Integration

Version 5.3.4

Table of Contents

1. REST Endpoints
1.1. RestTemplate
1.1.1. Initialization
URIs
Headers
1.1.2. Body
1.1.3. Message Conversion
1.1.4. Jackson JSON Views
Multipart
1.2. Using AsyncRestTemplate (Deprecated)
2. Remoting and Web Services
2.1. AMQP
2.2. Considerations when Choosing a Technology
2.3.Java Web Services
2.3.1. Exposing Servlet-based Web Services by Using JAX-WS
2.3.2. Exporting Standalone Web Services by Using JAX-WS
2.3.3. Exporting Web Services by Using JAX-WS RI’s Spring Support
2.3.4. Accessing Web Services by Using JAX-WS
2.4. RMI (Deprecated)
2.4.1. Exporting the Service by Using RmiServiceExporter
2.4.2. Linking in the Service at the Client
2.5. Using Hessian to Remotely Call Services through HTTP (Deprecated)
2.5.1. Hessian
2.5.2. Exposing Your Beans by Using HessianServiceExporter
2.5.3. Linking in the Service on the Client
2.5.4. Applying HTTP Basic Authentication to a Service Exposed through Hessian
2.6. Spring HTTP Invoker (Deprecated)
2.6.1. Exposing the Service Object
2.6.2. Linking in the Service at the Client
2.7. JMS (Deprecated)
2.7.1. Server-side Configuration
2.7.2. Client-side Configuration
3. Enterprise JavaBeans (E]B) Integration
3.1. Accessing EJBs
3.1.1. Concepts
3.1.2. Accessing Local SLSBs
3.1.3. Accessing Remote SLSBs
3.1.4. Accessing E]JB 2.x SLSBs Versus EJB 3 SLSBs

© 00 3 J U1 b bk W w NN

NN NN DN DN DN DN DN DN DN DN R R R R s s s s s
© 00 I O O O b W N R PR O © © 00 1 3 o0 Ul U b WN R R = O

4. JMS (Java Message Service)
4.1. Using Spring JMS
4.1.1. Using JmsTemplate
4.1.2. Connections
Caching Messaging Resources
Using SingleConnectionFactory
Using CachingConnectionFactory
4.1.3. Destination Management
4.1.4. Message Listener Containers
Using SimpleMessageListenerContainer
Using DefaultMessagelListenerContainer
4.1.5. Transaction Management
4.2. Sending a Message
4.2.1. Using Message Converters
4.2.2. Using SessionCallback and ProducerCallback
4.3. Receiving a Message
4.3.1. Synchronous Reception
4.3.2. Asynchronous reception: Message-Driven POJOs
4.3.3. Using the SessionAwareMessagelistener Interface
4.3.4. Using MessagelistenerAdapter
4.3.5. Processing Messages Within Transactions
4.4. Support for JCA Message Endpoints
4.5. Annotation-driven Listener Endpoints
4.5.1. Enable Listener Endpoint Annotations
4.5.2. Programmatic Endpoint Registration
4.5.3. Annotated Endpoint Method Signature
4.5.4. Response Management
4.6. JMS Namespace Support
5. JMX
5.1. Exporting Your Beans to JMX
5.1.1. Creating an MBeanServer
5.1.2. Reusing an Existing MBeanServer
5.1.3. Lazily Initialized MBeans
5.1.4. Automatic Registration of MBeans
5.1.5. Controlling the Registration Behavior
5.2. Controlling the Management Interface of Your Beans
5.2.1. Using the MBeanInfoAssembler Interface
5.2.2. Using Source-level Metadata: Java Annotations
5.2.3. Source-level Metadata Types
5.2.4. Using the Autodetect(CapableMBeanInfoAssembler Interface

5.2.5. Defining Management Interfaces by Using Java Interfaces

30
31
31
32
32
32
32
33
34
34
35
36
36
37
39
39
39
39
40
41
43
44
46
47
47
48
49
51
57
57
39
60
61
61
62
63
63
63
66
67
68

5.2.6. Using MethodNameBasedMBeanInfoAssembler
5.3. Controlling ObjectName Instances for Your Beans
5.3.1. Reading ObjectName Instances from Properties
5.3.2. Using MetadataNamingStrategy
5.3.3. Configuring Annotation-based MBean Export
5.4. Using JSR-160 Connectors
5.4.1. Server-side Connectors
5.4.2. Client-side Connectors
5.4.3. JMX over Hessian or SOAP
5.5. Accessing MBeans through Proxies
5.6. Notifications
5.6.1. Registering Listeners for Notifications
5.6.2. Publishing Notifications
5.7. Further Resources
6. Email
6.1. Usage
6.1.1. Basic MailSender and SimpleMailMessage Usage
6.1.2. Using JavaMailSender and MimeMessagePreparator
6.2. Using the JavaMail MimeMessageHelper
6.2.1. Sending Attachments and Inline Resources
Attachments
Inline Resources
6.2.2. Creating Email Content by Using a Templating Library
7. Task Execution and Scheduling
7.1. The Spring TaskExecutor Abstraction
7.1.1. TaskExecutor Types
7.1.2. Using a TaskExecutor
7.2. The Spring TaskScheduler Abstraction
7.2.1. Trigger Interface
7.2.2. Trigger Implementations
7.2.3. TaskScheduler implementations
7.3. Annotation Support for Scheduling and Asynchronous Execution
7.3.1. Enable Scheduling Annotations
7.3.2. The @Scheduled annotation
7.3.3. The @Async annotation
7.3.4. Executor Qualification with @Async
7.3.5. Exception Management with @Async
7.4. The task Namespace
7.4.1. The 'scheduler' Element
7.4.2. The executor Element
7.4.3. The 'scheduled-tasks' Element

70
70
71
72
72
73
73
75
75
75
76
76
81
82
83
83
84
85
87
87
87
88
89
90
90
90
91
93
93
94
94
95
95
96
97
99
99
99
99
100
101

7.5. Cron Expressions 102

7.5.1. Macros 104
7.6. Using the Quartz Scheduler 104
7.6.1. Using the JobDetailFactoryBean 104
7.6.2. Using the MethodInvokingJobDetailFactoryBean 105
7.6.3. Wiring up Jobs by Using Triggers and SchedulerFactoryBean 106

8. Cache Abstraction 108
8.1. Understanding the Cache Abstraction 108
8.2. Declarative Annotation-based Caching 109
8.2.1. The @Cacheable Annotation 109
Default Key Generation 110
Custom Key Generation Declaration 111
Default Cache Resolution 112
Custom Cache Resolution 112
Synchronized Caching 112
Conditional Caching 113
Available Caching SpEL Evaluation Context 114
8.2.2. The @CachePut Annotation 115
8.2.3. The @CacheEvict annotation 115
8.2.4. The @Caching Annotation 116
8.2.5. The @CacheConfig annotation 116
8.2.6. Enabling Caching Annotations 117
8.2.7. Using Custom Annotations 120
8.3.]JCache (JSR-107) Annotations 121
8.3.1. Feature Summary 121
8.3.2. Enabling JSR-107 Support 123
8.4. Declarative XML-based Caching 123
8.5. Configuring the Cache Storage 124
8.5.1. JDK ConcurrentMap-based Cache 125
8.5.2. Ehcache-based Cache 125
8.5.3. Caffeine Cache 126
8.5.4. GemFire-based Cache 126
8.5.5. JSR-107 Cache 126
8.5.6. Dealing with Caches without a Backing Store 127
8.6. Plugging-in Different Back-end Caches 127
8.7. How can I Set the TTL/TTI/Eviction policy/XXX feature? 128
9. Appendix 129
9.1. XML Schemas 129
9.1.1. The jee Schema 129
<jee:jndi-lookup/> (simple) 129

<jee:jndi-lookup/> (with Single JNDI Environment Setting) 130

<jee:jndi-lookup/> (with Multiple JNDI Environment Settings) 130

<jee:jndi-Tookup/> (Complex) 131
<jee:local-sLsb/> (SIMPLe). . ..o 131
<jee:local-slsb/> (Complex) 132
<jeerremote-SISh/> . .. 132
9.1.2. The jms Schema 133
9.1.3. Using <context:mbean-export/> 134

9.1.4. The cache SChema 134

This part of the reference documentation covers the Spring Framework’s
integration with a number technologies.

Chapter 1. REST Endpoints

The Spring Framework provides two choices for making calls to REST endpoints:

* RestTemplate: The original Spring REST client with a synchronous, template method API.

* WebClient:

a non-blocking, reactive alternative that supports both synchronous and

asynchronous as well as streaming scenarios.

As of 5.0 the RestTemplate is in maintenance mode, with only minor requests for

o changes and bugs to be accepted going forward. Please, consider using the
WebClient which offers a more modern API and supports sync, async, and
streaming scenarios.

1.1. RestTemplate

The RestTemplate provides a higher level API over HTTP client libraries. It makes it easy to invoke
REST endpoints in a single line. It exposes the following groups of overloaded methods:

Table 1. RestTemplate methods

Method group
getForObject

getForEntity

headForHeaders

postForlLocation

postForObject

postForEntity

put

patchForObject

delete

optionsForAllow

Description
Retrieves a representation via GET.

Retrieves a ResponseEntity (that is, status, headers, and body) by using
GET.

Retrieves all headers for a resource by using HEAD.

Creates a new resource by using POST and returns the Location header
from the response.

Creates a new resource by using POST and returns the representation
from the response.

Creates a new resource by using POST and returns the representation
from the response.

Creates or updates a resource by using PUT.

Updates a resource by using PATCH and returns the representation from
the response. Note that the JDK HttpURLConnection does not support the
PATCH, but Apache HttpComponents and others do.

Deletes the resources at the specified URI by using DELETE.

Retrieves allowed HTTP methods for a resource by using ALLOW.

web-reactive.pdf#webflux-client
web-reactive.pdf#webflux-client

Method group Description

exchange More generalized (and less opinionated) version of the preceding
methods that provides extra flexibility when needed. It accepts a
RequestEntity (including HTTP method, URL, headers, and body as input)
and returns a ResponseEntity.

These methods allow the use of ParameterizedTypeReference instead of
(lass to specify a response type with generics.

execute The most generalized way to perform a request, with full control over
request preparation and response extraction through callback interfaces.
1.1.1. Initialization

The default constructor uses java.net.HttpURLConnection to perform requests. You can switch to a
different HTTP library with an implementation of ClientHttpRequestFactory. There is built-in
support for the following:

* Apache HttpComponents
* Netty
* OkHttp

For example, to switch to Apache HttpComponents, you can use the following:

RestTemplate template = new RestTemplate(new
HttpComponentsClientHttpRequestFactory());

Each ClientHttpRequestFactory exposes configuration options specific to the underlying HTTP client
library — for example, for credentials, connection pooling, and other details.

Note that the java.net implementation for HTTP requests can raise an exception
(2 .
O when accessing the status of a response that represents an error (such as 401). If
- -

this is an issue, switch to another HTTP client library.

URIs

Many of the RestTemplate methods accept a URI template and URI template variables, either as a
String variable argument, or as Map<String,String>.

The following example uses a String variable argument:

String result = restTemplate.getForObject(
"https://example.com/hotels/{hotel}/bookings/{booking}", String.class, "42",
|l2—l ll);

The following example uses a Map<String, String>:

Map<String, String> vars = Collections.singletonMap("hotel", "42");

String result = restTemplate.getForObject(
"https://example.com/hotels/{hotel}/rooms/{hotel}", String.class, vars);

Keep in mind URI templates are automatically encoded, as the following example shows:

restTemplate.getForObject("https://example.com/hotel list", String.class);

// Results in request to "https://example.com/hotel%201ist"

You can use the uriTemplateHandler property of RestTemplate to customize how URIs are encoded.
Alternatively, you can prepare a java.net.URI and pass it into one of the RestTemplate methods that
accepts a URI.

For more details on working with and encoding URISs, see URI Links.

Headers

You can use the exchange() methods to specify request headers, as the following example shows:

String uriTemplate = "https://example.com/hotels/{hotel}";
URT uri = UriComponentsBuilder.fromUriString(uriTemplate).build(42);

RequestEntity<Void> requestEntity = RequestEntity.get(uri)
.header (("MyRequestHeader", "MyValue")
.build();

ResponseEntity<String> response = template.exchange(requestEntity, String.class);

String responseHeader = response.getHeaders().getFirst("MyResponseHeader");
String body = response.getBody();

You can obtain response headers through many RestTemplate method variants that return
ResponseEntity.

1.1.2. Body

Objects passed into and returned from RestTemplate methods are converted to and from raw
content with the help of an HttpMessageConverter.

On a POST, an input object is serialized to the request body, as the following example shows:
URI location = template.postForLocation("https://example.com/people”, person);

You need not explicitly set the Content-Type header of the request. In most cases, you can find a

web.pdf#mvc-uri-building

compatible message converter based on the source Object type, and the chosen message converter
sets the content type accordingly. If necessary, you can use the exchange methods to explicitly
provide the Content-Type request header, and that, in turn, influences what message converter is
selected.

On a GET, the body of the response is deserialized to an output Object, as the following example
shows:

Person person = restTemplate.getForObject("https://example.com/people/{id}",
Person.class, 42);

The Accept header of the request does not need to be explicitly set. In most cases, a compatible
message converter can be found based on the expected response type, which then helps to populate
the Accept header. If necessary, you can use the exchange methods to provide the Accept header
explicitly.

By default, RestTemplate registers all built-in message converters, depending on classpath checks
that help to determine what optional conversion libraries are present. You can also set the message
converters to use explicitly.

1.1.3. Message Conversion

WebFlux

The spring-web module contains the HttpMessageConverter contract for reading and writing the body
of HTTP requests and responses through InputStream and OutputStream. HttpMessageConverter
instances are used on the client side (for example, in the RestTemplate) and on the server side (for
example, in Spring MVC REST controllers).

Concrete implementations for the main media (MIME) types are provided in the framework and
are, by default, registered with the RestTemplate on the client side and with
RequestMethodHandlerAdapter on the server side (see Configuring Message Converters).

The implementations of HttpMessageConverter are described in the following sections. For all
converters, a default media type is used, but you can override it by setting the supportedMediaTypes
bean property. The following table describes each implementation:

Table 2. HttpMessageConverter Implementations

MessageConverter Description

StringHttpMessageConve An HttpMessageConverter implementation that can read and write String

rter instances from the HTTP request and response. By default, this converter
supports all text media types (text/*) and writes with a Content-Type of
text/plain.

web-reactive.pdf#webflux-codecs
web.pdf#mvc-config-message-converters

MessageConverter

FormHttpMessageConvert
er

ByteArrayHttpMessageCo
nverter

MarshallingHttpMessage
Converter

MappingJackson2HttpMes
sageConverter

MappingJackson2XmlHttp
MessageConverter

SourceHttpMessageConve
rter

BufferedImageHttpMessa
geConverter

Description

An HttpMessageConverter implementation that can read and write form
data from the HTTP request and response. By default, this converter
reads and writes the application/x-www-form-urlencoded media type. Form
data is read from and written into a MultiValueMap<String, String>. The
converter can also write (but not read) multipart data read from a
MultiValueMap<String, Object>. By default, multipart/form-data is
supported. As of Spring Framework 5.2, additional multipart subtypes
can be supported for writing form data. Consult the javadoc for
FormHttpMessageConverter for further details.

An HttpMessageConverter implementation that can read and write byte
arrays from the HTTP request and response. By default, this converter
supports all media types (*/*) and writes with a Content-Type of
application/octet-stream. You can override this by setting the
supportedMediaTypes property and overriding getContentType(byte[]).

An HttpMessageConverter implementation that can read and write XML by
using Spring’s Marshaller and Unmarshaller abstractions from the
org.springframework.oxm package. This converter requires a Marshaller
and Unmarshaller before it can be used. You can inject these through
constructor or bean properties. By default, this converter supports
text/xml and application/xml.

An HttpMessageConverter implementation that can read and write JSON by
using Jackson’s ObjectMapper. You can customize JSON mapping as needed
through the use of Jackson’s provided annotations. When you need
further control (for cases where custom JSON serializers/deserializers
need to be provided for specific types), you can inject a custom
ObjectMapper through the ObjectMapper property. By default, this converter
supports application/json.

An HttpMessageConverter implementation that can read and write XML by
using Jackson XML extension’s XmlMapper. You can customize XML
mapping as needed through the use of JAXB or Jackson’s provided
annotations. When you need further control (for cases where custom
XML serializers/deserializers need to be provided for specific types), you
can inject a custom XmlMapper through the ObjectMapper property. By
default, this converter supports application/xml.

An HttpMessageConverter implementation that can read and write
javax.xml.transform.Source from the HTTP request and response. Only
DOMSource, SAXSource, and StreamSource are supported. By default, this
converter supports text/xml and application/xml.

An HttpMessageConverter implementation that can read and write
java.awt.image.BufferedImage from the HTTP request and response. This
converter reads and writes the media type supported by the Java I/O APL

https://github.com/FasterXML/jackson-dataformat-xml

1.1.4. Jackson JSON Views

You can specify a Jackson JSON View to serialize only a subset of the object properties, as the
following example shows:

MappingJacksonValue value = new MappingJacksonValue(new User("eric", "7!jd#h23"));
value.setSerializationView(User.WithoutPasswordView.class);

RequestEntity<MappingJacksonValue> requestEntity =
RequestEntity.post(new URI("https://example.com/user")).body(value);

ResponseEntity<String> response = template.exchange(requestEntity, String.class);

Multipart

To send multipart data, you need to provide a MultiValueMap<String, Object> whose values may be

an Object for part content, a Resource for a file part, or an HttpEntity for part content with headers.
For example:

MultiValueMap<String, Object> parts = new LinkedMultiValueMap<>();

parts.add("fieldPart", "fieldValue");
parts.add("filePart", new FileSystemResource("...logo.png"));
parts.add("jsonPart", new Person("Jason"));

HttpHeaders headers = new HttpHeaders();
headers.setContentType(MediaType.APPLICATION_XML);
parts.add("xmlPart", new HttpEntity<>(myBean, headers));

In most cases, you do not have to specify the Content-Type for each part. The content type is
determined automatically based on the HttpMessageConverter chosen to serialize it or, in the case of
a Resource based on the file extension. If necessary, you can explicitly provide the MediaType with an
HttpEntity wrapper.

Once the MultiValueMap is ready, you can pass it to the RestTemplate, as show below:

MultiValueMap<String, Object> parts = ...;
template.postForObject("https://example.com/upload”, parts, Void.class);

If the MultiValueMap contains at least one non-String value, the Content-Type is set to multipart/form-
data by the FormHttpMessageConverter. If the MultiValueMap has String values the Content-Type is
defaulted to application/x-www-form-urlencoded. If necessary the Content-Type may also be set
explicitly.

https://www.baeldung.com/jackson-json-view-annotation

1.2. Using AsyncRestTemplate (Deprecated)

The AsyncRestTemplate is deprecated. For all use cases where you might consider using
AsyncRestTemplate, use the WebClient instead.

web-reactive.pdf#webflux-client

Chapter 2. Remoting and Web Services

Spring provides support for remoting with various technologies. The remoting support eases the
development of remote-enabled services, implemented via Java interfaces and objects as input and
output. Currently, Spring supports the following remoting technologies:

» Java Web Services: Spring provides remoting support for web services through JAX-WS.

* AMQP: Remoting via AMQP as the underlying protocol is supported by the separate Spring
AMQP project.

As of Spring Framework 5.3, support for several remoting technologies is now
A deprecated for security reasons and broader industry support. Supporting
infrastructure will be removed from Spring Framework for its next major release.

The following remoting technologies are now deprecated and will not be replaced:

* Remote Method Invocation (RMI): Through the wuse of RmiProxyFactoryBean and
RmiServiceExporter, Spring supports both traditional RMI (with java.rmi.Remote interfaces and
java.rmi.RemoteException) and transparent remoting through RMI invokers (with any Java
interface).

» Spring HTTP Invoker (Deprecated): Spring provides a special remoting strategy that allows for
Java serialization though HTTP, supporting any Java interface (as the RMI invoker does). The
corresponding support classes are HttpInvokerProxyFactoryBean and HttpInvokerServiceExporter.

* Hessian: By using Spring’s HessianProxyFactoryBean and the HessianServiceExporter, you can
transparently expose your services through the lightweight binary HTTP-based protocol
provided by Caucho.

* JMS (Deprecated): Remoting via JMS as the underlying protocol is supported through the

JmsInvokerServiceExporter and IJmsInvokerProxyFactoryBean classes in the spring-jms module.

While discussing the remoting capabilities of Spring, we use the following domain model and
corresponding services:

public class Account implements Serializable{
private String name;

public String getName(){
return name;

}

public void setName(String name) {
this.name = name;

}

public interface AccountService {
public void insertAccount(Account account);

public List<Account> getAccounts(String name);

// the implementation doing nothing at the moment
public class AccountServiceImpl implements AccountService {

public void insertAccount(Account acc) {
// do something...

}

public List<Account> getAccounts(String name) {
// do something...
}

This section starts by exposing the service to a remote client by using RMI and talk a bit about the
drawbacks of using RMI. It then continues with an example that uses Hessian as the protocol.

2.1. AMQP

Remoting via AMQP as the underlying protocol is supported in the Spring AMQP project. For
further details please visit the Spring Remoting section of the Spring AMQP reference.

Auto-detection is not implemented for remote interfaces

The main reason why auto-detection of implemented interfaces does not occur for
remote interfaces is to avoid opening too many doors to remote callers. The target
object might implement internal callback interfaces, such as InitializingBean or
DisposableBean which one would not want to expose to callers.

Offering a proxy with all interfaces implemented by the target usually does not
matter in the local case. However, when you export a remote service, you should

o expose a specific service interface, with specific operations intended for remote
usage. Besides internal callback interfaces, the target might implement multiple
business interfaces, with only one of them intended for remote exposure. For these
reasons, we require such a service interface to be specified.

This is a trade-off between configuration convenience and the risk of accidental
exposure of internal methods. Always specifying a service interface is not too
much effort and puts you on the safe side regarding controlled exposure of specific
methods.

10

https://docs.spring.io/spring-amqp/docs/current/reference/html/#remoting

2.2. Considerations when Choosing a Technology

Each and every technology presented here has its drawbacks. When choosing a technology, you
should carefully consider your needs, the services you expose, and the objects you send over the
wire.

When using RMI, you cannot access the objects through the HTTP protocol, unless you tunnel the
RMI traffic. RMI is a fairly heavy-weight protocol, in that it supports full-object serialization, which
is important when you use a complex data model that needs serialization over the wire. However,
RMI-JRMP is tied to Java clients. It is a Java-to-Java remoting solution.

Spring’s HTTP invoker is a good choice if you need HTTP-based remoting but also rely on Java
serialization. It shares the basic infrastructure with RMI invokers but uses HTTP as transport. Note
that HTTP invokers are not limited only to Java-to-Java remoting but also to Spring on both the
client and the server side. (The latter also applies to Spring’s RMI invoker for non-RMI interfaces.)

Hessian might provide significant value when operating in a heterogeneous environment, because
they explicitly allow for non-Java clients. However, non-Java support is still limited. Known issues
include the serialization of Hibernate objects in combination with lazily-initialized collections. If
you have such a data model, consider using RMI or HTTP invokers instead of Hessian.

JMS can be useful for providing clusters of services and letting the JMS broker take care of load
balancing, discovery, and auto-failover. By default, Java serialization is used for JMS remoting, but
the JMS provider could use a different mechanism for the wire formatting, such as XStream to let
servers be implemented in other technologies.

Last but not least, EJB has an advantage over RMI, in that it supports standard role-based
authentication and authorization and remote transaction propagation. It is possible to get RMI
invokers or HTTP invokers to support security context propagation as well, although this is not
provided by core Spring. Spring offers only appropriate hooks for plugging in third-party or custom
solutions.

2.3. Java Web Services

Spring provides full support for the standard Java web services APIs:

* Exposing web services using JAX-WS

* Accessing web services using JAX-WS

In addition to stock support for JAX-WS in Spring Core, the Spring portfolio also features Spring
Web Services, which is a solution for contract-first, document-driven web services— highly
recommended for building modern, future-proof web services.

2.3.1. Exposing Servlet-based Web Services by Using JAX-WS

Spring provides a convenient base class for JAX-WS servlet endpoint implementations:
SpringBeanAutowiringSupport. To expose our AccountService, we extend Spring’s
SpringBeanAutowiringSupport class and implement our business logic here, usually delegating the

11

http://www.springframework.org/spring-ws
http://www.springframework.org/spring-ws

call to the business layer. We use Spring’s @Autowired annotation to express such dependencies on
Spring-managed beans. The following example shows our class that extends
SpringBeanAutowiringSupport:

/**

JAX-WS compliant AccountService implementation that simply delegates
to the AccountService implementation in the root web application context.

This wrapper class is necessary because JAX-WS requires working with dedicated
endpoint classes. If an existing service needs to be exported, a wrapper that
extends SpringBeanAutowiringSupport for simple Spring bean autowiring (through
the @Autowired annotation) is the simplest JAX-WS compliant way.

This is the class registered with the server-side JAX-WS implementation.

In the case of a Java EE server, this would simply be defined as a servlet

in web.xml, with the server detecting that this is a JAX-WS endpoint and reacting
accordingly. The servlet name usually needs to match the specified WS service name.

The web service engine manages the lifecycle of instances of this class.
Spring bean references will just be wired in here.

L R R T R R R N R N N R

*/
import org.springframework.web.context.support.SpringBeanAutowiringSupport;

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint extends SpringBeanAutowiringSupport {

@Autowired
private AccountService biz;

@WebMethod
public void insertAccount(Account acc) {
biz.insertAccount(acc);

}

@WebMethod
public Account[] getAccounts(String name) {
return biz.getAccounts(name);

}

Our AccountServiceEndpoint needs to run in the same web application as the Spring context to allow
for access to Spring’s facilities. This is the case by default in Java EE environments, using the
standard contract for JAX-WS servlet endpoint deployment. See the various Java EE web service
tutorials for details.

2.3.2. Exporting Standalone Web Services by Using JAX-WS

The built-in JAX-WS provider that comes with Oracle’s JDK supports exposure of web services by
using the built-in HTTP server that is also included in the JDK. Spring’s SimpleJaxWsServiceExporter

12

detects all @WebService-annotated beans in the Spring application context and exports them through
the default JAX-WS server (the JDK HTTP server).

In this scenario, the endpoint instances are defined and managed as Spring beans themselves. They
are registered with the JAX-WS engine, but their lifecycle is up to the Spring application context.
This means that you can apply Spring functionality (such as explicit dependency injection) to the
endpoint instances. Annotation-driven injection through @Autowired works as well. The following
example shows how to define these beans:

<bean class="org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter">
<property name="baseAddress" value="http://localhost:8080/"/>
</bean>

<bean id="accountServiceEndpoint" class="example.AccountServiceEndpoint">

</bean>

The AccountServiceEndpoint can but does not have to derive from Spring’s
SpringBeanAutowiringSupport, since the endpoint in this example is a fully Spring-managed bean.
This means that the endpoint implementation can be as follows (without any superclass
declared — and Spring’s @Autowired configuration annotation is still honored):

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint {

@Autowired
private AccountService biz;

@WebMethod
public void insertAccount(Account acc) {
biz.insertAccount(acc);

}

@WebMethod
public List<Account> getAccounts(String name) {
return biz.getAccounts(name);

}

2.3.3. Exporting Web Services by Using JAX-WS RI’s Spring Support

Oracle’s JAX-WS RI, developed as part of the GlassFish project, ships Spring support as part of its
JAX-WS Commons project. This allows for defining JAX-WS endpoints as Spring-managed beans,
similar to the standalone mode discussed in the previous section —but this time in a Servlet
environment.

