Testing

Version 5.0.8.RELEASE

Table of Contents

1. Introduction to Spring Testing
2. Unit Testing
2.1. Mock Objects
2.1.1. Environment
2.1.2. JNDI
2.1.3. Servlet API
2.1.4. Spring Web Reactive
2.2. Unit Testing support Classes
2.2.1. General testing utilities
2.2.2. Spring MVC
3. Integration Testing
3.1. Overview
3.2. Goals of Integration Testing
3.2.1. Context management and caching
3.2.2. Dependency Injection of test fixtures
3.2.3. Transaction management
3.2.4. Support classes for integration testing
3.3. JDBC Testing Support
3.4. Annotations
3.4.1. Spring Testing Annotations
@BootstrapWith
@ContextConfiguration
@WebAppConfiguration
@ContextHierarchy
@ActiveProfiles
@TestPropertySource
@DirtiesContext
@TestExecutionListeners
@Commit
@Rollback
@BeforeTransaction
@AfterTransaction
@Sql
@SqlConfig
@SqlGroup
3.4.2. Standard Annotation Support
3.4.3. Spring JUnit 4 Testing Annotations
@IfProfileValue

© © © © 0 00 J 9 O O O O U B b B W W ww wnN

e e T Y
© 00 00 9 9 9 o o o U uw N R = O

@ProfileValueSourceConfiguration
@Timed
@Repeat

3.4.4. Spring JUnit Jupiter Testing Annotations

@Spring]JUnitConfig
@Spring]UnitWebConfig
@EnabledIf
@DisabledIf

3.4.5. Meta-Annotation Support for Testing
3.5. Spring TestContext Framework

3.5.1. Key abstractions

TestContext
TestContextManager
TestExecutionListener

Context Loaders

3.5.2. Bootstrapping the TestContext framework

3.5.3. TestExecutionListener configuration

Registering custom TestExecutionListeners
Automatic discovery of default TestExecutionListeners
Ordering TestExecutionListeners

Merging TestExecutionListeners

3.5.4. Context management

Context configuration with XML resources

Context configuration with Groovy scripts

Context configuration with annotated classes
Mixing XML, Groovy scripts, and annotated classes
Context configuration with context initializers
Context configuration inheritance

Context configuration with environment profiles
Context configuration with test property sources
Loading a WebApplicationContext

Context caching

Context hierarchies

3.5.5. Dependency injection of test fixtures
3.5.6. Testing request and session scoped beans

3.5.7. Transaction management

Test-managed transactions

Enabling and disabling transactions
Transaction rollback and commit behavior
Programmatic transaction management

Executing code outside of a transaction

19
19
20
20
20
21
21
22
23
26
26
26
27
27
27
28
28
29
29
29
29
31
32
33
34
35
36
37
38
45
47
50
52
54
57
60
60
60
62
63
63

Configuring a transaction manager 64

Demonstration of all transaction-related annotations 64
3.5.8. Executing SQL scripts 67
Executing SQL scripts programmatically 67
Executing SQL scripts declaratively with @Sql 68
3.5.9. Parallel test execution 72
3.5.10. TestContext Framework support classes 73
Spring JUnit 4 Runner 73
Spring JUnit 4 Rules 74
JUnit 4 support classes 75
SpringExtension for JUnit Jupiter 75
Dependency Injection with the SpringExtension 77
TestNG support classes 79
3.6. Spring MVC Test Framework 80
3.6.1. Server-Side Tests 80
Static Imports 81
Setup Choices 81
Setup Features 83
Performing Requests 84
Defining Expectations 85
Filter Registrations 87
Differences between Out-of-Container and End-to-End Integration Tests 87
Further Server-Side Test Examples 88
3.6.2. HtmlUnit Integration 88
Why HtmlUnit Integration? 88
MockMvc and HtmlUnit 91
MockMvc and WebDriver 94
MockMvc and Geb 100
3.6.3. Client-Side REST Tests 102
Static Imports 104
Further Examples of Client-side REST Tests 104
3.7. WebTestClient 104
3.7.1. Setup 104
Bind to controller 104
Bind to RouterFunction 105
Bind to ApplicationContext 105
Bind to server 105
Client builder 106
3.7.2. Writing tests 106
No content 107

JSON content 107

Streaming responses
Request body
3.8. PetClinic Example

4. Further Resources

108
108
109
111

The adoption of the test-driven-development (TDD) approach to software
development is certainly advocated by the Spring team, and so coverage of
Spring’s support for integration testing is covered (alongside best practices for
unit testing). The Spring team has found that the correct use of IoC certainly
does make both unit and integration testing easier (in that the presence of setter
methods and appropriate constructors on classes makes them easier to wire
together in a test without having to set up service locator registries and
suchlike)... the chapter dedicated solely to testing will hopefully convince you of
this as well.

Chapter 1. Introduction to Spring Testing

Testing is an integral part of enterprise software development. This chapter focuses on the value-
add of the IoC principle to unit testing and on the benefits of the Spring Framework’s support for
integration testing. (A thorough treatment of testing in the enterprise is beyond the scope of this
reference manual.)

Chapter 2. Unit Testing

Dependency Injection should make your code less dependent on the container than it would be
with traditional Java EE development. The POJOs that make up your application should be testable
in JUnit or TestNG tests, with objects simply instantiated using the new operator, without Spring or
any other container. You can use mock objects (in conjunction with other valuable testing
techniques) to test your code in isolation. If you follow the architecture recommendations for
Spring, the resulting clean layering and componentization of your codebase will facilitate easier
unit testing. For example, you can test service layer objects by stubbing or mocking DAO or
Repository interfaces, without needing to access persistent data while running unit tests.

True unit tests typically run extremely quickly, as there is no runtime infrastructure to set up.
Emphasizing true unit tests as part of your development methodology will boost your productivity.
You may not need this section of the testing chapter to help you write effective unit tests for your
IoC-based applications. For certain unit testing scenarios, however, the Spring Framework provides
the following mock objects and testing support classes.

2.1. Mock Objects

2.1.1. Environment

The org.springframework.mock.env package contains mock implementations of the Environment and
PropertySource abstractions (see Bean definition profiles and PropertySource abstraction).
MockEnvironment and MockPropertySource are useful for developing out-of-container tests for code
that depends on environment-specific properties.

2.1.2. JNDI

The org.springframework.mock.jndi package contains an implementation of the JNDI SPI, which you
can use to set up a simple JNDI environment for test suites or stand-alone applications. If, for
example, JDBC DataSources get bound to the same JNDI names in test code as within a Java EE
container, you can reuse both application code and configuration in testing scenarios without
modification.

2.1.3. Servlet API

The org.springframework.mock.web package contains a comprehensive set of Servlet API mock
objects that are useful for testing web contexts, controllers, and filters. These mock objects are
targeted at usage with Spring’s Web MVC framework and are generally more convenient to use
than dynamic mock objects such as EasyMock or alternative Servlet API mock objects such as
MockObjects.

Q Since Spring Framework 5.0, the mock objects in org.springframework.mock.web are
based on the Servlet 4.0 APIL

The Spring MVC Test framework builds on the mock Servlet API objects to provide an integration
testing framework for Spring MVC. See Spring MVC Test.

core.pdf#beans-definition-profiles
core.pdf#beans-property-source-abstraction
http://www.easymock.org
http://www.mockobjects.com

2.1.4. Spring Web Reactive

The package org.springframework.mock.http.server.reactive contains mock implementations of
ServerHttpRequest and ServerHttpResponse for use in WebFlux applications. The package
org.springframework.mock.web.server contains a mock ServerWebExchange that depends on those
mock request and response objects.

Both MockServerHttpRequest and MockServerHttpResponse extend from the same abstract base classes
as server-specific implementations do and share behavior with them. For example a mock request
is immutable once created but you can use the mutate() method from ServerHttpRequest to create a
modified instance.

In order for the mock response to properly implement the write contract and return a write
completion handle (i.e. Mono<Void>), by default it uses a Flux with cache().then(), which buffers the
data and makes it available for assertions in tests. Applications can set a custom write function for
example to test an infinite stream.

The WebTestClient builds on the mock request and response to provide support for testing WebFlux
applications without an HTTP server. The client can also be used for end-to-end tests with a
running server.

2.2. Unit Testing support Classes

2.2.1. General testing utilities

The org.springframework.test.util package contains several general purpose utilities for use in unit
and integration testing.

ReflectionTestUtils is a collection of reflection-based utility methods. Developers use these
methods in testing scenarios where they need to change the value of a constant, set a non-public
field, invoke a non-public setter method, or invoke a non-public configuration or lifecycle callback
method when testing application code involving use cases such as the following.

* ORM frameworks such as JPA and Hibernate that condone private or protected field access as
opposed to public setter methods for properties in a domain entity.

» Spring’s support for annotations such as @Autowired, @Inject, and @Resource, which provides
dependency injection for private or protected fields, setter methods, and configuration
methods.

» Use of annotations such as @PostConstruct and @PreDestroy for lifecycle callback methods.

AopTestUtils is a collection of AOP-related utility methods. These methods can be used to obtain a
reference to the underlying target object hidden behind one or more Spring proxies. For example, if
you have configured a bean as a dynamic mock using a library like EasyMock or Mockito and the
mock is wrapped in a Spring proxy, you may need direct access to the underlying mock in order to
configure expectations on it and perform verifications. For Spring’s core AOP utilities, see AopUtils
and AopProxyUtils.

2.2.2. Spring MVC

The org.springframework.test.web package contains ModelAndViewAssert, which you can use in
combination with JUnit, TestNG, or any other testing framework for unit tests dealing with Spring
MVC ModelAndView objects.

Unit testing Spring MVC Controllers

To unit test your Spring MVC Controllers as POJOs, use ModelAndViewAssert

Q combined with MockHttpServletRequest, MockHttpSession, and so on from Spring’s
Servlet API mocks. For thorough integration testing of your Spring MVC and REST
Controllers in conjunction with your WebApplicationContext configuration for
Spring MVC, use the Spring MVC Test Framework instead.

Chapter 3. Integration Testing

3.1. Overview

It is important to be able to perform some integration testing without requiring deployment to your
application server or connecting to other enterprise infrastructure. This will enable you to test
things such as:

* The correct wiring of your Spring IoC container contexts.

* Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first-class support for integration testing in the spring-test
module. The name of the actual JAR file might include the release version and might also be in the
long org.springframework.test form, depending on where you get it from (see the section on
Dependency Management for an explanation). This library includes the org.springframework.test
package, which contains valuable classes for integration testing with a Spring container. This
testing does not rely on an application server or other deployment environment. Such tests are
slower to run than unit tests but much faster than the equivalent Selenium tests or remote tests
that rely on deployment to an application server.

In Spring 2.5 and later, unit and integration testing support is provided in the form of the
annotation-driven Spring TestContext Framework. The TestContext framework is agnostic of the
actual testing framework in use, thus allowing instrumentation of tests in various environments
including JUnit, TestNG, and so on.

3.2. Goals of Integration Testing

Spring’s integration testing support has the following primary goals:

* To manage Spring IoC container caching between test execution.

» To provide Dependency Injection of test fixture instances.

* To provide transaction management appropriate to integration testing.

» To supply Spring-specific base classes that assist developers in writing integration tests.

The next few sections describe each goal and provide links to implementation and configuration
details.

3.2.1. Context management and caching

The Spring TestContext Framework provides consistent loading of Spring ApplicationContexts and
WebApplicationContexts as well as caching of those contexts. Support for the caching of loaded
contexts is important, because startup time can become an issue —not because of the overhead of
Spring itself, but because the objects instantiated by the Spring container take time to instantiate.
For example, a project with 50 to 100 Hibernate mapping files might take 10 to 20 seconds to load
the mapping files, and incurring that cost before running every test in every test fixture leads to

core.pdf#dependency-management
core.pdf#dependency-management

slower overall test runs that reduce developer productivity.

Test classes typically declare either an array of resource locations for XML or Groovy configuration
metadata — often in the classpath—or an array of annotated classes that is used to configure the
application. These locations or classes are the same as or similar to those specified in web.xml or
other configuration files for production deployments.

By default, once loaded, the configured ApplicationContext is reused for each test. Thus the setup
cost is incurred only once per test suite, and subsequent test execution is much faster. In this
context, the term test suite means all tests run in the same JVM — for example, all tests run from an
Ant, Maven, or Gradle build for a given project or module. In the unlikely case that a test corrupts
the application context and requires reloading — for example, by modifying a bean definition or
the state of an application object—the TestContext framework can be configured to reload the
configuration and rebuild the application context before executing the next test.

See Context management and Context caching with the TestContext framework.

3.2.2. Dependency Injection of test fixtures

When the TestContext framework loads your application context, it can optionally configure
instances of your test classes via Dependency Injection. This provides a convenient mechanism for
setting up test fixtures using preconfigured beans from your application context. A strong benefit
here is that you can reuse application contexts across various testing scenarios (e.g., for configuring
Spring-managed object graphs, transactional proxies, DataSources, etc.), thus avoiding the need to
duplicate complex test fixture setup for individual test cases.

As an example, consider the scenario where we have a class, HibernateTitleRepository, that
implements data access logic for a Title domain entity. We want to write integration tests that test
the following areas:

* The Spring configuration: basically, is everything related to the configuration of the
HibernateTitleRepository bean correct and present?

* The Hibernate mapping file configuration: is everything mapped correctly, and are the correct
lazy-loading settings in place?

* The logic of the HibernateTitleRepository: does the configured instance of this class perform as
anticipated?

See dependency injection of test fixtures with the TestContext framework.

3.2.3. Transaction management

One common issue in tests that access a real database is their effect on the state of the persistence
store. Even when you’re using a development database, changes to the state may affect future tests.
Also, many operations — such as inserting or modifying persistent data— cannot be performed (or
verified) outside a transaction.

The TestContext framework addresses this issue. By default, the framework will create and roll
back a transaction for each test. You simply write code that can assume the existence of a
transaction. If you call transactionally proxied objects in your tests, they will behave correctly,

according to their configured transactional semantics. In addition, if a test method deletes the
contents of selected tables while running within the transaction managed for the test, the
transaction will roll back by default, and the database will return to its state prior to execution of
the test. Transactional support is provided to a test via a PlatformTransactionManager bean defined
in the test’s application context.

If you want a transaction to commit — unusual, but occasionally useful when you want a particular
test to populate or modify the database — the TestContext framework can be instructed to cause the
transaction to commit instead of roll back via the @Commit annotation.

See transaction management with the TestContext framework.

3.2.4. Support classes for integration testing

The Spring TestContext Framework provides several abstract support classes that simplify the
writing of integration tests. These base test classes provide well-defined hooks into the testing
framework as well as convenient instance variables and methods, which enable you to access:

* The ApplicationContext, for performing explicit bean lookups or testing the state of the context
as a whole.

* A JdbcTemplate, for executing SQL statements to query the database. Such queries can be used to
confirm database state both prior to and after execution of database-related application code,
and Spring ensures that such queries run in the scope of the same transaction as the application
code. When used in conjunction with an ORM tool, be sure to avoid false positives.

In addition, you may want to create your own custom, application-wide superclass with instance
variables and methods specific to your project.

See support classes for the TestContext framework.

3.3. JDBC Testing Support

The org.springframework.test.jdbc package contains JdbcTestUtils, which is a collection of JDBC
related utility functions intended to simplify standard database testing scenarios. Specifically,
JdbcTestUtils provides the following static utility methods.

» countRowsInTable(..): counts the number of rows in the given table

» countRowsInTableWhere(..): counts the number of rows in the given table, using the provided
WHERE clause

deleteFromTables(..): deletes all rows from the specified tables
* deleteFromTableWhere(..): deletes rows from the given table, using the provided WHERE clause
 dropTables(..): drops the specified tables

Note that AbstractTransactionalJUnit4SpringContextTests and

AbstractTransactionalTestNGSpringContextTests provide convenience methods which delegate to the
aforementioned methods in JdbcTestUti1s.

The spring-jdbc module provides support for configuring and launching an embedded database
which can be used in integration tests that interact with a database. For details, see Embedded
database support and Testing data access logic with an embedded database.

3.4. Annotations

3.4.1. Spring Testing Annotations

The Spring Framework provides the following set of Spring-specific annotations that you can use in
your unit and integration tests in conjunction with the TestContext framework. Refer to the
corresponding javadocs for further information, including default attribute values, attribute
aliases, and so on.

@BootstrapWith

@BootstrapWith is a class-level annotation that is used to configure how the Spring TestContext
Framework 1is bootstrapped. Specifically, @BootstrapWith is wused to specify a custom
TestContextBootstrapper. Consult the Bootstrapping the TestContext framework section for further
details.

@ContextConfiguration

@ContextConfiguration defines class-level metadata that is used to determine how to load and
configure an ApplicationContext for integration tests. Specifically, @ContextConfiguration declares
the application context resource locations or the annotated classes that will be used to load the
context.

Resource locations are typically XML configuration files or Groovy scripts located in the classpath;
whereas, annotated classes are typically @Configuration classes. However, resource locations can
also refer to files and scripts in the file system, and annotated classes can be component classes, etc.

@ContextConfiguration("/test-config.xml")
public class XmlApplicationContextTests {

// class body...
}

@ContextConfiguration(classes = TestConfig.class)
public class ConfigClassApplicationContextTests {
// class body...

}

As an alternative or in addition to declaring resource locations or annotated classes,
@ContextConfiguration may be used to declare ApplicationContextInitializer classes.

data-access.pdf#jdbc-embedded-database-support
data-access.pdf#jdbc-embedded-database-support
data-access.pdf#jdbc-embedded-database-dao-testing

@ContextConfiguration(initializers =
CustomContextIntializer.class)
public class ContextInitializerTests {
// class body...
}

@ContextConfiguration may optionally be used to declare the ContextlLoader strategy as well. Note,
however, that you typically do not need to explicitly configure the loader since the default loader
supports either resource locations or annotated classes as well as initializers.

@ContextConfiguration(locations = "/test-
context.xml", loader = CustomContextLoader.class)
public class CustomLoaderXmlApplicationContextTests {
// class body...
by

@ContextConfiguration provides support for inheriting resource locations or
configuration classes as well as context initializers declared by superclasses by
default.

See Context management and the @ContextConfiguration javadocs for further details.

@WebAppConfiguration

@WebAppConfiguration is a class-level annotation that is used to declare that the ApplicationContext
loaded for an integration test should be a WebApplicationContext. The mere presence of
@WebAppConfiguration on a test class ensures that a WebApplicationContext will be loaded for the test,
using the default value of "file:src/main/webapp” for the path to the root of the web application
(i.e., the resource base path). The resource base path is used behind the scenes to create a
MockServletContext which serves as the ServletContext for the test’s WebApplicationContext.

@ContextConfiguration
@WebAppConfiguration
public class WebAppTests {

// class body...
}

To override the default, specify a different base resource path via the implicit value attribute. Both
classpath: and file: resource prefixes are supported. If no resource prefix is supplied the path is
assumed to be a file system resource.

10

@ContextConfiguration
@WebAppConfiguration("classpath:test-web-resources")
public class WebAppTests {

// class body...

}

Note that @WebAppConfiguration must be used in conjunction with @ContextConfiguration, either
within a single test class or within a test class hierarchy. See the @WebAppConfiguration javadocs for
further details.

@ContextHierarchy

@ContextHierarchy is a class-level annotation that is used to define a hierarchy of
ApplicationContexts for integration tests. @ContextHierarchy should be declared with a list of one or
more @ContextConfiguration instances, each of which defines a level in the context hierarchy. The
following examples demonstrate the use of @ContextHierarchy within a single test class; however,
@ContextHierarchy can also be used within a test class hierarchy.

@ContextHierarchy({
@ContextConfiguration("/parent-config.xml"),
@ContextConfiguration("/child-config.xml")

b

public class ContextHierarchyTests {

// class body...

}
@WebAppConfiquration
@ContextHierarchy({
@ContextConfiguration(classes = AppConfig.class),
@ContextConfiguration(classes = WebConfig.class)
})

public class WebIntegrationTests {
// class body...
}

If you need to merge or override the configuration for a given level of the context hierarchy within
a test class hierarchy, you must explicitly name that level by supplying the same value to the name
attribute in @ContextConfiguration at each corresponding level in the class hierarchy. See Context
hierarchies and the @ContextHierarchy javadocs for further examples.

@ActiveProfiles

@ActiveProfiles is a class-level annotation that is used to declare which bean definition profiles
should be active when loading an ApplicationContext for an integration test.

11

See Context configuration with environment profiles and the @ActiveProfiles javadocs for

@ContextConfiguration
@ActiveProfiles("dev")
public class DeveloperTests {

}

// class body...

@ContextConfiquration
@ActiveProfiles({"dev", "integration"})
public class DeveloperIntegrationTests {

}

// class body...

@ActiveProfiles provides support for inheriting active bean definition profiles
declared by superclasses by default. It is also possible to resolve active bean
definition profiles programmatically by implementing a custom
ActiveProfilesResolver and registering it via the resolver attribute of
@ActiveProfiles.

examples and further details.

@TestPropertySource

@TestPropertySource is a class-level annotation that is used to configure the locations of properties
files and inlined properties to be added to the set of PropertySources in the Environment for an
ApplicationContext loaded for an integration test.

Test property sources have higher precedence than those loaded from the operating system’s

environment or Java system properties as well as property sources added by the application

declaratively via @PropertySource or programmatically. Thus, test property sources can be used to
selectively override properties defined in system and application property sources. Furthermore,
inlined properties have higher precedence than properties loaded from resource locations.

The following example demonstrates how to declare a properties file from the classpath.

@ContextConfiguration
@TestPropertySource("/test.properties")
public class MyIntegrationTests {

}

// class body...

The following example demonstrates how to declare inlined properties.

12

@ContextConfiguration
@TestPropertySource(properties = { "timezone = GMT", "port: 4242" })
public class MyIntegrationTests {

// class body...

}

@DirtiesContext

@DirtiesContext indicates that the underlying Spring ApplicationContext has been dirtied during the
execution of a test (i.e., modified or corrupted in some manner —for example, by changing the
state of a singleton bean) and should be closed. When an application context is marked dirty, it is
removed from the testing framework’s cache and closed. As a consequence, the underlying Spring
container will be rebuilt for any subsequent test that requires a context with the same
configuration metadata.

@DirtiesContext can be used as both a class-level and method-level annotation within the same class
or class hierarchy. In such scenarios, the ApplicationContext is marked as dirty before or after any
such annotated method as well as before or after the current test class, depending on the
configured methodMode and classMode.

