MBeans
registered via some other mechanism). By way of an example, consider the scenario where one
would like to be informed (via a Notification) each and every time an attribute of a target MBean
changes.

75

package com.example;

import javax.management.AttributeChangeNotification;
import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;

public class ConsoleLoggingNotificationListener
 implements NotificationListener, NotificationFilter {

 public void handleNotification(Notification notification, Object handback) {
 System.out.println(notification);
 System.out.println(handback);
 }

 public boolean isNotificationEnabled(Notification notification) {
 return AttributeChangeNotification.class.isAssignableFrom(notification
.getClass());
 }

}

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="notificationListenerMappings">
 <map>
 <entry key="bean:name=testBean1">
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </entry>
 </map>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

With the above configuration in place, every time a JMX Notification is broadcast from the target
MBean (bean:name=testBean1), the ConsoleLoggingNotificationListener bean that was registered as a

76

listener via the notificationListenerMappings property will be notified. The
ConsoleLoggingNotificationListener bean can then take whatever action it deems appropriate in
response to the Notification.

You can also use straight bean names as the link between exported beans and listeners:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="notificationListenerMappings">
 <map>
 <entry key="testBean">
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </entry>
 </map>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

If one wants to register a single NotificationListener instance for all of the beans that the enclosing
MBeanExporter is exporting, one can use the special wildcard '*' (sans quotes) as the key for an
entry in the notificationListenerMappings property map; for example:

<property name="notificationListenerMappings">
 <map>
 <entry key="*">
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </entry>
 </map>
</property>

If one needs to do the inverse (that is, register a number of distinct listeners against an MBean),
then one has to use the notificationListeners list property instead (and in preference to the
notificationListenerMappings property). This time, instead of configuring simply a
NotificationListener for a single MBean, one configures NotificationListenerBean instances… a
NotificationListenerBean encapsulates a NotificationListener and the ObjectName (or ObjectNames)
that it is to be registered against in an MBeanServer. The NotificationListenerBean also encapsulates

77

a number of other properties such as a NotificationFilter and an arbitrary handback object that
can be used in advanced JMX notification scenarios.

The configuration when using NotificationListenerBean instances is not wildly different to what
was presented previously:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="notificationListeners">
 <list>
 <bean class="org.springframework.jmx.export.NotificationListenerBean">
 <constructor-arg>
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </constructor-arg>
 <property name="mappedObjectNames">
 <list>
 <value>bean:name=testBean1</value>
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

The above example is equivalent to the first notification example. Lets assume then that we want to
be given a handback object every time a Notification is raised, and that additionally we want to
filter out extraneous Notifications by supplying a NotificationFilter. (For a full discussion of just
what a handback object is, and indeed what a NotificationFilter is, please do consult that section
of the JMX specification (1.2) entitled 'The JMX Notification Model'.)

78

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean1"/>
 <entry key="bean:name=testBean2" value-ref="testBean2"/>
 </map>
 </property>
 <property name="notificationListeners">
 <list>
 <bean class="org.springframework.jmx.export.NotificationListenerBean">
 <constructor-arg ref="customerNotificationListener"/>
 <property name="mappedObjectNames">
 <list>
 <!-- handles notifications from two distinct MBeans -->
 <value>bean:name=testBean1</value>
 <value>bean:name=testBean2</value>
 </list>
 </property>
 <property name="handback">
 <bean class="java.lang.String">
 <constructor-arg value="This could be anything..."/>
 </bean>
 </property>
 <property name="notificationFilter" ref=
"customerNotificationListener"/>
 </bean>
 </list>
 </property>
 </bean>

 <!-- implements both the NotificationListener and NotificationFilter interfaces
-->
 <bean id="customerNotificationListener" class=
"com.example.ConsoleLoggingNotificationListener"/>

 <bean id="testBean1" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="testBean2" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="ANOTHER TEST"/>
 <property name="age" value="200"/>
 </bean>

</beans>

79

4.7.2. Publishing Notifications

Spring provides support not just for registering to receive Notifications, but also for publishing
Notifications.


Please note that this section is really only relevant to Spring managed beans that
have been exposed as MBeans via an MBeanExporter; any existing, user-defined
MBeans should use the standard JMX APIs for notification publication.

The key interface in Spring’s JMX notification publication support is the NotificationPublisher
interface (defined in the org.springframework.jmx.export.notification package). Any bean that is
going to be exported as an MBean via an MBeanExporter instance can implement the related
NotificationPublisherAware interface to gain access to a NotificationPublisher instance. The
NotificationPublisherAware interface simply supplies an instance of a NotificationPublisher to the
implementing bean via a simple setter method, which the bean can then use to publish
Notifications.

As stated in the javadocs of the NotificationPublisher class, managed beans that are publishing
events via the NotificationPublisher mechanism are not responsible for the state management of
any notification listeners and the like … Spring’s JMX support will take care of handling all the JMX
infrastructure issues. All one need do as an application developer is implement the
NotificationPublisherAware interface and start publishing events using the supplied
NotificationPublisher instance. Note that the NotificationPublisher will be set after the managed
bean has been registered with an MBeanServer.

Using a NotificationPublisher instance is quite straightforward… one simply creates a JMX
Notification instance (or an instance of an appropriate Notification subclass), populates the
notification with the data pertinent to the event that is to be published, and one then invokes the
sendNotification(Notification) on the NotificationPublisher instance, passing in the Notification.

Find below a simple example… in this scenario, exported instances of the JmxTestBean are going to
publish a NotificationEvent every time the add(int, int) operation is invoked.

80

package org.springframework.jmx;

import org.springframework.jmx.export.notification.NotificationPublisherAware;
import org.springframework.jmx.export.notification.NotificationPublisher;
import javax.management.Notification;

public class JmxTestBean implements IJmxTestBean, NotificationPublisherAware {

 private String name;
 private int age;
 private boolean isSuperman;
 private NotificationPublisher publisher;

 // other getters and setters omitted for clarity

 public int add(int x, int y) {
 int answer = x + y;
 this.publisher.sendNotification(new Notification("add", this, 0));
 return answer;
 }

 public void dontExposeMe() {
 throw new RuntimeException();
 }

 public void setNotificationPublisher(NotificationPublisher notificationPublisher)
{
 this.publisher = notificationPublisher;
 }

}

The NotificationPublisher interface and the machinery to get it all working is one of the nicer
features of Spring’s JMX support. It does however come with the price tag of coupling your classes
to both Spring and JMX; as always, the advice here is to be pragmatic… if you need the functionality
offered by the NotificationPublisher and you can accept the coupling to both Spring and JMX, then
do so.

4.8. Further resources
This section contains links to further resources about JMX.

• The JMX homepage at Oracle

• The JMX specification (JSR-000003)

• The JMX Remote API specification (JSR-000160)

• The MX4J homepage (an Open Source implementation of various JMX specs)

81

https://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
https://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://mx4j.sourceforge.net/

Chapter 5. JCA CCI

5.1. Introduction
Java EE provides a specification to standardize access to enterprise information systems (EIS): the
JCA (Java EE Connector Architecture). This specification is divided into several different parts:

• SPI (Service provider interfaces) that the connector provider must implement. These interfaces
constitute a resource adapter which can be deployed on a Java EE application server. In such a
scenario, the server manages connection pooling, transaction and security (managed mode).
The application server is also responsible for managing the configuration, which is held outside
the client application. A connector can be used without an application server as well; in this
case, the application must configure it directly (non-managed mode).

• CCI (Common Client Interface) that an application can use to interact with the connector and
thus communicate with an EIS. An API for local transaction demarcation is provided as well.

The aim of the Spring CCI support is to provide classes to access a CCI connector in typical Spring
style, leveraging the Spring Framework’s general resource and transaction management facilities.


The client side of connectors doesn’t alway use CCI. Some connectors expose their
own APIs, only providing JCA resource adapter to use the system contracts of a
Java EE container (connection pooling, global transactions, security). Spring does
not offer special support for such connector-specific APIs.

5.2. Configuring CCI

5.2.1. Connector configuration

The base resource to use JCA CCI is the ConnectionFactory interface. The connector used must
provide an implementation of this interface.

To use your connector, you can deploy it on your application server and fetch the ConnectionFactory
from the server’s JNDI environment (managed mode). The connector must be packaged as a RAR
file (resource adapter archive) and contain a ra.xml file to describe its deployment characteristics.
The actual name of the resource is specified when you deploy it. To access it within Spring, simply
use Spring’s JndiObjectFactoryBean / <jee:jndi-lookup> fetch the factory by its JNDI name.

Another way to use a connector is to embed it in your application (non-managed mode), not using
an application server to deploy and configure it. Spring offers the possibility to configure a
connector as a bean, through a provided FactoryBean (LocalConnectionFactoryBean). In this manner,
you only need the connector library in the classpath (no RAR file and no ra.xml descriptor needed).
The library must be extracted from the connector’s RAR file, if necessary.

Once you have got access to your ConnectionFactory instance, you can inject it into your
components. These components can either be coded against the plain CCI API or leverage Spring’s
support classes for CCI access (e.g. CciTemplate).

82


When you use a connector in non-managed mode, you can’t use global
transactions because the resource is never enlisted / delisted in the current global
transaction of the current thread. The resource is simply not aware of any global
Java EE transactions that might be running.

5.2.2. ConnectionFactory configuration in Spring

In order to make connections to the EIS, you need to obtain a ConnectionFactory from the
application server if you are in a managed mode, or directly from Spring if you are in a non-
managed mode.

In a managed mode, you access a ConnectionFactory from JNDI; its properties will be configured in
the application server.

<jee:jndi-lookup id="eciConnectionFactory" jndi-name="eis/cicseci"/>

In non-managed mode, you must configure the ConnectionFactory you want to use in the
configuration of Spring as a JavaBean. The LocalConnectionFactoryBean class offers this setup style,
passing in the ManagedConnectionFactory implementation of your connector, exposing the
application-level CCI ConnectionFactory.

<bean id="eciManagedConnectionFactory" class=
"com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TXSERIES"/>
 <property name="connectionURL" value="tcp://localhost/"/>
 <property name="portNumber" value="2006"/>
</bean>

<bean id="eciConnectionFactory" class=
"org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>
</bean>


You can’t directly instantiate a specific ConnectionFactory. You need to go through
the corresponding implementation of the ManagedConnectionFactory interface for
your connector. This interface is part of the JCA SPI specification.

5.2.3. Configuring CCI connections

JCA CCI allow the developer to configure the connections to the EIS using the ConnectionSpec
implementation of your connector. In order to configure its properties, you need to wrap the target
connection factory with a dedicated adapter, ConnectionSpecConnectionFactoryAdapter. So, the
dedicated ConnectionSpec can be configured with the property connectionSpec (as an inner bean).

This property is not mandatory because the CCI ConnectionFactory interface defines two different
methods to obtain a CCI connection. Some of the ConnectionSpec properties can often be configured

83

in the application server (in managed mode) or on the corresponding local
ManagedConnectionFactory implementation.

public interface ConnectionFactory implements Serializable, Referenceable {
 ...
 Connection getConnection() throws ResourceException;
 Connection getConnection(ConnectionSpec connectionSpec) throws ResourceException;
 ...
}

Spring provides a ConnectionSpecConnectionFactoryAdapter that allows for specifying a
ConnectionSpec instance to use for all operations on a given factory. If the adapter’s connectionSpec
property is specified, the adapter uses the getConnection variant with the ConnectionSpec argument,
otherwise the variant without argument.

<bean id="managedConnectionFactory"
 class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">
 <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
 <property name="driverName" value="org.hsqldb.jdbcDriver"/>
</bean>

<bean id="targetConnectionFactory"
 class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="connectionFactory"
 class=
"org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
 <property name="connectionSpec">
 <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
 <property name="user" value="sa"/>
 <property name="password" value=""/>
 </bean>
 </property>
</bean>

5.2.4. Using a single CCI connection

If you want to use a single CCI connection, Spring provides a further ConnectionFactory adapter to
manage this. The SingleConnectionFactory adapter class will open a single connection lazily and
close it when this bean is destroyed at application shutdown. This class will expose special
Connection proxies that behave accordingly, all sharing the same underlying physical connection.

84

<bean id="eciManagedConnectionFactory"
 class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TEST"/>
 <property name="connectionURL" value="tcp://localhost/"/>
 <property name="portNumber" value="2006"/>
</bean>

<bean id="targetEciConnectionFactory"
 class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>
</bean>

<bean id="eciConnectionFactory"
 class="org.springframework.jca.cci.connection.SingleConnectionFactory">
 <property name="targetConnectionFactory" ref="targetEciConnectionFactory"/>
</bean>


This ConnectionFactory adapter cannot directly be configured with a
ConnectionSpec. Use an intermediary ConnectionSpecConnectionFactoryAdapter that
the SingleConnectionFactory talks to if you require a single connection for a
specific ConnectionSpec.

5.3. Using Spring’s CCI access support

5.3.1. Record conversion

One of the aims of the JCA CCI support is to provide convenient facilities for manipulating CCI
records. The developer can specify the strategy to create records and extract datas from records, for
use with Spring’s CciTemplate. The following interfaces will configure the strategy to use input and
output records if you don’t want to work with records directly in your application.

In order to create an input Record, the developer can use a dedicated implementation of the
RecordCreator interface.

public interface RecordCreator {

 Record createRecord(RecordFactory recordFactory) throws ResourceException,
DataAccessException;

}

As you can see, the createRecord(..) method receives a RecordFactory instance as parameter, which
corresponds to the RecordFactory of the ConnectionFactory used. This reference can be used to create
IndexedRecord or MappedRecord instances. The following sample shows how to use the RecordCreator
interface and indexed/mapped records.

85

public class MyRecordCreator implements RecordCreator {

 public Record createRecord(RecordFactory recordFactory) throws ResourceException {
 IndexedRecord input = recordFactory.createIndexedRecord("input");
 input.add(new Integer(id));
 return input;
 }

}

An output Record can be used to receive data back from the EIS. Hence, a specific implementation of
the RecordExtractor interface can be passed to Spring’s CciTemplate for extracting data from the
output Record.

public interface RecordExtractor {

 Object extractData(Record record) throws ResourceException, SQLException,
DataAccessException;

}

The following sample shows how to use the RecordExtractor interface.

public class MyRecordExtractor implements RecordExtractor {

 public Object extractData(Record record) throws ResourceException {
 CommAreaRecord commAreaRecord = (CommAreaRecord) record;
 String str = new String(commAreaRecord.toByteArray());
 String field1 = string.substring(0,6);
 String field2 = string.substring(6,1);
 return new OutputObject(Long.parseLong(field1), field2);
 }

}

5.3.2. CciTemplate

The CciTemplate is the central class of the core CCI support package (
org.springframework.jca.cci.core). It simplifies the use of CCI since it handles the creation and
release of resources. This helps to avoid common errors like forgetting to always close the
connection. It cares for the lifecycle of connection and interaction objects, letting application code
focus on generating input records from application data and extracting application data from
output records.