13

This is not portable in a Java EE environment. It is mainly intended for non-EE
environments, such as Tomcat, that embed the JAX-WS RI as part of the web
application.

The differences from the standard style of exporting servlet-based endpoints are that the lifecycle
of the endpoint instances themselves are managed by Spring and that there is only one JAX-WS
servlet defined in web.xml. With the standard Java EE style (as shown earlier), you have one servlet
definition per service endpoint, with each endpoint typically delegating to Spring beans (through
the use of @Autowired, as shown earlier).

See https://jax-ws-commons.java.net/spring/ for details on setup and usage style.

2.3.4. Accessing Web Services by Using JAX-WS

Spring provides two factory beans to create JAX-WS web service proxies, namely
LocalJaxWsServiceFactoryBean and JaxWsPortProxyFactoryBean. The former can return only a JAX-WS
service class for us to work with. The latter is the full-fledged version that can return a proxy that
implements our business service interface. In the following example, we use
JaxWsPortProxyFactoryBean to create a proxy for the AccountService endpoint (again):

<bean id="accountWebService"
class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">

<property name="serviceInterface" value="example.AccountService"/> @

<property name="wsd1DocumentUr1"
value="http://localhost:8888/AccountServiceEndpoint?WSDL"/>

<property name="namespaceUri" value="https://example/"/>

<property name="serviceName" value="AccountService"/>

<property name="portName" value="AccountServiceEndpointPort"/>
</bean>

@ Where servicelnterface is our business interface that the clients use.

wsd1DocumentUr1 is the URL for the WSDL file. Spring needs this at startup time to create the JAX-WS
Service. namespacelri corresponds to the targetNamespace in the .wsdl file. serviceName corresponds
to the service name in the .wsdl file. portName corresponds to the port name in the .wsdl file.

Accessing the web service is easy, as we have a bean factory for it that exposes it as an interface
called AccountService. The following example shows how we can wire this up in Spring:

<bean id="client" class="example.AccountClientImpl">

<property name="service" ref="accountWebService"/>
</bean>

From the client code, we can access the web service as if it were a normal class, as the following
example shows:

14

https://jax-ws-commons.java.net/spring/

public class AccountClientImpl {
private AccountService service;

public void setService(AccountService service) {
this.service = service;

}

public void foo() {
service.insertAccount(...);

}

The above is slightly simplified in that JAX-WS requires endpoint interfaces and
implementation classes to be annotated with @WebService, @SOAPBinding etc

o annotations. This means that you cannot (easily) use plain Java interfaces and
implementation classes as JAX-WS endpoint artifacts; you need to annotate them
accordingly first. Check the JAX-WS documentation for details on those
requirements.

2.4. RMI (Deprecated)
A As of Spring Framework 5.3, RMI support is deprecated and will not be replaced.

By using Spring’s support for RMI, you can transparently expose your services through the RMI
infrastructure. After having this set up, you basically have a configuration similar to remote E]Bs,
except for the fact that there is no standard support for security context propagation or remote
transaction propagation. Spring does provide hooks for such additional invocation context when
you use the RMI invoker, so you can, for example, plug in security frameworks or custom security
credentials.

2.4.1. Exporting the Service by Using RmiServiceExporter

Using the RmiServiceExporter, we can expose the interface of our AccountService object as RMI
object. The interface can be accessed by using RmiProxyFactoryBean, or via plain RMI in case of a
traditional RMI service. The RmiServiceExporter explicitly supports the exposing of any non-RMI
services via RMI invokers.

We first have to set up our service in the Spring container. The following example shows how to do
so:

<bean id="accountService" class="example.AccountServiceImpl">
<!-- any additional properties, maybe a DAO? -->
</bean>

Next, we have to expose our service by using RmiServiceExporter. The following example shows how

15

to do so:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter">

<!-- does not necessarily have to be the same name as the bean to be exported -->
<property name="serviceName" value="AccountService"/>

<property name="service" ref="accountService"/>

<property name="serviceInterface" value="example.AccountService"/>

<!-- defaults to 1099 -->

<property name="registryPort" value="1199"/>

</bean>

In the preceding example, we override the port for the RMI registry. Often, your application server
also maintains an RMI registry, and it is wise to not interfere with that one. Furthermore, the
service name is used to bind the service. So, in the preceding example, the service is bound at
'rmi://HOST:1199/AccountService'. We use this URL later on to link in the service at the client side.

o The servicePort property has been omitted (it defaults to 0). This means that an

anonymous port is used to communicate with the service.

2.4.2. Linking in the Service at the Client

Our client is a simple object that uses the AccountService to manage accounts, as the following
example shows:

public class SimpleObject {

private AccountService accountService;

public void setAccountService(AccountService accountService) {
this.accountService = accountService;

}

// additional methods using the accountService

To link in the service on the client, we create a separate Spring container, to contain the following
simple object and the service linking configuration bits:

16

<bean class="example.SimpleObject">
<property name="accountService" ref="accountService"/>
</bean>

<bean id="accountService"
class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
<property name="serviceUrl" value="rmi://HOST:1199/AccountService"/>
<property name="serviceInterface" value="example.AccountService"/>
</bean>

That is all we need to do to support the remote account service on the client. Spring transparently
creates an invoker and remotely enables the account service through the RmiServiceExporter. At the
client, we link it in by using the RmiProxyFactoryBean.

2.5. Using Hessian to Remotely Call Services through
HTTP (Deprecated)

ﬁ As of Spring Framework 5.3, Hessian support is deprecated and will not be
replaced.

Hessian offers a binary HTTP-based remoting protocol. It is developed by Caucho, and you can find
more information about Hessian itself at https://www.caucho.com/.

2.5.1. Hessian

Hessian communicates through HTTP and does so by using a custom servlet. By using Spring’s
DispatcherServlet principles (see webmvc.pdf), we can wire up such a servlet to expose your
services. First, we have to create a new servlet in our application, as shown in the following excerpt
from web.xml:

<servlet>
<servlet-name>remoting</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>remoting</servlet-name>
<url-pattern>/remoting/*</url-pattern>
</servlet-mapping>

If you are familiar with Spring’s DispatcherServlet principles, you probably know that now you
have to create a Spring container configuration resource named remoting-servlet.xml (after the
name of your servlet) in the WEB-INF directory. The application context is used in the next section.

Alternatively, consider the use of Spring’s simpler HttpRequestHandlerServlet. Doing so lets you

17

https://www.caucho.com/
webmvc.pdf#mvc-servlet

embed the remote exporter definitions in your root application context (by default, in WEB-
INF/applicationContext.xml), with individual servlet definitions pointing to specific exporter beans.
In this case, each servlet name needs to match the bean name of its target exporter.

2.5.2. Exposing Your Beans by Using HessianServiceExporter

In the newly created application context called remoting-servlet.xml, we create a
HessianServiceExporter to export our services, as the following example shows:

<bean id="accountService" class="example.AccountServiceImpl">
<!-- any additional properties, maybe a DAO? -->
</bean>

<bean name="/AccountService"
class="org.springframework.remoting.caucho.HessianServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>
</bean>

Now we are ready to link in the service at the client. No explicit handler mapping is specified (to
map request URLs onto services), so we use BeanNameUr1HandlerMapping used. Hence, the service is
exported at the URL indicated through its bean name within the containing DispatcherServlet
instance’s mapping (as defined earlier): https://H0ST:8080/remoting/AccountService.

Alternatively, you can create a HessianServiceExporter in your root application context (for
example, in WEB-INF/applicationContext.xml), as the following example shows:

<bean name="accountExporter"
class="org.springframework.remoting.caucho.HessianServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>
</bean>

In the latter case, you should define a corresponding servlet for this exporter in web.xml, with the
same end result: The exporter gets mapped to the request path at /remoting/AccountService. Note
that the servlet name needs to match the bean name of the target exporter. The following example
shows how to do so:

18

https://HOST:8080/remoting/AccountService

<servlet>

<servlet-name>accountExporter</servlet-name>

<servlet-
class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-
class>
</servlet>

<servlet-mapping>
<servlet-name>accountExporter</servlet-name>
<url-pattern>/remoting/AccountService</url-pattern>
</servlet-mapping>

2.5.3. Linking in the Service on the Client

By using the HessianProxyFactoryBean, we can link in the service at the client. The same principles
apply as with the RMI example. We create a separate bean factory or application context and
mention the following beans where the SimpleObject is by using the AccountService to manage
accounts, as the following example shows:

<bean class="example.SimpleObject">
<property name="accountService" ref="accountService"/>
</bean>

<bean id="accountService"
class="org.springframework.remoting.caucho.HessianProxyFactoryBean">
<property name="serviceUrl"
value="https://remotehost:8080/remoting/AccountService"/>
<property name="servicelnterface" value="example.AccountService"/>
</bean>

2.5.4. Applying HTTP Basic Authentication to a Service Exposed through
Hessian

One of the advantages of Hessian is that we can easily apply HTTP basic authentication, because
both protocols are HTTP-based. Your normal HTTP server security mechanism can be applied
through using the web.xml security features, for example. Usually, you need not use per-user
security credentials here. Rather, you can use shared credentials that you define at the
HessianProxyFactoryBean level (similar to a JDBC DataSource), as the following example shows:

19

<bean class="org.springframework.web.servlet.handler.BeanNameUr1HandlerMapping">
<property name="interceptors" ref="authorizationInterceptor"/>
</bean>

<bean id="authorizationInterceptor"

class="org.springframework.web.servlet.handler.UserRoleAuthorizationInterceptor">
<property name="authorizedRoles" value="administrator,operator"/>
</bean>

In the preceding example, we explicitly mention the BeanNameUrlHandlerMapping and set an
interceptor, to let only administrators and operators call the beans mentioned in this application
context.

The preceding example does not show a flexible kind of security infrastructure.
o For more options as far as security is concerned, have a look at the Spring Security
project at https://projects.spring.io/spring-security/.

2.6. Spring HTTP Invoker (Deprecated)

a As of Spring Framework 5.3, HTTP Invoker support is deprecated and will not be
replaced.

As opposed to Hessian, Spring HTTP invokers are both lightweight protocols that use their own slim
serialization mechanisms and use the standard Java serialization mechanism to expose services
through HTTP. This has a huge advantage if your arguments and return types are complex types
that cannot be serialized by using the serialization mechanisms Hessian uses (see the next section
for more considerations when you choose a remoting technology).

Under the hood, Spring uses either the standard facilities provided by the JDK or Apache
HttpComponents to perform HTTP calls. If you need more advanced and easier-to-use functionality,
use the latter. See hc.apache.org/httpcomponents-client-ga/ for more information.

Be aware of vulnerabilities due to unsafe Java deserialization: Manipulated input
streams can lead to unwanted code execution on the server during the
deserialization step. As a consequence, do not expose HTTP invoker endpoints to
untrusted clients. Rather, expose them only between your own services. In
general, we strongly recommend using any other message format (such as JSON)

° instead.

If you are concerned about security vulnerabilities due to Java serialization,
consider the general-purpose serialization filter mechanism at the core JVM level,
originally developed for JDK 9 but backported to JDK 8, 7 and 6 in the meantime.
See https://blogs.oracle.com/java-platform-group/entry/
incoming_filter_serialization_data_a and https://openjdk.java.net/jeps/290.

20

https://projects.spring.io/spring-security/
https://hc.apache.org/httpcomponents-client-ga/
https://blogs.oracle.com/java-platform-group/entry/incoming_filter_serialization_data_a
https://blogs.oracle.com/java-platform-group/entry/incoming_filter_serialization_data_a
https://openjdk.java.net/jeps/290

2.6.1. Exposing the Service Object

Setting up the HTTP invoker infrastructure for a service object closely resembles the way you
would do the same by using Hessian. As Hessian support provides HessianServiceExporter, Spring’s
HttpInvoker support provides
org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter.

To expose the AccountService (mentioned earlier) within a Spring Web MVC DispatcherServlet, the
following configuration needs to be in place in the dispatcher’s application context, as the following
example shows:

<bean name="/AccountService"
class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>
</bean>

Such an exporter definition is exposed through the DispatcherServlet instance’s standard mapping
facilities, as explained in the section on Hessian.

Alternatively, you can create an HttpInvokerServiceExporter in your root application context (for
example, in "WEB-INF/applicationContext.xml'), as the following example shows:

<bean name="accountExporter"
class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>
</bean>

In addition, you can define a corresponding servlet for this exporter in web.xml, with the servlet
name matching the bean name of the target exporter, as the following example shows:

<servlet>

<servlet-name>accountExporter</servlet-name>

<servlet-
class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-
class>
</servlet>

<servlet-mapping>
<servlet-name>accountExporter</servlet-name>

<url-pattern>/remoting/AccountService</url-pattern>
</servlet-mapping>

2.6.2. Linking in the Service at the Client

Again, linking in the service from the client much resembles the way you would do it when you use

21

Hessian. By using a proxy, Spring can translate your calls to HTTP POST requests to the URL that
points to the exported service. The following example shows how to configure this arrangement:

<bean id="httpInvokerProxy"
class="org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean">
<property name="serviceUrl"
value="https://remotehost:8080/remoting/AccountService"/>
<property name="serviceInterface" value="example.AccountService"/>
</bean>

As mentioned earlier, you can choose what HTTP client you want to use. By default, the
HttpInvokerProxy uses the JDK’s HTTP functionality, but you can also use the Apache HttpComponents
client by setting the httpInvokerRequestExecutor property. The following example shows how to do
so:

<property name="httpInvokerRequestExecutor">

<bean
class="org.springframework.remoting.httpinvoker.HttpComponentsHttpInvokerRequestExecut
or"/>
</property>

2.7. JMS (Deprecated)

a As of Spring Framework 5.3, JMS remoting support is deprecated and will not be
replaced.

You can also expose services transparently by using JMS as the underlying communication protocol.
The JMS remoting support in the Spring Framework is pretty basic. It sends and receives on the
same thread and in the same non-transactional Session. As a result, throughput is implementation-
dependent. Note that these single-threaded and non-transactional constraints apply only to Spring’s
JMS remoting support. See JMS (Java Message Service) for information on Spring’s rich support for
JMS-based messaging.

The following interface is used on both the server and the client sides:

package com.foo;
public interface CheckingAccountService {

public void cancelAccount(Long accountId);

The following simple implementation of the preceding interface is used on the server-side:

22

package com.foo;
public class SimpleCheckingAccountService implements CheckingAccountService {

public void cancelAccount(Long accountId) {
System.out.println("Cancelling account [" + accountId + "]");

}

The following configuration file contains the JMS-infrastructure beans that are shared on both the
client and the server:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="connectionFactory"
class="org.apache.activemqg.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://ep-t43:61616"/>
</bean>

<bean id="queue" class="org.apache.activemq.command.ActiveMQQueue">
<constructor-arg value="mmm"/>

</bean>

</beans>

2.7.1. Server-side Configuration

On the server, you need to expose the service object that uses the JmsInvokerServiceExporter, as the
following example shows:

23

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="checkingAccountService"
class="org.springframework.jms.remoting.JmsInvokerServiceExporter">
<property name="serviceInterface" value="com.foo.CheckingAccountService"/>
<property name="service">
<bean class="com.foo.SimpleCheckingAccountService"/>
</property>
</bean>

<bean class="org.springframework.jms.listener.SimpleMessagelistenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="queue"/>
<property name="concurrentConsumers" value="3"/>
<property name="messagelistener" ref="checkingAccountService"/>
</bean>

</beans>

package com.foo;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class Server {

public static void main(String[] args) throws Exception {
new ClassPathXmlApplicationContext("com/foo/server.xml", "com/foo/jms.xml");

}

2.7.2. Client-side Configuration

The client merely needs to create a client-side proxy that implements the agreed-upon interface
(CheckingAccountService).

The following example defines beans that you can inject into other client-side objects (and the
proxy takes care of forwarding the call to the server-side object via JMS):

24

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="checkingAccountService"
class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean">
<property name="serviceInterface" value="com.foo.CheckingAccountService"/>
<property name="connectionFactory" ref="connectionFactory"/>
<property name="queue" ref="queue"/>
</bean>

</beans>

package com.foo;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Client {

public static void main(String[] args) throws Exception {
ApplicationContext ctx = new
ClassPathXmlApplicationContext("com/foo/client.xml", "com/foo/jms.xml");
CheckingAccountService service = (CheckingAccountService)
ctx.getBean("checkingAccountService");
service.cancelAccount(new Long(10));

}

25

Chapter 3. Enterprise JavaBeans (E]JB)
Integration

As a lightweight container, Spring is often considered an EJB replacement. We do believe that for
many, if not most, applications and use cases, Spring, as a container, combined with its rich
supporting functionality in the area of transactions, ORM and JDBC access, is a better choice than
implementing equivalent functionality through an EJB container and E]Bs.

However, it is important to note that using Spring does not prevent you from using EJBs. In fact,
Spring makes it much easier to access EJBs and implement E]JBs and functionality within them.
Additionally, using Spring to access services provided by EJBs allows the implementation of those
services to later transparently be switched between local EJB, remote EJB, or POJO (plain old Java
object) variants, without the client code having to be changed.

In this chapter, we look at how Spring can help you access and implement EJBs. Spring provides
particular value when accessing stateless session beans (SLSBs), so we begin by discussing this
topic.

3.1. Accessing E]Bs

This section covers how to access EJBs.

3.1.1. Concepts

To invoke a method on a local or remote stateless session bean, client code must normally perform
a JNDI lookup to obtain the (local or remote) EJB Home object and then use a create method call on
that object to obtain the actual (local or remote) EJB object. One or more methods are then invoked
on the EJB.

To avoid repeated low-level code, many E]JB applications use the Service Locator and Business
Delegate patterns. These are better than spraying JNDI lookups throughout client code, but their
usual implementations have significant disadvantages:

» Typically, code that uses E]JBs depends on Service Locator or Business Delegate singletons,
making it hard to test.

* In the case of the Service Locator pattern used without a Business Delegate, application code
still ends up having to invoke the create() method on an EJB home and deal with the resulting
exceptions. Thus, it remains tied to the EJB API and the complexity of the EJB programming
model.

* Implementing the Business Delegate pattern typically results in significant code duplication,
where we have to write numerous methods that call the same method on the EJB.

The Spring approach is to allow the creation and use of proxy objects (normally configured inside a
Spring container), which act as codeless business delegates. You need not write another Service
Locator, another JNDI lookup, or duplicate methods in a hand-coded Business Delegate unless you
actually add real value in such code.

26

3.1.2. Accessing Local SLSBs

Assume that we have a web controller that needs to use a local EJB. We follow best practice and use
the EJB Business Methods Interface pattern, so that the E]JB’s local interface extends a non-EJB-
specific business methods interface. We call this business methods interface MyComponent. The
following example shows such an interface:

public interface MyComponent {

}

One of the main reasons to use the Business Methods Interface pattern is to ensure that
synchronization between method signatures in local interface and bean implementation class is
automatic. Another reason is that it later makes it much easier for us to switch to a POJO (plain old
Java object) implementation of the service if it makes sense to do so. We also need to implement the
local home interface and provide an implementation class that implements SessionBean and the
MyComponent business methods interface. Now, the only Java coding we need to do to hook up our
web tier controller to the EJB implementation is to expose a setter method of type MyComponent on
the controller. This saves the reference as an instance variable in the controller. The following
example shows how to do so:

private MyComponent myComponent;

public void setMyComponent(MyComponent myComponent) {
this.myComponent = myComponent;

}

We can subsequently use this instance variable in any business method in the controller. Now,
assuming we obtain our controller object out of a Spring container, we can (in the same context)
configure a LocalStatelessSessionProxyFactoryBean instance, which is the EJB proxy object. We
configure the proxy and set the myComponent property of the controller with the following
configuration entry:

<bean id="myComponent"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
<property name="jndiName" value="ejb/myBean"/>
<property name="businessInterface" value="com.mycom.MyComponent"/>
</bean>

<bean id="myController" class="com.mycom.myController">
<property name="myComponent" ref="myComponent"/>
</bean>

A lot of work happens behind the scenes, courtesy of the Spring AOP framework, although you are
not forced to work with AOP concepts to enjoy the results. The myComponent bean definition creates a
proxy for the EJB, which implements the business method interface. The E]JB local home is cached

27

on startup, so there is only a single JNDI lookup. Each time the EJB is invoked, the proxy invokes the
classname method on the local EJB and invokes the corresponding business method on the EJB.

The myController bean definition sets the myComponent property of the controller class to the E]JB
Proxy.

Alternatively (and preferably in case of many such proxy definitions), consider using the
<jee:local-slsb> configuration element in Spring’s “jee” namespace. The following example shows
how to do so:

<jee:local-slsb id="myComponent" jndi-name="ejb/myBean"
business-interface="com.mycom.MyComponent"/>

<bean id="myController" class="com.mycom.myController">
<property name="myComponent" ref="myComponent"/>
</bean>

This E]JB access mechanism delivers huge simplification of application code. The web tier code (or
other EJB client code) has no dependence on the use of EJB. To replace this EJB reference with a
POJO or a mock object or other test stub, we could change the myComponent bean definition without
changing a line of Java code. Additionally, we have not had to write a single line of JNDI lookup or
other EJB plumbing code as part of our application.

Benchmarks and experience in real applications indicate that the performance overhead of this
approach (which involves reflective invocation of the target EJB) is minimal and is undetectable in
typical use. Remember that we do not want to make fine-grained calls to E]JBs anyway, as there is a
cost associated with the EJB infrastructure in the application server.

There is one caveat with regards to the JNDI lookup. In a bean container, this class is normally best
used as a singleton (there is no reason to make it a prototype). However, if that bean container pre-
instantiates singletons (as do the various XML ApplicationContext variants), you can have a
problem if the bean container is loaded before the EJB container loads the target EJB. That is
because the JNDI lookup is performed in the init() method of this class and then cached, but the
EJB has not been bound at the target location yet. The solution is to not pre-instantiate this factory
object but to let it be created on first use. In the XML containers, you can control this by using the
lazy-init attribute.

Although not of interest to the majority of Spring users, those doing programmatic AOP work with
EJBs may want to look at LocalSlsbInvokerInterceptor.

3.1.3. Accessing Remote SLSBs

Accessing remote EJBs is essentially identical to accessing local EJBs, except that the
SimpleRemoteStatelessSessionProxyFactoryBean or <jee:remote-slsb> configuration element is used.
Of course, with or without Spring, remote invocation semantics apply: A call to a method on an
object in another VM in another computer does sometimes have to be treated differently in terms
of usage scenarios and failure handling.

Spring’s EJB client support adds one more advantage over the non-Spring approach. Normally, it is

28

problematic for EJB client code to be easily switched back and forth between calling E]JBs locally or
remotely. This is because the remote interface methods must declare that they throw
RemoteException, and client code must deal with this, while the local interface methods need not.
Client code written for local EJBs that needs to be moved to remote E]Bs typically has to be modified
to add handling for the remote exceptions, and client code written for remote EJBs that needs to be
moved to local E]Bs can either stay the same but do a lot of unnecessary handling of remote
exceptions or be modified to remove that code. With the Spring remote EJB proxy, you can instead
not declare any thrown RemoteException in your Business Method Interface and implementing E]JB
code, have a remote interface that is identical (except that it does throw RemoteException), and rely
on the proxy to dynamically treat the two interfaces as if they were the same. That is, client code
does not have to deal with the checked RemoteException class. Any actual RemoteException that is
thrown during the EJB invocation is re-thrown as the non-checked RemoteAccessException class,
which is a subclass of RuntimeException. You can then switch the target service at will between a
local E]JB or remote EJB (or even plain Java object) implementation, without the client code knowing
or caring. Of course, this is optional: Nothing stops you from declaring RemoteException in your
business interface.

3.1.4. Accessing EJB 2.x SLSBs Versus EJB 3 SLSBs

Accessing E]JB 2.x Session Beans and EJB 3 Session Beans through Spring is largely transparent.
Spring’s EJB accessors, including the <jee:local-slsb> and <jee:remote-slsb> facilities,
transparently adapt to the actual component at runtime. They handle a home interface if found
(E]JB 2.x style) or perform straight component invocations if no home interface is available (EJB 3
style).

Note: For EJB 3 Session Beans, you can effectively use a JndiObjectFactoryBean /<jee:jndi-lookup> as
well, since fully usable component references are exposed for plain JNDI lookups there. Defining
explicit <jee:local-slsb> or <jee:remote-slsb> lookups provides consistent and more explicit EJB
access configuration.

29

Chapter 4. JMS (Java Message Service)

Spring provides a JMS integration framework that simplifies the use of the JMS API in much the
same way as Spring’s integration does for the JDBC APIL.

JMS can be roughly divided into two areas of functionality, namely the production and
consumption of messages. The JmsTemplate class is used for message production and synchronous
message reception. For asynchronous reception similar to Java EE’s message-driven bean style,
Spring provides a number of message-listener containers that you can use to create Message-Driven
POJOs (MDPs). Spring also provides a declarative way to create message listeners.

The org.springframework.jms.core package provides the core functionality for using JMS. It contains
JMS template classes that simplify the use of the JMS by handling the creation and release of
resources, much like the JdbcTemplate does for JDBC. The design principle common to Spring
template classes is to provide helper methods to perform common operations and, for more
sophisticated usage, delegate the essence of the processing task to user-implemented callback
interfaces. The JMS template follows the same design. The classes offer various convenience
methods for sending messages, consuming messages synchronously, and exposing the JMS session
and message producer to the user.

The org.springframework.jms.support package provides JMSException translation functionality. The
translation converts the checked JMSException hierarchy to a mirrored hierarchy of unchecked
exceptions. If any provider-specific subclasses of the checked javax.jms.JMSException exist, this
exception is wrapped in the unchecked UncategorizedImsException.

The org.springframework.jms.support.converter package provides a MessageConverter abstraction to
convert between Java objects and JMS messages.

The org.springframework.jms.support.destination package provides various strategies for managing
JMS destinations, such as providing a service locator for destinations stored in JNDI.

The org.springframework.jms.annotation package provides the necessary infrastructure to support
annotation-driven listener endpoints by using @JmsListener.

The org.springframework.jms.config package provides the parser implementation for the jms
namespace as well as the java config support to configure listener containers and create listener
endpoints.

Finally, the org.springframework.jms.connection package provides an implementation of the
ConnectionFactory suitable for use in standalone applications. It also contains an implementation of
Spring’s PlatformTransactionManager for JMS (the cunningly named JmsTransactionManager). This
allows for seamless integration of JMS as a transactional resource into Spring’s transaction
management mechanismes.

30

As of Spring Framework 5, Spring’s JMS package fully supports JMS 2.0 and
requires the JMS 2.0 API to be present at runtime. We recommend the use of a JMS
2.0 compatible provider.

If you happen to use an older message broker in your system, you may try

o upgrading to a JMS 2.0 compatible driver for your existing broker generation.
Alternatively, you may also try to run against a JMS 1.1 based driver, simply
putting the JMS 2.0 API jar on the classpath but only using JMS 1.1 compatible API
against your driver. Spring’s JMS support adheres to JMS 1.1 conventions by
default, so with corresponding configuration it does support such a scenario.
However, please consider this for transition scenarios only.

4.1. Using Spring JMS

This section describes how to use Spring’s JMS components.

4.1.1. Using JmsTemplate

The JmsTemplate class is the central class in the JMS core package. It simplifies the use of JMS, since
it handles the creation and release of resources when sending or synchronously receiving
messages.

Code that uses the JmsTemplate needs only to implement callback interfaces that give them a clearly
defined high-level contract. The MessageCreator callback interface creates a message when given a
Session provided by the calling code in JmsTemplate. To allow for more complex usage of the JMS
API, SessionCallback provides the JMS session, and Producer(Callback exposes a Session and
MessageProducer pair.