The following examples explain when the context would be dirtied for various configuration
scenarios:

» Before the current test class, when declared on a class with class mode set to BEFORE_CLASS.

@DirtiesContext(classMode = BEFORE_CLASS)
public class FreshContextTests {
// some tests that require a new Spring container

}

» After the current test class, when declared on a class with class mode set to AFTER_CLASS (i.e., the
default class mode).

@DirtiesContext
public class ContextDirtyingTests {
// some tests that result in the Spring container being dirtied

}

» Before each test method in the current test class, when declared on a class with class mode set
to BEFORE_EACH_TEST_METHOD.

@DirtiesContext(classMode = BEFORE_EACH_TEST_METHOD)
public class FreshContextTests {
// some tests that require a new Spring container

}

13

» After each test method in the current test class, when declared on a class with class mode set to
AFTER_EACH_TEST_METHOD.

@DirtiesContext(classMode = AFTER_EACH_TEST_METHOD)
public class ContextDirtyingTests {
// some tests that result in the Spring container being dirtied

}

» Before the current test, when declared on a method with the method mode set to BEFORE_METHOD.

@DirtiesContext(methodMode = BEFORE_METHOD)
@Test
public void testProcessWhichRequiresFreshAppCtx() {

// some logic that requires a new Spring container

}

o After the current test, when declared on a method with the method mode set to AFTER_METHOD
(i.e., the default method mode).

@DirtiesContext
@Test
public void testProcessWhichDirtiesAppCtx() {
// some logic that results in the Spring container being dirtied

}

If @DirtiesContext is used in a test whose context is configured as part of a context hierarchy via
@ContextHierarchy, the hierarchyMode flag can be used to control how the context cache is cleared. By
default an exhaustive algorithm will be used that clears the context cache including not only the
current level but also all other context hierarchies that share an ancestor context common to the
current test; all ApplicationContexts that reside in a sub-hierarchy of the common ancestor context
will be removed from the context cache and closed. If the exhaustive algorithm is overkill for a
particular use case, the simpler current level algorithm can be specified instead, as seen below.

14

@ContextHierarchy({
@ContextConfiguration("/parent-config.xml"),
@ContextConfiguration("/child-config.xml")

})

public class BaseTests {
// class body...
}

public class ExtendedTests extends BaseTests {

@Test
@DirtiesContext(hierarchyMode = CURRENT_LEVEL)
public void test() {

// some logic that results in the child context being dirtied
}

For further details regarding the EXHAUSTIVE and CURRENT_LEVEL algorithms see the
DirtiesContext.HierarchyMode javadocs.

@TestExecutionListeners

@TestExecutionlListeners defines class-level metadata for configuring the TestExecutionListener
implementations that should be registered with the TestContextManager. Typically,
@TestExecutionListeners is used in conjunction with @ContextConfiguration

@ContextConfiguration
@TestExecutionlListeners({CustomTestExecutionListener.class,
AnotherTestExecutionlListener.class})
public class CustomTestExecutionlListenerTests {

// class body...
}

@TestExecutionListeners supports inherited listeners by default. See the javadocs for an example
and further details.

@Commit

@Commit indicates that the transaction for a transactional test method should be committed after the
test method has completed. @Commit can be used as a direct replacement for @Rollback(false) in
order to more explicitly convey the intent of the code. Analogous to @Rollback, @Commit may also be
declared as a class-level or method-level annotation.

15

public void testProcessWithoutRollback() {
/] ...
}

@Rollback

@Rollback indicates whether the transaction for a transactional test method should be rolled back
after the test method has completed. If true, the transaction is rolled back; otherwise, the
transaction is committed (see also @Commit). Rollback semantics for integration tests in the Spring
TestContext Framework default to true even if @Rollback is not explicitly declared.

When declared as a class-level annotation, @Rollback defines the default rollback semantics for all
test methods within the test class hierarchy. When declared as a method-level annotation, @Rol1back
defines rollback semantics for the specific test method, potentially overriding class-level @Rollback
or @Commit semantics.

 (false)

public void testProcessWithoutRollback() {
/] ...
}

@BeforeTransaction

@BeforeTransaction indicates that the annotated void method should be executed before a
transaction is started for test methods configured to run within a transaction via Spring’s
@Transactional annotation. As of Spring Framework 4.3, @BeforeTransaction methods are not
required to be public and may be declared on Java 8 based interface default methods.

void beforeTransaction() {
// logic to be executed before a transaction is started

}

@AfterTransaction

@AfterTransaction indicates that the annotated void method should be executed after a transaction
is ended for test methods configured to run within a transaction via Spring’s @Transactional
annotation. As of Spring Framework 4.3, @AfterTransaction methods are not required to be public
and may be declared on Java 8 based interface default methods.

16

@AfterTransaction
void afterTransaction() {
// logic to be executed after a transaction has ended

}

@Sql

@Sql is used to annotate a test class or test method to configure SQL scripts to be executed against a
given database during integration tests.

@Test
@Sql({"/test-schema.sql", "/test-user-data.sql"})
public void userTest {

// execute code that relies on the test schema and test data

}

See Executing SQL scripts declaratively with @Sql for further details.

@SqlConfig

@SqlConfig defines metadata that is used to determine how to parse and execute SQL scripts
configured via the @Sql annotation.

@Test
@Sq1(

scripts = "/test-user-data.sql”,

config = @SqlConfig(commentPrefix = "'", separator = "@@")
)

public void userTest {
// execute code that relies on the test data

}

@SqlGroup

@SqlGroup is a container annotation that aggregates several @5ql annotations. @S5qlGroup can be used
natively, declaring several nested @5ql annotations, or it can be used in conjunction with Java 8’s
support for repeatable annotations, where @5ql can simply be declared several times on the same
class or method, implicitly generating this container annotation.

17

 ({
(scripts = "/test-schema.sql", config = (commentPrefix = "'")),
("/test-user-data.sql")

)}

public void userTest {
// execute code that uses the test schema and test data

}

3.4.2. Standard Annotation Support

The following annotations are supported with standard semantics for all configurations of the
Spring TestContext Framework. Note that these annotations are not specific to tests and can be used
anywhere in the Spring Framework.

o @Autowired

o @Qualifier

* @Resource (javax.annotation) if JSR-250 is present

* @ManagedBean (javax.annotation) if JSR-250 is present

* @Inject (javax.inject) if JSR-330 is present

* @Named (javax.inject) if JSR-330 is present

* @PersistenceContext (javax.persistence) if JPA is present

* @Persistencelnit (javax.persistence) if JPA is present
o ORequired

o @Transactional

JSR-250 Lifecycle Annotations

In the Spring TestContext Framework @PostConstruct and @PreDestroy may be used
with standard semantics on any application components configured in the
ApplicationContext; however, these lifecycle annotations have limited usage within
an actual test class.

0 If a method within a test class is annotated with @PostConstruct, that method will
be executed before any before methods of the underlying test framework (e.g.,
methods annotated with JUnit Jupiter’s @BeforeEach), and that will apply for every
test method in the test class. On the other hand, if a method within a test class is
annotated with @PreDestroy, that method will never be executed. Within a test class
it is therefore recommended to use test lifecycle callbacks from the underlying test
framework instead of @PostConstruct and @PreDestroy.

3.4.3. Spring JUnit 4 Testing Annotations

The following annotations are only supported when used in conjunction with the SpringRunner,
Spring’s JUnit 4 rules, or Spring’s JUnit 4 support classes.

18

@IfProfileValue

@IfProfileValue indicates that the annotated test is enabled for a specific testing environment. If the
configured ProfileValueSource returns a matching value for the provided name, the test is enabled.
Otherwise, the test will be disabled and effectively ignored.

@IfProfileValue can be applied at the class level, the method level, or both. Class-level usage of
@IfProfileValue takes precedence over method-level usage for any methods within that class or its
subclasses. Specifically, a test is enabled if it is enabled both at the class level and at the method
level; the absence of @IfProfileValue means the test is implicitly enabled. This is analogous to the
semantics of JUnit 4’s @Ignore annotation, except that the presence of @Ignore always disables a test.

@lfProfileValue(name="java.vendor", value<
/strong>="0racle Corporation")
@Test
public void testProcessWhichRunsOnlyOnOraclelvm() {
// some logic that should run only on Java VMs from Oracle Corporation

}

Alternatively, you can configure @IfProfileValue with a list of values (with OR semantics) to achieve
TestNG-like support for test groups in a JUnit 4 environment. Consider the following example:

@lfProfileValue(name="test-groups", values<
/strong>={"unit-tests", "integration-tests"})
@Test
public void testProcessWhichRunsForUnitOrIntegrationTestGroups() {
// some logic that should run only for unit and integration test groups

}

@ProfileValueSourceConfiguration

@ProfileValueSourceConfiguration is a class-level annotation that specifies what type of
ProfileValueSource to use when retrieving profile values configured through the @IfProfileValue
annotation. If @ProfileValueSourceConfiguration is not declared for a test, SystemProfileValueSource
is used by default.

@ProfileValueSourceConfiguration(CustomProfileValueSource.class)
public class CustomProfileValueSourceTests {
// class body...

}

@Timed

@Timed indicates that the annotated test method must finish execution in a specified time period (in
milliseconds). If the text execution time exceeds the specified time period, the test fails.

The time period includes execution of the test method itself, any repetitions of the test (see @Repeat),

19

as well as any set up or tear down of the test fixture.

 (millis=1000)
public void testProcessWithOneSecondTimeout() {
// some logic that should not take longer than 1 second to execute

}

Spring’s @Timed annotation has different semantics than JUnit 4’s @Test(timeout='-") support.
Specifically, due to the manner in which JUnit 4 handles test execution timeouts (that is, by
executing the test method in a separate Thread), @Test(timeout='-) preemptively fails the test if the
test takes too long. Spring’s @Timed, on the other hand, does not preemptively fail the test but rather
waits for the test to complete before failing.

@Repeat

@Repeat indicates that the annotated test method must be executed repeatedly. The number of times
that the test method is to be executed is specified in the annotation.

The scope of execution to be repeated includes execution of the test method itself as well as any set
up or tear down of the test fixture.

 (10)

public void testProcessRepeatedly() {
/] ...
}

3.4.4. Spring JUnit Jupiter Testing Annotations

The following annotations are only supported when used in conjunction with the SpringExtension
and JUnit Jupiter (i.e., the programming model in JUnit 5).

@SpringJUnitConfig

@SpringJUnitConfig is a composed annotation that combines @ExtendWith(SpringExtension.class)
from JUnit Jupiter with @ContextConfiguration from the Spring TestContext Framework. It can be
used at the class level as a drop-in replacement for @ContextConfiguration. With regard to
configuration options, the only difference between @ContextConfiguration and @SpringJUnitConfig is
that annotated classes may be declared via the value attribute in @SpringJUnitConfig.

 (TestConfig.class)
class ConfigurationClassJUnitJupiterSpringTests {
// class body...

}

20

@SpringJUnitConfig(locations = "/test-config.xml")
class XmlJUnitJupiterSpringTests {

// class body...
}

See Context management as well as the javadocs for @SpringJUnitConfig and @ContextConfiguration
for further details.

@Spring]JUnitWebConfig

@SpringJUnitWebConfig is a composed annotation that combines @ExtendWith(SpringExtension.class)
from JUnit Jupiter with @ContextConfiguration and @WebAppConfiguration from the Spring
TestContext Framework. It can be used at the class level as a drop-in replacement for
@ContextConfiguration and @WebAppConfiguration. With regard to configuration options, the only
difference between @ContextConfiguration and @SpringJUnitWebConfig is that annotated classes may
be declared via the value attribute in @SpringJUnitWebConfig. In addition, the value attribute from
@WebAppConfiguration can only be overridden via the resourcePath attribute in
@SpringJUnitWebConfig.

@SpringJUnitWebConfig(TestConfig.class)
class ConfigurationClassJUnitJupiterSpringWebTests {

// class body...
}

@SpringJUnitWebConfig(locations = "/test-config.xml
Il)
class XmlJUnitJupiterSpringWebTests {
// class body...
}

See Context management as well as the javadocs for @SpringJUnitWebConfig, @ContextConfiguration,
and eWebAppConfiguration for further details.

@EnabledIf

@EnabledIf is used to signal that the annotated JUnit Jupiter test class or test method is enabled and
should be executed if the supplied expression evaluates to true. Specifically, if the expression
evaluates to Boolean.TRUE or a String equal to "true" (ignoring case), the test will be enabled. When
applied at the class level, all test methods within that class are automatically enabled by default as
well.

Expressions can be any of the following.

* Spring Expression Language (SpEL) expression — for example:
- @EnabledIf("#{systemProperties['os.name'].tolLowerCase().contains('mac')}")

» Placeholder for a property available in the Spring Environment — for example:

21

core.pdf#expressions
core.pdf#beans-environment

o @EnabledIf("${smoke.tests.enabled}")
 Text literal — for example:

o @EnabledIf("true")

Note, however, that a text literal which is not the result of dynamic resolution of a property
placeholder is of zero practical value since @EnabledIf("false") is equivalent to @Disabled and
@EnabledIf("true") islogically meaningless.

@EnabledIf may be used as a meta-annotation to create custom composed annotations. For example,
a custom @EnabledOnMac annotation can be created as follows.

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@EnabledIf(
expression = "#{systemProperties['os.name'].toLowerCase().contains('mac")}",
reason = "Enabled on Mac 0S"

)
public @interface EnabledOnMac {}

@DisabledIf

@DisabledIf is used to signal that the annotated JUnit Jupiter test class or test method is disabled and
should not be executed if the supplied expression evaluates to true. Specifically, if the expression
evaluates to Boolean.TRUE or a String equal to "true" (ignoring case), the test will be disabled. When
applied at the class level, all test methods within that class are automatically disabled as well.

Expressions can be any of the following.

 Spring Expression Language (SpEL) expression — for example:

o @DisabledIf("#{systemProperties['os.name'].tolLowerCase().contains('mac')}")
» Placeholder for a property available in the Spring Environment — for example:

o @DisabledIf("${smoke.tests.disabled}")
 Text literal — for example:

o @DisabledIf("true")

Note, however, that a text literal which is not the result of dynamic resolution of a property
placeholder is of zero practical value since @DisabledIf("true") is equivalent to @Disabled and
@DisabledIf("false") is logically meaningless.

@DisabledIf may be used as a meta-annotation to create custom composed annotations. For
example, a custom @DisabledOnMac annotation can be created as follows.

22

core.pdf#expressions
core.pdf#beans-environment

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@DisabledIf(
expression = "#{systemProperties['os.name'].toLowerCase().contains('mac")}",
reason = "Disabled on Mac 0S"

)
public @interface DisabledOnMac {}

3.4.5. Meta-Annotation Support for Testing

It is possible to use most test-related annotations as meta-annotations in order to create custom
composed annotations and reduce configuration duplication across a test suite.

Each of the following may be used as meta-annotations in conjunction with the TestContext
framework.

o @BootstrapWith

« @ContextConfiguration

« @ContextHierarchy

o @ActiveProfiles

o @TestPropertySource

« @DirtiesContext

« @WebAppConfiguration

o @TestExecutionListeners

« @Transactional

« @BeforeTransaction

« @AfterTransaction

o @Commit

« @Rollback

. @Sql

« 05qlConfig

« 0SqlGroup

* @Repeat (only supported on JUnit 4)

* @Timed (only supported on JUnit 4)

» @IfProfileValue (only supported on JUnit 4)

* @ProfileValueSourceConfiguration (only supported on JUnit 4)
* @SpringJUnitConfig (only supported on JUnit Jupiter)
* @SpringJUnitWebConfig (only supported on JUnit Jupiter)
* @EnabledIf (only supported on JUnit Jupiter)

» @DisabledIf (only supported on JUnit Jupiter)

For example, if we discover that we are repeating the following configuration across our jUnit 4
based test suite...

23

core.pdf#beans-meta-annotations

@RunWith(SpringRunner.class)

@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public class OrderRepositoryTests { }

@RunWith(SpringRunner.class)

@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public class UserRepositoryTests { }

We can reduce the above duplication by introducing a custom composed annotation that centralizes
the common test configuration for Spring like this:

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public @interface TransactionalDevTestConfig { }

Then we can use our custom @TransactionalDevTestConfig annotation to simplify the configuration

of

If

individual JUnit 4 based test classes as follows:

@RunWith(SpringRunner.class)
@TransactionalDevTestConfig
public class OrderRepositoryTests { }

@RunWith(SpringRunner.class)

@TransactionalDevTestConfig
public class UserRepositoryTests { }

we are writing tests using JUnit Jupiter, we can reduce code duplication even further since

annotations in JUnit 5 can also be used as meta-annotations. For example, if we discover that we

ar

24

e repeating the following configuration across our JUnit Jupiter based test suite...

@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

class OrderRepositoryTests { }

@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

class UserRepositoryTests { }

We can reduce the above duplication by introducing a custom composed annotation that centralizes
the common test configuration for Spring and JUnit Jupiter like this:

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)

@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public @interface TransactionalDevTestConfig { }

Then we can use our custom @TransactionalDevTestConfig annotation to simplify the configuration
of individual JUnit Jupiter based test classes as follows:

@TransactionalDevTestConfig
class OrderRepositoryTests { }

@TransactionalDevTestConfig
class UserRepositoryTests { }

Since JUnit Jupiter supports the use of @Test, @RepeatedTest, ParameterizedTest, etc. as meta-
annotations, it is also possible to create custom composed annotations at the test method level. For
example, if we wish to create a composed annotation that combines the @Test and @Tag annotations
from JUnit Jupiter with the @Transactional annotation from Spring, we could create an
@TransactionallntegrationTest annotation as follows.

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)

@Transactional

@Tag("integration-test") // org.junit.jupiter.api.Tag
@Test // org.junit.jupiter.api.Test

public @interface TransactionallntegrationTest { }

Then we can use our custom @TransactionallntegrationTest annotation to simplify the

25

configuration of individual JUnit Jupiter based test methods as follows:

void saveOrder() { }

void deleteOrder() { }

For further details, consult the Spring Annotation Programming Model.

3.5. Spring TestContext Framework

The Spring TestContext Framework (located in the org.springframework.test.context package)
provides generic, annotation-driven unit and integration testing support that is agnostic of the
testing framework in use. The TestContext framework also places a great deal of importance on
convention over configuration with reasonable defaults that can be overridden through annotation-
based configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support
for JUnit 4, JUnit Jupiter (a.k.a., JUnit 5), and TestNG. For JUnit 4 and TestNG, Spring provides
abstract support classes. Furthermore, Spring provides a custom JUnit Runner and custom JUnit
Rules for JUnit 4 as well as a custom Extension for JUnit Jupiter that allow one to write so-called
PQJO test classes. POJO test classes are not required to extend a particular class hierarchy such as
the abstract support classes.

The following section provides an overview of the internals of the TestContext framework. If you
are only interested in using the framework and not necessarily interested in extending it with your
own custom listeners or custom loaders, feel free to go directly to the configuration (context
management, dependency injection, transaction management), support classes, and annotation
support sections.

3.5.1. Key abstractions

The core of the framework consists of the TestContextManager class and the TestContext,
TestExecutionListener, and SmartContextLoader interfaces. A TestContextManager is created per test
class (e.g., for the execution of all test methods within a single test class in JUnit Jupiter). The
TestContextManager in turn manages a TestContext that holds the context of the current test. The
TestContextManager also updates the state of the TestContext as the test progresses and delegates to
TestExecutionListener implementations, which instrument the actual test execution by providing
dependency injection, managing transactions, and so on. A SmartContextlLoader is responsible for
loading an ApplicationContext for a given test class. Consult the javadocs and the Spring test suite
for further information and examples of various implementations.

TestContext

TestContext encapsulates the context in which a test is executed, agnostic of the actual testing
framework in use, and provides context management and caching support for the test instance for
which it is responsible. The TestContext also delegates to a SmartContextlLoader to load an

26

core.pdf#annotation-programming-model

ApplicationContext if requested.

TestContextManager

TestContextManager is the main entry point into the Spring TestContext Framework and is
responsible for managing a single TestContext and signaling events to each registered
TestExecutionListener at well-defined test execution points:

* prior to any before class or before all methods of a particular testing framework
* test instance post-processing

* prior to any before or before each methods of a particular testing framework

* immediately before execution of the test method but after test setup

» immediately after execution of the test method but before test tear down

« after any after or after each methods of a particular testing framework

« after any after class or after all methods of a particular testing framework

TestExecutionListener

TestExecutionListener defines the API for reacting to test execution events published by the
TestContextManager with which the listener is registered. See TestExecutionListener configuration.

Context Loaders

ContextlLoader is a strategy interface that was introduced in Spring 2.5 for loading an
ApplicationContext for an integration test managed by the Spring TestContext Framework.
Implement SmartContextLoader instead of this interface in order to provide support for annotated
classes, active bean definition profiles, test property sources, context hierarchies, and
WebApplicationContext support.

SmartContextLoader is an extension of the ContextlLoader interface introduced in Spring 3.1. The
SmartContextLoader SPI supersedes the ContextLoader SPI that was introduced in Spring 2.5.
Specifically, a SmartContextLoader can choose to process resource locations, annotated classes, or
context initializers. Furthermore, a SmartContextLoader can set active bean definition profiles and
test property sources in the context that it loads.

Spring provides the following implementations:

* DelegatingSmartContextLoader: one of two default loaders which delegates internally to an
AnnotationConfigContextlLoader, a GenericXmlContextlLoader, or a GenericGroovyXmlContextlLoader
depending either on the configuration declared for the test class or on the presence of default
locations or default configuration classes. Groovy support is only enabled if Groovy is on the
classpath.

* WebDelegatingSmartContextLoader: one of two default loaders which delegates internally to an
AnnotationConfigWebContextLoader, a GenericXmlWebContextlLoader, or a
GenericGroovyXmlWebContextLoader depending either on the configuration declared for the test
class or on the presence of default locations or default configuration classes. A web
ContextLoader will only be used if @WebAppConfiguration is present on the test class. Groovy

27

support is only enabled if Groovy is on the classpath.
* AnnotationConfigContextlLoader:loads a standard ApplicationContext from annotated classes.
* AnnotationConfigWebContextLoader: loads a WebApplicationContext from annotated classes.

* GenericGroovyXmlContextLoader: loads a standard ApplicationContext from resource locations that
are either Groovy scripts or XML configuration files.

* GenericGroovyXmlWebContextLoader: loads a WebApplicationContext from resource locations that
are either Groovy scripts or XML configuration files.

