Web on Reactive Stack

Version 5.3.4

Table of Contents

1. Spring WebFlux

1.1. Overview

1.1.1. Define “Reactive”
1.1.2. Reactive API

1.1.3. Programming Models

1.1.4. Applicability

1.1.5. Servers

1.1.6. Performance

1.1.7. Concurrency Model

1.2. Reactive Core

1.2.1. HttpHandler
1.2.2. WebHandler API
Special bean types
Form Data
Multipart Data
Forwarded Headers
1.2.3. Filters
CORS
1.2.4. Exceptions
1.2.5. Codecs
Jackson JSON
Form Data
Multipart
Limits
Streaming
DataBuffer
1.2.6. Logging
Log Id
Sensitive Data
Appenders
Custom codecs

1.3. DispatcherHandler

1.3.1. Special Bean Types
1.3.2. WebFlux Config
1.3.3. Processing

1.3.4. Result Handling
1.3.5. Exceptions

1.3.6. View Resolution

N o U gk Wy NN

N DN DN DN DN DN === === R R R R R R R R
N = = =B O O© W 00 0 N N9 09 o o0 o U U b b W W WD NN DN = O

Handling 22

RedireCting 23
Content Negotiation 23
1.4. Annotated Controllers. 23
140, ECoNtroLLer . oo 24
1.4.2. Request MapPing.o 25
URI Patterns o 26
Pattern COMPAriSOIo 29
Consumable Media TYPeS 29
Producible Media Types 30
Parameters and Headers. 30
HTTP HEAD, OPTIONS . . . e 31
Custom ANNOTAtIONSo 32
Explicit Registrations 32
1.4.3. Handler Methods 34
Method ArgUMENTS. o 34
Return Values. 36
Type CONVEISION 37
Matrix Variables 37
OReQUESTPAram . . . o 40
ORequestHEadEr o 42
COOKTEVALUE . . oo 43
@ModelAttribute 44
@SessionAttributes 47
@SessionAttribute 48
ORequestAtEribUte 49
Multipart CONtent 50
OReqUESTBOAY . . . oo 53
HEEpENt ity . o 54
ORESPONSEBOAY 55
RespONSeENt ity ..o 56
Jackson JSON . ..o 56
144 Model . oo 58
1.4.5. DataBinder . ..o oo 61
1.4.6. Managing EXCEePtionS. 63
REST API XCePLIONS.o 64
1.4.7. Controller AAVICE 64
1.5. Functional ENdpoints 65
151 OVEIVIEW . « ..o 65
1.5.2. HandlerFUuncCtion. 67

ServerRequest e 68

ServerResponse
Handler Classes
Validation
1.5.3. RouterFunction
Predicates
Routes
Nested Routes
1.5.4. Running a Server
1.5.5. Filtering Handler Functions
1.6. URI Links
1.6.1. UriComponents
1.6.2. UriBuilder
1.6.3. URI Encoding
1.7. CORS
1.7.1. Introduction
1.7.2. Processing
1.7.3. @CrossOrigin
1.7.4. Global Configuration
1.7.5. CORS WebFilter
1.8. Web Security
1.9. View Technologies
1.9.1. Thymeleaf
1.9.2. FreeMarker
View Configuration
FreeMarker Configuration
Form Handling
1.9.3. Script Views
Requirements
Script Templates
1.9.4. JSON and XML
1.10. HTTP Caching
1.10.1. CacheControl
1.10.2. Controllers
1.10.3. Static Resources
1.11. WebFlux Config
1.11.1. Enabling WebFlux Config
1.11.2. WebFlux config API
1.11.3. Conversion, formatting
1.11.4. Validation
1.11.5. Content Type Resolvers
1.11.6. HTTP message codecs

69
70
72
74
75
75
76
78
80
83
83
85
86
89
89
90
90
93
95
96
97
97
97
97
98
99
100
101
101
104
104
105
105
107
108
108
108
109
111
112
113

1.11.7. View Resolvers
1.11.8. Static Resources
1.11.9. Path Matching
1.11.10. WebSocketService
1.11.11. Advanced Configuration Mode
1.12. HTTP/2
2. WebClient
2.1. Configuration
2.1.1. MaxInMemorySize
2.1.2. Reactor Netty
Resources
Timeouts
2.1.3. Jetty
2.1.4. HttpComponents
2.2. retrieve()
2.3. Exchange
2.4. Request Body
2.4.1. Form Data
2.4.2. Multipart Data
2.5. Filters
2.6. Attributes
2.7. Context
2.8. Synchronous Use
2.9. Testing
3. WebSockets
3.1. Introduction to WebSocket
3.1.1. HTTP Versus WebSocket
3.1.2. When to Use WebSockets
3.2. WebSocket API
3.2.1. Server
3.2.2. WebSocketHandler
3.2.3. DataBuffer
3.2.4. Handshake
3.2.5. Server Configation
3.2.6. CORS
3.2.7. Client
4. Testing
5. RSocket
5.1. Overview
5.1.1. The Protocol

5.1.2. Java Implementation

114
117
119
120
121
122
123
123
124
125
125
127
129
130
131
133
134
136
137
138
140
141
142
143
144
144
145
145
145
146
148
152
152
153
154
154
155
156
156
156
157

5.1.3. Spring Support
5.2. RSocketRequester
5.2.1. Client Requester
Connection Setup
Strategies
Client Responders
Advanced
5.2.2. Server Requester
5.2.3. Requests
5.3. Annotated Responders
5.3.1. Server Responders
5.3.2. Client Responders
5.3.3. @MessageMapping
5.3.4. @ConnectMapping
5.4. MetadataExtractor

6. Reactive Libraries

158
158
158
159
159
160
162
162
163
165
165
167
167
169
169
172

This part of the documentation covers support for reactive-stack web
applications built on a Reactive Streams API to run on non-blocking servers,
such as Netty, Undertow, and Servlet 3.1+ containers. Individual chapters cover
the Spring WebFlux framework, the reactive WebClient, support for testing, and
reactive libraries. For Servlet-stack web applications, see Web on Servlet Stack.

https://www.reactive-streams.org/
webflux.pdf#webflux
web.pdf#spring-web

Chapter 1. Spring WebFlux

The original web framework included in the Spring Framework, Spring Web MVC, was purpose-
built for the Servlet API and Servlet containers. The reactive-stack web framework, Spring
WebFlux, was added later in version 5.0. It is fully non-blocking, supports Reactive Streams back
pressure, and runs on such servers as Netty, Undertow, and Servlet 3.1+ containers.

Both web frameworks mirror the names of their source modules (spring-webmvc and spring-
webflux) and co-exist side by side in the Spring Framework. Each module is optional. Applications
can use one or the other module or, in some cases, both — for example, Spring MVC controllers with
the reactive WebClient.

1.1. Overview

Why was Spring WebFlux created?

Part of the answer is the need for a non-blocking web stack to handle concurrency with a small
number of threads and scale with fewer hardware resources. Servlet 3.1 did provide an API for
non-blocking I/0. However, using it leads away from the rest of the Servlet API, where contracts are
synchronous (Filter, Servlet) or blocking (getParameter, getPart). This was the motivation for a new
common API to serve as a foundation across any non-blocking runtime. That is important because
of servers (such as Netty) that are well-established in the async, non-blocking space.

The other part of the answer is functional programming. Much as the addition of annotations in
Java 5 created opportunities (such as annotated REST controllers or unit tests), the addition of
lambda expressions in Java 8 created opportunities for functional APIs in Java. This is a boon for
non-blocking applications and continuation-style APIs (as popularized by CompletableFuture and
ReactiveX) that allow declarative composition of asynchronous logic. At the programming-model
level, Java 8 enabled Spring WebFlux to offer functional web endpoints alongside annotated
controllers.

1.1.1. Define “Reactive”
We touched on “non-blocking” and “functional” but what does reactive mean?

The term, “reactive,” refers to programming models that are built around reacting to
change —network components reacting to I/O events, UI controllers reacting to mouse events, and
others. In that sense, non-blocking is reactive, because, instead of being blocked, we are now in the
mode of reacting to notifications as operations complete or data becomes available.

There is also another important mechanism that we on the Spring team associate with “reactive”
and that is non-blocking back pressure. In synchronous, imperative code, blocking calls serve as a
natural form of back pressure that forces the caller to wait. In non-blocking code, it becomes
important to control the rate of events so that a fast producer does not overwhelm its destination.

Reactive Streams is a small spec (also adopted in Java 9) that defines the interaction between
asynchronous components with back pressure. For example a data repository (acting as Publisher)
can produce data that an HTTP server (acting as Subscriber) can then write to the response. The

https://www.reactive-streams.org/
https://github.com/spring-projects/spring-framework/tree/master/spring-webmvc
https://github.com/spring-projects/spring-framework/tree/master/spring-webflux
https://github.com/spring-projects/spring-framework/tree/master/spring-webflux
http://reactivex.io/
https://github.com/reactive-streams/reactive-streams-jvm/blob/master/README.md#specification
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
https://www.reactive-streams.org/reactive-streams-1.0.1-javadoc/org/reactivestreams/Publisher.html
https://www.reactive-streams.org/reactive-streams-1.0.1-javadoc/org/reactivestreams/Subscriber.html

main purpose of Reactive Streams is to let the subscriber control how quickly or how slowly the
publisher produces data.

Common question: what if a publisher cannot slow down?

o The purpose of Reactive Streams is only to establish the mechanism and a
boundary. If a publisher cannot slow down, it has to decide whether to buffer,
drop, or fail.

1.1.2. Reactive API

Reactive Streams plays an important role for interoperability. It is of interest to libraries and
infrastructure components but less useful as an application API, because it is too low-level.
Applications need a higher-level and richer, functional API to compose async logic — similar to the
Java 8 Stream API but not only for collections. This is the role that reactive libraries play.

Reactor is the reactive library of choice for Spring WebFlux. It provides the Mono and Flux API types
to work on data sequences of 0..1 (Mono) and 0..N (Flux) through a rich set of operators aligned with
the ReactiveX vocabulary of operators. Reactor is a Reactive Streams library and, therefore, all of its
operators support non-blocking back pressure. Reactor has a strong focus on server-side Java. It is
developed in close collaboration with Spring.

WebFlux requires Reactor as a core dependency but it is interoperable with other reactive libraries
via Reactive Streams. As a general rule, a WebFlux API accepts a plain Publisher as input, adapts it
to a Reactor type internally, uses that, and returns either a Flux or a Mono as output. So, you can pass
any Publisher as input and you can apply operations on the output, but you need to adapt the
output for use with another reactive library. Whenever feasible (for example, annotated
controllers), WebFlux adapts transparently to the use of RxJava or another reactive library. See
Reactive Libraries for more details.

In addition to Reactive APIs, WebFlux can also be used with Coroutines APIs in
Kotlin which provides a more imperative style of programming. The following
Kotlin code samples will be provided with Coroutines APIs.

1.1.3. Programming Models

The spring-web module contains the reactive foundation that underlies Spring WebFlux, including
HTTP abstractions, Reactive Streams adapters for supported servers, codecs, and a core WebHandler
API comparable to the Servlet API but with non-blocking contracts.

On that foundation, Spring WebFlux provides a choice of two programming models:

* Annotated Controllers: Consistent with Spring MVC and based on the same annotations from the
spring-web module. Both Spring MVC and WebFlux controllers support reactive (Reactor and
RxJava) return types, and, as a result, it is not easy to tell them apart. One notable difference is
that WebFlux also supports reactive @RequestBody arguments.