The JMS API exposes two types of send methods, one that takes delivery mode, priority, and time-to-
live as Quality of Service (QOS) parameters and one that takes no QOS parameters and uses default
values. Since JmsTemplate has many send methods, setting the QOS parameters have been exposed
as bean properties to avoid duplication in the number of send methods. Similarly, the timeout value
for synchronous receive calls is set by using the setReceiveTimeout property.

Some JMS providers allow the setting of default QOS values administratively through the
configuration of the ConnectionFactory. This has the effect that a call to a MessageProducer instance’s
send method (send(Destination destination, Message message)) uses different QOS default values
than those specified in the JMS specification. In order to provide consistent management of QOS
values, the JmsTemplate must, therefore, be specifically enabled to use its own QOS values by setting
the boolean property isExplicitQosEnabled to true.

For convenience, JnsTemplate also exposes a basic request-reply operation that allows for sending a
message and waiting for a reply on a temporary queue that is created as part of the operation.

31

Instances of the IJImsTemplate class are thread-safe, once configured. This is
important, because it means that you can configure a single instance of a
o JmsTemplate and then safely inject this shared reference into multiple
collaborators. To be clear, the ImsTemplate is stateful, in that it maintains a
reference to a ConnectionFactory, but this state is not conversational state.

As of Spring Framework 4.1, JmsMessagingTemplate is built on top of JmsTemplate and provides an
integration with the messaging abstraction — that is, org.springframework.messaging.Message. This
lets you create the message to send in a generic manner.

4.1.2. Connections

The ImsTemplate requires a reference to a ConnectionFactory. The ConnectionFactory is part of the
JMS specification and serves as the entry point for working with JMS. It is used by the client
application as a factory to create connections with the JMS provider and encapsulates various
configuration parameters, many of which are vendor-specific, such as SSL configuration options.

When using JMS inside an EJB, the vendor provides implementations of the JMS interfaces so that
they can participate in declarative transaction management and perform pooling of connections
and sessions. In order to use this implementation, Java EE containers typically require that you
declare a JMS connection factory as a resource-ref inside the E]JB or servlet deployment descriptors.
To ensure the use of these features with the JmsTemplate inside an EJB, the client application should
ensure that it references the managed implementation of the ConnectionFactory.

Caching Messaging Resources

The standard API involves creating many intermediate objects. To send a message, the following
'API' walk is performed:

ConnectionFactory->Connection->Session->MessageProducer->send

Between the ConnectionFactory and the Send operation, three intermediate objects are created and
destroyed. To optimize the resource usage and increase performance, Spring provides two
implementations of ConnectionFactory.

Using SingleConnectionFactory

Spring provides an implementation of the ConnectionFactory interface, SingleConnectionFactory,
that returns the same Connection on all createConnection() calls and ignores calls to close(). This is
useful for testing and standalone environments so that the same connection can be used for
multiple JmsTemplate calls that may span any number of transactions. SingleConnectionFactory takes
areference to a standard ConnectionFactory that would typically come from JNDI.

Using CachingConnectionFactory

The CachingConnectionFactory extends the functionality of SingleConnectionFactory and adds the
caching of Session, MessageProducer, and MessageConsumer instances. The initial cache size is set to 1.
You can use the sessionCacheSize property to increase the number of cached sessions. Note that the

32

number of actual cached sessions is more than that number, as sessions are cached based on their
acknowledgment mode, so there can be up to four cached session instances (one for each
acknowledgment mode) when sessionCacheSize is set to one . MessageProducer and MessageConsumer
instances are cached within their owning session and also take into account the unique properties
of the producers and consumers when caching. MessageProducers are cached based on their
destination. MessageConsumers are cached based on a key composed of the destination, selector,
noLocal delivery flag, and the durable subscription name (if creating durable consumers).

4.1.3. Destination Management

Destinations, as ConnectionFactory instances, are JMS administered objects that you can store and
retrieved in JNDI. When configuring a Spring application context, you can use the JNDI
JndiObjectFactoryBean factory class or <jee:jndi-lookup> to perform dependency injection on your
object’s references to JMS destinations. However, this strategy is often cumbersome if there are a
large number of destinations in the application or if there are advanced destination management
features unique to the JMS provider. Examples of such advanced destination management include
the creation of dynamic destinations or support for a hierarchical namespace of destinations. The
JmsTemplate delegates the resolution of a destination name to a JMS destination object that
implements the DestinationResolver interface. DynamicDestinationResolver is the default
implementation used by ImsTemplate and accommodates resolving dynamic destinations. A
JndiDestinationResolver is also provided to act as a service locator for destinations contained in
JNDI and optionally falls back to the behavior contained in DynamicDestinationResolver.

Quite often, the destinations used in a JMS application are only known at runtime and, therefore,
cannot be administratively created when the application is deployed. This is often because there is
shared application logic between interacting system components that create destinations at
runtime according to a well-known naming convention. Even though the creation of dynamic
destinations is not part of the JMS specification, most vendors have provided this functionality.
Dynamic destinations are created with a user-defined name, which differentiates them from
temporary destinations, and are often not registered in JNDI. The API used to create dynamic
destinations varies from provider to provider since the properties associated with the destination
are vendor-specific. However, a simple implementation choice that is sometimes made by vendors
is to disregard the warnings in the JMS specification and to use the method TopicSession
createTopic(String topicName) or the QueueSession createQueue(String queueName) method to create
a new destination with default destination properties. Depending on the vendor implementation,
DynamicDestinationResolver can then also create a physical destination instead of only resolving
one.

The boolean property pubSubDomain is used to configure the JmsTemplate with knowledge of what
JMS domain is being used. By default, the value of this property is false, indicating that the point-to-
point domain, Queues, is to be used. This property (used by JmsTemplate) determines the behavior of
dynamic destination resolution through implementations of the DestinationResolver interface.

You can also configure the IJmsTemplate with a default destination through the property
defaultDestination. The default destination is with send and receive operations that do not refer to
a specific destination.

33

4.1.4. Message Listener Containers

One of the most common uses of JMS messages in the EJB world is to drive message-driven beans
(MDBSs). Spring offers a solution to create message-driven POJOs (MDPs) in a way that does not tie a
user to an EJB container. (See Asynchronous reception: Message-Driven POJOs for detailed coverage
of Spring’s MDP support.) Since Spring Framework 4.1, endpoint methods can be annotated with
@JmsListener —see Annotation-driven Listener Endpoints for more details.

A message listener container is used to receive messages from a JMS message queue and drive the
Messagelistener that is injected into it. The listener container is responsible for all threading of
message reception and dispatches into the listener for processing. A message listener container is
the intermediary between an MDP and a messaging provider and takes care of registering to
receive messages, participating in transactions, resource acquisition and release, exception
conversion, and so on. This lets you write the (possibly complex) business logic associated with
receiving a message (and possibly respond to it), and delegates boilerplate JMS infrastructure
concerns to the framework.

There are two standard JMS message listener containers packaged with Spring, each with its
specialized feature set.

* SimpleMessagelistenerContainer

» DefaultMessagelListenerContainer

Using SimpleMessagelistenerContainer

This message listener container is the simpler of the two standard flavors. It creates a fixed number
of JMS sessions and consumers at startup, registers the listener by using the standard JMS
MessageConsumer.setMessagelistener() method, and leaves it up the JMS provider to perform
listener callbacks. This variant does not allow for dynamic adaption to runtime demands or for
participation in externally managed transactions. Compatibility-wise, it stays very close to the spirit
of the standalone JMS specification, but is generally not compatible with Java EE’s JMS restrictions.

While SimpleMessagelistenerContainer does not allow for participation in
externally managed transactions, it does support native JMS transactions. To
enable this feature, you can switch the sessionTransacted flag to true or, in the
XML namespace, set the acknowledge attribute to transacted. Exceptions thrown

o from your listener then lead to a rollback, with the message getting redelivered.
Alternatively, consider using CLIENT_ACKNOWLEDGE mode, which provides redelivery
in case of an exception as well but does not use transacted Session instances and,
therefore, does not include any other Session operations (such as sending response
messages) in the transaction protocol.

34

The default AUTO_ACKNOWLEDGE mode does not provide proper reliability guarantees.
Messages can get lost when listener execution fails (since the provider
automatically acknowledges each message after listener invocation, with no

o exceptions to be propagated to the provider) or when the listener container shuts
down (you can configure this by setting the acceptMessagesWhileStopping flag).
Make sure to use transacted sessions in case of reliability needs (for example, for
reliable queue handling and durable topic subscriptions).

Using DefaultMessagelistenerContainer

This message listener container is used in most cases. In contrast to SimpleMessagelListenerContainer,
this container variant allows for dynamic adaptation to runtime demands and is able to participate
in externally managed transactions. Each received message is registered with an XA transaction
when configured with a JtaTransactionManager. As a result, processing may take advantage of XA
transaction semantics. This listener container strikes a good balance between low requirements on
the JMS provider, advanced functionality (such as participation in externally managed
transactions), and compatibility with Java EE environments.

You can customize the cache level of the container. Note that, when no caching is enabled, a new
connection and a new session is created for each message reception. Combining this with a non-
durable subscription with high loads may lead to message loss. Make sure to use a proper cache
level in such a case.

This container also has recoverable capabilities when the broker goes down. By default, a simple
BackOff implementation retries every five seconds. You can specify a custom BackOff
implementation for more fine-grained recovery options. See api-spring-
framework/util/backoff/ExponentialBackOff. html[ExponentialBackOff] for an example.

Like its sibling (SimpleMessagelistenerContainer), DefaultMessagelistenerContainer
supports native JMS transactions and allows for customizing the acknowledgment
mode. If feasible for your scenario, This is strongly recommended over externally
managed transactions — that is, if you can live with occasional duplicate messages
in case of the JVM dying. Custom duplicate message detection steps in your

o business logic can cover such situations — for example, in the form of a business
entity existence check or a protocol table check. Any such arrangements are
significantly more efficient than the alternative: wrapping your entire processing
with an XA transaction (through configuring your DefaultMessagelListenerContainer
with an JtaTransactionManager) to cover the reception of the JMS message as well
as the execution of the business logic in your message listener (including database
operations etc).

35

The default AUTO_ACKNOWLEDGE mode does not provide proper reliability guarantees.
Messages can get lost when listener execution fails (since the provider
automatically acknowledges each message after listener invocation, with no

o exceptions to be propagated to the provider) or when the listener container shuts
down (you can configure this by setting the acceptMessagesWhileStopping flag).
Make sure to use transacted sessions in case of reliability needs (for example, for
reliable queue handling and durable topic subscriptions).

4.1.5. Transaction Management

Spring provides a IJmsTransactionManager that manages transactions for a single JMS
ConnectionFactory. This lets JMS applications leverage the managed-transaction features of Spring,
as described in Transaction Management section of the Data Access chapter. The
JmsTransactionManager performs local resource transactions, binding a JMS Connection/Session pair
from the specified ConnectionFactory to the thread. JImsTemplate automatically detects such
transactional resources and operates on them accordingly.

In a Java EE environment, the ConnectionFactory pools Connection and Session instances, so those
resources are efficiently reused across transactions. In a standalone environment, using Spring’s
SingleConnectionFactory result in a shared JMS Connection, with each transaction having its own
independent Session. Alternatively, consider the use of a provider-specific pooling adapter, such as
ActiveMQ’s PooledConnectionFactory class.

You can also use IJmsTemplate with the IJtaTransactionManager and an XA-capable JMS
ConnectionFactory to perform distributed transactions. Note that this requires the use of a JTA
transaction manager as well as a properly XA-configured ConnectionFactory. (Check your Java EE
server’s or JMS provider’s documentation.)

Reusing code across a managed and unmanaged transactional environment can be confusing when
using the JMS API to create a Session from a Connection. This is because the JMS API has only one
factory method to create a Session, and it requires values for the transaction and acknowledgment
modes. In a managed environment, setting these values is the responsibility of the environment’s
transactional infrastructure, so these values are ignored by the vendor’s wrapper to the JMS
Connection. When you use the JmsTemplate in an unmanaged environment, you can specify these
values through the use of the properties sessionTransacted and sessionAcknowledgeMode. When you
use a PlatformTransactionManager with IJmsTemplate, the template is always given a transactional JMS
Session.

4.2. Sending a Message

The JmsTemplate contains many convenience methods to send a message. Send methods specify the
destination by using a javax.jms.Destination object, and others specify the destination by using a
String in a JNDI lookup. The send method that takes no destination argument uses the default
destination.

The following example uses the MessageCreator callback to create a text message from the supplied
Session object:

36

data-access.pdf#transaction

import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.Queue;

import javax.jms.Session;

import org.springframework.jms.core.MessageCreator;
import org.springframework.jms.core.JmsTemplate;

public class JmsQueueSender {

private JmsTemplate jmsTemplate;
private Queue queue;

public void setConnectionFactory(ConnectionFactory cf) {
this.jmsTemplate = new JmsTemplate(cf);
}

public void setQueue(Queue queue) {
this.queue = queue;

}

public void simpleSend() {
this.jmsTemplate.send(this.queue, new MessageCreator() {
public Message createMessage(Session session) throws JMSException {
return session.createTextMessage("hello queue world");
+
b

In the preceding example, the ImsTemplate is constructed by passing a reference to a
ConnectionFactory. As an alternative, a zero-argument constructor and connectionFactory is
provided and can be used for constructing the instance in JavaBean style (using a BeanFactory or
plain Java code). Alternatively, consider deriving from Spring’s JmsGatewaySupport convenience base
class, which provides pre-built bean properties for JMS configuration.

The send(String destinationName, MessageCreator creator) method lets you send a message by
using the string name of the destination. If these names are registered in JNDI, you should set the
destinationResolver property of the template to an instance of JndiDestinationResolver.

If you created the JmsTemplate and specified a default destination, the send(MessageCreator c) sends
a message to that destination.

4.2.1. Using Message Converters

To facilitate the sending of domain model objects, the JmsTemplate has various send methods that
take a Java object as an argument for a message’s data content. The overloaded methods
convertAndSend() and receiveAndConvert() methods in JmsTemplate delegate the conversion process

37

to an instance of the MessageConverter interface. This interface defines a simple contract to convert
between Java objects and JMS messages. The default implementation (SimpleMessageConverter)
supports conversion between String and TextMessage, byte[] and BytesMesssage, and java.util.Map
and MapMessage. By using the converter, you and your application code can focus on the business
object that is being sent or received through JMS and not be concerned with the details of how it is
represented as a JMS message.

The sandbox currently includes a MapMessageConverter, which uses reflection to convert between a
JavaBean and a MapMessage. Other popular implementation choices you might implement yourself
are converters that use an existing XML marshalling package (such as JAXB or XStream) to create a
TextMessage that represents the object.

To accommodate the setting of a message’s properties, headers, and body that can not be
generically encapsulated inside a converter class, the MessagePostProcessor interface gives you
access to the message after it has been converted but before it is sent. The following example shows
how to modify a message header and a property after a java.util.Map is converted to a message:

public void sendWithConversion() {

Map map = new HashMap();

map.put("Name", "Mark");

map.put("Age", new Integer(47));

jmsTemplate.convertAndSend("testQueue", map, new MessagePostProcessor() {

public Message postProcessMessage(Message message) throws JMSException {

message.setIntProperty("AccountID", 1234);
message.setIMSCorrelationID("123-00001");
return message;

1

This results in a message of the following form:

MapMessage={
Header={
. standard headers ...
CorrelationID={123-00001}
Iy
Properties={
AccountID={Integer:1234}

}

Fields={
Name={String:Mark}
Age={Integer:47}

}

38

4.2.2. Using SessionCallback and ProducerCallback

While the send operations cover many common usage scenarios, you might sometimes want to
perform multiple operations on a JMS Session or MessageProducer. The SessionCallback and
Producer(Callback expose the JMS Session and Session / MessageProducer pair, respectively. The
execute() methods on JmsTemplate run these callback methods.

4.3. Receiving a Message

This describes how to receive messages with JMS in Spring.

4.3.1. Synchronous Reception

While JMS is typically associated with asynchronous processing, you can consume messages
synchronously. The overloaded receive(..) methods provide this functionality. During a
synchronous receive, the calling thread blocks until a message becomes available. This can be a
dangerous operation, since the calling thread can potentially be blocked indefinitely. The
receiveTimeout property specifies how long the receiver should wait before giving up waiting for a
message.

4.3.2. Asynchronous reception: Message-Driven POJOs

Spring also supports annotated-listener endpoints through the use of the
@JmsListener annotation and provides an open infrastructure to register endpoints

o programmatically. This is, by far, the most convenient way to setup an
asynchronous receiver. See Enable Listener Endpoint Annotations for more
details.

In a fashion similar to a Message-Driven Bean (MDB) in the EJB world, the Message-Driven POJO
(MDP) acts as a receiver for JMS messages. The one restriction (but see Using
MessagelListenerAdapter) on an MDP is that it must implement the javax.jms.Messagelistener
interface. Note that, if your POJO receives messages on multiple threads, it is important to ensure
that your implementation is thread-safe.

The following example shows a simple implementation of an MDP:

39

import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.Messagelistener;
import javax.jms.TextMessage;

public class ExampleListener implements Messagelistener {

public void onMessage(Message message) {
if (message instanceof TextMessage) {
try {
System.out.println(((TextMessage) message).getText());
}
catch (JMSException ex) {
throw new RuntimeException(ex);

}
}
else {

throw new I1legalArgumentException("Message must be of type TextMessage");
}

Once you have implemented your MessagelListener, it is time to create a message listener container.

The following example shows how to define and configure one of the message listener containers
that ships with Spring (in this case, DefaultMessagelListenerContainer):

<!-- this is the Message Driven P0JO (MDP) -->
<bean id="messagelistener" class="jmsexample.Examplelistener"/>

<!-- and this is the message listener container -->

<bean id="jmsContainer"

class="org.springframework.jms.listener.DefaultMessagelistenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messagelistener" ref="messagelistener"/>

</bean>

See the Spring javadoc of the various message listener containers (all of which implement
MessageListenerContainer) for a full description of the features supported by each implementation.

4.3.3. Using the SessionAwareMessagelListener Interface

The SessionAwareMessagelistener interface is a Spring-specific interface that provides a similar
contract to the JMS MessagelListener interface but also gives the message-handling method access to
the JMS Session from which the Message was received. The following listing shows the definition of
the SessionAwareMessagelistener interface:

40

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jms/listener/MessageListenerContainer.html

package org.springframework.jms.listener;
public interface SessionAwareMessagelistener {

void onMessage(Message message, Session session) throws JMSException;

You can choose to have your MDPs implement this interface (in preference to the standard JMS
MessagelListener interface) if you want your MDPs to be able to respond to any received messages
(by using the Session supplied in the onMessage(Message, Session) method). All of the message
listener container implementations that ship with Spring have support for MDPs that implement
either the Messagelistener or SessionAwareMessagelistener interface. Classes that implement the
SessionAwareMessagelListener come with the caveat that they are then tied to Spring through the
interface. The choice of whether or not to use it is left entirely up to you as an application developer
or architect.

Note that the onMessage(..) method of the SessionAwareMessagelistener interface throws
JMSException. In contrast to the standard JMS Messagelistener interface, when using the
SessionAwareMessagelistener interface, it is the responsibility of the client code to handle any
thrown exceptions.

4.3.4. Using MessagelistenerAdapter

The MessagelistenerAdapter class is the final component in Spring’s asynchronous messaging
support. In a nutshell, it lets you expose almost any class as an MDP (though there are some
constraints).

Consider the following interface definition:

public interface MessageDelegate {
void handleMessage(String message);
void handleMessage(Map message);
void handleMessage(byte[] message);

void handleMessage(Serializable message);

Notice that, although the interface extends neither the MessagelListener nor the
SessionAwareMessagelistener interface, you can still use it as an MDP by using the
MessagelListenerAdapter class. Notice also how the various message handling methods are strongly
typed according to the contents of the various Message types that they can receive and handle.

Now consider the following implementation of the MessageDelegate interface:

41

public class DefaultMessageDelegate implements MessageDelegate {
// implementation elided for clarity...

}

In particular, note how the preceding implementation of the MessageDelegate interface (the
DefaultMessageDelegate class) has no JMS dependencies at all. It truly is a POJO that we can make
into an MDP through the following configuration:

<!-- this is the Message Driven P0JO (MDP) -->
<bean id="messagelistener"
class="org.springframework.jms.listener.adapter.MessagelistenerAdapter">
<constructor-arg>
<bean class="jmsexample.DefaultMessageDelegate"/>
</constructor-arg>
</bean>

<!-- and this is the message listener container... -->

<bean id="jmsContainer"

class="org.springframework.jms.listener.DefaultMessagelistenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messagelistener" ref="messagelistener"/>

</bean>

The next example shows another MDP that can handle only receiving JMS TextMessage messages.
Notice how the message handling method is actually called receive (the name of the message
handling method in a MessagelistenerAdapter defaults to handleMessage), but it is configurable (as
you can see later in this section). Notice also how the receive(..) method is strongly typed to
receive and respond only to JMS TextMessage messages. The following listing shows the definition of
the TextMessageDelegate interface:

public interface TextMessageDelegate {

void receive(TextMessage message);

The following listing shows a class that implements the TextMessageDelegate interface:

public class DefaultTextMessageDelegate implements TextMessageDelegate {
// implementation elided for clarity...

}

The configuration of the attendant MessagelListenerAdapter would then be as follows:

42

<bean id="messagelistener"
class="org.springframework.jms.listener.adapter.MessagelistenerAdapter">
<constructor-arg>
<bean class="jmsexample.DefaultTextMessageDelegate"/>
</constructor-arg>
<property name="defaultListenerMethod" value="receive"/>
<!-- we don't want automatic message context extraction -->
<property name="messageConverter">
<null/>
</property>
</bean>

Note that, if the messagelListener receives a JMS Message of a type other than TextMessage, an
I1legalStateException is thrown (and subsequently swallowed). Another of the capabilities of the
MessagelListenerAdapter class is the ability to automatically send back a response Message if a
handler method returns a non-void value. Consider the following interface and class:

public interface ResponsiveTextMessageDelegate {

// notice the return type...
String receive(TextMessage message);

public class DefaultResponsiveTextMessageDelegate implements
ResponsiveTextMessageDelegate {
// implementation elided for clarity...

}

If you use the DefaultResponsiveTextMessageDelegate in conjunction with a MessagelistenerAdapter,
any non-null value that is returned from the execution of the 'receive(..)"' method is (in the
default configuration) converted into a TextMessage. The resulting TextMessage is then sent to the
Destination (if one exists) defined in the JMS Reply-To property of the original Message or the default
Destination set on the MessagelistenerAdapter (if one has been configured). If no Destination is
found, an InvalidDestinationException is thrown (note that this exception is not swallowed and
propagates up the call stack).

4.3.5. Processing Messages Within Transactions

Invoking a message listener within a transaction requires only reconfiguration of the listener
container.

You can activate local resource transactions through the sessionTransacted flag on the listener
container definition. Each message listener invocation then operates within an active JMS
transaction, with message reception rolled back in case of listener execution failure. Sending a
response message (through SessionAwareMessagelistener) is part of the same local transaction, but
any other resource operations (such as database access) operate independently. This usually

43

requires duplicate message detection in the listener implementation, to cover the case where
database processing has committed but message processing failed to commit.

Consider the following bean definition:

<bean id="jmsContainer"
class="org.springframework.jms.listener.DefaultMessagelistenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messagelistener" ref="messagelistener"/>
<property name="sessionTransacted" value="true"/>
</bean>

To participate in an externally managed transaction, you need to configure a transaction manager
and use a listener container that supports externally managed transactions (typically,
DefaultMessagelistenerContainer).

To configure a message listener container for XA transaction participation, you want to configure a
JtaTransactionManager (which, by default, delegates to the Java EE server’s transaction subsystem).
Note that the underlying JMS ConnectionFactory needs to be XA-capable and properly registered
with your JTA transaction coordinator. (Check your Java EE server’s configuration of JNDI
resources.) This lets message reception as well as (for example) database access be part of the same
transaction (with unified commit semantics, at the expense of XA transaction log overhead).

The following bean definition creates a transaction manager:

<bean id="transactionManager"
class="org.springframework.transaction.jta.JtaTransactionManager"/>

Then we need to add it to our earlier container configuration. The container takes care of the rest.
The following example shows how to do so:

<bean id="jmsContainer"
class="org.springframework.jms.listener.DefaultMessagelistenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messagelistener" ref="messagelistener"/>
<property name="transactionManager" ref="transactionManager"/> @
</bean>

@ Our transaction manager.

4.4. Support for JCA Message Endpoints

Beginning with version 2.5, Spring also provides support for a JCA-based Messagelistener container.
The JmsMessageEndpointManager tries to automatically determine the ActivationSpec class name from
the provider’s ResourceAdapter class name. Therefore, it is typically possible to provide Spring’s

44

generic JmsActivationSpecConfig, as the following example shows:

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
<property name="resourceAdapter" ref="resourceAdapter"/>
<property name="activationSpecConfig">
<bean
class="org.springframework.jms.listener.endpoint.JmsActivationSpecConfig">
<property name="destinationName" value="myQueue"/>
</bean>
</property>
<property name="messagelistener" ref="myMessagelistener"/>
</bean>

Alternatively, you can set up a JmsMessageEndpointManager with a given ActivationSpec object. The
ActivationSpec object may also come from a JNDI lookup (using <jee:jndi-lookup>). The following
example shows how to do so:

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
<property name="resourceAdapter" ref="resourceAdapter"/>
<property name="activationSpec">
<bean class="org.apache.activemq.ra.ActiveMQActivationSpec">
<property name="destination" value="myQueue"/>
<property name="destinationType" value="javax.jms.Queue"/>
</bean>
</property>
<property name="messagelistener" ref="myMessagelistener"/>
</bean>

Using Spring’s ResourceAdapterFactoryBean, you can configure the target ResourceAdapter locally, as
the following example shows:

<bean id="resourceAdapter"
class="org.springframework.jca.support.ResourceAdapterFactoryBean">
<property name="resourceAdapter">
<bean class="org.apache.activemq.ra.ActiveMQResourceAdapter">
<property name="serverUr1l" value="tcp://localhost:61616"/>
</bean>
</property>
<property name="workManager">
<bean class="org.springframework.jca.work.SimpleTaskWorkManager"/>
</property>
</bean>

The specified WorkManager can also point to an environment-specific thread pool — typically through
a SimpleTaskWorkManager instance’s asyncTaskExecutor property. Consider defining a shared thread
pool for all your ResourceAdapter instances if you happen to use multiple adapters.

45

In some environments (such as WebLogic 9 or above), you can instead obtain the entire
ResourceAdapter object from JNDI (by using <jee:jndi-lookup>). The Spring-based message listeners
can then interact with the server-hosted ResourceAdapter, which also use the server’s built-in
WorkManager.

See the javadoc for JmsMessageEndpointManager, JmsActivationSpecConfig, and
ResourceAdapterFactoryBean for more details.

Spring also provides a generic JCA message endpoint manager that is not tied to JMS:
org.springframework.jca.endpoint.GenericMessageEndpointManager. This component allows for using
any message listener type (such as a JMS MessagelListener) and any provider-specific ActivationSpec
object. See your JCA provider’s documentation to find out about the actual capabilities of your
connector, and see the GenericMessageEndpointManager javadoc for the Spring-specific configuration
details.

JCA-based message endpoint management is very analogous to EJB 2.1 Message-
Driven Beans. It uses the same underlying resource provider contract. As with E]JB

o 2.1 MDBs, you can use any message listener interface supported by your JCA
provider in the Spring context as well. Spring nevertheless provides explicit
“convenience” support for JMS, because JMS is the most common endpoint API
used with the JCA endpoint management contract.

