Data Access

Version 5.3.4

Table of Contents

1. Transaction Management

1.1. Advantages of the Spring Framework’s Transaction Support Model
1.1.1. Global Transactions
1.1.2. Local Transactions
1.1.3. Spring Framework’s Consistent Programming Model

1.2. Understanding the Spring Framework Transaction Abstraction
1.2.1. Hibernate Transaction Setup

1.3. Synchronizing Resources with Transactions
1.3.1. High-level Synchronization Approach
1.3.2. Low-level Synchronization Approach
1.3.3. TransactionAwareDataSourceProxy

1.4. Declarative Transaction Management

1.4.1. Understanding the Spring Framework’s Declarative Transaction Implementation

1.4.2. Example of Declarative Transaction Implementation
1.4.3. Rolling Back a Declarative Transaction
1.4.4. Configuring Different Transactional Semantics for Different Beans
1.4.5. <tx:advice/> Settings
1.4.6. Using @Transactional
@Transactional Settings
Multiple Transaction Managers with @Transactional
Custom Composed Annotations
1.4.7. Transaction Propagation
Understanding PROPAGATION_REQUIRED
Understanding PROPAGATION_REQUIRES_NEW
Understanding PROPAGATION_NESTED
1.4.8. Advising Transactional Operations
1.4.9. Using @Transactional with Aspect]
1.5. Programmatic Transaction Management
1.5.1. Using the TransactionTemplate
Specifying Transaction Settings
1.5.2. Using the TransactionOperator
Cancel Signals
Specifying Transaction Settings
1.5.3. Using the TransactionManager
Using the PlatformTransactionManager

Using the ReactiveTransactionManager

1.6. Choosing Between Programmatic and Declarative Transaction Management

1.7. Transaction-bound Events

0 B W W N NN

10
10
10
11
11
12
13
22
24
27
28
36
37
39
41
41
42
42
42
48
49
49
51
33
54
35
56
56
57
57
38

1.8. Application server-specific integration
1.8.1. IBM WebSphere
1.8.2. Oracle WebLogic Server
1.9. Solutions to Common Problems
1.9.1. Using the Wrong Transaction Manager for a Specific DataSource
1.10. Further Resources
2. DAO Support
2.1. Consistent Exception Hierarchy
2.2. Annotations Used to Configure DAO or Repository Classes
3. Data Access with JDBC
3.1. Choosing an Approach for JDBC Database Access
3.2. Package Hierarchy
3.3. Using the JDBC Core Classes to Control Basic JDBC Processing and Error Handling
3.3.1. Using JdbcTemplate
Querying (SELECT)
Updating (INSERT, UPDATE, and DELETE) with JdbcTemplate
Other JdbcTemplate Operations
JdbcTemplate Best Practices
3.3.2. Using NamedParameterJdbcTemplate
3.3.3. Using SQLExceptionTranslator
3.3.4. Running Statements
3.3.5. Running Queries
3.3.6. Updating the Database
3.3.7. Retrieving Auto-generated Keys
3.4. Controlling Database Connections
3.4.1. Using DataSource
3.4.2. Using DataSourceUtils
3.4.3. Implementing SmartDataSource
3.4.4. Extending AbstractDataSource
3.4.5. Using SingleConnectionDataSource
3.4.6. Using DriverManagerDataSource
3.4.7. Using TransactionAwareDataSourceProxy
3.4.8. Using DataSourceTransactionManager
3.5. JDBC Batch Operations
3.5.1. Basic Batch Operations with JdbcTemplate
3.5.2. Batch Operations with a List of Objects
3.5.3. Batch Operations with Multiple Batches
3.6. Simplifying JDBC Operations with the SimpleJdbc Classes
3.6.1. Inserting Data by Using SimpleJdbcInsert
3.6.2. Retrieving Auto-generated Keys by Using SimpleJdbcInsert
3.6.3. Specifying Columns for a SimpleJdbcInsert

39
39
39
60
60
60
61
61
62
65
65
66
66
67
67
70
71
72
75
78
81
82
84
84
85
85
87
88
88
88
88
88
89
89
89
91
94
96
96
97
99

3.6.4. Using SqlParameterSource to Provide Parameter Values 100

3.6.5. Calling a Stored Procedure with SimpleJdbcCall 102
3.6.6. Explicitly Declaring Parameters to Use for a SimpleJdbc(all 105
3.6.7. How to Define SqlParameters 106
3.6.8. Calling a Stored Function by Using SimpleJdbcCall 107
3.6.9. Returning a ResultSet or REF Cursor from a SimpleJdbcCall 109
3.7. Modeling JDBC Operations as Java Objects 110
3.7.1. Understanding SqlQuery 110
3.7.2. Using MappingSqlQuery 111
3.7.3. Using SqlUpdate 112
3.7.4. Using StoredProcedure 114
3.8. Common Problems with Parameter and Data Value Handling 122
3.8.1. Providing SQL Type Information for Parameters 122
3.8.2. Handling BLOB and CLOB objects 123
3.8.3. Passing in Lists of Values for IN Clause 126
3.8.4. Handling Complex Types for Stored Procedure Calls 127
3.9. Embedded Database Support 129
3.9.1. Why Use an Embedded Database? 129
3.9.2. Creating an Embedded Database by Using Spring XML 129
3.9.3. Creating an Embedded Database Programmatically 130
3.9.4. Selecting the Embedded Database Type 131
Using HSQL 132
Using H2 132
Using Derby 132
3.9.5. Testing Data Access Logic with an Embedded Database 132
3.9.6. Generating Unique Names for Embedded Databases 134
3.9.7. Extending the Embedded Database Support 135
3.10. Initializing a DataSource 135
3.10.1. Initializing a Database by Using Spring XML 135
Initialization of Other Components that Depend on the Database 137

4. Data Access with R2DBC 138
4.1. Package Hierarchy 138
4.2. Using the R2DBC Core Classes to Control Basic R2ZDBC Processing and Error Handling 138
4.2.1. Using Database(Client 138
Executing Statements 140
Querying (SELECT) 140
Updating (INSERT, UPDATE, and DELETE) with DatabaseClient 142
Binding Values to Queries 142
Statement Filters 144
DatabaseClient Best Practices 145

5. Retrieving Auto-generated Keys 148

5.1. Controlling Database Connections
5.1.1. Using ConnectionFactory
5.1.2. Using ConnectionFactoryUtils
5.1.3. Using SingleConnectionFactory
5.1.4. Using TransactionAwareConnectionFactoryProxy
5.1.5. Using R2dbcTransactionManager
6. Object Relational Mapping (ORM) Data Access
6.1. Introduction to ORM with Spring
6.2. General ORM Integration Considerations
6.2.1. Resource and Transaction Management
6.2.2. Exception Translation
6.3. Hibernate
6.3.1. SessionFactory Setup in a Spring Container
6.3.2. Implementing DAOs Based on the Plain Hibernate API
6.3.3. Declarative Transaction Demarcation
6.3.4. Programmatic Transaction Demarcation
6.3.5. Transaction Management Strategies
6.3.6. Comparing Container-managed and Locally Defined Resources
6.3.7. Spurious Application Server Warnings with Hibernate
6.4. JPA
6.4.1. Three Options for JPA Setup in a Spring Environment
Using LocalEntityManagerFactoryBean
Obtaining an EntityManagerFactory from JNDI
Using LocalContainerEntityManagerFactoryBean
Dealing with Multiple Persistence Units
Background Bootstrapping
6.4.2. Implementing DAOs Based on JPA: EntityManagerFactory and EntityManager
6.4.3. Spring-driven JPA transactions
6.4.4. Understanding JpaDialect and JpaVendorAdapter
6.4.5. Setting up JPA with JTA Transaction Management
6.4.6. Native Hibernate Setup and Native Hibernate Transactions for JPA Interaction
7. Marshalling XML by Using Object-XML Mappers
7.1. Introduction
7.1.1. Ease of configuration
7.1.2. Consistent Interfaces
7.1.3. Consistent Exception Hierarchy
7.2. Marshaller and Unmarshaller
7.2.1. Understanding Marshaller
7.2.2. Understanding Unmarshaller
7.2.3. Understanding XmlMappingException
7.3. Using Marshaller and Unmarshaller

148
148
149
149
149
150
151
151
152
152
153
154
154
156
158
160
162
162
163
164
164
165
165
166
168
169
170
173
174
174
175
176
176
176
176
176
177
177
177
178
179

7.5, JAX B . 182
7.5.1. Using Jaxb2Marshaller o 182
XML Configuration Namespace. 183

7.6, I B e 184
7.6.1. Using JibxMarshaller o 184
XML Configuration Namespace. 184
T.7.XSIP@AIML « ..o 185
7.7.1. Using XStreamMarshaller 185

B APPENAIX . . .o 187
8.1. XML Schemas e 187
8.1.1. The tx Schema 187

8.1.2. The jdbc Schema 188

This part of the reference documentation is concerned with data access and the
interaction between the data access layer and the business or service layer.

Spring’s comprehensive transaction management support is covered in some detail, followed by
thorough coverage of the various data access frameworks and technologies with which the Spring
Framework integrates.

Chapter 1. Transaction Management

Comprehensive transaction support is among the most compelling reasons to use the Spring
Framework. The Spring Framework provides a consistent abstraction for transaction management
that delivers the following benefits:

* A consistent programming model across different transaction APIs, such as Java Transaction
API (JTA), JDBC, Hibernate, and the Java Persistence API (JPA).
» Support for declarative transaction management.

* A simpler API for programmatic transaction management than complex transaction APIs, such
as JTA.

Excellent integration with Spring’s data access abstractions.
The following sections describe the Spring Framework’s transaction features and technologies:

* Advantages of the Spring Framework’s transaction support model describes why you would use
the Spring Framework’s transaction abstraction instead of EJB Container-Managed Transactions
(CMT) or choosing to drive local transactions through a proprietary API, such as Hibernate.

* Understanding the Spring Framework transaction abstraction outlines the core classes and
describes how to configure and obtain DataSource instances from a variety of sources.

* Synchronizing resources with transactions describes how the application code ensures that
resources are created, reused, and cleaned up properly.

* Declarative transaction management describes support for declarative transaction
management.

* Programmatic transaction management covers support for programmatic (that is, explicitly
coded) transaction management.

* Transaction bound event describes how you could use application events within a transaction.

The chapter also includes discussions of best practices, application server integration, and solutions
to common problems.

1.1. Advantages of the Spring Framework’s
Transaction Support Model

Traditionally, Java EE developers have had two choices for transaction management: global or local
transactions, both of which have profound limitations. Global and local transaction management is
reviewed in the next two sections, followed by a discussion of how the Spring Framework’s
transaction management support addresses the limitations of the global and local transaction
models.

1.1.1. Global Transactions

Global transactions let you work with multiple transactional resources, typically relational
databases and message queues. The application server manages global transactions through the

JTA, which is a cumbersome API (partly due to its exception model). Furthermore, a JTA
UserTransaction normally needs to be sourced from JNDI, meaning that you also need to use JNDI in
order to use JTA. The use of global transactions limits any potential reuse of application code, as JTA
is normally only available in an application server environment.

Previously, the preferred way to use global transactions was through EJB CMT (Container Managed
Transaction). CMT is a form of declarative transaction management (as distinguished from
programmatic transaction management). EJB CMT removes the need for transaction-related JNDI
lookups, although the use of EJB itself necessitates the use of JNDI. It removes most but not all of the
need to write Java code to control transactions. The significant downside is that CMT is tied to JTA
and an application server environment. Also, it is only available if one chooses to implement
business logic in E]JBs (or at least behind a transactional EJB facade). The negatives of E]JB in general
are so great that this is not an attractive proposition, especially in the face of compelling
alternatives for declarative transaction management.

1.1.2. Local Transactions

Local transactions are resource-specific, such as a transaction associated with a JDBC connection.
Local transactions may be easier to use but have a significant disadvantage: They cannot work
across multiple transactional resources. For example, code that manages transactions by using a
JDBC connection cannot run within a global JTA transaction. Because the application server is not
involved in transaction management, it cannot help ensure correctness across multiple resources.
(It is worth noting that most applications use a single transaction resource.) Another downside is
that local transactions are invasive to the programming model.

1.1.3. Spring Framework’s Consistent Programming Model

Spring resolves the disadvantages of global and local transactions. It lets application developers use
a consistent programming model in any environment. You write your code once, and it can benefit
from different transaction management strategies in different environments. The Spring
Framework provides both declarative and programmatic transaction management. Most users
prefer declarative transaction management, which we recommend in most cases.

With programmatic transaction management, developers work with the Spring Framework
transaction abstraction, which can run over any underlying transaction infrastructure. With the
preferred declarative model, developers typically write little or no code related to transaction
management and, hence, do not depend on the Spring Framework transaction API or any other
transaction API.

Do you need an application server for transaction management?

The Spring Framework’s transaction management support changes traditional rules as to
when an enterprise Java application requires an application server.

In particular, you do not need an application server purely for declarative transactions
through EJBs. In fact, even if your application server has powerful JTA capabilities, you may
decide that the Spring Framework’s declarative transactions offer more power and a more
productive programming model than E]JB CMT.

Typically, you need an application server’s JTA capability only if your application needs to
handle transactions across multiple resources, which is not a requirement for many
applications. Many high-end applications use a single, highly scalable database (such as
Oracle RAC) instead. Stand-alone transaction managers (such as Atomikos Transactions and
JOTM) are other options. Of course, you may need other application server capabilities, such
as Java Message Service (JMS) and Java EE Connector Architecture (JCA).

The Spring Framework gives you the choice of when to scale your application to a fully
loaded application server. Gone are the days when the only alternative to using EJB CMT or
JTA was to write code with local transactions (such as those on JDBC connections) and face a
hefty rework if you need that code to run within global, container-managed transactions.
With the Spring Framework, only some of the bean definitions in your configuration file need
to change (rather than your code).

1.2. Understanding the Spring Framework Transaction
Abstraction

The key to the Spring transaction abstraction is the notion of a transaction strategy. A transaction
strategy is defined by a TransactionManager, specifically the
org.springframework.transaction.PlatformTransactionManager interface for imperative transaction
management and the org.springframework.transaction.ReactiveTransactionManager interface for
reactive transaction management. The following listing shows the definition of the
PlatformTransactionManager API:

public interface PlatformTransactionManager extends TransactionManager {

TransactionStatus getTransaction(TransactionDefinition definition) throws
TransactionException;

void commit(TransactionStatus status) throws TransactionException;

void rollback(TransactionStatus status) throws TransactionException;

This is primarily a service provider interface (SPI), although you can use it programmatically from
your application code. Because PlatformTransactionManager is an interface, it can be easily mocked

https://www.atomikos.com/
http://jotm.objectweb.org/

or stubbed as necessary. It is not tied to a lookup strategy, such as JNDI. PlatformTransactionManager
implementations are defined like any other object (or bean) in the Spring Framework IoC
container. This benefit alone makes Spring Framework transactions a worthwhile abstraction, even
when you work with JTA. You can test transactional code much more easily than if it used JTA
directly.

Again, in keeping with Spring’s philosophy, the TransactionException that can be thrown by any of
the PlatformTransactionManager interface’s methods is unchecked (that is, it extends the
java.lang.RuntimeException class). Transaction infrastructure failures are almost invariably fatal. In
rare cases where application code can actually recover from a transaction failure, the application
developer can still choose to catch and handle TransactionException. The salient point is that
developers are not forced to do so.

The getTransaction(..) method returns a TransactionStatus object, depending on a
TransactionDefinition parameter. The returned TransactionStatus might represent a new
transaction or can represent an existing transaction, if a matching transaction exists in the current
call stack. The implication in this latter case is that, as with Java EE transaction contexts, a
TransactionStatus is associated with a thread of execution.

As of Spring Framework 5.2, Spring also provides a transaction management abstraction for
reactive applications that make use of reactive types or Kotlin Coroutines. The following listing
shows the transaction strategy defined by
org.springframework.transaction.ReactiveTransactionManager:

public interface ReactiveTransactionManager extends TransactionManager {

Mono<ReactiveTransaction> getReactiveTransaction(TransactionDefinition definition)
throws TransactionException;

Mono<Void> commit(ReactiveTransaction status) throws TransactionException;

Mono<Void> rollback(ReactiveTransaction status) throws TransactionException;

The reactive transaction manager is primarily a service provider interface (SPI), although you can
use it programmatically from your application code. Because ReactiveTransactionManager is an
interface, it can be easily mocked or stubbed as necessary.

The TransactionDefinition interface specifies:

* Propagation: Typically, all code within a transaction scope runs in that transaction. However,
you can specify the behavior if a transactional method is run when a transaction context
already exists. For example, code can continue running in the existing transaction (the common
case), or the existing transaction can be suspended and a new transaction created. Spring offers
all of the transaction propagation options familiar from EJB CMT. To read about the semantics of
transaction propagation in Spring, see Transaction Propagation.

* Isolation: The degree to which this transaction is isolated from the work of other transactions.
For example, can this transaction see uncommitted writes from other transactions?

* Timeout: How long this transaction runs before timing out and being automatically rolled back
by the underlying transaction infrastructure.

* Read-only status: You can use a read-only transaction when your code reads but does not
modify data. Read-only transactions can be a useful optimization in some cases, such as when
you use Hibernate.

These settings reflect standard transactional concepts. If necessary, refer to resources that discuss
transaction isolation levels and other core transaction concepts. Understanding these concepts is
essential to using the Spring Framework or any transaction management solution.

The TransactionStatus interface provides a simple way for transactional code to control transaction
execution and query transaction status. The concepts should be familiar, as they are common to all
transaction APIs. The following listing shows the TransactionStatus interface:

public interface TransactionStatus extends TransactionExecution, SavepointManager,
Flushable {

@0verride
boolean isNewTransaction();

boolean hasSavepoint();

@0verride
void setRollbackOnly();

@0verride
boolean isRollbackOnly();

void flush();

@0verride
boolean isCompleted();

Regardless of whether you opt for declarative or programmatic transaction management in Spring,
defining the correct TransactionManager implementation is absolutely essential. You typically define
this implementation through dependency injection.

TransactionManager implementations normally require knowledge of the environment in which
they work: JDBC, JTA, Hibernate, and so on. The following examples show how you can define a
local PlatformTransactionManager implementation (in this case, with plain JDBC.)

You can define a JDBC DataSource by creating a bean similar to the following:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
<property name="driverClassName" value="${jdbc.driverClassName}" />
<property name="ur1l" value="${jdbc.ur1}" />
<property name="username" value="${jdbc.username}" />
<property name="password" value="${jdbc.password}" />
</bean>

The related PlatformTransactionManager bean definition then has a reference to the DataSource
definition. It should resemble the following example:

<bean id="txManager"

class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>

If you use JTA in a Java EE container, then you use a container DataSource, obtained through JNDI,
in conjunction with Spring’s JtaTransactionManager. The following example shows what the JTA and
JNDI lookup version would look like:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jee
https://www.springframework.org/schema/jee/spring-jee.xsd">

<jee:jndi-lookup id="dataSource" jndi-name="jdbc/jpetstore"/>

<bean id="txManager"
class="org.springframework.transaction.jta.JtaTransactionManager" />

<!-- other <bean/> definitions here -->

</beans>

The JtaTransactionManager does not need to know about the DataSource (or any other specific
resources) because it uses the container’s global transaction management infrastructure.

o The preceding definition of the dataSource bean uses the <jndi-lookup/> tag from
the jee namespace. For more information see The JEE Schema.

integration.pdf#xsd-schemas-jee

If you use JTA, your transaction manager definition should look the same,

o regardless of what data access technology you use, be it JDBC, Hibernate JPA, or
any other supported technology. This is due to the fact that JTA transactions are
global transactions, which can enlist any transactional resource.

In all Spring transaction setups, application code does not need to change. You can change how
transactions are managed merely by changing configuration, even if that change means moving
from local to global transactions or vice versa.

1.2.1. Hibernate Transaction Setup

You can also easily use Hibernate local transactions, as shown in the following examples. In this
case, you need to define a Hibernate LocalSessionFactoryBean, which your application code can use
to obtain Hibernate Session instances.

The DataSource bean definition is similar to the local JDBC example shown previously and, thus, is
not shown in the following example.

If the DataSource (used by any non-JTA transaction manager) is looked up through

o JNDI and managed by a Java EE container, it should be non-transactional, because
the Spring Framework (rather than the Java EE container) manages the
transactions.

The txManager bean in this case is of the HibernateTransactionManager type. In the same way as the
DataSourceTransactionManager needs a reference to the DataSource, the HibernateTransactionManager
needs a reference to the SessionFactory. The following example declares sessionFactory and
txManager beans:

<bean id="sessionFactory"
class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
<property name="dataSource" ref="dataSource"/>
<property name="mappingResources">
<list>

<value>org/springframework/samples/petclinic/hibernate/petclinic.hbm.xml</value>
</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=${hibernate.dialect}
</value>
</property>
</bean>

<bean id="txManager"

class="org.springframework.orm.hibernate5.HibernateTransactionManager">
<property name="sessionFactory" ref="sessionFactory"/>

</bean>

If you use Hibernate and Java EE container-managed JTA transactions, you should use the same
JtaTransactionManager as in the previous JTA example for JDBC, as the following example shows.
Also, it is recommended to make Hibernate aware of JTA through its transaction coordinator and
possibly also its connection release mode configuration:

<bean id="sessionFactory"
class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
<property name="dataSource" ref="dataSource"/>
<property name="mappingResources">
<list>

<value>org/springframework/samples/petclinic/hibernate/petclinic.hbm.xml</value>
</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=${hibernate.dialect}
hibernate.transaction.coordinator_class=jta

hibernate.connection.handling_mode=DELAYED_ACQUISITION_AND_RELEASE_AFTER_STATEMENT
</value>
</property>
</bean>

<bean id="txManager"
class="org.springframework.transaction.jta.JtaTransactionManager"/>

Or alternatively, you may pass the JtaTransactionManager into your LocalSessionFactoryBean for
enforcing the same defaults:

<bean id="sessionFactory"
class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
<property name="dataSource" ref="dataSource"/>
<property name="mappingResources">
<list>

<value>org/springframework/samples/petclinic/hibernate/petclinic.hbm.xml</value>
</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=${hibernate.dialect}
</value>
</property>
<property name="jtaTransactionManager" ref="txManager"/>
</bean>

<bean id="txManager"
class="org.springframework.transaction.jta.JtaTransactionManager"/>

1.3. Synchronizing Resources with Transactions

How to create different transaction managers and how they are linked to related resources that
need to be synchronized to transactions (for example DataSourceTransactionManager to a JDBC
DataSource, HibernateTransactionManager to a Hibernate SessionFactory, and so forth) should now be
clear. This section describes how the application code (directly or indirectly, by using a persistence
API such as JDBC, Hibernate, or JPA) ensures that these resources are created, reused, and cleaned
up properly. The section also discusses how transaction synchronization is (optionally) triggered
through the relevant TransactionManager.

1.3.1. High-level Synchronization Approach

The preferred approach is to use Spring’s highest-level template based persistence integration APIs
or to use native ORM APIs with transaction-aware factory beans or proxies for managing the native
resource factories. These transaction-aware solutions internally handle resource creation and
reuse, cleanup, optional transaction synchronization of the resources, and exception mapping.
Thus, user data access code does not have to address these tasks but can focus purely on non-
boilerplate persistence logic. Generally, you use the native ORM API or take a template approach for
JDBC access by using the JdbcTemplate. These solutions are detailed in subsequent sections of this
reference documentation.

1.3.2. Low-level Synchronization Approach

Classes such as DataSourceUtils (for JDBC), EntityManagerFactoryUtils (for JPA), SessionFactoryUtils
(for Hibernate), and so on exist at a lower level. When you want the application code to deal
directly with the resource types of the native persistence APIs, you use these classes to ensure that
proper Spring Framework-managed instances are obtained, transactions are (optionally)

10

synchronized, and exceptions that occur in the process are properly mapped to a consistent API.

For example, in the case of JDBC, instead of the traditional JDBC approach of calling the
getConnection() method on the DataSource, you can instead use Spring’s
org.springframework.jdbc.datasource.DataSourceUtils class, as follows:

Connection conn = DataSourceUtils.getConnection(dataSource);

If an existing transaction already has a connection synchronized (linked) to it, that instance is
returned. Otherwise, the method call triggers the creation of a new connection, which is
(optionally) synchronized to any existing transaction and made available for subsequent reuse in
that same transaction. As mentioned earlier, any SQLException is wrapped in a Spring Framework
CannotGetJdbcConnectionException, one of the Spring Framework’s hierarchy of unchecked
DataAccessException types. This approach gives you more information than can be obtained easily
from the SQLException and ensures portability across databases and even across different
persistence technologies.

This approach also works without Spring transaction management (transaction synchronization is
optional), so you can use it whether or not you use Spring for transaction management.

Of course, once you have used Spring’s J]DBC support, JPA support, or Hibernate support, you
generally prefer not to use DataSourceUtils or the other helper classes, because you are much
happier working through the Spring abstraction than directly with the relevant APIs. For example,
if you use the Spring JdbcTemplate or jdbc.object package to simplify your use of JDBC, correct
connection retrieval occurs behind the scenes and you need not write any special code.

1.3.3. TransactionAwareDataSourceProxy

At the very lowest level exists the TransactionAwareDataSourceProxy class. This is a proxy for a target
DataSource, which wraps the target DataSource to add awareness of Spring-managed transactions. In
this respect, it is similar to a transactional JNDI DataSource, as provided by a Java EE server.

You should almost never need or want to use this class, except when existing code must be called
and passed a standard JDBC DataSource interface implementation. In that case, it is possible that this
code is usable but is participating in Spring-managed transactions. You can write your new code by
using the higher-level abstractions mentioned earlier.

1.4. Declarative Transaction Management

Most Spring Framework users choose declarative transaction management. This
option has the least impact on application code and, hence, is most consistent with
the ideals of a non-invasive lightweight container.

The Spring Framework’s declarative transaction management is made possible with Spring aspect-
oriented programming (AOP). However, as the transactional aspects code comes with the Spring
Framework distribution and may be used in a boilerplate fashion, AOP concepts do not generally
have to be understood to make effective use of this code.

11

The Spring Framework’s declarative transaction management is similar to EJB CMT, in that you can
specify transaction behavior (or lack of it) down to the individual method level. You can make a
setRollbackOnly() call within a transaction context, if necessary. The differences between the two
types of transaction management are:

* Unlike EJB CMT, which is tied to JTA, the Spring Framework’s declarative transaction
management works in any environment. It can work with JTA transactions or local transactions
by using JDBC, JPA, or Hibernate by adjusting the configuration files.

* You can apply the Spring Framework declarative transaction management to any class, not
merely special classes such as EJBs.

* The Spring Framework offers declarative rollback rules, a feature with no EJB equivalent. Both
programmatic and declarative support for rollback rules is provided.

* The Spring Framework lets you customize transactional behavior by using AOP. For example,
you can insert custom behavior in the case of transaction rollback. You can also add arbitrary
advice, along with transactional advice. With EJB CMT, you cannot influence the container’s
transaction management, except with setRollbackOnly().

» The Spring Framework does not support propagation of transaction contexts across remote
calls, as high-end application servers do. If you need this feature, we recommend that you use
EJB. However, consider carefully before using such a feature, because, normally, one does not
want transactions to span remote calls.

The concept of rollback rules is important. They let you specify which exceptions (and throwables)
should cause automatic rollback. You can specify this declaratively, in configuration, not in Java
code. So, although you can still call setRollbackOnly() on the TransactionStatus object to roll back
the current transaction back, most often you can specify a rule that MyApplicationException must
always result in rollback. The significant advantage to this option is that business objects do not
depend on the transaction infrastructure. For example, they typically do not need to import Spring
transaction APIs or other Spring APIs.

Although EJB container default behavior automatically rolls back the transaction on a system
exception (usually a runtime exception), EJB CMT does not roll back the transaction automatically
on an application exception (that is, a checked exception other than java.rmi.RemoteException).
While the Spring default behavior for declarative transaction management follows EJB convention
(roll back is automatic only on unchecked exceptions), it is often useful to customize this behavior.

1.4.1. Understanding the Spring Framework’s Declarative Transaction
Implementation

It is not sufficient merely to tell you to annotate your classes with the @Transactional annotation,
add @EnableTransactionManagement to your configuration, and expect you to understand how it all
works. To provide a deeper understanding, this section explains the inner workings of the Spring
Framework’s declarative transaction infrastructure in the context of transaction-related issues.

The most important concepts to grasp with regard to the Spring Framework’s declarative
transaction support are that this support is enabled via AOP proxies and that the transactional
advice is driven by metadata (currently XML- or annotation-based). The combination of AOP with
transactional metadata yields an AOP proxy that uses a TransactionInterceptor in conjunction with

12

core.pdf#aop-understanding-aop-proxies

an appropriate TransactionManager implementation to drive transactions around method
invocations.

o Spring AOP is covered in the AOP section.

Spring Framework’s TransactionInterceptor provides transaction management for imperative and
reactive programming models. The interceptor detects the desired flavor of transaction
management by inspecting the method return type. Methods returning a reactive type such as
Publisher or Kotlin Flow (or a subtype of those) qualify for reactive transaction management. All
other return types including void use the code path for imperative transaction management.

Transaction management flavors impact which transaction manager is required. Imperative
transactions require a PlatformTransactionManager, while reactive transactions use
ReactiveTransactionManager implementations.

@Transactional commonly works with thread-bound transactions managed by
PlatformTransactionManager, exposing a transaction to all data access operations
within the current execution thread. Note: This does not propagate to newly
started threads within the method.

A reactive transaction managed by ReactiveTransactionManager uses the Reactor
context instead of thread-local attributes. As a consequence, all participating data
access operations need to execute within the same Reactor context in the same
reactive pipeline.

The following image shows a conceptual view of calling a method on a transactional proxy:
Control flows back through
interceptor chain to return

/ result to caller

—- las :‘_} Transaction Custom

Proogy Advisor Advisor(s)

Target
Method

return

Caller invokes proxy,
not target
Transaction created on way

in, committed or rolled

back on way out Business logic invoked

Custom interceptors may run
before or after transaction advisor

1.4.2. Example of Declarative Transaction Implementation

Consider the following interface and its attendant implementation. This example uses Foo and Bar

13

core.pdf#aop

classes as placeholders so that you can concentrate on the transaction usage without focusing on a
particular domain model. For the purposes of this example, the fact that the DefaultFooService class
throws UnsupportedOperationException instances in the body of each implemented method is good.
That behavior lets you see transactions being created and then rolled back in response to the
UnsupportedOperationException instance. The following listing shows the FooService interface:

Java
// the service interface that we want to make transactional
package x.y.service;
public interface FooService {
Foo getFoo(String fooName);
Foo getFoo(String fooName, String barName);
void insertFoo(Foo foo);

void updateFoo(Foo foo);

Kotlin
// the service interface that we want to make transactional
package x.y.service
interface FooService {
fun getFoo(fooName: String): Foo
fun getFoo(fooName: String, barName: String): Foo
fun insertFoo(foo: Foo)

fun updateFoo(foo: Foo)

The following example shows an implementation of the preceding interface:

14

Java
package x.y.service;
public class DefaultFooService implements FooService {

@0verride

public Foo getFoo(String fooName) {
/] ...

}

@0verride

public Foo getFoo(String fooName, String barName) {
/] ...

}

@0verride

public void insertFoo(Foo foo) {
/] ...

}

@0verride

public void updateFoo(Foo foo) {
/] ...

}

Kotlin
package x.y.service
class DefaultFooService : FooService {

override fun getFoo(fooName: String): Foo {
/] ...
}

override fun getFoo(fooName: String, barName: String): Foo {
/] ...
}

override fun insertFoo(foo: Foo) {
/] ...
}

override fun updateFoo(foo: Foo) {
/] ...
}

15

Assume that the first two methods of the FooService interface, getFoo(String) and getFoo(String,
String), must run in the context of a transaction with read-only semantics and that the other
methods, insertFoo(Foo) and updateFoo(Foo), must run in the context of a transaction with read-
write semantics. The following configuration is explained in detail in the next few paragraphs:

16

<I-- from the file 'context.xml' -->
<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<!-- this is the service object that we want to make transactional -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below)

<tx:advice id="txAdvice" transaction-manager="txManager">
<!-- the transactional semantics... -->
<tx:attributes>
<!-- all methods starting with 'get' are read-only -->
<tx:method name="get*" read-only="true"/>
<!-- other methods use the default transaction settings (see below) -->
<tx:method name="*"/>
</tx:attributes>
</tx:advice>

<!-- ensure that the above transactional advice runs for any execution
of an operation defined by the FooService interface -->
<aop:config>
<aop:pointcut id="fooServiceOperation" expression="execution(*

.service.FooService.*(..))"/>

<aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceOperation"/>
</aop:config>

<!-- don't forget the DataSource -->
<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-

method="close">

<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>

</bean>

<!-- similarly, don't forget the TransactionManager -->
<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>
</bean>

<!-- other <bean/> definitions here -->

</beans>

Examine the preceding configuration. It assumes that you want to make a service object, the
fooService bean, transactional. The transaction semantics to apply are encapsulated in the
<tx:advice/> definition. The <tx:advice/> definition reads as "all methods starting with get are to
run in the context of a read-only transaction, and all other methods are to run with the default
transaction semantics". The transaction-manager attribute of the <tx:advice/> tag is set to the name
of the TransactionManager bean that is going to drive the transactions (in this case, the txManager
bean).

You can omit the transaction-manager attribute in the transactional advice
(<tx:advice/>) if the bean name of the TransactionManager that you want to wire in
(;) has the name transactionManager. If the TransactionManager bean that you want to
- wire in has any other name, you must use the transaction-manager attribute
explicitly, as in the preceding example.

The <aop:config/> definition ensures that the transactional advice defined by the txAdvice bean
runs at the appropriate points in the program. First, you define a pointcut that matches the
execution of any operation defined in the FooService interface (fooServiceOperation). Then you
associate the pointcut with the txAdvice by using an advisor. The result indicates that, at the
execution of a fooServiceOperation, the advice defined by txAdvice is run.

The expression defined within the <aop:pointcut/> element is an Aspect] pointcut expression. See
the AOP section for more details on pointcut expressions in Spring.

A common requirement is to make an entire service layer transactional. The best way to do this is
to change the pointcut expression to match any operation in your service layer. The following
example shows how to do so:

<aop:config>

<aop:pointcut id="fooServiceMethods" expression="execution(*
x.y.service.*.*(..))"/>

<aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceMethods"/>
</aop:config>

o In the preceding example, it is assumed that all your service interfaces are defined
in the x.y.service package. See the AOP section for more details.

Now that we have analyzed the configuration, you may be asking yourself, "What does all this

17

core.pdf#aop
core.pdf#aop

configuration actually do?"