The JCA CCI specification defines two distinct methods to call operations on an EIS. The CCI
Interaction interface provides two execute method signatures:

86

public interface javax.resource.cci.Interaction {

 ...

 boolean execute(InteractionSpec spec, Record input, Record output) throws
ResourceException;

 Record execute(InteractionSpec spec, Record input) throws ResourceException;

 ...

}

Depending on the template method called, CciTemplate will know which execute method to call on
the interaction. In any case, a correctly initialized InteractionSpec instance is mandatory.

CciTemplate.execute(..) can be used in two ways:

• With direct Record arguments. In this case, you simply need to pass the CCI input record in, and
the returned object be the corresponding CCI output record.

• With application objects, using record mapping. In this case, you need to provide corresponding
RecordCreator and RecordExtractor instances.

With the first approach, the following methods of the template will be used. These methods directly
correspond to those on the Interaction interface.

public class CciTemplate implements CciOperations {

 public Record execute(InteractionSpec spec, Record inputRecord)
 throws DataAccessException { ... }

 public void execute(InteractionSpec spec, Record inputRecord, Record outputRecord)
 throws DataAccessException { ... }

}

With the second approach, we need to specify the record creation and record extraction strategies
as arguments. The interfaces used are those describe in the previous section on record conversion.
The corresponding CciTemplate methods are the following:

87

public class CciTemplate implements CciOperations {

 public Record execute(InteractionSpec spec,
 RecordCreator inputCreator) throws DataAccessException {
 // ...
 }

 public Object execute(InteractionSpec spec, Record inputRecord,
 RecordExtractor outputExtractor) throws DataAccessException {
 // ...
 }

 public Object execute(InteractionSpec spec, RecordCreator creator,
 RecordExtractor extractor) throws DataAccessException {
 // ...
 }

}

Unless the outputRecordCreator property is set on the template (see the following section), every
method will call the corresponding execute method of the CCI Interaction with two parameters:
InteractionSpec and input Record, receiving an output Record as return value.

CciTemplate also provides methods to create IndexRecord and MappedRecord outside a RecordCreator
implementation, through its createIndexRecord(..) and createMappedRecord(..) methods. This can
be used within DAO implementations to create Record instances to pass into corresponding
CciTemplate.execute(..) methods.

public class CciTemplate implements CciOperations {

 public IndexedRecord createIndexedRecord(String name) throws DataAccessException {
... }

 public MappedRecord createMappedRecord(String name) throws DataAccessException {
... }

}

5.3.3. DAO support

Spring’s CCI support provides a abstract class for DAOs, supporting injection of a ConnectionFactory
or a CciTemplate instances. The name of the class is CciDaoSupport: It provides simple
setConnectionFactory and setCciTemplate methods. Internally, this class will create a CciTemplate
instance for a passed-in ConnectionFactory, exposing it to concrete data access implementations in
subclasses.

88

public abstract class CciDaoSupport {

 public void setConnectionFactory(ConnectionFactory connectionFactory) {
 // ...
 }

 public ConnectionFactory getConnectionFactory() {
 // ...
 }

 public void setCciTemplate(CciTemplate cciTemplate) {
 // ...
 }

 public CciTemplate getCciTemplate() {
 // ...
 }

}

5.3.4. Automatic output record generation

If the connector used only supports the Interaction.execute(..) method with input and output
records as parameters (that is, it requires the desired output record to be passed in instead of
returning an appropriate output record), you can set the outputRecordCreator property of the
CciTemplate to automatically generate an output record to be filled by the JCA connector when the
response is received. This record will be then returned to the caller of the template.

This property simply holds an implementation of the RecordCreator interface, used for that purpose.
The RecordCreator interface has already been discussed in Record conversion. The
outputRecordCreator property must be directly specified on the CciTemplate. This could be done in
the application code like so:

cciTemplate.setOutputRecordCreator(new EciOutputRecordCreator());

Or (recommended) in the Spring configuration, if the CciTemplate is configured as a dedicated bean
instance:

<bean id="eciOutputRecordCreator" class="eci.EciOutputRecordCreator"/>

<bean id="cciTemplate" class="org.springframework.jca.cci.core.CciTemplate">
 <property name="connectionFactory" ref="eciConnectionFactory"/>
 <property name="outputRecordCreator" ref="eciOutputRecordCreator"/>
</bean>

89


As the CciTemplate class is thread-safe, it will usually be configured as a shared
instance.

5.3.5. Summary

The following table summarizes the mechanisms of the CciTemplate class and the corresponding
methods called on the CCI Interaction interface:

Table 9. Usage of Interaction execute methods

CciTemplate method signature CciTemplate
outputReco
rdCreator
property

execute method called on the CCI
Interaction

Record execute(InteractionSpec, Record) not set Record execute(InteractionSpec, Record)

Record execute(InteractionSpec, Record) set boolean execute(InteractionSpec, Record,
Record)

void execute(InteractionSpec, Record,
Record)

not set void execute(InteractionSpec, Record,
Record)

void execute(InteractionSpec, Record,
Record)

set void execute(InteractionSpec, Record,
Record)

Record execute(InteractionSpec,
RecordCreator)

not set Record execute(InteractionSpec, Record)

Record execute(InteractionSpec,
RecordCreator)

set void execute(InteractionSpec, Record,
Record)

Record execute(InteractionSpec, Record,
RecordExtractor)

not set Record execute(InteractionSpec, Record)

Record execute(InteractionSpec, Record,
RecordExtractor)

set void execute(InteractionSpec, Record,
Record)

Record execute(InteractionSpec,
RecordCreator, RecordExtractor)

not set Record execute(InteractionSpec, Record)

Record execute(InteractionSpec,
RecordCreator, RecordExtractor)

set void execute(InteractionSpec, Record,
Record)

5.3.6. Using a CCI Connection and Interaction directly

CciTemplate also offers the possibility to work directly with CCI connections and interactions, in the
same manner as JdbcTemplate and JmsTemplate. This is useful when you want to perform multiple
operations on a CCI connection or interaction, for example.

The interface ConnectionCallback provides a CCI Connection as argument, in order to perform
custom operations on it, plus the CCI ConnectionFactory which the Connection was created with. The
latter can be useful for example to get an associated RecordFactory instance and create
indexed/mapped records, for example.

90

public interface ConnectionCallback {

 Object doInConnection(Connection connection, ConnectionFactory connectionFactory)
 throws ResourceException, SQLException, DataAccessException;

}

The interface InteractionCallback provides the CCI Interaction, in order to perform custom
operations on it, plus the corresponding CCI ConnectionFactory.

public interface InteractionCallback {

 Object doInInteraction(Interaction interaction, ConnectionFactory
connectionFactory)
 throws ResourceException, SQLException, DataAccessException;

}


InteractionSpec objects can either be shared across multiple template calls or
newly created inside every callback method. This is completely up to the DAO
implementation.

5.3.7. Example for CciTemplate usage

In this section, the usage of the CciTemplate will be shown to acces to a CICS with ECI mode, with the
IBM CICS ECI connector.

Firstly, some initializations on the CCI InteractionSpec must be done to specify which CICS program
to access and how to interact with it.

ECIInteractionSpec interactionSpec = new ECIInteractionSpec();
interactionSpec.setFunctionName("MYPROG");
interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);

Then the program can use CCI via Spring’s template and specify mappings between custom objects
and CCI Records.

91

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public OutputObject getData(InputObject input) {
 ECIInteractionSpec interactionSpec = ...;

 OutputObject output = (ObjectOutput) getCciTemplate().execute(interactionSpec,
 new RecordCreator() {
 public Record createRecord(RecordFactory recordFactory) throws
ResourceException {
 return new CommAreaRecord(input.toString().getBytes());
 }
 },
 new RecordExtractor() {
 public Object extractData(Record record) throws ResourceException {
 CommAreaRecord commAreaRecord = (CommAreaRecord)record;
 String str = new String(commAreaRecord.toByteArray());
 String field1 = string.substring(0,6);
 String field2 = string.substring(6,1);
 return new OutputObject(Long.parseLong(field1), field2);
 }
 });

 return output;
 }
}

As discussed previously, callbacks can be used to work directly on CCI connections or interactions.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public OutputObject getData(InputObject input) {
 ObjectOutput output = (ObjectOutput) getCciTemplate().execute(
 new ConnectionCallback() {
 public Object doInConnection(Connection connection,
 ConnectionFactory factory) throws ResourceException {

 // do something...

 }
 });
 }
 return output;
 }

}

92


With a ConnectionCallback, the Connection used will be managed and closed by the
CciTemplate, but any interactions created on the connection must be managed by
the callback implementation.

For a more specific callback, you can implement an InteractionCallback. The passed-in Interaction
will be managed and closed by the CciTemplate in this case.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public String getData(String input) {
 ECIInteractionSpec interactionSpec = ...;
 String output = (String) getCciTemplate().execute(interactionSpec,
 new InteractionCallback() {
 public Object doInInteraction(Interaction interaction,
 ConnectionFactory factory) throws ResourceException {
 Record input = new CommAreaRecord(inputString.getBytes());
 Record output = new CommAreaRecord();
 interaction.execute(holder.getInteractionSpec(), input, output);
 return new String(output.toByteArray());
 }
 });
 return output;
 }

}

For the examples above, the corresponding configuration of the involved Spring beans could look
like this in non-managed mode:

<bean id="managedConnectionFactory" class=
"com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TXSERIES"/>
 <property name="connectionURL" value="local:"/>
 <property name="userName" value="CICSUSER"/>
 <property name="password" value="CICS"/>
</bean>

<bean id="connectionFactory" class=
"org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="component" class="mypackage.MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as follows:

93

<jee:jndi-lookup id="connectionFactory" jndi-name="eis/cicseci"/>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

5.4. Modeling CCI access as operation objects
The org.springframework.jca.cci.object package contains support classes that allow you to access
the EIS in a different style: through reusable operation objects, analogous to Spring’s JDBC
operation objects (see JDBC chapter). This will usually encapsulate the CCI API: an application-level
input object will be passed to the operation object, so it can construct the input record and then
convert the received record data to an application-level output object and return it.


This approach is internally based on the CciTemplate class and the RecordCreator /
RecordExtractor interfaces, reusing the machinery of Spring’s core CCI support.

5.4.1. MappingRecordOperation

MappingRecordOperation essentially performs the same work as CciTemplate, but represents a
specific, pre-configured operation as an object. It provides two template methods to specify how to
convert an input object to a input record, and how to convert an output record to an output object
(record mapping):

• createInputRecord(..) to specify how to convert an input object to an input Record

• extractOutputData(..) to specify how to extract an output object from an output Record

Here are the signatures of these methods:

public abstract class MappingRecordOperation extends EisOperation {

 ...

 protected abstract Record createInputRecord(RecordFactory recordFactory,
 Object inputObject) throws ResourceException, DataAccessException {
 // ...
 }

 protected abstract Object extractOutputData(Record outputRecord)
 throws ResourceException, SQLException, DataAccessException {
 // ...
 }

 ...

}

94

Thereafter, in order to execute an EIS operation, you need to use a single execute method, passing
in an application-level input object and receiving an application-level output object as result:

public abstract class MappingRecordOperation extends EisOperation {

 ...

 public Object execute(Object inputObject) throws DataAccessException {
 }

 ...
}

As you can see, contrary to the CciTemplate class, this execute(..) method does not have an
InteractionSpec as argument. Instead, the InteractionSpec is global to the operation. The following
constructor must be used to instantiate an operation object with a specific InteractionSpec:

InteractionSpec spec = ...;
MyMappingRecordOperation eisOperation = new MyMappingRecordOperation
(getConnectionFactory(), spec);
...

5.4.2. MappingCommAreaOperation

Some connectors use records based on a COMMAREA which represents an array of bytes containing
parameters to send to the EIS and data returned by it. Spring provides a special operation class for
working directly on COMMAREA rather than on records. The MappingCommAreaOperation class
extends the MappingRecordOperation class to provide such special COMMAREA support. It implicitly
uses the CommAreaRecord class as input and output record type, and provides two new methods to
convert an input object into an input COMMAREA and the output COMMAREA into an output
object.

public abstract class MappingCommAreaOperation extends MappingRecordOperation {

 ...

 protected abstract byte[] objectToBytes(Object inObject)
 throws IOException, DataAccessException;

 protected abstract Object bytesToObject(byte[] bytes)
 throws IOException, DataAccessException;

 ...

}

95

5.4.3. Automatic output record generation

As every MappingRecordOperation subclass is based on CciTemplate internally, the same way to
automatically generate output records as with CciTemplate is available. Every operation object
provides a corresponding setOutputRecordCreator(..) method. For further information, see
Automatic output record generation.

5.4.4. Summary

The operation object approach uses records in the same manner as the CciTemplate class.

Table 10. Usage of Interaction execute methods

MappingRecordOperation method
signature

MappingRec
ordOperatio
n
outputReco
rdCreator
property

execute method called on the CCI
Interaction

Object execute(Object) not set Record execute(InteractionSpec, Record)

Object execute(Object) set boolean execute(InteractionSpec, Record,
Record)

5.4.5. Example for MappingRecordOperation usage

In this section, the usage of the MappingRecordOperation will be shown to access a database with the
Blackbox CCI connector.


The original version of this connector is provided by the Java EE SDK (version 1.3),
available from Oracle.

Firstly, some initializations on the CCI InteractionSpec must be done to specify which SQL request
to execute. In this sample, we directly define the way to convert the parameters of the request to a
CCI record and the way to convert the CCI result record to an instance of the Person class.