4.5. Annotation-driven Listener Endpoints

The easiest way to receive a message asynchronously is to use the annotated listener endpoint
infrastructure. In a nutshell, it lets you expose a method of a managed bean as a JMS listener
endpoint. The following example shows how to use it:

@Component
public class MyService {

@ImsListener(destination = "myDestination")
public void processOrder(String data) { ... }

The idea of the preceding example is that, whenever a message is available on the
javax.jms.Destination myDestination, the processOrder method is invoked accordingly (in this case,
with the content of the JMS message, similar to what the MessagelListenerAdapter provides).

The annotated endpoint infrastructure creates a message listener container behind the scenes for
each annotated method, by using a JmsListenerContainerFactory. Such a container is not registered
against the application context but can be easily located for management purposes by using the
JmsListenerEndpointRegistry bean.

@JmsListener is a repeatable annotation on Java 8, so you can associate several JMS
O destinations with the same method by adding additional @JmsListener declarations
w
to it.

46

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jms/listener/endpoint/JmsMessageEndpointManager.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jms/listener/endpoint/JmsActivationSpecConfig.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jca/support/ResourceAdapterFactoryBean.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jca/endpoint/GenericMessageEndpointManager.html

4.5.1. Enable Listener Endpoint Annotations

To enable support for @JmsListener annotations, you can add @EnableJms to one of your
@Configuration classes, as the following example shows:

@Configuration
©Enablelms
public class AppConfig {

@Bean

public DefaultImsListenerContainerFactory jmsListenerContainerFactory() {
DefaultImsListenerContainerFactory factory = new

DefaultImsListenerContainerFactory();

factory.setConnectionFactory(connectionFactory());
factory.setDestinationResolver(destinationResolver());
factory.setSessionTransacted(true);
factory.setConcurrency("3-10");
return factory;

By default, the infrastructure looks for a bean named jmsListenerContainerFactory as the source for
the factory to use to create message listener containers. In this case (and ignoring the JMS
infrastructure setup), you can invoke the processOrder method with a core poll size of three threads
and a maximum pool size of ten threads.

You can customize the listener container factory to use for each annotation or you can configure an
explicit default by implementing the JmsListenerConfigurer interface. The default is required only if
at least one endpoint is registered without a specific container factory. See the javadoc of classes
that implement JmsListenerConfigurer for details and examples.

If you prefer XML configuration, you can use the <jms:annotation-driven> element, as the following
example shows:

<jms:annotation-driven/>

<bean id="jmsListenerContainerFactory"
class="org.springframework.jms.config.DefaultImsListenerContainerFactory">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destinationResolver" ref="destinationResolver"/>
<property name="sessionTransacted" value="true"/>
<property name="concurrency" value="3-10"/>
</bean>

4.5.2. Programmatic Endpoint Registration

JmsListenerEndpoint provides a model of a JMS endpoint and is responsible for configuring the
container for that model. The infrastructure lets you programmatically configure endpoints in

47

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jms/annotation/JmsListenerConfigurer.html

addition to the ones that are detected by the JmsListener annotation. The following example shows
how to do so:

@Configuration
@EnableJms
public class AppConfig implements JmsListenerConfigurer {

@0verride
public void configureJmsListeners(JmsListenerEndpointRegistrar registrar) {
SimpleJmsListenerEndpoint endpoint = new SimpleJmsListenerEndpoint();
endpoint.setId("myJmsEndpoint");
endpoint.setDestination("anotherQueue");
endpoint.setMessagelListener(message -> {
// processing

b

registrar.registerEndpoint(endpoint);

In the preceding example, we used SimplelmsListenerEndpoint, which provides the actual
Messagelistener to invoke. However, you could also build your own endpoint variant to describe a
custom invocation mechanism.

Note that you could skip the use of @JmsListener altogether and programmatically register only your
endpoints through JmsListenerConfigurer.

4.5.3. Annotated Endpoint Method Signature

So far, we have been injecting a simple String in our endpoint, but it can actually have a very
flexible method signature. In the following example, we rewrite it to inject the Order with a custom
header:

@Component
public class MyService {

@ImsListener(destination = "myDestination")
public void processOrder(Order order, @Header("order_type") String orderType) {

}

The main elements you can inject in JMS listener endpoints are as follows:

* The raw javax.jms.Message or any of its subclasses (provided that it matches the incoming
message type).

* The javax.jms.Session for optional access to the native JMS API (for example, for sending a
custom reply).

48

* The org.springframework.messaging.Message that represents the incoming JMS message. Note
that this message holds both the custom and the standard headers (as defined by JmsHeaders).

* @Header-annotated method arguments to extract a specific header value, including standard JMS
headers.

* A @Headers-annotated argument that must also be assignable to java.util.Map for getting access
to all headers.

* A non-annotated element that is not one of the supported types (Message or Session) is
considered to be the payload. You can make that explicit by annotating the parameter with
@Payload. You can also turn on validation by adding an extra @Valid.

The ability to inject Spring’s Message abstraction is particularly useful to benefit from all the
information stored in the transport-specific message without relying on transport-specific API. The
following example shows how to do so:

@ImsListener(destination = "myDestination")
public void processOrder(Message<Order> order) { ... }

Handling of method arguments is provided by DefaultMessageHandlerMethodFactory, which you can
further customize to support additional method arguments. You can customize the conversion and
validation support there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @Valid and configure the necessary validator, as the following example shows:

@Configuration
@EnableJms
public class AppConfig implements JmsListenerConfigurer {

@Override

public void configureJmsListeners(JmsListenerEndpointRegistrar registrar) {
registrar.setMessageHandlerMethodFactory(myJmsHandlerMethodFactory());

}

@Bean
public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {
DefaultMessageHandlerMethodFactory factory = new
DefaultMessageHandlerMethodFactory();
factory.setValidator(myValidator());
return factory;

4.5.4. Response Management

The existing support in MessagelistenerAdapter already lets your method have a non-void return
type. When that is the case, the result of the invocation is encapsulated in a javax.jms.Message, sent

49

either in the destination specified in the JMSReplyTo header of the original message or in the default
destination configured on the listener. You can now set that default destination by using the @SendTo
annotation of the messaging abstraction.

Assuming that our processOrder method should now return an OrderStatus, we can write it to
automatically send a response, as the following example shows:

@ImsListener(destination = "myDestination")
@SendTo("status")
public OrderStatus processOrder(Order order) {
// order processing
return status;

O If you have several @JmsListener-annotated methods, you can also place the
- @SendTo annotation at the class level to share a default reply destination.

If you need to set additional headers in a transport-independent manner, you can return a Message
instead, with a method similar to the following:

@ImsListener(destination = "myDestination")
@SendTo("status")
public Message<OrderStatus> processOrder(Order order) {
// order processing
return MessageBuilder
.withPayload(status)
.setHeader ("code", 1234)
.build();

If you need to compute the response destination at runtime, you can encapsulate your response in
a JmsResponse instance that also provides the destination to use at runtime. We can rewrite the
previous example as follows:

@ImsListener(destination = "myDestination")
public JImsResponse<Message<OrderStatus>> processOrder(Order order) {
// order processing
Message<OrderStatus> response = MessageBuilder
.withPayload(status)
.setHeader ("code", 1234)
.build();
return JmsResponse.forQueue(response, "status");

Finally, if you need to specify some QoS values for the response such as the priority or the time to
live, you can configure the JmsListenerContainerFactory accordingly, as the following example

50

shows:

@Configuration
@Enablelms
public class AppConfig {

@Bean

public DefaultImsListenerContainerFactory jmsListenerContainerFactory() {
DefaultImsListenerContainerFactory factory = new

DefaultImsListenerContainerFactory();

factory.setConnectionFactory(connectionFactory());
QosSettings replyQosSettings = new QosSettings();
replyQosSettings.setPriority(2);
replyQosSettings.setTimeTolLive(10000);
factory.setReplyQosSettings(replyQosSettings);
return factory;

4.6. JMS Namespace Support

Spring provides an XML namespace for simplifying JMS configuration. To use the JMS namespace
elements, you need to reference the JMS schema, as the following example shows:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms" @
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jms
https://www.springframework.org/schema/jms/spring-jms.xsd">

<!-- bean definitions here -->

</beans>

@ Referencing the JMS schema.

The namespace consists of three top-level elements: <annotation-driven/>, <listener-container/>
and <jca-listener-container/>. <annotation-driven/> enables the use of annotation-driven listener
endpoints. <listener-container/> and <jca-listener-container/> define shared listener container
configuration and can contain <listener/> child elements. The following example shows a basic
configuration for two listeners:

31

<jms:listener-container>
<jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

<jms:listener destination="queue.confirmations" ref="confirmationLogger"
method="10g"/>

</jms:listener-container>

The preceding example is equivalent to creating two distinct listener container bean definitions
and two distinct MessagelistenerAdapter bean definitions, as shown in Using
MessagelListenerAdapter. In addition to the attributes shown in the preceding example, the listener
element can contain several optional ones. The following table describes all of the available
attributes:

Table 3. Attributes of the JMS <listener> element
Attribute Description

id A bean name for the hosting listener container. If not specified, a bean name is
automatically generated.

destination The destination name for this listener, resolved through the DestinationResolver
(required) strategy.

ref The bean name of the handler object.
(required)
method The name of the handler method to invoke. If the ref attribute points to a

MessagelListener or Spring SessionAwareMessagelistener, you can omit this attribute.

response- The name of the default response destination to which to send response messages.

destination ;g g applied in case of a request message that does not carry a JMSReplyTo field.
The type of this destination is determined by the listener-container’s response-
destination-type attribute. Note that this applies only to a listener method with a
return value, for which each result object is converted into a response message.

subscription The name of the durable subscription, if any.
selector An optional message selector for this listener.

concurrency The number of concurrent sessions or consumers to start for this listener. This value
can either be a simple number indicating the maximum number (for example, 5) or
a range indicating the lower as well as the upper limit (for example, 3-5). Note that a
specified minimum is only a hint and might be ignored at runtime. The default is the
value provided by the container.

The <listener-container/> element also accepts several optional attributes. This allows for
customization of the various strategies (for example, taskExecutor and destinationResolver) as well
as basic JMS settings and resource references. By using these attributes, you can define highly-
customized listener containers while still benefiting from the convenience of the namespace.

You can automatically expose such settings as a JmsListenerContainerFactory by specifying the id of

32

the bean to expose through the factory-id attribute, as the following example shows:

<jms:listener-container connection-factory="myConnectionFactory"
task-executor="myTaskExecutor"
destination-resolver="myDestinationResolver"
transaction-manager="myTransactionManager"
concurrency="10">

<jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

<jms:listener destination="queue.confirmations" ref="confirmationLogger"
method="10g"/>

</jms:listener-container>

The following table describes all available attributes. See the class-level javadoc of the
AbstractMessagelistenerContainer and its concrete subclasses for more details on the individual
properties. The javadoc also provides a discussion of transaction choices and message redelivery
scenarios.

Table 4. Attributes of the JMS <listener-container> element

Attribute Description

container- The type of this listener container. The available options are default, simple,

type default102, or simple102 (the default option is default).

container- A custom listener container implementation class as a fully qualified class name.
class

The default is Spring’s standard DefaultMessagelListenerContainer or
SimpleMessagelistenerContainer, according to the container-type attribute.

factory-id Exposes the settings defined by this element as a JmsListenerContainerFactory with
the specified id so that they can be reused with other endpoints.

connection- A reference to the JMS ConnectionFactory bean (the default bean name is
factory connectionFactory).

task- A reference to the Spring TaskExecutor for the JMS listener invokers.
executor

destination- A reference to the DestinationResolver strategy for resolving JMS Destination

resolver instances.

message- A reference to the MessageConverter strategy for converting JMS Messages to listener
converter athod arguments. The default is a SimpleMessageConverter.

error- A reference to an ErrorHandler strategy for handling any uncaught exceptions that
handler

may occur during the execution of the MessagelListener.

destination- The JMS destination type for this listener: queue, topic, durableTopic, sharedTopic, or

type sharedDurableTopic. This potentially enables the pubSubDomain, subscriptionDurable
and subscriptionShared properties of the container. The default is queue (Which
disables those three properties).

33

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jms/listener/AbstractMessageListenerContainer.html

Attribute

response-
destination-

type
client-id

cache

acknowledge

transaction-
manager

concurrency

prefetch
receive-
timeout

back-off

recovery-
interval

phase

Description

The JMS destination type for responses: queue or topic. The default is the value of the
destination-type attribute.

The JMS client ID for this listener container. You must specify it when you use
durable subscriptions.

The cache level for JMS resources: none, connection, session, consumer, or auto. By
default (auto), the cache level is effectively consumer, unless an external transaction
manager has been specified — in which case, the effective default will be none
(assuming Java EE-style transaction management, where the given
ConnectionFactory is an XA-aware pool).

The native JMS acknowledge mode: auto, client, dups-ok, or transacted. A value of
transacted activates a locally transacted Session. As an alternative, you can specify
the transaction-manager attribute, described later in table. The default is auto.

A reference to an external PlatformTransactionManager (typically an XA-based
transaction coordinator, such as Spring’s JtaTransactionManager). If not specified,
native acknowledging is used (see the acknowledge attribute).

The number of concurrent sessions or consumers to start for each listener. It can
either be a simple number indicating the maximum number (for example, 5) or a
range indicating the lower as well as the upper limit (for example, 3-5). Note that a
specified minimum is just a hint and might be ignored at runtime. The default is 1.
You should keep concurrency limited to 1 in case of a topic listener or if queue
ordering is important. Consider raising it for general queues.

The maximum number of messages to load into a single session. Note that raising
this number might lead to starvation of concurrent consumers.

The timeout (in milliseconds) to use for receive calls. The default is 1000 (one
second). -1 indicates no timeout.

Specifies the BackOff instance to use to compute the interval between recovery
attempts. If the BackOffExecution implementation returns BackOffExecution#STOP, the
listener container does not further try to recover. The recovery-interval value is
ignored when this property is set. The default is a FixedBackOff with an interval of
5000 milliseconds (that is, five seconds).

Specifies the interval between recovery attempts, in milliseconds. It offers a
convenient way to create a FixedBackOff with the specified interval. For more
recovery options, consider specifying a BackOff instance instead. The default is 5000
milliseconds (that is, five seconds).

The lifecycle phase within which this container should start and stop. The lower the
value, the earlier this container starts and the later it stops. The default is
Integer.MAX_VALUE, meaning that the container starts as late as possible and stops as
soon as possible.

Configuring a JCA-based listener container with the jms schema support is very similar, as the
following example shows:

54

<jms:jca-listener-container resource-adapter="myResourceAdapter"
destination-resolver="myDestinationResolver"
transaction-manager="myTransactionManager"
concurrency="10">

<jms:listener destination="queue.orders" ref="myMessagelistener"/>

</jms:jca-listener-container>

The following table describes the available configuration options for the JCA variant:

Table 5. Attributes of the JMS <jca-listener-container/> element

Attribute
factory-id

resource-
adapter

activation-
spec-factory

destination-
resolver
message-

converter

destination-
type

response-
destination-

type
client-id

acknowledge

transaction-
manager

Description

Exposes the settings defined by this element as a JmsListenerContainerFactory with
the specified id so that they can be reused with other endpoints.

A reference to the JCA ResourceAdapter bean (the default bean name is
resourceAdapter).

A reference to the IJmsActivationSpecFactory. The default is to autodetect the JMS
provider and its ActivationSpec class (see DefaultImsActivationSpecFactory).

A reference to the DestinationResolver strategy for resolving JMS Destinations.

A reference to the MessageConverter strategy for converting JMS Messages to listener
method arguments. The default is SimpleMessageConverter.

The JMS destination type for this listener: queue, topic, durableTopic, sharedTopic. or
sharedDurableTopic. This potentially enables the pubSubDomain, subscriptionDurable,
and subscriptionShared properties of the container. The default is queue (which
disables those three properties).

The JMS destination type for responses: queue or topic. The default is the value of the
destination-type attribute.

The JMS client ID for this listener container. It needs to be specified when using
durable subscriptions.

The native JMS acknowledge mode: auto, client, dups-ok, or transacted. A value of
transacted activates a locally transacted Session. As an alternative, you can specify
the transaction-manager attribute described later. The default is auto.

A reference to a Spring JtaTransactionManager or a
javax.transaction.TransactionManager for kicking off an XA transaction for each
incoming message. If not specified, native acknowledging is used (see the
acknowledge attribute).

55

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jms/listener/endpoint/DefaultJmsActivationSpecFactory.html

Attribute

concurrency

prefetch

36

Description

The number of concurrent sessions or consumers to start for each listener. It can
either be a simple number indicating the maximum number (for example 5) or a
range indicating the lower as well as the upper limit (for example, 3-5). Note that a
specified minimum is only a hint and is typically ignored at runtime when you use a
JCA listener container. The default is 1.

The maximum number of messages to load into a single session. Note that raising
this number might lead to starvation of concurrent consumers.

Chapter 5. JMX

The JMX (Java Management Extensions) support in Spring provides features that let you easily and
transparently integrate your Spring application into a JMX infrastructure.

JMX?

This chapter is not an introduction to JMX. It does not try to explain why you might want to
use JMX. If you are new to JMX, see Further Resources at the end of this chapter.

Specifically, Spring’s JMX support provides four core features:

* The automatic registration of any Spring bean as a JMX MBean.
* A flexible mechanism for controlling the management interface of your beans.
* The declarative exposure of MBeans over remote, JSR-160 connectors.
* The simple proxying of both local and remote MBean resources.
These features are designed to work without coupling your application components to either Spring

or JMX interfaces and classes. Indeed, for the most part, your application classes need not be aware
of either Spring or JMX in order to take advantage of the Spring JMX features.

5.1. Exporting Your Beans to JMX

The core class in Spring’s JMX framework is the MBeanExporter. This class is responsible for taking
your Spring beans and registering them with a JMX MBeanServer. For example, consider the
following class:

57

package org.springframework.jmx;
public class IJmxTestBean implements IJmxTestBean {

private String name;
private int age;
private boolean isSuperman;

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

public int add(int x, int y) {
return x + vy;

}

public void dontExposeMe() {
throw new RuntimeException();

}

To expose the properties and methods of this bean as attributes and operations of an MBean, you
can configure an instance of the MBeanExporter class in your configuration file and pass in the bean,
as the following example shows:

38

<beans>
<!-- this bean must not be lazily initialized if the exporting is to happen -->
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter" lazy-
init="false">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>
</map>
</property>
</bean>
<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>
</bean>
</beans>

The pertinent bean definition from the preceding configuration snippet is the exporter bean. The
beans property tells the MBeanExporter exactly which of your beans must be exported to the JMX
MBeanServer. In the default configuration, the key of each entry in the beans Map is used as the
ObjectName for the bean referenced by the corresponding entry value. You can change this behavior,
as described in Controlling ObjectName Instances for Your Beans.

With this configuration, the testBean bean is exposed as an MBean under the ObjectName
bean:name=testBean1. By default, all public properties of the bean are exposed as attributes and all
public methods (except those inherited from the Object class) are exposed as operations.

MBeanExporter is a Lifecycle bean (see Startup and Shutdown Callbacks). By

o default, MBeans are exported as late as possible during the application lifecycle.
You can configure the phase at which the export happens or disable automatic
registration by setting the autoStartup flag.

5.1.1. Creating an MBeanServer

The configuration shown in the preceding section assumes that the application is running in an
environment that has one (and only one) MBeanServer already running. In this case, Spring tries to
locate the running MBeanServer and register your beans with that server (if any). This behavior is
useful when your application runs inside a container (such as Tomcat or IBM WebSphere) that has
its own MBeanServer.

However, this approach is of no use in a standalone environment or when running inside a
container that does not provide an MBeanServer. To address this, you can create an MBeanServer
instance declaratively by adding an instance of the
org.springframework.jmx.support.MBeanServerFactoryBean class to your configuration. You can also
ensure that a specific MBeanServer is used by setting the value of the MBeanExporter instance’s server
property to the MBeanServer value returned by an MBeanServerFactoryBean, as the following example
shows:

39

core.pdf#beans-factory-lifecycle-processor

<beans>

<bean id="mbeanServer"
class="org.springframework.jmx.support.MBeanServerFactoryBean"/>

<l--
this bean needs to be eagerly pre-instantiated in order for the exporting to
occur;
this means that it must not be marked as lazily initialized
-->
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>
</map>
</property>
<property name="server" ref="mbeanServer"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

In the preceding example, an instance of MBeanServer is created by the MBeanServerFactoryBean and is
supplied to the MBeanExporter through the server property. When you supply your own MBeanServer
instance, the MBeanExporter does not try to locate a running MBeanServer and uses the supplied
MBeanServer instance. For this to work correctly, you must have a JMX implementation on your
classpath.

5.1.2. Reusing an Existing MBeanServer

If no server is specified, the MBeanExporter tries to automatically detect a running MBeanServer. This
works in most environments, where only one MBeanServer instance is used. However, when multiple
instances exist, the exporter might pick the wrong server. In such cases, you should use the
MBeanServer agentId to indicate which instance to be used, as the following example shows:

60

<beans>
<bean id="mbeanServer"
class="org.springframework.jmx.support.MBeanServerFactoryBean">
<!-- indicate to first look for a server -->
<property name="locateExistingServerIfPossible" value="true"/>
<!-- search for the MBeanServer instance with the given agentId -->
<property name="agentId" value="MBeanServer_instance_agentId>"/>
</bean>
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="server" ref="mbeanServer"/>
</bean>
</beans>

For platforms or cases where the existing MBeanServer has a dynamic (or unknown) agentId that is
retrieved through lookup methods, you should use factory-method, as the following example
shows:

<beans>
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="server">
<!-- Custom MBeanServerLocator -->
<bean class="platform.package.MBeanServerLocator" factory-
method="1ocateMBeanServer"/>
</property>
</bean>

<!-- other beans here -->

</beans>

5.1.3. Lazily Initialized MBeans

If you configure a bean with an MBeanExporter that is also configured for lazy initialization, the
MBeanExporter does not break this contract and avoids instantiating the bean. Instead, it registers a
proxy with the MBeanServer and defers obtaining the bean from the container until the first
invocation on the proxy occurs.

5.1.4. Automatic Registration of MBeans

Any beans that are exported through the MBeanExporter and are already valid MBeans are registered
as-is with the MBeanServer without further intervention from Spring. You can cause MBeans to be
automatically detected by the MBeanExporter by setting the autodetect property to true, as the
following example shows:

61

core.pdf#beans-factory-class-static-factory-method

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="autodetect" value="true"/>
</bean>

<bean name="spring:mbean=true"
class="org.springframework.jmx.export.TestDynamicMBean"/>

In the preceding example, the bean called spring:mbean=true is already a valid JMX MBean and is
automatically registered by Spring. By default, a bean that is autodetected for JMX registration has
its bean name used as the ObjectName. You can override this behavior, as detailed in Controlling
ObjectName Instances for Your Beans.

5.1.5. Controlling the Registration Behavior

Consider the scenario where a Spring MBeanExporter attempts to register an MBean with an
MBeanServer by using the ObjectName bean:name=testBeanl. If an MBean instance has already been
registered under that same ObjectName, the default behavior is to fail (and throw an
InstanceAlreadyExistsException).

You can control exactly what happens when an MBean is registered with an MBeanServer. Spring’s
JMX support allows for three different registration behaviors to control the registration behavior
when the registration process finds that an MBean has already been registered under the same
ObjectName. The following table summarizes these registration behaviors:

Table 6. Registration Behaviors

Registration Explanation
behavior

FAIL_ON_EXISTING This is the default registration behavior. If an MBean instance has already been
registered under the same ObjectName, the MBean that is being registered is not
registered, and an InstanceAlreadyExistsException is thrown. The existing
MBean is unaffected.

IGNORE_EXISTING If an MBean instance has already been registered under the same ObjectNanme,
the MBean that is being registered is not registered. The existing MBean is
unaffected, and no Exception is thrown. This is useful in settings where
multiple applications want to share a common MBean in a shared MBeanServer.

REPLACE_EXISTING If an MBean instance has already been registered under the same ObjectName,
the existing MBean that was previously registered is unregistered, and the new
MBean is registered in its place (the new MBean effectively replaces the previous
instance).

The values in the preceding table are defined as enums on the RegistrationPolicy class. If you want
to change the default registration behavior, you need to set the value of the registrationPolicy
property on your MBeanExporter definition to one of those values.

The following example shows how to change from the default registration behavior to the
REPLACE_EXISTING behavior:

62

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>
</map>
</property>
<property name="registrationPolicy" value="REPLACE_EXISTING"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

5.2. Controlling the Management Interface of Your
Beans

In the example in the preceding section, you had little control over the management interface of
your bean. All of the public properties and methods of each exported bean were exposed as JMX
attributes and operations, respectively. To exercise finer-grained control over exactly which
properties and methods of your exported beans are actually exposed as JMX attributes and
operations, Spring JMX provides a comprehensive and extensible mechanism for controlling the
management interfaces of your beans.

5.2.1. Using the MBeanInfoAssembler Interface

Behind the scenes, the MBeanExporter delegates to an implementation of the
org.springframework.jmx.export.assembler.MBeanInfoAssembler interface, which is responsible for
defining the management interface of each bean that is exposed. The default implementation,
org.springframework.jmx.export.assembler.SimpleReflectiveMBeanInfoAssembler, defines a
management interface that exposes all public properties and methods (as you saw in the examples
in the preceding sections). Spring provides two additional implementations of the
MBeanInfoAssembler interface that let you control the generated management interface by using
either source-level metadata or any arbitrary interface.

5.2.2. Using Source-level Metadata: Java Annotations

By using the MetadataMBeanInfoAssembler, you can define the management interfaces for your beans
by wusing source-level metadata. The reading of metadata is encapsulated by the
org.springframework.jmx.export.metadata.JmxAttributeSource interface. Spring JMX provides a
default implementation that uses Java annotations, namely
org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource. You must configure the
MetadataMBeanInfoAssembler with an implementation instance of the JmxAttributeSource interface

63

for it to function correctly (there is no default).

To mark a bean for export to JMX, you should annotate the bean class with the ManagedResource
annotation. You must mark each method you wish to expose as an operation with the
ManagedOperation annotation and mark each property you wish to expose with the ManagedAttribute
annotation. When marking properties, you can omit either the annotation of the getter or the setter
to create a write-only or read-only attribute, respectively.

o A ManagedResource-annotated bean must be public, as must the methods exposing
an operation or an attribute.

The following example shows the annotated version of the JmxTestBean class that we used in
Creating an MBeanServer:

package org.springframework.jmx;

import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedAttribute;

@ManagedResource(
objectName="bean:name=testBean4",
description="My Managed Bean",
log=true,
logFile="jmx.log",
currencyTimelLimit=15,
persistPolicy="0OnUpdate",
persistPeriod=200,
persistlLocation="foo0",
persistName="bar")

public class AnnotationTestBean implements IJmxTestBean {

private String name;
private int age;

@ManagedAttribute(description="The Age Attribute", currencyTimelLimit=15)
public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

@ManagedAttribute(description="The Name Attribute",
currencyTimelLimit=20,
defaultValue="bar",
persistPolicy="0nUpdate")
public void setName(String name) {
this.name = name;

64

}

@ManagedAttribute(defaultValue="foo", persistPeriod=300)
public String getName() {
return name;

}

@ManagedOperation(description="Add two numbers")

@ManagedOperationParameters({
@ManagedOperationParameter (name
@ManagedOperationParameter (name

public int add(int x, int y) {
return x + vy;

"x", description = "The first number"),

"y", description = "The second number")})

}

public void dontExposeMe() {
throw new RuntimeException();

}

In the preceding example, you can see that the JmxTestBean class is marked with the ManagedResource
annotation and that this ManagedResource annotation is configured with a set of properties. These
properties can be used to configure various aspects of the MBean that is generated by the
MBeanExporter and are explained in greater detail later in Source-level Metadata Types.