* Functional Endpoints: Lambda-based, lightweight, and functional programming model. You can
think of this as a small library or a set of utilities that an application can use to route and handle
requests. The big difference with annotated controllers is that the application is in charge of

https://github.com/reactor/reactor
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
http://reactivex.io/documentation/operators.html
languages.pdf#coroutines

request handling from start to finish versus declaring intent through annotations and being
called back.

1.1.4. Applicability
Spring MVC or WebFlux?

A natural question to ask but one that sets up an unsound dichotomy. Actually, both work together
to expand the range of available options. The two are designed for continuity and consistency with
each other, they are available side by side, and feedback from each side benefits both sides. The
following diagram shows how the two relate, what they have in common, and what each supports
uniquely:

Spring MVC Spring WebFlux

Imperative logic, @Controller Functional endpoints
simple to write
and debug Reactive clients Event loop
concurrency model
JDBC, JPA, Tomcat, Jetty,
blocking deps Undertow Netty

We suggest that you consider the following specific points:

* If you have a Spring MVC application that works fine, there is no need to change. Imperative
programming is the easiest way to write, understand, and debug code. You have maximum
choice of libraries, since, historically, most are blocking.

 If you are already shopping for a non-blocking web stack, Spring WebFlux offers the same
execution model benefits as others in this space and also provides a choice of servers (Netty,
Tomcat, Jetty, Undertow, and Servlet 3.1+ containers), a choice of programming models
(annotated controllers and functional web endpoints), and a choice of reactive libraries
(Reactor, RxJava, or other).

» If you are interested in a lightweight, functional web framework for use with Java 8 lambdas or
Kotlin, you can use the Spring WebFlux functional web endpoints. That can also be a good
choice for smaller applications or microservices with less complex requirements that can
benefit from greater transparency and control.

* In a microservice architecture, you can have a mix of applications with either Spring MVC or
Spring WebFlux controllers or with Spring WebFlux functional endpoints. Having support for

the same annotation-based programming model in both frameworks makes it easier to re-use
knowledge while also selecting the right tool for the right job.

* A simple way to evaluate an application is to check its dependencies. If you have blocking
persistence APIs (JPA, JDBC) or networking APIs to use, Spring MVC is the best choice for
common architectures at least. It is technically feasible with both Reactor and RxJava to
perform blocking calls on a separate thread but you would not be making the most of a non-
blocking web stack.

* If you have a Spring MVC application with calls to remote services, try the reactive WebClient.
You can return reactive types (Reactor, RxJava, or other) directly from Spring MVC controller
methods. The greater the latency per call or the interdependency among calls, the more
dramatic the benefits. Spring MVC controllers can call other reactive components too.

 If you have a large team, keep in mind the steep learning curve in the shift to non-blocking,
functional, and declarative programming. A practical way to start without a full switch is to use
the reactive Web(Client. Beyond that, start small and measure the benefits. We expect that, for a
wide range of applications, the shift is unnecessary. If you are unsure what benefits to look for,
start by learning about how non-blocking I/0 works (for example, concurrency on single-
threaded Node.js) and its effects.

1.1.5. Servers

Spring WebFlux is supported on Tomcat, Jetty, Servlet 3.1+ containers, as well as on non-Servlet
runtimes such as Netty and Undertow. All servers are adapted to a low-level, common API so that
higher-level programming models can be supported across servers.

Spring WebFlux does not have built-in support to start or stop a server. However, it is easy to
assemble an application from Spring configuration and WebFlux infrastructure and run it with a
few lines of code.

Spring Boot has a WebFlux starter that automates these steps. By default, the starter uses Netty, but
it is easy to switch to Tomcat, Jetty, or Undertow by changing your Maven or Gradle dependencies.
Spring Boot defaults to Netty, because it is more widely used in the asynchronous, non-blocking
space and lets a client and a server share resources.

Tomcat and Jetty can be used with both Spring MVC and WebFlux. Keep in mind, however, that the
way they are used is very different. Spring MVC relies on Servlet blocking I/O and lets applications
use the Servlet API directly if they need to. Spring WebFlux relies on Servlet 3.1 non-blocking I/O
and uses the Servlet API behind a low-level adapter. It is not exposed for direct use.

For Undertow, Spring WebFlux uses Undertow APIs directly without the Servlet API.

1.1.6. Performance

Performance has many characteristics and meanings. Reactive and non-blocking generally do not
make applications run faster. They can, in some cases, (for example, if using the WebClient to run
remote calls in parallel). On the whole, it requires more work to do things the non-blocking way
and that can slightly increase the required processing time.

The key expected benefit of reactive and non-blocking is the ability to scale with a small, fixed

number of threads and less memory. That makes applications more resilient under load, because
they scale in a more predictable way. In order to observe those benefits, however, you need to have
some latency (including a mix of slow and unpredictable network I/0). That is where the reactive
stack begins to show its strengths, and the differences can be dramatic.

1.1.7. Concurrency Model

Both Spring MVC and Spring WebFlux support annotated controllers, but there is a key difference
in the concurrency model and the default assumptions for blocking and threads.

In Spring MVC (and servlet applications in general), it is assumed that applications can block the
current thread, (for example, for remote calls). For this reason, servlet containers use a large thread
pool to absorb potential blocking during request handling.

In Spring WebFlux (and non-blocking servers in general), it is assumed that applications do not
block. Therefore, non-blocking servers use a small, fixed-size thread pool (event loop workers) to
handle requests.

“To scale” and “small number of threads” may sound contradictory but to never
(r) block the current thread (and rely on callbacks instead) means that you do not
- need extra threads, as there are no blocking calls to absorb.

Invoking a Blocking API

What if you do need to use a blocking library? Both Reactor and RxJava provide the publishOn
operator to continue processing on a different thread. That means there is an easy escape hatch.
Keep in mind, however, that blocking APIs are not a good fit for this concurrency model.

Mutable State

In Reactor and RxJava, you declare logic through operators. At runtime, a reactive pipeline is
formed where data is processed sequentially, in distinct stages. A key benefit of this is that it frees
applications from having to protect mutable state because application code within that pipeline is
never invoked concurrently.

Threading Model

What threads should you expect to see on a server running with Spring WebFlux?

* On a “vanilla” Spring WebFlux server (for example, no data access nor other optional
dependencies), you can expect one thread for the server and several others for request
processing (typically as many as the number of CPU cores). Servlet containers, however, may
start with more threads (for example, 10 on Tomcat), in support of both servlet (blocking) I/O
and servlet 3.1 (non-blocking) I/O usage.

» The reactive WebClient operates in event loop style. So you can see a small, fixed number of
processing threads related to that (for example, reactor-http-nio- with the Reactor Netty
connector). However, if Reactor Netty is used for both client and server, the two share event
loop resources by default.

* Reactor and RxJava provide thread pool abstractions, called schedulers, to use with the
publishOn operator that is used to switch processing to a different thread pool. The schedulers
have names that suggest a specific concurrency strategy —for example, “parallel” (for CPU-

bound work with a limited number of threads) or “elastic” (for I/O-bound work with a large
number of threads). If you see such threads, it means some code is using a specific thread pool
Scheduler strategy.

» Data access libraries and other third party dependencies can also create and use threads of
their own.

Configuring
The Spring Framework does not provide support for starting and stopping servers. To configure the
threading model for a server, you need to use server-specific configuration APIs, or, if you use

Spring Boot, check the Spring Boot configuration options for each server. You can configure the
WebClient directly. For all other libraries, see their respective documentation.

1.2. Reactive Core

The spring-web module contains the following foundational support for reactive web applications:

* For server request processing there are two levels of support.

o HttpHandler: Basic contract for HTTP request handling with non-blocking I/O and Reactive
Streams back pressure, along with adapters for Reactor Netty, Undertow, Tomcat, Jetty, and
any Servlet 3.1+ container.

o WebHandler API: Slightly higher level, general-purpose web API for request handling, on top
of which concrete programming models such as annotated controllers and functional
endpoints are built.

 For the client side, there is a basic ClientHttpConnector contract to perform HTTP requests with
non-blocking I/O and Reactive Streams back pressure, along with adapters for Reactor Netty,
reactive Jetty HttpClient and Apache HttpComponents. The higher level WebClient used in
applications builds on this basic contract.

* For client and server, codecs for serialization and deserialization of HTTP request and response
content.

1.2.1. HttpHandler

HttpHandler is a simple contract with a single method to handle a request and a response. It is
intentionally minimal, and its main and only purpose is to be a minimal abstraction over different
HTTP server APIs.

The following table describes the supported server APIs:

Server name Server API used Reactive Streams support

Netty Netty API Reactor Netty

Undertow Undertow API spring-web: Undertow to Reactive
Streams bridge

Tomcat Servlet 3.1 non-blocking I/O; Tomcat spring-web: Servlet 3.1 non-blocking

API to read and write ByteBuffers vs
bytel]

I/O to Reactive Streams bridge

https://github.com/reactor/reactor-netty
https://github.com/jetty-project/jetty-reactive-httpclient
https://hc.apache.org/
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/http/server/reactive/HttpHandler.html
https://github.com/reactor/reactor-netty

Server name Server API used Reactive Streams support

Jetty Servlet 3.1 non-blocking I/0; Jetty API spring-web: Servlet 3.1 non-blocking
to write ByteBuffers vs byte[] I/O to Reactive Streams bridge

Servlet 3.1 Servlet 3.1 non-blocking I/O spring-web: Servlet 3.1 non-blocking

container I/O to Reactive Streams bridge

The following table describes server dependencies (also see supported versions):

Server name Group id Artifact name

Reactor Netty io.projectreactor.netty reactor-netty

Undertow io.undertow undertow-core

Tomcat org.apache.tomcat.embed tomcat-embed-core
Jetty org.eclipse.jetty jetty-server, jetty-servlet

The code snippets below show using the HttpHandler adapters with each server API:
Reactor Netty

Java

HttpHandler handler = ...
ReactorHttpHandlerAdapter adapter = new ReactorHttpHandlerAdapter(handler);
HttpServer.create().host(host).port(port).handle(adapter).bind().block();

Kotlin

val handler: HttpHandler = ...
val adapter = ReactorHttpHandlerAdapter(handler)
HttpServer.create().host(host).port(port).handle(adapter).bind().block()

Undertow

Java

HttpHandler handler = ...

UndertowHttpHandlerAdapter adapter = new UndertowHttpHandlerAdapter(handler);
Undertow server = Undertow.builder().addHttplListener(port,

host).setHandler (adapter).build();

server.start();

https://github.com/spring-projects/spring-framework/wiki/What%27s-New-in-the-Spring-Framework

Kotlin

val handler: HttpHandler = ...

val adapter = UndertowHttpHandlerAdapter(handler)

val server = Undertow.builder().addHttpListener(port,
host).setHandler(adapter).build()

server.start()

Tomcat

Java

HttpHandler handler = ...
Servlet servlet = new TomcatHttpHandlerAdapter(handler);

Tomcat server = new Tomcat();

File base = new File(System.getProperty("java.io.tmpdir"));

Context rootContext = server.addContext("", base.getAbsolutePath());
Tomcat.addServlet(rootContext, "main", servlet);
rootContext.addServletMappingDecoded("/", "main");
server.setHost(host);

server.setPort(port);

server.start();

Kotlin

val handler: HttpHandler = ...
val servlet = TomcatHttpHandlerAdapter(handler)

val server = Tomcat()

val base = File(System.getProperty("java.io.tmpdir"))

val rootContext = server.addContext("", base.absolutePath)
Tomcat.addServlet(rootContext, "main", servlet)
rootContext.addServletMappingDecoded("/", "main")
server.host = host

server.setPort(port)

server.start()

Jetty

Java

HttpHandler handler = ...
Servlet servlet = new JettyHttpHandlerAdapter(handler);

Server server = new Server();

ServletContextHandler contextHandler = new ServletContextHandler(server, "");
contextHandler.addServlet(new ServletHolder(servlet), "/");
contextHandler.start();

ServerConnector connector = new ServerConnector(server);
connector.setHost(host);

connector.setPort(port);

server.addConnector(connector);

server.start();

Kotlin

val handler: HttpHandler = ...
val servlet = JettyHttpHandlerAdapter(handler)

val server = Server()

val contextHandler = ServletContextHandler(server, "")
contextHandler.addServlet(ServletHolder(servlet), "/")
contextHandler.start();

val connector = ServerConnector(server)
connector.host = host

connector.port = port
server.addConnector (connector)
server.start()

Servlet 3.1+ Container

To deploy as a WAR to any Servlet 3.1+ container, you can extend and include
AbstractReactiveWebInitializer in the WAR. That «class wraps an HttpHandler with
ServletHttpHandlerAdapter and registers that as a Servlet.