96

public class PersonMappingOperation extends MappingRecordOperation {

 public PersonMappingOperation(ConnectionFactory connectionFactory) {
 setConnectionFactory(connectionFactory);
 CciInteractionSpec interactionSpec = new CciConnectionSpec();
 interactionSpec.setSql("select * from person where person_id=?");
 setInteractionSpec(interactionSpec);
 }

 protected Record createInputRecord(RecordFactory recordFactory,
 Object inputObject) throws ResourceException {
 Integer id = (Integer) inputObject;
 IndexedRecord input = recordFactory.createIndexedRecord("input");
 input.add(new Integer(id));
 return input;
 }

 protected Object extractOutputData(Record outputRecord)
 throws ResourceException, SQLException {
 ResultSet rs = (ResultSet) outputRecord;
 Person person = null;
 if (rs.next()) {
 Person person = new Person();
 person.setId(rs.getInt("person_id"));
 person.setLastName(rs.getString("person_last_name"));
 person.setFirstName(rs.getString("person_first_name"));
 }
 return person;
 }
}

Then the application can execute the operation object, with the person identifier as argument. Note
that operation object could be set up as shared instance, as it is thread-safe.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public Person getPerson(int id) {
 PersonMappingOperation query = new PersonMappingOperation(
getConnectionFactory());
 Person person = (Person) query.execute(new Integer(id));
 return person;
 }
}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

97

<bean id="managedConnectionFactory"
 class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">
 <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
 <property name="driverName" value="org.hsqldb.jdbcDriver"/>
</bean>

<bean id="targetConnectionFactory"
 class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="connectionFactory"
 class=
"org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
 <property name="connectionSpec">
 <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
 <property name="user" value="sa"/>
 <property name="password" value=""/>
 </bean>
 </property>
</bean>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as follows:

<jee:jndi-lookup id="targetConnectionFactory" jndi-name="eis/blackbox"/>

<bean id="connectionFactory"
 class=
"org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
 <property name="connectionSpec">
 <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
 <property name="user" value="sa"/>
 <property name="password" value=""/>
 </bean>
 </property>
</bean>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

98

5.4.6. Example for MappingCommAreaOperation usage

In this section, the usage of the MappingCommAreaOperation will be shown: accessing a CICS with ECI
mode with the IBM CICS ECI connector.

Firstly, the CCI InteractionSpec needs to be initialized to specify which CICS program to access and
how to interact with it.

public abstract class EciMappingOperation extends MappingCommAreaOperation {

 public EciMappingOperation(ConnectionFactory connectionFactory, String
programName) {
 setConnectionFactory(connectionFactory);
 ECIInteractionSpec interactionSpec = new ECIInteractionSpec(),
 interactionSpec.setFunctionName(programName);
 interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);
 interactionSpec.setCommareaLength(30);
 setInteractionSpec(interactionSpec);
 setOutputRecordCreator(new EciOutputRecordCreator());
 }

 private static class EciOutputRecordCreator implements RecordCreator {
 public Record createRecord(RecordFactory recordFactory) throws
ResourceException {
 return new CommAreaRecord();
 }
 }

}

The abstract EciMappingOperation class can then be subclassed to specify mappings between custom
objects and Records.

99

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public OutputObject getData(Integer id) {
 EciMappingOperation query = new EciMappingOperation(getConnectionFactory(),
"MYPROG") {

 protected abstract byte[] objectToBytes(Object inObject) throws
IOException {
 Integer id = (Integer) inObject;
 return String.valueOf(id);
 }

 protected abstract Object bytesToObject(byte[] bytes) throws IOException;
 String str = new String(bytes);
 String field1 = str.substring(0,6);
 String field2 = str.substring(6,1);
 String field3 = str.substring(7,1);
 return new OutputObject(field1, field2, field3);
 }
 });

 return (OutputObject) query.execute(new Integer(id));
 }

}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

<bean id="managedConnectionFactory" class=
"com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TXSERIES"/>
 <property name="connectionURL" value="local:"/>
 <property name="userName" value="CICSUSER"/>
 <property name="password" value="CICS"/>
</bean>

<bean id="connectionFactory" class=
"org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as follows:

100

<jee:jndi-lookup id="connectionFactory" jndi-name="eis/cicseci"/>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

5.5. Transactions
JCA specifies several levels of transaction support for resource adapters. The kind of transactions
that your resource adapter supports is specified in its ra.xml file. There are essentially three
options: none (for example with CICS EPI connector), local transactions (for example with a CICS
ECI connector), global transactions (for example with an IMS connector).

<connector>
 <resourceadapter>
 <!-- <transaction-support>NoTransaction</transaction-support> -->
 <!-- <transaction-support>LocalTransaction</transaction-support> -->
 <transaction-support>XATransaction</transaction-support>
 <resourceadapter>
<connector>

For global transactions, you can use Spring’s generic transaction infrastructure to demarcate
transactions, with JtaTransactionManager as backend (delegating to the Java EE server’s distributed
transaction coordinator underneath).

For local transactions on a single CCI ConnectionFactory, Spring provides a specific transaction
management strategy for CCI, analogous to the DataSourceTransactionManager for JDBC. The CCI API
defines a local transaction object and corresponding local transaction demarcation methods.
Spring’s CciLocalTransactionManager executes such local CCI transactions, fully compliant with
Spring’s generic PlatformTransactionManager abstraction.

<jee:jndi-lookup id="eciConnectionFactory" jndi-name="eis/cicseci"/>

<bean id="eciTransactionManager"
 class="org.springframework.jca.cci.connection.CciLocalTransactionManager">
 <property name="connectionFactory" ref="eciConnectionFactory"/>
</bean>

Both transaction strategies can be used with any of Spring’s transaction demarcation facilities, be it
declarative or programmatic. This is a consequence of Spring’s generic PlatformTransactionManager
abstraction, which decouples transaction demarcation from the actual execution strategy. Simply
switch between JtaTransactionManager and CciLocalTransactionManager as needed, keeping your
transaction demarcation as-is.

For more information on Spring’s transaction facilities, see the chapter entitled Transaction
Management.

101

data-access.pdf#transaction
data-access.pdf#transaction

Chapter 6. Email

6.1. Introduction

Library dependencies

The following JAR needs to be on the classpath of your application in order to use the Spring
Framework’s email library.

• The JavaMail library

This library is freely available on the web — for example, in Maven Central as
com.sun.mail:javax.mail.

The Spring Framework provides a helpful utility library for sending email that shields the user
from the specifics of the underlying mailing system and is responsible for low level resource
handling on behalf of the client.

The org.springframework.mail package is the root level package for the Spring Framework’s email
support. The central interface for sending emails is the MailSender interface; a simple value object
encapsulating the properties of a simple mail such as from and to (plus many others) is the
SimpleMailMessage class. This package also contains a hierarchy of checked exceptions which
provide a higher level of abstraction over the lower level mail system exceptions with the root
exception being MailException. Please refer to the javadocs for more information on the rich mail
exception hierarchy.

The org.springframework.mail.javamail.JavaMailSender interface adds specialized JavaMail features
such as MIME message support to the MailSender interface (from which it inherits). JavaMailSender
also provides a callback interface for preparing a 'MimeMessage', called
org.springframework.mail.javamail.MimeMessagePreparator.

6.2. Usage
Let’s assume there is a business interface called OrderManager:

public interface OrderManager {

 void placeOrder(Order order);

}

Let us also assume that there is a requirement stating that an email message with an order number
needs to be generated and sent to a customer placing the relevant order.

102

https://java.net/projects/javamail/pages/Home

6.2.1. Basic MailSender and SimpleMailMessage usage

import org.springframework.mail.MailException;
import org.springframework.mail.MailSender;
import org.springframework.mail.SimpleMailMessage;

public class SimpleOrderManager implements OrderManager {

 private MailSender mailSender;
 private SimpleMailMessage templateMessage;

 public void setMailSender(MailSender mailSender) {
 this.mailSender = mailSender;
 }

 public void setTemplateMessage(SimpleMailMessage templateMessage) {
 this.templateMessage = templateMessage;
 }

 public void placeOrder(Order order) {

 // Do the business calculations...

 // Call the collaborators to persist the order...

 // Create a thread safe "copy" of the template message and customize it
 SimpleMailMessage msg = new SimpleMailMessage(this.templateMessage);
 msg.setTo(order.getCustomer().getEmailAddress());
 msg.setText(
 "Dear " + order.getCustomer().getFirstName()
 + order.getCustomer().getLastName()
 + ", thank you for placing order. Your order number is "
 + order.getOrderNumber());
 try{
 this.mailSender.send(msg);
 }
 catch (MailException ex) {
 // simply log it and go on...
 System.err.println(ex.getMessage());
 }
 }

}

Find below the bean definitions for the above code:

103

<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host" value="mail.mycompany.com"/>
</bean>

<!-- this is a template message that we can pre-load with default state -->
<bean id="templateMessage" class="org.springframework.mail.SimpleMailMessage">
 <property name="from" value="customerservice@mycompany.com"/>
 <property name="subject" value="Your order"/>
</bean>

<bean id="orderManager" class="com.mycompany.businessapp.support.SimpleOrderManager">
 <property name="mailSender" ref="mailSender"/>
 <property name="templateMessage" ref="templateMessage"/>
</bean>

6.2.2. Using the JavaMailSender and the MimeMessagePreparator

Here is another implementation of OrderManager using the MimeMessagePreparator callback interface.
Please note in this case that the mailSender property is of type JavaMailSender so that we are able to
use the JavaMail MimeMessage class:

104

import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

import javax.mail.internet.MimeMessage;
import org.springframework.mail.MailException;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessagePreparator;

public class SimpleOrderManager implements OrderManager {

 private JavaMailSender mailSender;

 public void setMailSender(JavaMailSender mailSender) {
 this.mailSender = mailSender;
 }

 public void placeOrder(final Order order) {
 // Do the business calculations...
 // Call the collaborators to persist the order...

 MimeMessagePreparator preparator = new MimeMessagePreparator() {
 public void prepare(MimeMessage mimeMessage) throws Exception {
 mimeMessage.setRecipient(Message.RecipientType.TO,
 new InternetAddress(order.getCustomer().getEmailAddress()));
 mimeMessage.setFrom(new InternetAddress("mail@mycompany.com"));
 mimeMessage.setText("Dear " + order.getCustomer().getFirstName() + " "
+
 order.getCustomer().getLastName() + ", thanks for your order.
" +
 "Your order number is " + order.getOrderNumber() + ".");
 }
 };

 try {
 this.mailSender.send(preparator);
 }
 catch (MailException ex) {
 // simply log it and go on...
 System.err.println(ex.getMessage());
 }
 }

}


The mail code is a crosscutting concern and could well be a candidate for
refactoring into a custom Spring AOP aspect, which then could be executed at
appropriate joinpoints on the OrderManager target.

105

core.pdf#aop

The Spring Framework’s mail support ships with the standard JavaMail implementation. Please
refer to the relevant javadocs for more information.

6.3. Using the JavaMail MimeMessageHelper
A class that comes in pretty handy when dealing with JavaMail messages is the
org.springframework.mail.javamail.MimeMessageHelper class, which shields you from having to use
the verbose JavaMail API. Using the MimeMessageHelper it is pretty easy to create a MimeMessage:

// of course you would use DI in any real-world cases
JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();
MimeMessageHelper helper = new MimeMessageHelper(message);
helper.setTo("test@host.com");
helper.setText("Thank you for ordering!");

sender.send(message);

6.3.1. Sending attachments and inline resources

Multipart email messages allow for both attachments and inline resources. Examples of inline
resources would be images or a stylesheet you want to use in your message, but that you don’t want
displayed as an attachment.

Attachments

The following example shows you how to use the MimeMessageHelper to send an email along with a
single JPEG image attachment.

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

helper.setText("Check out this image!");

// let's attach the infamous windows Sample file (this time copied to c:/)
FileSystemResource file = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addAttachment("CoolImage.jpg", file);

sender.send(message);

106

Inline resources

The following example shows you how to use the MimeMessageHelper to send an email along with an
inline image.

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

// use the true flag to indicate the text included is HTML
helper.setText("<html><body></body></html>", true);

// let's include the infamous windows Sample file (this time copied to c:/)
FileSystemResource res = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addInline("identifier1234", res);

sender.send(message);


Inline resources are added to the MimeMessage using the specified Content-ID
(identifier1234 in the above example). The order in which you are adding the text
and the resource are very important. Be sure to first add the text and after that the
resources. If you are doing it the other way around, it won’t work!

6.3.2. Creating email content using a templating library

The code in the previous examples explicitly created the content of the email message, using
methods calls such as message.setText(..). This is fine for simple cases, and it is okay in the context
of the aforementioned examples, where the intent was to show you the very basics of the API.

In your typical enterprise application though, you are not going to create the content of your emails
using the above approach for a number of reasons.

• Creating HTML-based email content in Java code is tedious and error prone

• There is no clear separation between display logic and business logic

• Changing the display structure of the email content requires writing Java code, recompiling,
redeploying…

Typically the approach taken to address these issues is to use a template library such as FreeMarker
to define the display structure of email content. This leaves your code tasked only with creating the
data that is to be rendered in the email template and sending the email. It is definitely a best
practice for when the content of your emails becomes even moderately complex, and with the
Spring Framework’s support classes for FreeMarker becomes quite easy to do.

107

Chapter 7. Task Execution and Scheduling

7.1. Introduction
The Spring Framework provides abstractions for asynchronous execution and scheduling of tasks
with the TaskExecutor and TaskScheduler interfaces, respectively. Spring also features
implementations of those interfaces that support thread pools or delegation to CommonJ within an
application server environment. Ultimately the use of these implementations behind the common
interfaces abstracts away the differences between Java SE 5, Java SE 6 and Java EE environments.

Spring also features integration classes for supporting scheduling with the Timer, part of the JDK
since 1.3, and the Quartz Scheduler (https://www.quartz-scheduler.org/). Both of those schedulers
are set up using a FactoryBean with optional references to Timer or Trigger instances, respectively.
Furthermore, a convenience class for both the Quartz Scheduler and the Timer is available that
allows you to invoke a method of an existing target object (analogous to the normal
MethodInvokingFactoryBean operation).

7.2. The Spring TaskExecutor abstraction
Executors are the JDK name for the concept of thread pools. The "executor" naming is due to the
fact that there is no guarantee that the underlying implementation is actually a pool; an executor
may be single-threaded or even synchronous. Spring’s abstraction hides implementation details
between Java SE and Java EE environments.

Spring’s TaskExecutor interface is identical to the java.util.concurrent.Executor interface. In fact,
originally, its primary reason for existence was to abstract away the need for Java 5 when using
thread pools. The interface has a single method execute(Runnable task) that accepts a task for
execution based on the semantics and configuration of the thread pool.

The TaskExecutor was originally created to give other Spring components an abstraction for thread
pooling where needed. Components such as the ApplicationEventMulticaster, JMS’s
AbstractMessageListenerContainer, and Quartz integration all use the TaskExecutor abstraction to
pool threads. However, if your beans need thread pooling behavior, it is possible to use this
abstraction for your own needs.