The configuration shown earlier is used to create a transactional proxy around the object that is
created from the fooService bean definition. The proxy is configured with the transactional advice
so that, when an appropriate method is invoked on the proxy, a transaction is started, suspended,
marked as read-only, and so on, depending on the transaction configuration associated with that
method. Consider the following program that test drives the configuration shown earlier:

Java
public final class Boot {

public static void main(final String[] args) throws Exception {
ApplicationContext ctx = new ClassPathXmlApplicationContext("context.xml",

Boot.class);
FooService fooService = (FooService) ctx.getBean("fooService");
fooService.insertFoo (new Foo());

Kotlin
import org.springframework.beans.factory.getBean

fun main() {
val ctx = ClassPathXmlApplicationContext("context.xml")
val fooService = ctx.getBean<FooService>("fooService")
fooService.insertFoo(Foo())

The output from running the preceding program should resemble the following (the Log4] output
and the stack trace from the UnsupportedOperationException thrown by the insertFoo(..) method of
the DefaultFooService class have been truncated for clarity):

18

<!-- the Spring container is starting up... -->
[Aspect]InvocationContextExposingAdvisorAutoProxyCreator] - Creating implicit proxy
for bean 'fooService' with @ common interceptors and 1 specific interceptors

<!-- the DefaultFooService is actually proxied -->
[JdkDynamicAopProxy] - Creating JDK dynamic proxy for [x.y.service.DefaultFooService]

<!-- ... the insertFoo(..) method is now being invoked on the proxy -->
[TransactionInterceptor] - Getting transaction for x.y.service.FooService.insertFoo

<!-- the transactional advice kicks in here... -->
[DataSourceTransactionManager] - Creating new transaction with name
[x.y.service.FooService.insertFoo]

[DataSourceTransactionManager] - Acquired Connection
[org.apache.commons.dbcp.PoolableConnection@a53de4] for JDBC transaction

<!-- the insertFoo(..) method from DefaultFooService throws an exception... -->
[RuleBasedTransactionAttribute] - Applying rules to determine whether transaction
should rollback on java.lang.UnsupportedOperationException
[TransactionInterceptor] - Invoking rollback for transaction on
x.y.service.FooService.insertFoo due to throwable
[java.lang.UnsupportedOperationException]

<!-- and the transaction is rolled back (by default, RuntimeException instances cause
rollback) -->

[DataSourceTransactionManager] - Rolling back JDBC transaction on Connection
[org.apache.commons.dbcp.PoolableConnection@ab3de4]

[DataSourceTransactionManager] - Releasing JDBC Connection after transaction
[DataSourceUtils] - Returning JDBC Connection to DataSource

Exception in thread "main" java.lang.UnsupportedOperationException at
x.y.service.DefaultFooService.insertFoo(DefaultFooService.java:14)
<!-- AOP infrastructure stack trace elements removed for clarity -->
at $Proxy@.insertFoo(Unknown Source)

at Boot.main(Boot.java:11)

To use reactive transaction management the code has to use reactive types.

o Spring Framework uses the ReactiveAdapterRegistry to determine whether a
method return type is reactive.

The following listing shows a modified version of the previously used FooService, but this time the
code uses reactive types:

19

Java
// the reactive service interface that we want to make transactional
package x.y.service;
public interface FooService {
Flux<Foo> getFoo(String fooName);
Publisher<Foo> getFoo(String fooName, String barName);
Mono<Void> insertFoo(Foo foo);

Mono<Void> updateFoo(Foo foo);

Kotlin
// the reactive service interface that we want to make transactional
package x.y.service
interface FooService {
fun getFoo(fooName: String): Flow<Foo>
fun getFoo(fooName: String, barName: String): Publisher<Foo>
fun insertFoo(foo: Foo) : Mono<Void>

fun updateFoo(foo: Foo) : Mono<Void>

The following example shows an implementation of the preceding interface:

20

Java
package x.y.service;
public class DefaultFooService implements FooService {

@0verride

public Flux<Foo> getFoo(String fooName) {
/] ...

}

@0verride

public Publisher<Foo> getFoo(String fooName, String barName) {
/] ...

}

@0verride

public Mono<Void> insertFoo(Foo foo) {
/] ...

}

@0verride

public Mono<Void> updateFoo(Foo foo) {
/] ...

}

Kotlin
package x.y.service
class DefaultFooService : FooService {

override fun getFoo(fooName: String): Flow<Foo> {
/] ...
}

override fun getFoo(fooName: String, barName: String): Publisher<Foo> {
Y e
}

override fun insertFoo(foo: Foo): Mono<Void> {
/] ...
}

override fun updateFoo(foo: Foo): Mono<Void> {
/] ...
}

21

Imperative and reactive transaction management share the same semantics for transaction
boundary and transaction attribute definitions. The main difference between imperative and
reactive transactions is the deferred nature of the latter. TransactionInterceptor decorates the
returned reactive type with a transactional operator to begin and clean up the transaction.
Therefore, calling a transactional reactive method defers the actual transaction management to a
subscription type that activates processing of the reactive type.

Another aspect of reactive transaction management relates to data escaping which is a natural
consequence of the programming model.

Method return values of imperative transactions are returned from transactional methods upon
successful termination of a method so that partially computed results do not escape the method
closure.

Reactive transaction methods return a reactive wrapper type which represents a computation
sequence along with a promise to begin and complete the computation.

A Publisher can emit data while a transaction is ongoing but not necessarily completed. Therefore,
methods that depend upon successful completion of an entire transaction need to ensure
completion and buffer results in the calling code.

1.4.3. Rolling Back a Declarative Transaction

The previous section outlined the basics of how to specify transactional settings for classes,
typically service layer classes, declaratively in your application. This section describes how you can
control the rollback of transactions in a simple, declarative fashion.

The recommended way to indicate to the Spring Framework’s transaction infrastructure that a
transaction’s work is to be rolled back is to throw an Exception from code that is currently
executing in the context of a transaction. The Spring Framework’s transaction infrastructure code
catches any unhandled Exception as it bubbles up the call stack and makes a determination
whether to mark the transaction for rollback.

In its default configuration, the Spring Framework’s transaction infrastructure code marks a
transaction for rollback only in the case of runtime, unchecked exceptions. That is, when the
thrown exception is an instance or subclass of RuntimeException. (Error instances also, by default,
result in a rollback). Checked exceptions that are thrown from a transactional method do not result
in rollback in the default configuration.

You can configure exactly which Exception types mark a transaction for rollback, including checked
exceptions. The following XML snippet demonstrates how you configure rollback for a checked,
application-specific Exception type:

<tx:advice id="txAdvice" transaction-manager="txManager">
<tx:attributes>
<tx:method name="get*" read-only="true" rollback-for="NoProductInStockException"/>
<tx:method name="*"/>
</tx:attributes>
</tx:advice>

22

If you do not want a transaction rolled back when an exception is thrown, you can also specify 'no
rollback rules'. The following example tells the Spring Framework’s transaction infrastructure to
commit the attendant transaction even in the face of an unhandled InstrumentNotFoundException:

<tx:advice id="txAdvice">
<tx:attributes>
<tx:method name="updateStock" no-rollback-for="InstrumentNotFoundException"/>
<tx:method name="*"/>
</tx:attributes>
</tx:advice>

When the Spring Framework’s transaction infrastructure catches an exception and it consults the
configured rollback rules to determine whether to mark the transaction for rollback, the strongest
matching rule wins. So, in the case of the following configuration, any exception other than an
InstrumentNotFoundException results in a rollback of the attendant transaction:

<tx:advice id="txAdvice">

<tx:attributes>

<tx:method name="*" rollback-for="Throwable" no-rollback-
for="InstrumentNotFoundException"/>

</tx:attributes>
</tx:advice>

You can also indicate a required rollback programmatically. Although simple, this process is quite
invasive and tightly couples your code to the Spring Framework’s transaction infrastructure. The
following example shows how to programmatically indicate a required rollback:

Java

public void resolvePosition() {
try {
// some business logic...
} catch (NoProductInStockException ex) {
// trigger rollback programmatically
TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();

23

Kotlin

fun resolvePosition() {
try {
// some business logic...
} catch (ex: NoProductInStockException) {
// trigger rollback programmatically
TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();

You are strongly encouraged to use the declarative approach to rollback, if at all possible.
Programmatic rollback is available should you absolutely need it, but its usage flies in the face of
achieving a clean POJO-based architecture.

1.4.4. Configuring Different Transactional Semantics for Different Beans

Consider the scenario where you have a number of service layer objects, and you want to apply a
totally different transactional configuration to each of them. You can do so by defining distinct
<aop:advisor/> elements with differing pointcut and advice-ref attribute values.

As a point of comparison, first assume that all of your service layer classes are defined in a root
x.y.service package. To make all beans that are instances of classes defined in that package (or in
subpackages) and that have names ending in Service have the default transactional configuration,
you could write the following:

24

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<aop:config>

<aop:pointcut id="serviceOperation"
expression="execution(* x.y.service..*Service.*(..))"/>

<aop:advisor pointcut-ref="serviceOperation" advice-ref="txAdvice"/>
</aop:config>

<!-- these two beans will be transactional... -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>
<bean id="barService" class="x.y.service.extras.SimpleBarService"/>

<!-- ... and these two beans won't -->

<bean id="anotherService" class="org.xyz.SomeService"/> <!-- (not in the right
package) -->

<bean id="barManager" class="x.y.service.SimpleBarManager"/> <!-- (doesn't end in
'Service') -->

<tx:advice id="txAdvice">
<tx:attributes>
<tx:method name="get*" read-only="true"/>
<tx:method name="*"/>
</tx:attributes>
</tx:advice>

<!-- other transaction infrastructure beans such as a TransactionManager
omitted... -->

</beans>

The following example shows how to configure two distinct beans with totally different
transactional settings:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

25

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<aop:config>

<aop:pointcut id="defaultServiceOperation"
expression="execution(* x.y.service.*Service.*(..))"/>

<aop:pointcut id="noTxServiceOperation"
expression="execution(* x.y.service.ddl.DefaultDd1Manager.*(..))"/>

<aop:advisor pointcut-ref="defaultServiceOperation" advice-
ref="defaultTxAdvice"/>

<aop:advisor pointcut-ref="noTxServiceOperation" advice-ref="noTxAdvice"/>
</aop:config>

<!-- this bean will be transactional (see the 'defaultServiceOperation' pointcut)
-=>
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- this bean will also be transactional, but with totally different
transactional settings -->
<bean id="anotherFooService" class="x.y.service.ddl.DefaultDd1Manager"/>

<tx:advice id="defaultTxAdvice">
<tx:attributes>
<tx:method name="get*" read-only="true"/>
<tx:method name="*"/>
</tx:attributes>
</tx:advice>

<tx:advice id="noTxAdvice">
<tx:attributes>
<tx:method name="*" propagation="NEVER"/>
</tx:attributes>
</tx:advice>

<!-- other transaction infrastructure beans such as a TransactionManager
omitted... -->

</beans>

1.4.5. <tx:advice/> Settings

This section summarizes the various transactional settings that you can specify by using the
<tx:advice/> tag. The default <tx:advice/> settings are:

* The propagation setting is REQUIRED.

e The isolation level is DEFAULT.

e The transaction is read-write.

* The transaction timeout defaults to the default timeout of the underlying transaction system or
none if timeouts are not supported.

* Any RuntimeException triggers rollback, and any checked Exception does not.

You can change these default settings. The following table summarizes the various attributes of the
<tx:method/> tags that are nested within <tx:advice/>and <tx:attributes/> tags:

Table 1. <tx:method/> settings

Attribute

name

propagation

isolation

timeout

Required? Default
Yes

No REQUIRED
No DEFAULT
No -1

Description

Method names with
which the transaction
attributes are to be
associated. The
wildcard (*) character
can be used to associate
the same transaction
attribute settings with a
number of methods
(for example, get*,
handle*, on*Event, and
so forth).

Transaction
propagation behavior.

Transaction isolation
level. Only applicable
to propagation settings
of REQUIRED or
REQUIRES_NEW.

Transaction timeout
(seconds). Only
applicable to
propagation REQUIRED or
REQUIRES_NEW.

27

Attribute Required?

read-only No
rollback-for No
no-rollback-for No

1.4.6. Using @Transactional

Default

false

Description

Read-write versus read-
only transaction.
Applies only to REQUIRED
or REQUIRES_NEW.

Comma-delimited list of
Exception instances that
trigger rollback. For

example,
com. foo.MyBusinessExce

ption,ServletException.

Comma-delimited list of
Exception instances that
do not trigger rollback.

For example,
com. foo.MyBusinessExce

ption,ServletException.

In addition to the XML-based declarative approach to transaction configuration, you can use an
annotation-based approach. Declaring transaction semantics directly in the Java source code puts
the declarations much closer to the affected code. There is not much danger of undue coupling,
because code that is meant to be used transactionally is almost always deployed that way anyway.

The standard javax.transaction.Transactional annotation is also supported as a
o drop-in replacement to Spring’s own annotation. Please refer to JTA 1.2

documentation for more details.

The ease-of-use afforded by the use of the @Transactional annotation is best illustrated with an
example, which is explained in the text that follows. Consider the following class definition:

28

Java
// the service class that we want to make transactional
@Transactional

public class DefaultFooService implements FooService {

Foo getFoo(String fooName) {

/] ...

}

Foo getFoo(String fooName, String barName) {
// ...

}

void insertFoo(Foo foo) {
/] ...

}

void updateFoo(Foo foo) {
/] ...

}

+
Kotlin

// the service class that we want to make transactional
@Transactional
class DefaultFooService : FooService {

override fun getFoo(fooName: String): Foo {
/] ...
}

override fun getFoo(fooName: String, barName: String): Foo {
/] ...
}

override fun insertFoo(foo: Foo) {
/] ...
}

override fun updateFoo(foo: Foo) {
/] ...
}

Used at the class level as above, the annotation indicates a default for all methods of the declaring
class (as well as its subclasses). Alternatively, each method can get annotated individually. Note that
a class-level annotation does not apply to ancestor classes up the class hierarchy; in such a scenario,

29

methods need to be locally redeclared in order to participate in a subclass-level annotation.

When a POJO class such as the one above is defined as a bean in a Spring context, you can make the
bean instance transactional through an @EnableTransactionManagement annotation in a
@Configuration class. See the javadoc for full details.

In XML configuration, the <tx:annotation-driven/> tag provides similar convenience:

<!-- from the file 'context.xml' -->
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<!-- this is the service object that we want to make transactional -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- enable the configuration of transactional behavior based on annotations -->
<tx:annotation-driven transaction-manager="txManager"/><!-- a TransactionManager
is still required --> @

<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<!-- (this dependency is defined somewhere else) -->
<property name="dataSource" ref="dataSource"/>
</bean>

<!-- other <bean/> definitions here -->

</beans>
@ The line that makes the bean instance transactional.

You can omit the transaction-manager attribute in the <tx:annotation-driven/> tag

if the bean name of the TransactionManager that you want to wire in has the name,

@ transactionManager. If the TransactionManager bean that you want to dependency-

et inject has any other name, you have to use the transaction-manager attribute, as in
the preceding example.

Reactive transactional methods use reactive return types in contrast to imperative programming
arrangements as the following listing shows:

30

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/transaction/annotation/EnableTransactionManagement.html

Java
// the reactive service class that we want to make transactional
@Transactional

public class DefaultFooService implements FooService {

Publisher<Foo> getFoo(String fooName) {

/] ...

}

Mono<Foo> getFoo(String fooName, String barName) {
// ...

}

Mono<Void> insertFoo(Foo foo) {
/] ...

}

Mono<Void> updateFoo(Foo foo) {
/] ...

}

+
Kotlin

// the reactive service class that we want to make transactional
@Transactional
class DefaultFooService : FooService {

override fun getFoo(fooName: String): Flow<Foo> {
/] ...
}

override fun getFoo(fooName: String, barName: String): Mono<Foo> {
// ...
}

override fun insertFoo(foo: Foo): Mono<Void> {
/] ...
}

override fun updateFoo(foo: Foo): Mono<Void> {
/] ...
}

Note that there are special considerations for the returned Publisher with regards to Reactive
Streams cancellation signals. See the Cancel Signals section under "Using the TransactionOperator”
for more details.

31

You can apply the @Transactional annotation to an interface definition, a method on an interface, a

Method visibility and @Transactional

When you use proxies, you should apply the @Transactional annotation only to methods with
public visibility. If you do annotate protected, private or package-visible methods with the
@Transactional annotation, no error is raised, but the annotated method does not exhibit the
configured transactional settings. If you need to annotate non-public methods, consider using
Aspect] (described later).

class definition, or a public method on a class. However, the mere presence of the @Transactional
annotation is not enough to activate the transactional behavior. The @Transactional annotation is
merely metadata that can be consumed by some runtime infrastructure that is @Transactional

-aware and that can use the metadata to configure the appropriate beans with transactional

behavior. In the preceding example, the <tx:annotation-driven/> element switches on the
transactional behavior.

The Spring team recommends that you annotate only concrete classes (and
methods of concrete classes) with the @Transactional annotation, as opposed to
annotating interfaces. You certainly can place the @Transactional annotation on an
interface (or an interface method), but this works only as you would expect it to if
you use interface-based proxies. The fact that Java annotations are not inherited
from interfaces means that, if you use class-based proxies (proxy-target-
class="true") or the weaving-based aspect (mode="aspectj"), the transaction
settings are not recognized by the proxying and weaving infrastructure, and the
object is not wrapped in a transactional proxy.

In proxy mode (which is the default), only external method calls coming in
through the proxy are intercepted. This means that self-invocation (in effect, a
method within the target object calling another method of the target object) does
not lead to an actual transaction at runtime even if the invoked method is marked
with @Transactional. Also, the proxy must be fully initialized to provide the
expected behavior, so you should not rely on this feature in your initialization
code (that is, @PostConstruct).

Consider using of Aspect] mode (see the mode attribute in the following table) if you expect self-
invocations to be wrapped with transactions as well. In this case, there no proxy in the first place.
Instead, the target class is woven (that is, its byte code is modified) to turn @Transactional into
runtime behavior on any kind of method.

Table 2. Annotation driven transaction settings

32

XML Attribute

transaction-manager

mode

Annotation Attribute Default

N/A (see transactionManager
TransactionManagement(
onfigurer javadoc)

mode proxy

Description

Name of the
transaction manager to
use. Required only if
the name of the
transaction manager is
not transactionManager,
as in the preceding
example.

The default mode
(proxy) processes
annotated beans to be
proxied by using
Spring’s AOP
framework (following
proxy semantics, as
discussed earlier,
applying to method
calls coming in through
the proxy only). The
alternative mode
(aspectj) instead
weaves the affected
classes with Spring’s
Aspect] transaction
aspect, modifying the
target class byte code to
apply to any kind of
method call. Aspect]
weaving requires
spring-aspects.jar in
the classpath as well as
having load-time
weaving (or compile-
time weaving) enabled.
(See Spring
configuration for
details on how to set up
load-time weaving.)

33

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/transaction/annotation/TransactionManagementConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/transaction/annotation/TransactionManagementConfigurer.html
core.pdf#aop-aj-ltw-spring
core.pdf#aop-aj-ltw-spring

XML Attribute

proxy-target-class

order

Annotation Attribute Default

proxyTarget(Class

order

false

Ordered.LOWEST_PRECEDE
NCE

Description

Applies to proxy mode
only. Controls what
type of transactional
proxies are created for
classes annotated with
the @Transactional
annotation. If the
proxy-target-class
attribute is set to true,
class-based proxies are
created. If proxy-
target-classis false or
if the attribute is
omitted, then standard
JDK interface-based
proxies are created.
(See Proxying
Mechanisms for a
detailed examination of
the different proxy
types.)

Defines the order of the
transaction advice that
is applied to beans
annotated with
@Transactional. (For
more information
about the rules related
to ordering of AOP
advice, see Advice
Ordering.) No specified
ordering means that
the AOP subsystem
determines the order of
the advice.

The default advice mode for processing @Transactional annotations is proxy, which
allows for interception of calls through the proxy only. Local calls within the same
o class cannot get intercepted that way. For a more advanced mode of interception,
consider switching to aspectj mode in combination with compile-time or load-time

weaving.

34

core.pdf#aop-proxying
core.pdf#aop-proxying
core.pdf#aop-ataspectj-advice-ordering
core.pdf#aop-ataspectj-advice-ordering

The proxy-target-class attribute controls what type of transactional proxies are
created for classes annotated with the @Transactional annotation. If proxy-target-
class is set to true, class-based proxies are created. If proxy-target-class is false or
if the attribute is omitted, standard JDK interface-based proxies are created. (See
core.pdf for a discussion of the different proxy types.)

@EnableTransactionManagement and <tx:annotation-driven/> looks for
@Transactional only on beans in the same application context in which they are
defined. This means that, if you put annotation-driven configuration in a
WebApplicationContext for a DispatcherServlet, it checks for @Transactional beans
only in your controllers and not your services. See MVC for more information.

The most derived location takes precedence when evaluating the transactional settings for a
method. In the case of the following example, the DefaultFooService class is annotated at the class
level with the settings for a read-only transaction, but the @Transactional annotation on the
updateFoo(Foo) method in the same class takes precedence over the transactional settings defined at

the class level.

Java

@Transactional(readOnly = true)
public class DefaultFooService implements FooService {

public Foo getFoo(String fooName) {
/] ...

}

// these settings have precedence for this method
@Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW)
public void updateFoo(Foo foo) {

/] ...

}

35

core.pdf#aop-proxying
web.pdf#mvc-servlet

Kotlin

@Transactional(readOnly = true)
class DefaultFooService : FooService {

override fun getFoo(fooName: String): Foo {
/] ...
}

// these settings have precedence for this method

@Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW)

override fun updateFoo(foo: Foo) {
/] ...
}

@Transactional Settings

The @Transactional annotation is metadata that specifies that an interface, class, or method must
have transactional semantics (for example, “start a brand new read-only transaction when this
method is invoked, suspending any existing transaction”). The default @Transactional settings are as

follows:

» The propagation setting is PROPAGATION_REQUIRED.

The isolation level is ISOLATION_DEFAULT.

¢ The transaction is read-write.

* The transaction timeout defaults to the default timeout of the underlying transaction system, or

to none if timeouts are not supported.

* Any RuntimeException triggers rollback, and any checked Exception does not.

You can change these default settings. The following table summarizes the various properties of the

@Transactional annotation:

Table 3. @Transactional Settings

Property Type

value String
propagation enum: Propagation
isolation enum: Isolation

36

Description

Optional qualifier that specifies
the transaction manager to be
used.

Optional propagation setting.

Optional isolation level. Applies
only to propagation values of
REQUIRED or REQUIRES_NEW.

Property Type Description

timeout int (in seconds of granularity) Optional transaction timeout.
Applies only to propagation
values of REQUIRED or
REQUIRES_NEW.
readOnly boolean Read-write versus read-only
transaction. Only applicable to
values of REQUIRED or
REQUIRES_NEW.
rollbackFor Array of Class objects, which ~ Optional array of exception
must be derived from classes that must cause
Throwable. rollback.
rollbackForClassName Array of class names. The Optional array of names of
classes must be derived from exception classes that must
Throwable. cause rollback.
noRollbackFor Array of Class objects, which ~ Optional array of exception
must be derived from classes that must not cause
Throwable. rollback.
noRollbackForClassName Array of String class names, Optional array of names of
which must be derived from exception classes that must not
Throwable. cause rollback.
label Array of String labels to add an Labels may be evaluated by
expressive description to the transaction managers to
transaction. associate implementation-

specific behavior with the
actual transaction.

Currently, you cannot have explicit control over the name of a transaction, where name' means the
transaction name that appears in a transaction monitor, if applicable (for example, WebLogic’s
transaction monitor), and in logging output. For declarative transactions, the transaction name is
always the fully-qualified class name + . + the method name of the transactionally advised class.
For example, if the handlePayment(..) method of the BusinessService class started a transaction, the
name of the transaction would be: com.example.BusinessService.handlePayment.

Multiple Transaction Managers with @Transactional

Most Spring applications need only a single transaction manager, but there may be situations
where you want multiple independent transaction managers in a single application. You can use
the value or transactionManager attribute of the @Transactional annotation to optionally specify the
identity of the TransactionManager to be used. This can either be the bean name or the qualifier
value of the transaction manager bean. For example, using the qualifier notation, you can combine
the following Java code with the following transaction manager bean declarations in the
application context:

37

Java
public class TransactionalService {

@Transactional("order")
public void setSomething(String name) { ...

@Transactional("account")
public void doSomething() { ... }

@Transactional("reactive-account")

public Mono<Void> doSomethingReactive() { ...

Kotlin

class TransactionalService {

@Transactional("order")

fun setSomething(name: String) {
/] ...

}

@Transactional("account")
fun doSomething() {

/] ...
}

@Transactional("reactive-account")

fun doSomethingReactive(): Mono<Void> {
/] ...

}

The following listing shows the bean declarations:

38

<tx:annotation-driven/>

<bean id="transactionManager1"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<qualifier value="order"/>
</bean>

<bean id="transactionManager2"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<qualifier value="account"/>
</bean>

<bean id="transactionManager3"
class="org.springframework.data.r2dbc.connectionfactory.R2dbcTransactionManager">

<qualifier value="reactive-account"/>
</bean>

In this case, the individual methods on TransactionalService run under separate transaction
managers, differentiated by the order, account, and reactive-account qualifiers. The default
<tx:annotation-driven> target bean name, transactionManager, is still used if no specifically qualified
TransactionManager bean is found.

Custom Composed Annotations

If you find you repeatedly use the same attributes with @Transactional on many different methods,
Spring’s meta-annotation support lets you define custom composed annotations for your specific
use cases. For example, consider the following annotation definitions:

Java

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)

@Transactional(transactionManager = "order", label = "causal-consistency")
public @interface OrderTx {

}

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Transactional(transactionManager = "account", label = "retryable")
public @interface AccountTx {

}

39

core.pdf#beans-meta-annotations

Kotlin

@Target(AnnotationTarget.FUNCTION, AnnotationTarget.TYPE)
@Retention(AnnotationRetention.RUNTIME)

@Transactional(transactionManager = "order", label = ["causal-consistency"])
annotation class OrderTx

@Target(AnnotationTarget.FUNCTION, AnnotationTarget.TYPE)
@Retention(AnnotationRetention.RUNTIME)
@Transactional(transactionManager = "account", label = ["retryable"])
annotation class AccountTx

The preceding annotations let us write the example from the previous section as follows:

Java
public class TransactionalService {

@0rderTx

public void setSomething(String name) {
/] ...

}

@AccountTx

public void doSomething() {
/] ...

}

Kotlin

class TransactionalService {

@0rderTx

fun setSomething(name: String) {
/] ...

}

@AccountTx

fun doSomething() {
/] ...

}

In the preceding example, we used the syntax to define the transaction manager qualifier and
transactional labels, but we could also have included propagation behavior, rollback rules,
timeouts, and other features.

40

1.4.7. Transaction Propagation

This section describes some semantics of transaction propagation in Spring. Note that this section is
not an introduction to transaction propagation proper. Rather, it details some of the semantics
regarding transaction propagation in Spring.

In Spring-managed transactions, be aware of the difference between physical and logical
transactions, and how the propagation setting applies to this difference.

Understanding PROPAGATION_REQUIRED

REQUIRED i Transaction I
Caller —'::jj:::- Transactional method 1 —':'_.'ZZ'.:-. Transactional method 2 |

/ /

Method 2 executes in the existing transaction. ‘

Transaction created,
committed or rolled back as
needed

PROPAGATION_REQUIRED enforces a physical transaction, either locally for the current scope if no
transaction exists yet or participating in an existing 'outer' transaction defined for a larger scope.
This is a fine default in common call stack arrangements within the same thread (for example, a
service facade that delegates to several repository methods where all the underlying resources
have to participate in the service-level transaction).

By default, a participating transaction joins the characteristics of the outer scope,
silently ignoring the local isolation level, timeout value, or read-only flag (if any).
Consider switching the validateExistingTransactions flag to true on your

o transaction manager if you want isolation level declarations to be rejected when
participating in an existing transaction with a different isolation level. This non-
lenient mode also rejects read-only mismatches (that is, an inner read-write
transaction that tries to participate in a read-only outer scope).

When the propagation setting is PROPAGATION_REQUIRED, a logical transaction scope is created for
each method upon which the setting is applied. Each such logical transaction scope can determine
rollback-only status individually, with an outer transaction scope being logically independent from
the inner transaction scope. In the case of standard PROPAGATION_REQUIRED behavior, all these scopes
are mapped to the same physical transaction. So a rollback-only marker set in the inner transaction
scope does affect the outer transaction’s chance to actually commit.

However, in the case where an inner transaction scope sets the rollback-only marker, the outer
transaction has not decided on the rollback itself, so the rollback (silently triggered by the inner

41

transaction scope) is unexpected. A corresponding UnexpectedRollbackException is thrown at that
point. This is expected behavior so that the caller of a transaction can never be misled to assume
that a commit was performed when it really was not. So, if an inner transaction (of which the outer
caller is not aware) silently marks a transaction as rollback-only, the outer caller still calls commit.
The outer caller needs to receive an UnexpectedRollbackException to indicate clearly that a rollback
was performed instead.

Understanding PROPAGATION_REQUIRES_NEW

REQUIRES_NEW Transaction1 = — N
N ~ Transaction 2
Caller J.l Transactional method 1 ‘ ’ Transactional method 2
Transaction created, Method 2 executes in a new transaction, and the
committed or rolled back as outer transaction is suspended.
needed

PROPAGATION_REQUIRES_NEW, in contrast to PROPAGATION_REQUIRED, always uses an independent physical
transaction for each affected transaction scope, never participating in an existing transaction for an
outer scope. In such an arrangement, the underlying resource transactions are different and,
hence, can commit or roll back independently, with an outer transaction not affected by an inner
transaction’s rollback status and with an inner transaction’s locks released immediately after its
completion. Such an independent inner transaction can also declare its own isolation level, timeout,
and read-only settings and not inherit an outer transaction’s characteristics.

Understanding PROPAGATION_NESTED

PROPAGATION_NESTED uses a single physical transaction with multiple savepoints that it can roll back
to. Such partial rollbacks let an inner transaction scope trigger a rollback for its scope, with the
outer transaction being able to continue the physical transaction despite some operations having
been rolled back. This setting is typically mapped onto JDBC savepoints, so it works only with J]DBC
resource transactions. See Spring’s DataSourceTransactionManager.

1.4.8. Advising Transactional Operations

Suppose you want to run both transactional operations and some basic profiling advice. How do
you effect this in the context of <tx:annotation-driven/>?

When you invoke the updateFoo(Foo) method, you want to see the following actions:

* The configured profiling aspect starts.
* The transactional advice runs.
* The method on the advised object runs.

e The transaction commits.

42

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jdbc/datasource/DataSourceTransactionManager.html

» The profiling aspect reports the exact duration of the whole transactional method invocation.

This chapter is not concerned with explaining AOP in any great detail (except as it
o applies to transactions). See AOP for detailed coverage of the AOP configuration

and AOP in general.

The following code shows the simple profiling aspect discussed earlier:

Java
package x.y;

import org.aspectj.lang.ProceedingJoinPoint;
import org.springframework.util.StopWatch;
import org.springframework.core.Ordered;

public class SimpleProfiler implements Ordered {
private int order;

// allows us to control the ordering of advice
public int getOrder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

// this method is the around advice
public Object profile(ProceedingJloinPoint call) throws Throwable {
Object returnValue;
StopWatch clock = new StopWatch(get(Class().getName());
try {
clock.start(call.toShortString());
returnValue = call.proceed();
+ finally {
clock.stop();
System.out.println(clock.prettyPrint());
}

return returnValue;

43

core.pdf#aop

Kotlin
class SimpleProfiler : Ordered {
private var order: Int = @

// allows us to control the ordering of advice
override fun getOrder(): Int {
return this.order

}

fun setOrder(order: Int) {
this.order = order

}

// this method is the around advice
fun profile(call: ProceedingJoinPoint): Any {
var returnValue: Any
val clock = StopWatch(javaClass.name)
try {
clock.start(call.toShortString())
returnValue = call.proceed()
} finally {
clock.stop()
println(clock.prettyPrint())
}

return returnValue

The ordering of advice is controlled through the Ordered interface. For full details on advice
ordering, see Advice ordering.

The following configuration creates a fooService bean that has profiling and transactional aspects
applied to it in the desired order:

44

core.pdf#aop-ataspectj-advice-ordering

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- this is the aspect -->

<bean id="profiler" class="x.y.SimpleProfiler">
<!-- run before the transactional advice (hence the lower order number) -->
<property name="order" value="1"/>

</bean>

<tx:annotation-driven transaction-manager="txManager" order="200"/>

<aop:config>
<!-- this advice runs around the transactional advice -->
<aop:aspect id="profilingAspect" ref="profiler">
<aop:pointcut id="serviceMethodWithReturnValue"
expression="execution(!void x.y..*Service.*(..))"/>
<aop:around method="profile" pointcut-
ref="serviceMethodWithReturnValue"/>
</aop:aspect>
</aop:config>

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>
</bean>

<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>
</bean>

</beans>

You can configure any number of additional aspects in similar fashion.

45

The following example creates the same setup as the previous two examples but uses the purely
XML declarative approach:

46

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- the profiling advice -->

<bean id="profiler" class="x.y.SimpleProfiler">
<!-- run before the transactional advice (hence the lower order number) -->
<property name="order" value="1"/>

</bean>

<aop:config>
<aop:pointcut id="entryPointMethod" expression="execution(*
X.y..*Service.*(..))"/>
<!-- runs after the profiling advice (c.f. the order attribute) -->

<aop:advisor advice-ref="txAdvice" pointcut-ref="entryPointMethod" order="2"/>
<!-- order value is higher than the profiling aspect -->

<aop:aspect id="profilingAspect" ref="profiler">
<aop:pointcut id="serviceMethodWithReturnValue"
expression="execution(!void x.y..*Service.*(..))"/>
<aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/>
</aop:aspect>

</aop:config>
<tx:advice id="txAdvice" transaction-manager="txManager">
<tx:attributes>
<tx:method name="get*" read-only="true"/>
<tx:method name="*"/>
</tx:attributes>

</tx:advice>

<!-- other <bean/> definitions such as a DataSource and a TransactionManager here
-->

</beans>

The result of the preceding configuration is a fooService bean that has profiling and transactional

47

aspects applied to it in that order. If you want the profiling advice to run after the transactional
advice on the way in and before the transactional advice on the way out, you can swap the value of
the profiling aspect bean’s order property so that it is higher than the transactional advice’s order
value.

You can configure additional aspects in similar fashion.

1.4.9. Using @Transactional with Aspect]

You can also use the Spring Framework’s @Transactional support outside of a Spring container by
means of an Aspect] aspect. To do so, first annotate your classes (and optionally your classes'
methods) with the @Transactional annotation, and then link (weave) your application with the
org.springframework.transaction.aspectj.AnnotationTransactionAspect defined in the spring-
aspects.jar file. You must also configure The aspect with a transaction manager. You can use the
Spring Framework’s IoC container to take care of dependency-injecting the aspect. The simplest
way to configure the transaction management aspect is to use the <tx:annotation-driven/> element
and specify the mode attribute to aspectj as described in Using @Transactional. Because we focus
here on applications that run outside of a Spring container, we show you how to do it
programmatically.

o Prior to continuing, you may want to read Using @Transactional and AOP
respectively.

The following example shows how to create a transaction manager and configure the
AnnotationTransactionAspect to use it:

Java

// construct an appropriate transaction manager
DataSourceTransactionManager txManager = new
DataSourceTransactionManager(getDataSource());

// configure the AnnotationTransactionAspect to use it; this must be done before

executing any transactional methods
AnnotationTransactionAspect.aspectOf().setTransactionManager (txManager);

Kotlin

// construct an appropriate transaction manager
val txManager = DataSourceTransactionManager(getDataSource())

// configure the AnnotationTransactionAspect to use it; this must be done before

executing any transactional methods
AnnotationTransactionAspect.aspectOf().transactionManager = txManager

48

core.pdf#aop

When you use this aspect, you must annotate the implementation class (or the

o methods within that class or both), not the interface (if any) that the class
implements. Aspect] follows Java’s rule that annotations on interfaces are not
inherited.

The @Transactional annotation on a class specifies the default transaction semantics for the
execution of any public method in the class.

The @Transactional annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). You can annotate any method, regardless of
visibility.