1.2.2. WebHandler API

The org.springframework.web.server package builds on the HttpHandler contract to provide a
general-purpose web API for processing requests through a chain of multiple WebExceptionHandler,
multiple WebFilter, and a single WebHandler component. The chain can be put together with
WebHttpHandlerBuilder by simply pointing to a Spring ApplicationContext where components are
auto-detected, and/or by registering components with the builder.

While HttpHandler has a simple goal to abstract the use of different HTTP servers, the WebHandler API
aims to provide a broader set of features commonly used in web applications such as:

10

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/server/adapter/AbstractReactiveWebInitializer.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/server/WebExceptionHandler.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/server/WebFilter.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/server/WebHandler.html

e User session with attributes.

* Request attributes.

* Resolved Locale or Principal for the request.

» Access to parsed and cached form data.

e and more..

Special bean types

Abstractions for multipart data.

The table below lists the components that WebHttpHandlerBuilder can auto-detect in a Spring

ApplicationContext, or that can be registered directly with it:

Bean name

<any>

<any>

webHandler

webSessionManager

serverCodecConfigurer

localeContextResolver

forwardedHeaderTransfo
rmer

Bean type Count
WebExceptionHandler 0.N

WebFilter 0.N
WebHandler 1
WebSessionManager 0.1

ServerCodecConfigurer (.1

LocaleContextResolver 0.1

ForwardedHeaderTransfo (.1
rmer

Description

Provide handling for exceptions
from the chain of WebFilter
instances and the target WebHandler.
For more details, see Exceptions.

Apply interception style logic to
before and after the rest of the filter
chain and the target WebHandler. For
more details, see Filters.

The handler for the request.

The manager for WebSession
instances exposed through a
method on ServerWebExchange.
DefaultWebSessionManager by default.

For access to HttpMessageReader
instances for parsing form data and
multipart data that is then exposed
through methods on
ServerlWebExchange.
ServerCodecConfigurer.create() by
default.

The resolver for LocaleContext
exposed through a method on
ServerWebExchange.
AcceptHeaderLocaleContextResolver
by default.

For processing forwarded type
headers, either by extracting and
removing them or by removing
them only. Not used by default.

11

Form Data

ServerlWebExchange exposes the following method for accessing form data:

Java

Mono<MultiValueMap<String, String>> getFormData();

Kotlin

suspend fun getFormData(): MultiValueMap<String, String>

The DefaultServerWebExchange uses the configured HttpMessageReader to parse form data
(application/x-www-form-urlencoded) into a MultiValueMap. By default, FormHttpMessageReader is
configured for use by the ServerCodecConfigurer bean (see the Web Handler API).

Multipart Data

Web MVC
ServerlWlebExchange exposes the following method for accessing multipart data:

Java

Mono<MultiValueMap<String, Part>> getMultipartData();

Kotlin

suspend fun getMultipartData(): MultiValueMap<String, Part>

The DefaultServerWebExchange uses the configured HttpMessageReader<MultiValueMap<String, Part>>
to parse multipart/form-data content into a MultiValueMap. By default, this is the
DefaultPartHttpMessageReader, which does not have any third-party dependencies. Alternatively, the
SynchronossPartHttpMessageReader can be used, which is based on the Synchronoss NIO Multipart
library. Both are configured through the ServerCodecConfigurer bean (see the Web Handler API).

To parse multipart data in streaming fashion, you can use the Flux<Part> returned from an
HttpMessageReader<Part> instead. For example, in an annotated controller, use of @RequestPart
implies Map-like access to individual parts by name and, hence, requires parsing multipart data in
full. By contrast, you can use @RequestBody to decode the content to Flux<Part> without collecting to
a MultiValueMap.

Forwarded Headers
Web MVC

As a request goes through proxies (such as load balancers), the host, port, and scheme may change.
That makes it a challenge, from a client perspective, to create links that point to the correct host,
port, and scheme.

12

web.pdf#mvc-multipart
https://github.com/synchronoss/nio-multipart
web.pdf#filters-forwarded-headers

RFC 7239 defines the Forwarded HTTP header that proxies can use to provide information about the
original request. There are other non-standard headers, too, including X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, X-Forwarded-Ss1, and X-Forwarded-Prefix.

ForwardedHeaderTransformer is a component that modifies the host, port, and scheme of the request,
based on forwarded headers, and then removes those headers. If you declare it as a bean with the
name forwardedHeaderTransformer, it will be detected and used.

There are security considerations for forwarded headers, since an application cannot know if the
headers were added by a proxy, as intended, or by a malicious client. This is why a proxy at the
boundary of trust should be configured to remove untrusted forwarded traffic coming from the
outside. You can also configure the ForwardedHeaderTransformer with removeOnly=true, in which case
it removes but does not use the headers.

In 5.1 ForwardedHeaderFilter ~was deprecated and superceded by

o ForwardedHeaderTransformer so forwarded headers can be processed earlier, before
the exchange is created. If the filter is configured anyway, it is taken out of the list
of filters, and ForwardedHeaderTransformer is used instead.

1.2.3. Filters

Web MVC

In the WebHandler API, you can use a WebFilter to apply interception-style logic before and after the
rest of the processing chain of filters and the target WebHandler. When using the WebFlux Config,
registering a WebFilter is as simple as declaring it as a Spring bean and (optionally) expressing
precedence by using @0rder on the bean declaration or by implementing Ordered.

CORS
Web MVC

Spring WebFlux provides fine-grained support for CORS configuration through annotations on
controllers. However, when you use it with Spring Security, we advise relying on the built-in
CorsFilter, which must be ordered ahead of Spring Security’s chain of filters.

See the section on CORS and the webflux-cors.pdf for more details.

1.2.4. Exceptions

Web MVC

In the WebHandler API, you can use a WebExceptionHandler to handle exceptions from the chain of
WebFilter instances and the target WebHandler. When using the WebFlux Config, registering a
WebExceptionHandler is as simple as declaring it as a Spring bean and (optionally) expressing
precedence by using @0rder on the bean declaration or by implementing Ordered.

The following table describes the available WebExceptionHandler implementations:

13

https://tools.ietf.org/html/rfc7239
web.pdf#filters
web.pdf#filters-cors
webflux-cors.pdf#webflux-cors-webfilter
web.pdf#mvc-ann-customer-servlet-container-error-page

Exception Handler Description

ResponseStatusExceptionHandler Pprovides handling for exceptions of type ResponseStatusException
by setting the response to the HTTP status code of the exception.

WebFluxResponseStatusException Extension of ResponseStatusExceptionHandler that can also
Handler determine the HTTP status code of a @ResponseStatus annotation
on any exception.

This handler is declared in the WebFlux Config.

1.2.5. Codecs

Web MVC

The spring-web and spring-core modules provide support for serializing and deserializing byte
content to and from higher level objects through non-blocking I/O with Reactive Streams back
pressure. The following describes this support:

* Encoder and Decoder are low level contracts to encode and decode content independent of HTTP.

» HttpMessageReader and HttpMessageWriter are contracts to encode and decode HTTP message
content.

* An Encoder can be wrapped with EncoderHttpMessageliriter to adapt it for use in a web
application, while a Decoder can be wrapped with DecoderHttpMessageReader.

» DataBuffer abstracts different byte buffer representations (e.g. Netty ByteBuf,
java.nio.ByteBuffer, etc.) and is what all codecs work on. See Data Buffers and Codecs in the
"Spring Core" section for more on this topic.

The spring-core module provides byte[], ByteBuffer, DataBuffer, Resource, and String encoder and
decoder implementations. The spring-web module provides Jackson JSON, Jackson Smile, JAXB2,
Protocol Buffers and other encoders and decoders along with web-only HTTP message reader and
writer implementations for form data, multipart content, server-sent events, and others.

(lientCodecConfigurer and ServerCodecConfigurer are typically used to configure and customize the
codecs to use in an application. See the section on configuring HTTP message codecs.

Jackson JSON

JSON and binary JSON (Smile) are both supported when the Jackson library is present.
The Jackson2Decoder works as follows:
 Jackson’s asynchronous, non-blocking parser is used to aggregate a stream of byte chunks into
TokenBuffer's each representing a JSON object.
* Each TokenBuffer is passed to Jackson’s ObjectMapper to create a higher level object.
* When decoding to a single-value publisher (e.g. Mono), there is one TokenBuffer.

* When decoding to a multi-value publisher (e.g. Flux), each TokenBuffer is passed to the
ObjectMapper as soon as enough bytes are received for a fully formed object. The input content

14

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/server/ResponseStatusException.html
integration.pdf#rest-message-conversion
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/core/codec/Encoder.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/core/codec/Decoder.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/http/codec/HttpMessageReader.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/http/codec/HttpMessageWriter.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/core/io/buffer/DataBuffer.html
core.pdf#databuffers
https://github.com/FasterXML/smile-format-specification

can be a JSON array, or any line-delimited JSON format such as NDJSON, JSON Lines, or JSON
Text Sequences.

The Jackson2Encoder works as follows:

 For a single value publisher (e.g. Mono), simply serialize it through the ObjectMapper.

* For a multi-value publisher with application/json, by default collect the values with
Flux#tcollectTolist() and then serialize the resulting collection.

* For a multi-value publisher with a streaming media type such as application/x-ndjson or
application/stream+x-jackson-smile, encode, write, and flush each value individually using a
line-delimited JSON format. Other streaming media types may be registered with the encoder.

» For SSE the Jackson2Encoder is invoked per event and the output is flushed to ensure delivery
without delay.

By default both Jackson2Encoder and Jackson2Decoder do not support elements of
type String. Instead the default assumption is that a string or a sequence of strings

o represent serialized JSON content, to be rendered by the CharSequenceEncoder. If
what you need is to render a JSON array from Flux<String>, use
Flux#collectTolist() and encode a Mono<List<String>>.

Form Data

FormHttpMessageReader and FormHttpMessageWriter support decoding and encoding application/x-
www-form-urlencoded content.

On the server side where form content often needs to be accessed from multiple places,
ServerlWlebExchange provides a dedicated getFormData() method that parses the content through
FormHttpMessageReader and then caches the result for repeated access. See Form Data in the
WebHandler API section.

Once getFormData() is used, the original raw content can no longer be read from the request body.
For this reason, applications are expected to go through ServerWebExchange consistently for access to
the cached form data versus reading from the raw request body.

Multipart

MultipartHttpMessageReader and MultipartHttpMessageWriter support decoding and encoding
"multipart/form-data” content. In turn MultipartHttpMessageReader delegates to another
HttpMessageReader for the actual parsing to a Flux<Part> and then simply collects the parts into a
MultiValueMap. By default, the DefaultPartHttpMessageReader is used, but this can be changed
through the ServerCodecConfigurer. For more information about the DefaultPartHttpMessageReader,
refer to to the javadoc of DefaultPartHttpMessageReader.