7.2.1. TaskExecutor types

There are a number of pre-built implementations of TaskExecutor included with the Spring
distribution. In all likelihood, you should never need to implement your own. The common out-of-
the-box variants are:

• SyncTaskExecutor This implementation does not execute invocations asynchronously. Instead,
each invocation takes place in the calling thread. It is primarily used in situations where multi-
threading is not necessary such as in simple test cases.

• SimpleAsyncTaskExecutor This implementation does not reuse any threads, rather it starts up a
new thread for each invocation. However, it does support a concurrency limit which will block
any invocations that are over the limit until a slot has been freed up. If you are looking for true

108

https://www.quartz-scheduler.org/

pooling, see ThreadPoolTaskExecutor below.

• ConcurrentTaskExecutor This implementation is an adapter for a java.util.concurrent.Executor
instance. There is an alternative, ThreadPoolTaskExecutor, that exposes the Executor

configuration parameters as bean properties. There is rarely a need to use
ConcurrentTaskExecutor directly, but if the ThreadPoolTaskExecutor is not flexible enough for your
needs, then ConcurrentTaskExecutor is an alternative.

• ThreadPoolTaskExecutor This implementation is the most commonly used one. It exposes bean
properties for configuring a java.util.concurrent.ThreadPoolExecutor and wraps it in a
TaskExecutor. If you need to adapt to a different kind of java.util.concurrent.Executor, it is
recommended that you use a ConcurrentTaskExecutor instead.

• WorkManagerTaskExecutor This implementation uses a CommonJ WorkManager as its backing
service provider and is the central convenience class for setting up CommonJ-based thread pool
integration on WebLogic/WebSphere within a Spring application context.

• DefaultManagedTaskExecutor This implementation uses a JNDI-obtained ManagedExecutorService
in a JSR-236 compatible runtime environment such as a Java EE 7+ application server, replacing
a CommonJ WorkManager for that purpose.

7.2.2. Using a TaskExecutor

Spring’s TaskExecutor implementations are used as simple JavaBeans. In the example below, we
define a bean that uses the ThreadPoolTaskExecutor to asynchronously print out a set of messages.

109

import org.springframework.core.task.TaskExecutor;

public class TaskExecutorExample {

 private class MessagePrinterTask implements Runnable {

 private String message;

 public MessagePrinterTask(String message) {
 this.message = message;
 }

 public void run() {
 System.out.println(message);
 }
 }

 private TaskExecutor taskExecutor;

 public TaskExecutorExample(TaskExecutor taskExecutor) {
 this.taskExecutor = taskExecutor;
 }

 public void printMessages() {
 for(int i = 0; i < 25; i++) {
 taskExecutor.execute(new MessagePrinterTask("Message" + i));
 }
 }
}

As you can see, rather than retrieving a thread from the pool and executing yourself, you add your
Runnable to the queue and the TaskExecutor uses its internal rules to decide when the task gets
executed.

To configure the rules that the TaskExecutor will use, simple bean properties have been exposed.

<bean id="taskExecutor" class=
"org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="corePoolSize" value="5"/>
 <property name="maxPoolSize" value="10"/>
 <property name="queueCapacity" value="25"/>
</bean>

<bean id="taskExecutorExample" class="TaskExecutorExample">
 <constructor-arg ref="taskExecutor"/>
</bean>

110

7.3. The Spring TaskScheduler abstraction
In addition to the TaskExecutor abstraction, Spring 3.0 introduces a TaskScheduler with a variety of
methods for scheduling tasks to run at some point in the future.

public interface TaskScheduler {

 ScheduledFuture schedule(Runnable task, Trigger trigger);

 ScheduledFuture schedule(Runnable task, Instant startTime);

 ScheduledFuture schedule(Runnable task, Date startTime);

 ScheduledFuture scheduleAtFixedRate(Runnable task, Instant startTime, Duration
period);

 ScheduledFuture scheduleAtFixedRate(Runnable task, Date startTime, long period);

 ScheduledFuture scheduleAtFixedRate(Runnable task, Duration period);

 ScheduledFuture scheduleAtFixedRate(Runnable task, long period);

 ScheduledFuture scheduleWithFixedDelay(Runnable task, Instant startTime, Duration
delay);

 ScheduledFuture scheduleWithFixedDelay(Runnable task, Date startTime, long delay);

 ScheduledFuture scheduleWithFixedDelay(Runnable task, Duration delay);

 ScheduledFuture scheduleWithFixedDelay(Runnable task, long delay);
}

The simplest method is the one named 'schedule' that takes a Runnable and Date only. That will cause
the task to run once after the specified time. All of the other methods are capable of scheduling
tasks to run repeatedly. The fixed-rate and fixed-delay methods are for simple, periodic execution,
but the method that accepts a Trigger is much more flexible.

7.3.1. Trigger interface

The Trigger interface is essentially inspired by JSR-236 which, as of Spring 3.0, was not yet officially
implemented. The basic idea of the Trigger is that execution times may be determined based on
past execution outcomes or even arbitrary conditions. If these determinations do take into account
the outcome of the preceding execution, that information is available within a TriggerContext. The
Trigger interface itself is quite simple:

111

public interface Trigger {

 Date nextExecutionTime(TriggerContext triggerContext);
}

As you can see, the TriggerContext is the most important part. It encapsulates all of the relevant
data, and is open for extension in the future if necessary. The TriggerContext is an interface (a
SimpleTriggerContext implementation is used by default). Here you can see what methods are
available for Trigger implementations.

public interface TriggerContext {

 Date lastScheduledExecutionTime();

 Date lastActualExecutionTime();

 Date lastCompletionTime();
}

7.3.2. Trigger implementations

Spring provides two implementations of the Trigger interface. The most interesting one is the
CronTrigger. It enables the scheduling of tasks based on cron expressions. For example, the
following task is being scheduled to run 15 minutes past each hour but only during the 9-to-5
"business hours" on weekdays.

scheduler.schedule(task, new CronTrigger("0 15 9-17 * * MON-FRI"));

The other out-of-the-box implementation is a PeriodicTrigger that accepts a fixed period, an
optional initial delay value, and a boolean to indicate whether the period should be interpreted as a
fixed-rate or a fixed-delay. Since the TaskScheduler interface already defines methods for scheduling
tasks at a fixed-rate or with a fixed-delay, those methods should be used directly whenever possible.
The value of the PeriodicTrigger implementation is that it can be used within components that rely
on the Trigger abstraction. For example, it may be convenient to allow periodic triggers, cron-based
triggers, and even custom trigger implementations to be used interchangeably. Such a component
could take advantage of dependency injection so that such Triggers could be configured externally
and therefore easily modified or extended.

7.3.3. TaskScheduler implementations

As with Spring’s TaskExecutor abstraction, the primary benefit of the TaskScheduler arrangement is
that an application’s scheduling needs are decoupled from the deployment environment. This
abstraction level is particularly relevant when deploying to an application server environment
where threads should not be created directly by the application itself. For such scenarios, Spring
provides a TimerManagerTaskScheduler delegating to a CommonJ TimerManager on

112

WebLogic/WebSphere as well as a more recent DefaultManagedTaskScheduler delegating to a JSR-236
ManagedScheduledExecutorService in a Java EE 7+ environment, both typically configured with a JNDI
lookup.

Whenever external thread management is not a requirement, a simpler alternative is a local
ScheduledExecutorService setup within the application which can be adapted through Spring’s
ConcurrentTaskScheduler. As a convenience, Spring also provides a ThreadPoolTaskScheduler which
internally delegates to a ScheduledExecutorService, providing common bean-style configuration
along the lines of ThreadPoolTaskExecutor. These variants work perfectly fine for locally embedded
thread pool setups in lenient application server environments as well, in particular on Tomcat and
Jetty.

7.4. Annotation Support for Scheduling and
Asynchronous Execution
Spring provides annotation support for both task scheduling and asynchronous method execution.

7.4.1. Enable scheduling annotations

To enable support for @Scheduled and @Async annotations add @EnableScheduling and @EnableAsync to
one of your @Configuration classes:

@Configuration
@EnableAsync
@EnableScheduling
public class AppConfig {
}

You are free to pick and choose the relevant annotations for your application. For example, if you
only need support for @Scheduled, simply omit @EnableAsync. For more fine-grained control you can
additionally implement the SchedulingConfigurer and/or AsyncConfigurer interfaces. See the
javadocs for full details.

If you prefer XML configuration use the <task:annotation-driven> element.

<task:annotation-driven executor="myExecutor" scheduler="myScheduler"/>
<task:executor id="myExecutor" pool-size="5"/>
<task:scheduler id="myScheduler" pool-size="10"/>

Notice with the above XML that an executor reference is provided for handling those tasks that
correspond to methods with the @Async annotation, and the scheduler reference is provided for
managing those methods annotated with @Scheduled.

113



The default advice mode for processing @Async annotations is "proxy" which allows
for interception of calls through the proxy only; local calls within the same class
cannot get intercepted that way. For a more advanced mode of interception,
consider switching to "aspectj" mode in combination with compile-time or load-
time weaving.

7.4.2. The @Scheduled annotation

The @Scheduled annotation can be added to a method along with trigger metadata. For example, the
following method would be invoked every 5 seconds with a fixed delay, meaning that the period
will be measured from the completion time of each preceding invocation.

@Scheduled(fixedDelay=5000)
public void doSomething() {
 // something that should execute periodically
}

If a fixed rate execution is desired, simply change the property name specified within the
annotation. The following would be executed every 5 seconds measured between the successive
start times of each invocation.

@Scheduled(fixedRate=5000)
public void doSomething() {
 // something that should execute periodically
}

For fixed-delay and fixed-rate tasks, an initial delay may be specified indicating the number of
milliseconds to wait before the first execution of the method.

@Scheduled(initialDelay=1000, fixedRate=5000)
public void doSomething() {
 // something that should execute periodically
}

If simple periodic scheduling is not expressive enough, then a cron expression may be provided.
For example, the following will only execute on weekdays.

@Scheduled(cron="*/5 * * * * MON-FRI")
public void doSomething() {
 // something that should execute on weekdays only
}


You can additionally use the zone attribute to specify the time zone in which the
cron expression will be resolved.

114

Notice that the methods to be scheduled must have void returns and must not expect any
arguments. If the method needs to interact with other objects from the Application Context, then
those would typically have been provided through dependency injection.



As of Spring Framework 4.3, @Scheduled methods are supported on beans of any
scope.

Make sure that you are not initializing multiple instances of the same @Scheduled
annotation class at runtime, unless you do want to schedule callbacks to each such
instance. Related to this, make sure that you do not use @Configurable on bean
classes which are annotated with @Scheduled and registered as regular Spring
beans with the container: You would get double initialization otherwise, once
through the container and once through the @Configurable aspect, with the
consequence of each @Scheduled method being invoked twice.

7.4.3. The @Async annotation

The @Async annotation can be provided on a method so that invocation of that method will occur
asynchronously. In other words, the caller will return immediately upon invocation and the actual
execution of the method will occur in a task that has been submitted to a Spring TaskExecutor. In the
simplest case, the annotation may be applied to a void-returning method.

@Async
void doSomething() {
 // this will be executed asynchronously
}

Unlike the methods annotated with the @Scheduled annotation, these methods can expect
arguments, because they will be invoked in the "normal" way by callers at runtime rather than
from a scheduled task being managed by the container. For example, the following is a legitimate
application of the @Async annotation.

@Async
void doSomething(String s) {
 // this will be executed asynchronously
}

Even methods that return a value can be invoked asynchronously. However, such methods are
required to have a Future typed return value. This still provides the benefit of asynchronous
execution so that the caller can perform other tasks prior to calling get() on that Future.

@Async
Future<String> returnSomething(int i) {
 // this will be executed asynchronously
}

115



@Async methods may not only declare a regular java.util.concurrent.Future return
type but also Spring’s org.springframework.util.concurrent.ListenableFuture or, as
of Spring 4.2, JDK 8’s java.util.concurrent.CompletableFuture: for richer
interaction with the asynchronous task and for immediate composition with
further processing steps.

@Async can not be used in conjunction with lifecycle callbacks such as @PostConstruct. To
asynchronously initialize Spring beans you currently have to use a separate initializing Spring bean
that invokes the @Async annotated method on the target then.

public class SampleBeanImpl implements SampleBean {

 @Async
 void doSomething() {
 // ...
 }

}

public class SampleBeanInitializer {

 private final SampleBean bean;

 public SampleBeanInitializer(SampleBean bean) {
 this.bean = bean;
 }

 @PostConstruct
 public void initialize() {
 bean.doSomething();
 }

}


There is no direct XML equivalent for @Async since such methods should be
designed for asynchronous execution in the first place, not externally re-declared
to be async. However, you may manually set up Spring’s AsyncExecutionInterceptor
with Spring AOP, in combination with a custom pointcut.

7.4.4. Executor qualification with @Async

By default when specifying @Async on a method, the executor that will be used is the one supplied to
the 'annotation-driven' element as described above. However, the value attribute of the @Async
annotation can be used when needing to indicate that an executor other than the default should be
used when executing a given method.

116

@Async("otherExecutor")
void doSomething(String s) {
 // this will be executed asynchronously by "otherExecutor"
}

In this case, "otherExecutor" may be the name of any Executor bean in the Spring container, or may
be the name of a qualifier associated with any Executor, e.g. as specified with the <qualifier>
element or Spring’s @Qualifier annotation.

7.4.5. Exception management with @Async

When an @Async method has a Future typed return value, it is easy to manage an exception that was
thrown during the method execution as this exception will be thrown when calling get on the
Future result. With a void return type however, the exception is uncaught and cannot be
transmitted. For those cases, an AsyncUncaughtExceptionHandler can be provided to handle such
exceptions.

public class MyAsyncUncaughtExceptionHandler implements AsyncUncaughtExceptionHandler
{

 @Override
 public void handleUncaughtException(Throwable ex, Method method, Object... params)
{
 // handle exception
 }
}

By default, the exception is simply logged. A custom AsyncUncaughtExceptionHandler can be defined
via AsyncConfigurer or the task:annotation-driven XML element.

7.5. The task namespace
Beginning with Spring 3.0, there is an XML namespace for configuring TaskExecutor and
TaskScheduler instances. It also provides a convenient way to configure tasks to be scheduled with a
trigger.

7.5.1. The 'scheduler' element

The following element will create a ThreadPoolTaskScheduler instance with the specified thread pool
size.

<task:scheduler id="scheduler" pool-size="10"/>

The value provided for the 'id' attribute will be used as the prefix for thread names within the pool.
The 'scheduler' element is relatively straightforward. If you do not provide a 'pool-size' attribute,

117

the default thread pool will only have a single thread. There are no other configuration options for
the scheduler.