» GenericXmlContextLoader: loads a standard ApplicationContext from XML resource locations.
e GenericXmlWebContextlLoader: loads a WebApplicationContext from XML resource locations.

* GenericPropertiesContextlLoader:loads a standard ApplicationContext from Java Properties files.

3.5.2. Bootstrapping the TestContext framework

The default configuration for the internals of the Spring TestContext Framework is sufficient for all
common use cases. However, there are times when a development team or third party framework
would like to change the default ContextlLoader, implement a custom TestContext or ContextCache,
augment the default sets of ContextCustomizerFactory and TestExecutionlListener implementations,
etc. For such low level control over how the TestContext framework operates, Spring provides a
bootstrapping strategy.

TestContextBootstrapper defines the SPI for bootstrapping the TestContext framework. A
TestContextBootstrapper is used by the TestContextManager to load the TestExecutionListener
implementations for the current test and to build the TestContext that it manages. A custom
bootstrapping strategy can be configured for a test class (or test class hierarchy) via @BootstrapWith,
either directly or as a meta-annotation. If a bootstrapper is not explicitly configured via
@BootstrapWith, either the DefaultTestContextBootstrapper or the WebTestContextBootstrapper will be
used, depending on the presence of @WebAppConfiguration.

Since the TestContextBootstrapper SPI is likely to change in the future in order to accommodate new
requirements, implementers are strongly encouraged not to implement this interface directly but
rather to extend AbstractTestContextBootstrapper or one of its concrete subclasses instead.

3.5.3. TestExecutionListener configuration

Spring provides the following TestExecutionlListener implementations that are registered by
default, exactly in this order.
» ServletTestExecutionlListener: configures Servlet API mocks for a WebApplicationContext

e DirtiesContextBeforeModesTestExecutionListener: handles the @DirtiesContext annotation for
before modes

* DependencyInjectionTestExecutionListener: provides dependency injection for the test instance
* DirtiesContextTestExecutionListener: handles the @DirtiesContext annotation for after modes

* TransactionalTestExecutionListener: provides transactional test execution with default rollback
semantics

28

» SqlScriptsTestExecutionListener: executes SQL scripts configured via the @Sql annotation

Registering custom TestExecutionListeners

Custom TestExecutionListeners can be registered for a test class and its subclasses via the
@TestExecutionListeners annotation. See annotation support and the javadocs for
@TestExecutionListeners for details and examples.

Automatic discovery of default TestExecutionListeners

Registering custom TestExecutionlListeners via @TestExecutionlListeners is suitable for custom
listeners that are used in limited testing scenarios; however, it can become cumbersome if a custom
listener needs to be used across a test suite. Since Spring Framework 4.1, this issue is addressed via
support for automatic discovery of default TestExecutionListener implementations via the
SpringFactoriesLoader mechanism.

Specifically, the spring-test module declares all core default TestExecutionListeners under the
org.springframework.test.context.TestExecutionListener key in its META-INF/spring.factories
properties file. Third-party frameworks and developers can contribute their own
TestExecutionListeners to the list of default listeners in the same manner via their own META-
INF/spring.factories properties file.

Ordering TestExecutionListeners

When the TestContext framework discovers default TestExecutionListeners via the aforementioned
SpringFactoriesLoader mechanism, the instantiated listeners are sorted using Spring’s
AnnotationAwareOrderComparator which honors Spring’s Ordered interface and @0rder annotation for
ordering. AbstractTestExecutionListener and all default TestExecutionListeners provided by Spring
implement Ordered with appropriate values. Third-party frameworks and developers should
therefore make sure that their default TestExecutionListeners are registered in the proper order by
implementing Ordered or declaring @0rder. Consult the javadocs for the getOrder() methods of the
core default TestExecutionListeners for details on what values are assigned to each core listener.

Merging TestExecutionListeners

If a custom TestExecutionListener is registered via @TestExecutionListeners, the default listeners
will not be registered. In most common testing scenarios, this effectively forces the developer to
manually declare all default listeners in addition to any custom listeners. The following listing
demonstrates this style of configuration.

29

({
MyCustomTestExecutionListener.class,
ServletTestExecutionListener.class,
DirtiesContextBeforeModesTestExecutionListener.class,
DependencyInjectionTestExecutionlListener.class,
DirtiesContextTestExecutionlListener.class,
TransactionalTestExecutionListener.class,
SqlScriptsTestExecutionListener.class

b
public class MyTest {

// class body...
}

The challenge with this approach is that it requires that the developer know exactly which listeners
are registered by default. Moreover, the set of default listeners can change from release to
release —for example, SqlScriptsTestExecutionListener was introduced in Spring Framework 4.1,
and DirtiesContextBeforeModesTestExecutionListener was introduced in Spring Framework 4.2.
Furthermore, third-party frameworks like Spring Security register their own default
TestExecutionListeners via the aforementioned automatic discovery mechanism.

To avoid having to be aware of and re-declare all default listeners, the mergeMode attribute of
@TestExecutionListeners can be set to MergeMode .MERGE_WITH_DEFAULTS. MERGE_WITH_DEFAULTS indicates
that locally declared listeners should be merged with the default listeners. The merging algorithm
ensures that duplicates are removed from the list and that the resulting set of merged listeners is
sorted according to the semantics of AnnotationAwareOrderComparator as described in Ordering
TestExecutionListeners. If a listener implements Ordered or is annotated with @0rder it can influence
the position in which it is merged with the defaults; otherwise, locally declared listeners will simply
be appended to the list of default listeners when merged.

For example, if the MyCustomTestExecutionListener class in the previous example configures its order
value (for example, 500) to be less than the order of the ServletTestExecutionListener (which
happens to be 1000), the MyCustomTestExecutionListener can then be automatically merged with the
list of defaults in front of the ServletTestExecutionListener, and the previous example could be
replaced with the following.

(

listeners = MyCustomTestExecutionListener.class,
mergeMode = MERGE_WITH_DEFAULTS

)
public class MyTest {

// class body...
}

30

3.5.4. Context management

Each TestContext provides context management and caching support for the test instance it is
responsible for. Test instances do not automatically receive access to the configured
ApplicationContext. However, if a test class implements the ApplicationContextAware interface, a
reference to the ApplicationContext is supplied to the test instance. Note that
AbstractJUnit4SpringContextTests and AbstractTestNGSpringContextTests implement
ApplicationContextAware and therefore provide access to the ApplicationContext automatically.

@Autowired ApplicationContext

As an alternative to implementing the ApplicationContextAware interface, you can
inject the application context for your test class through the @Autowired annotation
on either a field or setter method. For example:

(SpringRunner.class)
public class MyTest {

private ApplicationContext applicationContext;

// class body...

Q Similarly, if your test is configured to load a WebApplicationContext, you can inject
the web application context into your test as follows:

(SpringRunner.class)

public class MyWebAppTest {

private WebApplicationContext wac;

// class body...

Dependency injection via @Autowired is provided by the
DependencyInjectionTestExecutionListener which is configured by default (see
Dependency injection of test fixtures).

Test classes that use the TestContext framework do not need to extend any particular class or
implement a specific interface to configure their application context. Instead, configuration is
achieved simply by declaring the @ContextConfiguration annotation at the class level. If your test
class does not explicitly declare application context resource locations or annotated classes, the
configured ContextlLoader determines how to load a context from a default location or default
configuration classes. In addition to context resource locations and annotated classes, an

31

application context can also be configured via application context initializers.

The following sections explain how to configure an ApplicationContext via XML configuration files,
Groovy scripts, annotated classes (typically @Configuration classes), or context initializers using
Spring’s @ContextConfiguration annotation. Alternatively, you can implement and configure your
own custom SmartContextlLoader for advanced use cases.

Context configuration with XML resources

To load an ApplicationContext for your tests using XML configuration files, annotate your test class
with @ContextConfiguration and configure the locations attribute with an array that contains the
resource locations of XML configuration metadata. A plain or relative path—for example
"context.xml" —will be treated as a classpath resource that is relative to the package in which the
test class is defined. A path starting with a slash is treated as an absolute classpath location, for
example "/org/example/config.xml". A path which represents a resource URL (i.e., a path prefixed
with classpath:, file:, http:, etc.) will be used as is.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath
@ContextConfiguration(locations={"/app-config.xml", "/test-config.xml"})<
/strong>
public class MyTest {

// class body...

}

@ContextConfiguration supports an alias for the locations attribute through the standard Java value
attribute. Thus, if you do not need to declare additional attributes in @ContextConfiguration, you can
omit the declaration of the locations attribute name and declare the resource locations by using the
shorthand format demonstrated in the following example.

@RunWith(SpringRunner.class)
@ContextConfiguration({"/app-config.xml", "/test-config.xml"})
public class MyTest {

// class body...

}

If you omit both the locations and value attributes from the @ContextConfiguration annotation, the
TestContext framework will attempt to detect a default XML resource location. Specifically,
GenericXmlContextLoader and GenericXmlWebContextLoader detect a default location based on the
name of the test class. If your class is named com.example.MyTest, GenericXmlContextLoader loads
your application context from "classpath:com/example/MyTest-context.xml".

32

package com.example;

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTest-context.xml"
@ContextConfiguration
public class MyTest {
// class body...

}

Context configuration with Groovy scripts

To load an ApplicationContext for your tests using Groovy scripts that utilize the Groovy Bean
Definition DSL, annotate your test class with @ContextConfiguration and configure the locations or
value attribute with an array that contains the resource locations of Groovy scripts. Resource
lookup semantics for Groovy scripts are the same as those described for XML configuration files.

Enabling Groovy script support

Q Support for using Groovy scripts to load an ApplicationContext in the Spring
TestContext Framework is enabled automatically if Groovy is on the classpath.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from "/AppConfig.groovy" and
// "/TestConfig.groovy" in the root of the classpath
@ContextConfiguration({"/AppConfig.groovy", "/TestConfig.Groovy"})
public class MyTest {

// class body...

}

If you omit both the locations and value attributes from the @ContextConfiguration annotation, the
TestContext framework will attempt to detect a default Groovy script. Specifically,
GenericGroovyXmlContextLoader and GenericGroovyXmlWebContextLoader detect a default location
based on the name of the test class. If your class is named com.example.MyTest, the Groovy context
loader will load your application context from "classpath:com/example/MyTestContext.groovy".

package com.example;

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTestContext.groovy"
@ContextConfiguration
public class MyTest {
// class body...

}

33

core.pdf#groovy-bean-definition-dsl
core.pdf#groovy-bean-definition-dsl

Declaring XML config and Groovy scripts simultaneously

Both XML configuration files and Groovy scripts can be declared simultaneously
via the locations or value attribute of @ContextConfiguration. If the path to a
configured resource location ends with .xml it will be loaded using an
XmlBeanDefinitionReader; otherwise it will be loaded using a
GroovyBeanDefinitionReader.

The following listing demonstrates how to combine both in an integration test.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from
// "/app-config.xml" and "/TestConfig.groovy"
@ContextConfiguration({ "/app-config.xml", "/TestConfig.groovy" })
public class MyTest {

// class body...
¥

Context configuration with annotated classes

To load an ApplicationContext for your tests using annotated classes (see Java-based container
configuration), annotate your test class with @ContextConfiguration and configure the classes
attribute with an array that contains references to annotated classes.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from AppConfig and TestConfig
@ContextConfiguration(classes = {AppConfig.class, TestConfig.class})
public class MyTest {

// class body...
}

Annotated Classes

The term annotated class can refer to any of the following.

* A class annotated with @Configuration
» A component (i.e., a class annotated with @Component, @Service, @Repository, etc.)
Q * A JSR-330 compliant class that is annotated with javax.inject annotations
* Any other class that contains @Bean-methods
Consult the javadocs of @Configuration and @Bean for further information regarding

the configuration and semantics of annotated classes, paying special attention to
the discussion of “@Bean ' Lite Mode.

If you omit the classes attribute from the @ContextConfiguration annotation, the TestContext

framework will attempt to detect the presence of default configuration classes. Specifically,
AnnotationConfigContextLoader and AnnotationConfigWebContextLoader will detect all static nested

34

core.pdf#beans-java
core.pdf#beans-java

classes of the test class that meet the requirements for configuration class implementations as
specified in the @Configuration javadocs. In the following example, the OrderServiceTest class
declares a static nested configuration class named Config that will be automatically used to load
the ApplicationContext for the test class. Note that the name of the configuration class is arbitrary.
In addition, a test class can contain more than one static nested configuration class if desired.

(SpringRunner.class)
// ApplicationContext will be loaded from the
// static nested Config class

public class OrderServiceTest {

static class Config {
// this bean will be injected into the OrderServiceTest class

public OrderService orderService() {
OrderService orderService = new OrderServiceImpl();
// set properties, etc.
return orderService;

private OrderService orderService;

public void testOrderService() {
// test the orderService

}

Mixing XML, Groovy scripts, and annotated classes

It may sometimes be desirable to mix XML configuration files, Groovy scripts, and annotated
classes (i.e., typically @Configuration classes) to configure an ApplicationContext for your tests. For
example, if you use XML configuration in production, you may decide that you want to use
@Configuration classes to configure specific Spring-managed components for your tests, or vice
versa.

Furthermore, some third-party frameworks (like Spring Boot) provide first-class support for
loading an ApplicationContext from different types of resources simultaneously (e.g., XML
configuration files, Groovy scripts, and @Configuration classes). The Spring Framework historically
has not supported this for standard deployments. Consequently, most of the SmartContextlLoader
implementations that the Spring Framework delivers in the spring-test module support only one
resource type per test context; however, this does not mean that you cannot use both. One
exception to the general rule is that the GenericGroovyXmlContextLoader and

35

GenericGroovyXmlWebContextLoader support both XML configuration files and Groovy scripts
simultaneously. Furthermore, third-party frameworks may choose to support the declaration of
both locations and classes via @ContextConfiguration, and with the standard testing support in the
TestContext framework, you have the following options.

If you want to use resource locations (e.g., XML or Groovy) and @Configuration classes to configure
your tests, you will have to pick one as the entry point, and that one will have to include or import
the other. For example, in XML or Groovy scripts you can include @Configuration classes via
component scanning or define them as normal Spring beans; whereas, in a @Configuration class you
can use @ImportResource to import XML configuration files or Groovy scripts. Note that this behavior
is semantically equivalent to how you configure your application in production: in production
configuration you will define either a set of XML or Groovy resource locations or a set of
@Configuration classes that your production ApplicationContext will be loaded from, but you still
have the freedom to include or import the other type of configuration.

Context configuration with context initializers

To configure an ApplicationContext for your tests using context initializers, annotate your test class
with @ContextConfiguration and configure the initializers attribute with an array that contains
references to classes that implement ApplicationContextInitializer. The declared context
initializers will then be used to initialize the ConfigurableApplicationContext that is loaded for your
tests. Note that the concrete ConfigurableApplicationContext type supported by each declared
initializer must be compatible with the type of ApplicationContext created by the
SmartContextLoader in use (i.e., typically a GenericApplicationContext). Furthermore, the order in
which the initializers are invoked depends on whether they implement Spring’s Ordered interface
or are annotated with Spring’s @0rder annotation or the standard @Priority annotation.

(SpringRunner.class)

// ApplicationContext will be loaded from TestConfig
// and initialized by TestAppCtxInitializer
 (

classes = TestConfig.class,

initializers = TestAppCtxInitializer.class)
public class MyTest {

// class body...

}

It is also possible to omit the declaration of XML configuration files, Groovy scripts, or annotated
classes in @ContextConfiguration entirely and instead declare only ApplicationContextInitializer
classes which are then responsible for registering beans in the context—for example, by
programmatically loading bean definitions from XML files or configuration classes.

36

@RunWith(SpringRunner.class)
// ApplicationContext will be initialized by EntireAppInitializer
// which presumably registers beans in the context
@ContextConfiguration(initializers = EntireAppInitializer.class)
public class MyTest {

// class body...

}

Context configuration inheritance

@ContextConfiguration supports boolean inheritLocations and inheritInitializers attributes that
denote whether resource locations or annotated classes and context initializers declared by
superclasses should be inherited. The default value for both flags is true. This means that a test class
inherits the resource locations or annotated classes as well as the context initializers declared by
any superclasses. Specifically, the resource locations or annotated classes for a test class are
appended to the list of resource locations or annotated classes declared by superclasses. Similarly,
the initializers for a given test class will be added to the set of initializers defined by test
superclasses. Thus, subclasses have the option of extending the resource locations, annotated
classes, or context initializers.

If the inheritLocations or inheritInitializers attribute in @ContextConfiguration is set to false, the
resource locations or annotated classes and the context initializers, respectively, for the test class
shadow and effectively replace the configuration defined by superclasses.

In the following example that uses XML resource locations, the ApplicationContext for ExtendedTest
will be loaded from "base-config.xml" and "extended-config.xml", in that order. Beans defined in
"extended-config.xml" may therefore override (i.e., replace) those defined in "base-config.xml".

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from "/base-config.xml"
// in the root of the classpath
@ContextConfiguration("/base-config.xml")
public class BaseTest {

// class body...
}

// ApplicationContext will be loaded from "/base-config.xml" and
// "/extended-config.xml" in the root of the classpath
@ContextConfiguration("/extended-config.xml")
public class ExtendedTest extends BaseTest {

// class body...
}

Similarly, in the following example that uses annotated classes, the ApplicationContext for
ExtendedTest will be loaded from the BaseConfig and ExtendedConfig classes, in that order. Beans
defined in ExtendedConfig may therefore override (i.e., replace) those defined in BaseConfig.

37

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from BaseConfig
@ContextConfiguration(classes = BaseConfig.class)
public class BaseTest {

// class body...
}

// ApplicationContext will be loaded from BaseConfig and ExtendedConfig
@ContextConfiguration(classes = ExtendedConfig.class)
public class ExtendedTest extends BaseTest {

// class body...

}

In the following example that uses context initializers, the ApplicationContext for ExtendedTest will
be initialized using BaselInitializer and ExtendedInitializer. Note, however, that the order in
which the initializers are invoked depends on whether they implement Spring’s Ordered interface
or are annotated with Spring’s @0rder annotation or the standard @Priority annotation.

@RunWith(SpringRunner.class)
// ApplicationContext will be initialized by Baselnitializer
@ContextConfiguration(initializers = Baselnitializer.class)
public class BaseTest {

// class body...
}

// ApplicationContext will be initialized by Baselnitializer
// and ExtendedInitializer
@ContextConfiguration(initializers = ExtendedInitializer.class)
public class ExtendedTest extends BaseTest {
// class body...

}

Context configuration with environment profiles

Spring 3.1 introduced first-class support in the framework for the notion of environments and
profiles (a.k.a., bean definition profiles), and integration tests can be configured to activate
particular bean definition profiles for various testing scenarios. This is achieved by annotating a
test class with the @ActiveProfiles annotation and supplying a list of profiles that should be
activated when loading the ApplicationContext for the test.

@ActiveProfiles may be wused with any implementation of the new
SmartContextLoader SPI, but @ActiveProfiles is not supported with implementations

of the older ContextLoader SPI.

Let’s take a look at some examples with XML configuration and @Configuration classes.

38

<!-- app-config.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbe="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemalocation="...">

<bean id="transferService"
class="com.bank.service.internal.DefaultTransferService">
<constructor-arg ref="accountRepository"/>
<constructor-arg ref="feePolicy"/>
</bean>

<bean id="accountRepository"
class="com.bank.repository.internal.JldbcAccountRepository">
<constructor-arg ref="dataSource"/>
</bean>

<bean id="feePolicy"
class="com.bank.service.internal.ZeroFeePolicy"/>

<beans profile="dev">
<jdbc:embedded-database id="dataSource">
<jdbec:script
location="classpath:com/bank/config/sql/schema.sql"/>
<jdbec:script
location="classpath:com/bank/config/sql/test-data.sql"/>
</jdbc:embedded-database>
</beans>

<beans profile="production">
<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
</beans>

<beans profile="default">
<jdbc:embedded-database id="dataSource">
<jdbc:script
location="classpath:com/bank/config/sql/schema.sql"/>
</jdbc:embedded-database>
</beans>

</beans>

39

package com.bank.service;

@RunWith(SpringRunner.class)

// ApplicationContext will be loaded from "classpath:/app-config.xml'
@ContextConfiguration("/app-config.xml")

@ActiveProfiles("dev")

public class TransferServiceTest {

@Autowired
private TransferService transferService;

@Test
public void testTransferService() {
// test the transferService

}

When TransferServiceTest is run, its ApplicationContext will be loaded from the app-config.xml
configuration file in the root of the classpath. If you inspect app-config.xml you’ll notice that the
accountRepository bean has a dependency on a dataSource bean; however, dataSource is not defined
as a top-level bean. Instead, dataSource is defined three times: in the production profile, the dev
profile, and the default profile.

By annotating TransferServiceTest with @ActiveProfiles("dev") we instruct the Spring TestContext
Framework to load the ApplicationContext with the active profiles set to {"dev"}. As a result, an
embedded database will be created and populated with test data, and the accountRepository bean
will be wired with a reference to the development DataSource. And that’s likely what we want in an
integration test.

It is sometimes useful to assign beans to a default profile. Beans within the default profile are only
included when no other profile is specifically activated. This can be used to define fallback beans to
be used in the application’s default state. For example, you may explicitly provide a data source for
dev and production profiles, but define an in-memory data source as a default when neither of these
is active.

The following code listings demonstrate how to implement the same configuration and integration
test but using @Configuration classes instead of XML.

40

@Configuration
@Profile("dev")
public class StandaloneDataConfig {

@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build();

@Configuration
@Profile("production")
public class JndiDataConfig {

@Bean(destroyMethod="")
public DataSource dataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");

@Configuration
@Profile("default")
public class DefaultDataConfig {

@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.build();

41

@Configuration
public class TransferServiceConfig {

@Autowired DataSource dataSource;

@Bean
public TransferService transferService() {
return new DefaultTransferService(accountRepository(), feePolicy());

}

@Bean
public AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);

}

@Bean
public FeePolicy feePolicy() {
return new ZeroFeePolicy();

}

package com.bank.service;

@RunWith(SpringRunner.class)

@ContextConfiguration(classes = {
TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class,
DefaultDataConfig.class})

@ActiveProfiles("dev")

public class TransferServiceTest {

@Autowired
private TransferService transferService;

@Test
public void testTransferService() {
// test the transferService

}

In this variation, we have split the XML configuration into four independent @Configuration classes:

» TransferServiceConfig: acquires a dataSource via dependency injection using @Autowired

» StandaloneDataConfig: defines a dataSource for an embedded database suitable for developer
tests

42

» IndiDataConfig: defines a dataSource that is retrieved from JNDI in a production environment

» DefaultDataConfig: defines a dataSource for a default embedded database in case no profile is
active

As with the XML-based configuration example, we still annotate TransferServiceTest with
@ActiveProfiles("dev"), but this time we specify all four configuration classes via the
@ContextConfiguration annotation. The body of the test class itself remains completely unchanged.