On the server side where multipart form content may need to be accessed from multiple places,
ServerWebExchange provides a dedicated getMultipartData() method that parses the content through
MultipartHttpMessageReader and then caches the result for repeated access. See Multipart Data in
the WebHandler API section.

15

https://en.wikipedia.org/wiki/JSON_streaming
https://en.wikipedia.org/wiki/JSON_streaming
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/http/codec/multipart/DefaultPartHttpMessageReader.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/http/codec/multipart/DefaultPartHttpMessageReader.html

Once getMultipartData() is used, the original raw content can no longer be read from the request
body. For this reason applications have to consistently use getMultipartData() for repeated, map-
like access to parts, or otherwise rely on the SynchronossPartHttpMessageReader for a one-time access
to Flux<Part>.

Limits

Decoder and HttpMessageReader implementations that buffer some or all of the input stream can be
configured with a limit on the maximum number of bytes to buffer in memory. In some cases
buffering occurs because input is aggregated and represented as a single object — for example, a
controller method with @RequestBody byte[], x-www-form-urlencoded data, and so on. Buffering can
also occur with streaming, when splitting the input stream — for example, delimited text, a stream
of JSON objects, and so on. For those streaming cases, the limit applies to the number of bytes
associated with one object in the stream.

To configure buffer sizes, you can check if a given Decoder or HttpMessageReader exposes a
maxInMemorySize property and if so the Javadoc will have details about default values. On the server
side, ServerCodecConfigurer provides a single place from where to set all codecs, see HTTP message
codecs. On the client side, the limit for all codecs can be changed in WebClient.Builder.

For Multipart parsing the maxInMemorySize property limits the size of non-file parts. For file parts, it
determines the threshold at which the part is written to disk. For file parts written to disk, there is
an additional maxDiskUsagePerPart property to limit the amount of disk space per part. There is also
a maxParts property to limit the overall number of parts in a multipart request. To configure all
three in WebFlux, youw’ll need to supply a pre-configured instance of MultipartHttpMessageReader to
ServerCodecConfigurer.

Streaming

Web MVC

When streaming to the HTTP response (for example, text/event-stream, application/x-ndjson), it is
important to send data periodically, in order to reliably detect a disconnected client sooner rather
than later. Such a send could be a comment-only, empty SSE event or any other "no-op" data that
would effectively serve as a heartbeat.

DataBuffer

DataBuffer is the representation for a byte buffer in WebFlux. The Spring Core part of this reference
has more on that in the section on Data Buffers and Codecs. The key point to understand is that on
some servers like Netty, byte buffers are pooled and reference counted, and must be released when
consumed to avoid memory leaks.

WebFlux applications generally do not need to be concerned with such issues, unless they consume
or produce data buffers directly, as opposed to relying on codecs to convert to and from higher
level objects, or unless they choose to create custom codecs. For such cases please review the
information in Data Buffers and Codecs, especially the section on Using DataBuffer.

16

web.pdf#mvc-ann-async-http-streaming
core.pdf#databuffers
core.pdf#databuffers
core.pdf#databuffers-using

1.2.6. Logging

Web MVC

DEBUG level logging in Spring WebFlux is designed to be compact, minimal, and human-friendly. It
focuses on high value bits of information that are useful over and over again vs others that are
useful only when debugging a specific issue.

TRACE level logging generally follows the same principles as DEBUG (and for example also should not
be a firehose) but can be used for debugging any issue. In addition, some log messages may show a
different level of detail at TRACE vs DEBUG.

Good logging comes from the experience of using the logs. If you spot anything that does not meet
the stated goals, please let us know.

Log Id

In WebFlux, a single request can be run over multiple threads and the thread ID is not useful for
correlating log messages that belong to a specific request. This is why WebFlux log messages are
prefixed with a request-specific ID by default.

On the server side, the log ID is stored in the ServerWebExchange attribute (LOG_ID_ATTRIBUTE), while a
fully formatted prefix based on that ID is available from ServerWebExchange#getLogPrefix(). On the
WebClient side, the log ID is stored in the ClientRequest attribute (L0G_ID_ATTRIBUTE) ,while a fully
formatted prefix is available from ClientRequest#logPrefix().

Sensitive Data
Web MVC

DEBUG and TRACE logging can log sensitive information. This is why form parameters and headers are
masked by default and you must explicitly enable their logging in full.

The following example shows how to do so for server-side requests:

Java

@Configuration
@EnableWebFlux
class MyConfig implements WebFluxConfigurer {

@Override
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
configurer.defaultCodecs().enableLoggingRequestDetails(true);

}

17

web.pdf#mvc-logging
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/server/ServerWebExchange.html#LOG_ID_ATTRIBUTE
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/function/client/ClientRequest.html#LOG_ID_ATTRIBUTE
web.pdf#mvc-logging-sensitive-data

Kotlin

@Configuration
@EnableWebFlux
class MyConfig : WebFluxConfigurer {

override fun configureHttpMessageCodecs(confiqgurer: ServerCodecConfigurer) {
configurer.defaultCodecs().enableLoggingRequestDetails(true)

}

The following example shows how to do so for client-side requests:

Java

Consumer<ClientCodecConfigurer> consumer = configurer ->
configurer.defaultCodecs().enableLoggingRequestDetails(true);

WebClient webClient = WebClient.builder()
.exchangeStrategies(strategies -> strategies.codecs(consumer))
.build();

Kotlin

val consumer: (ClientCodecConfigurer) -> Unit = { configqurer ->
configurer.defaultCodecs().enableLoggingRequestDetails(true) }

val webClient = WebClient.builder()
.exchangeStrategies({ strategies -> strategies.codecs(consumer) })
.build()

Appenders

Logging libraries such as SLF4] and Log4] 2 provide asynchronous loggers that avoid blocking.
While those have their own drawbacks such as potentially dropping messages that could not be
queued for logging, they are the best available options currently for use in a reactive, non-blocking
application.

Custom codecs

Applications can register custom codecs for supporting additional media types, or specific
behaviors that are not supported by the default codecs.

Some configuration options expressed by developers are enforced on default codecs. Custom codecs
might want to get a chance to align with those preferences, like enforcing buffering limits or
logging sensitive data.

The following example shows how to do so for client-side requests:

18

Java

WebClient webClient = WebClient.builder()
.codecs(configurer -> {
CustomDecoder decoder = new CustomDecoder();
configurer.customCodecs().registerWithDefaultConfig(decoder);

1))
.build();

Kotlin

val webClient = WebClient.builder()
.codecs({ configurer ->
val decoder = CustomDecoder ()
configurer.customCodecs().registerWithDefaultConfig(decoder)

1))
.build()

1.3. DispatcherHandler

Web MVC

Spring WebFlux, similarly to Spring MVC, is designed around the front controller pattern, where a
central WebHandler, the DispatcherHandler, provides a shared algorithm for request processing, while
actual work is performed by configurable, delegate components. This model is flexible and supports
diverse workflows.

DispatcherHandler discovers the delegate components it needs from Spring configuration. It is also
designed to be a Spring bean itself and implements ApplicationContextAware for access to the
context in which it runs. If DispatcherHandler is declared with a bean name of webHandler, it is, in
turn, discovered by WebHttpHandlerBuilder, which puts together a request-processing chain, as
described in WebHandler API.

Spring configuration in a WebFlux application typically contains:

* DispatcherHandler with the bean name webHandler

WebFilter and WebExceptionHandler beans
* DispatcherHandler special beans

e Others

The configuration is given to WebHttpHandlerBuilder to build the processing chain, as the following
example shows:

Java

ApplicationContext context = ...
HttpHandler handler = WebHttpHandlerBuilder.applicationContext(context).build();

19

web.pdf#mvc-servlet
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/server/adapter/WebHttpHandlerBuilder.html

Kotlin

val context: ApplicationContext = ...
val handler = WebHttpHandlerBuilder.applicationContext(context).build()

The resulting HttpHandler is ready for use with a server adapter.

1.3.1. Special Bean Types

Web MVC

The DispatcherHandler delegates to special beans to process requests and render the appropriate
responses. By “special beans,” we mean Spring-managed Object instances that implement WebFlux
framework contracts. Those usually come with built-in contracts, but you can customize their
properties, extend them, or replace them.

The following table lists the special beans detected by the DispatcherHandler. Note that there are
also some other beans detected at a lower level (see Special bean types in the Web Handler API).

Bean type
HandlerMapping

HandlerAdapter

HandlerResultHandler

1.3.2. WebFlux Config

Web MVC

Explanation

Map a request to a handler. The mapping is based on some
criteria, the details of which vary by HandlerMapping
implementation — annotated controllers, simple URL pattern
mappings, and others.

The main HandlerMapping implementations are
RequestMappingHandlerMapping for @RequestMapping annotated
methods, RouterFunctionMapping for functional endpoint routes,
and SimpleUr1HandlerMapping for explicit registrations of URI path
patterns and WebHandler instances.

Help the DispatcherHandler to invoke a handler mapped to a
request regardless of how the handler is actually invoked. For
example, invoking an annotated controller requires resolving
annotations. The main purpose of a HandlerAdapter is to shield
the DispatcherHandler from such details.

Process the result from the handler invocation and finalize the
response. See Result Handling.

Applications can declare the infrastructure beans (listed under Web Handler API and
DispatcherHandler) that are required to process requests. However, in most cases, the WebFlux
Config is the best starting point. It declares the required beans and provides a higher-level
configuration callback API to customize it.

20

web.pdf#mvc-servlet-special-bean-types
web.pdf#mvc-servlet-config

o Spring Boot relies on the WebFlux config to configure Spring WebFlux and also
provides many extra convenient options.

1.3.3. Processing

Web MVC
DispatcherHandler processes requests as follows:

* Each HandlerMapping is asked to find a matching handler, and the first match is used.

« If a handler is found, it is run through an appropriate HandlerAdapter, which exposes the return
value from the execution as HandlerResult.

* The HandlerResult is given to an appropriate HandlerResultHandler to complete processing by
writing to the response directly or by using a view to render.

1.3.4. Result Handling

The return value from the invocation of a handler, through a HandlerAdapter, is wrapped as a
HandlerResult, along with some additional context, and passed to the first HandlerResultHandler that
claims support for it. The following table shows the available HandlerResultHandler
implementations, all of which are declared in the WebFlux Config:

Result Handler Type Return Values Default Order
ResponseEntityResultHa ResponseEntity, typically from @Controller 0

ndler instances.

ServerResponseResultHa ServerResponse, typically from functional 0

ndler endpoints.

ResponseBodyResultHand Handle return values from @ResponseBody 100

ler

methods or @RestController classes.

ViewResolutionResultHa CharSequenCQ, V'iew, Model, Map, Rendering, or any Integer .MAX_VALUE
ndler other Object is treated as a model attribute.

See also View Resolution.

1.3.5. Exceptions

Web MVC

The HandlerResult returned from a HandlerAdapter can expose a function for error handling based
on some handler-specific mechanism. This error function is called if:

* The handler (for example, @Controller) invocation fails.

* The handling of the handler return value through a HandlerResultHandler fails.

The error function can change the response (for example, to an error status), as long as an error
signal occurs before the reactive type returned from the handler produces any data items.

21

web.pdf#mvc-servlet-sequence
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/result/view/View.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/ui/Model.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/result/view/Rendering.html
web.pdf#mvc-exceptionhandlers

This is how @ExceptionHandler methods in @Controller classes are supported. By contrast, support
for the same in Spring MVC is built on a HandlerExceptionResolver. This generally should not matter.
However, keep in mind that, in WebFlux, you cannot use a @ControllerAdvice to handle exceptions
that occur before a handler is chosen.