Both the age and name properties are annotated with the ManagedAttribute annotation, but, in the
case of the age property, only the getter is marked. This causes both of these properties to be
included in the management interface as attributes, but the age attribute is read-only.

Finally, the add(int, int) method is marked with the ManagedOperation attribute, whereas the
dontExposeMe() method is not. This causes the management interface to contain only one operation
(add(int, int)) when you use the MetadataMBeanInfoAssembler.

The following configuration shows how you can configure the MBeanExporter to use the
MetadataMBeanInfoAssembler:

65

<beans>
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="assembler" ref="assembler"/>
<property name="namingStrategy" ref="namingStrategy"/>
<property name="autodetect" value="true"/>
</bean>

<bean id="jmxAttributeSource"
class="org.springframework.jmx.export.annotation.AnnotationImxAttributeSource"/>

<!-- will create management interface using annotation metadata -->
<bean id="assembler"

class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
<property name="attributeSource" ref="jmxAttributeSource"/>
</bean>

<!-- will pick up the ObjectName from the annotation -->
<bean id="namingStrategy"
class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
<property name="attributeSource" ref="jmxAttributeSource"/>
</bean>

<bean id="testBean" class="org.springframework.jmx.AnnotationTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>
</bean>
</beans>

In the preceding example, an MetadataMBeanInfoAssembler bean has been configured with an
instance of the AnnotationJmxAttributeSource class and passed to the MBeanExporter through the
assembler property. This is all that is required to take advantage of metadata-driven management
interfaces for your Spring-exposed MBeans.

5.2.3. Source-level Metadata Types

The following table describes the source-level metadata types that are available for use in Spring
JMX:

Table 7. Source-level metadata types

Purpose Annotation Annotation Type

Mark all instances of a Class as @ManagedResource Class
JMX managed resources.

Mark a method as a JMX @ManagedOperation Method
operation.

66

Purpose Annotation Annotation Type

Mark a getter or setter as one @ManagedAttribute Method (only getters and
half of a JMX attribute. setters)

Define descriptions for @ManagedOperationParameter and Method

operation parameters. @ManagedOperationParameters

The following table describes the configuration parameters that are available for use on these
source-level metadata types:

Table 8. Source-level metadata parameters

Parameter Description Applies to
ObjectName Used by MetadataNamingStrategy to determine the ManagedResource
ObjectName of a managed resource.
description Sets the friendly description of the resource, attribute or ~ ManagedResource,
operation. ManagedAttribute,
ManagedOperation,
or
ManagedOperationPa
rameter
currencyTimeLimit = Sets the value of the currencyTimeLimit descriptor field. ManagedResource or
ManagedAttribute
defaultValue Sets the value of the defaultValue descriptor field. ManagedAttribute
log Sets the value of the 1og descriptor field. ManagedResource
logFile Sets the value of the logFile descriptor field. ManagedResource
persistPolicy Sets the value of the persistPolicy descriptor field. ManagedResource
persistPeriod Sets the value of the persistPeriod descriptor field. ManagedResource
persistlocation Sets the value of the persistLocation descriptor field. ManagedResource
persistName Sets the value of the persistName descriptor field. ManagedResource
name Sets the display name of an operation parameter. ManagedOperationPa
rameter
index Sets the index of an operation parameter. ManagedOperationPa
rameter

5.2.4. Using the AutodetectCapableMBeanInfoAssembler Interface

To simplify configuration even further, Spring includes the AutodetectCapableMBeanInfoAssembler
interface, which extends the MBeanInfoAssembler interface to add support for autodetection of
MBean resources. If you configure the MBeanExporter with an instance of
AutodetectCapableMBeanInfoAssembler, it is allowed to “vote” on the inclusion of beans for exposure
to JMX.

The only implementation of the AutodetectCapableMBeanInfo interface is the
MetadataMBeanInfoAssembler, which votes to include any bean that is marked with the

67

ManagedResource attribute. The default approach in this case is to use the bean name as the
ObjectName, which results in a configuration similar to the following:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<!-- notice how no 'beans' are explicitly configured here -->
<property name="autodetect" value="true"/>
<property name="assembler" ref="assembler"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="assembler"
class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
<property name="attributeSource">
<bean
class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>
</property>
</bean>

</beans>

Notice that, in the preceding configuration, no beans are passed to the MBeanExporter. However, the
JmxTestBean is still registered, since it is marked with the ManagedResource attribute and the
MetadataMBeanInfoAssembler detects this and votes to include it. The only problem with this
approach is that the name of the JnxTestBean now has business meaning. You can address this issue
by changing the default behavior for ObjectName creation as defined in Controlling ObjectName
Instances for Your Beans.

5.2.5. Defining Management Interfaces by Using Java Interfaces

In addition to the MetadataMBeanInfoAssembler, Spring also includes the
InterfaceBasedMBeanInfoAssembler, which lets you constrain the methods and properties that are
exposed based on the set of methods defined in a collection of interfaces.

Although the standard mechanism for exposing MBeans is to use interfaces and a simple naming
scheme, InterfaceBasedMBeanInfoAssembler extends this functionality by removing the need for
naming conventions, letting you use more than one interface and removing the need for your
beans to implement the MBean interfaces.

Consider the following interface, which is used to define a management interface for the
JmxTestBean class that we showed earlier:

68

public interface IJmxTestBean {
public int add(int x, int y);
public long myOperation();
public int getAge();
public void setAge(int age);
public void setName(String name);

public String getName();

This interface defines the methods and properties that are exposed as operations and attributes on
the JMX MBean. The following code shows how to configure Spring JMX to use this interface as the
definition for the management interface:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean5" value-ref="testBean"/>
</map>
</property>
<property name="assembler">
<bean
class="org.springframework.jmx.export.assembler.InterfaceBasedMBeanInfoAssembler">
<property name="managedInterfaces">
<value>org.springframework.jmx.IJmxTestBean</value>
</property>
</bean>
</property>
</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

In the preceding example, the InterfaceBasedMBeanInfoAssembler is configured to use the
IJmxTestBean interface when constructing the management interface for any bean. It is important to
understand that beans processed by the InterfaceBasedMBeanInfoAssembler are not required to

69

implement the interface used to generate the JMX management interface.

In the preceding case, the IJmxTestBean interface is used to construct all management interfaces for
all beans. In many cases, this is not the desired behavior, and you may want to use different
interfaces for different beans. In this case, you can pass InterfaceBasedMBeanInfoAssembler a
Properties instance through the interfaceMappings property, where the key of each entry is the bean
name and the value of each entry is a comma-separated list of interface names to use for that bean.

If no management interface is specified through either the managedInterfaces or interfaceMappings
properties, the InterfaceBasedMBeanInfoAssembler reflects on the bean and uses all of the interfaces
implemented by that bean to create the management interface.

5.2.6. Using MethodNameBasedMBeanInfoAssembler

MethodNameBasedMBeanInfoAssembler lets you specify a list of method names that are exposed to JMX
as attributes and operations. The following code shows a sample configuration:

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean5" value-ref="testBean"/>
</map>
</property>
<property name="assembler">
<bean
class="org.springframework.jmx.export.assembler.MethodNameBasedMBeanInfoAssembler">
<property name="managedMethods">
<value>add,myOperation, getName, setName,getAge</value>
</property>
</bean>
</property>
</bean>

In the preceding example, you can see that the add and myOperation methods are exposed as JMX
operations, and getName(), setName(String), and getAge() are exposed as the appropriate half of a
JMX attribute. In the preceding code, the method mappings apply to beans that are exposed to JMX.
To control method exposure on a bean-by-bean basis, you can use the methodMappings property of
MethodNameMBeanInfoAssembler to map bean names to lists of method names.

5.3. Controlling ObjectName Instances for Your Beans

Behind the scenes, the MBeanExporter delegates to an implementation of the ObjectNamingStrategy to
obtain an ObjectName instance for each of the beans it registers. By default, the default
implementation, KeyNamingStrategy uses the key of the beans Map as the ObjectName. In addition, the
KeyNamingStrategy can map the key of the beans Map to an entry in a Properties file (or files) to
resolve the ObjectName. In addition to the KeyNamingStrategy, Spring provides two additional
ObjectNamingStrategy implementations: the IdentityNamingStrategy (which builds an ObjectName
based on the JVM identity of the bean) and the MetadataNamingStrategy (which uses source-level

70

metadata to obtain the ObjectName).

5.3.1. Reading ObjectName Instances from Properties

You can configure your own KeyNamingStrategy instance and configure it to read ObjectName
instances from a Properties instance rather than use a bean key. The KeyNamingStrategy tries to
locate an entry in the Properties with a key that corresponds to the bean key. If no entry is found or
if the Properties instance is null, the bean key itself is used.

The following code shows a sample configuration for the KeyNamingStrategy:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="testBean" value-ref="testBean"/>
</map>
</property>
<property name="namingStrategy" ref="namingStrategy"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="namingStrategy"
class="org.springframework.jmx.export.naming.KeyNamingStrategy">
<property name="mappings">
<props>
<prop key="testBean">bean:name=testBean1</prop>
</props>
</property>
<property name="mappinglLocations">
<value>names1.properties,names2.properties</value>
</property>
</bean>

</beans>

The preceding example configures an instance of KeyNamingStrategy with a Properties instance that
is merged from the Properties instance defined by the mapping property and the properties files
located in the paths defined by the mappings property. In this configuration, the testBean bean is
given an ObjectName of bean:name=testBean1, since this is the entry in the Properties instance that has
a key corresponding to the bean key.

If no entry in the Properties instance can be found, the bean key name is used as the ObjectName.

71

5.3.2. Using MetadataNamingStrategy

MetadataNamingStrategy uses the objectName property of the ManagedResource attribute on each bean
to create the ObjectName. The following code shows the configuration for the MetadataNamingStrategy:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="testBean" value-ref="testBean"/>
</map>
</property>
<property name="namingStrategy" ref="namingStrategy"/>
</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="namingStrategy"
class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
<property name="attributeSource" ref="attributeSource"/>
</bean>

<bean id="attributeSource"
class="org.springframework.jmx.export.annotation.AnnotationImxAttributeSource"/>

</beans>

If no objectName has been provided for the ManagedResource attribute, an ObjectName is created with
the following format: [fully-qualified-package-name]:type=[short-classname],name=[bean-name]. For
example, the generated ObjectName for the following bean would be
com.example:type=MyClass,name=myBean:

<bean id="myBean" class="com.example.MyClass"/>

5.3.3. Configuring Annotation-based MBean Export

If you prefer to use the annotation-based approach to define your management interfaces, a
convenience subclass of MBeanExporter is available: AnnotationMBeanExporter. When defining an
instance of this subclass, you no longer need the namingStrategy, assembler, and attributeSource
configuration, since it always uses standard Java annotation-based metadata (autodetection is
always enabled as well). In fact, rather than defining an MBeanExporter bean, an even simpler syntax
is supported by the @EnableMBeanExport @Configuration annotation, as the following example shows:

72

@Configuration
@EnableMBeanExport
public class AppConfig {

}

If you prefer XML-based configuration, the <context:mbean-export/> element serves the same
purpose and is shown in the following listing:

<context:mbean-export/>

If necessary, you can provide a reference to a particular MBean server, and the defaultDomain
attribute (a property of AnnotationMBeanExporter) accepts an alternate value for the generated
MBean ObjectName domains. This is used in place of the fully qualified package name as described in
the previous section on MetadataNamingStrategy, as the following example shows:

@EnableMBeanExport(server="myMBeanServer", defaultDomain="myDomain")
@Configuration
ContextConfiguration {

}

The following example shows the XML equivalent of the preceding annotation-based example:

<context:mbean-export server="myMBeanServer" default-domain="myDomain"/>

Do not use interface-based AOP proxies in combination with autodetection of JMX
annotations in your bean classes. Interface-based proxies “hide” the target class,

o which also hides the JMX-managed resource annotations. Hence, you should use
target-class proxies in that case (through setting the 'proxy-target-class' flag on
<aop:config/>, <tx:annotation-driven/> and so on). Otherwise, your JMX beans
might be silently ignored at startup.

5.4. Using JSR-160 Connectors

For remote access, Spring JMX module offers two FactoryBean implementations inside the
org.springframework.jmx.support package for creating both server- and client-side connectors.

5.4.1. Server-side Connectors

To have Spring JMX create, start, and expose a JSR-160 JMXConnectorServer, you can use the
following configuration:

73

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean"/>

By default, ConnectorServerFactoryBean creates a JMXConnectorServer bound to
service:jmx:jmxmp://localhost:9875. The serverConnector bean thus exposes the local MBeanServer to
clients through the JMXMP protocol on localhost, port 9875. Note that the JMXMP protocol is
marked as optional by the JSR 160 specification. Currently, the main open-source JMX
implementation, MX4], and the one provided with the JDK do not support JMXMP.

To specify another URL and register the JMXConnectorServer itself with the MBeanServer, you can use
the servicelrl and ObjectName properties, respectively, as the following example shows:

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean">
<property name="objectName" value="connector:name=rmi"/>
<property name="serviceUrl"

value="service:jmx:rmi://localhost/jndi/rmi://1localhost:1099/myconnector"/>
</bean>

If the ObjectName property is set, Spring automatically registers your connector with the MBeanServer
under that ObjectName. The following example shows the full set of parameters that you can pass to
the ConnectorServerFactoryBean when creating a JUXConnector:

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean">
<property name="objectName" value="connector:name=iiop"/>
<property name="serviceUrl"
value="service:jmx:iiop://localhost/jndi/iiop://localhost:900/myconnector”/>
<property name="threaded" value="true"/>
<property name="daemon" value="true"/>
<property name="environment">
<map>
<entry key="someKey" value="someValue"/>
</map>
</property>
</bean>

Note that, when you use a RMI-based connector, you need the lookup service (tnameserv or
rmiregistry) to be started in order for the name registration to complete. If you use Spring to export
remote services for you through RMI, Spring has already constructed an RMI registry. If not, you
can easily start a registry by using the following snippet of configuration:

74

<bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean">
<property name="port" value="1099"/>
</bean>

5.4.2. Client-side Connectors

To create an MBeanServerConnection to a remote JSR-160-enabled MBeanServer, you can use the
MBeanServerConnectionFactoryBean, as the following example shows:

<bean id="clientConnector"
class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">

<property name="serviceUrl"
value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxrmi"/>
</bean>

5.4.3. JMX over Hessian or SOAP

JSR-160 permits extensions to the way in which communication is done between the client and the
server. The examples shown in the preceding sections use the mandatory RMI-based
implementation required by the JSR-160 specification (IIOP and JRMP) and the (optional) JMXMP. By
using other providers or JMX implementations (such as MX4]) you can take advantage of protocols
such as SOAP or Hessian over simple HTTP or SSL and others, as the following example shows:

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean">

<property name="objectName" value="connector:name=burlap"/>

<property name="serviceUrl" value="service:jmx:burlap://localhost:9874"/>
</bean>

In the preceding example, we used MX4] 3.0.0. See the official MX4] documentation for more
information.

5.5. Accessing MBeans through Proxies

Spring JMX lets you create proxies that re-route calls to MBeans that are registered in a local or
remote MBeanServer. These proxies provide you with a standard Java interface, through which you
can interact with your MBeans. The following code shows how to configure a proxy for an MBean
running in a local MBeanServer:

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
<property name="objectName" value="bean:name=testBean"/>
<property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
</bean>

75

http://mx4j.sourceforge.net

In the preceding example, you can see that a proxy is created for the MBean registered under the
ObjectName of bean:name=testBean. The set of interfaces that the proxy implements is controlled by
the proxyInterfaces property, and the rules for mapping methods and properties on these interfaces
to operations and attributes on the MBean are the same rules used by the
InterfaceBasedMBeanInfoAssembler.

The MBeanProxyFactoryBean can create a proxy to any MBean that is accessible through an
MBeanServerConnection. By default, the local MBeanServer is located and used, but you can override
this and provide an MBeanServerConnection that points to a remote MBeanServer to cater for proxies
that point to remote MBeans:

<bean id="clientConnector"
class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
<property name="serviceUrl" value="service:jmx:rmi://remotehost:9875"/>
</bean>

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
<property name="objectName" value="bean:name=testBean"/>
<property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
<property name="server" ref="clientConnector"/>

</bean>

In the preceding example, we create an MBeanServerConnection that points to a remote machine that
uses the MBeanServerConnectionFactoryBean. This MBeanServerConnection is then passed to the
MBeanProxyFactoryBean through the server property. The proxy that is created forwards all
invocations to the MBeanServer through this MBeanServerConnection.

5.6. Notifications

Spring’s JMX offering includes comprehensive support for JMX notifications.

5.6.1. Registering Listeners for Notifications

Spring’s JMX support makes it easy to register any number of NotificationlListeners with any
number of MBeans (this includes MBeans exported by Spring’s MBeanExporter and MBeans
registered through some other mechanism). For example, consider the scenario where one would
like to be informed (through a Notification) each and every time an attribute of a target MBean
changes. The following example writes notifications to the console:

76

package com.example;

import javax.management.AttributeChangeNotification;
import javax.management.Notification;

import javax.management.NotificationFilter;

import javax.management.NotificationListener;

public class ConsolelLoggingNotificationListener
implements NotificationListener, NotificationFilter {

public void handleNotification(Notification notification, Object handback) {
System.out.println(notification);
System.out.println(handback);

}

public boolean isNotificationEnabled(Notification notification) {
return
AttributeChangeNotification.class.isAssignableFrom(notification.getClass());

}

The following example adds ConsolelLoggingNotificationListener (defined in the preceding
example) to notificationlListenerMappings

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>
</map>
</property>
<property name="notificationListenerMappings">
<map>
<entry key="bean:name=testBean1">
<bean class="com.example.ConsoleLoggingNotificationListener"/>
</entry>
</map>
</property>
</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

77

With the preceding configuration in place, every time a JMX Notification is broadcast from the
target MBean (bean:name=testBean1), the ConsolelLoggingNotificationListener bean that was
registered as a listener through the notificationlListenerMappings property is notified. The
ConsoleLoggingNotificationListener bean can then take whatever action it deems appropriate in
response to the Notification.

You can also use straight bean names as the link between exported beans and listeners, as the
following example shows:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>
</map>
</property>
<property name="notificationListenerMappings">
<map>
<entry key="testBean">
<bean class="com.example.ConsoleLoggingNotificationListener"/>
</entry>
</map>
</property>
</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

If you want to register a single NotificationListener instance for all of the beans that the enclosing
MBeanExporter exports, you can use the special wildcard (*) as the key for an entry in the
notificationListenerMappings property map, as the following example shows:

<property name="notificationListenerMappings">
<map>
<entry key="*">
<bean class="com.example.ConsolelLoggingNotificationListener"/>
</entry>
</map>
</property>

If you need to do the inverse (that is, register a number of distinct listeners against an MBean), you
must instead wuse the notificationlListeners list property (in preference to the
notificationlListenerMappings property). This time, instead of configuring a NotificationListener for

78

a single MBean, we configure NotificationListenerBean instances. A NotificationListenerBean
encapsulates a NotificationListener and the ObjectName (or ObjectNames) that it is to be registered
against in an MBeanServer. The NotificationListenerBean also encapsulates a number of other
properties, such as a NotificationFilter and an arbitrary handback object that can be used in
advanced JMX notification scenarios.

The configuration when using NotificationListenerBean instances is not wildly different to what
was presented previously, as the following example shows:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>
</map>
</property>
<property name="notificationListeners">
<list>
<bean class="org.springframework.jmx.export.NotificationListenerBean">
<constructor-arg>
<bean class="com.example.ConsolelLoggingNotificationListener"/>
</constructor-arg>
<property name="mappedObjectNames">
<list>
<value>bean:name=testBean1</value>
</list>
</property>
</bean>
</list>
</property>
</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

The preceding example is equivalent to the first notification example. Assume, then, that we want
to be given a handback object every time a Notification is raised and that we also want to filter out
extraneous Notifications by supplying a NotificationFilter. The following example accomplishes
these goals:

79

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean1"/>
<entry key="bean:name=testBean2" value-ref="testBean2"/>
</map>
</property>
<property name="notificationlListeners">
<list>
<bean class="org.springframework.jmx.export.NotificationListenerBean">
<constructor-arg ref="customerNotificationListener"/>
<property name="mappedObjectNames">
<list>
<!-- handles notifications from two distinct MBeans -->
<value>bean:name=testBeani</value>
<value>bean:name=testBean2</value>
</list>
</property>
<property name="handback">
<bean class="java.lang.String">
<constructor-arg value="This could be anything..."/>
</bean>
</property>
<property name="notificationFilter"
ref="customerNotificationListener"/>
</bean>
</list>
</property>
</bean>

<!-- implements both the NotificationlListener and NotificationFilter interfaces
-->

<bean id="customerNotificationListener"
class="com.example.ConsoleLoggingNotificationListener"/>

<bean id="testBean1" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="testBean2" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="ANOTHER TEST"/>
<property name="age" value="200"/>

</bean>

</beans>

(For a full discussion of what a handback object is and, indeed, what a NotificationFilter is, see the

80

section of the JMX specification (1.2) entitled 'The JMX Notification Model'.)

5.6.2. Publishing Notifications

Spring provides support not only for registering to receive Notifications but also for publishing
Notifications.

This section is really only relevant to Spring-managed beans that have been
o exposed as MBeans through an MBeanExporter. Any existing user-defined MBeans
should use the standard JMX APIs for notification publication.

The key interface in Spring’s JMX notification publication support is the NotificationPublisher
interface (defined in the org.springframework.jmx.export.notification package). Any bean that is
going to be exported as an MBean through an MBeanExporter instance can implement the related
NotificationPublisherAware interface to gain access to a NotificationPublisher instance. The
NotificationPublisherAware interface supplies an instance of a NotificationPublisher to the
implementing bean through a simple setter method, which the bean can then use to publish
Notifications.

As stated in the javadoc of the NotificationPublisher interface, managed beans that publish events
through the NotificationPublisher mechanism are not responsible for the state management of
notification listeners. Spring’s JMX support takes care of handling all the JMX infrastructure issues.
All you need to do, as an application developer, is implement the NotificationPublisherAware
interface and start publishing events by using the supplied NotificationPublisher instance. Note
that the NotificationPublisher is set after the managed bean has been registered with an
MBeanServer.

Using a NotificationPublisher instance is quite straightforward. You create a JMX Notification
instance (or an instance of an appropriate Notification subclass), populate the notification with the
data pertinent to the event that is to be published, and invoke the sendNotification(Notification)
on the NotificationPublisher instance, passing in the Notification.

In the following example, exported instances of the IJmxTestBean publish a NotificationEvent every
time the add(int, int) operation is invoked:

81

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/jmx/export/notification/NotificationPublisher.html

package org.springframework.jmx;

import org.springframework.jmx.export.notification.NotificationPublisherAware;
import org.springframework.jmx.export.notification.NotificationPublisher;
import javax.management.Notification;

public class ImxTestBean implements IJmxTestBean, NotificationPublisherAware {

private String name;

private int age;

private boolean isSuperman;

private NotificationPublisher publisher;

// other getters and setters omitted for clarity

public int add(int x, int y) {
int answer = x + y;
this.publisher.sendNotification(new Notification("add", this, 0));
return answer;

}

public void dontExposeMe() {
throw new RuntimeException();

}

public void setNotificationPublisher(NotificationPublisher notificationPublisher)
{ this.publisher = notificationPublisher;

}
}

The NotificationPublisher interface and the machinery to get it all working is one of the nicer
features of Spring’s JMX support. It does, however, come with the price tag of coupling your classes
to both Spring and JMX. As always, the advice here is to be pragmatic. If you need the functionality
offered by the NotificationPublisher and you can accept the coupling to both Spring and JMX, then
do so.

5.7. Further Resources

This section contains links to further resources about JMX:

* The JMX homepage at Oracle.
* The JMX specification (JSR-000003).
* The JMX Remote API specification (JSR-000160).

* The MX4] homepage. (MX4] is an open-source implementation of various JMX specs.)

82

https://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
https://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://mx4j.sourceforge.net/

Chapter 6. Email

This section describes how to send email with the Spring Framework.

Library dependencies

The following JAR needs to be on the classpath of your application in order to use the Spring
Framework’s email library:

» The JavaMail / Jakarta Mail 1.6 library

This library is freely available on the web—for example, in Maven Central as
com.sun.mail:jakarta.mail. Please make sure to use the latest 1.6.x version rather than Jakarta
Mail 2.0 (which comes with a different package namespace).

The Spring Framework provides a helpful utility library for sending email that shields you from the
specifics of the underlying mailing system and is responsible for low-level resource handling on
behalf of the client.

The org.springframework.mail package is the root level package for the Spring Framework’s email
support. The central interface for sending emails is the MailSender interface. A simple value object
that encapsulates the properties of a simple mail such as from and to (plus many others) is the
SimpleMailMessage class. This package also contains a hierarchy of checked exceptions that provide
a higher level of abstraction over the lower level mail system exceptions, with the root exception
being MailException. See the javadoc for more information on the rich mail exception hierarchy.

The org.springframework.mail.javamail.JavaMailSender interface adds specialized JavaMail features,
such as MIME message support to the MailSender interface (from which it inherits). JavaMailSender
also provides a callback interface called org.springframework.mail.javamail.MimeMessagePreparator
for preparing a MimeMessage.

6.1. Usage

Assume that we have a business interface called OrderManager, as the following example shows:

public interface OrderManager {

void placeOrder(Order order);

Further assume that we have a requirement stating that an email message with an order number
needs to be generated and sent to a customer who placed the relevant order.

83

https://eclipse-ee4j.github.io/mail/
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/mail/MailException.html

6.1.1. Basic MailSender and SimpleMailMessage Usage

The following example shows how to use MailSender and SimpleMailMessage to send an email when
someone places an order:

import org.springframework.mail.MailException;
import org.springframework.mail.MailSender;
import org.springframework.mail.SimpleMailMessage;

public class SimpleOrderManager implements OrderManager {

private MailSender mailSender;
private SimpleMailMessage templateMessage;

public void setMailSender(MailSender mailSender) {
this.mailSender = mailSender;

}

public void setTemplateMessage(SimpleMailMessage templateMessage) {
this.templateMessage = templateMessage;

}
public void placeOrder(Order order) {
// Do the business calculations...
// Call the collaborators to persist the order...

// Create a thread safe "copy" of the template message and customize it
SimpleMailMessage msg = new SimpleMailMessage(this.templateMessage);
msqg.setTo(order.getCustomer().getEmailAddress());
msg.setText(
"Dear " + order.getCustomer().getFirstName()
+ order.getCustomer().getLastName()

+ ", thank you for placing order. Your order number is
+ order.getOrderNumber());

try{
this.mailSender.send(msg);

}

catch (MailException ex) {
// simply log it and go on...
System.err.println(ex.getMessage());

The following example shows the bean definitions for the preceding code:

84

<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="mail.mycompany.example"/>
</bean>

<!-- this is a template message that we can pre-load with default state -->

<bean id="templateMessage" class="org.springframework.mail.SimpleMailMessage">
<property name="from" value="customerservice@mycompany.example"/>
<property name="subject" value="Your order"/>

</bean>

<bean id="orderManager" class="com.mycompany.businessapp.support.SimpleOrderManager">
<property name="mailSender" ref="mailSender"/>
<property name="templateMessage" ref="templateMessage"/>

</bean>

6.1.2. Using JavaMailSender and MimeMessagePreparator

This section describes another implementation of OrderManager that uses the MimeMessagePreparator
callback interface. In the following example, the mailSender property is of type JavaMailSender so
that we are able to use the JavaMail MimeMessage class:

85

86

import javax.mail.Message;

import javax.mail.MessagingException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

import javax.mail.internet.MimeMessage;

import org.springframework.mail.MailException;

import org.springframework.mail.javamail.JavaMailSender;

import org.springframework.mail.javamail.MimeMessagePreparator;

public class SimpleOrderManager implements OrderManager {
private JavaMailSender mailSender;

public void setMailSender(JavaMailSender mailSender) {
this.mailSender = mailSender;

}

public void placeOrder(final Order order) {
// Do the business calculations...
// Call the collaborators to persist the order...