To weave your applications with the AnnotationTransactionAspect, you must either build your
application with Aspect] (see the Aspect] Development Guide) or use load-time weaving. See Load-
time weaving with Aspect] in the Spring Framework for a discussion of load-time weaving with
Aspect].

1.5. Programmatic Transaction Management

The Spring Framework provides two means of programmatic transaction management, by using:

e The TransactionTemplate or TransactionalOperator.

* A TransactionManager implementation directly.

The Spring team generally recommends the TransactionTemplate for programmatic transaction
management in imperative flows and TransactionalOperator for reactive code. The second
approach is similar to using the JTA UserTransaction API, although exception handling is less
cumbersome.

1.5.1. Using the TransactionTemplate

The TransactionTemplate adopts the same approach as other Spring templates, such as the
JdbcTemplate. It uses a callback approach (to free application code from having to do the boilerplate
acquisition and release transactional resources) and results in code that is intention driven, in that
your code focuses solely on what you want to do.

As the examples that follow show, using the TransactionTemplate absolutely

o couples you to Spring’s transaction infrastructure and APIs. Whether or not
programmatic transaction management is suitable for your development needs is
a decision that you have to make yourself.

Application code that must run in a transactional context and that explicitly uses the
TransactionTemplate resembles the next example. You, as an application developer, can write a
TransactionCallback implementation (typically expressed as an anonymous inner class) that
contains the code that you need to run in the context of a transaction. You can then pass an instance
of your custom TransactionCallback to the execute(..) method exposed on the TransactionTemplate.
The following example shows how to do so:

49

https://www.eclipse.org/aspectj/doc/released/devguide/index.html
core.pdf#aop-aj-ltw
core.pdf#aop-aj-ltw

Java
public class SimpleService implements Service {

// single TransactionTemplate shared amongst all methods in this instance
private final TransactionTemplate transactionTemplate;

// use constructor-injection to supply the PlatformTransactionManager
public SimpleService(PlatformTransactionManager transactionManager) {
this.transactionTemplate = new TransactionTemplate(transactionManager);

}

public Object someServiceMethod() {
return transactionTemplate.execute(new TransactionCallback() {
// the code in this method runs in a transactional context
public Object doInTransaction(TransactionStatus status) {
updateOperation1();
return resultOfUpdateOperation2();

b

Kotlin

// use constructor-injection to supply the PlatformTransactionManager
class SimpleService(transactionManager: PlatformTransactionManager) : Service {

// single TransactionTemplate shared amongst all methods in this instance
private val transactionTemplate = TransactionTemplate(transactionManager)

fun someServiceMethod() = transactionTemplate.execute<Any?> {
updateOperation()
resultOfUpdateOperation2()

If there is no return value, you can use the convenient TransactionCallbackWithoutResult class with
an anonymous class, as follows:

Java

transactionTemplate.execute(new TransactionCallbackWithoutResult() {
protected void doInTransactionWithoutResult(TransactionStatus status) {
updateOperation1();
updateOperation2();

b

50

Kotlin

transactionTemplate.execute(object : TransactionCallbackWithoutResult() {

override fun doInTransactionWithoutResult(status: TransactionStatus) {
updateOperation1()
updateOperation2()

1))

Code within the callback can roll the transaction back by calling the setRollbackOnly() method on
the supplied TransactionStatus object, as follows:

Java
transactionTemplate.execute(new TransactionCallbackWithoutResult() {

protected void doInTransactionWithoutResult(TransactionStatus status) {
try {
updateOperationi();
updateOperation2();
} catch (SomeBusinessException ex) {
status.setRollbackOnly();
}
}
3

Kotlin
transactionTemplate.execute(object : TransactionCallbackWithoutResult() {

override fun doInTransactionWithoutResult(status: TransactionStatus) {
try {
updateOperation1()
updateOperation2()
} catch (ex: SomeBusinessException) {
status.setRollbackOnly()

}
1))

Specifying Transaction Settings

You can specify transaction settings (such as the propagation mode, the isolation level, the timeout,
and so forth) on the TransactionTemplate either programmatically or in configuration. By default,
TransactionTemplate instances have the default transactional settings. The following example shows
the programmatic customization of the transactional settings for a specific TransactionTemplate:

31

Java
public class SimpleService implements Service {
private final TransactionTemplate transactionTemplate;

public SimpleService(PlatformTransactionManager transactionManager) {
this.transactionTemplate = new TransactionTemplate(transactionManager);

// the transaction settings can be set here explicitly if so desired

this.transactionTemplate.setIsolationlLevel(TransactionDefinition.ISOLATION_READ_UNCOMM
ITTED);

this.transactionTemplate.setTimeout(30); // 30 seconds
// and so forth...

Kotlin
class SimpleService(transactionManager: PlatformTransactionManager) : Service {

private val transactionTemplate = TransactionTemplate(transactionManager).apply {
// the transaction settings can be set here explicitly if so desired
isolationlLevel = TransactionDefinition.ISOLATION READ UNCOMMITTED
timeout = 30 // 30 seconds
// and so forth...

The following example defines a TransactionTemplate with some custom transactional settings by
using Spring XML configuration:

<bean id="sharedTransactionTemplate"
class="org.springframework.transaction.support.TransactionTemplate">
<property name="isolationLevelName" value="ISOLATION_READ_UNCOMMITTED"/>
<property name="timeout" value="30"/>
</bean>

You can then inject the sharedTransactionTemplate into as many services as are required.

Finally, instances of the TransactionTemplate class are thread-safe, in that instances do not maintain
any conversational state. TransactionTemplate instances do, however, maintain configuration state.
So, while a number of classes may share a single instance of a TransactionTemplate, if a class needs
to use a TransactionTemplate with different settings (for example, a different isolation level), you
need to create two distinct TransactionTemplate instances.

32

1.5.2. Using the TransactionOperator

The TransactionOperator follows an operator design that is similar to other reactive operators. It
uses a callback approach (to free application code from having to do the boilerplate acquisition and
release transactional resources) and results in code that is intention driven, in that your code
focuses solely on what you want to do.

As the examples that follow show, using the TransactionOperator absolutely

o couples you to Spring’s transaction infrastructure and APIs. Whether or not
programmatic transaction management is suitable for your development needs is
a decision that you have to make yourself.

Application code that must run in a transactional context and that explicitly uses the
TransactionOperator resembles the next example:

Java
public class SimpleService implements Service {

// single TransactionOperator shared amongst all methods in this instance
private final TransactionalOperator transactionalOperator;

// use constructor-injection to supply the ReactiveTransactionManager
public SimpleService(ReactiveTransactionManager transactionManager) {

this.transactionOperator = TransactionalOperator.create(transactionManager);

}

public Mono<Object> someServiceMethod() {
// the code in this method runs in a transactional context
Mono<Object> update = updateOperation1();

return
update.then(resultOfUpdateOperation2).as(transactionalOperator::transactional);

}
}

33

Kotlin

// use constructor-injection to supply the ReactiveTransactionManager
class SimpleService(transactionManager: ReactiveTransactionManager) : Service {

// single TransactionalOperator shared amongst all methods in this instance
private val transactionalOperator =
TransactionalOperator.create(transactionManager)

suspend fun someServiceMethod() = transactionalOperator.executeAndAwait<Any?> {
updateOperation1()
resultOfUpdateOperation2()

TransactionalOperator can be used in two ways:

* Operator-style using Project Reactor types (mono.as(transactionalOperator::transactional))

* Callback-style for every other case (transactionalOperator.execute(TransactionCallback<T>))

Code within the callback can roll the transaction back by calling the setRollbackOnly() method on
the supplied ReactiveTransaction object, as follows:

Java
transactionalOperator.execute(new TransactionCallback<>() {

public Mono<Object> doInTransaction(ReactiveTransaction status) {
return updateOperation1().then(updateOperation2)
.doOnError(SomeBusinessException.class, e ->
status.setRollbackOnly());
}
}
IOk

Kotlin
transactionalOperator.execute(object : TransactionCallback() {

override fun doInTransactionWithoutResult(status: ReactiveTransaction) {
updateOperation1().then(updateOperation2)
.doOnError(SomeBusinessException.class, e ->
status.setRollbackOnly())
}
b

Cancel Signals

In Reactive Streams, a Subscriber can cancel its Subscription and stop its Publisher. Operators in

54

Project Reactor, as well as in other libraries, such as next(), take(long), timeout(Duration), and
others can issue cancellations. There is no way to know the reason for the cancellation, whether it
is due to an error or a simply lack of interest to consume further. Since version 5.3 cancel signals
lead to a roll back. As a result it is important to consider the operators used downstream from a
transaction Publisher. In particular in the case of a Flux or other multi-value Publisher, the full
output must be consumed to allow the transaction to complete.

Specifying Transaction Settings

You can specify transaction settings (such as the propagation mode, the isolation level, the timeout,
and so forth) for the TransactionalOperator. By default, TransactionalOperator instances have
default transactional settings. The following example shows customization of the transactional
settings for a specific TransactionalOperator:

Java
public class SimpleService implements Service {
private final TransactionalOperator transactionalOperator;

public SimpleService(ReactiveTransactionManager transactionManager) {
DefaultTransactionDefinition definition = new DefaultTransactionDefinition();

// the transaction settings can be set here explicitly if so desired

definition.setIsolationLevel(TransactionDefinition.ISOLATION READ UNCOMMITTED);
definition.setTimeout(30); // 30 seconds
// and so forth...

this.transactionalOperator = TransactionalOperator.create(transactionManager,
definition);

}

Kotlin
class SimpleService(transactionManager: ReactiveTransactionManager) : Service {

private val definition = DefaultTransactionDefinition().apply {
// the transaction settings can be set here explicitly if so desired
isolationlLevel = TransactionDefinition.ISOLATION READ UNCOMMITTED
timeout = 30 // 30 seconds
// and so forth...

}

private val transactionalOperator = TransactionalOperator(transactionManager,

definition)

}

55

1.5.3. Using the TransactionManager

The following sections explain programmatic usage of imperative and reactive transaction
managers.

Using the PlatformTransactionManager

For imperative transactions, you can use a
org.springframework.transaction.PlatformTransactionManager directly to manage your transaction.
To do so, pass the implementation of the PlatformTransactionManager you use to your bean through
a bean reference. Then, by using the TransactionDefinition and TransactionStatus objects, you can
initiate transactions, roll back, and commit. The following example shows how to do so:

Java

DefaultTransactionDefinition def = new DefaultTransactionDefinition();

// explicitly setting the transaction name is something that can be done only
programmatically

def.setName("SomeTxName");
def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRED);

TransactionStatus status = txManager.getTransaction(def);
try {
// put your business logic here
}
catch (MyException ex) {
txManager.rollback(status);
throw ex;

}

txManager.commit(status);

Kotlin

val def = DefaultTransactionDefinition()

// explicitly setting the transaction name is something that can be done only
programmatically

def.setName("SomeTxName")

def.propagationBehavior = TransactionDefinition.PROPAGATION_REQUIRED

val status = txManager.getTransaction(def)
try {
// put your business logic here
} catch (ex: MyException) {
txManager.rollback(status)
throw ex

}

txManager.commit(status)

36

Using the ReactiveTransactionManager

When working with reactive transactions, you can use a
org.springframework.transaction.ReactiveTransactionManager directly to manage your transaction.
To do so, pass the implementation of the ReactiveTransactionManager you use to your bean through
a bean reference. Then, by using the TransactionDefinition and ReactiveTransaction objects, you
can initiate transactions, roll back, and commit. The following example shows how to do so:

Java

DefaultTransactionDefinition def = new DefaultTransactionDefinition();

// explicitly setting the transaction name is something that can be done only
programmatically

def.setName("SomeTxName");
def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRED);

Mono<ReactiveTransaction> reactiveTx = txManager.getReactiveTransaction(def);
reactiveTx.flatMap(status -> {

Mono<Object> tx = ...; // put your business logic here

return tx.then(txManager.commit(status))

.onErrorResume(ex -> txManager.rollback(status).then(Mono.error(ex)));

b

Kotlin

val def = DefaultTransactionDefinition()

// explicitly setting the transaction name is something that can be done only
programmatically

def.setName("SomeTxName")

def.propagationBehavior = TransactionDefinition.PROPAGATION_REQUIRED

val reactiveTx = txManager.getReactiveTransaction(def)
reactiveTx.flatMap { status ->

val tx = ... // put your business logic here

tx.then(txManager.commit(status))
.onErrorResume { ex -> txManager.rollback(status).then(Mono.error(ex)) }

1.6. Choosing Between Programmatic and Declarative
Transaction Management

Programmatic transaction management is usually a good idea only if you have a small number of
transactional operations. For example, if you have a web application that requires transactions only

57

for certain update operations, you may not want to set up transactional proxies by using Spring or
any other technology. In this case, using the TransactionTemplate may be a good approach. Being
able to set the transaction name explicitly is also something that can be done only by using the
programmatic approach to transaction management.

On the other hand, if your application has numerous transactional operations, declarative
transaction management is usually worthwhile. It keeps transaction management out of business
logic and is not difficult to configure. When using the Spring Framework, rather than EJB CMT, the
configuration cost of declarative transaction management is greatly reduced.

1.7. Transaction-bound Events

As of Spring 4.2, the listener of an event can be bound to a phase of the transaction. The typical
example is to handle the event when the transaction has completed successfully. Doing so lets
events be used with more flexibility when the outcome of the current transaction actually matters
to the listener.

You can register a regular event listener by using the @EventListener annotation. If you need to bind
it to the transaction, use @TransactionalEventListener. When you do so, the listener is bound to the
commit phase of the transaction by default.

The next example shows this concept. Assume that a component publishes an order-created event
and that we want to define a listener that should only handle that event once the transaction in
which it has been published has committed successfully. The following example sets up such an
event listener:

Java

@Component
public class MyComponent {

@TransactionalEventListener
public void handleOrderCreatedEvent(CreationEvent<Order> creationEvent) {

/] ...
}
}
Kotlin
@Component

class MyComponent {

@TransactionalEventListener
fun handleOrderCreatedEvent(creationEvent: CreationEvent<Order>) {
/] ...

The @TransactionalEventListener annotation exposes a phase attribute that lets you customize the

38

phase of the transaction to which the listener should be bound. The valid phases are BEFORE_COMMIT,
AFTER_COMMIT (default), AFTER_ROLLBACK, as well as AFTER_COMPLETION which aggregates the transaction
completion (be it a commit or a rollback).

If no transaction is running, the listener is not invoked at all, since we cannot honor the required
semantics. You can, however, override that behavior by setting the fallbackExecution attribute of
the annotation to true.

@TransactionalEventListener only works with thread-bound transactions managed
by PlatformTransactionManager. A reactive transaction managed by

o ReactiveTransactionManager uses the Reactor context instead of thread-local
attributes, so from the perspective of an event listener, there is no compatible
active transaction that it can participate in.

1.8. Application server-specific integration

Spring’s transaction abstraction is generally application server-agnostic. Additionally, Spring’s
JtaTransactionManager class (which can optionally perform a JNDI lookup for the JTA
UserTransaction and TransactionManager objects) autodetects the location for the latter object, which
varies by application server. Having access to the JTA TransactionManager allows for enhanced
transaction semantics—in particular, supporting transaction suspension. See the
JtaTransactionManager javadoc for details.

Spring’s JtaTransactionManager is the standard choice to run on Java EE application servers and is
known to work on all common servers. Advanced functionality, such as transaction suspension,
works on many servers as well (including GlassFish, JBoss and Geronimo) without any special
configuration required. However, for fully supported transaction suspension and further advanced
integration, Spring includes special adapters for WebLogic Server and WebSphere. These adapters
are discussed in the following sections.

For standard scenarios, including WebLogic Server and WebSphere, consider using the convenient
<tx:jta-transaction-manager/> configuration element. When configured, this element automatically
detects the underlying server and chooses the best transaction manager available for the platform.
This means that you need not explicitly configure server-specific adapter classes (as discussed in
the following sections). Rather, they are chosen automatically, with the standard
JtaTransactionManager as the default fallback.

1.8.1. IBM WebSphere

On WebSphere 6.1.0.9 and above, the recommended Spring JTA transaction manager to use is
WebSphereUowTransactionManager. This special adapter uses IBM’s UOWManager API, which is available
in WebSphere Application Server 6.1.0.9 and later. With this adapter, Spring-driven transaction
suspension (suspend and resume as initiated by PROPAGATION_REQUIRES_NEW) is officially supported by
IBM.

1.8.2. Oracle WebLogic Server

On WebLogic Server 9.0 or above, you would typically use the WebLogicJtaTransactionManager

39

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html

instead of the stock JtaTransactionManager class. This special WebLogic-specific subclass of the
normal JtaTransactionManager supports the full power of Spring’s transaction definitions in a
WebLogic-managed transaction environment, beyond standard JTA semantics. Features include
transaction names, per-transaction isolation levels, and proper resuming of transactions in all
cases.

1.9. Solutions to Common Problems

This section describes solutions to some common problems.

1.9.1. Using the Wrong Transaction Manager for a Specific DataSource

Use the correct PlatformTransactionManager implementation based on your choice of transactional
technologies and requirements. Used properly, the Spring Framework merely provides a
straightforward and portable abstraction. If you use global transactions, you must use the
org.springframework.transaction.jta.JtaTransactionManager class (or an application server-specific
subclass of it) for all your transactional operations. Otherwise, the transaction infrastructure tries
to perform local transactions on such resources as container DataSource instances. Such local
transactions do not make sense, and a good application server treats them as errors.

1.10. Further Resources

For more information about the Spring Framework’s transaction support, see:

* Distributed transactions in Spring, with and without XA is a JavaWorld presentation in which
Spring’s David Syer guides you through seven patterns for distributed transactions in Spring
applications, three of them with XA and four without.

» Java Transaction Design Strategies is a book available from InfoQ that provides a well-paced
introduction to transactions in Java. It also includes side-by-side examples of how to configure
and use transactions with both the Spring Framework and EJB3.

60

https://www.javaworld.com/javaworld/jw-01-2009/jw-01-spring-transactions.html
https://www.infoq.com/minibooks/JTDS
https://www.infoq.com/

Chapter 2. DAO Support

The Data Access Object (DAO) support in Spring is aimed at making it easy to work with data access
technologies (such as JDBC, Hibernate, or JPA) in a consistent way. This lets you switch between the
aforementioned persistence technologies fairly easily, and it also lets you code without worrying
about catching exceptions that are specific to each technology.

2.1. Consistent Exception Hierarchy

Spring provides a convenient translation from technology-specific exceptions, such as SQLException
to its own exception class hierarchy, which has DataAccessException as the root exception. These
exceptions wrap the original exception so that there is never any risk that you might lose any
information about what might have gone wrong.

In addition to JDBC exceptions, Spring can also wrap JPA- and Hibernate-specific exceptions,
converting them to a set of focused runtime exceptions. This lets you handle most non-recoverable
persistence exceptions in only the appropriate layers, without having annoying boilerplate catch-
and-throw blocks and exception declarations in your DAOs. (You can still trap and handle
exceptions anywhere you need to though.) As mentioned above, JDBC exceptions (including
database-specific dialects) are also converted to the same hierarchy, meaning that you can perform
some operations with J]DBC within a consistent programming model.

The preceding discussion holds true for the various template classes in Spring’s support for various
ORM frameworks. If you use the interceptor-based classes, the application must care about
handling HibernateExceptions and PersistenceExceptions itself, preferably by delegating to the
convertHibernateAccessException(..) or convert]paAccessException(..) methods, respectively, of
SessionFactoryUtils. These methods convert the exceptions to exceptions that are compatible with
the exceptions in the org.springframework.dao exception hierarchy. As PersistenceExceptions are
unchecked, they can get thrown, too (sacrificing generic DAO abstraction in terms of exceptions,
though).

The following image shows the exception hierarchy that Spring provides. (Note that the class
hierarchy detailed in the image shows only a subset of the entire DataAccessException hierarchy.)

|DataAccessR ezsourceF ailureExcepti onl |L,\"rcategon’zeo‘DataAccessExce,aﬁonI

|CleanupFaiIureDataAccessExce ptionl |Data|ntegrity\-‘iolationExceptionl

|In\:a|idDataAccessApiUsageExce ptionl |Dead|ookLose 1] ataAccessExceptionI

|In\ra|idDataAccessResourceUsageExceptionl |DataRetrievalFaiIureExceptionI |DptimisticLockingFaiIureExceptionI

i

L??conecttbu‘ateSemantﬁcsDataAccessExcepﬁonI |D bjectRetrievalFailureExce ptionl |D bjectOptimisticLockingF ailureExce ptionl

|T3rp ehdizmatchlatafceessExceptlio nl

61

2.2. Annotations Used to Configure DAO or Repository
Classes

The best way to guarantee that your Data Access Objects (DAOs) or repositories provide exception
translation is to use the @Repository annotation. This annotation also lets the component scanning
support find and configure your DAOs and repositories without having to provide XML
configuration entries for them. The following example shows how to use the @Repository
annotation:

Java

@Repository @

public class SomeMovieFinder implements MovieFinder {
/] ...

}

@ The @Repository annotation.

Kotlin

@Repository @

class SomeMovieFinder : MovieFinder {
/] ...

}

® The @Repository annotation.

Any DAO or repository implementation needs access to a persistence resource, depending on the
persistence technology used. For example, a JDBC-based repository needs access to a JDBC
DataSource, and a JPA-based repository needs access to an EntityManager. The easiest way to
accomplish this is to have this resource dependency injected by using one of the @Autowired,
@Inject, OResource or @PersistenceContext annotations. The following example works for a JPA
repository:

Java

@Repository
public class JpaMovieFinder implements MovieFinder {

@PersistenceContext
private EntityManager entityManager;

/] ...

62

Kotlin

@Repository
class JpaMovieFinder : MovieFinder {

@PersistenceContext
private lateinit var entityManager: EntityManager

I woo

If you use the classic Hibernate APIs, you can inject SessionFactory, as the following example
shows:

Java

@Repository
public class HibernateMovieFinder implements MovieFinder {

private SessionFactory sessionFactory;

@Autowired
public void setSessionFactory(SessionFactory sessionFactory) {
this.sessionFactory = sessionFactory;

}

/] ...

Kotlin

@Repository

class HibernateMovieFinder(private val sessionFactory: SessionFactory) : MovieFinder {
/] ...

+

The last example we show here is for typical JDBC support. You could have the DataSource injected
into an initialization method or a constructor, where you would create a JdbcTemplate and other
data access support classes (such as SimpleldbcCall and others) by using this DataSource. The
following example autowires a DataSource:

63

Java

@Repository
public class JdbcMovieFinder implements MovieFinder {

private JdbcTemplate jdbcTemplate;
@Autowired

public void init(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

/] ...

Kotlin

@Repository
class JdbcMovieFinder(dataSource: DataSource) : MovieFinder {

private val jdbcTemplate = JdbcTemplate(dataSource)

/] ...

o See the specific coverage of each persistence technology for details on how to
configure the application context to take advantage of these annotations.

64

Chapter 3. Data Access with JDBC

The value provided by the Spring Framework JDBC abstraction is perhaps best shown by the
sequence of actions outlined in the following table below. The table shows which actions Spring

takes care of and which actions are your responsibility.

Table 4. Spring JDBC - who does what?

Action

Define connection parameters.
Open the connection.

Specify the SQL statement.

Declare parameters and
provide parameter values

Prepare and run the statement.

Set up the loop to iterate
through the results (if any).

Do the work for each iteration.
Process any exception.
Handle transactions.

Close the connection, the
statement, and the resultset.

Spring

You

The Spring Framework takes care of all the low-level details that can make JDBC such a tedious API.

3.1. Choosing an Approach for JDBC Database Access

You can choose among several approaches to form the basis for your JDBC database access. In
addition to three flavors of JdbcTemplate, a new SimpleldbcInsert and SimpleJldbcCall approach
optimizes database metadata, and the RDBMS Object style takes a more object-oriented approach
similar to that of JDO Query design. Once you start using one of these approaches, you can still mix
and match to include a feature from a different approach. All approaches require a JDBC 2.0-

compliant driver, and some advanced features require a JDBC 3.0 driver.

» JdbcTemplate is the classic and most popular Spring JDBC approach. This “lowest-level” approach

and all others use a JdbcTemplate under the covers.

* NamedParameter]dbcTemplate wraps a JdbcTemplate to provide named parameters instead of the
traditional JDBC ? placeholders. This approach provides better documentation and ease of use

when you have multiple parameters for an SQL statement.

» SimpleJdbcInsert and SimpleldbcCall optimize database metadata to limit the amount of
necessary configuration. This approach simplifies coding so that you need to provide only the
name of the table or procedure and provide a map of parameters matching the column names.
This works only if the database provides adequate metadata. If the database does not provide

65

this metadata, you have to provide explicit configuration of the parameters.

* RDBMS objects — including MappingSqlQuery, SqlUpdate, and StoredProcedure — require you to
create reusable and thread-safe objects during initialization of your data-access layer. This
approach is modeled after JDO Query, wherein you define your query string, declare
parameters, and compile the query. Once you do that, execute(::-), update(:--), and
findObject(') methods can be called multiple times with various parameter values.

3.2. Package Hierarchy
The Spring Framework’s JDBC abstraction framework consists of four different packages:

» core: The org.springframework.jdbc.core package contains the JdbcTemplate class and its various
callback interfaces, plus a variety of related classes. A subpackage named
org.springframework.jdbc.core.simple contains the SimpleJdbcInsert and SimpleldbcCall classes.
Another subpackage named org.springframework.jdbc.core.namedparam contains the
NamedParameterJdbcTemplate class and the related support classes. See Using the JDBC Core
Classes to Control Basic JDBC Processing and Error Handling, JDBC Batch Operations, and
Simplifying JDBC Operations with the SimpleJdbc Classes.

 datasource: The org.springframework.jdbc.datasource package contains a utility class for easy
DataSource access and various simple DataSource implementations that you can use for testing
and running unmodified JDBC code outside of a Java EE container. A subpackage named
org.springfamework.jdbc.datasource.embedded provides support for creating embedded
databases by using Java database engines, such as HSQL, H2, and Derby. See Controlling
Database Connections and Embedded Database Support.

* object: The org.springframework.jdbc.object package contains classes that represent RDBMS
queries, updates, and stored procedures as thread-safe, reusable objects. See Modeling JDBC
Operations as Java Objects. This approach is modeled by JDO, although objects returned by
queries are naturally disconnected from the database. This higher-level of JDBC abstraction
depends on the lower-level abstraction in the org.springframework.jdbc.core package.

» support: The org.springframework.jdbc.support package provides SQLException translation
functionality and some utility classes. Exceptions thrown during JDBC processing are translated
to exceptions defined in the org.springframework.dao package. This means that code using the
Spring JDBC abstraction layer does not need to implement JDBC or RDBMS-specific error
handling. All translated exceptions are unchecked, which gives you the option of catching the
exceptions from which you can recover while letting other exceptions be propagated to the
caller. See Using SQLExceptionTranslator.

3.3. Using the JDBC Core Classes to Control Basic JDBC
Processing and Error Handling

This section covers how to use the JDBC core classes to control basic JDBC processing, including
error handling. It includes the following topics:

» Using JdbcTemplate

» Using NamedParameterJdbcTemplate

66

Using SQLExceptionTranslator
* Running Statements

* Running Queries

Updating the Database

* Retrieving Auto-generated Keys

3.3.1. Using JdbcTemplate

JdbcTemplate is the central class in the JDBC core package. It handles the creation and release of
resources, which helps you avoid common errors, such as forgetting to close the connection. It
performs the basic tasks of the core JDBC workflow (such as statement creation and execution),
leaving application code to provide SQL and extract results. The JdbcTemplate class:

Runs SQL queries
* Updates statements and stored procedure calls

» Performs iteration over ResultSet instances and extraction of returned parameter values.

Catches JDBC exceptions and translates them to the generic, more informative, exception
hierarchy defined in the org.springframework.dao package. (See Consistent Exception Hierarchy.)

When you use the JdbcTemplate for your code, you need only to implement callback interfaces,
giving them a clearly defined contract. Given a Connection provided by the JdbcTemplate class, the
PreparedStatementCreator callback interface creates a prepared statement, providing SQL and any
necessary parameters. The same is true for the CallableStatementCreator interface, which creates
callable statements. The RowCallbackHandler interface extracts values from each row of a ResultSet.

You can use JdbcTemplate within a DAO implementation through direct instantiation with a
DataSource reference, or you can configure it in a Spring IoC container and give it to DAOs as a bean
reference.

The DataSource should always be configured as a bean in the Spring IoC container.
o In the first case the bean is given to the service directly; in the second case it is
given to the prepared template.

All SQL issued by this class is logged at the DEBUG level under the category corresponding to the fully
qualified class name of the template instance (typically JdbcTemplate, but it may be different if you
use a custom subclass of the JdbcTemplate class).

The following sections provide some examples of JdbcTemplate usage. These examples are not an
exhaustive list of all of the functionality exposed by the JdbcTemplate. See the attendant javadoc for
that.

Querying (SELECT)

The following query gets the number of rows in a relation:

67

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html

Java

int rowCount = this.jdbcTemplate.queryForObject("select count(*) from t_actor",
Integer.class);

Kotlin

val rowCount = jdbcTemplate.queryForObject<Int>("select count(*) from t_actor")!!

The following query uses a bind variable:

Java

int countOfActorsNamedJoe = this.jdbcTemplate.queryForObject(
"select count(*) from t_actor where first_name = ?", Integer.class, "Joe");

Kotlin

val countOfActorsNamedJoe = jdbcTemplate.queryForObject<Int>(
"select count(*) from t_actor where first_name = ?", array0f("Joe"))!!

The following query looks for a String:

Java

String lastName = this.jdbcTemplate.queryForObject(
"select last_name from t_actor where id = ?",
String.class, 1212L);

Kotlin

val lastName = this.jdbcTemplate.queryForObject<String>(
"select last_name from t_actor where id = ?",
array0f(1212L))!!

The following query finds and populates a single domain object:

68

Java

Actor actor = jdbcTemplate.queryForObject(
"select first_name, last name from t_actor where id = ?",
(resultSet, rowNum) -> {
Actor newActor = new Actor();
newActor.setFirstName(resultSet.getString("first_name"));
newActor.setlLastName(resultSet.getString("last_name"));
return newActor;

b
12121);

Kotlin

val actor = jdbcTemplate.queryForObject(

"select first_name, last_name from t_actor where id = ?",
array0f(1212L)) { rs, _ ->

Actor(rs.getString("first_name"), rs.getString("last_name"))

The following query finds and populates a list of domain objects:

Java

List<Actor> actors = this.jdbcTemplate.query(
"select first_name, last name from t_actor",
(resultSet, rowNum) -> {
Actor actor = new Actor();
actor.setFirstName(resultSet.getString("first_name"));
actor.setlLastName(resultSet.getString("last_name"));
return actor;

b

Kotlin

val actors = jdbcTemplate.query("select first_name, last_name from t_actor") { rs, _
->

Actor(rs.getString("first_name"), rs.getString("last_name"))

If the last two snippets of code actually existed in the same application, it would make sense to
remove the duplication present in the two RowMapper lambda expressions and extract them out into
a single field that could then be referenced by DAO methods as needed. For example, it may be
better to write the preceding code snippet as follows:

69

Java

private final RowMapper<Actor> actorRowMapper = (resultSet, rowNum) -> {
Actor actor = new Actor();
actor.setFirstName(resultSet.getString("first_name"));
actor.setlLastName(resultSet.qgetString("last_name"));
return actor;

+

public List<Actor> findAllActors() {
return this.jdbcTemplate.query("select first_name, last_name from t_actor",
actorRowMapper);

}

Kotlin

val actorMapper = RowMapper<Actor> { rs: ResultSet, rowNum: Int ->
Actor(rs.getString("first_name"), rs.getString("last_name"))
}

fun findAllActors(): List<Actor> {
return jdbcTemplate.query("select first_name, last_name from t_actor",
actorMapper)

}

Updating (INSERT, UPDATE, and DELETE) with JdbcTemplate

You can use the update(..) method to perform insert, update, and delete operations. Parameter
values are usually provided as variable arguments or, alternatively, as an object array.

The following example inserts a new entry:

Java

this.jdbcTemplate.update(
"insert into t_actor (first_name, last name) values (?, ?)",
"Leonor", "Watling");

Kotlin

jdbcTemplate.update(
"insert into t _actor (first_name, last name) values (?, ?)",
"Leonor", "Watling")

The following example updates an existing entry:

70

Java
this.jdbcTemplate.update(

"update t_actor set last_name = ? where id = ?",
"Banjo", 5276L);

Kotlin
jdbcTemplate.update(

"update t_actor set last_name = ? where id = ?",
"Banjo", 5276L)

The following example deletes an entry:

Java
this.jdbcTemplate.update(

"delete from t_actor where id = ?",
Long.valueOf(actorId));

Kotlin

jdbcTemplate.update("delete from t_actor where id = ?", actorId.tolong())

Other JdbcTemplate Operations

You can use the execute(..) method to run any arbitrary SQL. Consequently, the method is often
used for DDL statements. It is heavily overloaded with variants that take callback interfaces,
binding variable arrays, and so on. The following example creates a table:

Java

this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))");

Kotlin

jdbcTemplate.execute("create table mytable (id integer, name varchar(100))")

The following example invokes a stored procedure:

Java
this.jdbcTemplate.update(

"call SUPPORT.REFRESH_ACTORS_SUMMARY(?)",
Long.valueOf(unionId));

71

Kotlin

jdbcTemplate.update(
"call SUPPORT.REFRESH_ACTORS_SUMMARY(?)",
unionId.tolong())

More sophisticated stored procedure support is covered later.

JdbcTemplate Best Practices

Instances of the JdbcTemplate class are thread-safe, once configured. This is important because it
means that you can configure a single instance of a JdbcTemplate and then safely inject this shared
reference into multiple DAOs (or repositories). The JdbcTemplate is stateful, in that it maintains a
reference to a DataSource, but this state is not conversational state.

A common practice when using the JdbcTemplate «class (and the associated
NamedParameterJdbcTemplate class) is to configure a DataSource in your Spring configuration file and
then dependency-inject that shared DataSource bean into your DAO classes. The JdbcTemplate is
created in the setter for the DataSource. This leads to DAOs that resemble the following:

Java
public class JdbcCorporateEventDao implements CorporateEventDao {
private JdbcTemplate jdbcTemplate;
public void setDataSource(DataSource dataSource) {

this.jdbcTemplate = new JdbcTemplate(dataSource);
}

// IDBC-backed implementations of the methods on the CorporateEventDao follow...

Kotlin

class JdbcCorporateEventDao(dataSource: DataSource) : CorporateEventDao {
private val jdbcTemplate = JdbcTemplate(dataSource)

// JDBC-backed implementations of the methods on the CorporateEventDao follow...

The following example shows the corresponding XML configuration:

72

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<bean id="corporateEventDao" class="com.example.JdbcCorporateEventDao">
<property name="dataSource" ref="dataSource"/>
</bean>

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.ur1}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>

</beans>

An alternative to explicit configuration is to use component-scanning and annotation support for
dependency injection. In this case, you can annotate the class with @Repository (which makes it a
candidate for component-scanning) and annotate the DataSource setter method with @Autowired. The
following example shows how to do so:

Java

@Repository @
public class JdbcCorporateEventDao implements CorporateEventDao {

private JdbcTemplate jdbcTemplate;
@Autowired @
public void setDataSource(DataSource dataSource) {

this.jdbcTemplate = new JdbcTemplate(dataSource); @
}

// JDBC-backed implementations of the methods on the CorporateEventDao follow...

@ Annotate the class with @Repository.