See also Managing Exceptions in the “Annotated Controller” section or Exceptions in the
WebHandler API section.

1.3.6. View Resolution

Web MVC

View resolution enables rendering to a browser with an HTML template and a model without tying
you to a specific view technology. In Spring WebFlux, view resolution is supported through a
dedicated HandlerResultHandler that uses ViewResolver instances to map a String (representing a
logical view name) to a View instance. The View is then used to render the response.

Handling

Web MVC

The HandlerResult passed into ViewResolutionResultHandler contains the return value from the
handler and the model that contains attributes added during request handling. The return value is
processed as one of the following:

* String, CharSequence: A logical view name to be resolved to a View through the list of configured
ViewResolver implementations.

* void: Select a default view name based on the request path, minus the leading and trailing slash,
and resolve it to a View. The same also happens when a view name was not provided (for
example, model attribute was returned) or an async return value (for example, Mono completed
empty).

* Rendering: API for view resolution scenarios. Explore the options in your IDE with code
completion.

* Model, Map: Extra model attributes to be added to the model for the request.

* Any other: Any other return value (except for simple types, as determined by
BeanUtils#isSimpleProperty) is treated as a model attribute to be added to the model. The
attribute name is derived from the class name by using conventions, unless a handler method
@ModelAttribute annotation is present.

The model can contain asynchronous, reactive types (for example, from Reactor or RxJava). Prior to
rendering, AbstractView resolves such model attributes into concrete values and updates the model.
Single-value reactive types are resolved to a single value or no value (if empty), while multi-value
reactive types (for example, Flux<T>) are collected and resolved to List<T>.

To configure view resolution is as simple as adding a ViewResolutionResultHandler bean to your
Spring configuration. WebFlux Config provides a dedicated configuration API for view resolution.

See View Technologies for more on the view technologies integrated with Spring WebFlux.

22

web.pdf#mvc-viewresolver
web.pdf#mvc-handling
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/result/view/Rendering.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/core/Conventions.html

Redirecting

Web MVC

The special redirect: prefix in a view name lets you perform a redirect. The Ur1BasedViewResolver
(and sub-classes) recognize this as an instruction that a redirect is needed. The rest of the view
name is the redirect URL.

The net effect is the same as if the controller had returned a RedirectView or
Rendering.redirectTo("abc").build(), but now the controller itself can operate in terms of logical
view names. A view name such as redirect:/some/resource is relative to the current application,
while a view name such as redirect:https://example.com/arbitrary/path redirects to an absolute
URL.

Content Negotiation

Web MVC

ViewResolutionResultHandler supports content negotiation. It compares the request media types
with the media types supported by each selected View. The first View that supports the requested
media type(s) is used.

In order to support media types such as JSON and XML, Spring WebFlux provides
HttpMessageWriterView, which is a special View that renders through an HttpMessageWriter.
Typically, you would configure these as default views through the WebFlux Configuration. Default
views are always selected and used if they match the requested media type.

1.4. Annotated Controllers
Web MVC

Spring WebFlux provides an annotation-based programming model, where @Controller and
@RestController components use annotations to express request mappings, request input, handle
exceptions, and more. Annotated controllers have flexible method signatures and do not have to
extend base classes nor implement specific interfaces.

The following listing shows a basic example:

Java

@RestController
public class HelloController {

@GetMapping("/hello")
public String handle() {
return "Hello WebFlux";

}

23

web.pdf#mvc-redirecting-redirect-prefix
web.pdf#mvc-multiple-representations
web.pdf#mvc-controller

Kotlin

@RestController
class HelloController {

@GetMapping("/hello")
fun handle() = "Hello WebFlux"

In the preceding example, the method returns a String to be written to the response body.

1.4.1. @Controller

Web MVC

You can define controller beans by using a standard Spring bean definition. The @Controller
stereotype allows for auto-detection and is aligned with Spring general support for detecting
@Component classes in the classpath and auto-registering bean definitions for them. It also acts as a
stereotype for the annotated class, indicating its role as a web component.

To enable auto-detection of such @Controller beans, you can add component scanning to your Java
configuration, as the following example shows:

Java

@Configuration
@ComponentScan("org.example.web") @
public class WebConfig {

/] ...

@ Scan the org.example.web package.

Kotlin

@Configuration
@ComponentScan("org.example.web") @
class WebConfig {

/] ...

@ Scan the org.example.web package.

@RestController is a composed annotation that is itself meta-annotated with @Controller and
@ResponseBody, indicating a controller whose every method inherits the type-level @ResponseBody
annotation and, therefore, writes directly to the response body versus view resolution and
rendering with an HTML template.

24

web.pdf#mvc-ann-controller
core.pdf#beans-meta-annotations

1.4.2. Request Mapping

Web MVC

The @RequestMapping annotation is used to map requests to controllers methods. It has various
attributes to match by URL, HTTP method, request parameters, headers, and media types. You can
use it at the class level to express shared mappings or at the method level to narrow down to a
specific endpoint mapping.

There are also HTTP method specific shortcut variants of @RequestMapping:

* @GetMapping

* @PostMapping

* @PutMapping

* @DeleteMapping
» @PatchMapping

The preceding annotations are Custom Annotations that are provided because, arguably, most
controller methods should be mapped to a specific HTTP method versus using @RequestMapping,
which, by default, matches to all HTTP methods. At the same time, a @RequestMapping is still needed
at the class level to express shared mappings.

The following example uses type and method level mappings:

Java

@RestController
@RequestMapping("/persons")
class PersonController {

@GetMapping("/{id}")

public Person getPerson(@PathVariable Long id) {
/] ...

}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)

public void add(@RequestBody Person person) {
/] ...

}

25

web.pdf#mvc-ann-requestmapping

Kotlin

@RestController
©RequestMapping(

"/persons")

class PersonController {

@GetMapping("/{id}")
fun getPerson(@PathVariable id: Long): Person {

7 o
}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)
fun add(@RequestBody person: Person) {

/] ...
}
}
URI Patterns
Web MVC

You can map requests by using glob patterns and wildcards:

Pattern

?

**

{name}

{name:[a-z]+}

26

Description Example

Matches one character "/pages/t?st.html" matches "/pages/test.html"
and "/pages/t3st.html"

Matches zero or more "/resources/*.png" matches

characters within a path "/resources/file.png"

segment

"/projects/*/versions" matches

"/projects/spring/versions" but does not match
"/projects/spring/boot/versions"

Matches zero or more path "/resources/**" matches "/resources/file.png"
segments until the end of and "/resources/images/file.png"
the path
"/resources/**/file.png" is invalid as ** is only
allowed at the end of the path.

Matches a path segment and "/projects/{project}/versions" matches
captures it as a variable "/projects/spring/versions" and captures
named "name" project=spring

Matches the regexp "[a-z]+" "/projects/{project:[a-z]+}/versions" matches

as a path variable named "/projects/spring/versions" but not
"name" "/projects/spring1/versions”

web.pdf#mvc-ann-requestmapping-uri-templates

Pattern Description Example

{*path} Matches zero or more path "/resources/{*file}" matches
segments until the end of "/resources/images/file.png" and captures
the path and captures it asa file=images/file.png
variable named "path”

Captured URI variables can be accessed with @PathVariable, as the following example shows:

Java

@GetMapping("/owners/{ownerId}/pets/{petId}")

public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
/] ...

}

Kotlin

@GetMapping("/owners/{ownerId}/pets/{petId}")

fun findPet(@PathVariable ownerId: Long, @PathVariable petId: Long): Pet {
/] ...

}

You can declare URI variables at the class and method levels, as the following example shows:

Java

@Controller
@RequestMapping("/owners/{ownerId}") @
public class OwnerController {

@GetMapping("/pets/{petId}") @

public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
/] ...

}

@ Class-level URI mapping.
@ Method-level URI mapping.

27

Kotlin

@Controller
@RequestMapping("/owners/{ownerId}") @
class OwnerController {

@GetMapping("/pets/{petId}") @

fun findPet(@PathVariable ownerId: Long, @PathVariable petId: Long): Pet {
/] ...

}

@ Class-level URI mapping.
@ Method-level URI mapping.

URI variables are automatically converted to the appropriate type or a TypeMismatchException is
raised. Simple types (int, long, Date, and so on) are supported by default and you can register
support for any other data type. See Type Conversion and DataBinder.

URI variables can be named explicitly (for example, @PathVariable("customId")), but you can leave
that detail out if the names are the same and you compile your code with debugging information or
with the -parameters compiler flag on Java 8.

The syntax {*varName} declares a URI variable that matches zero or more remaining path segments.
For example /resources/{*path} matches all files under /resources/, and the "path" variable
captures the complete relative path.

The syntax {varName:regex} declares a URI variable with a regular expression that has the syntax:
{varName:regex}. For example, given a URL of /spring-web-3.0.5 .jar, the following method extracts
the name, version, and file extension:

Java

@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")

public void handle(@PathVariable String version, @PathVariable String ext) {
/] ...

}

Kotlin

@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")

fun handle(@PathVariable version: String, @PathVariable ext: String) {
/] ...

+

URI path patterns can also have embedded ${::-} placeholders that are resolved on startup through
PropertyPlaceHolderConfigurer against local, system, environment, and other property sources. You
ca use this to, for example, parameterize a base URL based on some external configuration.

28

Spring WebFlux uses PathPattern and the PathPatternParser for URI path matching

o support. Both classes are located in spring-web and are expressly designed for use
with HTTP URL paths in web applications where a large number of URI path
patterns are matched at runtime.

Spring WebFlux does not support suffix pattern matching — unlike Spring MVC, where a mapping
such as /person also matches to /person.*. For URL-based content negotiation, if needed, we
recommend using a query parameter, which is simpler, more explicit, and less vulnerable to URL
path based exploits.

Pattern Comparison

Web MVC

When multiple patterns match a URL, they must be compared to find the best match. This is done
with PathPattern.SPECIFICITY_COMPARATOR, which looks for patterns that are more specific.

For every pattern, a score is computed, based on the number of URI variables and wildcards, where
a URI variable scores lower than a wildcard. A pattern with a lower total score wins. If two patterns
have the same score, the longer is chosen.

Catch-all patterns (for example, **, {*varName}) are excluded from the scoring and are always sorted
last instead. If two patterns are both catch-all, the longer is chosen.

Consumable Media Types
Web MVC

You can narrow the request mapping based on the Content-Type of the request, as the following
example shows:

Java

@PostMapping(path = "/pets", consumes = "application/json")
public void addPet(@RequestBody Pet pet) {

/] ...
}

Kotlin

@PostMapping("/pets", consumes = ["application/json"])
fun addPet(@RequestBody pet: Pet) {

/] ...
b

The consumes attribute also supports negation expressions — for example, !text/plain means any
content type other than text/plain.

You can declare a shared consumes attribute at the class level. Unlike most other request mapping

29

web.pdf#mvc-ann-requestmapping-pattern-comparison
web.pdf#mvc-ann-requestmapping-consumes

attributes, however, when used at the class level, a method-level consumes attribute overrides rather
than extends the class-level declaration.

(r) MediaType provides constants for commonly used media types—for example,
- APPLICATION_JSON_VALUE and APPLICATION_XML_VALUE.

Producible Media Types

Web MVC

You can narrow the request mapping based on the Accept request header and the list of content
types that a controller method produces, as the following example shows:

Java

@GetMapping(path = "/pets/{petId}", produces = "application/json")
@ResponseBody
public Pet getPet(@PathVariable String petId) {
/...
}

Kotlin

@GetMapping("/pets/{petId}", produces = ["application/json"])
@ResponseBody
fun getPet(@PathVariable String petId): Pet {
/] ...
}

The media type can specify a character set. Negated expressions are supported —for example,
I'text/plain means any content type other than text/plain.