MimeMessagePreparator preparator = new MimeMessagePreparator() {
public void prepare(MimeMessage mimeMessage) throws Exception {
mimeMessage.setRecipient(Message.RecipientType.TO0,
new InternetAddress(order.getCustomer().qgetEmailAddress()));
mimeMessage.setFrom(new InternetAddress("mail@mycompany.example"));
mimeMessage.setText("Dear " + order.getCustomer().getFirstName() +

+
order.getCustomer().getLastName() + ", thanks for your order.
n +
"Your order number is " + order.getOrderNumber() + ".");
}
I
try {
this.mailSender.send(preparator);
}
catch (MailException ex) {
// simply log it and go on...
System.err.println(ex.getMessage());
}
}
}

The mail code is a crosscutting concern and could well be a candidate for
refactoring into a custom Spring AOP aspect, which could then be run at
appropriate joinpoints on the OrderManager target.

core.pdf#aop

The Spring Framework’s mail support ships with the standard JavaMail implementation. See the
relevant javadoc for more information.

6.2. Using the JavaMail MimeMessageHelper

A class that comes in pretty handy when dealing with JavaMail messages is
org.springframework.mail.javamail.MimeMessageHelper, which shields you from having to use the
verbose JavaMail API. Using the MimeMessageHelper, it is pretty easy to create a MimeMessage, as the
following example shows:

// of course you would use DI in any real-world cases
JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();
MimeMessageHelper helper = new MimeMessageHelper(message);
helper.setTo("test@host.com");

helper.setText("Thank you for ordering!");

sender.send(message);

6.2.1. Sending Attachments and Inline Resources

Multipart email messages allow for both attachments and inline resources. Examples of inline
resources include an image or a stylesheet that you want to use in your message but that you do not
want displayed as an attachment.

Attachments

The following example shows you how to use the MimeMessageHelper to send an email with a single
JPEG image attachment:

87

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

helper.setText("Check out this image!");

// let's attach the infamous windows Sample file (this time copied to c:/)
FileSystemResource file = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addAttachment("CoolImage.jpg", file);

sender.send(message);

Inline Resources

The following example shows you how to use the MimeMessageHelper to send an email with an inline
image:

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

// use the true flag to indicate the text included is HTML
helper.setText("<html><body></body></html>", true);

// let's include the infamous windows Sample file (this time copied to c:/)
FileSystemResource res = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addInline("identifier1234", res);

sender.send(message);

Inline resources are added to the MimeMessage by using the specified Content-ID

A (identifier1234 in the above example). The order in which you add the text and
the resource are very important. Be sure to first add the text and then the
resources. If you are doing it the other way around, it does not work.

88

6.2.2. Creating Email Content by Using a Templating Library

The code in the examples shown in the previous sections explicitly created the content of the email
message, by using methods calls such as message.setText(..). This is fine for simple cases, and it is
okay in the context of the aforementioned examples, where the intent was to show you the very
basics of the APL

In your typical enterprise application, though, developers often do not create the content of email
messages by using the previously shown approach for a number of reasons:

* Creating HTML-based email content in Java code is tedious and error prone.
» There is no clear separation between display logic and business logic.
* Changing the display structure of the email content requires writing Java code, recompiling,

redeploying, and so on.

Typically, the approach taken to address these issues is to use a template library (such as
FreeMarker) to define the display structure of email content. This leaves your code tasked only with
creating the data that is to be rendered in the email template and sending the email. It is definitely
a best practice when the content of your email messages becomes even moderately complex, and,
with the Spring Framework’s support classes for FreeMarker, it becomes quite easy to do.

89

Chapter 7. Task Execution and Scheduling

The Spring Framework provides abstractions for the asynchronous execution and scheduling of
tasks with the TaskExecutor and TaskScheduler interfaces, respectively. Spring also features
implementations of those interfaces that support thread pools or delegation to Common] within an
application server environment. Ultimately, the use of these implementations behind the common
interfaces abstracts away the differences between Java SE 5, Java SE 6, and Java EE environments.

Spring also features integration classes to support scheduling with the Timer (part of the JDK since
1.3) and the Quartz Scheduler (https://www.quartz-scheduler.org/). You can set up both of those
schedulers by using a FactoryBean with optional references to Timer or Trigger instances,
respectively. Furthermore, a convenience class for both the Quartz Scheduler and the Timer is
available that lets you invoke a method of an existing target object (analogous to the normal
MethodInvokingFactoryBean operation).

7.1. The Spring TaskExecutor Abstraction

Executors are the JDK name for the concept of thread pools. The “executor” naming is due to the
fact that there is no guarantee that the underlying implementation is actually a pool. An executor
may be single-threaded or even synchronous. Spring’s abstraction hides implementation details
between the Java SE and Java EE environments.

Spring’s TaskExecutor interface is identical to the java.util.concurrent.Executor interface. In fact,
originally, its primary reason for existence was to abstract away the need for Java 5 when using
thread pools. The interface has a single method (execute(Runnable task)) that accepts a task for
execution based on the semantics and configuration of the thread pool.

The TaskExecutor was originally created to give other Spring components an abstraction for thread
pooling where needed. Components such as the ApplicationEventMulticaster, JMS’s
AbstractMessagelistenerContainer, and Quartz integration all use the TaskExecutor abstraction to
pool threads. However, if your beans need thread pooling behavior, you can also use this
abstraction for your own needs.

7.1.1. TaskExecutor Types

Spring includes a number of pre-built implementations of TaskExecutor. In all likelihood, you should
never need to implement your own. The variants that Spring provides are as follows:

* SyncTaskExecutor: This implementation does not run invocations asynchronously. Instead, each
invocation takes place in the calling thread. It is primarily used in situations where multi-
threading is not necessary, such as in simple test cases.

» SimpleAsyncTaskExecutor: This implementation does not reuse any threads. Rather, it starts up a
new thread for each invocation. However, it does support a concurrency limit that blocks any
invocations that are over the limit until a slot has been freed up. If you are looking for true
pooling, see ThreadPoolTaskExecutor, later in this list.

* ConcurrentTaskExecutor: This implementation is an adapter for a java.util.concurrent.Executor
instance. There is an alternative (ThreadPoolTaskExecutor) that exposes the Executor

90

https://www.quartz-scheduler.org/

configuration parameters as bean properties. There is rarely a need to use
ConcurrentTaskExecutor directly. However, if the ThreadPoolTaskExecutor is not flexible enough
for your needs, ConcurrentTaskExecutor is an alternative.

* ThreadPoolTaskExecutor: This implementation is most commonly used. It exposes bean
properties for configuring a java.util.concurrent.ThreadPoolExecutor and wraps it in a
TaskExecutor. If you need to adapt to a different kind of java.util.concurrent.Executor, we
recommend that you use a ConcurrentTaskExecutor instead.

* WorkManagerTaskExecutor: This implementation uses a Common] WorkManager as its backing
service provider and is the central convenience class for setting up Common]-based thread pool
integration on WebLogic or WebSphere within a Spring application context.

* DefaultManagedTaskExecutor: This implementation uses a JNDI-obtained ManagedExecutorService
in a JSR-236 compatible runtime environment (such as a Java EE 7+ application server),
replacing a Common] WorkManager for that purpose.

7.1.2. Using a TaskExecutor

Spring’s TaskExecutor implementations are used as simple JavaBeans. In the following example, we
define a bean that uses the ThreadPoolTaskExecutor to asynchronously print out a set of messages:

91

import org.springframework.core.task.TaskExecutor;
public class TaskExecutorExample {
private class MessagePrinterTask implements Runnable {
private String message;

public MessagePrinterTask(String message) {
this.message = message;

}

public void run() {
System.out.println(message);
}
}

private TaskExecutor taskExecutor;

public TaskExecutorExample(TaskExecutor taskExecutor) {
this.taskExecutor = taskExecutor;

}

public void printMessages() {
for(int i = 0; i < 25; i++) {
taskExecutor.execute(new MessagePrinterTask("Message" + i));

}

As you can see, rather than retrieving a thread from the pool and executing it yourself, you add
your Runnable to the queue. Then the TaskExecutor uses its internal rules to decide when the task
gets run.

To configure the rules that the TaskExecutor uses, we expose simple bean properties:

<bean id="taskExecutor"
class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
<property name="corePoolSize" value="5"/>
<property name="maxPoolSize" value="10"/>
<property name="queueCapacity" value="25"/>
</bean>

<bean id="taskExecutorExample" class="TaskExecutorExample">

<constructor-arg ref="taskExecutor"/>
</bean>

92

7.2. The Spring TaskScheduler Abstraction

In addition to the TaskExecutor abstraction, Spring 3.0 introduced a TaskScheduler with a variety of
methods for scheduling tasks to run at some point in the future. The following listing shows the
TaskScheduler interface definition:

public interface TaskScheduler {
ScheduledFuture schedule(Runnable task, Trigger trigger);
ScheduledFuture schedule(Runnable task, Instant startTime);
ScheduledFuture schedule(Runnable task, Date startTime);

ScheduledFuture scheduleAtFixedRate(Runnable task, Instant startTime, Duration
period);

ScheduledFuture scheduleAtFixedRate(Runnable task, Date startTime, long period);
ScheduledFuture scheduleAtFixedRate(Runnable task, Duration period);
ScheduledFuture scheduleAtFixedRate(Runnable task, long period);

ScheduledFuture scheduleWithFixedDelay(Runnable task, Instant startTime, Duration
delay);

ScheduledFuture scheduleWithFixedDelay(Runnable task, Date startTime, long delay);
ScheduledFuture scheduleWithFixedDelay(Runnable task, Duration delay);

ScheduledFuture scheduleWithFixedDelay(Runnable task, long delay);

The simplest method is the one named schedule that takes only a Runnable and a Date. That causes
the task to run once after the specified time. All of the other methods are capable of scheduling
tasks to run repeatedly. The fixed-rate and fixed-delay methods are for simple, periodic execution,
but the method that accepts a Trigger is much more flexible.

7.2.1. Trigger Interface

The Trigger interface is essentially inspired by JSR-236 which, as of Spring 3.0, was not yet officially
implemented. The basic idea of the Trigger is that execution times may be determined based on
past execution outcomes or even arbitrary conditions. If these determinations do take into account
the outcome of the preceding execution, that information is available within a TriggerContext. The
Trigger interface itself is quite simple, as the following listing shows:

93

public interface Trigger {

Date nextExecutionTime(TriggerContext triggerContext);

The TriggerContext is the most important part. It encapsulates all of the relevant data and is open
for extension in the future, if necessary. The TriggerContext is an interface (a SimpleTriggerContext
implementation is used by default). The following listing shows the available methods for Trigger
implementations.

public interface TriggerContext {
Date lastScheduledExecutionTime();
Date lastActualExecutionTime();

Date lastCompletionTime();

7.2.2. Trigger Implementations

Spring provides two implementations of the Trigger interface. The most interesting one is the
CronTrigger. It enables the scheduling of tasks based on cron expressions. For example, the
following task is scheduled to run 15 minutes past each hour but only during the 9-to-5 “business
hours” on weekdays:

scheduler.schedule(task, new CronTrigger("@ 15 9-17 * * MON-FRI"));

The other implementation is a PeriodicTrigger that accepts a fixed period, an optional initial delay
value, and a boolean to indicate whether the period should be interpreted as a fixed-rate or a fixed-
delay. Since the TaskScheduler interface already defines methods for scheduling tasks at a fixed rate
or with a fixed delay, those methods should be used directly whenever possible. The value of the
PeriodicTrigger implementation is that you can use it within components that rely on the Trigger
abstraction. For example, it may be convenient to allow periodic triggers, cron-based triggers, and
even custom trigger implementations to be used interchangeably. Such a component could take
advantage of dependency injection so that you can configure such Triggers externally and,
therefore, easily modify or extend them.

7.2.3. TaskScheduler implementations

As with Spring’s TaskExecutor abstraction, the primary benefit of the TaskScheduler arrangement is
that an application’s scheduling needs are decoupled from the deployment environment. This
abstraction level is particularly relevant when deploying to an application server environment
where threads should not be created directly by the application itself. For such scenarios, Spring
provides a TimerManagerTaskScheduler that delegates to a Common] TimerManager on WebLogic or

94

WebSphere as well as a more recent DefaultManagedTaskScheduler that delegates to a JSR-236
ManagedScheduledExecutorService in a Java EE 7+ environment. Both are typically configured with a
JNDI lookup.

Whenever external thread management is not a requirement, a simpler alternative is a local
ScheduledExecutorService setup within the application, which can be adapted through Spring’s
ConcurrentTaskScheduler. As a convenience, Spring also provides a ThreadPoolTaskScheduler, which
internally delegates to a ScheduledExecutorService to provide common bean-style configuration
along the lines of ThreadPoolTaskExecutor. These variants work perfectly fine for locally embedded
thread pool setups in lenient application server environments, as well —in particular on Tomcat
and Jetty.

7.3. Annotation Support for Scheduling and
Asynchronous Execution

Spring provides annotation support for both task scheduling and asynchronous method execution.

7.3.1. Enable Scheduling Annotations

To enable support for @Scheduled and @Async annotations, you can add @EnableScheduling and
@EnableAsync to one of your @Configuration classes, as the following example shows:

@Configuration
@EnableAsync
@EnableScheduling

public class AppConfig {

}

You can pick and choose the relevant annotations for your application. For example, if you need
only support for @Scheduled, you can omit @EnableAsync. For more fine-grained control, you can
additionally implement the SchedulingConfigurer interface, the AsyncConfigurer interface, or both.
See the SchedulingConfigurer and AsyncConfigurer javadoc for full details.

If you prefer XML configuration, you can use the <task:annotation-driven> element, as the
following example shows:

<task:annotation-driven executor="myExecutor" scheduler="myScheduler"/>
<task:executor id="myExecutor" pool-size="5"/>
<task:scheduler id="myScheduler" pool-size="10"/>

Note that, with the preceding XML, an executor reference is provided for handling those tasks that
correspond to methods with the @Async annotation, and the scheduler reference is provided for
managing those methods annotated with @Scheduled.

95

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/scheduling/annotation/SchedulingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/scheduling/annotation/AsyncConfigurer.html

The default advice mode for processing @Async annotations is proxy which allows
for interception of calls through the proxy only. Local calls within the same class

o cannot get intercepted that way. For a more advanced mode of interception,
consider switching to aspectj mode in combination with compile-time or load-time
weaving.

7.3.2. The @Scheduled annotation

You can add the @Scheduled annotation to a method, along with trigger metadata. For example, the
following method is invoked every five seconds with a fixed delay, meaning that the period is
measured from the completion time of each preceding invocation:

@Scheduled(fixedDelay=5000)
public void doSomething() {
// something that should run periodically

}

If you need a fixed-rate execution, you can change the property name specified within the
annotation. The following method is invoked every five seconds (measured between the successive
start times of each invocation):

@Scheduled(fixedRate=5000)
public void doSomething() {
// something that should run periodically

}

For fixed-delay and fixed-rate tasks, you can specify an initial delay by indicating the number of
milliseconds to wait before the first execution of the method, as the following fixedRate example
shows:

@Scheduled(initialDelay=1000, fixedRate=5000)
public void doSomething() {
// something that should run periodically

}

If simple periodic scheduling is not expressive enough, you can provide a cron expression. The
following example runs only on weekdays:

@Scheduled(cron="*/5 * * * * MON-FRI")
public void doSomething() {
// something that should run on weekdays only

}

96

G You can also use the zone attribute to specify the time zone in which the cron
- expression is resolved.

Notice that the methods to be scheduled must have void returns and must not expect any
arguments. If the method needs to interact with other objects from the application context, those
would typically have been provided through dependency injection.

As of Spring Framework 4.3, @Scheduled methods are supported on beans of any
scope.

Make sure that you are not initializing multiple instances of the same @Scheduled
annotation class at runtime, unless you do want to schedule callbacks to each such

o instance. Related to this, make sure that you do not use @Configurable on bean
classes that are annotated with @Scheduled and registered as regular Spring beans
with the container. Otherwise, you would get double initialization (once through
the container and once through the @Configurable aspect), with the consequence of
each @Scheduled method being invoked twice.

7.3.3. The @Async annotation

You can provide the @Async annotation on a method so that invocation of that method occurs
asynchronously. In other words, the caller returns immediately upon invocation, while the actual
execution of the method occurs in a task that has been submitted to a Spring TaskExecutor. In the
simplest case, you can apply the annotation to a method that returns void, as the following example
shows:

@Async
void doSomething() {
// this will be run asynchronously

}

Unlike the methods annotated with the @Scheduled annotation, these methods can expect
arguments, because they are invoked in the “normal” way by callers at runtime rather than from a
scheduled task being managed by the container. For example, the following code is a legitimate
application of the @Async annotation:

@Async
void doSomething(String s) {
// this will be run asynchronously

}

Even methods that return a value can be invoked asynchronously. However, such methods are
required to have a Future-typed return value. This still provides the benefit of asynchronous
execution so that the caller can perform other tasks prior to calling get() on that Future. The
following example shows how to use @Async on a method that returns a value:

97

@Async
Future<String> returnSomething(int i) {
// this will be run asynchronously

}

@Async methods may not only declare a regular java.util.concurrent.Future return
type but also Spring’s org.springframework.util.concurrent.ListenableFuture or, as
O of Spring 4.2, JDK &s java.util.concurrent.CompletableFuture, for richer
v interaction with the asynchronous task and for immediate composition with
further processing steps.

You can not use @Async in conjunction with lifecycle callbacks such as @PostConstruct. To
asynchronously initialize Spring beans, you currently have to use a separate initializing Spring
bean that then invokes the @Async annotated method on the target, as the following example shows:

public class SampleBeanImpl implements SampleBean {

@Async

void doSomething() {
/] ...

}

public class SampleBeanInitializer {
private final SampleBean bean;

public SampleBeanInitializer(SampleBean bean) {
this.bean = bean;

}

@PostConstruct
public void initialize() {
bean.doSomething();

}
}
There is no direct XML equivalent for @Async, since such methods should be
designed for asynchronous execution in the first place, not externally re-declared
o to be asynchronous. However, you can manually set up Spring’s
AsyncExecutionInterceptor with Spring AOP, in combination with a custom
pointcut.

98

7.3.4. Executor Qualification with @Async

By default, when specifying @Async on a method, the executor that is used is the one configured
when enabling async support, i.e. the “annotation-driven” element if you are using XML or your
AsyncConfigurer implementation, if any. However, you can use the value attribute of the @Async
annotation when you need to indicate that an executor other than the default should be used when
executing a given method. The following example shows how to do so:

@Async("otherExecutor™)
void doSomething(String s) {
// this will be run asynchronously by "otherExecutor"

}

In this case, "otherExecutor” can be the name of any Executor bean in the Spring container, or it
may be the name of a qualifier associated with any Executor (for example, as specified with the
<qualifier>element or Spring’s @Qualifier annotation).

7.3.5. Exception Management with @Async

When an @Async method has a Future-typed return value, it is easy to manage an exception that was
thrown during the method execution, as this exception is thrown when calling get on the Future
result. With a void return type, however, the exception is uncaught and cannot be transmitted. You
can provide an AsyncUncaughtExceptionHandler to handle such exceptions. The following example
shows how to do so:

public class MyAsyncUncaughtExceptionHandler implements AsyncUncaughtExceptionHandler
{

@0verride
public void handleUncaughtException(Throwable ex, Method method, Object... params)
{
// handle exception
}
}

By default, the exception is merely logged. You can define a custom AsyncUncaughtExceptionHandler
by using AsyncConfigurer or the <task:annotation-driven/> XML element.

7.4. The task Namespace

As of version 3.0, Spring includes an XML namespace for configuring TaskExecutor and
TaskScheduler instances. It also provides a convenient way to configure tasks to be scheduled with a
trigger.

7.4.1. The 'scheduler' Element

The following element creates a ThreadPoolTaskScheduler instance with the specified thread pool

99

size:

<task:scheduler id="scheduler" pool-size="10"/>

The value provided for the id attribute is used as the prefix for thread names within the pool. The
scheduler element is relatively straightforward. If you do not provide a pool-size attribute, the
default thread pool has only a single thread. There are no other configuration options for the
scheduler.

7.4.2. The executor Element

The following creates a ThreadPoolTaskExecutor instance:

<task:executor id="executor" pool-size="10"/>

As with the scheduler shown in the previous section, the value provided for the id attribute is used
as the prefix for thread names within the pool. As far as the pool size is concerned, the executor
element supports more configuration options than the scheduler element. For one thing, the thread
pool for a ThreadPoolTaskExecutor is itself more configurable. Rather than only a single size, an
executor’s thread pool can have different values for the core and the max size. If you provide a
single value, the executor has a fixed-size thread pool (the core and max sizes are the same).
However, the executor element’s pool-size attribute also accepts a range in the form of min-max. The
following example sets a minimum value of 5 and a maximum value of 25:

<task:executor
id="executorWithPoolSizeRange"
pool-size="5-25"
queue-capacity="100"/>

In the preceding configuration, a queue-capacity value has also been provided. The configuration of
the thread pool should also be considered in light of the executor’s queue capacity. For the full
description of the relationship between pool size and queue capacity, see the documentation for
ThreadPoolExecutor. The main idea is that, when a task is submitted, the executor first tries to use a
free thread if the number of active threads is currently less than the core size. If the core size has
been reached, the task is added to the queue, as long as its capacity has not yet been reached. Only
then, if the queue’s capacity has been reached, does the executor create a new thread beyond the
core size. If the max size has also been reached, then the executor rejects the task.

By default, the queue is unbounded, but this is rarely the desired configuration, because it can lead
to OutOfMemoryErrors if enough tasks are added to that queue while all pool threads are busy.
Furthermore, if the queue is unbounded, the max size has no effect at all. Since the executor always
tries the queue before creating a new thread beyond the core size, a queue must have a finite
capacity for the thread pool to grow beyond the core size (this is why a fixed-size pool is the only
sensible case when using an unbounded queue).

Consider the case, as mentioned above, when a task is rejected. By default, when a task is rejected, a

100

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html

thread pool executor throws a TaskRejectedException. However, the rejection policy is actually
configurable. The exception is thrown when using the default rejection policy, which is the
AbortPolicy implementation. For applications where some tasks can be skipped under heavy load,
you can instead configure either DiscardPolicy or DiscardOldestPolicy. Another option that works
well for applications that need to throttle the submitted tasks under heavy load is the
CallerRunsPolicy. Instead of throwing an exception or discarding tasks, that policy forces the thread
that is calling the submit method to run the task itself. The idea is that such a caller is busy while
running that task and not able to submit other tasks immediately. Therefore, it provides a simple
way to throttle the incoming load while maintaining the limits of the thread pool and queue.
Typically, this allows the executor to “catch up” on the tasks it is handling and thereby frees up
some capacity on the queue, in the pool, or both. You can choose any of these options from an
enumeration of values available for the rejection-policy attribute on the executor element.

The following example shows an executor element with a number of attributes to specify various
behaviors:

<task:executor
id="executorWithCallerRunsPolicy"
pool-size="5-25"
queue-capacity="100"
rejection-policy="CALLER_RUNS"/>

Finally, the keep-alive setting determines the time limit (in seconds) for which threads may remain
idle before being stopped. If there are more than the core number of threads currently in the pool,
after waiting this amount of time without processing a task, excess threads get stopped. A time
value of zero causes excess threads to stop immediately after executing a task without remaining
follow-up work in the task queue. The following example sets the keep-alive value to two minutes:

<task:executor
id="executorWithKeepAlive"
pool-size="5-25"
keep-alive="120"/>

7.4.3. The 'scheduled-tasks' Element

The most powerful feature of Spring’s task namespace is the support for configuring tasks to be
scheduled within a Spring Application Context. This follows an approach similar to other “method-
invokers” in Spring, such as that provided by the JMS namespace for configuring message-driven
PO]JOs. Basically, a ref attribute can point to any Spring-managed object, and the method attribute
provides the name of a method to be invoked on that object. The following listing shows a simple
example:

101

<task:scheduled-tasks scheduler="myScheduler">
<task:scheduled ref="beanA" method="methodA" fixed-delay="5000"/>
</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

The scheduler is referenced by the outer element, and each individual task includes the
configuration of its trigger metadata. In the preceding example, that metadata defines a periodic
trigger with a fixed delay indicating the number of milliseconds to wait after each task execution
has completed. Another option is fixed-rate, indicating how often the method should be run
regardless of how long any previous execution takes. Additionally, for both fixed-delay and fixed-
rate tasks, you can specify an 'initial-delay' parameter, indicating the number of milliseconds to
wait before the first execution of the method. For more control, you can instead provide a cron
attribute to provide a cron expression. The following example shows these other options:

<task:scheduled-tasks scheduler="myScheduler">

<task:scheduled ref="beanA" method="methodA" fixed-delay="5000" initial-
delay="1000"/>

<task:scheduled ref="beanB" method="methodB" fixed-rate="5000"/>

<task:scheduled ref="beanC" method="methodC" cron="*/5 * * * * MON-FRI"/>
</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

7.5. Cron Expressions

All Spring cron expressions have to conform to the same format, whether you are using them in
@Scheduled annotations, task:scheduled-tasks elements, or someplace else. A well-formed cron
expression, such as * * * * * * consists of six space-separated time and date fields, each with its
own range of valid values:

second (0-59)

minute (@ - 59)

hour (0 - 23)

day of the month (1 - 31)

| month (1 - 12) (or JAN-DEC)
| day of the week (@ - 7)
| | (@ or 7 is Sunday, or MON-SUN)
|

There are some rules that apply:

* A field may be an asterisk (*), which always stands for “first-last”. For the day-of-the-month or
day-of-the-week fields, a question mark (?) may be used instead of an asterisk.

102

* Commas (,) are used to separate items of a list.

* Two numbers separated with a hyphen (-) express a range of numbers. The specified range is
inclusive.

+ Following a range (or *) with / specifies the interval of the number’s value through the range.

* English names can also be used for the day-of-month and day-of-week fields. Use the first three
letters of the particular day or month (case does not matter).

* The day-of-month and day-of-week fields can contain a L character, which has a different
meaning

o In the day-of-month field, L stands for the last day of the month. If followed by a negative
offset (that is, L-n), it means nth-to-last day of the month.

o In the day-of-week field, L stands for the last day of the week. If prefixed by a number or
three-letter name (dL or DDDL), it means the last day of week (d or DDD) in the month.

* The day-of-month field can be nW, which stands for the nearest weekday to day of the month n. If n
falls on Saturday, this yields the Friday before it. If n falls on Sunday, this yields the Monday
after, which also happens if n is 1 and falls on a Saturday (that is: 1W stands for the first weekday
of the month).

o If the day-of-month field is LW, it means the last weekday of the month.

* The day-of-week field can be d#n (or DDD#n), which stands for the nth day of week d (or DDD) in the
month.