@ Annotate the DataSource setter method with @Autowired.

73

® Create a new JdbcTemplate with the DataSource.

Kotlin

@Repository @
class JdbcCorporateEventDao(dataSource: DataSource) : CorporateEventDao { @

private val jdbcTemplate = JdbcTemplate(dataSource) @

// JDBC-backed implementations of the methods on the CorporateEventDao follow...

@ Annotate the class with @Repository.
@ Constructor injection of the DataSource.

® Create a new JdbcTemplate with the DataSource.

The following example shows the corresponding XML configuration:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<!-- Scans within the base package of the application for @Component classes to
configure as beans -->
<context:component-scan base-package="org.springframework.docs.test" />

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.ur1}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>

</beans>

If you use Spring’s JdbcDaoSupport class and your various JDBC-backed DAO classes extend from it,
your sub-class inherits a setDataSource(..) method from the JdbcDaoSupport class. You can choose
whether to inherit from this class. The JdbcDaoSupport class is provided as a convenience only.

Regardless of which of the above template initialization styles you choose to use (or not), it is

74

seldom necessary to create a new instance of a JdbcTemplate class each time you want to run SQL.
Once configured, a JdbcTemplate instance is thread-safe. If your application accesses multiple
databases, you may want multiple JdbcTemplate instances, which requires multiple DataSources and,
subsequently, multiple differently configured JdbcTemplate instances.

3.3.2. Using NamedParameterJdbcTemplate

The NamedParameterJdbcTemplate class adds support for programming JDBC statements by using
named parameters, as opposed to programming JDBC statements using only classic placeholder (
'?") arguments. The NamedParameterJdbcTemplate class wraps a JdbcTemplate and delegates to the
wrapped JdbcTemplate to do much of its work. This section describes only those areas of the
NamedParameterJdbcTemplate class that differ from the JdbcTemplate itself —namely, programming
JDBC statements by using named parameters. The following example shows how to use
NamedParameterJdbcTemplate:

Java

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int countOfActorsByFirstName(String firstName) {
String sql = "select count(*) from T_ACTOR where first_name = :first_name";

SqlParameterSource namedParameters = new MapSqlParameterSource("first_name",
firstName);

return this.namedParameterJdbcTemplate.queryForObject(sql, namedParameters,
Integer.class);

}

Kotlin

private val namedParameterJdbcTemplate = NamedParameterJdbcTemplate(dataSource)

fun countOfActorsByFirstName(firstName: String): Int {
val sql = "select count(*) from T_ACTOR where first_name = :first_name"
val namedParameters = MapSqlParameterSource("first_name", firstName)
return namedParameterJdbcTemplate.queryForObject(sql, namedParameters,
Int::class.java)!!

}

Notice the use of the named parameter notation in the value assigned to the sql variable and the
corresponding value that is plugged into the namedParameters wvariable (of type
MapSqlParameterSource).

75

Alternatively, you can pass along named parameters and their corresponding values to a
NamedParameterJdbcTemplate instance by using the Map-based style.The remaining methods exposed
by the NamedParameterJdbcOperations and implemented by the NamedParameterJdbcTemplate class
follow a similar pattern and are not covered here.

The following example shows the use of the Map-based style:

Java

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int countOfActorsByFirstName(String firstName) {
String sql = "select count(*) from T_ACTOR where first_name = :first_name";

Map<String, String> namedParameters = Collections.singletonMap("first_name",
firstName);

return this.namedParameter]dbcTemplate.queryForObject(sql, namedParameters,
Integer.class);

}

Kotlin

// some JDBC-backed DAO class...
private val namedParameterJdbcTemplate = NamedParameterJdbcTemplate(dataSource)

fun countOfActorsByFirstName(firstName: String): Int {
val sql = "select count(*) from T_ACTOR where first_name = :first_name"
val namedParameters = mapOf("first_name" to firstName)
return namedParameterJdbcTemplate.queryForObject(sql, namedParameters,
Int::class.java)!!

}

One nice feature related to the NamedParameterJdbcTemplate (and existing in the same Java package)
is the SqlParameterSource interface. You have already seen an example of an implementation of this
interface in one of the previous code snippets (the MapSqlParameterSource class). An
SqlParameterSource is a source of named parameter values to a NamedParameterJdbcTemplate. The
MapSqlParameterSource class is a simple implementation that is an adapter around a java.util.Map,
where the keys are the parameter names and the values are the parameter values.

Another SqlParameterSource implementation is the BeanPropertySqlParameterSource class. This class
wraps an arbitrary JavaBean (that is, an instance of a class that adheres to the JavaBean
conventions) and uses the properties of the wrapped JavaBean as the source of named parameter

76

https://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
https://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

values.
The following example shows a typical JavaBean:
Java
public class Actor {
private Long 1id;
private String firstName;

private String lastName;

public String getFirstName() {
return this.firstName;

}

public String getlastName() {
return this.lastName;

}

public Long getId() {
return this.id;

}

// setters omitted...

Kotlin

data class Actor(val id: Long, val firstName: String, val lastName: String)

The following example uses a NamedParameterJdbcTemplate to return the count of the members of the
class shown in the preceding example:

77

Java

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int countOfActors(Actor exampleActor) {

// notice how the named parameters match the properties of the above 'Actor' class
String sql = "select count(*) from T_ACTOR where first_name = :firstName and
last_name = :lastName";

SqlParameterSource namedParameters = new
BeanPropertySqlParameterSource(exampleActor);

return this.namedParameterJdbcTemplate.queryForObject(sql, namedParameters,
Integer.class);

}

Kotlin

// some JDBC-backed DAO class...
private val namedParameter]dbcTemplate

NamedParameterJdbcTemplate(dataSource)

private val namedParameterJdbcTemplate

NamedParameterJdbcTemplate(dataSource)

fun countOfActors(exampleActor: Actor): Int {

// notice how the named parameters match the properties of the above 'Actor' class

val sql = "select count(*) from T_ACTOR where first_name = :firstName and
last_name = :lastName"

val namedParameters = BeanPropertySqlParameterSource(exampleActor)

return namedParameterJdbcTemplate.queryForObject(sql, namedParameters,
Int::class.java)!!

}

Remember that the NamedParameterJdbcTemplate class wraps a classic JdbcTemplate template. If you
need access to the wrapped JdbcTemplate instance to access functionality that is present only in the
JdbcTemplate class, you can use the getJdbcOperations() method to access the wrapped JdbcTemplate
through the JdbcOperations interface.

See also JdbcTemplate Best Practices for guidelines on using the NamedParameterJdbcTemplate class in
the context of an application.

3.3.3. Using SQLExceptionTranslator

SQLExceptionTranslator is an interface to be implemented by classes that can translate between

78

SQLExceptions and Spring’s own org.springframework.dao.DataAccessException, which is agnostic in
regard to data access strategy. Implementations can be generic (for example, using SQLState codes
for JDBC) or proprietary (for example, using Oracle error codes) for greater precision.

SQLErrorCodeSQLExceptionTranslator is the implementation of SQLExceptionTranslator that is used by
default. This implementation uses specific vendor codes. It is more precise than the SQLState
implementation. The error code translations are based on codes held in a JavaBean type class called
SQLErrorCodes. This class is created and populated by an SQLErrorCodesFactory, which (as the name
suggests) is a factory for creating SQLErrorCodes based on the contents of a configuration file named
sql-error-codes.xml. This file is populated with vendor codes and based on the DatabaseProductName
taken from DatabaseMetaData. The codes for the actual database you are using are used.

The SQLErrorCodeSQLExceptionTranslator applies matching rules in the following sequence:

1. Any custom translation implemented by a subclass. Normally, the provided concrete
SQLErrorCodeSQLExceptionTranslator is used, so this rule does not apply. It applies only if you
have actually provided a subclass implementation.

2. Any custom implementation of the SQLExceptionTranslator interface that is provided as the
customSqlExceptionTranslator property of the SQLErrorCodes class.

3. The list of instances of the CustomSQLErrorCodesTranslation class (provided for the
customTranslations property of the SQLErrorCodes class) are searched for a match.

4. Error code matching is applied.

5. Use the fallback translator. SQLExceptionSubclassTranslator is the default fallback translator. If
this translation is not available, the next fallback translator is the
SQLStateSQLExceptionTranslator.

The SQLErrorCodesFactory is used by default to define Error codes and custom

o exception translations. They are looked up in a file named sql-error-codes.xml
from the classpath, and the matching SQLErrorCodes instance is located based on
the database name from the database metadata of the database in use.

You can extend SQLErrorCodeSQLExceptionTranslator, as the following example shows:

Java

public class CustomSQLErrorCodesTranslator extends SQLErrorCodeSQLExceptionTranslator

{

protected DataAccessException customTranslate(String task, String sql,
SQLException sqlEx) {
if (sqlEx.getErrorCode() == -12345) {
return new DeadlockLoserDataAccessException(task, sqlEx);

}

return null;

79

Kotlin
class CustomSQLErrorCodesTranslator : SQLErrorCodeSQLExceptionTranslator() {

override fun customTranslate(task: String, sql: String?, sqlEx: SQLException):
DataAccessException? {
if (sqlEx.errorCode == -12345) {
return DeadlocklLoserDataAccessException(task, sqlEx)

}

return null;

In the preceding example, the specific error code (-12345) is translated, while other errors are left to
be translated by the default translator implementation. To use this custom translator, you must pass
it to the JdbcTemplate through the method setExceptionTranslator, and you must use this
JdbcTemplate for all of the data access processing where this translator is needed. The following
example shows how you can use this custom translator:

Java
private JdbcTemplate jdbcTemplate;
public void setDataSource(DataSource dataSource) {

// create a JdbcTemplate and set data source
this.jdbcTemplate = new JdbcTemplate();
this.jdbcTemplate.setDataSource(dataSource);

// create a custom translator and set the DataSource for the default translation
lookup

CustomSQLErrorCodesTranslator tr = new CustomSQLErrorCodesTranslator();

tr.setDataSource(dataSource);

this.jdbcTemplate.setExceptionTranslator(tr);

}

public void updateShippingCharge(long orderId, long pct) {
// use the prepared JdbcTemplate for this update
this.jdbcTemplate.update("update orders" +
" set shipping_charge = shipping_charge * ? / 100" +
where id = ?", pct, orderld);

80

Kotlin

// create a JdbcTemplate and set data source
private val jdbcTemplate = JdbcTemplate(dataSource).apply {
// create a custom translator and set the DataSource for the default translation
lookup
exceptionTranslator = CustomSQLErrorCodesTranslator().apply {
this.dataSource = dataSource

}
}

fun updateShippingCharge(orderId: Long, pct: Long) {
// use the prepared JdbcTemplate for this update
this.jdbcTemplate!!.update("update orders" +
" set shipping_charge = shipping_charge * ? / 100" +
where id = ?", pct, orderlId)

The custom translator is passed a data source in order to look up the error codes in sql-error-
codes.xml.

3.3.4. Running Statements

Running an SQL statement requires very little code. You need a DataSource and a JdbcTemplate,
including the convenience methods that are provided with the JdbcTemplate. The following example
shows what you need to include for a minimal but fully functional class that creates a new table:

Java

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class ExecuteAStatement {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);
}

public void doExecute() {

this.jdbcTemplate.execute("create table mytable (id integer, name
varchar(100))");

}
}

81

Kotlin

import javax.sql.DataSource
import org.springframework.jdbc.core.JdbcTemplate

class ExecuteAStatement(dataSource: DataSource) {
private val jdbcTemplate = JdbcTemplate(dataSource)

fun doExecute() {

jdbcTemplate.execute("create table mytable (id integer, name varchar(100))")
}

3.3.5. Running Queries

Some query methods return a single value. To retrieve a count or a specific value from one row, use
queryForObject(..). The latter converts the returned JDBC Type to the Java class that is passed in as
an argument. If the type conversion is invalid, an InvalidDataAccessApiUsageException is thrown.
The following example contains two query methods, one for an int and one that queries for a
String:

Java

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class RunAQuery {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);
}

public int getCount() {

return this.jdbcTemplate.queryForObject("select count(*) from mytable",
Integer.class);

}

public String getName() {

return this.jdbcTemplate.queryForObject("select name from mytable",
String.class);

}
}

82

Kotlin

import javax.sql.DataSource
import org.springframework.jdbc.core.JdbcTemplate

class RunAQuery(dataSource: DataSource) {
private val jdbcTemplate = JdbcTemplate(dataSource)

val count: Int
get() = jdbcTemplate.queryForObject("select count(*) from mytable")!!

val name: String?
get() = jdbcTemplate.queryForObject("select name from mytable")

In addition to the single result query methods, several methods return a list with an entry for each
row that the query returned. The most generic method is queryForList(..), which returns a List
where each element is a Map containing one entry for each column, using the column name as the
key. If you add a method to the preceding example to retrieve a list of all the rows, it might be as
follows:

Java
private JdbcTemplate jdbcTemplate;
public void setDataSource(DataSource dataSource) {

this.jdbcTemplate = new JdbcTemplate(dataSource);
}

public List<Map<String, Object>> getlList() {
return this.jdbcTemplate.queryForList("select * from mytable");
b

Kotlin
private val jdbcTemplate = JdbcTemplate(dataSource)

fun getList(): List<Map<String, Any>> {
return jdbcTemplate.queryForList("select * from mytable")
}

The returned list would resemble the following:

[{name=Bob, id=1}, {name=Mary, id=2}]

83

3.3.6. Updating the Database
The following example updates a column for a certain primary key:

Java

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class ExecuteAnUpdate {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public void setName(int id, String name) {
this.jdbcTemplate.update("update mytable set name = ? where id = ?", name,
id);
}
¥

Kotlin

import javax.sql.DataSource
import org.springframework.jdbc.core.JdbcTemplate

class ExecuteAnUpdate(dataSource: DataSource) {
private val jdbcTemplate = JdbcTemplate(dataSource)

fun setName(id: Int, name: String) {
jdbcTemplate.update("update mytable set name = ? where id = ?", name, id)

}

In the preceding example, an SQL statement has placeholders for row parameters. You can pass the
parameter values in as varargs or ,alternatively, as an array of objects. Thus, you should explicitly
wrap primitives in the primitive wrapper classes, or you should use auto-boxing.

3.3.7. Retrieving Auto-generated Keys

An update() convenience method supports the retrieval of primary keys generated by the database.
This support is part of the JDBC 3.0 standard. See Chapter 13.6 of the specification for details. The
method takes a PreparedStatementCreator as its first argument, and this is the way the required
insert statement is specified. The other argument is a KeyHolder, which contains the generated key
on successful return from the update. There is no standard single way to create an appropriate
PreparedStatement (which explains why the method signature is the way it is). The following

84

example works on Oracle but may not work on other platforms:

Java

final String INSERT_SQL = "insert into my_test (name) values(?)";
final String name = "Rob";

KeyHolder keyHolder = new GeneratedKeyHolder();
jdbcTemplate.update(connection -> {
PreparedStatement ps = connection.prepareStatement(INSERT_SQL, new String[] { "id"

b

ps.setString(1, name);
return ps;
}, keyHolder);

// keyHolder.getKey() now contains the generated key

Kotlin

val INSERT_SQL = "insert into my_test (name) values(?)"
val name = "Rob"

val keyHolder = GeneratedKeyHolder()
jdbcTemplate.update({

it.prepareStatement (INSERT_SQL, arrayOf("id")).apply { setString(1, name) }
}, keyHolder)

// keyHolder.getKey() now contains the generated key

3.4. Controlling Database Connections

This section covers:

» Using DataSource
» Using DataSourceUtils
* Implementing SmartDataSource

* Extending AbstractDataSource

Using SingleConnectionDataSource
» Using DriverManagerDataSource

» Using TransactionAwareDataSourceProxy

Using DataSourceTransactionManager

3.4.1. Using DataSource

Spring obtains a connection to the database through a DataSource. A DataSource is part of the JDBC
specification and is a generalized connection factory. It lets a container or a framework hide

85

connection pooling and transaction management issues from the application code. As a developer,
you need not know details about how to connect to the database. That is the responsibility of the
administrator who sets up the datasource. You most likely fill both roles as you develop and test
code, but you do not necessarily have to know how the production data source is configured.

When you use Spring’s JDBC layer, you can obtain a data source from JNDI, or you can configure
your own with a connection pool implementation provided by a third party. Traditional choices are
Apache Commons DBCP and C3P0 with bean-style DataSource classes; for a modern JDBC connection
pool, consider HikariCP with its builder-style API instead.

You should use the DriverManagerDataSource and SimpleDriverDataSource classes (as

o included in the Spring distribution) only for testing purposes! Those variants do
not provide pooling and perform poorly when multiple requests for a connection
are made.

The following section uses Spring’s DriverManagerDataSource implementation. Several other
DataSource variants are covered later.

To configure a DriverManagerDataSource:

1. Obtain a connection with DriverManagerDataSource as you typically obtain a JDBC connection.

2. Specify the fully qualified classname of the JDBC driver so that the DriverManager can load the
driver class.

3. Provide a URL that varies between JDBC drivers. (See the documentation for your driver for the
correct value.)

4. Provide a username and a password to connect to the database.
The following example shows how to configure a DriverManagerDataSource in Java:

Java

DriverManagerDataSource dataSource = new DriverManagerDataSource();
dataSource.setDriverClassName("org.hsqldb.jdbcDriver");
dataSource.setUr1("jdbc:hsqldb:hsql://localhost:");
dataSource.setUsername("sa");

dataSource.setPassword("");

Kotlin

val dataSource = DriverManagerDataSource().apply {
setDriverClassName("org.hsqldb.jdbcDriver")
url = "jdbc:hsqldb:hsql://localhost:"
username = "sa"
password = ""

The following example shows the corresponding XML configuration:

86

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="ur1l" value="${jdbc.ur1}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>

The next two examples show the basic connectivity and configuration for DBCP and C3PO0. To learn
about more options that help control the pooling features, see the product documentation for the
respective connection pooling implementations.

The following example shows DBCP configuration:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>
The following example shows C3P0 configuration:

<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-
method="close">

<property name="driverClass" value="${jdbc.driverClassName}"/>

<property name="jdbcUr1" value="${jdbc.url}"/>

<property name="user" value="${jdbc.username}"/>

<property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>

3.4.2. Using DataSourceUtils

The DataSourceUtils class is a convenient and powerful helper class that provides static methods to
obtain connections from JNDI and close connections if necessary. It supports thread-bound
connections with, for example, DataSourceTransactionManager.

87

3.4.3. Implementing SmartDataSource

The SmartDataSource interface should be implemented by classes that can provide a connection to a
relational database. It extends the DataSource interface to let classes that use it query whether the
connection should be closed after a given operation. This usage is efficient when you know that you
need to reuse a connection.

3.4.4. Extending AbstractDataSource

AbstractDataSource is an abstract base class for Spring’s DataSource implementations. It implements
code that is common to all DataSource implementations. You should extend the AbstractDataSource
class if you write your own DataSource implementation.

3.4.5. Using SingleConnectionDataSource

The SingleConnectionDataSource class is an implementation of the SmartDataSource interface that
wraps a single Connection that is not closed after each use. This is not multi-threading capable.

If any client code calls close on the assumption of a pooled connection (as when using persistence
tools), you should set the suppressClose property to true. This setting returns a close-suppressing
proxy that wraps the physical connection. Note that you can no longer cast this to a native Oracle
Connection or a similar object.

SingleConnectionDataSource is primarily a test class. It typically enables easy testing of code outside
an application server, in conjunction with a simple JNDI environment. In contrast to
DriverManagerDataSource, it reuses the same connection all the time, avoiding excessive creation of
physical connections.

3.4.6. Using DriverManagerDataSource

The DriverManagerDataSource class is an implementation of the standard DataSource interface that
configures a plain JDBC driver through bean properties and returns a new Connection every time.

This implementation is useful for test and stand-alone environments outside of a Java EE container,
either as a DataSource bean in a Spring IoC container or in conjunction with a simple JNDI
environment. Pool-assuming Connection.close() calls close the connection, so any DataSource-aware
persistence code should work. However, using JavaBean-style connection pools (such as commons-
dbcp) is so easy, even in a test environment, that it is almost always preferable to use such a
connection pool over DriverManagerDataSource.

3.4.7. Using TransactionAwareDataSourceProxy

TransactionAwareDataSourceProxy is a proxy for a target DataSource. The proxy wraps that target
DataSource to add awareness of Spring-managed transactions. In this respect, it is similar to a
transactional JNDI DataSource, as provided by a Java EE server.

88

It is rarely desirable to use this class, except when already existing code must be
called and passed a standard JDBC DataSource interface implementation. In this

e case, you can still have this code be usable and, at the same time, have this code
participating in Spring managed transactions. It is generally preferable to write
your own new code by using the higher level abstractions for resource
management, such as JdbcTemplate or DataSourceUtils.

See the TransactionAwareDataSourceProxy javadoc for more details.

3.4.8. Using DataSourceTransactionManager

The DataSourceTransactionManager class is a PlatformTransactionManager implementation for single
JDBC datasources. It binds a JDBC connection from the specified data source to the currently
executing thread, potentially allowing for one thread connection per data source.

Application code is required to retrieve the JDBC connection through
DataSourceUtils.getConnection(DataSource) instead of Java EE’s standard DataSource.getConnection.
It throws unchecked org.springframework.dao exceptions instead of checked SQLExceptions. All
framework classes (such as JdbcTemplate) use this strategy implicitly. If not used with this
transaction manager, the lookup strategy behaves exactly like the common one. Thus, it can be used
in any case.

The DataSourceTransactionManager class supports custom isolation levels and timeouts that get
applied as appropriate JDBC statement query timeouts. To support the latter, application code must
either use JdbcTemplate or call the DataSourceUtils.applyTransactionTimeout(..) method for each
created statement.

You can use this implementation instead of JtaTransactionManager in the single-resource case, as it
does not require the container to support JTA. Switching between both is just a matter of
configuration, provided you stick to the required connection lookup pattern. JTA does not support
custom isolation levels.

3.5. JDBC Batch Operations

Most JDBC drivers provide improved performance if you batch multiple calls to the same prepared
statement. By grouping updates into batches, you limit the number of round trips to the database.

3.5.1. Basic Batch Operations with JdbcTemplate

You accomplish JdbcTemplate batch processing by implementing two methods of a special interface,
BatchPreparedStatementSetter, and passing that implementation in as the second parameter in your
batchUpdate method call. You can use the getBatchSize method to provide the size of the current
batch. You can use the setValues method to set the values for the parameters of the prepared
statement. This method is called the number of times that you specified in the getBatchSize call. The
following example updates the t_actor table based on entries in a list, and the entire list is used as
the batch:

89

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jdbc/datasource/TransactionAwareDataSourceProxy.html

Java

public class JdbcActorDao implements ActorDao {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);
}

public int[] batchUpdate(final List<Actor> actors) {
return this.jdbcTemplate.batchUpdate(
"update t_actor set first_name = 7, last_name = ? where id = ?",
new BatchPreparedStatementSetter() {
public void setValues(PreparedStatement ps, int i) throws
SQLException {
Actor actor = actors.get(i);
ps.setString(1, actor.getFirstName());
ps.setString(2, actor.getlLastName());
ps.setlong(3, actor.getId().longValue());
}
public int getBatchSize() {
return actors.size();
}
1
}

// ... additional methods

90

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {
private val jdbcTemplate = JdbcTemplate(dataSource)

fun batchUpdate(actors: List<Actor>): IntArray {
return jdbcTemplate.batchUpdate(
"update t_actor set first_name = 7, last_name = ? where id = ?",
object: BatchPreparedStatementSetter {
override fun setValues(ps: PreparedStatement, i: Int) {
ps.setString(1, actors[i].firstName)
ps.setString(2, actors[i].lastName)
ps.setlong(3, actors[i].id)
}

override fun getBatchSize() = actors.size

1))

// ... additional methods

If you process a stream of updates or reading from a file, you might have a preferred batch size, but
the last batch might not have that number of entries. In this case, you can use the
InterruptibleBatchPreparedStatementSetter interface, which lets you interrupt a batch once the
input source is exhausted. The isBatchExhausted method lets you signal the end of the batch.

3.5.2. Batch Operations with a List of Objects

Both the JdbcTemplate and the NamedParameterJdbcTemplate provides an alternate way of providing
the batch update. Instead of implementing a special batch interface, you provide all parameter
values in the call as a list. The framework loops over these values and uses an internal prepared
statement setter. The API varies, depending on whether you use named parameters. For the named
parameters, you provide an array of SqlParameterSource, one entry for each member of the batch.
You can use the SqlParameterSourceUtils.createBatch convenience methods to create this array,
passing in an array of bean-style objects (with getter methods corresponding to parameters), String
-keyed Map instances (containing the corresponding parameters as values), or a mix of both.

The following example shows a batch update using named parameters:

91

Java
public class JdbcActorDao implements ActorDao {
private NamedParameterTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int[] batchUpdate(List<Actor> actors) {
return this.namedParameterJdbcTemplate.batchUpdate(
"update t_actor set first_name = :firstName, last_name = :lastName
where id = :id",
SqlParameterSourceUtils.createBatch(actors));

}

// ... additional methods

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {
private val namedParameterJdbcTemplate = NamedParameterJdbcTemplate(dataSource)

fun batchUpdate(actors: List<Actor>): IntArray {
return this.namedParameterJdbcTemplate.batchUpdate(
"update t_actor set first_name = :firstName, last_name = :lastName
where id = :id",
SqlParameterSourceUtils.createBatch(actors));

}

// ... additional methods

For an SQL statement that uses the classic ? placeholders, you pass in a list containing an object
array with the update values. This object array must have one entry for each placeholder in the SQL
statement, and they must be in the same order as they are defined in the SQL statement.

The following example is the same as the preceding example, except that it uses classic JDBC ?
placeholders:

92

Java
public class JdbcActorDao implements ActorDao {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);
}

public int[] batchUpdate(final List<Actor> actors) {
List<Object[]> batch = new ArrayList<Object[]>();
for (Actor actor : actors) {
Object[] values = new Object[] {

actor.getFirstName(), actor.getlLastName(), actor.getId()};
batch.add(values);

}
return this.jdbcTemplate.batchUpdate(

"update t_actor set first_name = 7, last_name = ? where id = ?",
batch);
}

// ... additional methods

Kotlin

class JdbcActorDao(dataSource: DataSource) : ActorDao {
private val jdbcTemplate = JdbcTemplate(dataSource)

fun batchUpdate(actors: List<Actor>): IntArray {
val batch = mutableListOf<Array<Any>>()
for (actor in actors) {
batch.add(arrayOf(actor.firstName, actor.lastName, actor.id))

}
return jdbcTemplate.batchUpdate(

"update t_actor set first_name = 7, last_name = ? where id = ?",
batch)

}

// ... additional methods

All of the batch update methods that we described earlier return an int array containing the
number of affected rows for each batch entry. This count is reported by the JDBC driver. If the
count is not available, the JDBC driver returns a value of -2.

93

In such a scenario, with automatic setting of values on an underlying
PreparedStatement, the corresponding JDBC type for each value needs to be derived
from the given Java type. While this usually works well, there is a potential for
issues (for example, with Map-contained null values). Spring, by default, calls
ParameterMetaData.getParameterType in such a case, which can be expensive with
your JDBC driver. You should use a recent driver version and consider setting the
spring.jdbc.getParameterType.ignore property to true (as a JVM system property or
in a spring.properties file in the root of your classpath) if you encounter a
performance issue (as reported on Oracle 12c, JBoss and PostgreSQL).

Alternatively, you might consider specifying the corresponding JDBC types
explicitly, either through a 'BatchPreparedStatementSetter' (as shown earlier),
through an explicit type array given to a 'List<Object[]>' based call, through
‘registerSqlType' calls on a custom 'MapSqlParameterSource' instance, or through
a 'BeanPropertySqlParameterSource' that derives the SQL type from the Java-
declared property type even for a null value.

3.5.3. Batch Operations with Multiple Batches

The preceding example of a batch update deals with batches that are so large that you want to
break them up into several smaller batches. You can do this with the methods mentioned earlier by
making multiple calls to the batchUpdate method, but there is now a more convenient method. This
method takes, in addition to the SQL statement, a Collection of objects that contain the parameters,
the number of updates to make for each batch, and a ParameterizedPreparedStatementSetter to set
the values for the parameters of the prepared statement. The framework loops over the provided

values and breaks the update calls into batches of the size specified.

The following example shows a batch update that uses a batch size of 100:

94

Java
public class JdbcActorDao implements ActorDao {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public int[][] batchUpdate(final Collection<Actor> actors) {
int[][] updateCounts = jdbcTemplate.batchUpdate(
"update t_actor set first_name = 7, last_name = ? where id = ?",
actors,
100,
(PreparedStatement ps, Actor actor) -> {
ps.setString(1, actor.getFirstName());
ps.setString(2, actor.getlLastName());
ps.setlong(3, actor.getId().longValue());

;i
return updateCounts;
}
// ... additional methods
}
Kotlin

class JdbcActorDao(dataSource: DataSource) : ActorDao {
private val jdbcTemplate = JdbcTemplate(dataSource)

fun batchUpdate(actors: List<Actor>): Array<IntArray> {
return jdbcTemplate.batchUpdate(
"update t_actor set first_name = ?, last_name = ? where id = ?",
actors, 100) { ps, argument ->
ps.setString(1, argument.firstName)
ps.setString(2, arqument.lastName)
ps.setlong(3, argument.id)

}

// ... additional methods

The batch update methods for this call returns an array of int arrays that contains an array entry
for each batch with an array of the number of affected rows for each update. The top-level array’s
length indicates the number of batches run, and the second level array’s length indicates the
number of updates in that batch. The number of updates in each batch should be the batch size

95

provided for all batches (except that the last one that might be less), depending on the total number
of update objects provided. The update count for each update statement is the one reported by the
JDBC driver. If the count is not available, the JDBC driver returns a value of -2.

3.6. Simplifying JDBC Operations with the SimpleJdbc
Classes

The SimpleJdbcInsert and SimpleJdbcCall classes provide a simplified configuration by taking
advantage of database metadata that can be retrieved through the JDBC driver. This means that you
have less to configure up front, although you can override or turn off the metadata processing if
you prefer to provide all the details in your code.

3.6.1. Inserting Data by Using SimpleJdbcInsert

We start by looking at the SimpleJdbcInsert class with the minimal amount of configuration options.
You should instantiate the SimpleJdbcInsert in the data access layer’s initialization method. For this
example, the initializing method is the setDataSource method. You do not need to subclass the
SimpleldbcInsert class. Instead, you can create a new instance and set the table name by using the
withTableName method. Configuration methods for this class follow the fluid style that returns the
instance of the SimpleJdbcInsert, which lets you chain all configuration methods. The following
example uses only one configuration method (we show examples of multiple methods later):

Java
public class JdbcActorDao implements ActorDao {
private SimpleldbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.insertActor = new SimpleJdbcInsert(dataSource).withTableName("t_actor");

}

public void add(Actor actor) {
Map<String, Object> parameters = new HashMap<String, Object>(3);
parameters.put("id", actor.getId());
parameters.put("first_name", actor.getFirstName());
parameters.put("last_name", actor.getlLastName());
insertActor.execute(parameters);

}

// ... additional methods

96

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {
private val insertActor = SimpleJdbcInsert(dataSource).withTableName("t_actor")

fun add(actor: Actor) {
val parameters = mutableMapOf<String, Any>()
parameters["id"] = actor.id
parameters["first_name"] = actor.firstName
parameters["last_name"] = actor.lastName
insertActor.execute(parameters)

// ... additional methods

The execute method used here takes a plain java.util.Map as its only parameter. The important
thing to note here is that the keys used for the Map must match the column names of the table, as
defined in the database. This is because we read the metadata to construct the actual insert
statement.

3.6.2. Retrieving Auto-generated Keys by Using SimpleJdbcInsert

The next example uses the same insert as the preceding example, but, instead of passing in the 1id, it
retrieves the auto-generated key and sets it on the new Actor object. When it creates the
SimpleldbcInsert, in addition to specifying the table name, it specifies the name of the generated
key column with the usingGeneratedKeyColumns method. The following listing shows how it works:

97

Java
public class JdbcActorDao implements ActorDao {
private SimpleldbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.insertActor = new SimpleJdbcInsert(dataSource)
.withTableName("t _actor")
.usingGeneratedKeyColumns("id");

}

public void add(Actor actor) {
Map<String, Object> parameters = new HashMap<String, Object>(2);
parameters.put("first_name", actor.getFirstName());
parameters.put("last_name", actor.getlLastName());
Number newId = insertActor.executeAndReturnKey(parameters);
actor.setId(newId.longValue());

// ... additional methods

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {

private val insertActor = SimpleJdbcInsert(dataSource)
.withTableName("t_actor").usingGeneratedKeyColumns("id")

fun add(actor: Actor): Actor {
val parameters = mapOf(
"first_name" to actor.firstName,
"last_name" to actor.lastName)
val newld = insertActor.executeAndReturnKey(parameters);
return actor.copy(id = newId.tolong())

// ... additional methods

The main difference when you run the insert by using this second approach is that you do not add
the id to the Map, and you call the executeAndReturnKey method. This returns a java.lang.Number
object with which you can create an instance of the numerical type that is used in your domain
class. You cannot rely on all databases to return a specific Java class here. java.lang.Number is the
base class that you can rely on. If you have multiple auto-generated columns or the generated
values are non-numeric, you can use a KeyHolder that is returned from the
executeAndReturnKeyHolder method.

98

3.6.3. Specifying Columns for a SimpleJdbcInsert

You can limit the columns for an insert by specifying a list of column names with the usingColumns
method, as the following example shows:

Java
public class JdbcActorDao implements ActorDao {
private SimpleldbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.insertActor = new SimpleJdbcInsert(dataSource)
.withTableName("t actor")
.usingColumns("first_name", "last_name")
.usingGeneratedKeyColumns("id");

}

public void add(Actor actor) {
Map<String, Object> parameters = new HashMap<String, Object>(2);
parameters.put("first_name", actor.getFirstName());
parameters.put("last_name", actor.getlLastName());
Number newId = insertActor.executeAndReturnKey(parameters);
actor.setId(newlId.longValue());

}

// ... additional methods

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {

private val insertActor = SimpleJldbcInsert(dataSource)
.withTableName("t _actor")
.usingColumns("first_name", "last_name")
.usingGeneratedKeyColumns("id")

fun add(actor: Actor): Actor {
val parameters = mapOf(
"first_name" to actor.firstName,
"last_name" to actor.lastName)
val newId = insertActor.executeAndReturnKey(parameters);
return actor.copy(id = newId.tolong())

}

// ... additional methods

The execution of the insert is the same as if you had relied on the metadata to determine which

99

columns to use.