It is often the case that a single set of profiles is used across multiple test classes within a given
project. Thus, to avoid duplicate declarations of the @ActiveProfiles annotation it is possible to
declare @ActiveProfiles once on a base class, and subclasses will automatically inherit the
@ActiveProfiles configuration from the base class. In the following example, the declaration of
@ActiveProfiles (as well as other annotations) has been moved to an abstract superclass,
AbstractIntegrationTest

package com.bank.service;

@RunWith(SpringRunner.class)

@ContextConfiguration(classes = {
TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class,
DefaultDataConfig.class})

@ActiveProfiles("dev")

public abstract class AbstractIntegrationTest {

}

package com.bank.service;

// "dev" profile inherited from superclass
public class TransferServiceTest extends AbstractIntegrationTest {

@Autowired
private TransferService transferService;

@Test
public void testTransferService() {
// test the transferService

}

@ActiveProfiles also supports an inheritProfiles attribute that can be used to disable the
inheritance of active profiles.

43

package com.bank.service;

// "dev" profile overridden with "production”

@ActiveProfiles(profiles = "production”, inheritProfiles = false)

public class ProductionTransferServiceTest extends AbstractIntegrationTest {
// test body

¥

Furthermore, it is sometimes necessary to resolve active profiles for tests programmatically instead
of declaratively — for example, based on:

* the current operating system

* whether tests are being executed on a continuous integration build server

* the presence of certain environment variables

* the presence of custom class-level annotations

. etc.
To resolve active bean definition profiles programmatically, simply implement a custom
ActiveProfilesResolver and register it via the resolver attribute of @ActiveProfiles. The following
example demonstrates how to implement and register a custom

OperatingSystemActiveProfilesResolver. For further information, refer to the corresponding
javadocs.

package com.bank.service;

// "dev" profile overridden programmatically via a custom resolver

@ActiveProfiles(
resolver = OperatingSystemActiveProfilesResolver.class,
inheritProfiles = false)

public class TransferServiceTest extends AbstractIntegrationTest {
// test body

}

package com.bank.service.test;

public class OperatingSystemActiveProfilesResolver implements ActiveProfilesResolver {

@0verride
String[] resolve(Class<?> test(Class) {
String profile = ...;

// determine the value of profile based on the operating system
return new String[] {profile};

44

Context configuration with test property sources

Spring 3.1 introduced first-class support in the framework for the notion of an environment with a
hierarchy of property sources, and since Spring 4.1 integration tests can be configured with test-
specific property sources. In contrast to the @PropertySource annotation used on @Configuration
classes, the @TestPropertySource annotation can be declared on a test class to declare resource
locations for test properties files or inlined properties. These test property sources will be added to
the set of PropertySources in the Environment for the ApplicationContext loaded for the annotated
integration test.

@TestPropertySource may be wused with any implementation of the
SmartContextLoader SPI, but @TestPropertySource is not supported with
implementations of the older ContextLoader SPI.

i

Implementations of SmartContextLoader gain access to merged test property source
values via the getPropertySourcelocations() and getPropertySourceProperties()
methods in MergedContextConfiguration.

Declaring test property sources

Test properties files can be configured via the locations or value attribute of @TestPropertySource as
shown in the following example.

Both traditional and XML-based properties file formats are supported—for example,
"classpath:/com/example/test.properties" or "file:///path/to/file.xml".

Each path will be interpreted as a Spring Resource. A plain path—for example,
"test.properties" —will be treated as a classpath resource that is relative to the package in which
the test class is defined. A path starting with a slash will be treated as an absolute classpath
resource, for example: "/org/example/test.xml". A path which references a URL (e.g., a path
prefixed with classpath:, file:, http:, etc.) will be loaded using the specified resource protocol.
Resource location wildcards (e.g. */.properties) are not permitted: each location must evaluate to
exactly one .properties or .xml resource.

("/test.properties")
public class MyIntegrationTests {
// class body...
}

Inlined properties in the form of key-value pairs can be configured via the properties attribute of
@TestPropertySource as shown in the following example. All key-value pairs will be added to the
enclosing Environment as a single test PropertySource with the highest precedence.

The supported syntax for key-value pairs is the same as the syntax defined for entries in a Java
properties file:

« "key=value"

« "key:value"

45

o "key value"

(properties = {"timezone = GMT", "port: 4242"})
public class MyIntegrationTests {
// class body...

}

Default properties file detection

If @TestPropertySource is declared as an empty annotation (i.e., without explicit values for the
locations or properties attributes), an attempt will be made to detect a default properties file
relative to the class that declared the annotation. For example, if the annotated test class is
com.example.MyTest, the corresponding default properties file is
"classpath:com/example/MyTest.properties”. If the default cannot be detected, an
I1legalStateException will be thrown.

Precedence

Test property sources have higher precedence than those loaded from the operating system’s
environment or Java system properties as well as property sources added by the application
declaratively via @PropertySource or programmatically. Thus, test property sources can be used to
selectively override properties defined in system and application property sources. Furthermore,
inlined properties have higher precedence than properties loaded from resource locations.

In the following example, the timezone and port properties as well as any properties defined in
"/test.properties" will override any properties of the same name that are defined in system and
application property sources. Furthermore, if the "/test.properties” file defines entries for the
timezone and port properties those will be overridden by the inlined properties declared via the
properties attribute.

(
locations = "/test.properties"”,
properties = {"timezone = GMT", "port: 4242"}
)
public class MyIntegrationTests {

// class body...
}

Inheriting and overriding test property sources

@TestPropertySource supports boolean inheritlLocations and inheritProperties attributes that
denote whether resource locations for properties files and inlined properties declared by
superclasses should be inherited. The default value for both flags is true. This means that a test class
inherits the locations and inlined properties declared by any superclasses. Specifically, the locations
and inlined properties for a test class are appended to the locations and inlined properties declared
by superclasses. Thus, subclasses have the option of extending the locations and inlined properties.

46

Note that properties that appear later will shadow (i.e.., override) properties of the same name that
appear earlier. In addition, the aforementioned precedence rules apply for inherited test property
sources as well.

If the inheritlLocations or inheritProperties attribute in @TestPropertySource is set to false, the
locations or inlined properties, respectively, for the test class shadow and effectively replace the
configuration defined by superclasses.

In the following example, the ApplicationContext for BaseTest will be loaded using only the
"base.properties" file as a test property source. In contrast, the ApplicationContext for ExtendedTest
will be loaded using the "base.properties” and "extended.properties"” files as test property source
locations.

@TestPropertySource("base.properties")
@ContextConfiquration
public class BaseTest {
/] ...
}

@TestPropertySource("extended.properties")

@ContextConfiguration

public class ExtendedTest extends BaseTest {
/] ...

}

In the following example, the ApplicationContext for BaseTest will be loaded using only the inlined
key1 property. In contrast, the ApplicationContext for ExtendedTest will be loaded using the inlined
key1 and key2 properties.

@TestPropertySource(properties = "key1l = valuel")
@ContextConfiguration
public class BaseTest {
/] ...
¥
@TestPropertySource(properties = "key2 = value2")

@ContextConfiquration

public class ExtendedTest extends BaseTest {
/] ...

}

Loading a WebApplicationContext

Spring 3.2 introduced support for loading a WebApplicationContext in integration tests. To instruct
the TestContext framework to load a WebApplicationContext instead of a standard
ApplicationContext, simply annotate the respective test class with @WebAppConfiguration.

The presence of @WebAppConfiguration on your test class instructs the TestContext framework (TCF)

47

that a WebApplicationContext (WAC) should be loaded for your integration tests. In the background
the TCF makes sure that a MockServletContext is created and supplied to your test’s WAC. By default
the base resource path for your MockServletContext will be set to "sr¢/main/webapp”. This is
interpreted as a path relative to the root of your JVM (i.e., normally the path to your project). If
you’re familiar with the directory structure of a web application in a Maven project, you’ll know
that "sr¢/main/webapp” is the default location for the root of your WAR. If you need to override this
default, simply provide an alternate path to the @WebAppConfiguration annotation (e.g.,
@WebAppConfiguration("src/test/webapp")). If you wish to reference a base resource path from the
classpath instead of the file system, just use Spring’s classpath: prefix.

Please note that Spring’s testing support for WebApplicationContexts is on par with its support for
standard ApplicationContexts. When testing with a WebApplicationContext you are free to declare
XML configuration files, Groovy scripts, or @Configuration classes via @ContextConfiguration. You
are of course also free to use any other test annotations such as @ActiveProfiles,
@TestExecutionlListeners, @5ql, @Rollback, etc.

The following examples demonstrate some of the various configuration options for loading a
WebApplicationContext.

Conventions
@RunWith(SpringRunner.class)

// defaults to "file:src/main/webapp”
@WebAppConfiguration

// detects "WacTests-context.xml" in same package
// or static nested @Configuration class
@ContextConfiguration

public class WacTests {
/...
}

The above example demonstrates the TestContext framework’s support for convention over
configuration. If you annotate a test class with @WebAppConfiguration without specifying a resource
base path, the resource path will effectively default to "file:sr¢/main/webapp”. Similarly, if you
declare @ContextConfiguration without specifying resource locations, annotated classes, or context
initializers, Spring will attempt to detect the presence of your configuration using conventions
(i.e., "WacTests-context.xml” in the same package as the WacTests class or static nested

@Configuration classes).

48

Default resource semantics
@RunWith(SpringRunner.class)

// file system resource
@WebAppConfiguration("webapp")

// classpath resource
@ContextConfiguration("/spring/test-servlet-config.xml")

public class WacTests {
//...
}

This example demonstrates how to explicitly declare a resource base path with
@WebAppConfiguration and an XML resource location with @ContextConfiguration. The important
thing to note here is the different semantics for paths with these two annotations. By default,
@WebAppConfiguration resource paths are file system based; whereas, @ContextConfiguration
resource locations are classpath based.

Explicit resource semantics
@RunWith(SpringRunner.class)

// classpath resource
@WebAppConfiguration("classpath:test-web-resources")

// file system resource
@ContextConfiguration("file:src/main/webapp/WEB-INF/servlet-config.xml")

public class WacTests {
//...
}

In this third example, we see that we can override the default resource semantics for both
annotations by specifying a Spring resource prefix. Contrast the comments in this example with the
previous example.

Working with Web Mocks

To provide comprehensive web testing support, Spring 3.2 introduced a
ServletTestExecutionListener that is enabled by default. When testing against a
WebApplicationContext this TestExecutionListener sets up default thread-local state via Spring Web’s
RequestContextHolder before each test method and creates a MockHttpServletRequest,
MockHttpServletResponse, and ServletWebRequest based on the base resource path configured via
@WebAppConfiguration. ServletTestExecutionListener also ensures that the MockHttpServletResponse
and ServletWebRequest can be injected into the test instance, and once the test is complete it cleans
up thread-local state.

Once you have a WebApplicationContext loaded for your test you might find that you need to interact

49

with the web mocks —for example, to set up your test fixture or to perform assertions after
invoking your web component. The following example demonstrates which mocks can be
autowired into your test instance. Note that the WebApplicationContext and MockServletContext are
both cached across the test suite; whereas, the other mocks are managed per test method by the
ServletTestExecutionlListener.

Injecting mocks

public class WacTests {

WebApplicationContext wac; // cached

MockServletContext servletContext; // cached

MockHttpSession session;

MockHttpServletRequest request;

MockHttpServletResponse response;

ServletWebRequest webRequest;

/],

Context caching

Once the TestContext framework loads an ApplicationContext (or WebApplicationContext) for a test,
that context will be cached and reused for all subsequent tests that declare the same unique context
configuration within the same test suite. To understand how caching works, it is important to
understand what is meant by unique and test suite.

An ApplicationContext can be uniquely identified by the combination of configuration parameters
that is used to load it. Consequently, the unique combination of configuration parameters is used to
generate a key under which the context is cached. The TestContext framework uses the following
configuration parameters to build the context cache key:

* locations (from @ContextConfiguration)

classes (from @ContextConfiguration)
» contextInitializerClasses (from @ContextConfiguration)

» contextCustomizers (from ContextCustomizerFactory)

50

» contextlLoader (from @ContextConfiguration)

* parent (from @ContextHierarchy)

» activeProfiles (from @ActiveProfiles)

* propertySourcelocations (from @TestPropertySource)
» propertySourceProperties (from @TestPropertySource)
* resourceBasePath (from @WebAppConfiguration)

For example, if TestClassA specifies {"app-config.xml", "test-config.xml"} for the locations (or
value) attribute of @ContextConfiguration, the TestContext framework will load the corresponding
ApplicationContext and store it in a static context cache under a key that is based solely on those
locations. So if Test(ClassB also defines {"app-config.xml", "test-config.xml"} for its locations
(either explicitly or implicitly through inheritance) but does not define @WebAppConfiguration, a
different ContextlLoader, different active profiles, different context initializers, different test
property sources, or a different parent context, then the same ApplicationContext will be shared by
both test classes. This means that the setup cost for loading an application context is incurred only
once (per test suite), and subsequent test execution is much faster.

Test suites and forked processes

The Spring TestContext framework stores application contexts in a static cache.
This means that the context is literally stored in a static variable. In other words,
if tests execute in separate processes the static cache will be cleared between each
test execution, and this will effectively disable the caching mechanism.

To benefit from the caching mechanism, all tests must run within the same process

0 or test suite. This can be achieved by executing all tests as a group within an IDE.
Similarly, when executing tests with a build framework such as Ant, Maven, or
Gradle it is important to make sure that the build framework does not fork
between tests. For example, if the forkMode for the Maven Surefire plug-in is set to
always or pertest, the TestContext framework will not be able to cache application
contexts between test classes and the build process will run significantly slower as
a result.

Since Spring Framework 4.3, the size of the context cache is bounded with a default maximum size
of 32. Whenever the maximum size is reached, a least recently used (LRU) eviction policy is used to
evict and close stale contexts. The maximum size can be configured from the command line or a
build script by setting a JVM system property named spring.test.context.cache.maxSize. As an
alternative, the same property can be set programmatically via the SpringProperties APL

Since having a large number of application contexts loaded within a given test suite can cause the
suite to take an unnecessarily long time to execute, it is often beneficial to know exactly how many
contexts have been loaded and cached. To view the statistics for the underlying context cache,
simply set the log level for the org.springframework.test.context.cache logging category to DEBUG.

In the unlikely case that a test corrupts the application context and requires reloading — for
example, by modifying a bean definition or the state of an application object—you can annotate
your test class or test method with @DirtiesContext (see the discussion of @DirtiesContext in Spring

51

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html#forkMode

Testing Annotations). This instructs Spring to remove the context from the cache and rebuild the
application context before executing the next test. Note that support for the @DirtiesContext
annotation is provided by the DirtiesContextBeforeModesTestExecutionListener and the
DirtiesContextTestExecutionListener which are enabled by default.

Context hierarchies

When writing integration tests that rely on a loaded Spring ApplicationContext, it is often sufficient
to test against a single context; however, there are times when it is beneficial or even necessary to
test against a hierarchy of ApplicationContexts. For example, if you are developing a Spring MVC
web application you will typically have a root WebApplicationContext loaded via Spring’s
ContextLoaderListener and a child WebApplicationContext loaded via Spring’s DispatcherServlet. This
results in a parent-child context hierarchy where shared components and infrastructure
configuration are declared in the root context and consumed in the child context by web-specific
components. Another use case can be found in Spring Batch applications where you often have a
parent context that provides configuration for shared batch infrastructure and a child context for
the configuration of a specific batch job.

Since Spring Framework 3.2.2, it is possible to write integration tests that use context hierarchies by
declaring context configuration via the @ContextHierarchy annotation, either on an individual test
class or within a test class hierarchy. If a context hierarchy is declared on multiple classes within a
test class hierarchy it is also possible to merge or override the context configuration for a specific,
named level in the context hierarchy. When merging configuration for a given level in the
hierarchy the configuration resource type (i.e., XML configuration files or annotated classes) must
be consistent; otherwise, it is perfectly acceptable to have different levels in a context hierarchy
configured using different resource types.

The following JUnit 4 based examples demonstrate common configuration scenarios for integration
tests that require the use of context hierarchies.

Single test class with context hierarchy

ControllerIntegrationTests represents a typical integration testing scenario for a Spring MVC web
application by declaring a context hierarchy consisting of two levels, one for the root
WebApplicationContext (loaded using the TestAppConfig @Configuration class) and one for the
dispatcher servlet WebApplicationContext (loaded using the WebConfig @Configuration class). The
WebApplicationContext that is autowired into the test instance is the one for the child context (i.e.,
the lowest context in the hierarchy).

52

@RunWith(SpringRunner.class)

@WebAppConfiguration

@ContextHierarchy({
@ContextConfiguration(classes = TestAppConfig.class),
@ContextConfiguration(classes = WebConfig.class)

1))

public class ControllerIntegrationTests {

@Autowired
private WebApplicationContext wac;

/] ...

Class hierarchy with implicit parent context

The following test classes define a context hierarchy within a test class hierarchy. AbstractWebTests
declares the configuration for a root WebApplicationContext in a Spring-powered web application.
Note, however, that AbstractWebTests does not declare @ContextHierarchy; consequently, subclasses
of AbstractWebTests can optionally participate in a context hierarchy or simply follow the standard
semantics for @ContextConfiguration. SoapWebServiceTests and RestWebServiceTests both extend
AbstractWebTests and define a context hierarchy via @ContextHierarchy. The result is that three
application contexts will be loaded (one for each declaration of @ContextConfiguration), and the
application context loaded based on the configuration in AbstractWebTests will be set as the parent
context for each of the contexts loaded for the concrete subclasses.

@RunWith(SpringRunner.class)

@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/applicationContext.xml")
public abstract class AbstractWebTests {}

@ContextHierarchy(@ContextConfiguration("/spring/soap-ws-config.xml")
public class SoapWebServiceTests extends AbstractWebTests {}

@ContextHierarchy(@ContextConfiguration("/spring/rest-ws-config.xml")
public class RestWebServiceTests extends AbstractWebTests {}

Class hierarchy with merged context hierarchy configuration

The following classes demonstrate the use of named hierarchy levels in order to merge the
configuration for specific levels in a context hierarchy. BaseTests defines two levels in the hierarchy,
parent and child. ExtendedTests extends BaseTests and instructs the Spring TestContext Framework
to merge the context configuration for the child hierarchy level, simply by ensuring that the names
declared via the name attribute in @ContextConfiguration are both "child". The result is that three
application contexts will be loaded: one for "/app-config.xml", one for "/user-config.xml", and one
for {"/user-config.xml", "/order-config.xml"}. As with the previous example, the application
context loaded from "/app-config.xml" will be set as the parent context for the contexts loaded
from "/user-config.xml" and {"/user-config.xml", "/order-config.xml"}.

53

@RunWith(SpringRunner.class)

@ContextHierarchy({
@ContextConfiguration(name = "parent", locations = "/app-config.xml"),
@ContextConfiguration(name = "child", locations = "/user-config.xml")

3]
public class BaseTests {}

@ContextHierarchy(
@ContextConfiguration(name

"child", locations = "/order-config.xml")

)

public class ExtendedTests extends BaseTests {}

Class hierarchy with overridden context hierarchy configuration

In contrast to the previous example, this example demonstrates how to override the configuration
for a given named level in a context hierarchy by setting the inheritLocations flag in
@ContextConfiguration to false. Consequently, the application context for ExtendedTests will be
loaded only from "/test-user-config.xml" and will have its parent set to the context loaded from
"/app-config.xml".

@RunWith(SpringRunner.class)

@ContextHierarchy({
@ContextConfiguration(name
@ContextConfiguration(name

“parent", locations = "/app-config.xml"),
"child", locations = "/user-config.xml")

1)
public class BaseTests {}

@ContextHierarchy(
@ContextConfiguration(
name = "child",
locations = "/test-user-config.xml",
inheritlLocations = false

))

public class ExtendedTests extends BaseTests {}

Dirtying a context within a context hierarchy

If aDirtiesContext is used in a test whose context is configured as part of a context

0 hierarchy, the hierarchyMode flag can be used to control how the context cache is
cleared. For further details consult the discussion of @DirtiesContext in Spring
Testing Annotations and the @DirtiesContext javadocs.

3.5.5. Dependency injection of test fixtures

When vyou wuse the DependencyInjectionTestExecutionListener —which is configured by
default — the dependencies of your test instances are injected from beans in the application context
that you configured with @ContextConfiguration. You may use setter injection, field injection, or
both, depending on which annotations you choose and whether you place them on setter methods

54

or fields. For consistency with the annotation support introduced in Spring 2.5 and 3.0, you can use
Spring’s @Autowired annotation or the @Inject annotation from JSR 330.

The TestContext framework does not instrument the manner in which a test
instance is instantiated. Thus the use of @Autowired or @Inject for constructors has
no effect for test classes.

Because @Autowired is used to perform autowiring by type , if you have multiple bean definitions of
the same type, you cannot rely on this approach for those particular beans. In that case, you can
use @Autowired in conjunction with @Qualifier. As of Spring 3.0 you may also choose to use @Inject
in conjunction with @Named. Alternatively, if your test class has access to its ApplicationContext, you
can perform an explicit lookup by using (for example) a cal to
applicationContext.getBean("titleRepository").

If you do not want dependency injection applied to your test instances, simply do not annotate
fields or setter methods with @Autowired or @Inject. Alternatively, you can disable dependency
injection altogether by explicitly configuring your class with @TestExecutionListeners and omitting
DependencyInjectionTestExecutionListener.class from the list of listeners.

Consider the scenario of testing a HibernateTitleRepository class, as outlined in the Goals section.
The next two code listings demonstrate the use of @Autowired on fields and setter methods. The
application context configuration is presented after all sample code listings.

The dependency injection behavior in the following code listings is not specific to
JUnit 4. The same DI techniques can be used in conjunction with any testing
framework.

ﬂ The following examples make calls to static assertion methods such as
assertNotNull() but without prepending the call with Assert. In such cases, assume
that the method was properly imported through an import static declaration that
is not shown in the example.

The first code listing shows a JUnit 4 based implementation of the test class that uses @Autowired for
field injection.