Here are some examples:

Cron Expression Meaning

09 **** top of every hour of every day

*/10Q x ok ok ox every ten seconds

008-10 * ** 8,9 and 10 o’clock of every day

006,19 *** 6:00 AM and 7:00 PM every day

0 0/30 8-10 * * * 8:00, 8:30, 9:00, 9:30, 10:00 and 10:30 every day
0 0 9-17 * * MON-FRI on the hour nine-to-five weekdays

000 25 DEC ? every Christmas Day at midnight
eooL*"* last day of the month at midnight
000L-3** third-to-last day of the month at midnight
000**5L last Friday of the month at midnight

000 ** THUL last Thursday of the month at midnight
000 1W™* first weekday of the month at midnight
000 LW=** last weekday of the month at midnight
000 7* 54 the second Friday in the month at midnight
000 7 * MON#1 the first Monday in the month at midnight

103

7.5.1. Macros

Expressions such as @ 0 * * * * are hard for humans to parse and are, therefore, hard to fix in case
of bugs. To improve readability, Spring supports the following macros, which represent commonly
used sequences. You can use these macros instead of the six-digit value, thus: @Scheduled(cron =
"ehourly").

Macro Meaning

@yearly (or @annually) onceayear(@ 0 0 11 %)
@monthly onceamonth (@ 0 0 1 * *)
@weekly once aweek (0 0 0 * * 0)
@daily (or @midnight) onceaday (@ 0 8 * * *),or
@hourly once an hour, (0 0 * * * ¥)

7.6. Using the Quartz Scheduler

Quartz uses Trigger, Job, and JobDetail objects to realize scheduling of all kinds of jobs. For the
basic concepts behind Quartz, see https://www.quartz-scheduler.org/. For convenience purposes,
Spring offers a couple of classes that simplify using Quartz within Spring-based applications.

7.6.1. Using the JobDetailFactoryBean

Quartz JobDetail objects contain all the information needed to run a job. Spring provides a
JobDetailFactoryBean, which provides bean-style properties for XML configuration purposes.
Consider the following example:

<bean name="exampleJob"
class="org.springframework.scheduling.quartz.JobDetailFactoryBean">
<property name="jobClass" value="example.ExampleJob"/>
<property name="jobDataAsMap">
<map>
<entry key="timeout" value="5"/>
</map>
</property>
</bean>

The job detail configuration has all the information it needs to run the job (ExampleJob). The timeout
is specified in the job data map. The job data map is available through the JobExecutionContext
(passed to you at execution time), but the JobDetail also gets its properties from the job data
mapped to properties of the job instance. So, in the following example, the ExampleJob contains a
bean property named timeout, and the JobDetail has it applied automatically:

104

https://www.quartz-scheduler.org/

package example;
public class ExampleJob extends QuartzJobBean {

private int timeout;

/**

* Setter called after the ExampleJob is instantiated
* with the value from the JobDetailFactoryBean (5)
*/
public void setTimeout(int timeout) {

this.timeout = timeout;

}

protected void executeInternal(JobExecutionContext ctx) throws
JobExecutionException {
// do the actual work

}

All additional properties from the job data map are available to you as well.

By using the name and group properties, you can modify the name and the group of
o the job, respectively. By default, the name of the job matches the bean name of the
JobDetailFactoryBean (exampleJob in the preceding example above).

7.6.2. Using the MethodInvokingJobDetailFactoryBean

Often you merely need to invoke a method on a specific object. By wusing the
MethodInvokingJobDetailFactoryBean, you can do exactly this, as the following example shows:

<bean id="jobDetail"
class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
<property name="targetObject" ref="exampleBusinessObject"/>
<property name="targetMethod" value="doIt"/>
</bean>

The preceding example results in the doIt method being called on the exampleBusinessObject
method, as the following example shows:

105

public class ExampleBusinessObject {
// properties and collaborators

public void doIt() {
// do the actual work

}

<bean id="exampleBusinessObject" class="examples.ExampleBusinessObject"/>

By using the MethodInvokingJobDetailFactoryBean, you need not create one-line jobs that merely
invoke a method. You need only create the actual business object and wire up the detail object.

By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering with each other.
If you specify two triggers for the same JobDetail, it is possible that, before the first job has finished,
the second one starts. If JobDetail classes implement the Stateful interface, this does not happen.
The second job does not start before the first one has finished. To make jobs resulting from the
MethodInvokingJobDetailFactoryBean be non-concurrent, set the concurrent flag to false, as the
following example shows:

<bean id="jobDetail"
class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
<property name="targetObject" ref="exampleBusinessObject"/>
<property name="targetMethod" value="doIt"/>
<property name="concurrent" value="false"/>
</bean>

o By default, jobs will run in a concurrent fashion.

7.6.3. Wiring up Jobs by Using Triggers and SchedulerFactoryBean

We have created job details and jobs. We have also reviewed the convenience bean that lets you
invoke a method on a specific object. Of course, we still need to schedule the jobs themselves. This
is done by using triggers and a SchedulerFactoryBean. Several triggers are available within Quartz,
and Spring offers two Quartz FactoryBean implementations with convenient defaults:
CronTriggerFactoryBean and SimpleTriggerFactoryBean.

Triggers need to be scheduled. Spring offers a SchedulerFactoryBean that exposes triggers to be set as
properties. SchedulerFactoryBean schedules the actual jobs with those triggers.

The following listing uses both a SimpleTriggerFactoryBean and a CronTriggerFactoryBean:

106

<bean id="simpleTrigger"
class="org.springframework.scheduling.quartz.SimpleTriggerFactoryBean">
<!-- see the example of method invoking job above -->
<property name="jobDetail" ref="jobDetail"/>
<!-- 10 seconds -->
<property name="startDelay" value="10000"/>
<!-- repeat every 50 seconds -->
<property name="repeatInterval" value="50000"/>
</bean>

<bean id="cronTrigger"
class="org.springframework.scheduling.quartz.CronTriggerFactoryBean">
<property name="jobDetail" ref="exampleJob"/>
<!-- run every morning at 6 AM -->
<property name="cronExpression" value="0 0 6 * * ?"/>
</bean>

The preceding example sets up two triggers, one running every 50 seconds with a starting delay of
10 seconds and one running every morning at 6 AM. To finalize everything, we need to set up the
SchedulerFactoryBean, as the following example shows:

<bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
<property name="triggers">
<list>
<ref bean="cronTrigger"/>
<ref bean="simpleTrigger"/>
</list>
</property>
</bean>

More properties are available for the SchedulerFactoryBean, such as the calendars used by the job
details, properties to customize Quartz with, and others. See the SchedulerFactoryBean javadoc for
more information.

107

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/scheduling/quartz/SchedulerFactoryBean.html

Chapter 8. Cache Abstraction

Since version 3.1, the Spring Framework provides support for transparently adding caching to an
existing Spring application. Similar to the transaction support, the caching abstraction allows
consistent use of various caching solutions with minimal impact on the code.

As from Spring 4.1, the cache abstraction has been significantly extended with the support of JSR-
107 annotations and more customization options.

8.1. Understanding the Cache Abstraction

Cache vs Buffer

The terms, “buffer” and “cache,” tend to be used interchangeably. Note, however, that they
represent different things. Traditionally, a buffer is used as an intermediate temporary store
for data between a fast and a slow entity. As one party would have to wait for the other
(which affects performance), the buffer alleviates this by allowing entire blocks of data to
move at once rather than in small chunks. The data is written and read only once from the
buffer. Furthermore, the buffers are visible to at least one party that is aware of it.

A cache, on the other hand, is, by definition, hidden, and neither party is aware that caching
occurs. It also improves performance but does so by letting the same data be read multiple
times in a fast fashion.

You can find a further explanation of the differences between a buffer and a cache here.

At its core, the cache abstraction applies caching to Java methods, thus reducing the number of
executions based on the information available in the cache. That is, each time a targeted method is
invoked, the abstraction applies a caching behavior that checks whether the method has been
already invoked for the given arguments. If it has been invoked, the cached result is returned
without having to invoke the actual method. If the method has not been invoked, then it is invoked,
and the result is cached and returned to the user so that, the next time the method is invoked, the
cached result is returned. This way, expensive methods (whether CPU- or I0-bound) can be invoked
only once for a given set of parameters and the result reused without having to actually invoke the
method again. The caching logic is applied transparently without any interference to the invoker.

This approach works only for methods that are guaranteed to return the same
o output (result) for a given input (or arguments) no matter how many times it is
invoked.

The caching abstraction provides other cache-related operations, such as the ability to update the
content of the cache or to remove one or all entries. These are useful if the cache deals with data
that can change during the course of the application.

As with other services in the Spring Framework, the caching service is an abstraction (not a cache
implementation) and requires the use of actual storage to store the cache data—that is, the
abstraction frees you from having to write the caching logic but does not provide the actual data

108

data-access.pdf#transaction
https://en.wikipedia.org/wiki/Cache_(computing)#The_difference_between_buffer_and_cache

store. This abstraction is materialized by the org.springframework.cache.Cache and
org.springframework.cache.CacheManager interfaces.

Spring provides a few implementations of that abstraction: JDK java.util.concurrent.ConcurrentMap
based caches, Ehcache 2.x, Gemfire cache, Caffeine, and JSR-107 compliant caches (such as Ehcache
3.x). See Plugging-in Different Back-end Caches for more information on plugging in other cache
stores and providers.

The caching abstraction has no special handling for multi-threaded and multi-
o process environments, as such features are handled by the cache implementation.

If you have a multi-process environment (that is, an application deployed on several nodes), you
need to configure your cache provider accordingly. Depending on your use cases, a copy of the
same data on several nodes can be enough. However, if you change the data during the course of
the application, you may need to enable other propagation mechanisms.

Caching a particular item is a direct equivalent of the typical get-if-not-found-then- proceed-and-
put-eventually code blocks found with programmatic cache interaction. No locks are applied, and
several threads may try to load the same item concurrently. The same applies to eviction. If several
threads are trying to update or evict data concurrently, you may use stale data. Certain cache
providers offer advanced features in that area. See the documentation of your cache provider for
more details.

To use the cache abstraction, you need to take care of two aspects:

* Caching declaration: Identify the methods that need to be cached and their policy.

» Cache configuration: The backing cache where the data is stored and from which it is read.

8.2. Declarative Annotation-based Caching

For caching declaration, Spring’s caching abstraction provides a set of Java annotations:

* @Cacheable: Triggers cache population.

» @CacheEvict: Triggers cache eviction.

» @CachePut: Updates the cache without interfering with the method execution.
» @Caching: Regroups multiple cache operations to be applied on a method.

» @CacheConfig: Shares some common cache-related settings at class-level.

8.2.1. The @Cacheable Annotation

As the name implies, you can use @Cacheable to demarcate methods that are cacheable — that is,
methods for which the result is stored in the cache so that, on subsequent invocations (with the
same arguments), the value in the cache is returned without having to actually invoke the method.
In its simplest form, the annotation declaration requires the name of the cache associated with the
annotated method, as the following example shows:

109

https://www.ehcache.org/
https://github.com/ben-manes/caffeine/wiki

@Cacheable("books")
public Book findBook(ISBN isbn) {...}

In the preceding snippet, the findBook method is associated with the cache named books. Each time
the method is called, the cache is checked to see whether the invocation has already been run and
does not have to be repeated. While in most cases, only one cache is declared, the annotation lets
multiple names be specified so that more than one cache is being used. In this case, each of the
caches is checked before invoking the method —if at least one cache is hit, the associated value is
returned.

o All the other caches that do not contain the value are also updated, even though
the cached method was not actually invoked.

The following example uses @Cacheable on the findBook method:

@Cacheable({"books", "isbns"})
public Book findBook(ISBN isbn) {...}

Default Key Generation

Since caches are essentially key-value stores, each invocation of a cached method needs to be
translated into a suitable key for cache access. The caching abstraction uses a simple KeyGenerator
based on the following algorithm:

* If no params are given, return SimpleKey.EMPTY.
* If only one param is given, return that instance.

 If more than one param is given, return a SimpleKey that contains all parameters.

This approach works well for most use-cases, as long as parameters have natural keys and
implement valid hashCode() and equals() methods. If that is not the case, you need to change the
strategy.

To provide a different default key generator, you need to implement the
org.springframework.cache.interceptor.KeyGenerator interface.

The default key generation strategy changed with the release of Spring 4.0. Earlier

versions of Spring used a key generation strategy that, for multiple key

parameters, considered only the hashCode() of parameters and not equals(). This

could cause unexpected key collisions (see SPR-10237 for background). The new
o SimpleKeyGenerator uses a compound Kkey for such scenarios.

If you want to keep using the previous key strategy, you can configure the
deprecated org.springframework.cache.interceptor.DefaultKeyGenerator class or
create a custom hash-based KeyGenerator implementation.

110

https://jira.spring.io/browse/SPR-10237

Custom Key Generation Declaration

Since caching is generic, the target methods are quite likely to have various signatures that cannot
be readily mapped on top of the cache structure. This tends to become obvious when the target
method has multiple arguments out of which only some are suitable for caching (while the rest are
used only by the method logic). Consider the following example:

@Cacheable("books")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

At first glance, while the two boolean arguments influence the way the book is found, they are no
use for the cache. Furthermore, what if only one of the two is important while the other is not?

For such cases, the @Cacheable annotation lets you specify how the key is generated through its key
attribute. You can use SpEL to pick the arguments of interest (or their nested properties), perform
operations, or even invoke arbitrary methods without having to write any code or implement any
interface. This is the recommended approach over the default generator, since methods tend to be
quite different in signatures as the code base grows. While the default strategy might work for
some methods, it rarely works for all methods.

The following examples use various SpEL declarations (if you are not familiar with SpEL, do
yourself a favor and read Spring Expression Language):

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@Cacheable(cacheNames="books", key="#isbn.rawNumber")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@Cacheable(cacheNames="books", key="T(someType).hash(#isbn)")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

The preceding snippets show how easy it is to select a certain argument, one of its properties, or
even an arbitrary (static) method.

If the algorithm responsible for generating the key is too specific or if it needs to be shared, you can
define a custom keyGenerator on the operation. To do so, specify the name of the KeyGenerator bean
implementation to use, as the following example shows:

@Cacheable(cacheNames="books", keyGenerator="myKeyGenerator")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

o The key and keyGenerator parameters are mutually exclusive and an operation that
specifies both results in an exception.

111

core.pdf#expressions
core.pdf#expressions

Default Cache Resolution

The caching abstraction uses a simple CacheResolver that retrieves the caches defined at the
operation level by using the configured CacheManager.

To provide a different default cache resolver, you need to implement the
org.springframework.cache.interceptor.CacheResolver interface.

Custom Cache Resolution

The default cache resolution fits well for applications that work with a single CacheManager and have
no complex cache resolution requirements.

For applications that work with several cache managers, you can set the cacheManager to use for
each operation, as the following example shows:

@Cacheable(cacheNames="books", cacheManager="anotherCacheManager") @
public Book findBook(ISBN isbn) {...}

@ Specifying anotherCacheManager.

You can also replace the CacheResolver entirely in a fashion similar to that of replacing key
generation. The resolution is requested for every cache operation, letting the implementation
actually resolve the caches to use based on runtime arguments. The following example shows how
to specify a CacheResolver:

@Cacheable(cacheResolver="runtimeCacheResolver") @®
public Book findBook(ISBN isbn) {...}

@ Specifying the CacheResolver.

Since Spring 4.1, the value attribute of the cache annotations are no longer
mandatory, since this particular information can be provided by the CacheResolver
regardless of the content of the annotation.

o Similarly to key and keyGenerator, the cacheManager and cacheResolver parameters
are mutually exclusive, and an operation specifying both results in an exception.
as a custom CacheManager is ignored by the CacheResolver implementation. This is
probably not what you expect.

Synchronized Caching

In a multi-threaded environment, certain operations might be concurrently invoked for the same
argument (typically on startup). By default, the cache abstraction does not lock anything, and the
same value may be computed several times, defeating the purpose of caching.

For those particular cases, you can use the sync attribute to instruct the underlying cache provider
to lock the cache entry while the value is being computed. As a result, only one thread is busy
computing the value, while the others are blocked until the entry is updated in the cache. The

112

following example shows how to use the sync attribute:

@Cacheable(cacheNames="foos", sync=true) @®
public Foo executeExpensiveOperation(String id) {...}

@ Using the sync attribute.

This is an optional feature, and your favorite cache library may not support it. All
o CacheManager implementations provided by the core framework support it. See the
documentation of your cache provider for more details.

Conditional Caching

Sometimes, a method might not be suitable for caching all the time (for example, it might depend
on the given arguments). The cache annotations support such use cases through the condition
parameter, which takes a SpEL expression that is evaluated to either true or false. If true, the
method is cached. If not, it behaves as if the method is not cached (that is, the method is invoked
every time no matter what values are in the cache or what arguments are used). For example, the
following method is cached only if the argument name has a length shorter than 32:

@Cacheable(cacheNames="book", condition="#name.length() < 32") @
public Book findBook(String name)

@ Setting a condition on @Cacheable.

In addition to the condition parameter, you can use the unless parameter to veto the adding of a
value to the cache. Unlike condition, unless expressions are evaluated after the method has been
invoked. To expand on the previous example, perhaps we only want to cache paperback books, as
the following example does:

@Cacheable(cacheNames="book", condition="#name.length() < 32",
unless="#result.hardback") @
public Book findBook(String name)

@ Using the unless attribute to block hardbacks.

The cache abstraction supports java.util.Optional, using its content as the cached value only if it is
present. #iresult always refers to the business entity and never a supported wrapper, so the
previous example can be rewritten as follows:

@Cacheable(cacheNames="book", condition="#name.length() < 32",
unless="#result?.hardback")
public Optional<Book> findBook(String name)

Note that result still refers to Book and not Optional. As it might be null, we should use the safe
navigation operator.

113

Available Caching SpEL Evaluation Context

Each SpEL expression evaluates against a dedicated context. In addition to the built-in parameters,
the framework provides dedicated caching-related metadata, such as the argument names. The
following table describes the items made available to the context so that you can use them for key
and conditional computations:

Table 9. Cache SpEL available metadata

Name Location Description Example

methodName Root object The name of the #iroot.methodName
method being invoked

method Root object The method being #root.method.name
invoked

target Root object The target object being #root.target
invoked

targetClass Root object The class of the target #root.targetClass

being invoked

args Root object The arguments (as #root.args[0]
array) used for
invoking the target

caches Root object Collection of caches #troot.caches[0].name
against which the
current method is run

Argument name Evaluation context Name of any of the #iban or #a0 (you can
method arguments. If also use #p@ or #p<#arg>
the names are not notation as an alias).

available (perhaps due
to having no debug
information), the
argument names are
also available under
the #a<#arg> where #arg
stands for the
argument index
(starting from 0).

114

core.pdf#expressions-language-ref

Name Location Description Example

result Evaluation context The result of the fresult
method call (the value
to be cached). Only
available in unless
expressions, cache put
expressions (to
compute the key), or
cache evict expressions
(when beforeInvocation
is false). For supported
wrappers (such as
Optional), #iresult
refers to the actual
object, not the wrapper.

8.2.2. The @CachePut Annotation

When the cache needs to be updated without interfering with the method execution, you can use
the @CachePut annotation. That is, the method is always invoked and its result is placed into the
cache (according to the @CachePut options). It supports the same options as @Cacheable and should be
used for cache population rather than method flow optimization. The following example uses the
@CachePut annotation:

@CachePut(cacheNames="book", key="#isbn")
public Book updateBook(ISBN isbn, BookDescriptor descriptor)

Using @CachePut and @Cacheable annotations on the same method is generally
strongly discouraged because they have different behaviors. While the latter
causes the method invocation to be skipped by using the cache, the former forces

o the invocation in order to run a cache update. This leads to unexpected behavior
and, with the exception of specific corner-cases (such as annotations having
conditions that exclude them from each other), such declarations should be
avoided. Note also that such conditions should not rely on the result object (that is,
the #iresult variable), as these are validated up-front to confirm the exclusion.

8.2.3. The @CacheEvict annotation

The cache abstraction allows not just population of a cache store but also eviction. This process is
useful for removing stale or unused data from the cache. As opposed to @Cacheable, @CacheEvict
demarcates methods that perform cache eviction (that is, methods that act as triggers for removing
data from the cache). Similarly to its sibling, @CacheEvict requires specifying one or more caches
that are affected by the action, allows a custom cache and key resolution or a condition to be
specified, and features an extra parameter (allEntries) that indicates whether a cache-wide
eviction needs to be performed rather than just an entry eviction (based on the key). The following
example evicts all entries from the books cache:

115

@CacheEvict(cacheNames="books", allEntries=true) @®
public void loadBooks(InputStream batch)

@ Using the allEntries attribute to evict all entries from the cache.

This option comes in handy when an entire cache region needs to be cleared out. Rather than
evicting each entry (which would take a long time, since it is inefficient), all the entries are
removed in one operation, as the preceding example shows. Note that the framework ignores any
key specified in this scenario as it does not apply (the entire cache is evicted, not only one entry).

You can also indicate whether the eviction should occur after (the default) or before the method is
invoked by using the beforeInvocation attribute. The former provides the same semantics as the
rest of the annotations: Once the method completes successfully, an action (in this case, eviction) on
the cache is run. If the method does not run (as it might be cached) or an exception is thrown, the
eviction does not occur. The latter (beforeInvocation=true) causes the eviction to always occur
before the method is invoked. This is useful in cases where the eviction does not need to be tied to
the method outcome.

Note that void methods can be used with @CacheEvict - as the methods act as a trigger, the return
values are ignored (as they do not interact with the cache). This is not the case with @Cacheable
which adds data to the cache or updates data in the cache and, thus, requires a result.

8.2.4. The @Caching Annotation

Sometimes, multiple annotations of the same type (such as @CacheEvict or @CachePut) need to be
specified — for example, because the condition or the key expression is different between different
caches. @Caching lets multiple nested @Cacheable, @CachePut, and @CacheEvict annotations be used on
the same method. The following example uses two @CacheEvict annotations:

@Caching(evict = { @CacheEvict("primary"), @CacheEvict(cacheNames="secondary",
key="#p0") })
public Book importBooks(String deposit, Date date)

8.2.5. The @CacheConfig annotation

So far, we have seen that caching operations offer many customization options and that you can set
these options for each operation. However, some of the customization options can be tedious to
configure if they apply to all operations of the class. For instance, specifying the name of the cache
to use for every cache operation of the class can be replaced by a single class-level definition. This is
where @CacheConfig comes into play. The following examples uses @CacheConfig to set the name of
the cache:

116

@CacheConfig("books") @
public class BookRepositoryImpl implements BookRepository {

@Cacheable
public Book findBook(ISBN isbn) {...}

@ Using @CacheConfig to set the name of the cache.

@CacheConfig is a class-level annotation that allows sharing the cache names, the custom
KeyGenerator, the custom CacheManager, and the custom CacheResolver. Placing this annotation on the
class does not turn on any caching operation.

An operation-level customization always overrides a customization set on @CacheConfig. Therefore,
this gives three levels of customizations for each cache operation:

* Globally configured, available for CacheManager, KeyGenerator.

» At the class level, using @CacheConfig.

* At the operation level.

8.2.6. Enabling Caching Annotations

It is important to note that even though declaring the cache annotations does not automatically
trigger their actions - like many things in Spring, the feature has to be declaratively enabled (which
means if you ever suspect caching is to blame, you can disable it by removing only one
configuration line rather than all the annotations in your code).

To enable caching annotations add the annotation @EnableCaching to one of your @Configuration
classes:

@Configuration
@EnableCaching
public class AppConfig {

}

Alternatively, for XML configuration you can use the cache:annotation-driven element:

117

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
https://www.springframework.org/schema/cache/spring-cache.xsd">

<cache:annotation-driven/>

</beans>

Both the cache:annotation-driven element and the @EnableCaching annotation let you specify various
options that influence the way the caching behavior is added to the application through AOP. The
configuration is intentionally similar with that of @Transactional.

The default advice mode for processing caching annotations is proxy, which allows
for interception of calls through the proxy only. Local calls within the same class

o cannot get intercepted that way. For a more advanced mode of interception,
consider switching to aspectj mode in combination with compile-time or load-time
weaving.

o For more detail about advanced customizations (using Java configuration) that are
required to implement CachingConfigurer, see the javadoc.

Table 10. Cache annotation settings

XML Attribute Annotation

cache-manager

cache-resolver

key-generator

118

Attribute

N/A (see the
CachingConfigu

rer javadoc)

N/A (see the
CachingConfigu

rer javadoc)

N/A (see the
CachingConfiqu

rer javadoc)

Default

cacheManager

A
SimpleCacheRes

olver using the
configured
cacheManager.

SimpleKeyGener
ator

Description

The name of the cache manager to use. A default
CacheResolver is initialized behind the scenes
with this cache manager (or cacheManager if not
set). For more fine-grained management of the
cache resolution, consider setting the 'cache-
resolver' attribute.

The bean name of the CacheResolver that is to
be used to resolve the backing caches. This
attribute is not required and needs to be
specified only as an alternative to the 'cache-
manager' attribute.

Name of the custom key generator to use.

data-access.pdf#tx-annotation-driven-settings
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html

XML Attribute Annotation Default Description
Attribute

error-handler NJ/A (see the SimpleCacheErr The name of the custom cache error handler to
CachingConfigu orHandler use. By default, any exception thrown during a
rer javadoc) cache related operation is thrown back at the
client.

mode mode proxy The default mode (proxy) processes annotated
beans to be proxied by using Spring’s AOP
framework (following proxy semantics, as
discussed earlier, applying to method calls
coming in through the proxy only). The
alternative mode (aspectj) instead weaves the
affected classes with Spring’s Aspect] caching
aspect, modifying the target class byte code to
apply to any kind of method call. Aspect]
weaving requires spring-aspects.jar in the
classpath as well as load-time weaving (or
compile-time weaving) enabled. (See Spring
configuration for details on how to set up load-
time weaving.)

proxy-target- proxyTarget(la false Applies to proxy mode only. Controls what type

class 53 of caching proxies are created for classes
annotated with the @Cacheable or @CacheEvict
annotations. If the proxy-target-class attribute
is set to true, class-based proxies are created. If
proxy-target-class is false or if the attribute is
omitted, standard JDK interface-based proxies
are created. (See Proxying Mechanisms for a
detailed examination of the different proxy
types.)

order order Ordered. LOWE Defines the order of the cache advice that is
ST_PRECEDEN applied to beans annotated with @Cacheable or
CE @CacheEvict. (For more information about the
rules related to ordering AOP advice, see Advice
Ordering.) No specified ordering means that the
AOP subsystem determines the order of the
advice.

<cache:annotation-driven/> looks for @Cacheable/@CachePut/@CacheEvict/@Caching
only on beans in the same application context in which it is defined. This means

o that, if you put <cache:annotation-driven/> in a WebApplicationContext for a
DispatcherServlet, it checks for beans only in your controllers, not your services.
See the MVC section for more information.

119

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html
core.pdf#aop-aj-ltw-spring
core.pdf#aop-aj-ltw-spring
core.pdf#aop-proxying
core.pdf#aop-ataspectj-advice-ordering
core.pdf#aop-ataspectj-advice-ordering
web.pdf#mvc-servlet

Method visibility and cache annotations

When you use proxies, you should apply the cache annotations only to methods with public
visibility. If you do annotate protected, private, or package-visible methods with these
annotations, no error is raised, but the annotated method does not exhibit the configured
caching settings. Consider using Aspect] (see the rest of this section) if you need to annotate
non-public methods, as it changes the bytecode itself.

Spring recommends that you only annotate concrete classes (and methods of
concrete classes) with the @Cache* annotation, as opposed to annotating interfaces.
You certainly can place the @Cache* annotation on an interface (or an interface
method), but this works only as you would expect it to if you use interface-based
O proxies. The fact that Java annotations are not inherited from interfaces means
that, if you use class-based proxies (proxy-target-class="true") or the weaving-
based aspect (mode="aspectj"), the caching settings are not recognized by the
proxying and weaving infrastructure, and the object is not wrapped in a caching

Proxy.