You can declare a shared produces attribute at the class level. Unlike most other request mapping
attributes, however, when used at the class level, a method-level produces attribute overrides rather
than extend the class level declaration.

(r) MediaType provides constants for commonly used media types—e.g.
- APPLICATION_JSON_VALUE, APPLICATION_XML_VALUE.

Parameters and Headers

Web MVC

You can narrow request mappings based on query parameter conditions. You can test for the
presence of a query parameter (myParam), for its absence (!myParam), or for a specific value
(myParam=myValue). The following examples tests for a parameter with a value:

30

web.pdf#mvc-ann-requestmapping-produces
web.pdf#mvc-ann-requestmapping-params-and-headers

Java

@GetMapping(path = "/pets/{petId}", params = "myParam=myValue") @
public void findPet(@PathVariable String petId) {

/] ...
}

@ Check that myParam equals myValue.

Kotlin

@GetMapping("/pets/{petId}", params = ["myParam=myValue"]) @®
fun findPet(@PathVariable petld: String) {

/] ...
¥

® Check that myParam equals myValue.
You can also use the same with request header conditions, as the follwing example shows:

Java

@GetMapping(path = "/pets", headers = "myHeader=myValue") @
public void findPet(@PathVariable String petId) {

/...
¥

@ Check that myHeader equals myValue.

Kotlin

@GetMapping("/pets", headers = ["myHeader=myValue"]) ®
fun findPet(@PathVariable petId: String) {

/...
}

@ Check that myHeader equals myValue.

HTTP HEAD, OPTIONS

Web MVC

@GetMapping and @RequestMapping(method=HttpMethod.GET) support HTTP HEAD transparently for
request mapping purposes. Controller methods need not change. A response wrapper, applied in
the HttpHandler server adapter, ensures a Content-Length header is set to the number of bytes
written without actually writing to the response.

By default, HTTP OPTIONS is handled by setting the Allow response header to the list of HTTP
methods listed in all @RequestMapping methods with matching URL patterns.

For a @RequestMapping without HTTP method declarations, the Allow header is set to

31

web.pdf#mvc-ann-requestmapping-head-options

GET,HEAD,POST,PUT, PATCH,DELETE,OPTIONS. Controller methods should always declare the supported
HTTP methods (for example, by using the HTTP method specific variants— @GetMapping,
@PostMapping, and others).

You can explicitly map a @RequestMapping method to HTTP HEAD and HTTP OPTIONS, but that is not
necessary in the common case.

Custom Annotations

Web MVC

Spring WebFlux supports the use of composed annotations for request mapping. Those are
annotations that are themselves meta-annotated with @RequestMapping and composed to redeclare a
subset (or all) of the @RequestMapping attributes with a narrower, more specific purpose.

@GetMapping, @PostMapping, @PutMapping, @DeleteMapping, and @PatchMapping are examples of composed
annotations. They are provided, because, arguably, most controller methods should be mapped to a
specific HTTP method versus using @RequestMapping, which, by default, matches to all HTTP
methods. If you need an example of composed annotations, look at how those are declared.

Spring WebFlux also supports custom request mapping attributes with custom request matching
logic. This is a more advanced option that requires sub-classing RequestMappingHandlerMapping and
overriding the getCustomMethodCondition method, where you can check the custom attribute and
return your own RequestCondition.

Explicit Registrations
Web MVC

You can programmatically register Handler methods, which can be used for dynamic registrations
or for advanced cases, such as different instances of the same handler under different URLs. The
following example shows how to do so:

32

web.pdf#mvc-ann-requestmapping-composed
core.pdf#beans-meta-annotations
web.pdf#mvc-ann-requestmapping-registration

Java

@Configuration
public class MyConfig {

@Autowired

public void setHandlerMapping(RequestMappingHandlerMapping mapping, UserHandler
handler) @
throws NoSuchMethodException {

RequestMappingInfo info = RequestMappingInfo
.paths("/user/{id}").methods(RequestMethod.GET).build(); @

Method method = UserHandler.class.getMethod("getUser", Long.class); ®

mapping.registerMapping(info, handler, method); @

@ Inject target handlers and the handler mapping for controllers.
@ Prepare the request mapping metadata.

® Get the handler method.

@ Add the registration.

Kotlin

@Configuration
class MyConfig {

@Autowired
fun setHandlerMapping(mapping: RequestMappingHandlerMapping, handler: UserHandler)

{®

val info =
RequestMappingInfo.paths("/user/{id}").methods(RequestMethod.GET).build() @

val method = UserHandler::class.java.getMethod("getUser", Long::class.java) ®

mapping.registerMapping(info, handler, method) @

@ Inject target handlers and the handler mapping for controllers.
@ Prepare the request mapping metadata.

® Get the handler method.

@ Add the registration.

33

1.4.3. Handler Methods

Web MVC

@RequestMapping handler methods have a flexible signature and can choose from a range of
supported controller method arguments and return values.

Method Arguments

Web MVC
The following table shows the supported controller method arguments.

Reactive types (Reactor, RxJava, or other) are supported on arguments that require blocking I/O (for
example, reading the request body) to be resolved. This is marked in the Description column.
Reactive types are not expected on arguments that do not require blocking.

JDK 1.8’s java.util.Optional is supported as a method argument in combination with annotations
that have a required attribute (for example, @RequestParam, @RequestHeader, and others) and is
equivalent to required=false.

Controller method argument Description

ServerllebExchange Access to the full ServerWlebExchange — container for the HTTP
request and response, request and session attributes,
checkNotModified methods, and others.

ServerHttpRequest, Access to the HTTP request or response.
ServerHttpResponse
WebSession Access to the session. This does not force the start of a new

session unless attributes are added. Supports reactive types.

java.security.Principal The currently authenticated user — possibly a specific Principal
implementation class if known. Supports reactive types.

org.springframework.http.HttpM The HTTP method of the request.

ethod

java.util.locale The current request locale, determined by the most specific
LocaleResolver available —in effect, the configured
LocaleResolver/LocaleContextResolver.

java.util.TimeZone + The time zone associated with the current request, as determined

java.time.Zoneld by a LocaleContextResolver.

@PathVariable For access to URI template variables. See URI Patterns.

@MatrixVariable For access to name-value pairs in URI path segments. See Matrix

Variables.

34

web.pdf#mvc-ann-methods
web.pdf#mvc-ann-arguments

Controller method argument

@RequestParam

@RequestHeader

@CookieValue

@RequestBody

HttpEntity

@RequestPart

java.util.Map,
org.springframework.ui.Model,

and
org.springframework.ui.ModelMa

p.
@ModelAttribute

Errors, BindingResult

SessionStatus + class-level
@SessionAttributes

UriComponentsBuilder

Description

For access to Servlet request parameters. Parameter values are
converted to the declared method argument type. See
@RequestParam.

Note that use of @RequestParam is optional — for example, to set its
attributes. See “Any other argument” later in this table.

For access to request headers. Header values are converted to the
declared method argument type. See @RequestHeader.

For access to cookies. Cookie values are converted to the declared
method argument type. See @CookieValue.

For access to the HTTP request body. Body content is converted to
the declared method argument type by using HttpMessageReader
instances. Supports reactive types. See @RequestBody.

For access to request headers and body. The body is converted
with HttpMessageReader instances. Supports reactive types. See
HttpEntity.

For access to a part in a multipart/form-data request. Supports
reactive types. See Multipart Content and Multipart Data.

For access to the model that is used in HTML controllers and is
exposed to templates as part of view rendering.

For access to an existing attribute in the model (instantiated if
not present) with data binding and validation applied. See
@ModelAttribute as well as Model and DataBinder.

Note that use of @ModelAttribute is optional — for example, to set
its attributes. See “Any other argument” later in this table.

For access to errors from validation and data binding for a
command object, i.e. a @ModelAttribute argument. An Errors, or
BindingResult argument must be declared immediately after the
validated method argument.

For marking form processing complete, which triggers cleanup of
session attributes declared through a class-level
@SessionAttributes annotation. See @SessionAttributes for more
details.

For preparing a URL relative to the current request’s host, port,
scheme, and context path. See URI Links.

35

Controller method argument

@SessionAttribute

@RequestAttribute

Any other argument

Return Values

Web MVC

Description

For access to any session attribute — in contrast to model
attributes stored in the session as a result of a class-level
@SessionAttributes declaration. See @SessionAttribute for more
details.

For access to request attributes. See @RequestAttribute for more
details.

If a method argument is not matched to any of the above, it is, by
default, resolved as a @RequestParam if it is a simple type, as
determined by BeanUtils#isSimpleProperty, or as a
@ModelAttribute, otherwise.

The following table shows the supported controller method return values. Note that reactive types
from libraries such as Reactor, RxJava, or other are generally supported for all return values.

Controller method return
value

@ResponseBody

HttpEntity,
ResponseEntity

HttpHeaders

String

View

java.util.Map,
org.springframework.ui.Model

@ModelAttribute

36

Description

The return value is encoded through HttpMessageliriter instances
and written to the response. See @ResponseBody.

The return value specifies the full response, including HTTP
headers, and the body is encoded through HttpMessageWriter
instances and written to the response. See ResponseEntity.

For returning a response with headers and no body.

A view name to be resolved with ViewResolver instances and used
together with the implicit model — determined through
command objects and @ModelAttribute methods. The handler
method can also programmatically enrich the model by declaring
a Model argument (described earlier).

A View instance to use for rendering together with the implicit
model — determined through command objects and
@ModelAttribute methods. The handler method can also
programmatically enrich the model by declaring a Model
argument (described earlier).

Attributes to be added to the implicit model, with the view name
implicitly determined based on the request path.

An attribute to be added to the model, with the view name
implicitly determined based on the request path.

Note that @ModelAttribute is optional. See “Any other return
value” later in this table.

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web.pdf#mvc-ann-return-types

Controller method return Description
value

Rendering An API for model and view rendering scenarios.

void A method with a void, possibly asynchronous (for example,
Mono<Void>), return type (or a null return value) is considered to
have fully handled the response if it also has a
ServerHttpResponse, a ServerllebExchange argument, or an
@ResponseStatus annotation. The same is also true if the
controller has made a positive ETag or lastModified timestamp
check. // TODO: See Controllers for details.

If none of the above is true, a void return type can also indicate
“no response body” for REST controllers or default view name
selection for HTML controllers.

Flux<ServerSentEvent>, Emit server-sent events. The ServerSentEvent wrapper can be

Observable<ServerSentEvent>, or omitted when only data needs to be written (however,

other reactive type text/event-stream must be requested or declared in the mapping
through the produces attribute).

Any other return value If a return value is not matched to any of the above, it is, by
default, treated as a view name, if it is String or void (default
view name selection applies), or as a model attribute to be added
to the model, unless it is a simple type, as determined by
BeanUtils#isSimpleProperty, in which case it remains
unresolved.

Type Conversion

Web MVC

Some annotated controller method arguments that represent String-based request input (for
example, @RequestParam, @RequestHeader, @PathVariable, @MatrixVariable, and @CookieValue) can
require type conversion if the argument is declared as something other than String.

For such cases, type conversion is automatically applied based on the configured converters. By
default, simple types (such as int, long, Date, and others) are supported. Type conversion can be
customized through a WebDataBinder (see DataBinder) or by registering Formatters with the
FormattingConversionService (see Spring Field Formatting).