55

core.pdf#beans-factory-autowire
core.pdf#beans-factory-autowire

@RunWith(SpringRunner.class)

// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
public class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
@Autowired
private HibernateTitleRepository titleRepository;

@Test

public void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);

Alternatively, you can configure the class to use @Autowired for setter injection as seen below.

@RunWith(SpringRunner.class)

// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
public class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
private HibernateTitleRepository titleRepository;

@Autowired

public void setTitleRepository(HibernateTitleRepository titleRepository) {
this.titleRepository = titleRepository;

}

@Test

public void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);

The preceding code listings use the same XML context file referenced by the @ContextConfiguration
annotation (that is, repository-config.xml), which looks like this:

56

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- this bean will be injected into the HibernateTitleRepositoryTests class -->
<bean id="titleRepository" class="
com.foo.repository.hibernate.HibernateTitleRepository">
<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<bean id="sessionFactory" class=
"org.springframework.orm.hibernate5.LocalSessionFactoryBean">
<!-- confiquration elided for brevity -->
</bean>

</beans>

If you are extending from a Spring-provided test base class that happens to use
@Autowired on one of its setter methods, you might have multiple beans of the
affected type defined in your application context: for example, multiple DataSource
beans. In such a case, you can override the setter method and use the @Qualifier
annotation to indicate a specific target bean as follows, but make sure to delegate
to the overridden method in the superclass as well.

/] ...
@Autowired
@0verride
0 public void setDataSource(@Qualifier("myDataSource")<
/strong> DataSource dataSource) {

super.setDataSource(dataSource);

}
/] ...
The specified qualifier value indicates the specific DataSource bean to inject,
narrowing the set of type matches to a specific bean. Its value is matched against
<qualifier> declarations within the corresponding <bean> definitions. The bean
name is used as a fallback qualifier value, so you may effectively also point to a
specific bean by name there (as shown above, assuming that "myDataSource" is
the bean id).

3.5.6. Testing request and session scoped beans

Request and session scoped beans have been supported by Spring since the early years, and since

57

core.pdf#beans-factory-scopes-other

Spring 3.2 it’s a breeze to test your request-scoped and session-scoped beans by following these
steps.

* Ensure that a WebApplicationContext is loaded for your test by annotating your test class with
@WebAppConfiguration.

* Inject the mock request or session into your test instance and prepare your test fixture as
appropriate.

* Invoke your web component that you retrieved from the configured WebApplicationContext (i.e.,
via dependency injection).

» Perform assertions against the mocks.

The following code snippet displays the XML configuration for a login use case. Note that the
userService bean has a dependency on a request-scoped loginAction bean. Also, the LoginAction is
instantiated using SpEL expressions that retrieve the username and password from the current
HTTP request. In our test, we will want to configure these request parameters via the mock
managed by the TestContext framework.

Request-scoped bean configuration
<beans>

<bean id="userService" class="com.example.SimpleUserService"
c:loginAction-ref="1loginAction"/>

<bean id="loginAction" class="com.example.LoginAction"
c:username="#{request.getParameter('user')}"
c:password="#{request.getParameter('pswd")}"
scope="request">
<aop:scoped-proxy/>
</bean>

</beans>

In RequestScopedBeanTests we inject both the UserService (i.e., the subject under test) and the
MockHttpServletRequest into our test instance. Within our requestScope() test method we set up our
test fixture by setting request parameters in the provided MockHttpServletRequest. When the
loginUser () method is invoked on our userService we are assured that the user service has access to
the request-scoped loginAction for the current MockHttpServletRequest (i.e., the one we just set
parameters in). We can then perform assertions against the results based on the known inputs for
the username and password.

58

core.pdf#expressions

Request-scoped bean test

@RunWith(SpringRunner.class)
@ContextConfiguration
@WebAppConfiguration

public class RequestScopedBeanTests {

@Autowired UserService userService;
@Autowired MockHttpServletRequest request;

@Test

public void requestScope() {
request.setParameter("user", "enigma");
request.setParameter("pswd", "$pring");

LoginResults results = userService.loginUser();
// assert results

The following code snippet is similar to the one we saw above for a request-scoped bean; however,
this time the userService bean has a dependency on a session-scoped userPreferences bean. Note
that the UserPreferences bean is instantiated using a SpEL expression that retrieves the theme from
the current HTTP session. In our test, we will need to configure a theme in the mock session
managed by the TestContext framework.

Session-scoped bean configuration
<beans>

<bean id="userService" class="com.example.SimpleUserService"
c:userPreferences-ref="userPreferences" />

<bean id="userPreferences" class="com.example.UserPreferences"
c:theme="#{session.getAttribute('theme")}"
scope="session">
<aop:scoped-proxy/>
</bean>

</beans>

In SessionScopedBeanTests we inject the UserService and the MockHttpSession into our test instance.
Within our sessionScope() test method we set up our test fixture by setting the expected "theme"
attribute in the provided MockHttpSession. When the processUserPreferences() method is invoked on
our userService we are assured that the user service has access to the session-scoped
userPreferences for the current MockHttpSession, and we can perform assertions against the results
based on the configured theme.

59

Session-scoped bean test

(SpringRunner.class)

public class SessionScopedBeanTests {

UserService userService;
MockHttpSession session;

public void sessionScope() throws Exception {
session.setAttribute("theme", "blue");

Results results = userService.processUserPreferences();
// assert results

3.5.7. Transaction management

In the TestContext framework, transactions are managed by the
TransactionalTestExecutionListener which is configured by default, even if you do not explicitly
declare @TestExecutionListeners on your test class. To enable support for transactions, however,
you must configure a PlatformTransactionManager bean in the ApplicationContext that is loaded via
@ContextConfiguration semantics (further details are provided below). In addition, you must declare
Spring’s @Transactional annotation either at the class or method level for your tests.

Test-managed transactions

Test-managed transactions are transactions that are managed declaratively via the
TransactionalTestExecutionListener or programmatically via TestTransaction (see below). Such
transactions should not be confused with Spring-managed transactions (i.e., those managed directly
by Spring within the ApplicationContext loaded for tests) or application-managed transactions (i.e.,
those managed programmatically within application code that is invoked via tests). Spring-
managed and application-managed transactions will typically participate in test-managed
transactions; however, caution should be taken if Spring-managed or application-managed
transactions are configured with any propagation type other than REQUIRED or SUPPORTS (see the
discussion on transaction propagation for details).

Enabling and disabling transactions

Annotating a test method with @Transactional causes the test to be run within a transaction that
will, by default, be automatically rolled back after completion of the test. If a test class is annotated
with @Transactional, each test method within that class hierarchy will be run within a transaction.
Test methods that are not annotated with @Transactional (at the class or method level) will not be
run within a transaction. Furthermore, tests that are annotated with @Transactional but have the
propagation type set to NOT_SUPPORTED will not be run within a transaction.

60

data-access.pdf#tx-propagation

Note that AbstractTransactionallUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests are preconfigured for transactional support at the
class level.

The following example demonstrates a common scenario for writing an integration test for a
Hibernate-based UserRepository. As explained in Transaction rollback and commit behavior, there
is no need to clean up the database after the createlUser() method is executed since any changes
made to the database will be automatically rolled back by the TransactionalTestExecutionlListener.
See PetClinic Example for an additional example.

61

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = TestConfig.class)
@Transactional

public class HibernateUserRepositoryTests {

@Autowired
HibernateUserRepository repository;

@Autowired
SessionFactory sessionFactory;

JdbcTemplate jdbcTemplate;

@Autowired

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

@Test

public void createlser() {
// track initial state in test database:
final int count = countRowsInTable("user");

User user = new User(...);
repository.save(user);

// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();
assertNumUsers(count + 1);

}

protected int countRowsInTable(String tableName) {
return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);
}

protected void assertNumUsers(int expected) {
assertEquals("Number of rows in the [user] table.", expected,
countRowsInTable("user"));

}
}

Transaction rollback and commit behavior

By default, test transactions will be automatically rolled back after completion of the test; however,
transactional commit and rollback behavior can be configured declaratively via the @Commit and
@Rollback annotations. See the corresponding entries in the annotation support section for further
details.

62

Programmatic transaction management

Since Spring Framework 4.1, it is possible to interact with test-managed transactions
programmatically via the static methods in TestTransaction. For example, TestTransaction may be
used within test methods, before methods, and after methods to start or end the current test-
managed transaction or to configure the current test-managed transaction for rollback or commit.
Support for TestTransaction is automatically available whenever the
TransactionalTestExecutionlListener is enabled.

The following example demonstrates some of the features of TestTransaction. Consult the javadocs
for TestTransaction for further details.

@ContextConfiguration(classes = TestConfig.class)
public class ProgrammaticTransactionManagementTests extends
AbstractTransactionallUnit4SpringContextTests {

@Test

public void transactionalTest() {
// assert initial state in test database:
assertNumUsers(2);

deleteFromTables("user");

// changes to the database will be committed!
TestTransaction.flagForCommit();
TestTransaction.end();
assertFalse(TestTransaction.isActive());
assertNumUsers(0);

TestTransaction.start();
// perform other actions against the database that will
// be automatically rolled back after the test completes...

protected void assertNumUsers(int expected) {
assertEquals("Number of rows in the [user] table.", expected,
countRowsInTable("user"));

}

Executing code outside of a transaction

Occasionally you need to execute certain code before or after a transactional test method but
outside the transactional context—for example, to verify the initial database state prior to
execution of your test or to verify expected transactional commit behavior after test execution (if
the test was configured to commit the transaction). TransactionalTestExecutionListener supports
the @BeforeTransaction and @AfterTransaction annotations exactly for such scenarios. Simply
annotate any void method in a test class or any void default method in a test interface with one of
these annotations, and the TransactionalTestExecutionListener ensures that your before transaction

63

method or after transaction method is executed at the appropriate time.

Any before methods (such as methods annotated with JUnit Jupiter’s @BeforeEach)
and any after methods (such as methods annotated with JUnit Jupiter’s @AfterEach)

Q are executed within a transaction. In addition, methods annotated with
@BeforeTransaction or @AfterTransaction are naturally not executed for test
methods that are not configured to run within a transaction.

Configuring a transaction manager

TransactionalTestExecutionListener expects a PlatformTransactionManager bean to be defined in the
Spring ApplicationContext for the test. In case there are multiple instances of
PlatformTransactionManager within the test’s ApplicationContext, a qualifier may be declared via
@Transactional("myTxMgr") or @Transactional(transactionManager = "myTxMgr"), or
TransactionManagementConfigurer can be implemented by an @Configuration class. Consult the
javadocs for TestContextTransactionUtils.retrieveTransactionManager() for details on the algorithm
used to look up a transaction manager in the test’s ApplicationContext.

Demonstration of all transaction-related annotations

The following JUnit 4 based example displays a fictitious integration testing scenario highlighting all
transaction-related annotations. The example is not intended to demonstrate best practices but
rather to demonstrate how these annotations can be used. Consult the annotation support section
for further information and configuration examples. Transaction management for @Sql contains an
additional example using @Sql for declarative SQL script execution with default transaction
rollback semantics.

64

@RunWith(SpringRunner.class)

@ContextConfiguration
@Transactional(transactionManager = "txMgr")
@Commit

public class FictitiousTransactionalTest {

@BeforeTransaction
void verifyInitialDatabaseState() {

}

// logic to verify the initial state before a transaction is started

@Before
public void setUpTestDataWithinTransaction() {

}

// set up test data within the transaction

@Test

// overrides the class-level @Commit setting
@Rollback

public void modifyDatabaseWithinTransaction() {

}

// 1logic which uses the test data and modifies database state

EAfter
public void tearDownWithinTransaction() {

}

// execute "tear down" logic within the transaction

@AfterTransaction
void verifyFinalDatabaseState() {

}

// logic to verify the final state after transaction has rolled back

Avoid false positives when testing ORM code

When you test application code that manipulates the state of a Hibernate session
or JPA persistence context, make sure to flush the underlying unit of work within
test methods that execute that code. Failing to flush the underlying unit of work
can produce false positives: your test may pass, but the same code throws an
exception in a live, production environment. In the following Hibernate-based
example test case, one method demonstrates a false positive, and the other method
correctly exposes the results of flushing the session. Note that this applies to any
ORM frameworks that maintain an in-memory unit of work.

65

66

/] ...

@Autowired
SessionFactory sessionFactory;

@Transactional

@Test // no expected exception!

public void falsePositive() {
updateEntityInHibernateSession();
// False positive: an exception will be thrown once the Hibernate
// Session is finally flushed (i.e., in production code)

}

@Transactional

@Test(expected = ...)

public void updateWithSessionFlush() {
updateEntityInHibernateSession();
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();

}

/] ...

Or for JPA:

/] ...

@PersistenceContext
EntityManager entityManager;

@Transactional

@Test // no expected exception!

public void falsePositive() {
updateEntityInJpaPersistenceContext();
// False positive: an exception will be thrown once the JPA
// EntityManager is finally flushed (i.e., in production code)

}

@Transactional

@Test(expected = ...)

public void updateWithEntityManagerFlush() {
updateEntityIn]paPersistenceContext();
// Manual flush is required to avoid false positive in test
entityManager.flush();

/] ...

3.5.8. Executing SQL scripts

When writing integration tests against a relational database, it is often beneficial to execute SQL
scripts to modify the database schema or insert test data into tables. The spring-jdbc module
provides support for initializing an embedded or existing database by executing SQL scripts when
the Spring ApplicationContext is loaded. See Embedded database support and Testing data access
logic with an embedded database for details.

Although it is very useful to initialize a database for testing once when the ApplicationContext is
loaded, sometimes it is essential to be able to modify the database during integration tests. The
following sections explain how to execute SQL scripts programmatically and declaratively during
integration tests.

Executing SQL scripts programmatically

Spring provides the following options for executing SQL scripts programmatically within
integration test methods.

« org.springframework.jdbc.datasource.init.ScriptUtils
« org.springframework.jdbc.datasource.init.ResourceDatabasePopulator
« org.springframework.test.context.junit4.AbstractTransactionallUnit4SpringContextTests

« org.springframework.test.context.testng.AbstractTransactionalTestNGSpringContextTests

ScriptUtils provides a collection of static utility methods for working with SQL scripts and is
mainly intended for internal use within the framework. However, if you require full control over
how SQL scripts are parsed and executed, ScriptUtils may suit your needs better than some of the
other alternatives described below. Consult the javadocs for individual methods in ScriptUtils for
further details.

ResourceDatabasePopulator provides a simple object-based API for programmatically populating,
initializing, or cleaning up a database using SQL scripts defined in external resources.
ResourceDatabasePopulator provides options for configuring the character encoding, statement
separator, comment delimiters, and error handling flags used when parsing and executing the
scripts, and each of the configuration options has a reasonable default value. Consult the javadocs
for details on default values. To execute the scripts configured in a ResourceDatabasePopulator, you
can invoke either the populate(Connection) method to execute the populator against a
java.sql.Connection or the execute(DataSource) method to execute the populator against a
javax.sql.DataSource. The following example specifies SQL scripts for a test schema and test data,
sets the statement separator to "@@", and then executes the scripts against a DataSource.

67

data-access.pdf#jdbc-embedded-database-support
data-access.pdf#jdbc-embedded-database-dao-testing
data-access.pdf#jdbc-embedded-database-dao-testing

public void databaseTest {
ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
populator.addScripts(
new ClassPathResource("test-schema.sql"),
new ClassPathResource("test-data.sql"));
populator.setSeparator("@@");
populator.execute(this.dataSource);
// execute code that uses the test schema and data

Note that ResourceDatabasePopulator internally delegates to ScriptUtils for parsing and executing
SQL scripts. Similarly, the executeSqlScript(..) methods in
AbstractTransactionalJUnit4SpringContextTests and AbstractTransactionalTestNGSpringContextTests
internally use a ResourceDatabasePopulator for executing SQL scripts. Consult the javadocs for the
various executeSqlScript(..) methods for further details.

Executing SQL scripts declaratively with @Sql

In addition to the aforementioned mechanisms for executing SQL scripts programmatically, SQL
scripts can also be configured declaratively in the Spring TestContext Framework. Specifically, the
@Sql annotation can be declared on a test class or test method to configure the resource paths to
SQL scripts that should be executed against a given database either before or after an integration
test method. Note that method-level declarations override class-level declarations and that support
for @Sql is provided by the SqlScriptsTestExecutionListener which is enabled by default.

Path resource semantics

Each path will be interpreted as a Spring Resource. A plain path — for example, "schema.sql" — will
be treated as a classpath resource that is relative to the package in which the test class is defined. A
path starting with a slash will be treated as an absolute classpath resource, for example:
"/org/example/schema.sql". A path which references a URL (e.g., a path prefixed with classpath:,
file:, http:, etc.) will be loaded using the specified resource protocol.

The following example demonstrates how to use @5ql at the class level and at the method level
within a JUnit Jupiter based integration test class.

68

@SpringJUnitConfig
@5Sql("/test-schema.sql")
class DatabaseTests {

@Test
void emptySchemaTest {
// execute code that uses the test schema without any test data

}

@Test
@5qLl({"/test-schema.sql", "/test-user-data.sql"})
void userTest {
// execute code that uses the test schema and test data

}

Default script detection

If no SQL scripts are specified, an attempt will be made to detect a default script depending on
where @5ql is declared. If a default cannot be detected, an I1legalStateException will be thrown.

* class-level declaration: if the annotated test class is com.example.MyTest, the corresponding
default script is "classpath:com/example/MyTest.sql".

* method-level declaration: if the annotated test method is named testMethod() and is defined in
the class com.example.MyTest, the corresponding default script is
"classpath:com/example/MyTest.testMethod.sql".

Declaring multiple @Sql sets

If multiple sets of SQL scripts need to be configured for a given test class or test method but with
different syntax configuration, different error handling rules, or different execution phases per set,
it is possible to declare multiple instances of @5ql. With Java 8, @5ql can be used as a repeatable
annotation. Otherwise, the @SqlGroup annotation can be used as an explicit container for declaring
multiple instances of @5ql.

The following example demonstrates the use of @5ql as a repeatable annotation using Java 8. In this
scenario the test-schema.sql script uses a different syntax for single-line comments.

@Test
@Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "*"))
@5qL("/test-user-data.sql")
public void userTest {
// execute code that uses the test schema and test data

}

The following example is identical to the above except that the @Sql declarations are grouped
together within @5qlGroup for compatibility with Java 6 and Java 7.

69

({

(scripts = "/test-schema.sql", config = (commentPrefix = "'")),
("/test-user-data.sql")
)}

public void userTest {
// execute code that uses the test schema and test data

}

Script execution phases

By default, SQL scripts will be executed before the corresponding test method. However, if a
particular set of scripts needs to be executed after the test method —for example, to clean up
database state —the executionPhase attribute in @5ql can be used as seen in the following example.
Note that ISOLATED and AFTER_TEST_METHOD are statically imported from Sql.TransactionMode and
Sql.ExecutionPhase respectively.

(

scripts = "create-test-data.sql",

config = (transactionMode = ISOLATED)
)

(

scripts = "delete-test-data.sql",

config = (transactionMode = ISOLATED),

executionPhase = AFTER _TEST_METHOD
)

public void userTest {
// execute code that needs the test data to be committed
// to the database outside of the test's transaction

Script configuration with @SqlConfig

Configuration for script parsing and error handling can be configured via the @SqlConfig
annotation. When declared as a class-level annotation on an integration test class, @5qlConfig serves
as global configuration for all SQL scripts within the test class hierarchy. When declared directly via
the config attribute of the @Sql annotation, @5qlConfig serves as local configuration for the SQL
scripts declared within the enclosing @5ql annotation. Every attribute in @SqlConfig has an implicit
default value which is documented in the javadocs of the corresponding attribute. Due to the rules
defined for annotation attributes in the Java Language Specification, it is unfortunately not possible
to assign a value of null to an annotation attribute. Thus, in order to support overrides of inherited
global configuration, @5qlConfig attributes have an explicit default value of either "" for Strings or
DEFAULT for Enums. This approach allows local declarations of @SqlConfig to selectively override
individual attributes from global declarations of @SqlConfig by providing a value other than "" or
DEFAULT. Global @SqlConfig attributes are inherited whenever local @SqlConfig attributes do not
supply an explicit value other than "" or DEFAULT. Explicit local configuration therefore overrides

70

global configuration.

The configuration options provided by @Sql and @SqlConfig are equivalent to those supported by
ScriptUtils and ResourceDatabasePopulator but are a superset of those provided by the
<jdbc:initialize-database/> XML namespace element. Consult the javadocs of individual attributes
in @5ql and @5qlConfig for details.

Transaction management for @5ql

By default, the SqlScriptsTestExecutionListener will infer the desired transaction semantics for
scripts configured via @5ql. Specifically, SQL scripts will be executed without a transaction, within
an existing Spring-managed transaction—for example, a transaction managed by the
TransactionalTestExecutionListener for a test annotated with @Transactional —or within an
isolated transaction, depending on the configured value of the transactionMode attribute in
@SqlConfig and the presence of a PlatformTransactionManager in the test’s ApplicationContext. As a
bare minimum however, a javax.sql.DataSource must be present in the test’s ApplicationContext.

If the algorithms wused by SqlScriptsTestExecutionlListener to detect a DataSource and
PlatformTransactionManager and infer the transaction semantics do not suit your needs, you may
specify explicit names via the dataSource and transactionManager attributes of @SqlConfig.
Furthermore, the transaction propagation behavior can be controlled via the transactionMode
attribute of @SqlConfig—for example, if scripts should be executed in an isolated transaction.
Although a thorough discussion of all supported options for transaction management with @Sql is
beyond the scope of this reference manual, the javadocs for @SqlConfig and
SqlScriptsTestExecutionListener provide detailed information, and the following example
demonstrates a typical testing scenario using JUnit Jupiter and transactional tests with @5ql. Note
that there is no need to clean up the database after the usersTest() method is executed since any
changes made to the database (either within the test method or within the /test-data.sql script)
will be automatically rolled back by the TransactionalTestExecutionListener (see transaction
management for details).

71

(TestDatabaseConfig.class)
class TransactionalSqlScriptsTests {

final JdbcTemplate jdbcTemplate;

TransactionalSqlScriptsTests(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

("/test-data.sql")
void usersTest() {
// verify state in test database:
assertNumUsers(2);
// execute code that uses the test data...