3.6.4. Using SqlParameterSource to Provide Parameter Values

Using a Map to provide parameter values works fine, but it is not the most convenient class to use.
Spring provides a couple of implementations of the SqlParameterSource interface that you can use
instead. The first one is BeanPropertySqlParameterSource, which is a very convenient class if you
have a JavaBean-compliant class that contains your values. It uses the corresponding getter method
to extract the parameter values. The following example shows how to wuse
BeanPropertySqlParameterSource:

Java
public class JdbcActorDao implements ActorDao {
private SimpleJdbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.insertActor = new SimpleJdbcInsert(dataSource)
.withTableName("t_actor")
.usingGeneratedKeyColumns("id");

}
public void add(Actor actor) {
SqlParameterSource parameters = new BeanPropertySqlParameterSource(actor);

Number newId = insertActor.executeAndReturnKey(parameters);
actor.setId(newlId.longValue());

// ... additional methods

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {
private val insertActor = SimpleJdbcInsert(dataSource)
.withTableName("t _actor")
.usingGeneratedKeyColumns("id")
fun add(actor: Actor): Actor {
val parameters = BeanPropertySqlParameterSource(actor)

val newld = insertActor.executeAndReturnKey(parameters)
return actor.copy(id = newId.tolong())

// ... additional methods

100

Another option is the MapSqlParameterSource that resembles a Map but provides a more convenient
addValue method that can be chained. The following example shows how to use it:

Java
public class JdbcActorDao implements ActorDao {
private SimpleJdbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.insertActor = new SimpleJdbcInsert(dataSource)
.withTableName("t _actor")
.usingGeneratedKeyColumns("id");

}

public void add(Actor actor) {

SqlParameterSource parameters = new MapSqlParameterSource()
.addValue("first_name", actor.getFirstName())
.addValue("last_name", actor.getlLastName());

Number newId = insertActor.executeAndReturnKey(parameters);

actor.setId(newId.longValue());

}

// ... additional methods

Kotlin

class JdbcActorDao(dataSource: DataSource) : ActorDao {

private val insertActor = SimpleJdbcInsert(dataSource)
.withTableName("t actor")
.usingGeneratedKeyColumns("id")

fun add(actor: Actor): Actor {
val parameters = MapSqlParameterSource()
.addValue("first_name", actor.firstName)
.addValue("1last_name", actor.lastName)
val newld = insertActor.executeAndReturnKey(parameters)
return actor.copy(id = newId.tolong())

}

// ... additional methods

As you can see, the configuration is the same. Only the executing code has to change to use these
alternative input classes.

101

3.6.5. Calling a Stored Procedure with SimpleJdbcCall

The SimpleJdbcCall class uses metadata in the database to look up names of in and out parameters
so that you do not have to explicitly declare them. You can declare parameters if you prefer to do
that or if you have parameters (such as ARRAY or STRUCT) that do not have an automatic mapping to a
Java class. The first example shows a simple procedure that returns only scalar values in VARCHAR
and DATE format from a MySQL database. The example procedure reads a specified actor entry and
returns first_name, last_name, and birth_date columns in the form of out parameters. The following
listing shows the first example:

CREATE PROCEDURE read_actor (
IN in_id INTEGER,
OUT out_first _name VARCHAR(100),
OUT out_last_name VARCHAR(100),
OUT out_birth_date DATE)
BEGIN
SELECT first_name, last_name, birth_date
INTO out first_name, out_last name, out _birth_date
FROM t_actor where id = in_id;
END;

The in_id parameter contains the id of the actor that you are looking up. The out parameters return
the data read from the table.

You can declare SimpleJdbcCall in a manner similar to declaring SimpleJdbcInsert. You should
instantiate and configure the class in the initialization method of your data-access layer. Compared
to the StoredProcedure class, you need not create a subclass and you need not to declare parameters
that can be looked up in the database metadata. The following example of a SimpleldbcCall
configuration uses the preceding stored procedure (the only configuration option, in addition to the
DataSource, is the name of the stored procedure):

102

Java
public class JdbcActorDao implements ActorDao {
private SimpleJdbcCall procReadActor;

public void setDataSource(DataSource dataSource) {
this.procReadActor = new SimpleldbcCall(dataSource)
.withProcedureName("read actor");

}

public Actor readActor(Long id) {

SqlParameterSource in = new MapSqlParameterSource()
.addValue("in_id", 1id);

Map out = procReadActor.execute(in);
Actor actor = new Actor();
actor.setId(id);
actor.setFirstName((String) out.get("out_first_name"));
actor.setlLastName((String) out.get("out_last_name"));
actor.setBirthDate((Date) out.get("out_birth_date"));
return actor;

}

// ... additional methods

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {

private val procReadActor = SimpleldbcCall(dataSource)
.withProcedureName("read actor")

fun readActor(id: Long): Actor {

val source = MapSqlParameterSource().addValue("in_id", id)

val output = procReadActor.execute(source)

return Actor(
id,
output["out_first_name"] as String,
output["out_last_name"] as String,
output["out_birth_date"] as Date)

// ... additional methods

The code you write for the execution of the call involves creating an SqlParameterSource containing
the IN parameter. You must match the name provided for the input value with that of the
parameter name declared in the stored procedure. The case does not have to match because you

103

use metadata to determine how database objects should be referred to in a stored procedure. What
is specified in the source for the stored procedure is not necessarily the way it is stored in the
database. Some databases transform names to all upper case, while others use lower case or use the
case as specified.

The execute method takes the IN parameters and returns a Map that contains any out parameters
keyed by the name, as specified in the stored procedure. In this case, they are out_first_name,
out_last_name, and out_birth_date.

The last part of the execute method creates an Actor instance to use to return the data retrieved.
Again, it is important to use the names of the out parameters as they are declared in the stored
procedure. Also, the case in the names of the out parameters stored in the results map matches that
of the out parameter names in the database, which could vary between databases. To make your
code more portable, you should do a case-insensitive lookup or instruct Spring to use a
LinkedCaseInsensitiveMap. To do the latter, you can create your own JdbcTemplate and set the
setResultsMapCaselnsensitive property to true. Then you can pass this customized JdbcTemplate
instance into the constructor of your SimpleldbcCall. The following example shows this
configuration:

Java
public class JdbcActorDao implements ActorDao {
private SimpleJdbcCall procReadActor;
public void setDataSource(DataSource dataSource) {
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setResultsMapCaselnsensitive(true);

this.procReadActor = new SimpleJdbcCall(jdbcTemplate)
.withProcedureName("read_actor");

// ... additional methods

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {
private var procReadActor = SimpleldbcCall(JdbcTemplate(dataSource).apply {
isResultsMapCaselnsensitive = true

}).withProcedureName("read_actor")

// ... additional methods

By taking this action, you avoid conflicts in the case used for the names of your returned out
parameters.

104

3.6.6. Explicitly Declaring Parameters to Use for a SimpleJdbcCall

Earlier in this chapter, we described how parameters are deduced from metadata, but you can
declare them explicitly if you wish. You can do so by creating and configuring SimpleJdbcCall with
the declareParameters method, which takes a variable number of SqlParameter objects as input. See
the next section for details on how to define an SqlParameter.

Explicit declarations are necessary if the database you use is not a Spring-
supported database. Currently, Spring supports metadata lookup of stored

o procedure calls for the following databases: Apache Derby, DB2, MySQL, Microsoft
SQL Server, Oracle, and Sybase. We also support metadata lookup of stored
functions for MySQL, Microsoft SQL Server, and Oracle.

You can opt to explicitly declare one, some, or all of the parameters. The parameter metadata is still
used where you do not explicitly declare parameters. To bypass all processing of metadata lookups
for potential parameters and use only the declared parameters, you can call the method
withoutProcedureColumnMetaDataAccess as part of the declaration. Suppose that you have two or
more different call signatures declared for a database function. In this case, you call
useInParameterNames to specify the list of IN parameter names to include for a given signature.

The following example shows a fully declared procedure call and uses the information from the
preceding example:

Java
public class JdbcActorDao implements ActorDao {
private SimpleJdbcCall procReadActor;

public void setDataSource(DataSource dataSource) {
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setResultsMapCaselnsensitive(true);
this.procReadActor = new SimpleldbcCall(jdbcTemplate)
.withProcedureName("read actor")
.withoutProcedureColumnMetaDataAccess()
.useInParameterNames("in_id")
.declareParameters(
new SqlParameter("in_id", Types.NUMERIC),
new SqlOutParameter("out_first_name", Types.VARCHAR),
new SqlOutParameter("out_last_name", Types.VARCHAR),
new SqlOutParameter("out_birth_date", Types.DATE)

}

// ... additional methods

105

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {

private val procReadActor = SimpleldbcCall(JdbcTemplate(dataSource).apply {
isResultsMapCaselnsensitive = true
}).withProcedureName("read actor")
.withoutProcedureColumnMetaDataAccess()
.useInParameterNames("in_id")
.declareParameters(
SqlParameter("in_id", Types.NUMERIC),
SqlOutParameter("out_first_name", Types.VARCHAR),
SqlOutParameter("out_last_name", Types.VARCHAR),
SqlOutParameter("out_birth_date", Types.DATE)

// ... additional methods

The execution and end results of the two examples are the same. The second example specifies all
details explicitly rather than relying on metadata.

3.6.7. How to Define SqlParameters

To define a parameter for the SimpleJdbc classes and also for the RDBMS operations classes (covered
in Modeling JDBC Operations as Java Objects) you can use SqlParameter or one of its subclasses. To
do so, you typically specify the parameter name and SQL type in the constructor. The SQL type is
specified by using the java.sql.Types constants. Earlier in this chapter, we saw declarations similar
to the following:

Java

new SqlParameter("in_id", Types.NUMERIC),
new SqlOutParameter("out_first_name", Types.VARCHAR),

Kotlin

SqlParameter("in_id", Types.NUMERIC),
SqlOutParameter("out_first_name", Types.VARCHAR),

The first line with the SqlParameter declares an IN parameter. You can use IN parameters for both
stored procedure calls and for queries by using the SqlQuery and its subclasses (covered in
Understanding SqlQuery).

The second line (with the SqlOutParameter) declares an out parameter to be used in a stored
procedure call. There is also an SqlInOutParameter for InOut parameters (parameters that provide an
IN value to the procedure and that also return a value).

106

Only parameters declared as SqlParameter and SqlInOutParameter are used to

o provide input values. This is different from the StoredProcedure class, which (for
backwards compatibility reasons) lets input values be provided for parameters
declared as SqlOutParameter.

For IN parameters, in addition to the name and the SQL type, you can specify a scale for numeric
data or a type name for custom database types. For out parameters, you can provide a RowMapper to
handle mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType
that provides an opportunity to define customized handling of the return values.

3.6.8. Calling a Stored Function by Using SimpleJdbcCall

You can call a stored function in almost the same way as you call a stored procedure, except that
you provide a function name rather than a procedure name. You use the withFunctionName method
as part of the configuration to indicate that you want to make a call to a function, and the
corresponding string for a function call is generated. A specialized call (executeFunction) is used to
run the function, and it returns the function return value as an object of a specified type, which
means you do not have to retrieve the return value from the results map. A similar convenience
method (named executeObject) is also available for stored procedures that have only one out
parameter. The following example (for MySQL) is based on a stored function named get_actor_name
that returns an actor’s full name:

CREATE FUNCTION get_actor_name (in_id INTEGER)
RETURNS VARCHAR(200) READS SQL DATA

BEGIN
DECLARE out_name VARCHAR(200);
SELECT concat(first_name, ' ', last_name)

INTO out _name
FROM t_actor where id = in_id;
RETURN out_name;
END;

To call this function, we again create a SimpleJdbcCall in the initialization method, as the following
example shows:

107

Java
public class JdbcActorDao implements ActorDao {

private JdbcTemplate jdbcTemplate;
private SimpleJdbcCall funcGetActorName;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setResultsMapCaselnsensitive(true);
this.funcGetActorName = new Simple]dbcCall(jdbcTemplate)
.withFunctionName("get_actor_name");

}

public String getActorName(Long id) {
SqlParameterSource in = new MapSqlParameterSource()
.addValue("in_id", id);
String name = funcGetActorName.executeFunction(String.class, in);
return name;

}

// ... additional methods

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {

private val jdbcTemplate = JdbcTemplate(dataSource).apply {
isResultsMapCaselnsensitive = true

}
private val funcGetActorName = SimpleJdbcCall(jdbcTemplate)

.withFunctionName("qget_actor_name")
fun getActorName(id: Long): String {

val source = MapSqlParameterSource().addValue("in_id", id)
return funcGetActorName.executeFunction(String::class.java, source)

}

// ... additional methods

The executeFunction method used returns a String that contains the return value from the function
call.

108

3.6.9. Returning a ResultSet or REF Cursor from a SimpleldbcCall

Calling a stored procedure or function that returns a result set is a bit tricky. Some databases return
result sets during the JDBC results processing, while others require an explicitly registered out
parameter of a specific type. Both approaches need additional processing to loop over the result set
and process the returned rows. With the SimpleldbcCall, you can use the returningResultSet
method and declare a RowMapper implementation to be used for a specific parameter. If the result set
is returned during the results processing, there are no names defined, so the returned results must
match the order in which you declare the RowMapper implementations. The name specified is still
used to store the processed list of results in the results map that is returned from the execute
statement.

The next example (for MySQL) uses a stored procedure that takes no IN parameters and returns all
rows from the t_actor table:

CREATE PROCEDURE read_all _actors()
BEGIN

SELECT a.id, a.first_name, a.last_name, a.birth _date FROM t_actor a;
END;

To call this procedure, you can declare the RowMapper. Because the class to which you want to map
follows the JavaBean rules, you can use a BeanPropertyRowMapper that is created by passing in the
required class to map to in the newInstance method. The following example shows how to do so:

Java
public class JdbcActorDao implements ActorDao {
private SimpleJdbcCall procReadAllActors;

public void setDataSource(DataSource dataSource) {
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setResultsMapCaselnsensitive(true);
this.procReadAllActors = new SimpleldbcCall(jdbcTemplate)
.withProcedureName("read _all _actors")
.returningResultSet("actors",
BeanPropertyRowMapper.newInstance(Actor.class));

}

public List getActorsList() {
Map m = procReadAllActors.execute(new HashMap<String, Object>(0));
return (List) m.get("actors");

// ... additional methods

109

Kotlin
class JdbcActorDao(dataSource: DataSource) : ActorDao {
private val procReadAllActors = SimpleJdbcCall(JdbcTemplate(dataSource).apply

isResultsMapCaselnsensitive = true
1) .withProcedureName("read_all_actors")
.returningResultSet("actors",
BeanPropertyRowMapper.newInstance(Actor::class.java))

fun getActorsList(): List<Actor> {
val m = procReadAllActors.execute(map0f<String, Any>())
return m["actors"] as List<Actor>

// ... additional methods

The execute call passes in an empty Map, because this call does not take any parameters. The list of
actors is then retrieved from the results map and returned to the caller.

3.7. Modeling JDBC Operations as Java Objects

The org.springframework.jdbc.object package contains classes that let you access the database in a
more object-oriented manner. As an example, you can run queries and get the results back as a list
that contains business objects with the relational column data mapped to the properties of the
business object. You can also run stored procedures and run update, delete, and insert statements.

Many Spring developers believe that the various RDBMS operation classes
described below (with the exception of the StoredProcedure class) can often be
replaced with straight JdbcTemplate calls. Often, it is simpler to write a DAO method

o that calls a method on a JdbcTemplate directly (as opposed to encapsulating a query
as a full-blown class).

However, if you are getting measurable value from using the RDBMS operation
classes, you should continue to use these classes.

3.7.1. Understanding SqlQuery

SqlQuery is a reusable, thread-safe class that encapsulates an SQL query. Subclasses must implement
the newRowMapper(..) method to provide a RowMapper instance that can create one object per row
obtained from iterating over the ResultSet that is created during the execution of the query. The
SqlQuery class is rarely used directly, because the MappingSqlQuery subclass provides a much more
convenient implementation for mapping rows to Java classes. Other implementations that extend
SqlQuery are MappingSqlQueryWithParameters and UpdatableSqlQuery.

110

3.7.2. Using MappingSqlQuery

MappingSqlQuery is a reusable query in which concrete subclasses must implement the abstract
mapRow(..) method to convert each row of the supplied ResultSet into an object of the type
specified. The following example shows a custom query that maps the data from the t_actor
relation to an instance of the Actor class:

Java
public class ActorMappingQuery extends MappingSqlQuery<Actor> {

public ActorMappingQuery(DataSource ds) {
super(ds, "select id, first_name, last_name from t_actor where id = ?");
declareParameter(new SqlParameter("id", Types.INTEGER));
compile();

}

@0verride

protected Actor mapRow(ResultSet rs, int rowNumber) throws SQLException {
Actor actor = new Actor();
actor.setId(rs.getlong("id"));
actor.setFirstName(rs.getString("first_name"));
actor.setlLastName(rs.getString("last_name"));
return actor;

Kotlin

class ActorMappingQuery(ds: DataSource) : MappingSqlQuery<Actor>(ds, "select id,
first_name, last_name from t_actor where id = ?") {

init {
declareParameter(SqlParameter("id", Types.INTEGER))
compile()

}

override fun mapRow(rs: ResultSet, rowNumber: Int) = Actor(
rs.getLong("id"),
rs.getString("first_name"),
rs.getString("last_name")

The class extends MappingSqlQuery parameterized with the Actor type. The constructor for this
customer query takes a DataSource as the only parameter. In this constructor, you can call the
constructor on the superclass with the DataSource and the SQL that should be run to retrieve the
rows for this query. This SQL is used to create a PreparedStatement, so it may contain placeholders
for any parameters to be passed in during execution. You must declare each parameter by using the

111

declareParameter method passing in an SqlParameter. The SqlParameter takes a name, and the JDBC
type as defined in java.sql.Types. After you define all parameters, you can call the compile()
method so that the statement can be prepared and later run. This class is thread-safe after it is
compiled, so, as long as these instances are created when the DAO is initialized, they can be kept as
instance variables and be reused. The following example shows how to define such a class:

Java
private ActorMappingQuery actorMappingQuery;

@Autowired

public void setDataSource(DataSource dataSource) {
this.actorMappingQuery = new ActorMappingQuery(dataSource);

}

public Customer getCustomer(Long id) {
return actorMappingQuery.findObject(id);
}

Kotlin
private val actorMappingQuery = ActorMappingQuery(dataSource)

fun getCustomer(id: Long) = actorMappingQuery.findObject(id)

The method in the preceding example retrieves the customer with the id that is passed in as the
only parameter. Since we want only one object to be returned, we call the findObject convenience
method with the id as the parameter. If we had instead a query that returned a list of objects and
took additional parameters, we would use one of the execute methods that takes an array of
parameter values passed in as varargs. The following example shows such a method:

Java
public List<Actor> searchForActors(int age, String namePattern) {

List<Actor> actors = actorSearchMappingQuery.execute(age, namePattern);
return actors;

Kotlin

fun searchForActors(age: Int, namePattern: String) =
actorSearchMappingQuery.execute(age, namePattern)

3.7.3. Using SqlUpdate

The SqlUpdate class encapsulates an SQL update. As with a query, an update object is reusable, and,
as with all RdbmsOperation classes, an update can have parameters and is defined in SQL. This class
provides a number of update(..) methods analogous to the execute(..) methods of query objects.

112

The SQLUpdate class is concrete. It can be subclassed — for example, to add a custom update method.
However, you do not have to subclass the SqlUpdate class, since it can easily be parameterized by
setting SQL and declaring parameters. The following example creates a custom update method
named execute:

Java

import java.sql.Types;

import javax.sql.DataSource;

import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.SqlUpdate;

public class UpdateCreditRating extends SqlUpdate {

public UpdateCreditRating(DataSource ds) {
setDataSource(ds);
setSql("update customer set credit_rating = ? where id = ?");
declareParameter(new SqlParameter("creditRating", Types.NUMERIC));
declareParameter(new SqlParameter("id", Types.NUMERIC));
compile();

/**
* @param id for the Customer to be updated
* @param rating the new value for credit rating
* @return number of rows updated
*/
public int execute(int id, int rating) {
return update(rating, id);

}

113

Kotlin

import java.sql.Types

import javax.sql.DataSource

import org.springframework.jdbc.core.SqlParameter
import org.springframework.jdbc.object.SqlUpdate

class UpdateCreditRating(ds: DataSource) : SqlUpdate() {

init {
setDataSource(ds)
sql = "update customer set credit_rating = ? where id = ?"
declareParameter(SqlParameter("creditRating", Types.NUMERIC))
declareParameter(SqlParameter("id", Types.NUMERIC))
compile()

/*'k

* @param id for the Customer to be updated
* @param rating the new value for credit rating
* @return number of rows updated
*/
fun execute(id: Int, rating: Int): Int {
return update(rating, id)
}

3.7.4. Using StoredProcedure

The StoredProcedure class is an abstract superclass for object abstractions of RDBMS stored
procedures.

The inherited sql property is the name of the stored procedure in the RDBMS.

To define a parameter for the StoredProcedure class, you can use an SqlParameter or one of its
subclasses. You must specify the parameter name and SQL type in the constructor, as the following
code snippet shows:

Java

new SqlParameter("in_id", Types.NUMERIC),
new SqlOutParameter("out_first_name", Types.VARCHAR),

Kotlin

SqlParameter("in_id", Types.NUMERIC),
SqlOutParameter("out_first_name", Types.VARCHAR),

The SQL type is specified using the java.sql.Types constants.

114

The first line (with the SqlParameter) declares an IN parameter. You can use IN parameters both for
stored procedure calls and for queries using the SqlQuery and its subclasses (covered in
Understanding SqlQuery).

The second line (with the SqlOutParameter) declares an out parameter to be used in the stored
procedure call. There is also an SqlInOutParameter for InOut parameters (parameters that provide an
in value to the procedure and that also return a value).

For in parameters, in addition to the name and the SQL type, you can specify a scale for numeric
data or a type name for custom database types. For out parameters, you can provide a RowMapper to
handle mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType
that lets you define customized handling of the return values.

The next example of a simple DAO uses a StoredProcedure to call a function (sysdate()), which
comes with any Oracle database. To use the stored procedure functionality, you have to create a
class that extends StoredProcedure. In this example, the StoredProcedure class is an inner class.
However, if you need to reuse the StoredProcedure, you can declare it as a top-level class. This
example has no input parameters, but an output parameter is declared as a date type by using the
SqlOutParameter class. The execute() method runs the procedure and extracts the returned date
from the results Map. The results Map has an entry for each declared output parameter (in this case,
only one) by using the parameter name as the key. The following listing shows our custom
StoredProcedure class:

115

Java

import java.sql.Types;

import java.util.Date;

import java.util.HashMap;

import java.util.Map;

import javax.sql.DataSource;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.SqlOutParameter;

import org.springframework.jdbc.object.StoredProcedure;

public class StoredProcedureDao {

private GetSysdateProcedure getSysdate;

@Autowired
public void init(DataSource dataSource) {

this.getSysdate = new GetSysdateProcedure(dataSource);
}

public Date getSysdate() {
return getSysdate.execute();

}

private class GetSysdateProcedure extends StoredProcedure {
private static final String SQL = "sysdate";

public GetSysdateProcedure(DataSource dataSource) {
setDataSource(dataSource);
setFunction(true);
setSql(SqQL);
declareParameter(new SqlOutParameter("date", Types.DATE));
compile();

}

public Date execute() {
// the 'sysdate' sproc has no input parameters, so an empty Map is

supplied...
Map<String, Object> results = execute(new HashMap<String, Object>());
Date sysdate = (Date) results.get("date");
return sysdate;
}
}
}

116

Kotlin

import java.sql.Types

import java.util.Date

import java.util.Map

import javax.sql.DataSource

import org.springframework.jdbc.core.SqlOutParameter
import org.springframework.jdbc.object.StoredProcedure

class StoredProcedureDao(dataSource: DataSource) {
private val SQL = "sysdate"
private val getSysdate = GetSysdateProcedure(dataSource)

val sysdate: Date
get() = getSysdate.execute()

private inner class GetSysdateProcedure(dataSource: DataSource) :
StoredProcedure() {

init {
setDataSource(dataSource)
isFunction = true
sql = SQL
declareParameter(SqlOutParameter("date", Types.DATE))
compile()

fun execute(): Date {
// the 'sysdate' sproc has no input parameters, so an empty Map is
supplied...
val results = execute(mutableMapOf<String, Any>())
return results["date"] as Date

The following example of a StoredProcedure has two output parameters (in this case, Oracle REF
cursors):

117

Java

import java.util.HashMap;

import java.util.Map;

import javax.sql.DataSource;

import oracle.jdbc.OracleTypes;

import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;

public class TitlesAndGenresStoredProcedure extends StoredProcedure {
private static final String SPROC_NAME = "AllTitlesAndGenres";

public TitlesAndGenresStoredProcedure(DataSource dataSource) {
super(dataSource, SPROC_NAME);
declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new
TitleMapper()));
declareParameter(new SqlOutParameter("genres", OracleTypes.CURSOR, new
GenreMapper()));
compile();

}

public Map<String, Object> execute() {
// again, this sproc has no input parameters, so an empty Map is supplied
return super.execute(new HashMap<String, Object>());

118

Kotlin

import java.util.HashMap

import javax.sql.DataSource

import oracle.jdbc.OracleTypes

import org.springframework.jdbc.core.SqlOutParameter
import org.springframework.jdbc.object.StoredProcedure

class TitlesAndGenresStoredProcedure(dataSource: DataSource) :
StoredProcedure(dataSource, SPROC_NAME) {

companion object {
private const val SPROC_NAME = "Al1TitlesAndGenres"

}

init {
declareParameter(SqlOutParameter("titles", OracleTypes.CURSOR, TitleMapper()))
declareParameter(SqlOutParameter("genres", OracleTypes.CURSOR, GenreMapper()))
compile()

}

fun execute(): Map<String, Any> {
// again, this sproc has no input parameters, so an empty Map is supplied
return super.execute(HashMap<String, Any>())

Notice how the overloaded variants of the declareParameter(..) method that have been used in the
TitlesAndGenresStoredProcedure constructor are passed RowMapper implementation instances. This is
a very convenient and powerful way to reuse existing functionality. The next two examples provide
code for the two RowMapper implementations.

The TitleMapper class maps a ResultSet to a Title domain object for each row in the supplied
ResultSet, as follows:

119

Java

import java.sql.ResultSet;

import java.sql.SQLException;

import com.foo.domain.Title;

import org.springframework.jdbc.core.RowMapper;

public final class TitleMapper implements RowMapper<Title> {

public Title mapRow(ResultSet rs, int rowNum) throws SQLException {
Title title = new Title();
title.setId(rs.getlLong("id"));
title.setName(rs.getString("name"));
return title;

Kotlin

import java.sql.ResultSet
import com.foo.domain.Title
import org.springframework.jdbc.core.RowMapper

class TitleMapper : RowMapper<Title> {

override fun mapRow(rs: ResultSet, rowNum: Int) =
Title(rs.getlong("id"), rs.getString("name"))

The GenreMapper class maps a ResultSet to a Genre domain object for each row in the supplied
ResultSet, as follows:

Java

import java.sql.ResultSet;

import java.sql.SQLException;

import com.foo.domain.Genre;

import org.springframework.jdbc.core.RowMapper;

public final class GenreMapper implements RowMapper<Genre> {
public Genre mapRow(ResultSet rs, int rowNum) throws SQLException {

return new Genre(rs.getString("name"));

}

120

Kotlin

import java.sql.ResultSet
import com.foo.domain.Genre
import org.springframework.jdbc.core.RowMapper

class GenreMapper : RowMapper<Genre> {

override fun mapRow(rs: ResultSet, rowNum: Int): Genre {
return Genre(rs.getString("name"))

}

To pass parameters to a stored procedure that has one or more input parameters in its definition in
the RDBMS, you can code a strongly typed execute(..) method that would delegate to the untyped
execute(Map) method in the superclass, as the following example shows:

Java

import java.sql.Types;

import java.util.Date;

import java.util.HashMap;

import java.util.Map;

import javax.sql.DataSource;

import oracle.jdbc.OracleTypes;

import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.StoredProcedure;

public class TitlesAfterDateStoredProcedure extends StoredProcedure {

private static final String SPROC_NAME = "TitlesAfterDate";
private static final String CUTOFF_DATE_PARAM = "cutoffDate";

public TitlesAfterDateStoredProcedure(DataSource dataSource) {
super(dataSource, SPROC_NAME);
declareParameter(new SqlParameter (CUTOFF_DATE_PARAM, Types.DATE);
declareParameter (new SqlOutParameter("titles", OracleTypes.CURSOR, new
TitleMapper()));
compile();

}

public Map<String, Object> execute(Date cutoffDate) {
Map<String, Object> inputs = new HashMap<String, Object>();
inputs.put(CUTOFF_DATE_PARAM, cutoffDate);
return super.execute(inputs);

121

Kotlin

import java.sql.Types

import java.util.Date

import javax.sql.DataSource

import oracle.jdbc.OracleTypes

import org.springframework.jdbc.core.SqlOutParameter
import org.springframework.jdbc.core.SqlParameter
import org.springframework.jdbc.object.StoredProcedure

class TitlesAfterDateStoredProcedure(dataSource: DataSource) :
StoredProcedure(dataSource, SPROC_NAME) {

companion object {
private const val SPROC_NAME = "TitlesAfterDate"
private const val CUTOFF_DATE_PARAM = "cutoffDate"

}

init {
declareParameter (SqlParameter (CUTOFF_DATE_PARAM, Types.DATE))
declareParameter(SqlOutParameter("titles", OracleTypes.CURSOR, TitleMapper()))
compile()

}

fun execute(cutoffDate: Date) = super.execute(
map0f<String, Any>(CUTOFF_DATE_PARAM to cutoffDate))

3.8. Common Problems with Parameter and Data Value
Handling

Common problems with parameters and data values exist in the different approaches provided by
Spring Framework’s JDBC support. This section covers how to address them.

3.8.1. Providing SQL Type Information for Parameters

Usually, Spring determines the SQL type of the parameters based on the type of parameter passed
in. It is possible to explicitly provide the SQL type to be used when setting parameter values. This is
sometimes necessary to correctly set NULL values.

You can provide SQL type information in several ways:

* Many update and query methods of the JdbcTemplate take an additional parameter in the form
of an int array. This array is used to indicate the SQL type of the corresponding parameter by
using constant values from the java.sql.Types class. Provide one entry for each parameter.

* You can use the SqlParameterValue class to wrap the parameter value that needs this additional
information. To do so, create a new instance for each value and pass in the SQL type and the
parameter value in the constructor. You can also provide an optional scale parameter for

122

numeric values.

* For methods that work with named parameters, you can use the SqlParameterSource classes,
BeanPropertySqlParameterSource or MapSqlParameterSource. They both have methods for
registering the SQL type for any of the named parameter values.

3.8.2. Handling BLOB and CLOB objects

You can store images, other binary data, and large chunks of text in the database. These large
objects are called BLOBs (Binary Large OBject) for binary data and CLOBs (Character Large OBject)
for character data. In Spring, you can handle these large objects by using the JdbcTemplate directly
and also when using the higher abstractions provided by RDBMS Objects and the SimpleJdbc classes.
All of these approaches use an implementation of the LobHandler interface for the actual
management of the LOB (Large OBject) data. LobHandler provides access to a LobCreator class,
through the getLobCreator method, that is used for creating new LOB objects to be inserted.

LobCreator and LobHandler provide the following support for LOB input and output:

* BLOB

o byte[]: getBlobAsBytes and setBlobAsBytes

o InputStream: getBlobAsBinaryStream and setBlobAsBinaryStream
* CLOB

o String: getClobAsString and setClobAsString

o InputStream: getClobAsAsciiStream and setClobAsAsciiStream

o Reader: getClobAsCharacterStream and setClobAsCharacterStream

The next example shows how to create and insert a BLOB. Later we show how to read it back from
the database.

This example uses a JdbcTemplate and an implementation of the
AbstractLobCreatingPreparedStatementCallback. It implements one method, setValues. This method
provides a LobCreator that we use to set the values for the LOB columns in your SQL insert
statement.

For this example, we assume that there is a variable, lobHandler, that is already set to an instance of
a DefaultLobHandler. You typically set this value through dependency injection.

The following example shows how to create and insert a BLOB:

123

Java

final File blobIn = new File("spring2004.jpg");

final InputStream blobIs = new FileInputStream(blobIn);

final File clobIn = new File("large.txt");

final InputStream clobIs = new FileInputStream(clobIn);

final InputStreamReader clobReader = new InputStreamReader(clobIs);

jdbcTemplate.execute(
"INSERT INTO lob_table (id, a_clob, a_blob) VALUES (?, ?, ?)",
new AbstractLobCreatingPreparedStatementCallback(lobHandler) { @
protected void setValues(PreparedStatement ps, LobCreator lobCreator) throws
SQLException {
ps.setlong(1, 1L);
lobCreator.setClobAsCharacterStream(ps, 2, clobReader,
(int)clobIn.length()); @
lobCreator.setBlobAsBinaryStream(ps, 3, blobIs, (int)blobIn.length()); &
}

)

blobIs.close();
clobReader.close();

@ Pass in the lobHandler that (in this example) is a plain DefaultLobHandler.
@ Using the method setClobAsCharacterStream to pass in the contents of the CLOB.

® Using the method setBlobAsBinaryStream to pass in the contents of the BLOB.

124

Kotlin

val blobIn = File("spring2004.jpg")
val blobIs = FileInputStream(blobIn)
val clobIn = File("large.txt")

val clobIs = FileInputStream(clobIn)
val clobReader = InputStreamReader(clobIs)

jdbcTemplate.execute(
"INSERT INTO lob_table (id, a_clob, a_blob) VALUES (?, ?, ?)",
object: AbstractLobCreatingPreparedStatementCallback(lobHandler) { @
override fun setValues(ps: PreparedStatement, lobCreator: LobCreator) {
ps.setlong(1, 1L)
lobCreator.setClobAsCharacterStream(ps, 2, clobReader,
clobIn.length().toInt()) @
lobCreator.setBlobAsBinaryStream(ps, 3, blobIs,
blobIn.length().toInt()) &
}
}

)
blobIs.close()
clobReader.close()

@ Pass in the lobHandler that (in this example) is a plain DefaultLobHandler.
@ Using the method setClobAsCharacterStream to pass in the contents of the CLOB.

® Using the method setBlobAsBinaryStream to pass in the contents of the BLOB.

If you invoke the setBlobAsBinaryStream, setClobAsAsciiStream, or
setClobAsCharacterStream method on the LobCreator returned from
DefaultLobHandler.getLobCreator(), you can optionally specify a negative value for
the contentlLength argument. If the specified content length is negative, the

o DefaultLobHandler uses the JDBC 4.0 variants of the set-stream methods without a
length parameter. Otherwise, it passes the specified length on to the driver.

See the documentation for the JDBC driver you use to verify that it supports
streaming a LOB without providing the content length.

Now it is time to read the LOB data from the database. Again, you use a JdbcTemplate with the same

instance variable lobHandler and a reference to a DefaultLobHandler. The following example shows
how to do so:

125

Java

List<Map<String, Object>> 1 = jdbcTemplate.query("select id, a_clob, a_blob from
lob_table",
new RowMapper<Map<String, Object>>() {
public Map<String, Object> mapRow(ResultSet rs, int i) throws SQLException {

Map<String, Object> results = new HashMap<String, Object>();
String clobText = lobHandler.getClobAsString(rs, "a_clob"); @
results.put("CLOB", clobText);
byte[] blobBytes = lobHandler.getBlobAsBytes(rs, "a_blob"); @
results.put("BLOB", blobBytes);
return results;

}
H;

@ Using the method getClobAsString to retrieve the contents of the CLOB.

@ Using the method getBlobAsBytes to retrieve the contents of the BLOB.

Kotlin

val 1 = jdbcTemplate.query("select id, a_clob, a_blob from lob_table") { rs, _ ->
val clobText = lobHandler.getClobAsString(rs, "a_clob") @
val blobBytes = lobHandler.getBlobAsBytes(rs, "a_blob") @
mapOf("CLOB" to clobText, "BLOB" to blobBytes)

@ Using the method getClobAsString to retrieve the contents of the CLOB.

@ Using the method getBlobAsBytes to retrieve the contents of the BLOB.