A practical issue in type conversion is the treatment of an empty String source value. Such a value
is treated as missing if it becomes null as a result of type conversion. This can be the case for Long,
UUID, and other target types. If you want to allow null to be injected, either use the required flag on
the argument annotation, or declare the argument as @Nullable.

Matrix Variables

Web MVC

RFC 3986 discusses name-value pairs in path segments. In Spring WebFlux, we refer to those as

37

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web.pdf#mvc-ann-typeconversion
core.pdf#format
web.pdf#mvc-ann-matrix-variables
https://tools.ietf.org/html/rfc3986#section-3.3

“matrix variables” based on an “old post” by Tim Berners-Lee, but they can be also be referred to as
URI path parameters.

Matrix variables can appear in any path segment, with each variable separated by a semicolon and
multiple values separated by commas — for example, "/cars;color=red,green;year=2012". Multiple
values can also be specified through repeated variable names—for example,
"color=red;color=green;color=blue".

Unlike Spring MVC, in WebFlux, the presence or absence of matrix variables in a URL does not
affect request mappings. In other words, you are not required to use a URI variable to mask
variable content. That said, if you want to access matrix variables from a controller method, you
need to add a URI variable to the path segment where matrix variables are expected. The following
example shows how to do so:

Java
// GET /pets/42;q=11;r=22

@GetMapping("/pets/{petld}")
public void findPet(@PathVariable String petId, @MatrixVariable int q) {

// petld == 42
/7 q==1

Kotlin
// GET /pets/42;q=11,;r=22

@GetMapping("/pets/{petId}")
fun findPet(@PathVariable petId: String, @MatrixVariable q: Int) {

// petld == 42
/7 q==1

Given that all path segments can contain matrix variables, you may sometimes need to
disambiguate which path variable the matrix variable is expected to be in, as the following
example shows:

38

https://www.w3.org/DesignIssues/MatrixURIs.html

Java
// GET /owners/42;q=11/pets/21;q=22

@GetMapping("/owners/{ownerId}/pets/{petId}")

public void findPet(
@MatrixVariable(name="q", pathVar="ownerId") int q1,
@MatrixVariable(name="q", pathVar="petId") int q2) {

/7 q1 == 11
// q2 == 122

Kotlin

@GetMapping("/owners/{ownerId}/pets/{petId}")
fun findPet(

@MatrixVariable(name = "q", pathVar = "ownerId") q1: Int,
@MatrixVariable(name = "q", pathVar = "petId") q2: Int) {
/7 q1 == 11
// q2 == 22

You can define a matrix variable may be defined as optional and specify a default value as the
following example shows:

Java
// GET /pets/42

@GetMapping("/pets/{petId}")
public void findPet(@MatrixVariable(required=false, defaultValue="1") int q) {

// q==1

Kotlin
// GET /pets/42

@GetMapping("/pets/{petId}")
fun findPet(@MatrixVariable(required = false, defaultValue = "1") q: Int) {

/] q==1

To get all matrix variables, use a MultiValueMap, as the following example shows:

39

Java
// GET /owners/42;q=11;r=12/pets/21;q=22;5=23

@GetMapping("/owners/{ownerId}/pets/{petId}")

public void findPet(
@MatrixVariable MultiValueMap<String, String> matrixVars,
@MatrixVariable(pathVar="petId") MultiValueMap<String, String> petMatrixVars)

{
// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]
}
Kotlin

// GET /owners/42;q=11;r=12/pets/21;q=22;5=23

©GetMapping("/owners/{ownerId}/pets/{petId}")

fun findPet(
@MatrixVariable matrixVars: MultiValueMap<String, String>,
@MatrixVariable(pathVar="petId") petMatrixVars: MultiValueMap<String, String>)

{
// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]
}
@RequestParam
Web MVC

You can use the @RequestParam annotation to bind query parameters to a method argument in a
controller. The following code snippet shows the usage:

40

web.pdf#mvc-ann-requestparam

Java

@Controller
@RequestMapping("/pets")
public class EditPetForm {

/] ...

@GetMapping

public String setupForm(@RequestParam("petId") int petId, Model model) { @
Pet pet = this.clinic.loadPet(petId);
model.addAttribute("pet", pet);
return "petForm";

I wo

® Using @RequestParam.

Kotlin
import org.springframework.ui.set

@Controller
@RequestMapping("/pets")
class EditPetForm {

/] ...

@GetMapping

fun setupForm(@RequestParam("petId") petId: Int, model: Model): String { @®
val pet = clinic.loadPet(petId)
model["pet"] = pet
return "petForm"

}
/] ...
¥
® Using @RequestParam.

The Servlet API “request parameter” concept conflates query parameters, form
data, and multiparts into one. However, in WebFlux, each is accessed individually
(;) through ServerWebExchange. While @RequestParam binds to query parameters only,
et you can use data binding to apply query parameters, form data, and multiparts to
a command object.

Method parameters that use the @RequestParam annotation are required by default, but you can
specify that a method parameter is optional by setting the required flag of a @RequestParam to false

41

or by declaring the argument with a java.util.Optional wrapper.

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

When a @RequestParam annotation is declared on a Map<String, String> or MultiValueMap<String,
String> argument, the map is populated with all query parameters.

Note that use of @ERequestParam is optional —for example, to set its attributes. By default, any
argument that is a simple value type (as determined by BeanUtils#isSimpleProperty) and is not
resolved by any other argument resolver is treated as if it were annotated with @RequestParam.

@RequestHeader

Web MVC

You can use the @RequestHeader annotation to bind a request header to a method argument in a
controller.

The following example shows a request with headers:

Host localhost:8080

Accept text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language fr,en-gb;q=0.7,en;q=0.3

Accept-Encoding gzip,deflate

Accept-Charset IS0-8859-1,utf-8;q=0.7,%*;q=0.7

Keep-Alive 300

The following example gets the value of the Accept-Encoding and Keep-Alive headers:

Java

@GetMapping("/demo")
public void handle(
@RequestHeader ("Accept-Encoding") String encoding, @
@RequestHeader ("Keep-Alive") long keepAlive) { @
//...

@ Get the value of the Accept-Encoging header.
@ Get the value of the Keep-Alive header.

42

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web.pdf#mvc-ann-requestheader

Kotlin

@GetMapping("/demo")
fun handle(
@RequestHeader ("Accept-Encoding") encoding: String, ®
@RequestHeader ("Keep-Alive") keepAlive: Long) { @
//...

@ Get the value of the Accept-Encoging header.
@ Get the value of the Keep-Alive header.

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

When a @RequestHeader annotation is used on a Map<String, String>, MultiValueMap<String, String>,
or HttpHeaders argument, the map is populated with all header values.

Built-in support is available for converting a comma-separated string into an array

(r) or collection of strings or other types known to the type conversion system. For

- example, a method parameter annotated with @RequestHeader ("Accept”) may be of
type String but also of String[] or List<String>.

@CookieValue
Web MVC

You can use the @CookieValue annotation to bind the value of an HTTP cookie to a method argument
in a controller.

The following example shows a request with a cookie:
JSESSIONID=415A4AC178C59DACE@B2CICA727CDD84

The following code sample demonstrates how to get the cookie value:

Java
@GetMapping("/demo")
public void handle(@CookieValue("JSESSIONID") String cookie) { @

/7. ..
}

@ Get the cookie value.

43

web.pdf#mvc-ann-cookievalue

Kotlin

@GetMapping("/demo")

fun handle(@CookieValue("JSESSIONID") cookie: String) { @
//...

}

@ Get the cookie value.

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

@ModelAttribute

Web MVC

You can use the @ModelAttribute annotation on a method argument to access an attribute from the
model or have it instantiated if not present. The model attribute is also overlain with the values of
query parameters and form fields whose names match to field names. This is referred to as data
binding, and it saves you from having to deal with parsing and converting individual query
parameters and form fields. The following example binds an instance of Pet:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute Pet pet) { } @

@ Bind an instance of Pet.

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")
fun processSubmit(@ModelAttribute pet: Pet): String { } @

@ Bind an instance of Pet.
The Pet instance in the preceding example is resolved as follows:

* From the model if already added through Model.

From the HTTP session through @SessionAttributes.
* From the invocation of a default constructor.

* From the invocation of a “primary constructor” with arguments that match query parameters
or form fields. Argument names are determined through JavaBeans @ConstructorProperties or
through runtime-retained parameter names in the bytecode.

After the model attribute instance is obtained, data binding is applied. The WebExchangeDataBinder
class matches names of query parameters and form fields to field names on the target Object.
Matching fields are populated after type conversion is applied where necessary. For more on data
binding (and validation), see Validation. For more on customizing data binding, see DataBinder.

44

web.pdf#mvc-ann-modelattrib-method-args
core.pdf#validation

Data binding can result in errors. By default, a WebExchangeBindException is raised, but, to check for
such errors in the controller method, you can add a BindingResult argument immediately next to
the @ModelAttribute, as the following example shows:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) { @
if (result.hasErrors()) {
return "petForm";

}
/] ...

@ Adding a BindingResult.

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
fun processSubmit(@ModelAttribute("pet") pet: Pet, result: BindingResult): String { @
if (result.hasErrors()) {
return "petForm"

}
/...

@ Adding a BindingResult.

You can automatically apply validation after data binding by adding the javax.validation.Valid
annotation or Spring’s @Validated annotation (see also Bean Validation and Spring validation). The
following example uses the @Valid annotation:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@Valid @ModelAttribute("pet") Pet pet, BindingResult

result) { @
if (result.hasErrors()) {
return "petForm";

}
/] ...

@ Using @Valid on a model attribute argument.

45

core.pdf#validation-beanvalidation
core.pdf#validation

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")
fun processSubmit(@Valid @ModelAttribute("pet") pet: Pet, result: BindingResult):
String { @
if (result.hasErrors()) {
return "petForm"

}
I woo

@ Using @Valid on a model attribute argument.

Spring WebFlux, unlike Spring MVC, supports reactive types in the model —for example,
Mono<Account> or io.reactivex.Single<Account>. You can declare a @ModelAttribute argument with or
without a reactive type wrapper, and it will be resolved accordingly, to the actual value if necessary.
However, note that, to use a BindingResult argument, you must declare the @ModelAttribute
argument before it without a reactive type wrapper, as shown earlier. Alternatively, you can handle
any errors through the reactive type, as the following example shows:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public Mono<String> processSubmit(@Valid @ModelAttribute("pet") Mono<Pet> petMono) {
return petMono
.flatMap(pet -> {

/] ...
})
.onErrorResume(ex -> {
/] ...
1)
}
Kotlin

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
fun processSubmit(@Valid @ModelAttribute("pet") petMono: Mono<Pet>): Mono<String> {
return petMono
.flatMap { pet ->

/] ...

}

.onErrorResume{ ex ->
/] ...

+

Note that use of @ModelAttribute is optional —for example, to set its attributes. By default, any
argument that is not a simple value type(as determined by BeanUtils#isSimpleProperty) and is not
resolved by any other argument resolver is treated as if it were annotated with @ModelAttribute.

46

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-

@SessionAttributes

Web MVC

@SessionAttributes is used to store model attributes in the WebSession between requests. It is a type-
level annotation that declares session attributes used by a specific controller. This typically lists the
names of model attributes or types of model attributes that should be transparently stored in the
session for subsequent requests to access.

Consider the following example:

Java

@Controller

@SessionAttributes("pet") @

public class EditPetForm {
/] ...

}

@ Using the @SessionAttributes annotation.

Kotlin

@Controller
@SessionAttributes("pet") @
class EditPetForm {

/] ...

@ Using the @SessionAttributes annotation.