}

int countRowsInTable(String tableName) {
return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);

}

void assertNumUsers(int expected) {
assertEquals(expected, countRowsInTable("user"),
"Number of rows in the [user] table.");

3.5.9. Parallel test execution

Spring Framework 5.0 introduces basic support for executing tests in parallel within a single JVM
when using the Spring TestContext Framework. In general this means that most test classes or test
methods can be executed in parallel without any changes to test code or configuration.

Q For details on how to set up parallel test execution, consult the documentation for
your testing framework, build tool, or IDE.

Keep in mind that the introduction of concurrency into your test suite can result in unexpected side
effects, strange runtime behavior, and tests that only fail intermittently or seemingly randomly. The
Spring Team therefore provides the following general guidelines for when not to execute tests in
parallel.

Do not execute tests in parallel if:

» Tests make use of Spring’s @DirtiesContext support.

» Tests make use of JUnit 4’s @FixMethodOrder support or any testing framework feature that is
designed to ensure that test methods execute in a particular order. Note, however, that this does

72

not apply if entire test classes are executed in parallel.

» Tests change the state of shared services or systems such as a database, message broker,
filesystem, etc. This applies to both in-memory and external systems.

If parallel test execution fails with an exception stating that the ApplicationContext
for the current test is no longer active, this typically means that the
ApplicationContext was removed from the ContextCache in a different thread.

Q This may be due to the use of @DirtiesContext or due to automatic eviction from
the ContextCache. If @DirtiesContext is the culprit, you will either need to find a
way to avoid using @DirtiesContext or exclude such tests from parallel execution.
If the maximum size of the ContextCache has been exceeded, you can increase the
maximum size of the cache. See the discussion on context caching for details.

Parallel test execution in the Spring TestContext Framework is only possible if the
underlying TestContext implementation provides a copy constructor as explained

A in the javadocs for TestContext. The DefaultTestContext used in Spring provides
such a constructor; however, if you use a third-party library that provides a
custom TestContext implementation, you will need to verify if it is suitable for
parallel test execution.

3.5.10. TestContext Framework support classes

Spring JUnit 4 Runner

The Spring TestContext Framework offers full integration with JUnit 4 through a custom runner
(supported on JUnit 4.12 or higher). By annotating test classes with
@RunWith(SpringJUnit4ClassRunner.class) or the shorter @RunWith(SpringRunner.class) variant,
developers can implement standard JUnit 4 based unit and integration tests and simultaneously
reap the benefits of the TestContext framework such as support for loading application contexts,
dependency injection of test instances, transactional test method execution, and so on. If you would
like to use the Spring TestContext Framework with an alternative runner such as JUnit 4’s
Parameterized or third-party runners such as the MockitoJUnitRunner, you may optionally use
Spring’s support for JUnit rules instead.

The following code listing displays the minimal requirements for configuring a test class to run
with the custom Spring Runner. @TestExecutionListeners is configured with an empty list in order to
disable the default listeners, which otherwise would require an ApplicationContext to be configured
through @ContextConfiguration.

73

@RunWith(SpringRunner.class)
@TestExecutionListeners({})
public class SimpleTest {

@Test
public void testMethod() {
// execute test logic...

}

Spring JUnit 4 Rules

The org.springframework.test.context.junit4.rules package provides the following JUnit 4 rules
(supported on JUnit 4.12 or higher).

« SpringClassRule
« SpringMethodRule

Spring(ClassRule is a JUnit TestRule that supports class-level features of the Spring TestContext
Framework; whereas, SpringMethodRule is a JUnit MethodRule that supports instance-level and
method-level features of the Spring TestContext Framework.

In contrast to the SpringRunner, Spring’s rule-based JUnit support has the advantage that it is
independent of any org.junit.runner.Runner implementation and can therefore be combined with
existing alternative runners like JUnit 4’s Parameterized or third-party runners such as the
MockitoJUnitRunner.

In order to support the full functionality of the TestContext framework, a SpringClassRule must be
combined with a SpringMethodRule. The following example demonstrates the proper way to declare
these rules in an integration test.

// Optionally specify a non-Spring Runner via @RunWith(...)
@ContextConfiguration
public class IntegrationTest {

@ClassRule
public static final SpringClassRule springClassRule = new SpringClassRule();

@Rule
public final SpringMethodRule springMethodRule = new SpringMethodRule();

@Test
public void testMethod() {
// execute test logic...

}

74

JUnit 4 support classes

The org.springframework.test.context.junit4 package provides the following support classes for
JUnit 4 based test cases (supported on JUnit 4.12 or higher).

o AbstractJUnit4SpringContextTests
o AbstractTransactionalJUnit4SpringContextTests

AbstractJUnit4SpringContextTests is an abstract base test class that integrates the Spring TestContext
Framework with explicit ApplicationContext testing support in a JUnit 4 environment. When you
extend AbstractJUnit4SpringContextTests, you can access a protected applicationContext instance
variable that can be used to perform explicit bean lookups or to test the state of the context as a
whole.

AbstractTransactionallUnit4SpringContextTests 1is an abstract transactional extension of
AbstractJUnit4SpringContextTests that adds some convenience functionality for JDBC access. This
class expects a javax.sql.DataSource bean and a PlatformTransactionManager bean to be defined in
the ApplicationContext. When you extend AbstractTransactionalJUnit4SpringContextTests you can
access a protected jdbcTemplate instance variable that can be used to execute SQL statements to
query the database. Such queries can be used to confirm database state both prior to and after
execution of database-related application code, and Spring ensures that such queries run in the
scope of the same transaction as the application code. When used in conjunction with an ORM tool,
be sure to avoid false ©positives. As mentioned in JDBC Testing Support,
AbstractTransactionallUnit4SpringContextTests also provides convenience methods which delegate
to methods in JdbcTestUtils wusing the aforementioned jdbcTemplate. Furthermore,
AbstractTransactionallUnit4SpringContextTests provides an executeSqlScript(..) method for
executing SQL scripts against the configured DataSource.

These classes are a convenience for extension. If you do not want your test classes
to be tied to a Spring-specific class hierarchy, you can configure your own custom
test classes by using @RunWith(SpringRunner.class) or Spring’s JUnit rules.

SpringExtension for JUnit Jupiter

The Spring TestContext Framework offers full integration with the JUnit Jupiter testing framework
introduced in JUnit 5. By annotating test classes with @ExtendWith(SpringExtension.class),
developers can implement standard JUnit Jupiter based unit and integration tests and
simultaneously reap the benefits of the TestContext framework such as support for loading
application contexts, dependency injection of test instances, transactional test method execution,
and so on.

Furthermore, thanks to the rich extension API in JUnit Jupiter, Spring is able to provide the
following features above and beyond the feature set that Spring supports for JUnit 4 and TestNG.
* Dependency injection for test constructors, test methods, and test lifecycle callback methods
- See Dependency Injection with the SpringExtension for further details.

» Powerful support for conditional test execution based on SpEL expressions, environment
variables, system properties, etc.

75

http://junit.org/junit5/docs/current/user-guide/#extensions-conditions

o See the documentation for @EnabledIf and @DisabledIf in Spring JUnit Jupiter Testing
Annotations for further details and examples.

* Custom composed annotations that combine annotations from Spring and JUnit Jupiter.

o See the @TransactionalDevTestConfig and @TransactionallntegrationTest examples in Meta-
Annotation Support for Testing for further details.

The following code listing demonstrates how to configure a test class to use the SpringExtension in
conjunction with @ContextConfiguration.

// Instructs JUnit Jupiter to extend the test with Spring support.
@ExtendWith(SpringExtension.class)

// Instructs Spring to load an ApplicationContext from TestConfig.class
@ContextConfiguration(classes = TestConfig.class)

class SimpleTests {

@Test
void testMethod() {
// execute test logic...

}

Since annotations in JUnit 5 can also be used as meta-annotations, Spring is able to provide
@SpringJUnitConfig and @SpringJUnitWebConfig composed annotations to simplify the configuration
of the test ApplicationContext and JUnit Jupiter.

For example, the following example uses @SpringJUnitConfig to reduce the amount of configuration
used in the previous example.

// Instructs Spring to register the SpringExtension with JUnit
// Jupiter and load an ApplicationContext from TestConfig.class
@SpringJUnitConfig(TestConfig.class)

class SimpleTests {

@Test
void testMethod() {
// execute test logic...

}

Similarly, the following example uses @SpringJUnitWebConfig to create a WebApplicationContext for
use with JUnit Jupiter.

76

// Instructs Spring to register the SpringExtension with JUnit

// Jupiter and load a WebApplicationContext from TestWebConfig.class
@SpringJUnitWebConfig(TestWebConfig.class)

class SimpleWebTests {

@Test
void testMethod() {
// execute test logic...

See the documentation for @SpringJUnitConfig and @SpringJUnitWebConfig in Spring JUnit Jupiter
Testing Annotations for further details.

Dependency Injection with the SpringExtension

The SpringExtension implements the ParameterResolver extension API from JUnit Jupiter which
allows Spring to provide dependency injection for test constructors, test methods, and test lifecycle
callback methods.

Specifically, the SpringExtension is able to inject dependencies from the test’s ApplicationContext
into test constructors and methods annotated with @BeforeAll, @AfterAll, @BeforeEach, @AfterEach,
@Test, @RepeatedTest, @ParameterizedTest, etc.

Constructor Injection

If a parameter in a constructor for a JUnit Jupiter test class is of type ApplicationContext (or a sub-
type thereof) or is annotated or meta-annotated with @Autowired, @Qualifier, or @Value, Spring will
inject the value for that specific parameter with the corresponding bean from the test’s
ApplicationContext. A test constructor can also be directly annotated with @Autowired if all of the
parameters should be supplied by Spring.

If the constructor for a test class is itself annotated with @Autowired, Spring will

A assume the responsibility for resolving all parameters in the constructor.
Consequently, no other ParameterResolver registered with JUnit Jupiter will be able
to resolve parameters for such a constructor.

In the following example, Spring will inject the OrderService bean from the ApplicationContext

loaded from TestConfig.class into the OrderServicelntegrationTests constructor. Note as well that
this feature allows test dependencies to be final and therefore immutable.

77

http://junit.org/junit5/docs/current/user-guide/#extensions-parameter-resolution

@SpringJUnitConfig(TestConfig.class)
class OrderServicelntegrationTests {

private final OrderService orderService;
@Autowired

OrderServicelntegrationTests(OrderService orderService) {
this.orderService = orderService.

}
// tests that use the injected OrderService
}
Method Injection

If a parameter in a JUnit Jupiter test method or test lifecycle callback method is of type
ApplicationContext (or a sub-type thereof) or is annotated or meta-annotated with @Autowired,
@Qualifier, or @Value, Spring will inject the value for that specific parameter with the corresponding
bean from the test’s ApplicationContext.

In the following example, Spring will inject the OrderService from the ApplicationContext loaded
from TestConfig.class into the deleteOrder() test method.

@SpringJUnitConfig(TestConfig.class)
class OrderServicelntegrationTests {

@Test
void deleteOrder(@Autowired OrderService orderService) {
// use orderService from the test's ApplicationContext

}

Due to the robustness of the ParameterResolver support in JUnit Jupiter, it is also possible to have
multiple dependencies injected into a single method not only from Spring but also from JUnit
Jupiter itself or other third-party extensions.

The following example demonstrates how to have both Spring and JUnit Jupiter inject dependencies
into the placeOrderRepeatedly() test method simultaneously. Note that the use of @RepeatedTest from
JUnit Jupiter allows the test method to gain access to the RepetitionInfo.

78

@SpringJUnitConfig(TestConfig.class)
class OrderServicelntegrationTests {

@RepeatedTest(10)
void placeOrderRepeatedly(RepetitionInfo repetitionInfo,
@Autowired OrderService orderService) {

// use orderService from the test's ApplicationContext
// and repetitionInfo from JUnit Jupiter

TestNG support classes

The org.springframework.test.context.testng package provides the following support classes for
TestNG based test cases.

o AbstractTestNGSpringContextTests
o AbstractTransactionalTestNGSpringContextTests

AbstractTestNGSpringContextTests is an abstract base test class that integrates the Spring TestContext
Framework with explicit ApplicationContext testing support in a TestNG environment. When you
extend AbstractTestNGSpringContextTests, you can access a protected applicationContext instance
variable that can be used to perform explicit bean lookups or to test the state of the context as a
whole.

AbstractTransactionalTestNGSpringContextTests is an abstract transactional extension of
AbstractTestNGSpringContextTests that adds some convenience functionality for JDBC access. This
class expects a javax.sql.DataSource bean and a PlatformTransactionManager bean to be defined in
the ApplicationContext. When you extend AbstractTransactionalTestNGSpringContextTests you can
access a protected jdbcTemplate instance variable that can be used to execute SQL statements to
query the database. Such queries can be used to confirm database state both prior to and after
execution of database-related application code, and Spring ensures that such queries run in the
scope of the same transaction as the application code. When used in conjunction with an ORM tool,
be sure to avoid false positives. As mentioned in JDBC Testing Support,
AbstractTransactionalTestNGSpringContextTests also provides convenience methods which delegate
to methods in JdbcTestUtils wusing the aforementioned jdbcTemplate. Furthermore,
AbstractTransactionalTestNGSpringContextTests provides an executeSqlScript(..) method for
executing SQL scripts against the configured DataSource.

These classes are a convenience for extension. If you do not want your test classes
to be tied to a Spring-specific class hierarchy, you can configure your own custom

Q test classes by using @ContextConfiguration, @TestExecutionListeners, and so on,
and by manually instrumenting your test class with a TestContextManager. See the
source code of AbstractTestNGSpringContextTests for an example of how to
instrument your test class.

79

3.6. Spring MVC Test Framework

The Spring MVC Test framework provides first class support for testing Spring MVC code using a
fluent API that can be used with JUnit, TestNG, or any other testing framework. It’s built on the
Servlet API mock objects from the spring-test module and hence does not use a running Servlet
container. It uses the DispatcherServlet to provide full Spring MVC runtime behavior and provides
support for loading actual Spring configuration with the TestContext framework in addition to a
standalone mode in which controllers may be instantiated manually and tested one at a time.

Spring MVC Test also provides client-side support for testing code that uses the RestTemplate. Client-
side tests mock the server responses and also do not use a running server.

Spring Boot provides an option to write full, end-to-end integration tests that
include a running server. If this is your goal please have a look at the Spring Boot

Q reference page. For more information on the differences between out-of-container
and end-to-end integration tests, see Differences between Out-of-Container and
End-to-End Integration Tests.

3.6.1. Server-Side Tests

It’s easy to write a plain unit test for a Spring MVC controller using JUnit or TestNG: simply
instantiate the controller, inject it with mocked or stubbed dependencies, and call its methods
passing MockHttpServletRequest, MockHttpServletResponse, etc., as necessary. However, when writing
such a unit test, much remains untested: for example, request mappings, data binding, type
conversion, validation, and much more. Furthermore, other controller methods such as
@InitBinder, @ModelAttribute, and @ExceptionHandler may also be invoked as part of the request
processing lifecycle.

The goal of Spring MVC Test is to provide an effective way for testing controllers by performing
requests and generating responses through the actual DispatcherServlet.

Spring MVC Test builds on the familiar "mock" implementations of the Servlet API available in the
spring-test module. This allows performing requests and generating responses without the need
for running in a Servlet container. For the most part everything should work as it does at runtime
with a few notable exceptions as explained in Differences between Out-of-Container and End-to-
End Integration Tests. Here is a JUnit Jupiter based example of using Spring MVC Test:

80

https://docs.spring.io/spring-framework/docs/5.0.8.RELEASE/javadoc-api/org/springframework/mock/web/package-summary.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html#boot-features-testing-spring-boot-applications
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html#boot-features-testing-spring-boot-applications

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

(locations = "test-servlet-context.xml")
class ExampleTests {

private MockMvc mockMvc;

void setup(WebApplicationContext wac) {
this.mockMve = MockMvcBuilders.webAppContextSetup(wac).build();
}

void getAccount() throws Exception {
this.mockMvc.perform(get("/accounts/1")
.accept(MediaType.parseMediaType("application/json;charset=UTF-8")))
.andExpect(status().is0k())
.andExpect(content().contentType("application/json"))
.andExpect(jsonPath("$.name").value("Lee"));

The above test relies on the WebApplicationContext support of the TestContext framework for loading
Spring configuration from an XML configuration file located in the same package as the test class,
but Java-based and Groovy-based configuration are also supported. See these sample tests.

The MockMvc instance is used to perform a GET request to "/accounts/1" and verify that the resulting
response has status 200, the content type is "application/json", and the response body has a JSON
property called "name" with the value "Lee". The jsonPath syntax is supported through the Jayway
JsonPath project. There are lots of other options for verifying the result of the performed request
that will be discussed below.

Static Imports

The fluent API in the example above requires a few static imports such as MockMvcRequestBuilders.*,
MockMvcResultMatchers.*, and MockMvcBuilders.*. An easy way to find these classes is to search for
types matching "MockMvc*". If using Eclipse, be sure to add them as "favorite static members" in
the Eclipse preferences under Java — Editor — Content Assist —» Favorites. That will allow use of
content assist after typing the first character of the static method name. Other IDEs (e.g. Intelli])
may not require any additional configuration. Just check the support for code completion on static
members.

Setup Choices

There are two main options for creating an instance of MockMvc. The first is to load Spring MVC
configuration through the TestContext framework, which loads the Spring configuration and injects
a WebApplicationContext into the test to use to build a MockMvc instance:

81

https://github.com/spring-projects/spring-framework/tree/master/spring-test/src/test/java/org/springframework/test/web/servlet/samples/context
https://github.com/jayway/JsonPath

(SpringRunner.class)

("my-servlet-context.xml")
public class MyWebTests {

private WebApplicationContext wac;

private MockMve mockMvc;

public void setup() {
this.mockMve = MockMvcBuilders.webAppContextSetup(this.wac).build();
Iy

/] ...

The second is to simply create a controller instance manually without loading Spring configuration.
Instead basic default configuration, roughly comparable to that of the MVC JavaConfig or the MVC
namespace, is automatically created and can be customized to a degree:

public class MyWebTests {

private MockMve mockMvc;

public void setup() {
this.mockMve = MockMvcBuilders.standaloneSetup(new AccountController()).build
0
}

/] ...

Which setup option should you use?

The "webAppContextSetup” loads your actual Spring MVC configuration resulting in a more
complete integration test. Since the TestContext framework caches the loaded Spring configuration,
it helps keep tests running fast, even as you introduce more tests in your test suite. Furthermore,
you can inject mock services into controllers through Spring configuration in order to remain
focused on testing the web layer. Here is an example of declaring a mock service with Mockito:

82

<bean id="accountService" class="org.mockito.Mockito" factory-method="mock">
<constructor-arg value="org.example.AccountService"/>
</bean>

You can then inject the mock service into the test in order set up and verify expectations:

(SpringRunner.class)

("test-servlet-context.xml")
public class AccountTests {

private WebApplicationContext wac;

private MockMvc mockMvc;

private AccountService accountService;

/] ...

The "standaloneSetup” on the other hand is a little closer to a unit test. It tests one controller at a
time: the controller can be injected with mock dependencies manually, and it doesn’t involve
loading Spring configuration. Such tests are more focused on style and make it easier to see which
controller is being tested, whether any specific Spring MVC configuration is required to work, and
so on. The "standaloneSetup" is also a very convenient way to write ad-hoc tests to verify specific
behavior or to debug an issue.

Just like with any "integration vs. unit testing" debate, there is no right or wrong answer. However,
using the "standaloneSetup" does imply the need for additional "webAppContextSetup" tests in
order to verify your Spring MVC configuration. Alternatively, you may choose to write all tests with
"webAppContextSetup" in order to always test against your actual Spring MVC configuration.

Setup Features

No matter which MockMvc builder you use all MockMvcBuilder implementations provide some
common and very useful features. For example you can declare an Accept header for all requests
and expect a status of 200 as well as a Content-Type header in all responses as follows:

83

// static import of MockMvcBuilders.standaloneSetup

MockMvc mockMve = standaloneSetup(new MusicController())
.defaultRequest(get("/").accept(MediaType.APPLICATION_JSON))
.alwaysExpect(status().is0k())
.alwaysExpect(content().contentType("application/json;charset=UTF-8"))
.build();

In addition 3rd party frameworks (and applications) may pre-package setup instructions like the
ones through a MockMvcConfigurer. The Spring Framework has one such built-in implementation
that helps to save and re-use the HTTP session across requests. It can be used as follows:

// static import of SharedHttpSessionConfigurer.sharedHttpSession

MockMve mockMve = MockMvcBuilders.standaloneSetup(new TestController())
.apply(sharedHttpSession())
.build();

// Use mockMvc to perform requests...

See ConfigurableMockMvcBuilder for a list of all MockMvc builder features or use the IDE to explore
the available options.

Performing Requests

It’s easy to perform requests using any HTTP method:

mockMvc.perform(post("/hotels/{id}", 42).accept(MediaType.APPLICATION_JSON));

You can also perform file upload requests that internally use MockMultipartHttpServletRequest so
that there is no actual parsing of a multipart request but rather you have to set it up:

mockMve.perform(multipart("/doc").file("a1", "ABC".getBytes("UTF-8")));

You can specify query parameters in URI template style:

mockMvc.perform(get("/hotels?foo={foo}", "bar"));

Or you can add Servlet request parameters representing either query of form parameters:

mockMvc.perform(get("/hotels").param("foo", "bar"));

If application code relies on Servlet request parameters and doesn’t check the query string

84

explicitly (as is most often the case) then it doesn’t matter which option you use. Keep in mind
however that query params provided with the URI template will be decoded while request
parameters provided through the param(:--) method are expected to already be decoded.

In most cases it’s preferable to leave out the context path and the Servlet path from the request URL
If you must test with the full request URIL be sure to set the contextPath and servletPath accordingly
so that request mappings will work:

mockMvec.perform(get("/app/main/hotels/{id}").contextPath("/app").servietPath("/main"))

Looking at the above example, it would be cumbersome to set the contextPath and servletPath with
every performed request. Instead you can set up default request properties:

public class MyWebTests {

private MockMvc mockMvc;

public void setup() {
mockMve = standaloneSetup(new AccountController())
.defaultRequest(get("/")
.contextPath("/app").servletPath("/main")
.accept(MediaType.APPLICATION_JSON)).build();

The above properties will affect every request performed through the MockMvc instance. If the same
property is also specified on a given request, it overrides the default value. That is why the HTTP
method and URI in the default request don’t matter since they must be specified on every request.

Defining Expectations

Expectations can be defined by appending one or more .andExpect(..) calls after performing a
request:

mockMvec.perform(get("/accounts/1")).andExpect(status().is0k());

MockMvcResultMatchers.* provides a number of expectations, some of which are further nested with
more detailed expectations.