In proxy mode (the default), only external method calls coming in through the
proxy are intercepted. This means that self-invocation (in effect, a method within
the target object that calls another method of the target object) does not lead to

o actual caching at runtime even if the invoked method is marked with @Cacheable.
Consider using the aspectj mode in this case. Also, the proxy must be fully
initialized to provide the expected behavior, so you should not rely on this feature
in your initialization code (that is, @PostConstruct).

8.2.7. Using Custom Annotations

Custom annotation and Aspect]

This feature works only with the proxy-based approach but can be enabled with a bit of extra
effort by using Aspect].

The spring-aspects module defines an aspect for the standard annotations only. If you have
defined your own annotations, you also need to define an aspect for those. Check
AnnotationCacheAspect for an example.

The caching abstraction lets you use your own annotations to identify what method triggers cache
population or eviction. This is quite handy as a template mechanism, as it eliminates the need to
duplicate cache annotation declarations, which is especially useful if the key or condition are
specified or if the foreign imports (org.springframework) are not allowed in your code base.
Similarly to the rest of the stereotype annotations, you can use @Cacheable, @CachePut, @CacheEvict,
and @CacheConfig as meta-annotations (that is, annotations that can annotate other annotations). In
the following example, we replace a common @Cacheable declaration with our own custom
annotation:

120

core.pdf#beans-stereotype-annotations
core.pdf#beans-meta-annotations

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
@Cacheable(cacheNames="books", key="#isbn")
public @interface SlowService {

}

In the preceding example, we have defined our own SlowService annotation, which itself is
annotated with @Cacheable. Now we can replace the following code:

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

The following example shows the custom annotation with which we can replace the preceding
code:

@SlowService
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

Even though @SlowService is not a Spring annotation, the container automatically picks up its
declaration at runtime and understands its meaning. Note that, as mentioned earlier, annotation-
driven behavior needs to be enabled.

8.3.JCache (JSR-107) Annotations

Since version 4.1, Spring’s caching abstraction fully supports the JCache standard annotations:
@CacheResult, @CachePut, @CacheRemove, and @CacheRemoveAll as well as the @CacheDefaults, @CacheKey,
and @CacheValue companions. You can use these annotations even without migrating your cache
store to JSR-107. The internal implementation uses Spring’s caching abstraction and provides
default CacheResolver and KeyGenerator implementations that are compliant with the specification.
In other words, if you are already using Spring’s caching abstraction, you can switch to these
standard annotations without changing your cache storage (or configuration, for that matter).

8.3.1. Feature Summary

For those who are familiar with Spring’s caching annotations, the following table describes the
main differences between the Spring annotations and the JSR-107 counterpart:

Table 11. Spring vs. JSR-107 caching annotations
Spring JSR-107 Remark

@Cacheable @CacheResult Fairly similar. @CacheResult can cache specific exceptions
and force the execution of the method regardless of the
content of the cache.

121

Sprin SR-107 Remark
pring

@CachePut @CachePut While Spring updates the cache with the result of the
method invocation, JCache requires that it be passed it as
an argument that is annotated with @CacheValue. Due to
this difference, JCache allows updating the cache before or
after the actual method invocation.

@CacheEvict @CacheRemove Fairly similar. @CacheRemove supports conditional eviction
when the method invocation results in an exception.

@CacheEvict(allEnt @CacheRemoveAll See @CacheRemove.
ries=true)

@CacheConfig @CacheDefaults Lets you configure the same concepts, in a similar fashion.

JCache has the notion of javax.cache.annotation.CacheResolver, which is identical to the Spring’s
CacheResolver interface, except that JCache supports only a single cache. By default, a simple
implementation retrieves the cache to use based on the name declared on the annotation. It should
be noted that, if no cache name is specified on the annotation, a default is automatically generated.
See the javadoc of @CacheResult#cacheName() for more information.

CacheResolver instances are retrieved by a CacheResolverFactory. It is possible to customize the
factory for each cache operation, as the following example shows:

@CacheResult(cacheNames="books", cacheResolverFactory=MyCacheResolverFactory.class) @
public Book findBook(ISBN isbn)

@ Customizing the factory for this operation.

For all referenced classes, Spring tries to locate a bean with the given type. If more
than one match exists, a new instance is created and can use the regular bean
lifecycle callbacks, such as dependency injection.

Keys are generated by a javax.cache.annotation.CacheKeyGenerator that serves the same purpose as
Spring’s KeyGenerator. By default, all method arguments are taken into account, unless at least one
parameter is annotated with @CacheKey. This is similar to Spring’s custom key generation
declaration. For instance, the following are identical operations, one using Spring’s abstraction and
the other using JCache:

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@CacheResult(cacheName="boaoks")
public Book findBook(@CacheKey ISBN isbn, boolean checkWarehouse, boolean includeUsed)

You can also specify the CacheKeyResolver on the operation, similar to how you can specify the
CacheResolverFactory.

JCache can manage exceptions thrown by annotated methods. This can prevent an update of the

122

cache, but it can also cache the exception as an indicator of the failure instead of calling the method
again. Assume that InvalidIsbnNotFoundException is thrown if the structure of the ISBN is invalid.
This is a permanent failure (no book could ever be retrieved with such a parameter). The following
caches the exception so that further calls with the same, invalid, ISBN throw the cached exception
directly instead of invoking the method again:

@CacheResult(cacheName="books", exceptionCacheName="failures"
cachedExceptions = InvalidIsbnNotFoundException.class)
public Book findBook(ISBN isbn)

8.3.2. Enabling JSR-107 Support

You need do nothing specific to enable the JSR-107 support alongside Spring’s declarative
annotation support. Both @EnableCaching and the cache:annotation-driven element automatically
enable the JCache support if both the JSR-107 API and the spring-context-support module are
present in the classpath.

Depending on your use case, the choice is basically yours. You can even mix and

o match services by using the JSR-107 API on some and using Spring’s own
annotations on others. However, if these services impact the same caches, you
should use a consistent and identical key generation implementation.

8.4. Declarative XML-based Caching

If annotations are not an option (perhaps due to having no access to the sources or no external
code), you can use XML for declarative caching. So, instead of annotating the methods for caching,
you can specify the target method and the caching directives externally (similar to the declarative
transaction management advice). The example from the previous section can be translated into the
following example:

123

data-access.pdf#transaction-declarative-first-example

<!-- the service we want to make cacheable -->
<bean id="bookService" class="x.y.service.DefaultBookService"/>

<!-- cache definitions -->
<cache:advice id="cacheAdvice" cache-manager="cacheManager">
<cache:caching cache="books">
<cache:cacheable method="findBook" key="#isbn"/>
<cache:cache-evict method="1oadBooks" all-entries="true"/>
</cache:caching>
</cache:advice>

<!-- apply the cacheable behavior to all BookService interfaces -->
<aop:config>

<aop:advisor advice-ref="cacheAdvice" pointcut="execution(*
x.y.BookService.*(..))"/>
</aop:config>

<!-- cache manager definition omitted -->

In the preceding configuration, the bookService is made cacheable. The caching semantics to apply
are encapsulated in the cache:advice definition, which causes the findBooks method to be used for
putting data into the cache and the loadBooks method for evicting data. Both definitions work
against the books cache.

The aop:config definition applies the cache advice to the appropriate points in the program by
using the Aspect] pointcut expression (more information is available in Aspect Oriented
Programming with Spring). In the preceding example, all methods from the BookService are
considered and the cache advice is applied to them.

The declarative XML caching supports all of the annotation-based model, so moving between the
two should be fairly easy. Furthermore, both can be used inside the same application. The XML-
based approach does not touch the target code. However, it is inherently more verbose. When
dealing with classes that have overloaded methods that are targeted for caching, identifying the
proper methods does take an extra effort, since the method argument is not a good discriminator. In
these cases, you can use the Aspect] pointcut to cherry pick the target methods and apply the
appropriate caching functionality. However, through XML, it is easier to apply package or group or
interface-wide caching (again, due to the Aspect] pointcut) and to create template-like definitions
(as we did in the preceding example by defining the target cache through the cache:definitions
cache attribute).

8.5. Configuring the Cache Storage

The cache abstraction provides several storage integration options. To use them, you need to
declare an appropriate CacheManager (an entity that controls and manages Cache instances and that
can be used to retrieve these for storage).

124

core.pdf#aop
core.pdf#aop

8.5.1. JDK ConcurrentMap-based Cache

The JDK-based Cache implementation resides under org.springframework.cache.concurrent package.
It lets you use ConcurrentHashMap as a backing Cache store. The following example shows how to
configure two caches:

<!-- simple cache manager -->
<bean id="cacheManager" class="org.springframework.cache.support.SimpleCacheManager">
<property name="caches">
<set>
<bean
class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean"
p:name="default"/>
<bean
class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean"
p:name="books" />
</set>
</property>
</bean>

The preceding snippet uses the SimpleCacheManager to create a CacheManager for the two nested
ConcurrentMapCache instances named default and books. Note that the names are configured directly
for each cache.

As the cache is created by the application, it is bound to its lifecycle, making it suitable for basic use
cases, tests, or simple applications. The cache scales well and is very fast, but it does not provide
any management, persistence capabilities, or eviction contracts.

8.5.2. Ehcache-based Cache
e Ehcache 3.x is fully JSR-107 compliant and no dedicated support is required for it.

The Ehcache 2.x implementation is located in the org.springframework.cache.ehcache package.
Again, to use it, you need to declare the appropriate CacheManager. The following example shows
how to do so:

<bean id="cacheManager"
class="org.springframework.cache.ehcache.EhCacheCacheManager" p:cache-manager-
ref="ehcache"/>

<!-- EhCache library setup -->

<bean id="ehcache"
class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" p:config-

location="ehcache.xml"/>

This setup bootstraps the ehcache library inside the Spring IoC (through the ehcache bean), which is
then wired into the dedicated CacheManager implementation. Note that the entire Ehcache-specific

125

configuration is read from ehcache.xml.

8.5.3. Caffeine Cache

Caffeine is a Java 8 rewrite of Guava’s cache, and its implementation is located in the
org.springframework.cache.caffeine package and provides access to several features of Caffeine.

The following example configures a CacheManager that creates the cache on demand:

<bean id="cacheManager"
class="org.springframework.cache.caffeine.CaffeineCacheManager"/>

You can also provide the caches to use explicitly. In that case, only those are made available by the
manager. The following example shows how to do so:

<bean id="cacheManager"
class="org.springframework.cache.caffeine.CaffeineCacheManager">
<property name="caches">
<set>
<value>default</value>
<value>books</value>
</set>
</property>
</bean>

The Caffeine CacheManager also supports custom Caffeine and CachelLoader. See the Caffeine
documentation for more information about those.

8.5.4. GemFire-based Cache

GemFire is a memory-oriented, disk-backed, elastically scalable, continuously available, active
(with built-in pattern-based subscription notifications), globally replicated database and provides
fully-featured edge caching. For further information on how to use GemFire as a CacheManager (and
more), see the Spring Data GemFire reference documentation.

8.5.5.JSR-107 Cache

Spring’s caching abstraction can also use JSR-107-compliant caches. The JCache implementation is
located in the org.springframework.cache.jcache package.

Again, to use it, you need to declare the appropriate CacheManager. The following example shows
how to do so:

126

https://github.com/ben-manes/caffeine/wiki
https://github.com/ben-manes/caffeine/wiki
https://docs.spring.io/spring-gemfire/docs/current/reference/html/

<bean id="cacheManager"
class="org.springframework.cache.jcache.JCacheCacheManager"
p:cache-manager-ref="jCacheManager"/>

<!-- JSR-107 cache manager setup -->
<bean id="jCacheManager" .../>

8.5.6. Dealing with Caches without a Backing Store

Sometimes, when switching environments or doing testing, you might have cache declarations
without having an actual backing cache configured. As this is an invalid configuration, an exception
is thrown at runtime, since the caching infrastructure is unable to find a suitable store. In situations
like this, rather than removing the cache declarations (which can prove tedious), you can wire in a
simple dummy cache that performs no caching — that is, it forces the cached methods to be invoked
every time. The following example shows how to do so:

<bean id="cacheManager"
class="org.springframework.cache.support.CompositeCacheManager">
<property name="cacheManagers">
<list>
<ref bean="jdkCache"/>
<ref bean="gemfireCache"/>
</list>
</property>
<property name="fallbackToNoOpCache" value="true"/>
</bean>

The CompositeCacheManager in the preceding chains multiple CacheManager instances and, through the
fallbackToNoOpCache flag, adds a no-op cache for all the definitions not handled by the configured
cache managers. That is, every cache definition not found in either jdkCache or gemfireCache
(configured earlier in the example) is handled by the no-op cache, which does not store any
information, causing the target method to be invoked every time.

8.6. Plugging-in Different Back-end Caches

Clearly, there are plenty of caching products out there that you can use as a backing store. To plug
them in, you need to provide a CacheManager and a Cache implementation, since, unfortunately, there
is no available standard that we can use instead. This may sound harder than it is, since, in practice,
the classes tend to be simple adapters that map the caching abstraction framework on top of the
storage API, as the ehcache classes do. Most CacheManager classes can use the classes in the
org.springframework.cache.support package (such as AbstractCacheManager which takes care of the
boiler-plate code, leaving only the actual mapping to be completed). We hope that, in time, the
libraries that provide integration with Spring can fill in this small configuration gap.

127

https://en.wikipedia.org/wiki/Adapter_pattern

8.7. How can I Set the TTL/TTI/Eviction policy/XXX
feature?

Directly through your cache provider. The cache abstraction is an abstraction, not a cache
implementation. The solution you use might support various data policies and different topologies
that other solutions do not support (for example, the JDK ConcurrentHashMap — exposing that in the
cache abstraction would be useless because there would no backing support). Such functionality
should be controlled directly through the backing cache (when configuring it) or through its native
APL

128

Chapter 9. Appendix

9.1. XML Schemas

This part of the appendix lists XML schemas related to integration technologies.

9.1.1. The jee Schema

The jee elements deal with issues related to Java EE (Java Enterprise Edition) configuration, such as
looking up a JNDI object and defining E]JB references.

To use the elements in the jee schema, you need to have the following preamble at the top of your
Spring XML configuration file. The text in the following snippet references the correct schema so
that the elements in the jee namespace are available to you:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jee
https://www.springframework.org/schema/jee/spring-jee.xsd">

<!-- bean definitions here -->

</beans>

<jee:jndi-lookup/> (simple)

The following example shows how to use JNDI to look up a data source without the jee schema:

<bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>

</bean>

<bean id="userDao" class="com.foo.JdbcUserDao">
<!-- Spring will do the cast automatically (as usual) -->
<property name="dataSource" ref="dataSource"/>

</bean>

The following example shows how to use JNDI to look up a data source with the jee schema:

129

<jee:jndi-lookup id="dataSource" jndi-name="jdbc/MyDataSource"/>

<bean id="userDao" class="com.foo.JdbcUserDao">
<!-- Spring will do the cast automatically (as usual) -->
<property name="dataSource" ref="dataSource"/>

</bean>

<jee:jndi-lookup/> (with Single JNDI Environment Setting)

The following example shows how to use JNDI to look up an environment variable without jee:

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="jndiEnvironment">
<props>
<prop key="ping">pong</prop>
</props>
</property>
</bean>

The following example shows how to use JNDI to look up an environment variable with jee:

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
<jee:environment>ping=pong</jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (with Multiple JNDI Environment Settings)

The following example shows how to use JNDI to look up multiple environment variables without
jee:

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="jndiEnvironment">
<props>
<prop key="sing">song</prop>
<prop key="ping">pong</prop>
</props>
</property>
</bean>

The following example shows how to use JNDI to look up multiple environment variables with jee:

130

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
<!-- newline-separated, key-value pairs for the environment (standard Properties
format) -->
<jee:environment>
sing=song
ping=pong
</jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (Complex)

The following example shows how to use JNDI to look up a data source and a number of different
properties without jee:

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="cache" value="true"/>
<property name="resourceRef" value="true"/>
<property name="lookupOnStartup" value="false"/>
<property name="expectedType" value="com.myapp.DefaultThing"/>
<property name="proxyInterface" value="com.myapp.Thing"/>

</bean>

The following example shows how to use JNDI to look up a data source and a number of different
properties with jee:

<jee:jndi-lookup id="simple"
jndi-name="jdbc/MyDataSource"
cache="true"
resource-ref="true"
lookup-on-startup="false"
expected-type="com.myapp.DefaultThing"
proxy-interface="com.myapp.Thing"/>

<jee:local-slsb/> (Simple)
The <jee:local-slsb/> element configures a reference to a local E]JB Stateless Session Bean.

The following example shows how to configures a reference to a local EJB Stateless Session Bean
without jee:

<bean id="simple"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
<property name="jndiName" value="ejb/RentalServiceBean"/>
<property name="businessInterface" value="com.foo.service.RentalService"/>
</bean>

131

The following example shows how to configures a reference to a local EJB Stateless Session Bean
with jee:

<jee:local-slsb id="simpleSlsb" jndi-name="ejb/RentalServiceBean"
business-interface="com.foo.service.RentalService"/>

<jee:local-slsb/> (Complex)

The <jee:local-slsb/> element configures a reference to a local E]JB Stateless Session Bean.

The following example shows how to configures a reference to a local EJB Stateless Session Bean
and a number of properties without jee:

<bean id="complexLocalEjb"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">

<property name="jndiName" value="ejb/RentalServiceBean"/>
<property name="businessInterface" value="com.example.service.RentalService"/>
<property name="cacheHome" value="true"/>
<property name="lookupHomeOnStartup" value="true"/>
<property name="resourceRef" value="true"/>

</bean>

The following example shows how to configures a reference to a local EJB Stateless Session Bean
and a number of properties with jee:

<jee:local-slsb id="complexLocalEjb"
jndi-name="ejb/RentalServiceBean"
business-interface="com.foo.service.RentalService"
cache-home="true"
lookup-home-on-startup="true"
resource-ref="true">

<jee:remote-slsh/>

The <jee:remote-slsb/> element configures a reference to a remote EJB Stateless Session Bean.

The following example shows how to configures a reference to a remote E]JB Stateless Session Bean
without jee:

132

<bean id="complexRemoteEjb"

class="org.springframework.ejb.access.SimpleRemoteStatelessSessionProxyFactoryBean">
<property name="jndiName" value="ejb/MyRemoteBean"/>
<property name="businessInterface" value="com.foo.service.RentalService"/>
<property name="cacheHome" value="true"/>
<property name="lookupHomeOnStartup" value="true"/>
<property name="resourceRef" value="true"/>
<property name="homeInterface" value="com.foo.service.RentalService"/>
<property name="refreshHomeOnConnectFailure" value="true"/>
</bean>

The following example shows how to configures a reference to a remote EJB Stateless Session Bean
with jee:

<jee:remote-slsb id="complexRemoteEjb"
jndi-name="ejb/MyRemoteBean"
business-interface="com.foo.service.RentalService"
cache-home="true"
lookup-home-on-startup="true"
resource-ref="true"
home-interface="com.foo.service.RentalService"
refresh-home-on-connect-failure="true">

9.1.2. The jms Schema

The jms elements deal with configuring JMS-related beans, such as Spring’s Message Listener
Containers. These elements are detailed in the section of the JMS chapter entitled JMS Namespace
Support. See that chapter for full details on this support and the jms elements themselves.

In the interest of completeness, to use the elements in the jms schema, you need to have the
following preamble at the top of your Spring XML configuration file. The text in the following
snippet references the correct schema so that the elements in the jms namespace are available to
you:

133

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jms
https://www.springframework.org/schema/jms/spring-jms.xsd">

<!-- bean definitions here -->

</beans>

9.1.3. Using <context:mbean-export/>

This element is detailed in Configuring Annotation-based MBean Export.

9.1.4. The cache Schema

You can use the cache elements to enable support for Spring’s @CacheEvict, @CachePut, and @Caching
annotations. It it also supports declarative XML-based caching. See Enabling Caching Annotations
and Declarative XML-based Caching for details.

To use the elements in the cache schema, you need to have the following preamb]e at the top of your
Spring XML configuration file. The text in the following snippet references the correct schema so
that the elements in the cache namespace are available to you:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
https://www.springframework.org/schema/cache/spring-cache.xsd">

<!-- bean definitions here -->

</beans>

134

	Integration
	Table of Contents
	Chapter 1. REST Endpoints
	1.1. RestTemplate
	1.1.1. Initialization
	URIs
	Headers

	1.1.2. Body
	1.1.3. Message Conversion
	1.1.4. Jackson JSON Views
	Multipart

	1.2. Using AsyncRestTemplate (Deprecated)

	Chapter 2. Remoting and Web Services
	2.1. AMQP
	2.2. Considerations when Choosing a Technology
	2.3. Java Web Services
	2.3.1. Exposing Servlet-based Web Services by Using JAX-WS
	2.3.2. Exporting Standalone Web Services by Using JAX-WS
	2.3.3. Exporting Web Services by Using JAX-WS RI’s Spring Support
	2.3.4. Accessing Web Services by Using JAX-WS

	2.4. RMI (Deprecated)
	2.4.1. Exporting the Service by Using RmiServiceExporter
	2.4.2. Linking in the Service at the Client

	2.5. Using Hessian to Remotely Call Services through HTTP (Deprecated)
	2.5.1. Hessian
	2.5.2. Exposing Your Beans by Using HessianServiceExporter
	2.5.3. Linking in the Service on the Client
	2.5.4. Applying HTTP Basic Authentication to a Service Exposed through Hessian

	2.6. Spring HTTP Invoker (Deprecated)
	2.6.1. Exposing the Service Object
	2.6.2. Linking in the Service at the Client

	2.7. JMS (Deprecated)
	2.7.1. Server-side Configuration
	2.7.2. Client-side Configuration

	Chapter 3. Enterprise JavaBeans (EJB) Integration
	3.1. Accessing EJBs
	3.1.1. Concepts
	3.1.2. Accessing Local SLSBs
	3.1.3. Accessing Remote SLSBs
	3.1.4. Accessing EJB 2.x SLSBs Versus EJB 3 SLSBs

	Chapter 4. JMS (Java Message Service)
	4.1. Using Spring JMS
	4.1.1. Using JmsTemplate
	4.1.2. Connections
	Caching Messaging Resources
	Using SingleConnectionFactory
	Using CachingConnectionFactory

	4.1.3. Destination Management
	4.1.4. Message Listener Containers
	Using SimpleMessageListenerContainer
	Using DefaultMessageListenerContainer

	4.1.5. Transaction Management

	4.2. Sending a Message
	4.2.1. Using Message Converters
	4.2.2. Using SessionCallback and ProducerCallback

	4.3. Receiving a Message
	4.3.1. Synchronous Reception
	4.3.2. Asynchronous reception: Message-Driven POJOs
	4.3.3. Using the SessionAwareMessageListener Interface
	4.3.4. Using MessageListenerAdapter
	4.3.5. Processing Messages Within Transactions

	4.4. Support for JCA Message Endpoints
	4.5. Annotation-driven Listener Endpoints
	4.5.1. Enable Listener Endpoint Annotations
	4.5.2. Programmatic Endpoint Registration
	4.5.3. Annotated Endpoint Method Signature
	4.5.4. Response Management

	4.6. JMS Namespace Support

	Chapter 5. JMX
	5.1. Exporting Your Beans to JMX
	5.1.1. Creating an MBeanServer
	5.1.2. Reusing an Existing MBeanServer
	5.1.3. Lazily Initialized MBeans
	5.1.4. Automatic Registration of MBeans
	5.1.5. Controlling the Registration Behavior

	5.2. Controlling the Management Interface of Your Beans
	5.2.1. Using the MBeanInfoAssembler Interface
	5.2.2. Using Source-level Metadata: Java Annotations
	5.2.3. Source-level Metadata Types
	5.2.4. Using the AutodetectCapableMBeanInfoAssembler Interface
	5.2.5. Defining Management Interfaces by Using Java Interfaces
	5.2.6. Using MethodNameBasedMBeanInfoAssembler

	5.3. Controlling ObjectName Instances for Your Beans
	5.3.1. Reading ObjectName Instances from Properties
	5.3.2. Using MetadataNamingStrategy
	5.3.3. Configuring Annotation-based MBean Export

	5.4. Using JSR-160 Connectors
	5.4.1. Server-side Connectors
	5.4.2. Client-side Connectors
	5.4.3. JMX over Hessian or SOAP

	5.5. Accessing MBeans through Proxies
	5.6. Notifications
	5.6.1. Registering Listeners for Notifications
	5.6.2. Publishing Notifications

	5.7. Further Resources

	Chapter 6. Email
	6.1. Usage
	6.1.1. Basic MailSender and SimpleMailMessage Usage
	6.1.2. Using JavaMailSender and MimeMessagePreparator

	6.2. Using the JavaMail MimeMessageHelper
	6.2.1. Sending Attachments and Inline Resources
	Attachments
	Inline Resources

	6.2.2. Creating Email Content by Using a Templating Library

	Chapter 7. Task Execution and Scheduling
	7.1. The Spring TaskExecutor Abstraction
	7.1.1. TaskExecutor Types
	7.1.2. Using a TaskExecutor

	7.2. The Spring TaskScheduler Abstraction
	7.2.1. Trigger Interface
	7.2.2. Trigger Implementations
	7.2.3. TaskScheduler implementations

	7.3. Annotation Support for Scheduling and Asynchronous Execution
	7.3.1. Enable Scheduling Annotations
	7.3.2. The @Scheduled annotation
	7.3.3. The @Async annotation
	7.3.4. Executor Qualification with @Async
	7.3.5. Exception Management with @Async

	7.4. The task Namespace
	7.4.1. The 'scheduler' Element
	7.4.2. The executor Element
	7.4.3. The 'scheduled-tasks' Element

	7.5. Cron Expressions
	7.5.1. Macros

	7.6. Using the Quartz Scheduler
	7.6.1. Using the JobDetailFactoryBean
	7.6.2. Using the MethodInvokingJobDetailFactoryBean
	7.6.3. Wiring up Jobs by Using Triggers and SchedulerFactoryBean

	Chapter 8. Cache Abstraction
	8.1. Understanding the Cache Abstraction
	8.2. Declarative Annotation-based Caching
	8.2.1. The @Cacheable Annotation
	Default Key Generation
	Custom Key Generation Declaration
	Default Cache Resolution
	Custom Cache Resolution
	Synchronized Caching
	Conditional Caching
	Available Caching SpEL Evaluation Context

	8.2.2. The @CachePut Annotation
	8.2.3. The @CacheEvict annotation
	8.2.4. The @Caching Annotation
	8.2.5. The @CacheConfig annotation
	8.2.6. Enabling Caching Annotations
	8.2.7. Using Custom Annotations

	8.3. JCache (JSR-107) Annotations
	8.3.1. Feature Summary
	8.3.2. Enabling JSR-107 Support

	8.4. Declarative XML-based Caching
	8.5. Configuring the Cache Storage
	8.5.1. JDK ConcurrentMap-based Cache
	8.5.2. Ehcache-based Cache
	8.5.3. Caffeine Cache
	8.5.4. GemFire-based Cache
	8.5.5. JSR-107 Cache
	8.5.6. Dealing with Caches without a Backing Store

	8.6. Plugging-in Different Back-end Caches
	8.7. How can I Set the TTL/TTI/Eviction policy/XXX feature?

	Chapter 9. Appendix
	9.1. XML Schemas
	9.1.1. The jee Schema
	<jee:jndi-lookup/> (simple)
	<jee:jndi-lookup/> (with Single JNDI Environment Setting)
	<jee:jndi-lookup/> (with Multiple JNDI Environment Settings)
	<jee:jndi-lookup/> (Complex)
	<jee:local-slsb/> (Simple)
	<jee:local-slsb/> (Complex)
	<jee:remote-slsb/>

	9.1.2. The jms Schema
	9.1.3. Using <context:mbean-export/>
	9.1.4. The cache Schema