3.8.3. Passing in Lists of Values for IN Clause

The SQL standard allows for selecting rows based on an expression that includes a variable list of
values. A typical example would be select * from T_ACTOR where id in (1, 2, 3). This variable list
is not directly supported for prepared statements by the JDBC standard. You cannot declare a
variable number of placeholders. You need a number of variations with the desired number of
placeholders prepared, or you need to generate the SQL string dynamically once you know how
many placeholders are required. The named parameter support provided in the
NamedParameterJdbcTemplate and JdbcTemplate takes the latter approach. You can pass in the values
as a java.util.List of primitive objects. This list is used to insert the required placeholders and
pass in the values during statement execution.

Be careful when passing in many values. The JDBC standard does not guarantee

o that you can use more than 100 values for an in expression list. Various databases
exceed this number, but they usually have a hard limit for how many values are
allowed. For example, Oracle’s limit is 1000.

In addition to the primitive values in the value list, you can create a java.util.List of object arrays.
This list can support multiple expressions being defined for the in clause, such as select * from

126

T_ACTOR where (id, last_name) in ((1, 'Johnson'), (2, 'Harrop'\)). This, of course, requires that
your database supports this syntax.

3.8.4. Handling Complex Types for Stored Procedure Calls

When you call stored procedures, you can sometimes use complex types specific to the database. To
accommodate these types, Spring provides a SqlReturnType for handling them when they are
returned from the stored procedure call and SqlTypeValue when they are passed in as a parameter
to the stored procedure.

The SqlReturnType interface has a single method (named getTypeValue) that must be implemented.
This interface is used as part of the declaration of an SqlOutParameter. The following example shows
returning the value of an Oracle STRUCT object of the user declared type ITEM_TYPE:

Java
public class TestItemStoredProcedure extends StoredProcedure {

public TestItemStoredProcedure(DataSource dataSource) {
/] ...
declareParameter (new SqlOutParameter("item", OracleTypes.STRUCT, "ITEM_TYPE",
(CallableStatement cs, int colIndx, int sqlType, String typeName) -> {
STRUCT struct = (STRUCT) cs.getObject(colIndx);
Object[] attr = struct.getAttributes();
TestItem item = new TestItem();
item.setId(((Number) attr[@]).longValue());
item.setDescription((String) attr[1]);
item.setExpirationDate((java.util.Date) attr[2]);
return item;
),
/] ...

Kotlin

class TestItemStoredProcedure(dataSource: DataSource) : StoredProcedure() {

init {
/] ...
declareParameter(SqlOutParameter("item", OracleTypes.STRUCT, "ITEM_TYPE") {
cs, colIndx, sqlType, typeName ->
val struct = cs.getObject(colIndx) as STRUCT
val attr = struct.qgetAttributes()
TestItem((attr[0] as Long, attr[1] as String, attr[2] as Date)
1)
/] ...

127

You can use SqlTypeValue to pass the value of a Java object (such as TestItem) to a stored procedure.
The SqlTypeValue interface has a single method (named createTypeValue) that you must implement.
The active connection is passed in, and you can use it to create database-specific objects, such as

StructDescriptor instances or ArrayDescriptor instances. The following example creates a
StructDescriptor instance:

Java

final TestItem testItem = new TestItem(123L, "A test item",
new SimpleDateFormat("yyyy-M-d").parse("2010-12-31"));

SqlTypeValue value = new AbstractSqlTypeValue() {

protected Object createTypeValue(Connection conn, int sqlType, String typeName)
throws SQLException {

StructDescriptor itemDescriptor = new StructDescriptor(typeName, conn);
Struct item = new STRUCT(itemDescriptor, conn,
new Object[] {

testItem.qgetId(),

testItem.getDescription(),

new java.sql.Date(testItem.getExpirationDate().getTime())
1

return item;

+
Kotlin

val (id, description, expirationDate) = TestItem(123L, "A test item",
SimpleDateFormat("yyyy-M-d").parse("2010-12-31"))

val value = object : AbstractSqlTypeValue() {
override fun createTypeValue(conn: Connection, sqlType: Int, typeName: String?):
Any {
val itemDescriptor = StructDescriptor(typeName, conn)
return STRUCT(itemDescriptor, conn,

array0f(id, description, java.sql.Date(expirationDate.time)))

You can now add this SqlTypeValue to the Map that contains the input parameters for the execute call
of the stored procedure.

Another use for the SqlTypeValue is passing in an array of values to an Oracle stored procedure.
Oracle has its own internal ARRAY class that must be used in this case, and you can use the

SqlTypeValue to create an instance of the Oracle ARRAY and populate it with values from the Java
ARRAY, as the following example shows:

128

Java
final Long[] ids = new Long[] {1L, 2L};

SqlTypeValue value = new AbstractSqlTypeValue() {
protected Object createTypeValue(Connection conn, int sqlType, String typeName)
throws SQLException {
ArrayDescriptor arrayDescriptor = new ArrayDescriptor(typeName, conn);
ARRAY idArray = new ARRAY(arrayDescriptor, conn, ids);
return idArray;

+

Kotlin
class TestItemStoredProcedure(dataSource: DataSource) : StoredProcedure() {

init {
val ids = arrayOf(1L, 2L)
val value = object : AbstractSqlTypeValue() {
override fun createTypeValue(conn: Connection, sqlType: Int, typeName:
String?): Any {
val arrayDescriptor = ArrayDescriptor(typeName, conn)
return ARRAY(arrayDescriptor, conn, ids)

3.9. Embedded Database Support

The org.springframework.jdbc.datasource.embedded package provides support for embedded Java
database engines. Support for HSQL, H2, and Derby is provided natively. You can also use an
extensible API to plug in new embedded database types and DataSource implementations.

3.9.1. Why Use an Embedded Database?

An embedded database can be useful during the development phase of a project because of its
lightweight nature. Benefits include ease of configuration, quick startup time, testability, and the
ability to rapidly evolve your SQL during development.

3.9.2. Creating an Embedded Database by Using Spring XML

If you want to expose an embedded database instance as a bean in a Spring ApplicationContext, you
can use the embedded-database tag in the spring-jdbc namespace:

129

http://www.hsqldb.org
https://www.h2database.com
https://db.apache.org/derby

<jdbc:embedded-database id="dataSource" generate-name="true">
<jdbec:script location="classpath:schema.sql"/>
<jdbc:script location="classpath:test-data.sql"/>
</jdbc:embedded-database>

The preceding configuration creates an embedded HSQL database that is populated with SQL from
the schema.sql and test-data.sql resources in the root of the classpath. In addition, as a best
practice, the embedded database is assigned a uniquely generated name. The embedded database is
made available to the Spring container as a bean of type javax.sql.DataSource that can then be

injected into data access objects as needed.

3.9.3. Creating an Embedded Database Programmatically

The EmbeddedDatabaseBuilder class provides a fluent API for constructing an embedded database
programmatically. You can use this when you need to create an embedded database in a stand-
alone environment or in a stand-alone integration test, as in the following example:

Java

EmbeddedDatabase db = new EmbeddedDatabaseBuilder()
.generateUniqueName(true)
.setType(H2)
.setScriptEncoding("UTF-8")
.ignoreFailedDrops(true)
.addScript("schema.sql")
.addScripts("user_data.sql", "country_data.sql")
.build();

// perform actions against the db (EmbeddedDatabase extends javax.sql.DataSource)

db.shutdown()

Kotlin

val db = EmbeddedDatabaseBuilder()
.generateUniqueName(true)
.setType(H2)
.setScriptEncoding("UTF-8")
.ignoreFailedDrops(true)
.addScript("schema.sql")
.addScripts("user_data.sql", "country_data.sql")
.build()

// perform actions against the db (EmbeddedDatabase extends javax.sql.DataSource)

db.shutdown()

See the javadoc for EmbeddedDatabaseBuilder for further details on all supported options.

130

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jdbc/datasource/embedded/EmbeddedDatabaseBuilder.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jdbc/datasource/embedded/EmbeddedDatabaseBuilder.html

You can also use the EmbeddedDatabaseBuilder to create an embedded database by using Java
configuration, as the following example shows:

Java

@Configuration
public class DataSourceConfig {

@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()

.generateUniqueName(true)
.setType(H2)
.setScriptEncoding("UTF-8")
.ignoreFailedDrops(true)
.addScript("schema.sql")
.addScripts("user_data.sql", "country_data.sql")
.build();

Kotlin

@Configuration
class DataSourceConfig {

@Bean
fun dataSource(): DataSource {
return EmbeddedDatabaseBuilder()

.generateUniqueName(true)
.setType(H2)
.setScriptEncoding("UTF-8")
.ignoreFailedDrops(true)
.addScript("schema.sql")
.addScripts("user_data.sql", "country_data.sql")
.build()

3.9.4. Selecting the Embedded Database Type

This section covers how to select one of the three embedded databases that Spring supports. It
includes the following topics:

» Using HSQL
» Using H2

» Using Derby

131

Using HSQL

Spring supports HSQL 1.8.0 and above. HSQL is the default embedded database if no type is
explicitly specified. To specify HSQL explicitly, set the type attribute of the embedded-database tag to
HSQL. If you wuse the builder API, call the setType(EmbeddedDatabaseType) method with
EmbeddedDatabaseType.HSQL.

Using H2

Spring supports the H2 database. To enable H2, set the type attribute of the embedded-database tag to
H2. If you wuse the builder API, call the setType(EmbeddedDatabaseType) method with
EmbeddedDatabaseType.H2.

Using Derby

Spring supports Apache Derby 10.5 and above. To enable Derby, set the type attribute of the
embedded-database tag to DERBY. If you use the builder API, call the setType(EmbeddedDatabaseType)
method with EmbeddedDatabaseType.DERBY.

3.9.5. Testing Data Access Logic with an Embedded Database

Embedded databases provide a lightweight way to test data access code. The next example is a data
access integration test template that uses an embedded database. Using such a template can be
useful for one-offs when the embedded database does not need to be reused across test classes.
However, if you wish to create an embedded database that is shared within a test suite, consider
using the Spring TestContext Framework and configuring the embedded database as a bean in the
Spring ApplicationContext as described in Creating an Embedded Database by Using Spring XML
and Creating an Embedded Database Programmatically. The following listing shows the test
template:

132

testing.pdf#testcontext-framework

Java

public class DataAccessIntegrationTestTemplate {

private EmbeddedDatabase db;

@BeforeEach
public void setUp() {

// creates an HSQL in-memory database populated from default scripts
// classpath:schema.sql and classpath:data.sql

db = new EmbeddedDatabaseBuilder()
.generateUniqueName(true)
.addDefaultScripts()
.build();

}

@Test

public void testDataAccess() {
JdbcTemplate template = new JdbcTemplate(db);
template.query(/* ... */);

}

@AfterEach
public void tearDown() {
db.shutdown();

}

133

Kotlin
class DataAccessIntegrationTestTemplate {
private lateinit var db: EmbeddedDatabase

@BeforeEach
fun setUp() {
// creates an HSQL in-memory database populated from default scripts
// classpath:schema.sql and classpath:data.sql
db = EmbeddedDatabaseBuilder()
.generateUniqueName(true)
.addDefaultScripts()
.build()

@Test

fun testDataAccess() {
val template = JdbcTemplate(db)
template.query(/* ... */)

}

@AfterEach
fun tearDown() {
db.shutdown()

}

3.9.6. Generating Unique Names for Embedded Databases

Development teams often encounter errors with embedded databases if their test suite
inadvertently attempts to recreate additional instances of the same database. This can happen quite
easily if an XML configuration file or @Configuration class is responsible for creating an embedded
database and the corresponding configuration is then reused across multiple testing scenarios
within the same test suite (that is, within the same JVM process) — for example, integration tests
against embedded databases whose ApplicationContext configuration differs only with regard to
which bean definition profiles are active.

The root cause of such errors is the fact that Spring’s EmbeddedDatabaseFactory (used internally by
both the <jdbc:embedded-database> XML namespace element and the EmbeddedDatabaseBuilder for
Java configuration) sets the name of the embedded database to testdb if not otherwise specified. For
the case of <jdbc:embedded-database>, the embedded database is typically assigned a name equal to
the bean’s id (often, something like dataSource). Thus, subsequent attempts to create an embedded
database do not result in a new database. Instead, the same JDBC connection URL is reused, and
attempts to create a new embedded database actually point to an existing embedded database
created from the same configuration.

To address this common issue, Spring Framework 4.2 provides support for generating unique
names for embedded databases. To enable the use of generated names, use one of the following

134

options.

* EmbeddedDatabaseFactory.setGenerateUniqueDatabaseName()
* EmbeddedDatabaseBuilder.generateUniqueName()

* <jdbc:embedded-database generate-name="true" -+ >

3.9.7. Extending the Embedded Database Support
You can extend Spring J]DBC embedded database support in two ways:

* Implement EmbeddedDatabaseConfigurer to support a new embedded database type.

* Implement DataSourceFactory to support a new DataSource implementation, such as a
connection pool to manage embedded database connections.

We encourage you to contribute extensions to the Spring community at GitHub Issues.

3.10. Initializing a DataSource

The org.springframework.jdbc.datasource.init package provides support for initializing an existing
DataSource. The embedded database support provides one option for creating and initializing a
DataSource for an application. However, you may sometimes need to initialize an instance that runs
on a server somewhere.

3.10.1. Initializing a Database by Using Spring XML

If you want to initialize a database and you can provide a reference to a DataSource bean, you can
use the initialize-database tag in the spring-jdbc namespace:

<jdbc:initialize-database data-source="dataSource">
<jdbe:script location="classpath:com/foo/sql/db-schema.sql"/>
<jdbc:script location="classpath:com/foo/sql/db-test-data.sql"/>
</jdbc:initialize-database>

The preceding example runs the two specified scripts against the database. The first script creates a
schema, and the second populates tables with a test data set. The script locations can also be
patterns with wildcards in the usual Ant style used for resources in Spring (for example,
classpath*:/com/foo/**/sql/*-data.sql). If you use a pattern, the scripts are run in the lexical order
of their URL or filename.

The default behavior of the database initializer is to unconditionally run the provided scripts. This
may not always be what you want—for instance, if you run the scripts against a database that
already has test data in it. The likelihood of accidentally deleting data is reduced by following the
common pattern (shown earlier) of creating the tables first and then inserting the data. The first
step fails if the tables already exist.

However, to gain more control over the creation and deletion of existing data, the XML namespace
provides a few additional options. The first is a flag to switch the initialization on and off. You can

135

https://github.com/spring-projects/spring-framework/issues

set this according to the environment (such as pulling a boolean value from system properties or
from an environment bean). The following example gets a value from a system property:

<jdbc:initialize-database data-source="dataSource"
enabled="#{systemProperties.INITIALIZE_DATABASE}"> @
<jdbe:script location="..."/>
</jdbc:initialize-database>

@ Get the value for enabled from a system property called INITIALIZE_DATABASE.

The second option to control what happens with existing data is to be more tolerant of failures. To
this end, you can control the ability of the initializer to ignore certain errors in the SQL it runs from
the scripts, as the following example shows:

<jdbc:initialize-database data-source="dataSource" ignore-failures="DROPS">
<jdbc:script location="..."/>
</jdbc:initialize-database>

In the preceding example, we are saying that we expect that, sometimes, the scripts are run against
an empty database, and there are some DROP statements in the scripts that would, therefore, fail. So
failed SQL DROP statements will be ignored, but other failures will cause an exception. This is useful
if your SQL dialect doesn’t support DROP --- IF EXISTS (or similar) but you want to unconditionally
remove all test data before re-creating it. In that case the first script is usually a set of DROP
statements, followed by a set of CREATE statements.

The ignore-failures option can be set to NONE (the default), DROPS (ignore failed drops), or ALL (ignore
all failures).

Each statement should be separated by ; or a new line if the ; character is not present at all in the
script. You can control that globally or script by script, as the following example shows:

<jdbc:initialize-database data-source="dataSource" separator="@@"> @
<jdbc:script location="classpath:com/myapp/sql/db-schema.sql" separator=";"/> @
<jdbc:script location="classpath:com/myapp/sql/db-test-data-1.sql"/>
<jdbc:script location="classpath:com/myapp/sql/db-test-data-2.sql"/>
</jdbc:initialize-database>

@ Set the separator scripts to @@.
@ Set the separator for db-schema.sql to ;.

In this example, the two test-data scripts use @@ as statement separator and only the db-schema.sql
uses ;. This configuration specifies that the default separator is @@ and overrides that default for the
db-schema script.

If you need more control than you get from the XML namespace, you can use the
DataSourcelInitializer directly and define it as a component in your application.

136

Initialization of Other Components that Depend on the Database

A large class of applications (those that do not use the database until after the Spring context has
started) can use the database initializer with no further complications. If your application is not
one of those, you might need to read the rest of this section.

The database initializer depends on a DataSource instance and runs the scripts provided in its
initialization callback (analogous to an init-method in an XML bean definition, a @PostConstruct
method in a component, or the afterPropertiesSet() method in a component that implements
InitializingBean). If other beans depend on the same data source and use the data source in an
initialization callback, there might be a problem because the data has not yet been initialized. A
common example of this is a cache that initializes eagerly and loads data from the database on
application startup.

To get around this issue, you have two options: change your cache initialization strategy to a later
phase or ensure that the database initializer is initialized first.

Changing your cache initialization strategy might be easy if the application is in your control and
not otherwise. Some suggestions for how to implement this include:

» Make the cache initialize lazily on first usage, which improves application startup time.

* Have your cache or a separate component that initializes the cache implement Lifecycle or
SmartLifecycle. When the application context starts, you can automatically start a
SmartLifecycle by setting its autoStartup flag, and you can manually start a Lifecycle by calling
ConfigurableApplicationContext.start() on the enclosing context.

* Use a Spring ApplicationEvent or similar custom observer mechanism to trigger the cache
initialization. ContextRefreshedEvent is always published by the context when it is ready for use
(after all beans have been initialized), so that is often a useful hook (this is how the
SmartLifecycle works by default).

Ensuring that the database initializer is initialized first can also be easy. Some suggestions on how
to implement this include:

* Rely on the default behavior of the Spring BeanFactory, which is that beans are initialized in
registration order. You can easily arrange that by adopting the common practice of a set of
<import/> elements in XML configuration that order your application modules and ensuring that
the database and database initialization are listed first.

» Separate the DataSource and the business components that use it and control their startup order
by putting them in separate ApplicationContext instances (for example, the parent context
contains the DataSource, and the child context contains the business components). This structure
is common in Spring web applications but can be more generally applied.

137

Chapter 4. Data Access with R2ZDBC

R2DBC ("Reactive Relational Database Connectivity") is a community-driven specification effort to
standardize access to SQL databases using reactive patterns.

4.1. Package Hierarchy
The Spring Framework’s R2DBC abstraction framework consists of two different packages:

» core: The org.springframework.r2dbc.core package contains the Database(Client class plus a
variety of related classes. See Using the R2ZDBC Core Classes to Control Basic R2DBC Processing
and Error Handling.

» connection: The org.springframework.r2dbc.connection package contains a utility class for easy
ConnectionFactory access and various simple ConnectionFactory implementations that you can
use for testing and running unmodified R2DBC. See Controlling Database Connections.

4.2. Using the R2DBC Core Classes to Control Basic
R2DBC Processing and Error Handling

This section covers how to use the R2DBC core classes to control basic R2DBC processing, including
error handling. It includes the following topics:

* Using DatabaseClient

» Executing Statements

* Querying (SELECT)

» Updating (INSERT, UPDATE, and DELETE) with DatabaseClient

» Statement Filters

* Retrieving Auto-generated Keys

4.2.1. Using DatabaseClient

Database(Client is the central class in the R2DBC core package. It handles the creation and release of
resources, which helps to avoid common errors, such as forgetting to close the connection. It
performs the basic tasks of the core R2DBC workflow (such as statement creation and execution),
leaving application code to provide SQL and extract results. The DatabaseClient class:

* Runs SQL queries

» Update statements and stored procedure calls

e Performs iteration over Result instances

Catches R2DBC exceptions and translates them to the generic, more informative, exception
hierarchy defined in the org.springframework.dao package. (See Consistent Exception Hierarchy.)

The client has a functional, fluent API using reactive types for declarative composition.

138

https://r2dbc.io

When you use the DatabaseClient for your code, you need only to implement java.util.function
interfaces, giving them a clearly defined contract. Given a Connection provided by the
DatabaseClient class, a Function callback creates a Publisher. The same is true for mapping
functions that extract a Row result.

You can use DatabaseClient within a DAO implementation through direct instantiation with a
ConnectionFactory reference, or you can configure it in a Spring IoC container and give it to DAOs as
a bean reference.

The simplest way to create a DatabaseClient object is through a static factory method, as follows:

Java

DatabaseClient client = DatabaseClient.create(connectionFactory);

Kotlin

val client = DatabaseClient.create(connectionFactory)

o The ConnectionFactory should always be configured as a bean in the Spring IoC
container.

The preceding method creates a DatabaseClient with default settings.

You can also obtain a Builder instance from DatabaseClient.builder(). You can customize the client
by calling the following methods:

e ---.bindMarkers(-:+): Supply a specific BindMarkersFactory to configure named parameter to
database bind marker translation.
o ---,executeFunction(--): Set the ExecuteFunction how Statement objects get run.

o ---.namedParameters(false): Disable named parameter expansion. Enabled by default.

Dialects are resolved by BindMarkersFactoryResolver from a ConnectionFactory,
typically by inspecting ConnectionFactoryMetadata.
You can let Spring auto-discover your BindMarkersFactory by registering a class that

@ implements
- org.springframework.r2dbc.core.binding.BindMarkersFactoryResolver$BindMarkerFac

toryProvider through META-INF/spring.factories. BindMarkersFactoryResolver
discovers bind marker provider implementations from the class path using
Spring’s SpringFactoriesLoader.

Currently supported databases are:

e H2
e MariaDB

* Microsoft SQL Server

139

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/r2dbc/core/binding/BindMarkersFactoryResolver.html

* MySQL

* Postgres

All SQL issued by this class is logged at the DEBUG level under the category corresponding to the fully
qualified class name of the client instance (typically DefaultDatabaseClient). Additionally, each
execution registers a checkpoint in the reactive sequence to aid debugging.

The following sections provide some examples of DatabaseClient usage. These examples are not an
exhaustive list of all of the functionality exposed by the Database(Client. See the attendant javadoc
for that.

Executing Statements

DatabaseClient provides the basic functionality of running a statement. The following example
shows what you need to include for minimal but fully functional code that creates a new table:

Java

Mono<Void> completion = client.sql("CREATE TABLE person (id VARCHAR(255) PRIMARY KEY,
name VARCHAR(255), age INTEGER);")
.then();

Kotlin

client.sql("CREATE TABLE person (id VARCHAR(255) PRIMARY KEY, name VARCHAR(255), age
INTEGER);")
.await()

Database(Client is designed for convenient, fluent usage. It exposes intermediate, continuation, and
terminal methods at each stage of the execution specification. The preceding example above uses
then() to return a completion Publisher that completes as soon as the query (or queries, if the SQL
query contains multiple statements) completes.

o execute(::+) accepts either the SQL query string or a query Supplier<String> to
defer the actual query creation until execution.

Querying (SELECT)

SQL queries can return values through Row objects or the number of affected rows. DatabaseClient
can return the number of updated rows or the rows themselves, depending on the issued query.

The following query gets the id and name columns from a table:

Java

Mono<Map<String, Object>> first = client.sql("SELECT id, name FROM person")
.fetch().first();

140

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/r2dbc/core/DatabaseClient.html

Kotlin

val first = client.sql("SELECT id, name FROM person")
.fetch().awaitSingle()

The following query uses a bind variable:

Java

Mono<Map<String, Object>> first = client.sql("SELECT id, name FROM person WHERE
first_name = :fn")

.bind("fn", "Joe")

.fetch().first();

Kotlin

val first = client.sql("SELECT id, name FROM person WHERE WHERE first_name = :fn")
.bind("fn", "Joe")
.fetch().awaitSingle()

You might have noticed the use of fetch() in the example above. fetch() is a continuation operator
that lets you specify how much data you want to consume.

Calling first() returns the first row from the result and discards remaining rows. You can consume
data with the following operators:

e first() return the first row of the entire result. Its Kotlin Coroutine variant is named
awaitSingle() for non-nullable return values and awaitSingleOrNull() if the value is optional.

* one() returns exactly one result and fails if the result contains more rows. Using Kotlin
Coroutines, awaitOne() for exactly one value or awaitOneOrNull() if the value may be null.

* al1() returns all rows of the result. When using Kotlin Coroutines, use flow().

* rowsUpdated() returns the number of affected rows (INSERT/UPDATE/DELETE count). Its Kotlin
Coroutine variant is named awaitRowsUpdated().

Without specifying further mapping details, queries return tabular results as Map whose keys are
case-insensitive column names that map to their column value.

You can take control over result mapping by supplying a Function<Row, T> that gets called for each
Row so it can can return arbitrary values (singular values, collections and maps, and objects).

The following example extracts the id column and emits its value:

Java
Flux<String> names = client.sql("SELECT name FROM person")

.map(row -> row.get("id", String.class))
all();

141

Kotlin

val names = client.sql("SELECT name FROM person")
.map{ row: Row -> row.get("id", String.class) }
.flow()

What about null?

Relational database results can contain null values. The Reactive Streams specification
forbids the emission of null values. That requirement mandates proper null handling in the
extractor function. While you can obtain null values from a Row, you must not emit a null
value. You must wrap any null values in an object (for example, Optional for singular values)
to make sure a null value is never returned directly by your extractor function.

Updating (INSERT, UPDATE, and DELETE) with Database(Client

The only difference of modifying statements is that these statements typically do not return tabular
data so you use rowsUpdated() to consume results.

The following example shows an UPDATE statement that returns the number of updated rows:

Java

Mono<Integer> affectedRows = client.sql("UPDATE person SET first_name = :fn")
.bind("fn", "Joe")
.fetch().rowsUpdated();

Kotlin

val affectedRows = client.sql("UPDATE person SET first_name = :fn")
.bind("fn", "Joe")
.fetch().awaitRowsUpdated()

Binding Values to Queries

A typical application requires parameterized SQL statements to select or update rows according to
some input. These are typically SELECT statements constrained by a WHERE clause or INSERT and
UPDATE statements that accept input parameters. Parameterized statements bear the risk of SQL
injection if parameters are not escaped properly. DatabaseClient leverages R2DBC’s bind API to
eliminate the risk of SQL injection for query parameters. You can provide a parameterized SQL
statement with the execute(::*) operator and bind parameters to the actual Statement. Your R2DBC
driver then runs the statement by using prepared statements and parameter substitution.

Parameter binding supports two binding strategies:

* By Index, using zero-based parameter indexes.

* By Name, using the placeholder name.

142

The following example shows parameter binding for a query:

db.sqlL("INSERT INTO person (id, name, age) VALUES(:id, :name, :age)")
.bind("id", "joe")
.bind("name", "Joe")
.bind("age", 34);

R2DBC Native Bind Markers

R2DBC uses database-native bind markers that depend on the actual database vendor. As an
example, Postgres uses indexed markers, such as $1, $2, $n. Another example is SQL Server,
which uses named bind markers prefixed with @.

This is different from JDBC, which requires ? as bind markers. In JDBC, the actual drivers
translate ? bind markers to database-native markers as part of their statement execution.

Spring Framework’s R2ZDBC support lets you use native bind markers or named bind markers
with the :name syntax.

Named parameter support leverages a BindMarkersFactory instance to expand named
parameters to native bind markers at the time of query execution, which gives you a certain
degree of query portability across various database vendors.

The query-preprocessor unrolls named Collection parameters into a series of bind markers to
remove the need of dynamic query creation based on the number of arguments. Nested object
arrays are expanded to allow usage of (for example) select lists.

Consider the following query:

SELECT id, name, state FROM table WHERE (name, age) IN (('John', 35), ('Ann', 50))

The preceding query can be parametrized and run as follows:

Java
List<Object[]> tuples = new ArrayList<>();
tuples.add(new Object[] {"John", 35});
tuples.add(new Object[] {"Ann", 50});

client.sql("SELECT id, name, state FROM table WHERE (name, age) IN (:tuples)")
.bind("tuples", tuples);

143

Kotlin

val tuples: Mutablelist<Array<Any>> = ArraylList()
tuples.add(array0f("John", 35))
tuples.add(arrayOf("Ann", 50))

client.sql("SELECT id, name, state FROM table WHERE (name, age) IN (:tuples)")
.bind("tuples", tuples)

o Usage of select lists is vendor-dependent.

The following example shows a simpler variant using IN predicates:

Java

client.sql("SELECT id, name, state FROM table WHERE age IN (:ages)")
.bind("ages", Arrays.asList(35, 50));

Kotlin

val tuples: Mutablelist<Array<Any>> = ArraylList()
tuples.add(array0f("John", 35))
tuples.add(arrayOf("Ann", 50))

client.sql("SELECT id, name, state FROM table WHERE age IN (:ages)")
.bind("tuples", array0f(35, 50))

R2DBC itself does not support Collection-like values. Nevertheless, expanding a
given List in the example above works for named parameters in Spring’s R2DBC

o support, e.g. for use in IN clauses as shown above. However, inserting or updating
array-typed columns (e.g. in Postgres) requires an array type that is supported by
the underlying R2DBC driver: typically a Java array, e.g. String[] to update a text[]
column. Do not pass Collection<String> or the like as an array parameter.

Statement Filters

Sometimes it you need to fine-tune options on the actual Statement before it gets run. Register a
Statement filter (StatementFilterFunction) through DatabaseClient to intercept and modify
statements in their execution, as the following example shows:

Java

client.sqL("INSERT INTO table (name, state) VALUES(:name, :state)")
.filter((s, next) -> next.execute(s.returnGeneratedValues("id")))
.bind("name",)
.bind("state", :+);

144

Kotlin

client.sqL("INSERT INTO table (name, state) VALUES(:name, :state)")
.filter { s: Statement, next: ExecuteFunction ->
next.execute(s.returnGeneratedValues("id")) }
.bind("name", -:+)
.bind("state",)

DatabaseClient exposes also simplified filter(::*) overload accepting Function<Statement,
Statement>:

Java

client.sqL("INSERT INTO table (name, state) VALUES(:name, :state)")
.filter(statement -> s.returnGeneratedValues("id"));

client.sql("SELECT id, name, state FROM table")
.filter(statement -> s.fetchSize(25));

Kotlin

client.sqL("INSERT INTO table (name, state) VALUES(:name, :state)")
.filter { statement -> s.returnGeneratedValues("id") }

client.sqL("SELECT id, name, state FROM table")
.filter { statement -> s.fetchSize(25) }

StatementFilterFunction implementations allow filtering of the Statement and filtering of Result
objects.

DatabaseClient Best Practices

Instances of the Database(Client class are thread-safe, once configured. This is important because it
means that you can configure a single instance of a Database(Client and then safely inject this
shared reference into multiple DAOs (or repositories). The DatabaseClient is stateful, in that it
maintains a reference to a ConnectionFactory, but this state is not conversational state.

A common practice when using the DatabaseClient class is to configure a ConnectionFactory in your
Spring configuration file and then dependency-inject that shared ConnectionFactory bean into your
DAO classes. The DatabaseClient is created in the setter for the ConnectionFactory. This leads to DAOs
that resemble the following:

145

Java

public class R2dbcCorporateEventDao implements CorporateEventDao {
private DatabaseClient databaseClient;

public void setConnectionFactory(ConnectionFactory connectionFactory) {
this.databaseClient = DatabaseClient.create(connectionFactory);

}

// R2DBC-backed implementations of the methods on the CorporateEventDao follow...

Kotlin

class R2dbcCorporateEventDao(connectionFactory: ConnectionFactory) : CorporateEventDao

{
private val databaseClient = Database(Client.create(connectionFactory)

// R2DBC-backed implementations of the methods on the CorporateEventDao follow...

An alternative to explicit configuration is to use component-scanning and annotation support for
dependency injection. In this case, you can annotate the class with @Component (which makes it a
candidate for component-scanning) and annotate the ConnectionFactory setter method with
@Autowired. The following example shows how to do so:

Java

@Component M
public class R2dbcCorporateEventDao implements CorporateEventDao {

private DatabaseClient databaseClient;

@Autowired @
public void setConnectionFactory(ConnectionFactory connectionFactory) {
this.databaseClient = DatabaseClient.create(connectionFactory); @

}

// R2DBC-backed implementations of the methods on the CorporateEventDao follow...

@ Annotate the class with @Component.
@ Annotate the ConnectionFactory setter method with @Autowired.

® Create a new DatabaseClient with the ConnectionFactory.

146

Kotlin

@Component @
class R2dbcCorporateEventDao(connectionFactory: ConnectionFactory) : CorporateEventDao

{®
private val databaseClient = DatabaseClient(connectionFactory) ®

// R2DBC-backed implementations of the methods on the CorporateEventDao follow...

@ Annotate the class with @Component.

@ Constructor injection of the ConnectionFactory.

® Create a new DatabaseClient with the ConnectionFactory.

Regardless of which of the above template initialization styles you choose to use (or not), it is
seldom necessary to create a new instance of a DatabaseClient class each time you want to run SQL.
Once configured, a Database(Client instance is thread-safe. If your application accesses multiple

databases, you may want multiple DatabaseClient instances, which requires multiple
ConnectionFactory and, subsequently, multiple differently configured DatabaseClient instances.

147

Chapter 5. Retrieving Auto-generated Keys

INSERT statements may generate keys when inserting rows into a table that defines an auto-
increment or identity column. To get full control over the column name to generate, simply register
a StatementFilterFunction that requests the generated key for the desired column.

Java

Mono<Integer> generatedId = client.sql("INSERT INTO table (name, state) VALUES(:name,
istate)")
.filter(statement -> s.returnGeneratedValues("id"))
.map(row -> row.get("id", Integer.class))
first();

// generatedId emits the generated key once the INSERT statement has finished

Kotlin

val generatedId = client.sqL("INSERT INTO table (name, state) VALUES(:name, :state)")
.filter { statement -> s.returnGeneratedValues("id") }
.map { row -> row.get("id", Integer.class) }
.awaitOne()

// generatedId emits the generated key once the INSERT statement has finished

5.1. Controlling Database Connections

This section covers:

» Using ConnectionFactory
» Using ConnectionFactoryUtils
» Using SingleConnectionFactory

» Using TransactionAwareConnectionFactoryProxy

Using R2dbcTransactionManager

5.1.1. Using ConnectionFactory

Spring obtains an R2DBC connection to the database through a ConnectionFactory. A
ConnectionFactory is part of the R2ZDBC specification and is a common entry-point for drivers. It lets
a container or a framework hide connection pooling and transaction management issues from the
application code. As a developer, you need not know details about how to connect to the database.
That is the responsibility of the administrator who sets up the ConnectionFactory. You most likely fill
both roles as you develop and test code, but you do not necessarily have to know how the
production data source is configured.

When you use Spring’s R2DBC layer, you can can configure your own with a connection pool

148

implementation provided by a third party. A popular implementation is R2DBC Pool (r2dbc-pool).
Implementations in the Spring distribution are meant only for testing purposes and do not provide
pooling.

To configure a ConnectionFactory:

1. Obtain a connection with ConnectionFactory as you typically obtain an R2DBC ConnectionFactory.

2. Provide an R2DBC URL (See the documentation for your driver for the correct value).
The following example shows how to configure a ConnectionFactory:

Java

ConnectionFactory factory =
ConnectionFactories.get("r2dbc:h2:mem:///test?options=DB_CLOSE_DELAY=-
1;DB_CLOSE _ON_EXIT=FALSE");

Kotlin

val factory = ConnectionFactories.get("r2dbc:h2:mem:///test?options=DB_CLOSE_DELAY=-
1;DB_CLOSE_ON_EXIT=FALSE");

5.1.2. Using ConnectionFactoryUtils

The ConnectionFactoryUtils class is a convenient and powerful helper class that provides static
methods to obtain connections from ConnectionFactory and close connections (if necessary).