Expectations fall in two general categories. The first category of assertions verifies properties of the
response: for example, the response status, headers, and content. These are the most important
results to assert.

The second category of assertions goes beyond the response. These assertions allow one to inspect
Spring MVC specific aspects such as which controller method processed the request, whether an
exception was raised and handled, what the content of the model is, what view was selected, what
flash attributes were added, and so on. They also allow one to inspect Servlet specific aspects such

85

as request and session attributes.

The following test asserts that binding or validation failed:

mockMvc.perform(post("/persons"))
.andExpect(status().is0k())
.andExpect(model().attributeHasErrors("person"));

Many times when writing tests, it’s useful to dump the results of the performed request. This can be
done as follows, where print() is a static import from MockMvcResultHandlers:

mockMvc.perform(post("/persons"))
.andDo(print())
.andExpect(status().is0k())
.andExpect(model().attributeHasErrors("person"));

As long as request processing does not cause an unhandled exception, the print() method will print
all the available result data to System.out. Spring Framework 4.2 introduced a log() method and
two additional variants of the print() method, one that accepts an OutputStream and one that
accepts a Writer. For example, invoking print(System.err) will print the result data to System.err;
while invoking print(myWriter) will print the result data to a custom writer. If you would like to
have the result data logged instead of printed, simply invoke the log() method which will log the
result data as a single DEBUG message under the org.springframework.test.web.servlet.result
logging category.

In some cases, you may want to get direct access to the result and verify something that cannot be
verified otherwise. This can be achieved by appending .andReturn() after all other expectations:

MvcResult mvcResult = mockMve.perform(post("/persons”)).andExpect(status().is0k())
.andReturn();
/] ...

If all tests repeat the same expectations you can set up common expectations once when building
the MockMvc instance:

standaloneSetup(new SimpleController())
.alwaysExpect(status().is0k())
.alwaysExpect(content().contentType("application/json;charset=UTF-8"))
.build()

Note that common expectations are always applied and cannot be overridden without creating a
separate MockMvc instance.

When JSON response content contains hypermedia links created with Spring HATEOAS, the
resulting links can be verified using JsonPath expressions:

86

https://github.com/spring-projects/spring-hateoas

mockMvc.perform(get("/people").accept(MediaType.APPLICATION_JSON))
.andExpect(jsonPath("$.1links[?(@.rel == 'self')].href").value(
"http://localhost:8080/people"));

When XML response content contains hypermedia links created with Spring HATEOAS, the
resulting links can be verified using XPath expressions:

Map<String, String> ns = Collections.singletonMap("ns", "http://www.w3.0rg/2005/Atom"

)i

mockMvec.perform(get("/handle").accept(MediaType.APPLICATION_XML))
.andExpect(xpath("/person/ns:link[@rel="self']/@href", ns).string(

"http://localhost:8080/people"));

Filter Registrations

When setting up a MockMvc instance, you can register one or more Servlet Filter instances:

mockMve = standaloneSetup(new PersonController()).addFilters(new
CharacterEncodingFilter()).build();

Registered filters will be invoked through via the MockFilterChain from spring-test, and the last
filter will delegate to the DispatcherServlet.

Differences between Out-of-Container and End-to-End Integration Tests

As mentioned earlier Spring MVC Test is built on the Servlet API mock objects from the spring-test
module and does not use a running Servlet container. Therefore there are some important
differences compared to full end-to-end integration tests with an actual client and server running.

The easiest way to think about this is starting with a blank MockHttpServletRequest. Whatever you
add to it is what the request will be. Things that may catch you by surprise are that there is no
context path by default, no jsessionid cookie, no forwarding, error, or async dispatches, and
therefore no actual JSP rendering. Instead, "forwarded" and "redirected"” URLs are saved in the
MockHttpServletResponse and can be asserted with expectations.

This means if you are using JSPs you can verify the JSP page to which the request was forwarded,
but there won’t be any HTML rendered. In other words, the JSP will not be invoked. Note however
that all other rendering technologies which don’t rely on forwarding such as Thymeleaf and
Freemarker will render HTML to the response body as expected. The same is true for rendering
JSON, XML, and other formats via @ResponseBody methods.

Alternatively you may consider the full end-to-end integration testing support from Spring Boot via
@WebIntegrationTest. See the Spring Boot reference.

There are pros and cons for each approach. The options provided in Spring MVC Test are different
stops on the scale from classic unit testing to full integration testing. To be certain, none of the
options in Spring MVC Test fall under the category of classic unit testing, but they are a little closer

87

https://github.com/spring-projects/spring-hateoas
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html#boot-features-testing-spring-boot-applications

to it. For example, you can isolate the web layer by injecting mocked services into controllers, in
which case you’re testing the web layer only through the DispatcherServlet but with actual Spring
configuration, just like you might test the data access layer in isolation from the layers above. Or
you can use the standalone setup focusing on one controller at a time and manually providing the
configuration required to make it work.

Another important distinction when using Spring MVC Test is that conceptually such tests are on
the inside of the server-side so you can check what handler was used, if an exception was handled
with a HandlerExceptionResolver, what the content of the model is, what binding errors there
were, etc. That means it’s easier to write expectations since the server is not a black box as it is
when testing it through an actual HTTP client. This is generally an advantage of classic unit testing,
that it’s easier to write, reason about, and debug but does not replace the need for full integration
tests. At the same time it’s important not to lose sight of the fact that the response is the most
important thing to check. In short, there is room here for multiple styles and strategies of testing
even within the same project.

Further Server-Side Test Examples

The framework’s own tests include many sample tests intended to demonstrate how to use Spring
MVC Test. Browse these examples for further ideas. Also the spring-mvc-showcase has full test
coverage based on Spring MVC Test.

3.6.2. HtmlUnit Integration

Spring provides integration between MockMvc and HtmlUnit. This simplifies performing end-to-
end testing when using HTML based views. This integration enables developers to:

Easily test HTML pages using tools such as HtmlUnit, WebDriver, & Geb without the need to
deploy to a Servlet container

Test JavaScript within pages

Optionally test using mock services to speed up testing

 Share logic between in-container end-to-end tests and out-of-container integration tests

MockMve works with templating technologies that do not rely on a Servlet Container
(e.g., Thymeleaf, FreeMarker, etc.), but it does not work with JSPs since they rely on
the Servlet container.

Why HtmlUnit Integration?

The most obvious question that comes to mind is, "Why do I need this?". The answer is best found
by exploring a very basic sample application. Assume you have a Spring MVC web application that
supports CRUD operations on a Message object. The application also supports paging through all
messages. How would you go about testing it?

With Spring MVC Test, we can easily test if we are able to create a Message.

88

https://github.com/spring-projects/spring-framework/tree/master/spring-test/src/test/java/org/springframework/test/web/servlet/samples
https://github.com/spring-projects/spring-mvc-showcase
http://htmlunit.sourceforge.net/
http://htmlunit.sourceforge.net/
http://seleniumhq.org/projects/webdriver/
http://www.gebish.org/manual/current/testing.html#spock_junit__testng

MockHttpServletRequestBuilder createMessage = post("/messages/")
.param("summary", "Spring Rocks")
.param("text", "In case you didn't know, Spring Rocks!");

mockMvec.perform(createMessage)
.andExpect(status().is3xxRedirection())
.andExpect(redirectedUr1("/messages/123"));

What if we want to test our form view that allows us to create the message? For example, assume
our form looks like the following snippet:

<form id="messageForm" action="/messages/" method="post">
<div class="pull-right">Messages</div>

<label for="summary">Summary</label>
<input type="text" class="required" id="summary" name="summary" value="" />

<label for="text">Message</label>
<textarea id="text" name="text"></textarea>

<div class="form-actions">
<input type="submit" value="Create" />
</div>
</form>

How do we ensure that our form will produce the correct request to create a new message? A naive
attempt would look like this:

mockMve.perform(get("/messages/form"))
.andExpect(xpath("//input[@name="summary']").exists())
.andExpect(xpath("//textarea[@name="text']").exists());

This test has some obvious drawbacks. If we update our controller to use the parameter message
instead of text, our form test would continue to pass even though the HTML form is out of synch
with the controller. To resolve this we can combine our two tests.

89

String summaryParamName = "summary";

String textParamName = "text";

mockMvc.perform(get("/messages/form"))
.andExpect(xpath("//input[@name="
.andExpect(xpath("//textarea[@name=

+ summaryParamName + "']").exists())
"" + textParamName + "']").exists());

MockHttpServletRequestBuilder createMessage = post("/messages/")
.param(summaryParamName, "Spring Rocks")
.param(textParamName, "In case you didn't know, Spring Rocks!");

mockMvc.perform(createMessage)
.andExpect(status().is3xxRedirection())
.andExpect(redirectedUr1("/messages/123"));

This would reduce the risk of our test incorrectly passing, but there are still some problems.

* What if we have multiple forms on our page? Admittedly we could update our xpath
expressions, but they get more complicated the more factors we take into account (Are the fields
the correct type? Are the fields enabled? etc.).

* Another issue is that we are doing double the work we would expect. We must first verify the
view, and then we submit the view with the same parameters we just verified. Ideally this could
be done all at once.

* Finally, there are some things that we still cannot account for. For example, what if the form has

JavaScript validation that we wish to test as well?

The overall problem is that testing a web page does not involve a single interaction. Instead, it is a
combination of how the user interacts with a web page and how that web page interacts with other
resources. For example, the result of a form view is used as the input to a user for creating a
message. In addition, our form view may potentially utilize additional resources which impact the
behavior of the page, such as JavaScript validation.

Integration testing to the rescue?

To resolve the issues above we could perform end-to-end integration testing, but this has some
obvious drawbacks. Consider testing the view that allows us to page through the messages. We
might need the following tests.

* Does our page display a notification to the user indicating that no results are available when the
messages are empty?

* Does our page properly display a single message?

* Does our page properly support paging?

To set up these tests, we would need to ensure our database contained the proper messages in it.
This leads to a number of additional challenges.

* Ensuring the proper messages are in the database can be tedious; consider foreign key
constraints.

90

» Testing can become slow since each test would need to ensure that the database is in the correct
state.

 Since our database needs to be in a specific state, we cannot run tests in parallel.

 Performing assertions on things like auto-generated ids, timestamps, etc. can be difficult.
These challenges do not mean that we should abandon end-to-end integration testing altogether.
Instead, we can reduce the number of end-to-end integration tests by refactoring our detailed tests
to use mock services which will execute much faster, more reliably, and without side effects. We

can then implement a small number of true end-to-end integration tests that validate simple
workflows to ensure that everything works together properly.

Enter HtmlUnit Integration

So how can we achieve a balance between testing the interactions of our pages and still retain good
performance within our test suite? The answer is: "By integrating MockMvc with HtmlUnit."

HtmlUnit Integration Options
There are a number of ways to integrate MockMvc with HtmlUnit.

* MockMvc and HtmlUnit: Use this option if you want to use the raw HtmlUnit libraries.

* MockMvc and WebDriver: Use this option to ease development and reuse code between
integration and end-to-end testing.

* MockMvc and Geb: Use this option if you would like to use Groovy for testing, ease
development, and reuse code between integration and end-to-end testing.

MockMvc and HtmlUnit

This section describes how to integrate MockMve and HtmlUnit. Use this option if you want to use the
raw HtmlUnit libraries.

MockMvc and HtmlUnit Setup

First, make sure that you have included a test dependency on net.sourceforge.htmlunit:htmlunit. In
order to use HtmlUnit with Apache HttpComponents 4.5+, you will need to use HtmlUnit 2.18 or
higher.

We can easily create an HtmlUnit WebClient that integrates with MockMvc wusing the
MockMvcWebClientBuilder as follows.

91

WebApplicationContext context;

WebClient webClient;

public void setup() {
webClient = MockMvcWebClientBuilder
.webAppContextSetup(context)

.build();

O This is a simple example of using MockMvcWebClientBuilder. For advanced usage see
Advanced MockMvcWebClientBuilder

This will ensure that any URL referencing localhost as the server will be directed to our MockMvc
instance without the need for a real HTTP connection. Any other URL will be requested using a
network connection as normal. This allows us to easily test the use of CDNs.

MockMvc and HtmlUnit Usage

Now we can use HtmlUnit as we normally would, but without the need to deploy our application to
a Servlet container. For example, we can request the view to create a message with the following.

HtmlPage createMsgFormPage = webClient.getPage("http://localhost/messages/form");

O The default context path is "". Alternatively, we can specify the context path as
illustrated in Advanced MockMvcWebClientBuilder.

Once we have a reference to the HtmlPage, we can then fill out the form and submit it to create a
message.

HtmlForm form = createMsgFormPage.getHtmlElementById("messageForm");

HtmlTextInput summaryInput = createMsgFormPage.getHtmlElementById("summary");
summaryInput.setValueAttribute("Spring Rocks");

HtmlTextArea textInput = createMsgFormPage.getHtmlElementById("text");
textInput.setText("In case you didn't know, Spring Rocks!");

HtmlSubmitInput submit = form.getOneHtmlElementByAttribute("input”, "type", "submit");
HtmlPage newMessagePage = submit.click();

Finally, we can verify that a new message was created successfully. The following assertions use the
Assert] library.

92

http://joel-costigliola.github.io/assertj/

assertThat(newMessagePage.getUr1().toString()).endsWith("/messages/123");
String id = newMessagePage.getHtmlElementById("id").qgetTextContent();
assertThat(id).isEqualTo("123");

String summary = newMessagePage.getHtmlElementById("summary").getTextContent();
assertThat(summary).isEqualTo("Spring Rocks");

String text = newMessagePage.getHtmlElementById("text").getTextContent();
assertThat(text).isEqualTo("In case you didn't know, Spring Rocks!");

This improves on our MockMvc test in a number of ways. First we no longer have to explicitly
verify our form and then create a request that looks like the form. Instead, we request the form, fill
it out, and submit it, thereby significantly reducing the overhead.

Another important factor is that HtmlUnit uses the Mozilla Rhino engine to evaluate JavaScript.
This means that we can test the behavior of JavaScript within our pages as well!

Refer to the HtmlUnit documentation for additional information about using HtmlUnit.

Advanced MockMvcWebClientBuilder

In the examples so far, we have used MockMvcWebClientBuilder in the simplest way possible, by
building a WebClient based on the WebApplicationContext loaded for us by the Spring TestContext
Framework. This approach is repeated here.

WebApplicationContext context;

WebClient webClient;

public void setup() {
webClient = MockMvcWebClientBuilder
.webAppContextSetup(context)

.build();

We can also specify additional configuration options.

93

http://htmlunit.sourceforge.net/javascript.html
http://htmlunit.sourceforge.net/gettingStarted.html

WebClient webClient;

@Before
public void setup() {
webClient = MockMvcWebClientBuilder

// demonstrates applying a MockMvcConfigurer (Spring Security)
.webAppContextSetup(context, springSecurity())
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well

.useMockMvcForHosts("example.com", "example.org")
.build();

As an alternative, we can perform the exact same setup by configuring the MockMvc instance
separately and supplying it to the MockMvcWebClientBuilder as follows.

MockMve mockMvc = MockMvcBuilders
.webAppContextSetup(context)
.apply(springSecurity())
.build();

webClient = MockMvcWebClientBuilder
.mockMvcSetup(mockMvc)
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well

.useMockMvcForHosts("example.com", "example.org")
.build();

This is more verbose, but by building the WebClient with a MockMvc instance we have the full power
of MockMvc at our fingertips.

Q For additional information on creating a MockMvc instance refer to Setup Choices.

MockMvc and WebDriver

In the previous sections, we have seen how to use MockMve in conjunction with the raw HtmlUnit
APIs. In this section, we will leverage additional abstractions within the Selenium WebDriver to
make things even easier.

Why WebDriver and MockMvc?

We can already use HtmlUnit and MockMvc, so why would we want to use WebDriver? The Selenium
WebDriver provides a very elegant API that allows us to easily organize our code. To better
understand, let’s explore an example.

94

http://docs.seleniumhq.org/projects/webdriver/

ﬁ Despite being a part of Selenium, WebDriver does not require a Selenium Server to
run your tests.

Suppose we need to ensure that a message is created properly. The tests involve finding the HTML
form input elements, filling them out, and making various assertions.

This approach results in numerous, separate tests because we want to test error conditions as well.
For example, we want to ensure that we get an error if we fill out only part of the form. If we fill out
the entire form, the newly created message should be displayed afterwards.

If one of the fields were named "summary", then we might have something like the following
repeated in multiple places within our tests.

HtmlTextInput summaryInput = currentPage.getHtmlElementById("summary");
summaryInput.setValueAttribute(summary);

So what happens if we change the id to "smmry"? Doing so would force us to update all of our tests
to incorporate this change! Of course, this violates the DRY Principle; so we should ideally extract
this code into its own method as follows.

public HtmlPage createMessage(HtmlPage currentPage, String summary, String text) {
setSummary(currentPage, summary);
/] ...

}

public void setSummary(HtmlPage currentPage, String summary) {
HtmlTextInput summaryInput = currentPage.getHtmlElementById("summary");
summaryInput.setValueAttribute(summary);

This ensures that we do not have to update all of our tests if we change the UL

We might even take this a step further and place this logic within an Object that represents the
HtmlPage we are currently on.

95

http://docs.seleniumhq.org/

public class CreateMessagePage {
final HtmlPage currentPage;
final HtmlTextInput summaryInput;
final HtmlSubmitInput submit;

public CreateMessagePage(HtmlPage currentPage) {
this.currentPage = currentPage;
this.summaryInput = currentPage.getHtmlElementById("summary");
this.submit = currentPage.getHtmlElementById("submit");

}

public <T> T createMessage(String summary, String text) throws Exception {
setSummary(summary);

HtmlPage result = submit.click();
boolean error = CreateMessagePage.at(result);

return (T) (error ? new CreateMessagePage(result) : new ViewMessagePage(
result));
}

public void setSummary(String summary) throws Exception {
summaryInput.setValueAttribute(summary);

}

public static boolean at(HtmlPage page) {
return "Create Message".equals(page.getTitleText());
}

Formerly, this pattern is known as the Page Object Pattern. While we can certainly do this with
HtmlUnit, WebDriver provides some tools that we will explore in the following sections to make
this pattern much easier to implement.

MockMvc and WebDriver Setup

To use Selenium WebDriver with the Spring MVC Test framework, make sure that your project
includes a test dependency on org.seleniumhqg.selenium:selenium-htmlunit-driver.

We can easily create a Selenium WebDriver that integrates with MockMve wusing the
MockMvcHtmlUnitDriverBuilder as follows.

96

https://github.com/SeleniumHQ/selenium/wiki/PageObjects

WebApplicationContext context;

WebDriver driver;

public void setup() {
driver = MockMvcHtmlUnitDriverBuilder
.webAppContextSetup(context)
.build();

O This is a simple example of using MockMvcHtmlUnitDriverBuilder. For more
advanced usage, refer to Advanced MockMvcHtmlUnitDriverBuilder

This will ensure that any URL referencing localhost as the server will be directed to our MockMvc
instance without the need for a real HTTP connection. Any other URL will be requested using a
network connection as normal. This allows us to easily test the use of CDNs.

MockMvc and WebDriver Usage

Now we can use WebDriver as we normally would, but without the need to deploy our application
to a Servlet container. For example, we can request the view to create a message with the following.

CreateMessagePage page = CreateMessagePage.to(driver);
We can then fill out the form and submit it to create a message.

ViewMessagePage viewMessagePage =
page.createMessage(ViewMessagePage.class, expectedSummary, expectedText);

This improves on the design of our HtmlUnit test by leveraging the Page Object Pattern. As we
mentioned in Why WebDriver and MockMvc?, we can use the Page Object Pattern with HtmlUnit,
but it is much easier with WebDriver. Let’s take a look at our new C(reateMessagePage
implementation.

97

public class CreateMessagePage
extends AbstractPage { @

@
private WebElement summary;
private WebElement text;

®
(css = "input[type=submit]")
private WebElement submit;

public CreateMessagePage(WebDriver driver) {
super(driver);

}

public <T> T createMessage((Class<T> resultPage, String summary, String details) {
this.summary.sendKeys(summary);
this.text.sendKeys(details);
this.submit.click();
return PageFactory.initElements(driver, resultPage);

}

public static CreateMessagePage to(WebDriver driver) {
driver.get("http://localhost:9990/mail/messages/form");
return PageFactory.initElements(driver, CreateMessagePage.class);

@ The first thing you will notice is that CreateMessagePage extends the AbstractPage. We won’t go
over the details of AbstractPage, but in summary it contains common functionality for all of our
pages. For example, if our application has a navigational bar, global error messages, etc., this
logic can be placed in a shared location.

@ The next thing you will notice is that we have a member variable for each of the parts of the
HTML page that we are interested in. These are of type WebElement. WebDriver's PageFactory
allows us to remove a lot of code from the HtmlUnit version of CreateMessagePage by
automatically resolving each WebElement. The PageFactory#initElements(WebDriver,Class<T>)
method will automatically resolve each WebElement by using the field name and looking it up by
the id or name of the element within the HTML page.

® We can use the @FindBy annotation to override the default lookup behavior. Our example
demonstrates how to use the @FindBy annotation to look up our submit button using a css
selector, input[type=submit].

Finally, we can verify that a new message was created successfully. The following assertions use the
FEST assertion library.

98

https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/PageFactory.html#initElements-org.openqa.selenium.WebDriver-java.lang.Class-
https://github.com/SeleniumHQ/selenium/wiki/PageFactory#making-the-example-work-using-annotations
https://code.google.com/p/fest/

assertThat(viewMessagePage.getMessage()).isEqualTo(expectedMessage);
assertThat(viewMessagePage.getSuccess()).isEqualTo("Successfully created a new
message");

We can see that our ViewMessagePage allows us to interact with our custom domain model. For
example, it exposes a method that returns a Message object.

public Message getMessage() throws ParseException {
Message message = new Message();
message.setId(qgetId());
message.setCreated(getCreated());
message.setSummary(getSummary());
message.setText(getText());
return message,

We can then leverage the rich domain objects in our assertions.

Lastly, don’t forget to close the WebDriver instance when the test is complete.

public void destroy() {
if (driver != null) {
driver.close();

}

For additional information on using WebDriver, refer to the Selenium WebDriver documentation.

Advanced MockMvcHtmlUnitDriverBuilder

In the examples so far, we have used MockMvcHtmlUnitDriverBuilder in the simplest way possible, by
building a WebDriver based on the WebApplicationContext loaded for us by the Spring TestContext
Framework. This approach is repeated here.