7.5.2. The 'executor' element

The following will create a ThreadPoolTaskExecutor instance:

<task:executor id="executor" pool-size="10"/>

As with the scheduler above, the value provided for the 'id' attribute will be used as the prefix for
thread names within the pool. As far as the pool size is concerned, the 'executor' element supports
more configuration options than the 'scheduler' element. For one thing, the thread pool for a
ThreadPoolTaskExecutor is itself more configurable. Rather than just a single size, an executor’s
thread pool may have different values for the core and the max size. If a single value is provided
then the executor will have a fixed-size thread pool (the core and max sizes are the same).
However, the 'executor' element’s 'pool-size' attribute also accepts a range in the form of "min-
max".

<task:executor
 id="executorWithPoolSizeRange"
 pool-size="5-25"
 queue-capacity="100"/>

As you can see from that configuration, a 'queue-capacity' value has also been provided. The
configuration of the thread pool should also be considered in light of the executor’s queue capacity.
For the full description of the relationship between pool size and queue capacity, consult the
documentation for ThreadPoolExecutor. The main idea is that when a task is submitted, the
executor will first try to use a free thread if the number of active threads is currently less than the
core size. If the core size has been reached, then the task will be added to the queue as long as its
capacity has not yet been reached. Only then, if the queue’s capacity has been reached, will the
executor create a new thread beyond the core size. If the max size has also been reached, then the
executor will reject the task.

By default, the queue is unbounded, but this is rarely the desired configuration, because it can lead
to OutOfMemoryErrors if enough tasks are added to that queue while all pool threads are busy.
Furthermore, if the queue is unbounded, then the max size has no effect at all. Since the executor
will always try the queue before creating a new thread beyond the core size, a queue must have a
finite capacity for the thread pool to grow beyond the core size (this is why a fixed size pool is the
only sensible case when using an unbounded queue).

In a moment, we will review the effects of the keep-alive setting which adds yet another factor to
consider when providing a pool size configuration. First, let’s consider the case, as mentioned
above, when a task is rejected. By default, when a task is rejected, a thread pool executor will throw
a TaskRejectedException. However, the rejection policy is actually configurable. The exception is
thrown when using the default rejection policy which is the AbortPolicy implementation. For
applications where some tasks can be skipped under heavy load, either the DiscardPolicy or
DiscardOldestPolicy may be configured instead. Another option that works well for applications

118

https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.html

that need to throttle the submitted tasks under heavy load is the CallerRunsPolicy. Instead of
throwing an exception or discarding tasks, that policy will simply force the thread that is calling the
submit method to run the task itself. The idea is that such a caller will be busy while running that
task and not able to submit other tasks immediately. Therefore it provides a simple way to throttle
the incoming load while maintaining the limits of the thread pool and queue. Typically this allows
the executor to "catch up" on the tasks it is handling and thereby frees up some capacity on the
queue, in the pool, or both. Any of these options can be chosen from an enumeration of values
available for the 'rejection-policy' attribute on the 'executor' element.

<task:executor
 id="executorWithCallerRunsPolicy"
 pool-size="5-25"
 queue-capacity="100"
 rejection-policy="CALLER_RUNS"/>

Finally, the keep-alive setting determines the time limit (in seconds) for which threads may remain
idle before being terminated. If there are more than the core number of threads currently in the
pool, after waiting this amount of time without processing a task, excess threads will get
terminated. A time value of zero will cause excess threads to terminate immediately after executing
a task without remaining follow-up work in the task queue.

<task:executor
 id="executorWithKeepAlive"
 pool-size="5-25"
 keep-alive="120"/>

7.5.3. The 'scheduled-tasks' element

The most powerful feature of Spring’s task namespace is the support for configuring tasks to be
scheduled within a Spring Application Context. This follows an approach similar to other "method-
invokers" in Spring, such as that provided by the JMS namespace for configuring Message-driven
POJOs. Basically a "ref" attribute can point to any Spring-managed object, and the "method"
attribute provides the name of a method to be invoked on that object. Here is a simple example.

<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="beanA" method="methodA" fixed-delay="5000"/>
</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

As you can see, the scheduler is referenced by the outer element, and each individual task includes
the configuration of its trigger metadata. In the preceding example, that metadata defines a
periodic trigger with a fixed delay indicating the number of milliseconds to wait after each task
execution has completed. Another option is 'fixed-rate', indicating how often the method should be
executed regardless of how long any previous execution takes. Additionally, for both fixed-delay
and fixed-rate tasks an 'initial-delay' parameter may be specified indicating the number of

119

milliseconds to wait before the first execution of the method. For more control, a "cron" attribute
may be provided instead. Here is an example demonstrating these other options.

<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="beanA" method="methodA" fixed-delay="5000" initial-delay=
"1000"/>
 <task:scheduled ref="beanB" method="methodB" fixed-rate="5000"/>
 <task:scheduled ref="beanC" method="methodC" cron="*/5 * * * * MON-FRI"/>
</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

7.6. Using the Quartz Scheduler
Quartz uses Trigger, Job and JobDetail objects to realize scheduling of all kinds of jobs. For the basic
concepts behind Quartz, have a look at https://www.quartz-scheduler.org/. For convenience
purposes, Spring offers a couple of classes that simplify the usage of Quartz within Spring-based
applications.

7.6.1. Using the JobDetailFactoryBean

Quartz JobDetail objects contain all information needed to run a job. Spring provides a
JobDetailFactoryBean which provides bean-style properties for XML configuration purposes. Let’s
have a look at an example:

<bean name="exampleJob" class=
"org.springframework.scheduling.quartz.JobDetailFactoryBean">
 <property name="jobClass" value="example.ExampleJob"/>
 <property name="jobDataAsMap">
 <map>
 <entry key="timeout" value="5"/>
 </map>
 </property>
</bean>

The job detail configuration has all information it needs to run the job (ExampleJob). The timeout is
specified in the job data map. The job data map is available through the JobExecutionContext
(passed to you at execution time), but the JobDetail also gets its properties from the job data
mapped to properties of the job instance. So in this case, if the ExampleJob contains a bean property
named timeout, the JobDetail will have it applied automatically:

120

https://www.quartz-scheduler.org/

package example;

public class ExampleJob extends QuartzJobBean {

 private int timeout;

 /**
 * Setter called after the ExampleJob is instantiated
 * with the value from the JobDetailFactoryBean (5)
 */
 public void setTimeout(int timeout) {
 this.timeout = timeout;
 }

 protected void executeInternal(JobExecutionContext ctx) throws
JobExecutionException {
 // do the actual work
 }

}

All additional properties from the job data map are of course available to you as well.


Using the name and group properties, you can modify the name and the group of the
job, respectively. By default, the name of the job matches the bean name of the
JobDetailFactoryBean (in the example above, this is exampleJob).

7.6.2. Using the MethodInvokingJobDetailFactoryBean

Often you just need to invoke a method on a specific object. Using the
MethodInvokingJobDetailFactoryBean you can do exactly this:

<bean id="jobDetail" class=
"org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
 <property name="targetObject" ref="exampleBusinessObject"/>
 <property name="targetMethod" value="doIt"/>
</bean>

The above example will result in the doIt method being called on the exampleBusinessObject method
(see below):

121

public class ExampleBusinessObject {

 // properties and collaborators

 public void doIt() {
 // do the actual work
 }
}

<bean id="exampleBusinessObject" class="examples.ExampleBusinessObject"/>

Using the MethodInvokingJobDetailFactoryBean, you don’t need to create one-line jobs that just
invoke a method, and you only need to create the actual business object and wire up the detail
object.

By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering with each other.
If you specify two triggers for the same JobDetail, it might be possible that before the first job has
finished, the second one will start. If JobDetail classes implement the Stateful interface, this won’t
happen. The second job will not start before the first one has finished. To make jobs resulting from
the MethodInvokingJobDetailFactoryBean non-concurrent, set the concurrent flag to false.

<bean id="jobDetail" class=
"org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
 <property name="targetObject" ref="exampleBusinessObject"/>
 <property name="targetMethod" value="doIt"/>
 <property name="concurrent" value="false"/>
</bean>

 By default, jobs will run in a concurrent fashion.

7.6.3. Wiring up jobs using triggers and the SchedulerFactoryBean

We’ve created job details and jobs. We’ve also reviewed the convenience bean that allows you to
invoke a method on a specific object. Of course, we still need to schedule the jobs themselves. This
is done using triggers and a SchedulerFactoryBean. Several triggers are available within Quartz and
Spring offers two Quartz FactoryBean implementations with convenient defaults:
CronTriggerFactoryBean and SimpleTriggerFactoryBean.

Triggers need to be scheduled. Spring offers a SchedulerFactoryBean that exposes triggers to be set as
properties. SchedulerFactoryBean schedules the actual jobs with those triggers.

Find below a couple of examples:

122

<bean id="simpleTrigger" class=
"org.springframework.scheduling.quartz.SimpleTriggerFactoryBean">
 <!-- see the example of method invoking job above -->
 <property name="jobDetail" ref="jobDetail"/>
 <!-- 10 seconds -->
 <property name="startDelay" value="10000"/>
 <!-- repeat every 50 seconds -->
 <property name="repeatInterval" value="50000"/>
</bean>

<bean id="cronTrigger" class=
"org.springframework.scheduling.quartz.CronTriggerFactoryBean">
 <property name="jobDetail" ref="exampleJob"/>
 <!-- run every morning at 6 AM -->
 <property name="cronExpression" value="0 0 6 * * ?"/>
</bean>

Now we’ve set up two triggers, one running every 50 seconds with a starting delay of 10 seconds
and one every morning at 6 AM. To finalize everything, we need to set up the SchedulerFactoryBean:

<bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 <property name="triggers">
 <list>
 <ref bean="cronTrigger"/>
 <ref bean="simpleTrigger"/>
 </list>
 </property>
</bean>

More properties are available for the SchedulerFactoryBean for you to set, such as the calendars
used by the job details, properties to customize Quartz with, etc. Have a look at the
SchedulerFactoryBean javadocs for more information.

123

https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/scheduling/quartz/SchedulerFactoryBean.html
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/scheduling/quartz/SchedulerFactoryBean.html

Chapter 8. Cache Abstraction

8.1. Introduction
Since version 3.1, Spring Framework provides support for transparently adding caching into an
existing Spring application. Similar to the transaction support, the caching abstraction allows
consistent use of various caching solutions with minimal impact on the code.

As from Spring 4.1, the cache abstraction has been significantly improved with the support of JSR-
107 annotations and more customization options.

8.2. Understanding the cache abstraction

Cache vs Buffer

The terms "buffer" and "cache" tend to be used interchangeably; note however they represent
different things. A buffer is used traditionally as an intermediate temporary store for data
between a fast and a slow entity. As one party would have to wait for the other affecting
performance, the buffer alleviates this by allowing entire blocks of data to move at once
rather then in small chunks. The data is written and read only once from the buffer.
Furthermore, the buffers are visible to at least one party which is aware of it.

A cache on the other hand by definition is hidden and neither party is aware that caching
occurs.It as well improves performance but does that by allowing the same data to be read
multiple times in a fast fashion.

A further explanation of the differences between two can be found here.

At its core, the abstraction applies caching to Java methods, reducing thus the number of executions
based on the information available in the cache. That is, each time a targeted method is invoked,
the abstraction will apply a caching behavior checking whether the method has been already
executed for the given arguments. If it has, then the cached result is returned without having to
execute the actual method; if it has not, then method is executed, the result cached and returned to
the user so that, the next time the method is invoked, the cached result is returned. This way,
expensive methods (whether CPU or IO bound) can be executed only once for a given set of
parameters and the result reused without having to actually execute the method again. The caching
logic is applied transparently without any interference to the invoker.


Obviously this approach works only for methods that are guaranteed to return the
same output (result) for a given input (or arguments) no matter how many times it
is being executed.

Other cache-related operations are provided by the abstraction such as the ability to update the
content of the cache or remove one of all entries. These are useful if the cache deals with data that
can change during the course of the application.

124

data-access.pdf#transaction
https://en.wikipedia.org/wiki/Cache_(computing)#The_difference_between_buffer_and_cache

Just like other services in the Spring Framework, the caching service is an abstraction (not a cache
implementation) and requires the use of an actual storage to store the cache data - that is, the
abstraction frees the developer from having to write the caching logic but does not provide the
actual stores. This abstraction is materialized by the org.springframework.cache.Cache and
org.springframework.cache.CacheManager interfaces.

There are a few implementations of that abstraction available out of the box: JDK
java.util.concurrent.ConcurrentMap based caches, Ehcache 2.x, Gemfire cache, Caffeine and JSR-107
compliant caches (e.g. Ehcache 3.x). See Plugging-in different back-end caches for more information
on plugging in other cache stores/providers.


The caching abstraction has no special handling of multi-threaded and multi-
process environments as such features are handled by the cache implementation. .

If you have a multi-process environment (i.e. an application deployed on several nodes), you will
need to configure your cache provider accordingly. Depending on your use cases, a copy of the
same data on several nodes may be enough but if you change the data during the course of the
application, you may need to enable other propagation mechanisms.

Caching a particular item is a direct equivalent of the typical get-if-not-found-then- proceed-and-
put-eventually code blocks found with programmatic cache interaction: no locks are applied and
several threads may try to load the same item concurrently. The same applies to eviction: if several
threads are trying to update or evict data concurrently, you may use stale data. Certain cache
providers offer advanced features in that area, refer to the documentation of the cache provider
that you are using for more details.

To use the cache abstraction, the developer needs to take care of two aspects:

• caching declaration - identify the methods that need to be cached and their policy

• cache configuration - the backing cache where the data is stored and read from

8.3. Declarative annotation-based caching
For caching declaration, the abstraction provides a set of Java annotations:

• @Cacheable triggers cache population

• @CacheEvict triggers cache eviction

• @CachePut updates the cache without interfering with the method execution

• @Caching regroups multiple cache operations to be applied on a method

• @CacheConfig shares some common cache-related settings at class-level

Let us take a closer look at each annotation:

8.3.1. @Cacheable annotation

As the name implies, @Cacheable is used to demarcate methods that are cacheable - that is, methods
for whom the result is stored into the cache so on subsequent invocations (with the same

125

https://www.ehcache.org/
https://github.com/ben-manes/caffeine/wiki

arguments), the value in the cache is returned without having to actually execute the method. In its
simplest form, the annotation declaration requires the name of the cache associated with the
annotated method:

@Cacheable("books")
public Book findBook(ISBN isbn) {...}

In the snippet above, the method findBook is associated with the cache named books. Each time the
method is called, the cache is checked to see whether the invocation has been already executed and
does not have to be repeated. While in most cases, only one cache is declared, the annotation allows
multiple names to be specified so that more than one cache are being used. In this case, each of the
caches will be checked before executing the method - if at least one cache is hit, then the associated
value will be returned:


All the other caches that do not contain the value will be updated as well even
though the cached method was not actually executed.