It supports subscriber Context-bound connections with, for example R2dbcTransactionManager.

5.1.3. Using SingleConnectionFactory

The SingleConnectionFactory class is an implementation of DelegatingConnectionFactory interface
that wraps a single Connection that is not closed after each use.

If any client code calls close on the assumption of a pooled connection (as when using persistence
tools), you should set the suppressClose property to true. This setting returns a close-suppressing
proxy that wraps the physical connection. Note that you can no longer cast this to a native
Connection or a similar object.

SingleConnectionFactory is primarily a test class and may be used for specific requirements such as
pipelining if your R2DBC driver permits for such use. In contrast to a pooled ConnectionFactory, it
reuses the same connection all the time, avoiding excessive creation of physical connections.

5.1.4. Using TransactionAwareConnectionFactoryProxy

TransactionAwareConnectionFactoryProxy is a proxy for a target ConnectionFactory. The proxy wraps
that target ConnectionFactory to add awareness of Spring-managed transactions.

149

Using this class is required if you use a R2DBC client that is not integrated
otherwise with Spring’s R2DBC support. In this case, you can still use this client

o and, at the same time, have this client participating in Spring managed
transactions. It is generally preferable to integrate a R2DBC client with proper
access to ConnectionFactoryUtils for resource management.

See the TransactionAwareConnectionFactoryProxy javadoc for more details.

5.1.5. Using R2dbcTransactionManager

The R2dbcTransactionManager class is a ReactiveTransactionManager implementation for single R2ZDBC
datasources. It binds an R2DBC connection from the specified connection factory to the subscriber
Context, potentially allowing for one subscriber connection for each connection factory.

Application code is required to retrieve the R2DBC connection through
ConnectionFactoryUtils.getConnection(ConnectionFactory), instead of R2DBC’s standard
ConnectionFactory.create().

All framework classes (such as Database(Client) use this strategy implicitly. If not used with this
transaction manager, the lookup strategy behaves exactly like the common one. Thus, it can be used
in any case.

The R2dbcTransactionManager class supports custom isolation levels that get applied to the
connection.

150

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/r2dbc/connection/TransactionAwareConnectionFactoryProxy.html

Chapter 6. Object Relational Mapping (ORM)
Data Access

This section covers data access when you use Object Relational Mapping (ORM).

6.1. Introduction to ORM with Spring

The Spring Framework supports integration with the Java Persistence API (JPA) and supports native
Hibernate for resource management, data access object (DAO) implementations, and transaction
strategies. For example, for Hibernate, there is first-class support with several convenient IoC
features that address many typical Hibernate integration issues. You can configure all of the
supported features for OR (object relational) mapping tools through Dependency Injection. They
can participate in Spring’s resource and transaction management, and they comply with Spring’s
generic transaction and DAO exception hierarchies. The recommended integration style is to code
DAOs against plain Hibernate or JPA APIs.

Spring adds significant enhancements to the ORM layer of your choice when you create data access
applications. You can leverage as much of the integration support as you wish, and you should
compare this integration effort with the cost and risk of building a similar infrastructure in-house.
You can use much of the ORM support as you would a library, regardless of technology, because
everything is designed as a set of reusable JavaBeans. ORM in a Spring IoC container facilitates
configuration and deployment. Thus, most examples in this section show configuration inside a
Spring container.

The benefits of using the Spring Framework to create your ORM DAOs include:

» Easier testing. Spring’s IoC approach makes it easy to swap the implementations and
configuration locations of Hibernate SessionFactory instances, JDBC DataSource instances,
transaction managers, and mapped object implementations (if needed). This in turn makes it
much easier to test each piece of persistence-related code in isolation.

« Common data access exceptions. Spring can wrap exceptions from your ORM tool, converting
them from proprietary (potentially checked) exceptions to a common runtime
DataAccessException hierarchy. This feature lets you handle most persistence exceptions, which
are non-recoverable, only in the appropriate layers, without annoying boilerplate catches,
throws, and exception declarations. You can still trap and handle exceptions as necessary.
Remember that J]DBC exceptions (including DB-specific dialects) are also converted to the same
hierarchy, meaning that you can perform some operations with JDBC within a consistent
programming model.

* General resource management. Spring application contexts can handle the location and
configuration of Hibernate SessionFactory instances, JPA EntityManagerFactory instances, JDBC
DataSource instances, and other related resources. This makes these values easy to manage and
change. Spring offers efficient, easy, and safe handling of persistence resources. For example,
related code that uses Hibernate generally needs to use the same Hibernate Session to ensure
efficiency and proper transaction handling. Spring makes it easy to create and bind a Session to
the current thread transparently, by exposing a current Session through the Hibernate
SessionFactory. Thus, Spring solves many chronic problems of typical Hibernate usage, for any

151

local or JTA transaction environment.

* Integrated transaction management. You can wrap your ORM code with a declarative, aspect-
oriented programming (AOP) style method interceptor either through the @Transactional
annotation or by explicitly configuring the transaction AOP advice in an XML configuration file.
In both cases, transaction semantics and exception handling (rollback and so on) are handled
for you. As discussed in Resource and Transaction Management, you can also swap various
transaction managers, without affecting your ORM-related code. For example, you can swap
between local transactions and JTA, with the same full services (such as declarative
transactions) available in both scenarios. Additionally, JDBC-related code can fully integrate
transactionally with the code you use to do ORM. This is useful for data access that is not
suitable for ORM (such as batch processing and BLOB streaming) but that still needs to share
common transactions with ORM operations.

For more comprehensive ORM support, including support for alternative database

O technologies such as MongoDB, you might want to check out the Spring Data suite

- of projects. If you are a JPA user, the Getting Started Accessing Data with JPA guide
from https://spring.io provides a great introduction.

6.2. General ORM Integration Considerations

This section highlights considerations that apply to all ORM technologies. The Hibernate section
provides more details and also show these features and configurations in a concrete context.

The major goal of Spring’s ORM integration is clear application layering (with any data access and
transaction technology) and for loose coupling of application objects—no more business service
dependencies on the data access or transaction strategy, no more hard-coded resource lookups, no
more hard-to-replace singletons, no more custom service registries. The goal is to have one simple
and consistent approach to wiring up application objects, keeping them as reusable and free from
container dependencies as possible. All the individual data access features are usable on their own
but integrate nicely with Spring’s application context concept, providing XML-based configuration
and cross-referencing of plain JavaBean instances that need not be Spring-aware. In a typical
Spring application, many important objects are JavaBeans: data access templates, data access
objects, transaction managers, business services that use the data access objects and transaction
managers, web view resolvers, web controllers that use the business services, and so on.

6.2.1. Resource and Transaction Management

Typical business applications are cluttered with repetitive resource management code. Many
projects try to invent their own solutions, sometimes sacrificing proper handling of failures for
programming convenience. Spring advocates simple solutions for proper resource handling,
namely IoC through templating in the case of JDBC and applying AOP interceptors for the ORM
technologies.

The infrastructure provides proper resource handling and appropriate conversion of specific API
exceptions to an unchecked infrastructure exception hierarchy. Spring introduces a DAO exception
hierarchy, applicable to any data access strategy. For direct JDBC, the JdbcTemplate class mentioned
in a previous section provides connection handling and proper conversion of SQLException to the

152

https://projects.spring.io/spring-data/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io

DataAccessException hierarchy, including translation of database-specific SQL error codes to
meaningful exception classes. For ORM technologies, see the next section for how to get the same
exception translation benefits.

When it comes to transaction management, the JdbcTemplate class hooks in to the Spring
transaction support and supports both JTA and JDBC transactions, through respective Spring
transaction managers. For the supported ORM technologies, Spring offers Hibernate and JPA
support through the Hibernate and JPA transaction managers as well as JTA support. For details on
transaction support, see the Transaction Management chapter.

6.2.2. Exception Translation

When you use Hibernate or JPA in a DAO, you must decide how to handle the persistence
technology’s native exception classes. The DAO throws a subclass of a HibernateException or
PersistenceException, depending on the technology. These exceptions are all runtime exceptions
and do not have to be declared or caught. You may also have to deal with I1legalArgumentException
and IllegalStateException. This means that callers can only treat exceptions as being generally
fatal, unless they want to depend on the persistence technology’s own exception structure. Catching
specific causes (such as an optimistic locking failure) is not possible without tying the caller to the
implementation strategy. This trade-off might be acceptable to applications that are strongly ORM-
based or do not need any special exception treatment (or both). However, Spring lets exception
translation be applied transparently through the @Repository annotation. The following examples
(one for Java configuration and one for XML configuration) show how to do so:

Java

@Repository
public class ProductDaoImpl implements ProductDao {

// class body here...

Kotlin

@Repository

class ProductDaoImpl : ProductDao {
// class body here...

}

153

<beans>

<!-- Exception translation bean post processor -->

<bean
class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor
I|/>

<bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

The postprocessor automatically looks for all exception translators (implementations of the
PersistenceExceptionTranslator interface) and advises all beans marked with the @Repository
annotation so that the discovered translators can intercept and apply the appropriate translation
on the thrown exceptions.

In summary, you can implement DAOs based on the plain persistence technology’s API and
annotations while still benefiting from Spring-managed transactions, dependency injection, and
transparent exception conversion (if desired) to Spring’s custom exception hierarchies.

6.3. Hibernate

We start with a coverage of Hibernate 5 in a Spring environment, using it to demonstrate the
approach that Spring takes towards integrating OR mappers. This section covers many issues in
detail and shows different variations of DAO implementations and transaction demarcation. Most
of these patterns can be directly translated to all other supported ORM tools. The later sections in
this chapter then cover the other ORM technologies and show brief examples.

As of Spring Framework 5.3, Spring requires Hibernate ORM 5.2+ for Spring’s
HibernateJpaVendorAdapter as well as for a native Hibernate SessionFactory setup.

o Is is strongly recommended to go with Hibernate ORM 5.4 for a newly started
application. For use with HibernateJpaVendorAdapter, Hibernate Search needs to be
upgraded to 5.11.6.

6.3.1. SessionFactory Setup in a Spring Container

To avoid tying application objects to hard-coded resource lookups, you can define resources (such
as a JDBC DataSource or a Hibernate SessionFactory) as beans in the Spring container. Application
objects that need to access resources receive references to such predefined instances through bean
references, as illustrated in the DAO definition in the next section.

The following excerpt from an XML application context definition shows how to set up a JDBC
DataSource and a Hibernate SessionFactory on top of it:

154

https://hibernate.org/

<beans>

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
<property name="username" value="sa"/>
<property name="password" value=""/>
</bean>

<bean id="mySessionFactory"
class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
<property name="dataSource" ref="myDataSource"/>
<property name="mappingResources">
<list>
<value>product.hbm.xml</value>
</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=org.hibernate.dialect.HSQLDialect
</value>
</property>
</bean>

</beans>

Switching from a local Jakarta Commons DBCP BasicDataSource to a JNDI-located DataSource
(usually managed by an application server) is only a matter of configuration, as the following
example shows:

<beans>
<jee:jndi-lookup id="myDataSource" jndi-name="java:comp/env/jdbc/myds"/>
</beans>

You can also access a JNDI-located SessionFactory, using Spring’s JndiObjectFactoryBean / <jee:jndi-
lookup> to retrieve and expose it. However, that is typically not common outside of an EJB context.

155

Spring also provides a LocalSessionFactoryBuilder variant, seamlessly integrating
with @Bean style configuration and programmatic setup (no FactoryBean involved).

Both LocalSessionFactoryBean and LocalSessionFactoryBuilder support background
bootstrapping, with Hibernate initialization running in parallel to the application
bootstrap thread on a given Dbootstrap executor (such as a

o SimpleAsyncTaskExecutor). On LocalSessionFactoryBean, this is available through the
bootstrapExecutor property. On the programmatic LocalSessionFactoryBuilder,
there is an overloaded buildSessionFactory method that takes a bootstrap executor
argument.

As of Spring Framework 5.1, such a native Hibernate setup can also expose a JPA
EntityManagerFactory for standard JPA interaction next to native Hibernate access.
See Native Hibernate Setup for JPA for details.

6.3.2. Implementing DAOs Based on the Plain Hibernate API

Hibernate has a feature called contextual sessions, wherein Hibernate itself manages one current
Session per transaction. This is roughly equivalent to Spring’s synchronization of one Hibernate
Session per transaction. A corresponding DAO implementation resembles the following example,
based on the plain Hibernate API:

Java
public class ProductDaoImpl implements ProductDao {
private SessionFactory sessionFactory;

public void setSessionFactory(SessionFactory sessionFactory) {
this.sessionFactory = sessionFactory;

}

public Collection loadProductsByCategory(String category) {
return this.sessionFactory.getCurrentSession()
.createQuery("from test.Product product where product.category=7")
.setParameter (@, category)
List();

156

Kotlin
class ProductDaoImpl(private val sessionFactory: SessionFactory) : ProductDao {

fun loadProductsByCategory(category: String): Collection<*> {
return sessionFactory.currentSession
.createQuery("from test.Product product where product.category=?")
.setParameter (0, category)
LList()

This style is similar to that of the Hibernate reference documentation and examples, except for
holding the SessionFactory in an instance variable. We strongly recommend such an instance-based
setup over the old-school static HibernateUtil class from Hibernate’s CaveatEmptor sample
application. (In general, do not keep any resources in static variables unless absolutely necessary.)

The preceding DAO example follows the dependency injection pattern. It fits nicely into a Spring
IoC container, as it would if coded against Spring’s HibernateTemplate. You can also set up such a
DAO in plain Java (for example, in unit tests). To do so, instantiate it and call setSessionFactory(..)
with the desired factory reference. As a Spring bean definition, the DAO would resemble the
following:

<beans>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="sessionFactory" ref="mySessionFactory"/>
</bean>

</beans>

The main advantage of this DAO style is that it depends on Hibernate API only. No import of any
Spring class is required. This is appealing from a non-invasiveness perspective and may feel more
natural to Hibernate developers.

However, the DAO throws plain HibernateException (which is unchecked, so it does not have to be
declared or caught), which means that callers can treat exceptions only as being generally
fatal —unless they want to depend on Hibernate’s own exception hierarchy. Catching specific
causes (such as an optimistic locking failure) is not possible without tying the caller to the
implementation strategy. This trade off might be acceptable to applications that are strongly
Hibernate-based, do not need any special exception treatment, or both.

Fortunately, Spring’s LocalSessionFactoryBean supports Hibernate’s
SessionFactory.getCurrentSession() method for any Spring transaction strategy, returning the
current Spring-managed transactional Session, even with HibernateTransactionManager. The
standard behavior of that method remains to return the current Session associated with the
ongoing JTA transaction, if any. This behavior applies regardless of whether you use Spring’s
JtaTransactionManager, EJB container managed transactions (CMTSs), or JTA.

157

In summary, you can implement DAOs based on the plain Hibernate API, while still being able to
participate in Spring-managed transactions.

6.3.3. Declarative Transaction Demarcation

We recommend that you use Spring’s declarative transaction support, which lets you replace
explicit transaction demarcation API calls in your Java code with an AOP transaction interceptor.
You can configure this transaction interceptor in a Spring container by using either Java
annotations or XML. This declarative transaction capability lets you keep business services free of
repetitive transaction demarcation code and focus on adding business logic, which is the real value
of your application.

o Before you continue, we are strongly encourage you to read Declarative
Transaction Management if you have not already done so.

You can annotate the service layer with @Transactional annotations and instruct the Spring
container to find these annotations and provide transactional semantics for these annotated
methods. The following example shows how to do so:

Java
public class ProductServiceImpl implements ProductService {
private ProductDao productDao;

public void setProductDao(ProductDao productDao) {
this.productDao = productDao;

}

@Transactional

public void increasePriceOfAllProductsInCategory(final String category) {
List productsToChange = this.productDao.loadProductsByCategory(category);
/] ...

@Transactional(readOnly = true)

public List<Product> findAllProducts() {
return this.productDao.findA11Products();

}

158

Kotlin
class ProductServiceImpl(private val productDao: ProductDao) : ProductService {

@Transactional

fun increasePriceOfAl1ProductsInCategory(category: String) {
val productsToChange = productDao.loadProductsByCategory(category)
/] ...

}

@Transactional(readOnly = true)
fun findA11Products() = productDao.findAl1Products()

In the container, you need to set up the PlatformTransactionManager implementation (as a bean) and
a <tx:annotation-driven/> entry, opting into @Transactional processing at runtime. The following
example shows how to do so:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<!-- SessionFactory, DataSource, etc. omitted -->
<bean id="transactionManager"
class="org.springframework.orm.hibernate5.HibernateTransactionManager">

<property name="sessionFactory" ref="sessionFactory"/>

</bean>

<tx:annotation-driven/>

<bean id="myProductService" class="product.SimpleProductService">
<property name="productDao" ref="myProductDao"/>

</bean>

</beans>

159

6.3.4. Programmatic Transaction Demarcation

You can demarcate transactions in a higher level of the application, on top of lower-level data
access services that span any number of operations. Nor do restrictions exist on the
implementation of the surrounding business service. It needs only a Spring
PlatformTransactionManager. Again, the latter can come from anywhere, but preferably as a bean
reference through a setTransactionManager(..) method. Also, the productDAO should be set by a
setProductDao(..) method. The following pair of snippets show a transaction manager and a
business service definition in a Spring application context and an example for a business method
implementation:

<beans>

<bean id="myTxManager"
class="org.springframework.orm.hibernate5.HibernateTransactionManager">
<property name="sessionFactory" ref="mySessionFactory"/>
</bean>

<bean id="myProductService" class="product.ProductServiceImpl">
<property name="transactionManager" ref="myTxManager"/>
<property name="productDao" ref="myProductDao"/>

</bean>

</beans>

160

Java
public class ProductServiceImpl implements ProductService {

private TransactionTemplate transactionTemplate;
private ProductDao productDao;

public void setTransactionManager(PlatformTransactionManager transactionManager) {
this.transactionTemplate = new TransactionTemplate(transactionManager);

}

public void setProductDao(ProductDao productDao) {
this.productDao = productDao;

}

public void increasePriceOfAllProductsInCategory(final String category) {
this.transactionTemplate.execute(new TransactionCallbackWithoutResult() {
public void doInTransactionWithoutResult(TransactionStatus status) {
List productsToChange =
this.productDao.loadProductsByCategory(category);
// do the price increase...

}
1

Kotlin

class ProductServiceImpl(transactionManager: PlatformTransactionManager,
private val productDao: ProductDao) : ProductService {

private val transactionTemplate = TransactionTemplate(transactionManager)

fun increasePrice0fAl1ProductsInCategory(category: String) {
transactionTemplate.execute {
val productsToChange = productDao.loadProductsByCategory(category)
// do the price increase...

Spring’s TransactionInterceptor lets any checked application exception be thrown with the callback
code, while TransactionTemplate is restricted to unchecked exceptions within the callback.
TransactionTemplate triggers a rollback in case of an unchecked application exception or if the
transaction is marked rollback-only by the application (by setting TransactionStatus). By default,
TransactionInterceptor behaves the same way but allows configurable rollback policies per
method.

161

6.3.5. Transaction Management Strategies

Both TransactionTemplate and TransactionInterceptor delegate the actual transaction handling to a
PlatformTransactionManager instance (which can be a HibernateTransactionManager (for a single
Hibernate SessionFactory) by wusing a Threadlocal Session wunder the hood) or a
JtaTransactionManager (delegating to the JTA subsystem of the container) for Hibernate applications.
You can even use a custom PlatformTransactionManager implementation. Switching from native
Hibernate transaction management to JTA (such as when facing distributed transaction
requirements for certain deployments of your application) is only a matter of configuration. You
can replace the Hibernate transaction manager with Spring’s JTA transaction implementation. Both
transaction demarcation and data access code work without changes, because they use the generic
transaction management APIs.

For distributed transactions across multiple Hibernate session factories, you can combine
JtaTransactionManager as a transaction strategy with multiple LocalSessionFactoryBean definitions.
Each DAO then gets one specific SessionFactory reference passed into its corresponding bean
property. If all underlying JDBC data sources are transactional container ones, a business service
can demarcate transactions across any number of DAOs and any number of session factories
without special regard, as long as it uses JtaTransactionManager as the strategy.

Both HibernateTransactionManager and JtaTransactionManager allow for proper JVM-level cache
handling with Hibernate, without container-specific transaction manager lookup or a JCA
connector (if you do not use EJB to initiate transactions).

HibernateTransactionManager can export the Hibernate JDBC Connection to plain JDBC access code for
a specific DataSource. This ability allows for high-level transaction demarcation with mixed
Hibernate and JDBC data access completely without JTA, provided you access only one database.
HibernateTransactionManager automatically exposes the Hibernate transaction as a JDBC transaction
if you have set up the passed-in SessionFactory with a DataSource through the dataSource property of
the LocalSessionFactoryBean class. Alternatively, you can specify explicitly the DataSource for which
the transactions are supposed to be exposed through the dataSource property of the
HibernateTransactionManager class.

6.3.6. Comparing Container-managed and Locally Defined Resources

You can switch between a container-managed JNDI SessionFactory and a locally defined one
without having to change a single line of application code. Whether to keep resource definitions in
the container or locally within the application is mainly a matter of the transaction strategy that
you use. Compared to a Spring-defined local SessionFactory, a manually registered JNDI
SessionFactory does not provide any benefits. Deploying a SessionFactory through Hibernate’s JCA
connector provides the added value of participating in the Java EE server’s management
infrastructure, but does not add actual value beyond that.

Spring’s transaction support is not bound to a container. When configured with any strategy other
than JTA, transaction support also works in a stand-alone or test environment. Especially in the
typical case of single-database transactions, Spring’s single-resource local transaction support is a
lightweight and powerful alternative to JTA. When you use local E]B stateless session beans to drive
transactions, you depend both on an EJB container and on JTA, even if you access only a single
database and use only stateless session beans to provide declarative transactions through

162

container-managed transactions. Direct use of JTA programmatically also requires a Java EE
environment. JTA does not involve only container dependencies in terms of JTA itself and of JNDI
DataSource instances. For non-Spring, JTA-driven Hibernate transactions, you have to use the
Hibernate JCA connector or extra Hibernate transaction code with the TransactionManagerLookup
configured for proper JVM-level caching.

Spring-driven transactions can work as well with a locally defined Hibernate SessionFactory as they
do with a local JDBC DataSource, provided they access a single database. Thus, you need only use
Spring’s JTA transaction strategy when you have distributed transaction requirements. A JCA
connector requires container-specific deployment steps, and (obviously) JCA support in the first
place. This configuration requires more work than deploying a simple web application with local
resource definitions and Spring-driven transactions. Also, you often need the Enterprise Edition of
your container if you use, for example, WebLogic Express, which does not provide JCA. A Spring
application with local resources and transactions that span one single database works in any Java
EE web container (without JTA, JCA, or E]JB), such as Tomcat, Resin, or even plain Jetty. Additionally,
you can easily reuse such a middle tier in desktop applications or test suites.

All things considered, if you do not use E]Bs, stick with local SessionFactory setup and Spring’s
HibernateTransactionManager or JtaTransactionManager. You get all of the benefits, including proper
transactional JVM-level caching and distributed transactions, without the inconvenience of
container deployment. JNDI registration of a Hibernate SessionFactory through the JCA connector
adds value only when used in conjunction with EJBs.

6.3.7. Spurious Application Server Warnings with Hibernate

In some JTA environments with very strict XADataSource implementations (currently some
WebLogic Server and WebSphere versions), when Hibernate is configured without regard to the
JTA transaction manager for that environment, spurious warnings or exceptions can show up in the
application server log. These warnings or exceptions indicate that the connection being accessed is
no longer valid or JDBC access is no longer valid, possibly because the transaction is no longer
active. As an example, here is an actual exception from WebLogic:

java.sql.SQLException: The transaction is no longer active - status: 'Committed'. No
further JDBC access is allowed within this transaction.

Another common problem is a connection leak after JTA transactions, with Hibernate sessions (and
potentially underlying JDBC connections) not getting closed properly.

You can resolve such issues by making Hibernate aware of the JTA transaction manager, to which it
synchronizes (along with Spring). You have two options for doing this:

* Pass your Spring JtaTransactionManager bean to your Hibernate setup. The easiest way is a bean
reference into the jtaTransactionManager property for your LocalSessionFactoryBean bean (see
Hibernate Transaction Setup). Spring then makes the corresponding JTA strategies available to
Hibernate.

* You may also configure Hibernate’s JTA-related properties explicitly, in particular
"hibernate.transaction.coordinator_class", "hibernate.connection.handling_mode" and
potentially "hibernate.transaction.jta.platform” in your “"hibernateProperties” on

163

LocalSessionFactoryBean (see Hibernate’s manual for details on those properties).

The remainder of this section describes the sequence of events that occur with and without
Hibernate’s awareness of the JTA PlatformTransactionManager.

When Hibernate is not configured with any awareness of the JTA transaction manager, the
following events occur when a JTA transaction commits:

The JTA transaction commits.

Spring’s JtaTransactionManager is synchronized to the JTA transaction, so it is called back
through an afterCompletion callback by the JTA transaction manager.

Among other activities, this synchronization can trigger a callback by Spring to Hibernate,
through Hibernate’s afterTransactionCompletion callback (used to clear the Hibernate cache),
followed by an explicit close() call on the Hibernate session, which causes Hibernate to attempt
to close() the JDBC Connection.

In some environments, this Connection.close() call then triggers the warning or error, as the
application server no longer considers the Connection to be usable, because the transaction has
already been committed.

When Hibernate is configured with awareness of the JTA transaction manager, the following events
occur when a JTA transaction commits:

The JTA transaction is ready to commit.

Spring’s JtaTransactionManager is synchronized to the JTA transaction, so the transaction is
called back through a beforeCompletion callback by the JTA transaction manager.

Spring is aware that Hibernate itself is synchronized to the JTA transaction and behaves
differently than in the previous scenario. In particular, it aligns with Hibernate’s transactional
resource management.

The JTA transaction commits.

Hibernate is synchronized to the JTA transaction, so the transaction is called back through an
afterCompletion callback by the JTA transaction manager and can properly clear its cache.

6.4. JPA

The Spring JPA, available under the org.springframework.orm.jpa package, offers comprehensive
support for the Java Persistence API in a manner similar to the integration with Hibernate while
being aware of the underlying implementation in order to provide additional features.

6.4.1. Three Options for JPA Setup in a Spring Environment

The Spring JPA support offers three ways of setting up the JPA EntityManagerFactory that is used by

the

164

application to obtain an entity manager.

Using LocalEntityManagerFactoryBean

Obtaining an EntityManagerFactory from JNDI

https://www.oracle.com/technetwork/articles/javaee/jpa-137156.html

* Using LocalContainerEntityManagerFactoryBean

Using LocalEntityManagerFactoryBean

You can use this option only in simple deployment environments such as stand-alone applications
and integration tests.

The LocalEntityManagerFactoryBean creates an EntityManagerFactory suitable for simple deployment
environments where the application uses only JPA for data access. The factory bean uses the JPA
PersistenceProvider auto-detection mechanism (according to JPA’s Java SE bootstrapping) and, in
most cases, requires you to specify only the persistence unit name. The following XML example
configures such a bean:

<beans>
<bean id="myEmf"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
<property name="persistenceUnitName" value="myPersistenceUnit"/>
</bean>
</beans>

This form of JPA deployment is the simplest and the most limited. You cannot refer to an existing
JDBC DataSource bean definition, and no support for global transactions exists. Furthermore,
weaving (byte-code transformation) of persistent classes is provider-specific, often requiring a
specific JVM agent to specified on startup. This option is sufficient only for stand-alone applications
and test environments, for which the JPA specification is designed.

Obtaining an EntityManagerFactory from JNDI

You can use this option when deploying to a Java EE server. Check your server’s documentation on
how to deploy a custom JPA provider into your server, allowing for a different provider than the
server’s default.

Obtaining an EntityManagerFactory from JNDI (for example in a Java EE environment), is a matter of
changing the XML configuration, as the following example shows:

<beans>
<jee:jndi-lookup id="myEmf" jndi-name="persistence/myPersistenceUnit"/>
</beans>

This action assumes standard Java EE bootstrapping. The Java EE server auto-detects persistence
units (in effect, META-INF/persistence.xml files in application jars) and persistence-unit-ref entries
in the Java EE deployment descriptor (for example, web.xml) and defines environment naming
context locations for those persistence units.

In such a scenario, the entire persistence unit deployment, including the weaving (byte-code
transformation) of persistent classes, is up to the Java EE server. The JDBC DataSource is defined
through a JNDI location in the META-INF/persistence.xml file. EntityManager transactions are
integrated with the server’s JTA subsystem. Spring merely uses the obtained EntityManagerFactory,

165

passing it on to application objects through dependency injection and managing transactions for
the persistence unit (typically through JtaTransactionManager).

If you use multiple persistence units in the same application, the bean names of such JNDI-
retrieved persistence units should match the persistence unit names that the application uses to
refer to them (for example, in @PersistenceUnit and @PersistenceContext annotations).

Using LocalContainerEntityManagerFactoryBean

You can use this option for full JPA capabilities in a Spring-based application environment. This
includes web containers such as Tomcat, stand-alone applications, and integration tests with
sophisticated persistence requirements.

If you want to specifically configure a Hibernate setup, an immediate alternative is
to set up a native Hibernate LocalSessionFactoryBean instead of a plain JPA

o LocalContainerEntityManagerFactoryBean, letting it interact with JPA access code as
well as native Hibernate access code. See Native Hibernate setup for JPA
interaction for details.

The LocalContainerEntityManagerFactoryBean gives full control over EntityManagerFactory
configuration and is appropriate for environments where fine-grained customization is required.
The LocalContainerEntityManagerFactoryBean creates a PersistenceUnitInfo instance based on the
persistence.xml file, the supplied dataSourcelLookup strategy, and the specified loadTimeWeaver. It is,
thus, possible to work with custom data sources outside of JNDI and to control the weaving process.
The following example shows a typical bean definition for a
LocalContainerEntityManagerFactoryBean:

<beans>
<bean id="myEmf"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="dataSource" ref="someDataSource"/>
<property name="loadTimeWeaver">
<bean
class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/>
</property>
</bean>
</beans>

The following example shows a typical persistence.xml file:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
<persistence-unit name="myUnit" transaction-type="RESOURCE_LOCAL">
<mapping-file>META-INF/orm.xml</mapping-file>
<exclude-unlisted-classes/>
</persistence-unit>
</persistence>

166

The <exclude-unlisted-classes/> shortcut indicates that no scanning for annotated
entity classes is supposed to occur. An explicit 'true' value (<exclude-unlisted-

e classes>true</exclude-unlisted-classes/>) also means no scan. <exclude-unlisted-
classes>false</exclude-unlisted-classes/> does trigger a scan. However, we
recommend omitting the exclude-unlisted-classes element if you want entity class
scanning to occur.

Using the LocalContainerEntityManagerFactoryBean is the most powerful JPA setup option, allowing
for flexible local configuration within the application. It supports links to an existing JDBC
DataSource, supports both local and global transactions, and so on. However, it also imposes
requirements on the runtime environment, such as the availability of a weaving-capable class
loader if the persistence provider demands byte-code transformation.

This option may conflict with the built-in JPA capabilities of a Java EE server. In a full Java EE
environment, consider obtaining your EntityManagerFactory from JNDI. Alternatively, specify a
custom persistenceXmlLocation on your LocalContainerEntityManagerFactoryBean definition (for
example, META-INF/my-persistence.xml) and include only a descriptor with that name in your
application jar files. Because the Java EE server looks only for default META-INF/persistence.xml
files, it ignores such custom persistence units and, hence, avoids conflicts with a Spring-driven JPA
setup upfront. (This applies to Resin 3.1, for example.)

When is load-time weaving required?

Not all JPA providers require a JVM agent. Hibernate is an example of one that does not. If
your provider does not require an agent or you have other alternatives, such as applying
enhancements at build time through a custom compiler or an Ant task, you should not use
the load-time weaver.

The LoadTimeWeaver interface is a Spring-provided class that lets JPA ClassTransformer instances be
plugged in a specific manner, depending on whether the environment is a web container or
application server. Hooking (lassTransformers through an agent is typically not efficient. The agents
work against the entire virtual machine and inspect every class that is loaded, which is usually
undesirable in a production server environment.

Spring provides a number of LoadTimeWeaver implementations for various environments, letting
(lassTransformer instances be applied only for each class loader and not for each VM.

See the Spring configuration in the AOP chapter for more insight regarding the LoadTimeWeaver
implementations and their setup, either generic or customized to various platforms (such as
Tomcat, JBoss and WebSphere).

As described in Spring configuration, you can configure a context-wide LoadTimeWeaver by using the
@EnableLoadTimeWeaving annotation of the context:load-time-weaver XML element. Such a global
weaver is automatically picked up by all JPA LocalContainerEntityManagerFactoryBean instances. The
following example shows the preferred way of setting up a load-time weaver, delivering auto-
detection of the platform (e.g. Tomcat’s weaving-capable class loader or Spring’s JVM agent) and
automatic propagation of the weaver to all weaver-aware beans:

167

https://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
core.pdf#aop-aj-ltw-spring
core.pdf#aop-aj-ltw-spring

<context:load-time-weaver/>
<bean id="emf"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

</bean>

However, you can, if needed, manually specify a dedicated weaver through the loadTimeWeaver
property, as the following example shows:

<bean id="emf"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="loadTimeWeaver">
<bean
class="org.springframework.instrument.classloading.ReflectivelLoadTimeWeaver"/>
</property>
</bean>

No matter how the LTW is configured, by using this technique, JPA applications relying on
instrumentation can run in the target platform (for example, Tomcat) without needing an agent.
This is especially important when the hosting applications rely on different JPA implementations,
because the JPA transformers are applied only at the class-loader level and are, thus, isolated from
each other.

Dealing with Multiple Persistence Units

For applications that rely on multiple persistence units locations (stored in various JARS in the
classpath, for example), Spring offers the PersistenceUnitManager to act as a central repository and
to avoid the persistence units discovery process, which can be expensive. The default
implementation lets multiple locations be specified. These locations are parsed and later retrieved
through the persistence unit name. (By default, the classpath is searched for META-
INF/persistence.xml files.) The following example configures multiple locations:

168

<bean id="pum"
class="org.springframework.orm.jpa.persistenceunit.DefaultPersistenceUnitManager">
<property name="persistenceXmlLocations">
<list>
<value>org/springframework/orm/jpa/domain/persistence-multi.xml</value>
<value>classpath:/my/package/**/custom-persistence.xml</value>
<value>classpath*:META-INF/persistence.xml</value>
</list>
</property>
<property name="dataSources">
<map>
<entry key="localDataSource" value-ref="local-db"/>
<entry key="remoteDataSource" value-ref="remote-db"/>
</map>
</property>
<!-- if no datasource is specified, use this one -->
<property name="defaultDataSource" ref="remoteDataSource"/>
</bean>

<bean id="emf"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitManager" ref="pum"/>
<property name="persistenceUnitName" value="myCustomUnit"/>
</bean>

The default implementation allows customization of the PersistenceUnitInfo instances (before they
are fed to the JPA provider) either declaratively (through its properties, which affect all hosted
units) or programmatically (through the PersistenceUnitPostProcessor, which allows persistence
unit selection). If no PersistenceUnitManager is specified, one is created and used internally by
LocalContainerEntityManagerFactoryBean

Background Bootstrapping

LocalContainerEntityManagerFactoryBean supports background bootstrapping through the
bootstrapExecutor property, as the following example shows:

<bean id="emf"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="bootstrapExecutor">
<bean class="org.springframework.core.task.SimpleAsyncTaskExecutor"/>
</property>
</bean>

The actual JPA provider bootstrapping is handed off to the specified executor and then, running in
parallel, to the application bootstrap thread. The exposed EntityManagerFactory proxy can be
injected into other application components and is even able to respond to EntityManagerFactoryInfo
configuration inspection. However, once the actual JPA provider is being accessed by other
components (for example, calling createEntityManager), those calls block until the background

169

bootstrapping has completed. In particular, when you use Spring Data JPA, make sure to set up
deferred bootstrapping for its repositories as well.