WebApplicationContext context;
WebDriver driver;
public void setup() {
driver = MockMvcHtmlUnitDriverBuilder

.webAppContextSetup(context)
.build();

99

https://github.com/SeleniumHQ/selenium/wiki/Getting-Started

We can also specify additional configuration options.

WebDriver driver;

@Before
public void setup() {
driver = MockMvcHtmlUnitDriverBuilder
// demonstrates applying a MockMvcConfigurer (Spring Security)
.webAppContextSetup(context, springSecurity())
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc 1is used for localhost only;
// the following will use MockMvc for example.com and example.org as
well

.useMockMvcForHosts("example.com", "example.org")
.build();

As an alternative, we can perform the exact same setup by configuring the MockMvc instance
separately and supplying it to the MockMvcHtmlUnitDriverBuilder as follows.

MockMve mockMvc = MockMvcBuilders
.webAppContextSetup(context)
.apply(springSecurity())
.build();

driver = MockMvcHtmlUnitDriverBuilder
.mockMvcSetup(mockMvc)
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well

.useMockMvcForHosts("example.com", "example.org")
.build();

This is more verbose, but by building the WebDriver with a MockMvc instance we have the full power
of MockMvc at our fingertips.

Q For additional information on creating a MockMvc instance refer to Setup Choices.

MockMvc and Geb

In the previous section, we saw how to use MockMvc with WebDriver. In this section, we will use Geb
to make our tests even Groovy-er.

Why Geb and MockMvc?

Geb is backed by WebDriver, so it offers many of the same benefits that we get from WebDriver.

100

http://www.gebish.org/

However, Geb makes things even easier by taking care of some of the boilerplate code for us.

MockMvc and Geb Setup

We can easily initialize a Geb Browser with a Selenium WebDriver that uses MockMvc as follows.

def setup() {
browser.driver = MockMvcHtmlUnitDriverBuilder

.webAppContextSetup(context)
.build()

9 This is a simple example of using MockMvcHtmlUnitDriverBuilder. For more
advanced usage, refer to Advanced MockMvcHtmlUnitDriverBuilder

This will ensure that any URL referencing localhost as the server will be directed to our MockMvc
instance without the need for a real HTTP connection. Any other URL will be requested using a
network connection as normal. This allows us to easily test the use of CDNs.

MockMvc and Geb Usage

Now we can use Geb as we normally would, but without the need to deploy our application to a
Servlet container. For example, we can request the view to create a message with the following:

to CreateMessagePage
We can then fill out the form and submit it to create a message.

when:

form.summary = expectedSummary
form.text = expectedMessage
submit.click(ViewMessagePage)

Any unrecognized method calls or property accesses/references that are not found will be
forwarded to the current page object. This removes a lot of the boilerplate code we needed when
using WebDriver directly.

As with direct WebDriver usage, this improves on the design of our HtmlUnit test by leveraging the
Page Object Pattern. As mentioned previously, we can use the Page Object Pattern with HtmlUnit
and WebDriver, but it is even easier with Geb. Let’s take a look at our new Groovy-based
CreateMessagePage implementation.

101

class CreateMessagePage extends Page {
static url = 'messages/form'
static at = { assert title == 'Messages : Create'; true }
static content = {
submit { $("input[type=submit]"') }
form { $('form') }
errors(required:false) { $('label.error, .alert-error')?.text() }

The first thing you will notice is that our CreateMessagePage extends Page. We won’t go over the
details of Page, but in summary it contains common functionality for all of our pages. The next thing
you will notice is that we define a URL in which this page can be found. This allows us to navigate
to the page as follows.

to CreateMessagePage

We also have an at closure that determines if we are at the specified page. It should return true if
we are on the correct page. This is why we can assert that we are on the correct page as follows.

then:
at CreateMessagePage
errors.contains('This field is required.")

O We use an assertion in the closure, so that we can determine where things went
wrong if we were at the wrong page.

Next we create a content closure that specifies all the areas of interest within the page. We can use a
jQuery-ish Navigator API to select the content we are interested in.

Finally, we can verify that a new message was created successfully.

then:

at ViewMessagePage

success == 'Successfully created a new message'
id

date

summary == expectedSummary
message == expectedMessage

For further details on how to get the most out of Geb, consult The Book of Geb user’s manual.

3.6.3. Client-Side REST Tests

Client-side tests can be used to test code that internally uses the RestTemplate. The idea is to declare

102

http://www.gebish.org/manual/current/#the-jquery-ish-navigator-api
http://www.gebish.org/manual/current/

expected requests and to provide "stub" responses so that you can focus on testing the code in
isolation, i.e. without running a server. Here is an example:

RestTemplate restTemplate = new RestTemplate();

MockRestServiceServer mockServer = MockRestServiceServer.bindTo(restTemplate).build();
mockServer.expect(requestTo("/greeting")).andRespond(withSuccess());

// Test code that uses the above RestTemplate ...

mockServer.verify();

In the above example, MockRestServiceServer, the central class for client-side REST tests, configures
the RestTemplate with a custom ClientHttpRequestFactory that asserts actual requests against
expectations and returns "stub" responses. In this case we expect a request to "/greeting" and want
to return a 200 response with "text/plain” content. We could define as additional expected requests
and stub responses as needed. When expected requests and stub responses are defined, the
RestTemplate can be used in client-side code as usual. At the end of testing mockServer.verify() can
be used to verify that all expectations have been satisfied.

By default requests are expected in the order in which expectations were declared. You can set the
ignoreExpectOrder option when building the server in which case all expectations are checked (in
order) to find a match for a given request. That means requests are allowed to come in any order.
Here is an example:

server = MockRestServiceServer.bindTo(restTemplate).ignoreExpectOrder(true).build();

Even with unordered requests by default each request is allowed to execute once only. The expect
method provides an overloaded variant that accepts an ExpectedCount argument that specifies a
count range, e.g. once, manyTimes, max, min, between, and so on. Here is an example:

RestTemplate restTemplate = new RestTemplate();

MockRestServiceServer mockServer = MockRestServiceServer.bindTo(restTemplate).build();
mockServer.expect(times(2), requestTo("/foo")).andRespond(withSuccess());
mockServer.expect(times(3), requestTo("/bar")).andRespond(withSuccess());

/] ...

mockServer.verify();

Note that when ignoreExpectOrder is not set (the default), and therefore requests are expected in
order of declaration, then that order only applies to the first of any expected request. For example if
"/foo" is expected 2 times followed by "/bar" 3 times, then there should be a request to "/foo" before
there is a request to "/bar" but aside from that subsequent "/foo" and "/bar" requests can come at
any time.

103

As an alternative to all of the above the client-side test support also provides a
ClientHttpRequestFactory implementation that can be configured into a RestTemplate to bind it to a
MockMvc instance. That allows processing requests using actual server-side logic but without running
a server. Here is an example:

MockMvc mockMve = MockMvcBuilders.webAppContextSetup(this.wac).build();
this.restTemplate = new RestTemplate(new MockMvcClientHttpRequestFactory(mockMvce));

// Test code that uses the above RestTemplate ...

mockServer.verify();

Static Imports

Just like with server-side tests, the fluent API for client-side tests requires a few static imports.
Those are easy to find by searching "MockRest*'. Eclipse wusers should add
"MockRestRequestMatchers.*" and "MockRestResponseCreators.*" as "favorite static members" in the
Eclipse preferences under Java — Editor — Content Assist — Favorites. That allows using content
assist after typing the first character of the static method name. Other IDEs (e.g. Intelli]) may not
require any additional configuration. Just check the support for code completion on static
members.

Further Examples of Client-side REST Tests

Spring MVC Test’s own tests include example tests of client-side REST tests.

3.7. WebTestClient

WebTestClient is a thin shell around WebClient, using it to perform requests and exposing a
dedicated, fluent API for verifying responses. WebTest(lient bind to a WebFlux application using a
mock request and response, or it can test any web server over an HTTP connection.

Q Kotlin users, please see this section related to use of the WebTestClient.

3.7.1. Setup

To create a WebTestClient you must choose one of several server setup options. Effectively you’re
either configuring the WebFlux application to bind to, or using a URL to connect to a running
server.

Bind to controller

Use this server setup to test one @Controller at a time:
client = WebTestClient.bindToController(new TestController()).build();
The above loads the WebFlux Java config and registers the given controller. The resulting WebFlux

104

https://github.com/spring-projects/spring-framework/tree/master/spring-test/src/test/java/org/springframework/test/web/client/samples
web-reactive.pdf#webflux-webclient
languages.pdf#kotlin-webtestclient-issue
web-reactive.pdf#webflux-config

application will be tested without an HTTP server using mock request and response objects. There
are more methods on the builder to customize the default WebFlux Java config.

Bind to RouterFunction

Use this option to set up a server from a RouterFunction:

RouterFunction<?> route = ...
client = WebTestClient.bindToRouterFunction(route).build();

Internally the provided configuration is passed to RouterFunctions.toWebHandler. The resulting
WebFlux application will be tested without an HTTP server using mock request and response
objects.

Bind to ApplicationContext
Use this option to setup a server from the Spring configuration of your application, or some subset

of it:

(SpringRunner.class)
(classes = WebConfig.class) @D
public class MyTests {

private ApplicationContext context; @

private WebTest(Client client;

public void setUp() {
client = WebTestClient.bindToApplicationContext(context).build(); ®

}

@ Specify the configuration to load
@ Inject the configuration

@ Create the WebTestClient

Internally the provided configuration is passed to WebHttpHandlerBuilder to set up the request
processing chain, see WebHandler API for more details. The resulting WebFlux application will be
tested without an HTTP server using mock request and response objects.

Bind to server

This server setup option allows you to connect to a running server:

client = WebTestClient.bindToServer().baseUr1("http://localhost:8080").build();

105

web-reactive.pdf#webflux-fn
web-reactive.pdf#webflux-web-handler-api

Client builder

In addition to the server setup options above, you can also configure client options including base
URL, default headers, client filters, and others. These options are readily available following
bindToServer. For all others, you need to use configureClient() to transition from server to client
configuration as shown below:

client = WebTestClient.bindToController(new TestController())
.configureClient()
.baseUr1("/test")
.build();

3.7.2. Writing tests

WebTestClient is a thin shell around WebClient. It provides an identical API up to the point of
performing a request via exchange(). What follows after exchange() is a chained API workflow to
verify responses.

Typically you start by asserting the response status and headers:

client.get().uri("/persons/1")
.accept(MediaType.APPLICATION_JSON_UTF8)
.exchange()
.expectStatus().is0k()
.expectHeader().contentType(MediaType.APPLICATION_JSON_UTF8)
/] ...

Then you specify how to decode and consume the response body:

* expectBody(Class<T>) —decode to single object.
» expectBodyList(Class<T>) —decode and collect objects to List<T>.

* expectBody() —decode to byte[] for JSON content or empty body.

Then you can use built-in assertions for the body. Here is one example:

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBodyList(Person.class).hasSize(3).contains(person);

You can go beyond the built-in assertions and create your own:

106

web-reactive.pdf#webflux-webclient

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody(Person.class)
.consumeWith(result -> {
// custom assertions (e.g. Assert])...

H;

You can also exit the workflow and get a result:

EntityExchangeResult<Person> result = client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody(Person.class)
.returnResult();

Q When you need to decode to a target type with generics, look for the overloaded
methods that accept ParameterizedTypeReference instead of Class<T>.

No content

If the response has no content, or you don’t care if it does, use Void.class which ensures that
resources are released:

client.get().uri("/persons/123")
.exchange()
.expectStatus().isNotFound()
.expectBody(Void.class);

Or if you want to assert there is no response content, use this:

client.post().uri("/persons")
.body(personMono, Person.class)
.exchange()
.expectStatus().isCreated()
.expectBody().isEmpty();

JSON content

When you use expectBody() the response is consumed as a byte[]. This is useful for raw content
assertions. For example you can use J[SONAssert to verify JSON content:

107

https://docs.spring.io/spring-framework/docs/5.0.8.RELEASE/javadoc-api/org/springframework/core/ParameterizedTypeReference.html
http://jsonassert.skyscreamer.org

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody()
.json("{\"name\":\"Jane\"}")

You can also use J[SONPath expressions:

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBody()
.jsonPath("$[0].name").isEqualTo("Jane")
.jsonPath("$[1].name").isEqualTo("Jason");

Streaming responses

n n

To test infinite streams (e.g. "text/event-stream”, "application/stream+json"), youw’ll need to exit the
chained API, via returnResult, immediately after response status and header assertions, as shown
below:

FluxExchangeResult<MyEvent> result = client.get().uri("/events")
.accept (TEXT_EVENT_STREAM)
.exchange()
.expectStatus().is0k()
.returnResult(MyEvent.class);

Now you can consume the Flux<T>, assert decoded objects as they come, and then cancel at some
point when test objects are met. We recommend using the StepVerifier from the reactor-test
module to do that, for example:

Flux<Event> eventFux = result.getResponseBody();

StepVerifier.create(eventFlux)
.expectNext(person)
.expectNextCount(4)
.consumeNextWith(p -> ...)
.thenCancel()
verify();

Request body

When it comes to building requests, the WebTest(Client offers an identical API as the WebClient and
the implementation is mostly a simple pass-through. Please refer to the WebClient documentation
for examples on how to prepare a request with a body including submitting form data, multipart

108

https://github.com/jayway/JsonPath
web-reactive.pdf#webflux-client-body

requests, and more.

3.8. PetClinic Example

The PetClinic application, available on GitHub, illustrates several features of the Spring TestContext
Framework in a JUnit 4 environment. Most test functionality is included in the AbstractClinicTests,
for which a partial listing is shown below:

import static org.junit.Assert.assertEquals;
// import ...

public abstract class AbstractClinicTests extends
AbstractTransactionallUnit4SpringContextTests {

protected Clinic clinic;

public void getVets() {

Collection<Vet> vets = this.clinic.getVets();

assertEquals("JDBC query must show the same number of vets",
super.countRowsInTable("VETS"), vets.size());

Vet v1 = EntityUtils.getById(vets, Vet.class, 2);

assertEquals("Leary", v1.getlLastName());

assertEquals(1, v1.getNrOfSpecialties());

assertEquals("radiology”, (v1.getSpecialties().get(0)).getName());

/] ...

/] ...

Notes:

* This test case extends the AbstractTransactionallUnit4SpringContextTests class, from which it
inherits configuration for Dependency Injection (through the
DependencyInjectionTestExecutionlistener) and transactional behavior (through the
TransactionalTestExecutionListener).

* The clinic instance variable —the application object being tested —is set by Dependency
Injection through eAutowired semantics.

* The getVets() method illustrates how you can use the inherited countRowsInTable() method to
easily verify the number of rows in a given table, thus verifying correct behavior of the
application code being tested. This allows for stronger tests and lessens dependency on the
exact test data. For example, you can add additional rows in the database without breaking
tests.

» Like many integration tests that use a database, most of the tests in AbstractClinicTests depend

109

https://github.com/spring-projects/spring-petclinic

on a minimum amount of data already in the database before the test cases run. Alternatively,
you might choose to populate the database within the test fixture set up of your test
cases — again, within the same transaction as the tests.

The PetClinic application supports three data access technologies: JDBC, Hibernate, and JPA. By
declaring @ContextConfiguration without any specific resource locations, the AbstractClinicTests
class will have its application context loaded from the default location, AbstractClinicTests-
context.xml, which declares a common DataSource. Subclasses specify additional context locations
that must declare a PlatformTransactionManager and a concrete implementation of Clinic.

For example, the Hibernate implementation of the PetClinic tests contains the following
implementation. For this example, HibernateClinicTests does not contain a single line of code: we
only need to declare @ContextConfiguration, and the tests are inherited from AbstractClinicTests.
Because @ContextConfiguration is declared without any specific resource locations, the Spring
TestContext Framework loads an application context from all the beans defined in
AbstractClinicTests-context.xml (i.e., the inherited locations) and HibernateClinicTests-
context.xml, with HibernateClinicTests-context.xml possibly overriding beans defined in
AbstractClinicTests-context.xml.

public class HibernateClinicTests extends AbstractClinicTests { }

In a large-scale application, the Spring configuration is often split across multiple files.
Consequently, configuration locations are typically specified in a common base class for all
application-specific integration tests. Such a base class may also add wuseful instance
variables — populated by Dependency Injection, naturally —such as a SessionFactory in the case of
an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your integration
tests as in the deployed environment. One likely point of difference concerns database connection
pooling and transaction infrastructure. If you are deploying to a full-blown application server, you
will probably use its connection pool (available through JNDI) and JTA implementation. Thus in
production you will use a JIndiObjectFactoryBean or <jee:jndi-lookup> for the DataSource and
JtaTransactionManager. JNDI and JTA will not be available in out-of-container integration tests, so
you should wuse a combination like the Commons DBCP BasicDataSource and
DataSourceTransactionManager or HibernateTransactionManager for them. You can factor out this
variant behavior into a single XML file, having the choice between application server and a 'local'
configuration separated from all other configuration, which will not vary between the test and
production environments. In addition, it is advisable to use properties files for connection settings.
See the PetClinic application for an example.

110

Chapter 4. Further Resources

Consult the following resources for more information about testing:
 JUnit: "A programmer-oriented testing framework for Java". Used by the Spring Framework in its
test suite.

» TestNG: A testing framework inspired by JUnit with added support for annotations, test groups,
data-driven testing, distributed testing, etc.

» Assert]: "Fluent assertions for Java" including support for Java 8 lambdas, streams, etc.
* Mock Objects: Article in Wikipedia.

* MockObjects.com: Web site dedicated to mock objects, a technique for improving the design of
code within test-driven development.

* Mockito: Java mock library based on the test spy pattern.

» EasyMock: Java library "that provides Mock Objects for interfaces (and objects through the class
extension) by generating them on the fly using Java’s proxy mechanism." Used by the Spring
Framework in its test suite.

* JMock: Library that supports test-driven development of Java code with mock objects.

* DbUnit: JUnit extension (also usable with Ant and Maven) targeted for database-driven projects
that, among other things, puts your database into a known state between test runs.

* The Grinder: Java load testing framework.

111

http://www.junit.org/
http://testng.org/
http://joel-costigliola.github.io/assertj/
http://en.wikipedia.org/wiki/Mock_Object
http://www.mockobjects.com/
http://mockito.org/
http://xunitpatterns.com/Test%20Spy.html
http://www.easymock.org/
http://www.jmock.org/
http://dbunit.sourceforge.net/
http://grinder.sourceforge.net/

	Testing
	Table of Contents
	Chapter 1. Introduction to Spring Testing
	Chapter 2. Unit Testing
	2.1. Mock Objects
	2.1.1. Environment
	2.1.2. JNDI
	2.1.3. Servlet API
	2.1.4. Spring Web Reactive

	2.2. Unit Testing support Classes
	2.2.1. General testing utilities
	2.2.2. Spring MVC

	Chapter 3. Integration Testing
	3.1. Overview
	3.2. Goals of Integration Testing
	3.2.1. Context management and caching
	3.2.2. Dependency Injection of test fixtures
	3.2.3. Transaction management
	3.2.4. Support classes for integration testing

	3.3. JDBC Testing Support
	3.4. Annotations
	3.4.1. Spring Testing Annotations
	@BootstrapWith
	@ContextConfiguration
	@WebAppConfiguration
	@ContextHierarchy
	@ActiveProfiles
	@TestPropertySource
	@DirtiesContext
	@TestExecutionListeners
	@Commit
	@Rollback
	@BeforeTransaction
	@AfterTransaction
	@Sql
	@SqlConfig
	@SqlGroup

	3.4.2. Standard Annotation Support
	3.4.3. Spring JUnit 4 Testing Annotations
	@IfProfileValue
	@ProfileValueSourceConfiguration
	@Timed
	@Repeat

	3.4.4. Spring JUnit Jupiter Testing Annotations
	@SpringJUnitConfig
	@SpringJUnitWebConfig
	@EnabledIf
	@DisabledIf

	3.4.5. Meta-Annotation Support for Testing

	3.5. Spring TestContext Framework
	3.5.1. Key abstractions
	TestContext
	TestContextManager
	TestExecutionListener
	Context Loaders

	3.5.2. Bootstrapping the TestContext framework
	3.5.3. TestExecutionListener configuration
	Registering custom TestExecutionListeners
	Automatic discovery of default TestExecutionListeners
	Ordering TestExecutionListeners
	Merging TestExecutionListeners

	3.5.4. Context management
	Context configuration with XML resources
	Context configuration with Groovy scripts
	Context configuration with annotated classes
	Mixing XML, Groovy scripts, and annotated classes
	Context configuration with context initializers
	Context configuration inheritance
	Context configuration with environment profiles
	Context configuration with test property sources
	Loading a WebApplicationContext
	Context caching
	Context hierarchies

	3.5.5. Dependency injection of test fixtures
	3.5.6. Testing request and session scoped beans
	3.5.7. Transaction management
	Test-managed transactions
	Enabling and disabling transactions
	Transaction rollback and commit behavior
	Programmatic transaction management
	Executing code outside of a transaction
	Configuring a transaction manager
	Demonstration of all transaction-related annotations

	3.5.8. Executing SQL scripts
	Executing SQL scripts programmatically
	Executing SQL scripts declaratively with @Sql

	3.5.9. Parallel test execution
	3.5.10. TestContext Framework support classes
	Spring JUnit 4 Runner
	Spring JUnit 4 Rules
	JUnit 4 support classes
	SpringExtension for JUnit Jupiter
	Dependency Injection with the SpringExtension
	TestNG support classes

	3.6. Spring MVC Test Framework
	3.6.1. Server-Side Tests
	Static Imports
	Setup Choices
	Setup Features
	Performing Requests
	Defining Expectations
	Filter Registrations
	Differences between Out-of-Container and End-to-End Integration Tests
	Further Server-Side Test Examples

	3.6.2. HtmlUnit Integration
	Why HtmlUnit Integration?
	MockMvc and HtmlUnit
	MockMvc and WebDriver
	MockMvc and Geb

	3.6.3. Client-Side REST Tests
	Static Imports
	Further Examples of Client-side REST Tests

	3.7. WebTestClient
	3.7.1. Setup
	Bind to controller
	Bind to RouterFunction
	Bind to ApplicationContext
	Bind to server
	Client builder

	3.7.2. Writing tests
	No content
	JSON content
	Streaming responses
	Request body

	3.8. PetClinic Example

	Chapter 4. Further Resources