@Cacheable({"books", "isbns"})
public Book findBook(ISBN isbn) {...}

Default Key Generation

Since caches are essentially key-value stores, each invocation of a cached method needs to be
translated into a suitable key for cache access. Out of the box, the caching abstraction uses a simple
KeyGenerator based on the following algorithm:

• If no params are given, return SimpleKey.EMPTY.

• If only one param is given, return that instance.

• If more the one param is given, return a SimpleKey containing all parameters.

This approach works well for most use-cases; As long as parameters have natural keys and
implement valid hashCode() and equals() methods. If that is not the case then the strategy needs to
be changed.

To provide a different default key generator, one needs to implement the
org.springframework.cache.interceptor.KeyGenerator interface.



The default key generation strategy changed with the release of Spring 4.0. Earlier
versions of Spring used a key generation strategy that, for multiple key
parameters, only considered the hashCode() of parameters and not equals(); this
could cause unexpected key collisions (see SPR-10237 for background). The new
'SimpleKeyGenerator' uses a compound key for such scenarios.

If you want to keep using the previous key strategy, you can configure the
deprecated org.springframework.cache.interceptor.DefaultKeyGenerator class or
create a custom hash-based 'KeyGenerator' implementation.

126

https://jira.spring.io/browse/SPR-10237

Custom Key Generation Declaration

Since caching is generic, it is quite likely the target methods have various signatures that cannot be
simply mapped on top of the cache structure. This tends to become obvious when the target method
has multiple arguments out of which only some are suitable for caching (while the rest are used
only by the method logic). For example:

@Cacheable("books")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

At first glance, while the two boolean arguments influence the way the book is found, they are no
use for the cache. Further more what if only one of the two is important while the other is not?

For such cases, the @Cacheable annotation allows the user to specify how the key is generated
through its key attribute. The developer can use SpEL to pick the arguments of interest (or their
nested properties), perform operations or even invoke arbitrary methods without having to write
any code or implement any interface. This is the recommended approach over the default
generator since methods tend to be quite different in signatures as the code base grows; while the
default strategy might work for some methods, it rarely does for all methods.

Below are some examples of various SpEL declarations - if you are not familiar with it, do yourself
a favor and read Spring Expression Language:

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@Cacheable(cacheNames="books", key="#isbn.rawNumber")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@Cacheable(cacheNames="books", key="T(someType).hash(#isbn)")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

The snippets above show how easy it is to select a certain argument, one of its properties or even an
arbitrary (static) method.

If the algorithm responsible to generate the key is too specific or if it needs to be shared, you may
define a custom keyGenerator on the operation. To do this, specify the name of the KeyGenerator
bean implementation to use:

@Cacheable(cacheNames="books", keyGenerator="myKeyGenerator")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)


The key and keyGenerator parameters are mutually exclusive and an operation
specifying both will result in an exception.

127

core.pdf#expressions
core.pdf#expressions

Default Cache Resolution

Out of the box, the caching abstraction uses a simple CacheResolver that retrieves the cache(s)
defined at the operation level using the configured CacheManager.

To provide a different default cache resolver, one needs to implement the
org.springframework.cache.interceptor.CacheResolver interface.

Custom cache resolution

The default cache resolution fits well for applications working with a single CacheManager and with
no complex cache resolution requirements.

For applications working with several cache managers, it is possible to set the cacheManager to use
per operation:

@Cacheable(cacheNames="books", cacheManager="anotherCacheManager")
public Book findBook(ISBN isbn) {...}

It is also possible to replace the CacheResolver entirely in a similar fashion as for key generation.
The resolution is requested for every cache operation, giving a chance to the implementation to
actually resolve the cache(s) to use based on runtime arguments:

@Cacheable(cacheResolver="runtimeCacheResolver")
public Book findBook(ISBN isbn) {...}



Since Spring 4.1, the value attribute of the cache annotations are no longer
mandatory since this particular information can be provided by the CacheResolver
regardless of the content of the annotation.

Similarly to key and keyGenerator, the cacheManager and cacheResolver parameters
are mutually exclusive and an operation specifying both will result in an exception
as a custom CacheManager will be ignored by the CacheResolver implementation.
This is probably not what you expect.

Synchronized caching

In a multi-threaded environment, certain operations might be concurrently invoked for the same
argument (typically on startup). By default, the cache abstraction does not lock anything and the
same value may be computed several times, defeating the purpose of caching.

For those particular cases, the sync attribute can be used to instruct the underlying cache provider
to lock the cache entry while the value is being computed. As a result, only one thread will be busy
computing the value while the others are blocked until the entry is updated in the cache.

128

@Cacheable(cacheNames="foos", sync=true)
public Foo executeExpensiveOperation(String id) {...}


This is an optional feature and your favorite cache library may not support it. All
CacheManager implementations provided by the core framework support it. Check
the documentation of your cache provider for more details.

Conditional caching

Sometimes, a method might not be suitable for caching all the time (for example, it might depend
on the given arguments). The cache annotations support such functionality through the condition
parameter which takes a SpEL expression that is evaluated to either true or false. If true, the
method is cached - if not, it behaves as if the method is not cached, that is executed every time no
matter what values are in the cache or what arguments are used. A quick example - the following
method will be cached only if the argument name has a length shorter than 32:

@Cacheable(cacheNames="book", condition="#name.length() < 32")
public Book findBook(String name)

In addition the condition parameter, the unless parameter can be used to veto the adding of a value
to the cache. Unlike condition, unless expressions are evaluated after the method has been called.
Expanding on the previous example - perhaps we only want to cache paperback books:

@Cacheable(cacheNames="book", condition="#name.length() < 32", unless=
"#result.hardback")
public Book findBook(String name)

The cache abstraction supports java.util.Optional, using its content as cached value only if it
present. #result always refers to the business entity and never on a supported wrapper so the
previous example can be rewritten as follows:

@Cacheable(cacheNames="book", condition="#name.length() < 32", unless=
"#result?.hardback")
public Optional<Book> findBook(String name)

Note that result still refers to Book and not Optional. As it might be null, we should use the safe
navigation operator.

Available caching SpEL evaluation context

Each SpEL expression evaluates again a dedicated context. In addition to the build in parameters,
the framework provides dedicated caching related metadata such as the argument names. The next
table lists the items made available to the context so one can use them for key and conditional
computations:

129

core.pdf#expressions-language-ref

Table 11. Cache SpEL available metadata

Name Location Description Example

methodName root object The name of the
method being invoked

#root.methodName

method root object The method being
invoked

#root.method.name

target root object The target object being
invoked

#root.target

targetClass root object The class of the target
being invoked

#root.targetClass

args root object The arguments (as
array) used for
invoking the target

#root.args[0]

caches root object Collection of caches
against which the
current method is
executed

#root.caches[0].name

argument name evaluation context Name of any of the
method arguments. If
for some reason the
names are not
available (e.g. no debug
information), the
argument names are
also available under
the #a<#arg> where
#arg stands for the
argument index
(starting from 0).

#iban or #a0 (one can
also use #p0 or #p<#arg>
notation as an alias).

result evaluation context The result of the
method call (the value
to be cached). Only
available in unless
expressions, cache put
expressions (to
compute the key), or
cache evict expressions
(when beforeInvocation
is false). For supported
wrappers such as
Optional, #result refers
to the actual object, not
the wrapper.

#result

8.3.2. @CachePut annotation

For cases where the cache needs to be updated without interfering with the method execution, one
can use the @CachePut annotation. That is, the method will always be executed and its result placed

130

into the cache (according to the @CachePut options). It supports the same options as @Cacheable and
should be used for cache population rather than method flow optimization:

@CachePut(cacheNames="book", key="#isbn")
public Book updateBook(ISBN isbn, BookDescriptor descriptor)



Note that using @CachePut and @Cacheable annotations on the same method is
generally strongly discouraged because they have different behaviors. While the
latter causes the method execution to be skipped by using the cache, the former
forces the execution in order to execute a cache update. This leads to unexpected
behavior and with the exception of specific corner-cases (such as annotations
having conditions that exclude them from each other), such declaration should be
avoided. Note also that such condition should not rely on the result object (i.e. the
#result variable) as these are validated upfront to confirm the exclusion.

8.3.3. @CacheEvict annotation

The cache abstraction allows not just population of a cache store but also eviction. This process is
useful for removing stale or unused data from the cache. Opposed to @Cacheable, annotation
@CacheEvict demarcates methods that perform cache eviction, that is methods that act as triggers for
removing data from the cache. Just like its sibling, @CacheEvict requires specifying one (or multiple)
caches that are affected by the action, allows a custom cache and key resolution or a condition to be
specified but in addition, features an extra parameter allEntries which indicates whether a cache-
wide eviction needs to be performed rather then just an entry one (based on the key):

@CacheEvict(cacheNames="books", allEntries=true)
public void loadBooks(InputStream batch)

This option comes in handy when an entire cache region needs to be cleared out - rather then
evicting each entry (which would take a long time since it is inefficient), all the entries are removed
in one operation as shown above. Note that the framework will ignore any key specified in this
scenario as it does not apply (the entire cache is evicted not just one entry).

One can also indicate whether the eviction should occur after (the default) or before the method
executes through the beforeInvocation attribute. The former provides the same semantics as the
rest of the annotations - once the method completes successfully, an action (in this case eviction) on
the cache is executed. If the method does not execute (as it might be cached) or an exception is
thrown, the eviction does not occur. The latter (beforeInvocation=true) causes the eviction to occur
always, before the method is invoked - this is useful in cases where the eviction does not need to be
tied to the method outcome.

It is important to note that void methods can be used with @CacheEvict - as the methods act as
triggers, the return values are ignored (as they don’t interact with the cache) - this is not the case
with @Cacheable which adds/updates data into the cache and thus requires a result.

131

8.3.4. @Caching annotation

There are cases when multiple annotations of the same type, such as @CacheEvict or @CachePut need
to be specified, for example because the condition or the key expression is different between
different caches. @Caching allows multiple nested @Cacheable, @CachePut and @CacheEvict to be used
on the same method:

@Caching(evict = { @CacheEvict("primary"), @CacheEvict(cacheNames="secondary", key=
"#p0") })
public Book importBooks(String deposit, Date date)

8.3.5. @CacheConfig annotation

So far we have seen that caching operations offered many customization options and these can be
set on an operation basis. However, some of the customization options can be tedious to configure
if they apply to all operations of the class. For instance, specifying the name of the cache to use for
every cache operation of the class could be replaced by a single class-level definition. This is where
@CacheConfig comes into play.

@CacheConfig("books")
public class BookRepositoryImpl implements BookRepository {

 @Cacheable
 public Book findBook(ISBN isbn) {...}
}

@CacheConfig is a class-level annotation that allows to share the cache names, the custom
KeyGenerator, the custom CacheManager and finally the custom CacheResolver. Placing this annotation
on the class does not turn on any caching operation.

An operation-level customization will always override a customization set on @CacheConfig. This
gives therefore three levels of customizations per cache operation:

• Globally configured, available for CacheManager, KeyGenerator

• At class level, using @CacheConfig

• At the operation level

8.3.6. Enable caching annotations

It is important to note that even though declaring the cache annotations does not automatically
trigger their actions - like many things in Spring, the feature has to be declaratively enabled (which
means if you ever suspect caching is to blame, you can disable it by removing only one
configuration line rather than all the annotations in your code).

To enable caching annotations add the annotation @EnableCaching to one of your @Configuration
classes:

132

@Configuration
@EnableCaching
public class AppConfig {
}

Alternatively for XML configuration use the cache:annotation-driven element:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/cache
https://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven/>
</beans>

Both the cache:annotation-driven element and @EnableCaching annotation allow various options to
be specified that influence the way the caching behavior is added to the application through AOP.
The configuration is intentionally similar with that of @Transactional:



The default advice mode for processing caching annotations is "proxy" which
allows for interception of calls through the proxy only; local calls within the same
class cannot get intercepted that way. For a more advanced mode of interception,
consider switching to "aspectj" mode in combination with compile-time or load-
time weaving.


Advanced customizations using Java config require to implement
CachingConfigurer: Please refer to the javadoc for more details.

Table 12. Cache annotation settings

XML Attribute Annotation
Attribute

Default Description

cache-manager N/A (See
CachingConfigu
rer javadocs)

cacheManager Name of cache manager to use. A default
CacheResolver will be initialized behind the
scenes with this cache manager (or
`cacheManager`if not set). For more fine-
grained management of the cache resolution,
consider setting the 'cache-resolver' attribute.

cache-resolver N/A (See
CachingConfigu
rer javadocs)

A
SimpleCacheRes
olver using the
configured
cacheManager.

The bean name of the CacheResolver that is to
be used to resolve the backing caches. This
attribute is not required, and only needs to be
specified as an alternative to the 'cache-
manager' attribute.

133

data-access.pdf#tx-annotation-driven-settings
https://docs.spring.io/spring-framework/docs/5.0.17.RELEASE/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html

XML Attribute Annotation
Attribute

Default Description

key-generator N/A (See
CachingConfigu
rer javadocs)

SimpleKeyGener
ator

Name of the custom key generator to use.

error-handler N/A (See
CachingConfigu
rer javadocs)

SimpleCacheErr
orHandler

Name of the custom cache error handler to use.
By default, any exception throw during a cache
related operations are thrown back at the client.

mode mode proxy The default mode "proxy" processes annotated
beans to be proxied using Spring’s AOP
framework (following proxy semantics, as
discussed above, applying to method calls
coming in through the proxy only). The
alternative mode "aspectj" instead weaves the
affected classes with Spring’s AspectJ caching
aspect, modifying the target class byte code to
apply to any kind of method call. AspectJ
weaving requires spring-aspects.jar in the
classpath as well as load-time weaving (or
compile-time weaving) enabled. (See Spring
configuration for details on how to set up load-
time weaving.)

proxy-target-
class

proxyTargetCla
ss

false Applies to proxy mode only. Controls what type
of caching proxies are created for classes
annotated with the @Cacheable or @CacheEvict
annotations. If the proxy-target-class attribute
is set to true, then class-based proxies are
created. If proxy-target-class is false or if the
attribute is omitted, then standard JDK interface-
based proxies are created. (See Proxying
mechanisms for a detailed examination of the
different proxy types.)

order order Ordered.LOWE
ST_PRECEDEN
CE

Defines the order of the cache advice that is
applied to beans annotated with @Cacheable or
@CacheEvict. (For more information about the
rules related to ordering of AOP advice, see
Advice ordering.) No specified ordering means
that the AOP subsystem determines the order of
the advice.