6.4.2. Implementing DAOs Based on JPA: EntityManagerFactory and
EntityManager

Although EntityManagerFactory instances are thread-safe, EntityManager instances
are not. The injected JPA EntityManager behaves like an EntityManager fetched from

o an application server’s JNDI environment, as defined by the JPA specification. It
delegates all calls to the current transactional EntityManager, if any. Otherwise, it
falls back to a newly created EntityManager per operation, in effect making its
usage thread-safe.

It is possible to write code against the plain JPA without any Spring dependencies, by using an
injected EntityManagerFactory or EntityManager. Spring can understand the @PersistencelUnit and
@PersistenceContext annotations both at the field and the method level if a
PersistenceAnnotationBeanPostProcessor is enabled. The following example shows a plain JPA DAO
implementation that uses the @PersistencelUnit annotation:

Java
public class ProductDaoImpl implements ProductDao {
private EntityManagerFactory emf;

@Persistencelnit
public void setEntityManagerFactory(EntityManagerFactory emf) {
this.emf = emf;

}

public Collection loadProductsByCategory(String category) {
try (EntityManager em = this.emf.createEntityManager()) {
Query query = em.createQuery("from Product as p where p.category = ?1");
query.setParameter(1, category);
return query.getResultList();

170

Kotlin
class ProductDaoImpl : ProductDao {
private lateinit var emf: EntityManagerFactory

@Persistencelnit
fun setEntityManagerFactory(emf: EntityManagerFactory) {
this.emf = emf

}

fun loadProductsByCategory(category: String): Collection<*> {
val em = this.emf.createEntityManager()
val query = em.createQuery("from Product as p where p.category = ?1");
query.setParameter(1, category);
return query.resultlist;

The preceding DAO has no dependency on Spring and still fits nicely into a Spring application
context. Moreover, the DAO takes advantage of annotations to require the injection of the default
EntityManagerFactory, as the following example bean definition shows:

<beans>

<!-- bean post-processor for JPA annotations -->
<bean
class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/>

<bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

As an alternative to explicitly defining a PersistenceAnnotationBeanPostProcessor, consider using the
Spring context:annotation-config XML element in your application context configuration. Doing so
automatically registers all Spring standard post-processors for annotation-based configuration,
including CommonAnnotationBeanPostProcessor and so on.

Consider the following example:

171

<beans>

<!-- post-processors for all standard config annotations -->
<context:annotation-config/>

<bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

The main problem with such a DAO is that it always creates a new EntityManager through the
factory. You can avoid this by requesting a transactional EntityManager (also called a “shared
EntityManager” because it is a shared, thread-safe proxy for the actual transactional
EntityManager) to be injected instead of the factory. The following example shows how to do so:

Java

public class ProductDaoImpl implements ProductDao {

@PersistenceContext
private EntityManager em;

public Collection loadProductsByCategory(String category) {
Query query = em.createQuery("from Product as p where p.category =
:category");
query.setParameter("category", category);
return query.getResultList();

Kotlin

class ProductDaoImpl : ProductDao {

@PersistenceContext
private lateinit var em: EntityManager

fun loadProductsByCategory(category: String): Collection<*> {
val query = em.createQuery("from Product as p where p.category = :category")
query.setParameter("category", category)
return query.resultlist

The @PersistenceContext annotation has an optional attribute called type, which defaults to
PersistenceContextType.TRANSACTION. You can use this default to receive a shared EntityManager
proxy. The alternative, PersistenceContextType.EXTENDED, is a completely different affair. This results
in a so-called extended EntityManager, which is not thread-safe and, hence, must not be used in a
concurrently accessed component, such as a Spring-managed singleton bean. Extended

172

EntityManager instances are only supposed to be used in stateful components that, for example,
reside in a session, with the lifecycle of the EntityManager not tied to a current transaction but
rather being completely up to the application.

Method- and field-level Injection

You can apply annotations that indicate dependency injections (such as @PersistencelUnit and
@PersistenceContext) on field or methods inside a class—hence the expressions “method-
level injection” and “field-level injection”. Field-level annotations are concise and easier to
use while method-level annotations allow for further processing of the injected dependency.
In both cases, the member visibility (public, protected, or private) does not matter.

What about class-level annotations?

On the Java EE platform, they are used for dependency declaration and not for resource
injection.

The injected EntityManager is Spring-managed (aware of the ongoing transaction). Even though the
new DAO implementation uses method-level injection of an EntityManager instead of an
EntityManagerFactory, no change is required in the application context XML, due to annotation
usage.

The main advantage of this DAO style is that it depends only on the Java Persistence API. No import
of any Spring class is required. Moreover, as the JPA annotations are understood, the injections are
applied automatically by the Spring container. This is appealing from a non-invasiveness
perspective and can feel more natural to JPA developers.

6.4.3. Spring-driven JPA transactions

We strongly encourage you to read Declarative Transaction Management, if you
o have not already done so, to get more detailed coverage of Spring’s declarative
transaction support.

The recommended strategy for JPA is local transactions through JPA’s native transaction support.
Spring’s JpaTransactionManager provides many capabilities known from local JDBC transactions
(such as transaction-specific isolation levels and resource-level read-only optimizations) against
any regular JDBC connection pool (no XA requirement).

Spring JPA also lets a configured JpaTransactionManager expose a JPA transaction to JDBC access
code that accesses the same DataSource, provided that the registered JpaDialect supports retrieval
of the underlying JDBC Connection. Spring provides dialects for the EclipseLink and Hibernate JPA
implementations. See the next section for details on the JpaDialect mechanism.

173

As an immediate alternative, Spring’s native HibernateTransactionManager is
capable of interacting with JPA access code, adapting to several Hibernate specifics

o and providing JDBC interaction. This makes particular sense in combination with
LocalSessionFactoryBean setup. See Native Hibernate Setup for JPA Interaction for
details.

6.4.4. Understanding JpaDialect and JpaVendorAdapter

As an advanced feature, JpaTransactionManager and subclasses of AbstractEntityManagerFactoryBean
allow a custom JpaDialect to be passed into the jpaDialect bean property. A JpaDialect
implementation can enable the following advanced features supported by Spring, usually in a
vendor-specific manner:

» Applying specific transaction semantics (such as custom isolation level or transaction timeout)
 Retrieving the transactional JDBC Connection (for exposure to JDBC-based DAOSs)

» Advanced translation of PersistenceExceptions to Spring DataAccessExceptions

This is particularly valuable for special transaction semantics and for advanced translation of
exception. The default implementation (DefaultJpaDialect) does not provide any special abilities
and, if the features listed earlier are required, you have to specify the appropriate dialect.

As an even broader provider adaptation facility primarily for Spring’s full-
featured LocalContainerEntityManagerFactoryBean setup, JpaVendorAdapter
combines the capabilities of JpaDialect with other provider-specific defaults.

(r) Specifying a HibernateJpaVendorAdapter or EclipselLinkJpaVendorAdapter is the most

- convenient way of auto-configuring an EntityManagerFactory setup for Hibernate
or EclipseLink, respectively. Note that those provider adapters are primarily
designed for use with Spring-driven transaction management (that is, for use with
JpaTransactionManager).

See the JpaDialect and JpaVendorAdapter javadoc for more details of its operations and how they are
used within Spring’s JPA support.

6.4.5. Setting up JPA with JTA Transaction Management

As an alternative to IJpaTransactionManager, Spring also allows for multi-resource transaction
coordination through JTA, either in a Java EE environment or with a stand-alone transaction
coordinator, such as Atomikos. Aside from choosing Spring’s JtaTransactionManager instead of
JpaTransactionManager, you need to take few further steps:

* The underlying JDBC connection pools need to be XA-capable and be integrated with your
transaction coordinator. This is usually straightforward in a Java EE environment, exposing a
different kind of DataSource through JNDI. See your application server documentation for
details. Analogously, a standalone transaction coordinator usually comes with special XA-
integrated DataSource variants. Again, check its documentation.

* The JPA EntityManagerFactory setup needs to be configured for JTA. This is provider-specific,
typically through special properties to be specified as jpaProperties on

174

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/orm/jpa/JpaDialect.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/orm/jpa/JpaVendorAdapter.html

LocalContainerEntityManagerFactoryBean. In the case of Hibernate, these properties are even
version-specific. See your Hibernate documentation for details.

» Spring’s HibernateJpaVendorAdapter enforces certain Spring-oriented defaults, such as the
connection release mode, on-close, which matches Hibernate’s own default in Hibernate 5.0 but
not any more in Hibernate 5.1+. For a JTA setup, make sure to declare your persistence unit
transaction type as "JTA". Alternatively, set Hibernate 5.2’s hibernate.connection.handling_mode
property to DELAYED_ACQUISITION_AND_RELEASE_AFTER_STATEMENT to restore Hibernate’s own
default. See Spurious Application Server Warnings with Hibernate for related notes.

» Alternatively, consider obtaining the EntityManagerFactory from your application server itself
(that is, through a JNDI lookup instead of a locally declared
LocalContainerEntityManagerFactoryBean). A server-provided EntityManagerFactory might require
special definitions in your server configuration (making the deployment less portable) but is set
up for the server’s JTA environment.

6.4.6. Native Hibernate Setup and Native Hibernate Transactions for JPA
Interaction

A native LocalSessionFactoryBean setup in combination with HibernateTransactionManager allows for
interaction with @PersistenceContext and other JPA access code. A Hibernate SessionFactory
natively implements JPA’s EntityManagerFactory interface now and a Hibernate Session handle
natively is a JPA EntityManager. Spring’s JPA support facilities automatically detect native Hibernate
sessions.

Such native Hibernate setup can, therefore, serve as a replacement for a standard JPA
LocalContainerEntityManagerFactoryBean and JpaTransactionManager combination in many scenarios,
allowing for interaction with SessionFactory.getCurrentSession() (and also HibernateTemplate) next
to @PersistenceContext EntityManager within the same local transaction. Such a setup also provides
stronger Hibernate integration and more configuration flexibility, because it is not constrained by
JPA bootstrap contracts.

You do not need HibernateJpaVendorAdapter configuration in such a scenario, since Spring’s native
Hibernate setup provides even more features (for example, custom Hibernate Integrator setup,
Hibernate 5.3 bean container integration, and stronger optimizations for read-only transactions).
Last but not least, you can also express native Hibernate setup through LocalSessionFactoryBuilder,
seamlessly integrating with @Bean style configuration (no FactoryBean involved).

LocalSessionFactoryBean and LocalSessionFactoryBuilder support background
bootstrapping, just as the JPA LocalContainerEntityManagerFactoryBean does. See
Background Bootstrapping for an introduction.

On LocalSessionFactoryBean, this is available through the bootstrapExecutor
property. On the programmatic LocalSessionFactoryBuilder, an overloaded
buildSessionFactory method takes a bootstrap executor argument.

175

Chapter 7. Marshalling XML by Using Object-
XML Mappers

7.1. Introduction

This chapter, describes Spring’s Object-XML Mapping support. Object-XML Mapping (O-X mapping
for short) is the act of converting an XML document to and from an object. This conversion process
is also known as XML Marshalling, or XML Serialization. This chapter uses these terms
interchangeably.

Within the field of 0-X mapping, a marshaller is responsible for serializing an object (graph) to
XML. In similar fashion, an unmarshaller deserializes the XML to an object graph. This XML can
take the form of a DOM document, an input or output stream, or a SAX handler.

Some of the benefits of using Spring for your O/X mapping needs are:

» Ease of configuration
* Consistent Interfaces

* Consistent Exception Hierarchy

7.1.1. Ease of configuration

Spring’s bean factory makes it easy to configure marshallers, without needing to construct JAXB
context, JiBX binding factories, and so on. You can configure the marshallers as you would any
other bean in your application context. Additionally, XML namespace-based configuration is
available for a number of marshallers, making the configuration even simpler.

7.1.2. Consistent Interfaces

Spring’s O-X mapping operates through two global interfaces: Marshaller and Unmarshaller. These
abstractions let you switch O-X mapping frameworks with relative ease, with little or no change
required on the classes that do the marshalling. This approach has the additional benefit of making
it possible to do XML marshalling with a mix-and-match approach (for example, some marshalling
performed using JAXB and some by XStream) in a non-intrusive fashion, letting you use the
strength of each technology.

7.1.3. Consistent Exception Hierarchy

Spring provides a conversion from exceptions from the underlying O-X mapping tool to its own
exception hierarchy with the XmlMappingException as the root exception. These runtime exceptions
wrap the original exception so that no information is lost.

176

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/oxm/Marshaller.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/oxm/Unmarshaller.html

7.2. Marshaller and Unmarshaller

As stated in the introduction, a marshaller serializes an object to XML, and an unmarshaller
deserializes XML stream to an object. This section describes the two Spring interfaces used for this
purpose.

7.2.1. Understanding Marshaller

Spring abstracts all marshalling operations behind the org.springframework.oxm.Marshaller
interface, the main method of which follows:

public interface Marshaller {

/**

* Marshal the object graph with the given root into the provided Result.

*/

void marshal(Object graph, Result result) throws XmlMappingException, IOException;

The Marshaller interface has one main method, which marshals the given object to a given
javax.xml.transform.Result. The result is a tagging interface that basically represents an XML
output abstraction. Concrete implementations wrap various XML representations, as the following
table indicates:

Result implementation Wraps XML representation
DOMResult org.w3c.dom.Node

SAXResult org.xml.sax.ContentHandler
StreamResult java.io.File, java.io.OutputStream, or

java.io.Writer

Although the marshal() method accepts a plain object as its first parameter, most
Marshaller implementations cannot handle arbitrary objects. Instead, an object
o class must be mapped in a mapping file, be marked with an annotation, be
registered with the marshaller, or have a common base class. Refer to the later
sections in this chapter to determine how your O-X technology manages this.

7.2.2. Understanding Unmarshaller

Similar to the Marshaller, we have the org.springframework.oxm.Unmarshaller interface, which the
following listing shows:

177

public interface Unmarshaller {

/**

* Unmarshal the given provided Source into an object graph.

*/
Object unmarshal(Source source) throws XmlMappingException, IOException;

This interface also has one method, which reads from the given javax.xml.transform.Source (an
XML input abstraction) and returns the object read. As with Result, Source is a tagging interface that
has three concrete implementations. Each wraps a different XML representation, as the following
table indicates:

Source implementation Wraps XML representation
DOMSource org.w3c.dom.Node
SAXSource org.xml.sax.InputSource, and

org.xml.sax.XMLReader

StreamSource java.io.File, java.io.InputStream, or
java.io.Reader

Even though there are two separate marshalling interfaces (Marshaller and Unmarshaller), all
implementations in Spring-WS implement both in one class. This means that you can wire up one
marshaller class and refer to it both as a marshaller and as an unmarshaller in your
applicationContext.xml.

7.2.3. Understanding XmlMappingException

Spring converts exceptions from the underlying O-X mapping tool to its own exception hierarchy
with the XmlMappingException as the root exception. These runtime exceptions wrap the original
exception so that no information will be lost.

Additionally, the MarshallingFailureException and UnmarshallingFailureException provide a
distinction between marshalling and unmarshalling operations, even though the underlying O-X
mapping tool does not do so.

The O-X Mapping exception hierarchy is shown in the following figure:

XmiMappingException

ValidationFailureException
| MarshallingFailureException UnmarshallingFailureException

MarshallingException

178

7.3. Using Marshaller and Unmarshaller

You can use Spring’s OXM for a wide variety of situations. In the following example, we use it to
marshal the settings of a Spring-managed application as an XML file. In the following example, we
use a simple JavaBean to represent the settings:

Java
public class Settings {
private boolean fooEnabled;

public boolean isFooEnabled() {
return fooEnabled;

}

public void setFooEnabled(boolean fooEnabled) {
this.fooEnabled = fooEnabled;
}

Kotlin

class Settings {
var isFooEnabled: Boolean = false

}

The application class uses this bean to store its settings. Besides a main method, the class has two
methods: saveSettings() saves the settings bean to a file named settings.xml, and loadSettings()
loads these settings again. The following main() method constructs a Spring application context and
calls these two methods:

179

Java

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.stream.StreamSource;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.oxm.Marshaller;

import org.springframework.oxm.Unmarshaller;

public class Application {

private static final String FILE_NAME = "settings.xml";
private Settings settings = new Settings();

private Marshaller marshaller;

private Unmarshaller unmarshaller;

public void setMarshaller(Marshaller marshaller) {
this.marshaller = marshaller;

}

public void setUnmarshaller(Unmarshaller unmarshaller) {
this.unmarshaller = unmarshaller;

}

public void saveSettings() throws IOException {
try (FileOutputStream os = new FileOutputStream(FILE_NAME)) {
this.marshaller.marshal(settings, new StreamResult(os));
}
}

public void loadSettings() throws IOException {
try (FileInputStream is = new FileInputStream(FILE_NAME)) {
this.settings = (Settings) this.unmarshaller.unmarshal(new

StreamSource(is));

180

}
}

public static void main(String[] args) throws IOException {
ApplicationContext appContext =
new ClassPathXmlApplicationContext("applicationContext.xml");

Application application = (Application) appContext.getBean("application");

application.saveSettings();
application.loadSettings();

Kotlin
class Application {
lateinit var marshaller: Marshaller
lateinit var unmarshaller: Unmarshaller

fun saveSettings() {
FileOutputStream(FILE_NAME).use { outputStream -> marshaller.marshal(settings,
StreamResult(outputStream)) }
}

fun loadSettings() {
FileInputStream(FILE_NAME).use { inputStream -> settings =
unmarshaller.unmarshal(StreamSource(inputStream)) as Settings }
}
}

private const val FILE_NAME = "settings.xml"

fun main(args: Array<String>) {
val appContext = ClassPathXmlApplicationContext("applicationContext.xml")
val application = appContext.getBean("application") as Application
application.saveSettings()
application.loadSettings()

The Application requires both a marshaller and an unmarshaller property to be set. We can do so by
using the following applicationContext.xml:

<beans>
<bean id="application" class="Application">
<property name="marshaller" ref="xstreamMarshaller" />
<property name="unmarshaller" ref="xstreamMarshaller" />
</bean>
<bean id="xstreamMarshaller"
class="org.springframework.oxm.xstream.XStreamMarshaller"/>
</beans>

This application context uses XStream, but we could have used any of the other marshaller
instances described later in this chapter. Note that, by default, XStream does not require any
further configuration, so the bean definition is rather simple. Also note that the XStreamMarshaller
implements both Marshaller and Unmarshaller, so we can refer to the xstreamMarshaller bean in both
the marshaller and unmarshaller property of the application.

This sample application produces the following settings.xml file:

181

<?xml version="1.0" encoding="UTF-8"?>
<settings foo-enabled="false"/>

7.4. XML Configuration Namespace

You can configure marshallers more concisely by using tags from the OXM namespace. To make
these tags available, you must first reference the appropriate schema in the preamble of the XML
configuration file. The following example shows how to do so:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:oxm="http://www.springframework.org/schema/oxm" @
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/oxm
https://www.springframework.org/schema/oxm/spring-oxm.xsd"> @

@ Reference the oxm schema.

@ Specify the oxm schema location.
The schema makes the following elements available:

* jaxb2-marshaller
* jibx-marshaller
Each tag is explained in its respective marshaller’s section. As an example, though, the

configuration of a JAXB2 marshaller might resemble the following:

<oxm:jaxb2-marshaller id="marshaller"
contextPath="org.springframework.ws.samples.airline.schema"/>

7.5.JAXB

The JAXB binding compiler translates a W3C XML Schema into one or more Java classes, a
jaxb.properties file, and possibly some resource files. JAXB also offers a way to generate a schema
from annotated Java classes.

Spring supports the JAXB 2.0 API as XML marshalling strategies, following the Marshaller and
Unmarshaller interfaces described in Marshaller and Unmarshaller. The corresponding integration
classes reside in the org.springframework.oxm. jaxb package.

7.5.1. Using Jaxb2Marshaller

The Jaxb2Marshaller class implements both of Spring’s Marshaller and Unmarshaller interfaces. It

182

requires a context path to operate. You can set the context path by setting the contextPath property.
The context path is a list of colon-separated Java package names that contain schema derived
classes. It also offers a classesToBeBound property, which allows you to set an array of classes to be

supported by the marshaller. Schema validation is performed by specifying one or more schema
resources to the bean, as the following example shows:

<beans>

<bean id="jaxb2Marshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
<property name="classesToBeBound">
<list>

<value>org.springframework.oxm.jaxb.Flight</value>

<value>org.springframework.oxm.jaxb.Flights</value>
</list>

</property>

<property name="schema" value="classpath:org/springframework/oxm/schema.xsd"/>
</bean>

</beans>

XML Configuration Namespace

The jaxb2-marshaller element configures a org.springframework.oxm.jaxb.Jaxb2Marshaller, as the
following example shows:

<oxm:jaxb2-marshaller id="marshaller"
contextPath="org.springframework.ws.samples.airline.schema"/>

Alternatively, you can provide the list of classes to bind to the marshaller by using the class-to-be-
bound child element:

<oxm:jaxb2-marshaller id="marshaller">
<oxm:class-to-be-bound
name="org.springframework.ws.samples.airline.schema.Airport"/>
<oxm:class-to-be-bound
name="org.springframework.ws.samples.airline.schema.Flight"/>

</oxm:jaxb2-marshaller>

The following table describes the available attributes:

Attribute Description Required
id The ID of the marshaller No
contextPath The JAXB Context path No

183

7.6. JiBX

The JiBX framework offers a solution similar to that which Hibernate provides for ORM: A binding
definition defines the rules for how your Java objects are converted to or from XML. After
preparing the binding and compiling the classes, a JiBX binding compiler enhances the class files
and adds code to handle converting instances of the classes from or to XML.

For more information on JiBX, see the JiBX web site. The Spring integration classes reside in the
org.springframework.oxm.jibx package.

7.6.1. Using JibxMarshaller

The JibxMarshaller class implements both the Marshaller and Unmarshaller interface. To operate, it
requires the name of the class to marshal in, which you can set using the target(lass property.
Optionally, you can set the binding name by setting the bindingName property. In the following
example, we bind the Flights class:

<beans>
<bean id="jibxFlightsMarshaller"
class="org.springframework.oxm.jibx.JibxMarshaller">
<property name="targetClass">org.springframework.oxm.jibx.Flights</property>
</bean>

</beans>
A JibxMarshaller is configured for a single class. If you want to marshal multiple classes, you have

to configure multiple JibxMarshaller instances with different target(Class property values.

XML Configuration Namespace

The jibx-marshaller tag configures a org.springframework.oxm.jibx.JibxMarshaller, as the following
example shows:

<oxm:jibx-marshaller id="marshaller" target-
class="org.springframework.ws.samples.airline.schema.Flight"/>

The following table describes the available attributes:

Attribute Description Required

id The ID of the marshaller No

target-class The target class for this Yes
marshaller

bindingName The binding name used by this No
marshaller

184

http://jibx.sourceforge.net/

7.7. XStream

XStream is a simple library to serialize objects to XML and back again. It does not require any
mapping and generates clean XML.

For more information on XStream, see the XStream web site. The Spring integration classes reside
in the org.springframework.oxm.xstream package.

7.7.1. Using XStreamMarshaller

The XStreamMarshaller does not require any configuration and can be configured in an application
context directly. To further customize the XML, you can set an alias map, which consists of string
aliases mapped to classes, as the following example shows:

<beans>
<bean id="xstreamMarshaller"
class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="aliases">
<props>
<prop key="Flight">org.springframework.oxm.xstream.Flight</prop>
</props>
</property>
</bean>

</beans>

185

https://x-stream.github.io/

186

By default, XStream lets arbitrary classes be unmarshalled, which can lead to
unsafe Java serialization effects. As such, we do not recommend using the
XStreamMarshaller to unmarshal XML from external sources (that is, the Web), as
this can result in security vulnerabilities.

If you choose to use the XStreamMarshaller to unmarshal XML from an external
source, set the supportedClasses property on the XStreamMarshaller, as the
following example shows:

<bean id="xstreamMarshaller"

class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="supportedClasses"

value="org.springframework.oxm.xstream.Flight"/>

</bean>
Doing so ensures that only the registered classes are eligible for unmarshalling.

Additionally, you can register custom converters to make sure that only your
supported classes can be unmarshalled. You might want to add a CatchAllConverter
as the last converter in the list, in addition to converters that explicitly support the
domain classes that should be supported. As a result, default XStream converters
with lower priorities and possible security vulnerabilities do not get invoked.

Note that XStream is an XML serialization library, not a data binding library.
Therefore, it has limited namespace support. As a result, it is rather unsuitable for
usage within Web Services.

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/oxm/xstream/XStreamMarshaller.html#setConverters(com.thoughtworks.xstream.converters.ConverterMatcher…​)

Chapter 8. Appendix

8.1. XML Schemas

This part of the appendix lists XML schemas for data access, including the following:

e The tx Schema

* The jdbc Schema

8.1.1. The tx Schema

The tx tags deal with configuring all of those beans in Spring’s comprehensive support for
transactions. These tags are covered in the chapter entitled Transaction Management.

We strongly encourage you to look at the 'spring-tx.xsd' file that ships with the
Spring distribution. This file contains the XML Schema for Spring’s transaction
(r) configuration and covers all of the various elements in the tx namespace,
- including attribute defaults and similar information. This file is documented
inline, and, thus, the information is not repeated here in the interests of adhering
to the DRY (Don’t Repeat Yourself) principle.

In the interest of completeness, to use the elements in the tx schema, you need to have the
following preamble at the top of your Spring XML configuration file. The text in the following
snippet references the correct schema so that the tags in the tx namespace are available to you:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx" ®
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
https://www.springframework.org/schema/tx/spring-tx.xsd @
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<!-- bean definitions here -->

</beans>

@ Declare usage of the tx namespace.

@ Specify the location (with other schema locations).

187

Often, when you use the elements in the tx namespace, you are also using the
elements from the aop namespace (since the declarative transaction support in

o Spring is implemented by using AOP). The preceding XML snippet contains the
relevant lines needed to reference the aop schema so that the elements in the aop
namespace are available to you.

8.1.2. The jdbc Schema

The jdbc elements let you quickly configure an embedded database or initialize an existing data
source. These elements are documented in Embedded Database Support and Initializing a
DataSource, respectively.

To use the elements in the jdbc schema, you need to have the following preamble at the top of your
Spring XML configuration file. The text in the following snippet references the correct schema so
that the elements in the jdbc namespace are available to you:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc" @
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jdbc
https://www.springframework.org/schema/jdbc/spring-jdbc.xsd"> @

<!-- bean definitions here -->

</beans>

@ Declare usage of the jdbc namespace.

@ Specify the location (with other schema locations).

188

	Data Access
	Table of Contents
	Chapter 1. Transaction Management
	1.1. Advantages of the Spring Framework’s Transaction Support Model
	1.1.1. Global Transactions
	1.1.2. Local Transactions
	1.1.3. Spring Framework’s Consistent Programming Model

	1.2. Understanding the Spring Framework Transaction Abstraction
	1.2.1. Hibernate Transaction Setup

	1.3. Synchronizing Resources with Transactions
	1.3.1. High-level Synchronization Approach
	1.3.2. Low-level Synchronization Approach
	1.3.3. TransactionAwareDataSourceProxy

	1.4. Declarative Transaction Management
	1.4.1. Understanding the Spring Framework’s Declarative Transaction Implementation
	1.4.2. Example of Declarative Transaction Implementation
	1.4.3. Rolling Back a Declarative Transaction
	1.4.4. Configuring Different Transactional Semantics for Different Beans
	1.4.5. <tx:advice/> Settings
	1.4.6. Using @Transactional
	@Transactional Settings
	Multiple Transaction Managers with @Transactional
	Custom Composed Annotations

	1.4.7. Transaction Propagation
	Understanding PROPAGATION_REQUIRED
	Understanding PROPAGATION_REQUIRES_NEW
	Understanding PROPAGATION_NESTED

	1.4.8. Advising Transactional Operations
	1.4.9. Using @Transactional with AspectJ

	1.5. Programmatic Transaction Management
	1.5.1. Using the TransactionTemplate
	Specifying Transaction Settings

	1.5.2. Using the TransactionOperator
	Cancel Signals
	Specifying Transaction Settings

	1.5.3. Using the TransactionManager
	Using the PlatformTransactionManager
	Using the ReactiveTransactionManager

	1.6. Choosing Between Programmatic and Declarative Transaction Management
	1.7. Transaction-bound Events
	1.8. Application server-specific integration
	1.8.1. IBM WebSphere
	1.8.2. Oracle WebLogic Server

	1.9. Solutions to Common Problems
	1.9.1. Using the Wrong Transaction Manager for a Specific DataSource

	1.10. Further Resources

	Chapter 2. DAO Support
	2.1. Consistent Exception Hierarchy
	2.2. Annotations Used to Configure DAO or Repository Classes

	Chapter 3. Data Access with JDBC
	3.1. Choosing an Approach for JDBC Database Access
	3.2. Package Hierarchy
	3.3. Using the JDBC Core Classes to Control Basic JDBC Processing and Error Handling
	3.3.1. Using JdbcTemplate
	Querying (SELECT)
	Updating (INSERT, UPDATE, and DELETE) with JdbcTemplate
	Other JdbcTemplate Operations
	JdbcTemplate Best Practices

	3.3.2. Using NamedParameterJdbcTemplate
	3.3.3. Using SQLExceptionTranslator
	3.3.4. Running Statements
	3.3.5. Running Queries
	3.3.6. Updating the Database
	3.3.7. Retrieving Auto-generated Keys

	3.4. Controlling Database Connections
	3.4.1. Using DataSource
	3.4.2. Using DataSourceUtils
	3.4.3. Implementing SmartDataSource
	3.4.4. Extending AbstractDataSource
	3.4.5. Using SingleConnectionDataSource
	3.4.6. Using DriverManagerDataSource
	3.4.7. Using TransactionAwareDataSourceProxy
	3.4.8. Using DataSourceTransactionManager

	3.5. JDBC Batch Operations
	3.5.1. Basic Batch Operations with JdbcTemplate
	3.5.2. Batch Operations with a List of Objects
	3.5.3. Batch Operations with Multiple Batches

	3.6. Simplifying JDBC Operations with the SimpleJdbc Classes
	3.6.1. Inserting Data by Using SimpleJdbcInsert
	3.6.2. Retrieving Auto-generated Keys by Using SimpleJdbcInsert
	3.6.3. Specifying Columns for a SimpleJdbcInsert
	3.6.4. Using SqlParameterSource to Provide Parameter Values
	3.6.5. Calling a Stored Procedure with SimpleJdbcCall
	3.6.6. Explicitly Declaring Parameters to Use for a SimpleJdbcCall
	3.6.7. How to Define SqlParameters
	3.6.8. Calling a Stored Function by Using SimpleJdbcCall
	3.6.9. Returning a ResultSet or REF Cursor from a SimpleJdbcCall

	3.7. Modeling JDBC Operations as Java Objects
	3.7.1. Understanding SqlQuery
	3.7.2. Using MappingSqlQuery
	3.7.3. Using SqlUpdate
	3.7.4. Using StoredProcedure

	3.8. Common Problems with Parameter and Data Value Handling
	3.8.1. Providing SQL Type Information for Parameters
	3.8.2. Handling BLOB and CLOB objects
	3.8.3. Passing in Lists of Values for IN Clause
	3.8.4. Handling Complex Types for Stored Procedure Calls

	3.9. Embedded Database Support
	3.9.1. Why Use an Embedded Database?
	3.9.2. Creating an Embedded Database by Using Spring XML
	3.9.3. Creating an Embedded Database Programmatically
	3.9.4. Selecting the Embedded Database Type
	Using HSQL
	Using H2
	Using Derby

	3.9.5. Testing Data Access Logic with an Embedded Database
	3.9.6. Generating Unique Names for Embedded Databases
	3.9.7. Extending the Embedded Database Support

	3.10. Initializing a DataSource
	3.10.1. Initializing a Database by Using Spring XML
	Initialization of Other Components that Depend on the Database

	Chapter 4. Data Access with R2DBC
	4.1. Package Hierarchy
	4.2. Using the R2DBC Core Classes to Control Basic R2DBC Processing and Error Handling
	4.2.1. Using DatabaseClient
	Executing Statements
	Querying (SELECT)
	Updating (INSERT, UPDATE, and DELETE) with DatabaseClient
	Binding Values to Queries
	Statement Filters
	DatabaseClient Best Practices

	Chapter 5. Retrieving Auto-generated Keys
	5.1. Controlling Database Connections
	5.1.1. Using ConnectionFactory
	5.1.2. Using ConnectionFactoryUtils
	5.1.3. Using SingleConnectionFactory
	5.1.4. Using TransactionAwareConnectionFactoryProxy
	5.1.5. Using R2dbcTransactionManager

	Chapter 6. Object Relational Mapping (ORM) Data Access
	6.1. Introduction to ORM with Spring
	6.2. General ORM Integration Considerations
	6.2.1. Resource and Transaction Management
	6.2.2. Exception Translation

	6.3. Hibernate
	6.3.1. SessionFactory Setup in a Spring Container
	6.3.2. Implementing DAOs Based on the Plain Hibernate API
	6.3.3. Declarative Transaction Demarcation
	6.3.4. Programmatic Transaction Demarcation
	6.3.5. Transaction Management Strategies
	6.3.6. Comparing Container-managed and Locally Defined Resources
	6.3.7. Spurious Application Server Warnings with Hibernate

	6.4. JPA
	6.4.1. Three Options for JPA Setup in a Spring Environment
	Using LocalEntityManagerFactoryBean
	Obtaining an EntityManagerFactory from JNDI
	Using LocalContainerEntityManagerFactoryBean
	Dealing with Multiple Persistence Units
	Background Bootstrapping

	6.4.2. Implementing DAOs Based on JPA: EntityManagerFactory and EntityManager
	6.4.3. Spring-driven JPA transactions
	6.4.4. Understanding JpaDialect and JpaVendorAdapter
	6.4.5. Setting up JPA with JTA Transaction Management
	6.4.6. Native Hibernate Setup and Native Hibernate Transactions for JPA Interaction

	Chapter 7. Marshalling XML by Using Object-XML Mappers
	7.1. Introduction
	7.1.1. Ease of configuration
	7.1.2. Consistent Interfaces
	7.1.3. Consistent Exception Hierarchy

	7.2. Marshaller and Unmarshaller
	7.2.1. Understanding Marshaller
	7.2.2. Understanding Unmarshaller
	7.2.3. Understanding XmlMappingException

	7.3. Using Marshaller and Unmarshaller
	7.4. XML Configuration Namespace
	7.5. JAXB
	7.5.1. Using Jaxb2Marshaller
	XML Configuration Namespace

	7.6. JiBX
	7.6.1. Using JibxMarshaller
	XML Configuration Namespace

	7.7. XStream
	7.7.1. Using XStreamMarshaller

	Chapter 8. Appendix
	8.1. XML Schemas
	8.1.1. The tx Schema
	8.1.2. The jdbc Schema