<cache:annotation-driven/> only looks for
@Cacheable/@CachePut/@CacheEvict/@Caching on beans in the same application
context it is defined in. This means that, if you put <cache:annotation-driven/> in a
WebApplicationContext for a DispatcherServlet, it only checks for beans in your
controllers, and not your services. See the MVC section for more information.

134

core.pdf#aop-aj-ltw-spring
core.pdf#aop-aj-ltw-spring
core.pdf#aop-proxying
core.pdf#aop-proxying
core.pdf#aop-ataspectj-advice-ordering
web.pdf#mvc-servlet

Method visibility and cache annotations

When using proxies, you should apply the cache annotations only to methods with public
visibility. If you do annotate protected, private or package-visible methods with these
annotations, no error is raised, but the annotated method does not exhibit the configured
caching settings. Consider the use of AspectJ (see below) if you need to annotate non-public
methods as it changes the bytecode itself.



Spring recommends that you only annotate concrete classes (and methods of
concrete classes) with the @Cache* annotation, as opposed to annotating interfaces.
You certainly can place the @Cache* annotation on an interface (or an interface
method), but this works only as you would expect it to if you are using interface-
based proxies. The fact that Java annotations are not inherited from interfaces
means that if you are using class-based proxies (proxy-target-class="true") or the
weaving-based aspect (mode="aspectj"), then the caching settings are not
recognized by the proxying and weaving infrastructure, and the object will not be
wrapped in a caching proxy, which would be decidedly bad.



In proxy mode (which is the default), only external method calls coming in
through the proxy are intercepted. This means that self-invocation, in effect, a
method within the target object calling another method of the target object, will
not lead to an actual caching at runtime even if the invoked method is marked
with @Cacheable - considering using the aspectj mode in this case. Also, the proxy
must be fully initialized to provide the expected behaviour so you should not rely
on this feature in your initialization code, i.e. @PostConstruct.

8.3.7. Using custom annotations

Custom annotation and AspectJ

This feature only works out-of-the-box with the proxy-based approach but can be enabled
with a bit of extra effort using AspectJ.

The spring-aspects module defines an aspect for the standard annotations only. If you have
defined your own annotations, you also need to define an aspect for those. Check
AnnotationCacheAspect for an example.

The caching abstraction allows you to use your own annotations to identify what method triggers
cache population or eviction. This is quite handy as a template mechanism as it eliminates the need
to duplicate cache annotation declarations (especially useful if the key or condition are specified) or
if the foreign imports (org.springframework) are not allowed in your code base. Similar to the rest of
the stereotype annotations, @Cacheable, @CachePut, @CacheEvict and @CacheConfig can be used as
meta-annotations, that is annotations that can annotate other annotations. To wit, let us replace a
common @Cacheable declaration with our own, custom annotation:

135

core.pdf#beans-stereotype-annotations
core.pdf#beans-meta-annotations

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
@Cacheable(cacheNames="books", key="#isbn")
public @interface SlowService {
}

Above, we have defined our own SlowService annotation which itself is annotated with @Cacheable -
now we can replace the following code:

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

with:

@SlowService
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

Even though @SlowService is not a Spring annotation, the container automatically picks up its
declaration at runtime and understands its meaning. Note that as mentioned above, the annotation-
driven behavior needs to be enabled.

8.4. JCache (JSR-107) annotations
Since the Spring Framework 4.1, the caching abstraction fully supports the JCache standard
annotations: these are @CacheResult, @CachePut, @CacheRemove and @CacheRemoveAll as well as the
@CacheDefaults, @CacheKey and @CacheValue companions. These annotations can be used right the
way without migrating your cache store to JSR-107: the internal implementation uses Spring’s
caching abstraction and provides default CacheResolver and KeyGenerator implementations that are
compliant with the specification. In other words, if you are already using Spring’s caching
abstraction, you can switch to these standard annotations without changing your cache storage (or
configuration, for that matter).

8.4.1. Feature summary

For those who are familiar with Spring’s caching annotations, the following table describes the
main differences between the Spring annotations and the JSR-107 counterpart:

Table 13. Spring vs. JSR-107 caching annotations

Spring JSR-107 Remark

@Cacheable @CacheResult Fairly similar. @CacheResult can cache specific exceptions
and force the execution of the method regardless of the
content of the cache.

136

Spring JSR-107 Remark

@CachePut @CachePut While Spring updates the cache with the result of the
method invocation, JCache requires to pass it as an
argument that is annotated with @CacheValue. Due to this
difference, JCache allows to update the cache before or
after the actual method invocation.

@CacheEvict @CacheRemove Fairly similar. @CacheRemove supports a conditional evict in
case the method invocation results in an exception.

@CacheEvict(allEnt
ries=true)

@CacheRemoveAll See @CacheRemove.

@CacheConfig @CacheDefaults Allows to configure the same concepts, in a similar
fashion.

JCache has the notion of javax.cache.annotation.CacheResolver that is identical to the Spring’s
CacheResolver interface, except that JCache only supports a single cache. By default, a simple
implementation retrieves the cache to use based on the name declared on the annotation. It should
be noted that if no cache name is specified on the annotation, a default is automatically generated,
check the javadoc of @CacheResult#cacheName() for more information.

CacheResolver instances are retrieved by a CacheResolverFactory. It is possible to customize the
factory per cache operation:

@CacheResult(cacheNames="books", cacheResolverFactory=MyCacheResolverFactory
.class)
public Book findBook(ISBN isbn)


For all referenced classes, Spring tries to locate a bean with the given type. If more
than one match exists, a new instance is created and can use the regular bean
lifecycle callbacks such as dependency injection.

Keys are generated by a javax.cache.annotation.CacheKeyGenerator that serves the same purpose as
Spring’s KeyGenerator. By default, all method arguments are taken into account unless at least one
parameter is annotated with @CacheKey. This is similar to Spring’s custom key generation
declaration. For instance these are identical operations, one using Spring’s abstraction and the
other with JCache:

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@CacheResult(cacheName="books")
public Book findBook(@CacheKey ISBN isbn, boolean checkWarehouse,
boolean includeUsed)

The CacheKeyResolver to use can also be specified on the operation, in a similar fashion as the
CacheResolverFactory.

137

JCache can manage exceptions thrown by annotated methods: this can prevent an update of the
cache but it can also cache the exception as an indicator of the failure instead of calling the method
again. Let’s assume that InvalidIsbnNotFoundException is thrown if the structure of the ISBN is
invalid. This is a permanent failure, no book could ever be retrieved with such parameter. The
following caches the exception so that further calls with the same, invalid ISBN, throws the cached
exception directly instead of invoking the method again.

@CacheResult(cacheName="books", exceptionCacheName="failures"
 cachedExceptions = InvalidIsbnNotFoundException.class)
public Book findBook(ISBN isbn)

8.4.2. Enabling JSR-107 support

Nothing specific needs to be done to enable the JSR-107 support alongside Spring’s declarative
annotation support. Both @EnableCaching and the cache:annotation-driven element will enable
automatically the JCache support if both the JSR-107 API and the spring-context-support module are
present in the classpath.


Depending of your use case, the choice is basically yours. You can even mix and
match services using the JSR-107 API and others using Spring’s own annotations.
Be aware however that if these services are impacting the same caches, a
consistent and identical key generation implementation should be used.

8.5. Declarative XML-based caching
If annotations are not an option (no access to the sources or no external code), one can use XML for
declarative caching. So instead of annotating the methods for caching, one specifies the target
method and the caching directives externally (similar to the declarative transaction management
advice). The previous example can be translated into:

138

data-access.pdf#transaction-declarative-first-example

<!-- the service we want to make cacheable -->
<bean id="bookService" class="x.y.service.DefaultBookService"/>

<!-- cache definitions -->
<cache:advice id="cacheAdvice" cache-manager="cacheManager">
 <cache:caching cache="books">
 <cache:cacheable method="findBook" key="#isbn"/>
 <cache:cache-evict method="loadBooks" all-entries="true"/>
 </cache:caching>
</cache:advice>

<!-- apply the cacheable behavior to all BookService interfaces -->
<aop:config>
 <aop:advisor advice-ref="cacheAdvice" pointcut="execution(*
x.y.BookService.*(..))"/>
</aop:config>

<!-- cache manager definition omitted -->

In the configuration above, the bookService is made cacheable. The caching semantics to apply are
encapsulated in the cache:advice definition which instructs method findBooks to be used for putting
data into the cache while method loadBooks for evicting data. Both definitions are working against
the books cache.

The aop:config definition applies the cache advice to the appropriate points in the program by
using the AspectJ pointcut expression (more information is available in Aspect Oriented
Programming with Spring). In the example above, all methods from the BookService are considered
and the cache advice applied to them.

The declarative XML caching supports all of the annotation-based model so moving between the
two should be fairly easy - further more both can be used inside the same application. The XML
based approach does not touch the target code however it is inherently more verbose; when
dealing with classes with overloaded methods that are targeted for caching, identifying the proper
methods does take an extra effort since the method argument is not a good discriminator - in these
cases, the AspectJ pointcut can be used to cherry pick the target methods and apply the appropriate
caching functionality. However through XML, it is easier to apply a package/group/interface-wide
caching (again due to the AspectJ pointcut) and to create template-like definitions (as we did in the
example above by defining the target cache through the cache:definitions cache attribute).

8.6. Configuring the cache storage
Out of the box, the cache abstraction provides several storage integration. To use them, one needs
to simply declare an appropriate CacheManager - an entity that controls and manages Caches and can
be used to retrieve these for storage.

8.6.1. JDK ConcurrentMap-based Cache

The JDK-based Cache implementation resides under org.springframework.cache.concurrent package.

139

core.pdf#aop
core.pdf#aop

It allows one to use ConcurrentHashMap as a backing Cache store.

<!-- simple cache manager -->
<bean id="cacheManager" class="org.springframework.cache.support.SimpleCacheManager">
 <property name="caches">
 <set>
 <bean class=
"org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" p:name="default
"/>
 <bean class=
"org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" p:name="books"/>
 </set>
 </property>
</bean>

The snippet above uses the SimpleCacheManager to create a CacheManager for the two nested
ConcurrentMapCache instances named default and books. Note that the names are configured directly
for each cache.

As the cache is created by the application, it is bound to its lifecycle, making it suitable for basic use
cases, tests or simple applications. The cache scales well and is very fast but it does not provide any
management or persistence capabilities nor eviction contracts.

8.6.2. Ehcache-based Cache

 Ehcache 3.x is fully JSR-107 compliant and no dedicated support is required for it.

The Ehcache 2.x implementation is located under org.springframework.cache.ehcache package.
Again, to use it, one simply needs to declare the appropriate CacheManager:

<bean id="cacheManager"
 class="org.springframework.cache.ehcache.EhCacheCacheManager" p:cache-manager-
ref="ehcache"/>

<!-- EhCache library setup -->
<bean id="ehcache"
 class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" p:config-
location="ehcache.xml"/>

This setup bootstraps the ehcache library inside Spring IoC (through the ehcache bean) which is
then wired into the dedicated CacheManager implementation. Note the entire ehcache-specific
configuration is read from ehcache.xml.

8.6.3. Caffeine Cache

Caffeine is a Java 8 rewrite of Guava’s cache and its implementation is located under
org.springframework.cache.caffeine package and provides access to several features of Caffeine.

140

Configuring a CacheManager that creates the cache on demand is straightforward:

<bean id="cacheManager"
 class="org.springframework.cache.caffeine.CaffeineCacheManager"/>

It is also possible to provide the caches to use explicitly. In that case, only those will be made
available by the manager:

<bean id="cacheManager" class="
org.springframework.cache.caffeine.CaffeineCacheManager">
 <property name="caches">
 <set>
 <value>default</value>
 <value>books</value>
 </set>
 </property>
</bean>

The Caffeine CacheManager also supports customs Caffeine and CacheLoader. See the Caffeine
documentation for more information about those.

8.6.4. GemFire-based Cache

GemFire is a memory-oriented/disk-backed, elastically scalable, continuously available, active (with
built-in pattern-based subscription notifications), globally replicated database and provides fully-
featured edge caching. For further information on how to use GemFire as a CacheManager (and
more), please refer to the Spring Data GemFire reference documentation.

8.6.5. JSR-107 Cache

JSR-107 compliant caches can also be used by Spring’s caching abstraction. The JCache
implementation is located under org.springframework.cache.jcache package.

Again, to use it, one simply needs to declare the appropriate CacheManager:

<bean id="cacheManager"
 class="org.springframework.cache.jcache.JCacheCacheManager"
 p:cache-manager-ref="jCacheManager"/>

<!-- JSR-107 cache manager setup -->
<bean id="jCacheManager" .../>

8.6.6. Dealing with caches without a backing store

Sometimes when switching environments or doing testing, one might have cache declarations
without an actual backing cache configured. As this is an invalid configuration, at runtime an

141

https://github.com/ben-manes/caffeine/wiki
https://github.com/ben-manes/caffeine/wiki
https://docs.spring.io/spring-gemfire/docs/current/reference/html/

exception will be thrown since the caching infrastructure is unable to find a suitable store. In
situations like this, rather then removing the cache declarations (which can prove tedious), one can
wire in a simple, dummy cache that performs no caching - that is, forces the cached methods to be
executed every time:

<bean id="cacheManager" class="
org.springframework.cache.support.CompositeCacheManager">
 <property name="cacheManagers">
 <list>
 <ref bean="jdkCache"/>
 <ref bean="gemfireCache"/>
 </list>
 </property>
 <property name="fallbackToNoOpCache" value="true"/>
</bean>

The CompositeCacheManager above chains multiple CacheManagers and additionally, through the
fallbackToNoOpCache flag, adds a no op cache that for all the definitions not handled by the
configured cache managers. That is, every cache definition not found in either jdkCache or
gemfireCache (configured above) will be handled by the no op cache, which will not store any
information causing the target method to be executed every time.

8.7. Plugging-in different back-end caches
Clearly there are plenty of caching products out there that can be used as a backing store. To plug
them in, one needs to provide a CacheManager and Cache implementation since unfortunately there is
no available standard that we can use instead. This may sound harder than it is since in practice,
the classes tend to be simple adapters that map the caching abstraction framework on top of the
storage API as the ehcache classes can show. Most CacheManager classes can use the classes in
org.springframework.cache.support package, such as AbstractCacheManager which takes care of the
boiler-plate code leaving only the actual mapping to be completed. We hope that in time, the
libraries that provide integration with Spring can fill in this small configuration gap.

8.8. How can I set the TTL/TTI/Eviction policy/XXX
feature?
Directly through your cache provider. The cache abstraction is… well, an abstraction not a cache
implementation. The solution you are using might support various data policies and different
topologies which other solutions do not (take for example the JDK ConcurrentHashMap) - exposing
that in the cache abstraction would be useless simply because there would no backing support.
Such functionality should be controlled directly through the backing cache, when configuring it or
through its native API.

142

https://en.wikipedia.org/wiki/Adapter_pattern

Chapter 9. Appendix

9.1. XML Schemas
This part of the appendix lists XML schemas related to integration technologies.

9.1.1. The jee schema

The jee tags deal with Java EE (Java Enterprise Edition)-related configuration issues, such as
looking up a JNDI object and defining EJB references.

To use the tags in the jee schema, you need to have the following preamble at the top of your Spring
XML configuration file; the text in the following snippet references the correct schema so that the
tags in the jee namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="
 http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jee
https://www.springframework.org/schema/jee/spring-jee.xsd"> <!-- bean definitions
here -->

</beans>

<jee:jndi-lookup/> (simple)

Before…

<bean id="dataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
</bean>
<bean id="userDao" class="com.foo.JdbcUserDao">
 <!-- Spring will do the cast automatically (as usual) -->
 <property name="dataSource" ref="dataSource"/>
</bean>

After…

143

<jee:jndi-lookup id="dataSource" jndi-name="jdbc/MyDataSource"/>

<bean id="userDao" class="com.foo.JdbcUserDao">
 <!-- Spring will do the cast automatically (as usual) -->
 <property name="dataSource" ref="dataSource"/>
</bean>

<jee:jndi-lookup/> (with single JNDI environment setting)

Before…

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
 <property name="jndiEnvironment">
 <props>
 <prop key="foo">bar</prop>
 </props>
 </property>
</bean>

After…

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
 <jee:environment>foo=bar</jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (with multiple JNDI environment settings)

Before…

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
 <property name="jndiEnvironment">
 <props>
 <prop key="foo">bar</prop>
 <prop key="ping">pong</prop>
 </props>
 </property>
</bean>

After…

144

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
 <!-- newline-separated, key-value pairs for the environment (standard Properties
format) -->
 <jee:environment>
 foo=bar
 ping=pong
 </jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (complex)

Before…

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
 <property name="cache" value="true"/>
 <property name="resourceRef" value="true"/>
 <property name="lookupOnStartup" value="false"/>
 <property name="expectedType" value="com.myapp.DefaultFoo"/>
 <property name="proxyInterface" value="com.myapp.Foo"/>
</bean>

After…

<jee:jndi-lookup id="simple"
 jndi-name="jdbc/MyDataSource"
 cache="true"
 resource-ref="true"
 lookup-on-startup="false"
 expected-type="com.myapp.DefaultFoo"
 proxy-interface="com.myapp.Foo"/>

<jee:local-slsb/> (simple)

The <jee:local-slsb/> tag configures a reference to an EJB Stateless SessionBean.

Before…

<bean id="simple"
 class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/RentalServiceBean"/>
 <property name="businessInterface" value="com.foo.service.RentalService"/>
</bean>

After…

145

<jee:local-slsb id="simpleSlsb" jndi-name="ejb/RentalServiceBean"
 business-interface="com.foo.service.RentalService"/>

<jee:local-slsb/> (complex)

<bean id="complexLocalEjb"
 class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/RentalServiceBean"/>
 <property name="businessInterface" value="com.foo.service.RentalService"/>
 <property name="cacheHome" value="true"/>
 <property name="lookupHomeOnStartup" value="true"/>
 <property name="resourceRef" value="true"/>
</bean>

After…

<jee:local-slsb id="complexLocalEjb"
 jndi-name="ejb/RentalServiceBean"
 business-interface="com.foo.service.RentalService"
 cache-home="true"
 lookup-home-on-startup="true"
 resource-ref="true">

<jee:remote-slsb/>

The <jee:remote-slsb/> tag configures a reference to a remote EJB Stateless SessionBean.

Before…

<bean id="complexRemoteEjb"
 class=
"org.springframework.ejb.access.SimpleRemoteStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/MyRemoteBean"/>
 <property name="businessInterface" value="com.foo.service.RentalService"/>
 <property name="cacheHome" value="true"/>
 <property name="lookupHomeOnStartup" value="true"/>
 <property name="resourceRef" value="true"/>
 <property name="homeInterface" value="com.foo.service.RentalService"/>
 <property name="refreshHomeOnConnectFailure" value="true"/>
</bean>

After…

146

<jee:remote-slsb id="complexRemoteEjb"
 jndi-name="ejb/MyRemoteBean"
 business-interface="com.foo.service.RentalService"
 cache-home="true"
 lookup-home-on-startup="true"
 resource-ref="true"
 home-interface="com.foo.service.RentalService"
 refresh-home-on-connect-failure="true">

9.1.2. The jms schema

The jms tags deal with configuring JMS-related beans such as Spring’s MessageListenerContainers.
These tags are detailed in the section of the JMS chapter entitled JMS namespace support. Please do
consult that chapter for full details on this support and the jms tags themselves.

In the interest of completeness, to use the tags in the jms schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet
references the correct schema so that the tags in the jms namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms="http://www.springframework.org/schema/jms"
xsi:schemaLocation="
 http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jms
https://www.springframework.org/schema/jms/spring-jms.xsd"> <!-- bean definitions
here -->

</beans>

9.1.3. <context:mbean-export/>

This element is detailed in Configuring annotation based MBean export.

9.1.4. The cache schema

The cache tags can be used to enable support for Spring’s @CacheEvict, @CachePut and @Caching
annotations. It it also supports declarative XML-based caching. See Enable caching annotations and
Declarative XML-based caching for details.

To use the tags in the cache schema, you need to have the following preamble at the top of your
Spring XML configuration file; the text in the following snippet references the correct schema so
that the tags in the cache namespace are available to you.

147

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
xsi:schemaLocation="
 http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/cache
https://www.springframework.org/schema/cache/spring-cache.xsd"> <!-- bean
definitions here -->

</beans>

148

	Integration
	Table of Contents
	Chapter 1. Remoting and web services using Spring
	1.1. Introduction
	1.2. Exposing services using RMI
	1.2.1. Exporting the service using the RmiServiceExporter
	1.2.2. Linking in the service at the client

	1.3. Using Hessian to remotely call services via HTTP
	1.3.1. Wiring up the DispatcherServlet for Hessian and co.
	1.3.2. Exposing your beans by using the HessianServiceExporter
	1.3.3. Linking in the service on the client
	1.3.4. Applying HTTP basic authentication to a service exposed through Hessian

	1.4. Exposing services using HTTP invokers
	1.4.1. Exposing the service object
	1.4.2. Linking in the service at the client

	1.5. Web services
	1.5.1. Exposing servlet-based web services using JAX-WS
	1.5.2. Exporting standalone web services using JAX-WS
	1.5.3. Exporting web services using the JAX-WS RI’s Spring support
	1.5.4. Accessing web services using JAX-WS

	1.6. JMS
	1.6.1. Server-side configuration
	1.6.2. Client-side configuration

	1.7. AMQP
	1.8. Auto-detection is not implemented for remote interfaces
	1.9. Considerations when choosing a technology
	1.10. REST Endpoints
	1.10.1. RestTemplate
	Initialization
	URIs
	Headers
	Body
	Message Conversion
	Jackson JSON Views
	Multipart

	1.10.2. Async RestTemplate

	Chapter 2. Enterprise JavaBeans (EJB) integration
	2.1. Introduction
	2.2. Accessing EJBs
	2.2.1. Concepts
	2.2.2. Accessing local SLSBs
	2.2.3. Accessing remote SLSBs
	2.2.4. Accessing EJB 2.x SLSBs versus EJB 3 SLSBs

	Chapter 3. JMS (Java Message Service)
	3.1. Introduction
	3.2. Using Spring JMS
	3.2.1. JmsTemplate
	3.2.2. Connections
	Caching Messaging Resources
	SingleConnectionFactory
	CachingConnectionFactory

	3.2.3. Destination Management
	3.2.4. Message Listener Containers
	SimpleMessageListenerContainer
	DefaultMessageListenerContainer

	3.2.5. Transaction management

	3.3. Sending a Message
	3.3.1. Using Message Converters
	3.3.2. SessionCallback and ProducerCallback

	3.4. Receiving a message
	3.4.1. Synchronous reception
	3.4.2. Asynchronous reception: Message-Driven POJOs
	3.4.3. SessionAwareMessageListener interface
	3.4.4. MessageListenerAdapter
	3.4.5. Processing messages within transactions

	3.5. Support for JCA Message Endpoints
	3.6. Annotation-driven listener endpoints
	3.6.1. Enable listener endpoint annotations
	3.6.2. Programmatic endpoints registration
	3.6.3. Annotated endpoint method signature
	3.6.4. Response management

	3.7. JMS namespace support

	Chapter 4. JMX
	4.1. Introduction
	4.2. Exporting your beans to JMX
	4.2.1. Creating an MBeanServer
	4.2.2. Reusing an existing MBeanServer
	4.2.3. Lazy-initialized MBeans
	4.2.4. Automatic registration of MBeans
	4.2.5. Controlling the registration behavior

	4.3. Controlling the management interface of your beans
	4.3.1. MBeanInfoAssembler interface
	4.3.2. Using source-level metadata: Java annotations
	4.3.3. Source-level metadata types
	4.3.4. AutodetectCapableMBeanInfoAssembler interface
	4.3.5. Defining management interfaces using Java interfaces
	4.3.6. Using MethodNameBasedMBeanInfoAssembler

	4.4. Controlling the ObjectNames for your beans
	4.4.1. Reading ObjectNames from Properties
	4.4.2. Using the MetadataNamingStrategy
	4.4.3. Configuring annotation based MBean export

	4.5. JSR-160 Connectors
	4.5.1. Server-side connectors
	4.5.2. Client-side connectors
	4.5.3. JMX over Hessian or SOAP

	4.6. Accessing MBeans via proxies
	4.7. Notifications
	4.7.1. Registering listeners for notifications
	4.7.2. Publishing Notifications

	4.8. Further resources

	Chapter 5. JCA CCI
	5.1. Introduction
	5.2. Configuring CCI
	5.2.1. Connector configuration
	5.2.2. ConnectionFactory configuration in Spring
	5.2.3. Configuring CCI connections
	5.2.4. Using a single CCI connection

	5.3. Using Spring’s CCI access support
	5.3.1. Record conversion
	5.3.2. CciTemplate
	5.3.3. DAO support
	5.3.4. Automatic output record generation
	5.3.5. Summary
	5.3.6. Using a CCI Connection and Interaction directly
	5.3.7. Example for CciTemplate usage

	5.4. Modeling CCI access as operation objects
	5.4.1. MappingRecordOperation
	5.4.2. MappingCommAreaOperation
	5.4.3. Automatic output record generation
	5.4.4. Summary
	5.4.5. Example for MappingRecordOperation usage
	5.4.6. Example for MappingCommAreaOperation usage

	5.5. Transactions

	Chapter 6. Email
	6.1. Introduction
	6.2. Usage
	6.2.1. Basic MailSender and SimpleMailMessage usage
	6.2.2. Using the JavaMailSender and the MimeMessagePreparator

	6.3. Using the JavaMail MimeMessageHelper
	6.3.1. Sending attachments and inline resources
	Attachments
	Inline resources

	6.3.2. Creating email content using a templating library

	Chapter 7. Task Execution and Scheduling
	7.1. Introduction
	7.2. The Spring TaskExecutor abstraction
	7.2.1. TaskExecutor types
	7.2.2. Using a TaskExecutor

	7.3. The Spring TaskScheduler abstraction
	7.3.1. Trigger interface
	7.3.2. Trigger implementations
	7.3.3. TaskScheduler implementations

	7.4. Annotation Support for Scheduling and Asynchronous Execution
	7.4.1. Enable scheduling annotations
	7.4.2. The @Scheduled annotation
	7.4.3. The @Async annotation
	7.4.4. Executor qualification with @Async
	7.4.5. Exception management with @Async

	7.5. The task namespace
	7.5.1. The 'scheduler' element
	7.5.2. The 'executor' element
	7.5.3. The 'scheduled-tasks' element

	7.6. Using the Quartz Scheduler
	7.6.1. Using the JobDetailFactoryBean
	7.6.2. Using the MethodInvokingJobDetailFactoryBean
	7.6.3. Wiring up jobs using triggers and the SchedulerFactoryBean

	Chapter 8. Cache Abstraction
	8.1. Introduction
	8.2. Understanding the cache abstraction
	8.3. Declarative annotation-based caching
	8.3.1. @Cacheable annotation
	Default Key Generation
	Custom Key Generation Declaration
	Default Cache Resolution
	Custom cache resolution
	Synchronized caching
	Conditional caching
	Available caching SpEL evaluation context

	8.3.2. @CachePut annotation
	8.3.3. @CacheEvict annotation
	8.3.4. @Caching annotation
	8.3.5. @CacheConfig annotation
	8.3.6. Enable caching annotations
	8.3.7. Using custom annotations

	8.4. JCache (JSR-107) annotations
	8.4.1. Feature summary
	8.4.2. Enabling JSR-107 support

	8.5. Declarative XML-based caching
	8.6. Configuring the cache storage
	8.6.1. JDK ConcurrentMap-based Cache
	8.6.2. Ehcache-based Cache
	8.6.3. Caffeine Cache
	8.6.4. GemFire-based Cache
	8.6.5. JSR-107 Cache
	8.6.6. Dealing with caches without a backing store

	8.7. Plugging-in different back-end caches
	8.8. How can I set the TTL/TTI/Eviction policy/XXX feature?

	Chapter 9. Appendix
	9.1. XML Schemas
	9.1.1. The jee schema
	<jee:jndi-lookup/> (simple)
	<jee:jndi-lookup/> (with single JNDI environment setting)
	<jee:jndi-lookup/> (with multiple JNDI environment settings)
	<jee:jndi-lookup/> (complex)
	<jee:local-slsb/> (simple)
	<jee:local-slsb/> (complex)
	<jee:remote-slsb/>

	9.1.2. The jms schema
	9.1.3. <context:mbean-export/>
	9.1.4. The cache schema