On the first request, when a model attribute with the name, pet, is added to the model, it is
automatically promoted to and saved in the WebSession. It remains there until another controller
method uses a SessionStatus method argument to clear the storage, as the following example
shows:

47

web.pdf#mvc-ann-sessionattributes

Java

@Controller
@SessionAttributes("pet") @
public class EditPetForm {

/] ...
@PostMapping("/pets/{id}")

public String handle(Pet pet, BindingResult errors, SessionStatus status) { @
if (errors.hasErrors()) {

!/ ...

}
status.setComplete();
!/ ...

}

@ Using the @SessionAttributes annotation.

@ Using a SessionStatus variable.

Kotlin

@Controller
@SessionAttributes("pet") @
class EditPetForm {

/...

@PostMapping("/pets/{id}")
fun handle(pet: Pet, errors: BindingResult, status: SessionStatus): String { @
if (errors.hasErrors()) {
/] ...

}
status.setComplete()

/] ...

@ Using the @SessionAttributes annotation.

@ Using a SessionStatus variable.

@SessionAttribute

Web MVC

If you need access to pre-existing session attributes that are managed globally (that is, outside the
controller —for example, by a filter) and may or may not be present, you can use the
@SessionAttribute annotation on a method parameter, as the following example shows:

48

web.pdf#mvc-ann-sessionattribute

Java

@GetMapping("/")

public String handle(@SessionAttribute User user) { @
/] ...

}

@ Using @SessionAttribute.

Kotlin

@GetMapping("/")

fun handle(@SessionAttribute user: User): String { @
/] ...

}

® Using @SessionAttribute.

For use cases that require adding or removing session attributes, consider injecting WebSession into
the controller method.

For temporary storage of model attributes in the session as part of a controller workflow, consider
using SessionAttributes, as described in @SessionAttributes.

@RequestAttribute

Web MVC

Similarly to @SessionAttribute, you can use the @RequestAttribute annotation to access pre-existing
request attributes created earlier (for example, by a WebFilter), as the following example shows:

Java

@GetMapping("/")

public String handle(@RequestAttribute Client client) { @
/] ...

}

@ Using @RequestAttribute.

Kotlin
@GetMapping("/")
fun handle(@RequestAttribute client: Client): String { @
/] ...
}

@ Using @RequestAttribute.

49

web.pdf#mvc-ann-requestattrib

Multipart Content

Web MVC

As explained in Multipart Data, ServerWlebExchange provides access to multipart content. The best
way to handle a file upload form (for example, from a browser) in a controller is through data
binding to a command object, as the following example shows:

Java
class MyForm {
private String name;
private MultipartFile file;
/..

}

@Controller
public class FileUploadController {

@PostMapping("/form")

public String handleFormUpload(MyForm form, BindingResult errors) {
/] ...

}

Kotlin

class MyForm(
val name: String,
val file: MultipartFile)

@Controller
class FileUploadController {

@PostMapping("/form")

fun handleFormUpload(form: MyForm, errors: BindingResult): String {
/] ...

}

You can also submit multipart requests from non-browser clients in a RESTful service scenario. The
following example uses a file along with JSON:

50

web.pdf#mvc-multipart-forms

POST /someUr1
Content-Type: multipart/mixed

--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQqg7Vp
Content-Disposition: form-data; name="meta-data
Content-Type: application/json; charset=UTF-8
Content-Transfer-Encoding: 8bit

{

"name": "value"

}
--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQg7Vp

Content-Disposition: form-data; name="file-data"; filename="file.properties"
Content-Type: text/xml
Content-Transfer-Encoding: 8bit

. File Data ...

You can access individual parts with @RequestPart, as the following example shows:

Java

@PostMapping("/")
public String handle(@RequestPart("meta-data") Part metadata, @
@RequestPart("file-data") FilePart file) { @
// ...

@ Using @RequestPart to get the metadata.
@ Using @RequestPart to get the file.

Kotlin

@PostMapping("/")
fun handle(@RequestPart("meta-data") Part metadata, @
@RequestPart("file-data") FilePart file): String { @
/] ...

@ Using @RequestPart to get the metadata.
@ Using @RequestPart to get the file.

To deserialize the raw part content (for example, to JSON —similar to @RequestBody), you can
declare a concrete target Object, instead of Part, as the following example shows:

31

Java

@PostMapping("/")

public String handle(@RequestPart("meta-data") MetaData metadata) { @
/] ...

}

@ Using @RequestPart to get the metadata.

Kotlin

@PostMapping("/")

fun handle(@RequestPart("meta-data") metadata: MetaData): String { @
/] ...

}

@ Using @RequestPart to get the metadata.

You can use @RequestPart in combination with javax.validation.Valid or Spring’s @Validated
annotation, which causes Standard Bean Validation to be applied. Validation errors lead to a
WebExchangeBindException that results in a 400 (BAD_REQUEST) response. The exception contains a
BindingResult with the error details and can also be handled in the controller method by declaring
the argument with an async wrapper and then using error related operators:

Java

@PostMapping("/")
public String handle(@Valid @RequestPart("meta-data") Mono<MetaData> metadata) {
// use one of the onError* operators...

}

Kotlin

@PostMapping("/")

fun handle(@Valid @RequestPart("meta-data") metadata: MetaData): String {
UETE

}

To access all multipart data as a MultiValueMap, you can use @RequestBody, as the following example
shows:

Java
@PostMapping("/")
public String handle(@RequestBody Mono<MultiValueMap<String, Part>> parts) { @

I wo
}

@ Using @RequestBody.

32

Kotlin

@PostMapping("/")

fun handle(@RequestBody parts: MultiValueMap<String, Part>): String { @
/...

}

@ Using @RequestBody.

To access multipart data sequentially, in streaming fashion, you can use @RequestBody with
Flux<Part> (or Flow<Part> in Kotlin) instead, as the following example shows:

Java

@PostMapping("/")

public String handle(@RequestBody Flux<Part> parts) { @
/...

}

@ Using @RequestBody.

Kotlin

@PostMapping("/")

fun handle(@RequestBody parts: Flow<Part>): String { @
/] ...

}

@ Using @RequestBody.

@RequestBody
Web MVC

You can use the @RequestBody annotation to have the request body read and deserialized into an
Object through an HttpMessageReader. The following example uses a @RequestBody argument:

Java

@PostMapping("/accounts")

public void handle(@RequestBody Account account) {
/] ...

}

Kotlin

@PostMapping("/accounts")

fun handle(@RequestBody account: Account) {
/] ...

}

33

web.pdf#mvc-ann-requestbody

Unlike Spring MVC, in WebFlux, the @RequestBody method argument supports reactive types and
fully non-blocking reading and (client-to-server) streaming.

Java

@PostMapping("/accounts")

public void handle(@RequestBody Mono<Account> account) {
/] ...

+

Kotlin

@PostMapping("/accounts")

fun handle(@RequestBody accounts: Flow<Account>) {
/] ...

}

You can use the HTTP message codecs option of the WebFlux Config to configure or customize
message readers.

You can use @RequestBody in combination with javax.validation.Valid or Spring’s @Validated
annotation, which causes Standard Bean Validation to be applied. Validation errors cause a
WebExchangeBindException, which results in a 400 (BAD_REQUEST) response. The exception contains
a BindingResult with error details and can be handled in the controller method by declaring the
argument with an async wrapper and then using error related operators:

Java

@PostMapping("/accounts")
public void handle(@Valid @RequestBody Mono<Account> account) {
// use one of the onError* operators...

}

Kotlin

@PostMapping("/accounts")

fun handle(@Valid @RequestBody account: Mono<Account>) {
/] ...

}

HttpEntity

Web MVC

HttpEntity is more or less identical to using @RequestBody but is based on a container object that
exposes request headers and the body. The following example uses an HttpEntity:

54

web.pdf#mvc-ann-httpentity

Java

@PostMapping("/accounts")

public void handle(HttpEntity<Account> entity) {
/] ...

}

Kotlin

@PostMapping("/accounts")

fun handle(entity: HttpEntity<Account>) {
/...

}

@ResponseBody

Web MVC

You can use the @ResponseBody annotation on a method to have the return serialized to the response
body through an HttpMessageWriter. The following example shows how to do so:

Java

@GetMapping("/accounts/{id}")
@ResponseBody
public Account handle() {
/] ...
}

Kotlin

@GetMapping("/accounts/{id}")
@ResponseBody
fun handle(): Account {
/] ...
}

@ResponseBody is also supported at the class level, in which case it is inherited by all controller
methods. This is the effect of @RestController, which is nothing more than a meta-annotation
marked with @Controller and @ResponseBody.

@ResponseBody supports reactive types, which means you can return Reactor or RxJava types and
have the asynchronous values they produce rendered to the response. For additional details, see
Streaming and JSON rendering.

You can combine @ResponseBody methods with JSON serialization views. See Jackson JSON for
details.

You can use the HTTP message codecs option of the WebFlux Config to configure or customize

55

web.pdf#mvc-ann-responsebody

message writing.

ResponseEntity

Web MVC

ResponseEntity is like @ResponseBody but with status and headers. For example:

Java

@GetMapping("/something")
public ResponseEntity<String> handle() {
String body = ... ;
String etag = ... ;
return ResponseEntity.ok().eTag(etag).build(body);

Kotlin

@GetMapping("/something")
fun handle(): ResponseEntity<String> {
val body: String = ...
val etag: String = ...
return ResponseEntity.ok().eTag(etag).build(body)

WebFlux supports using a single value reactive type to produce the ResponseEntity asynchronously,
and/or single and multi-value reactive types for the body. This allows a variety of async responses
with ResponseEntity as follows:

* ResponseEntity<Mono<T>> or ResponseEntity<Flux<T>> make the response status and headers
known immediately while the body is provided asynchronously at a later point. Use Mono if the
body consists of 0..1 values or Flux if it can produce multiple values.

* Mono<ResponseEntity<T>> provides all three—response status, headers, and body,
asynchronously at a later point. This allows the response status and headers to vary depending
on the outcome of asynchronous request handling.

* Mono<ResponseEntity<Mono<T>>> or Mono<ResponseEntity<Flux<T>>> are yet another possible, albeit
less common alternative. They provide the response status and headers asynchronously first
and then the response body, also asynchronously, second.

Jackson JSON
Spring offers support for the Jackson JSON library.

JSON Views

Web MVC

Spring WebFlux provides built-in support for Jackson’s Serialization Views, which allows rendering
only a subset of all fields in an Object. To use it with @ResponseBody or ResponseEntity controller

36

web.pdf#mvc-ann-responseentity
web.pdf#mvc-ann-jackson
https://www.baeldung.com/jackson-json-view-annotation

methods, you can use Jackson’s @JsonView annotation to activate a serialization view class, as the
following example shows:

Java

@RestController
public class UserController {

@GetMapping("/user")
@JsonView(User.WithoutPasswordView.class)
public User getUser() {
return new User("eric", "7!jd#h23");
}
+

public class User {

public interface WithoutPasswordView {};
public interface WithPasswordView extends WithoutPasswordView {};

private String username;
private String password;

public User() {
}

public User(String username, String password) {
this.username = username;
this.password = password;

}

@JsonView(WithoutPasswordView.class)
public String getUsername() {
return this.username;

}

@JsonView(WithPasswordView.class)
public String getPassword() {
return this.password;

}

57

Kotlin

@RestController
class UserController {

@GetMapping("/user")
@JsonView(User.WithoutPasswordView: :class)
fun getUser(): User {

return User("eric", "7!jd#h23")

}

class User(
@JsonView(WithoutPasswordView::class) val username: String,
@JsonView(WithPasswordView::class) val password: String
) {
interface WithoutPasswordView
interface WithPasswordView : WithoutPasswordView

}
@JsonView allows an array of view classes but you can only specify only one per
o controller method. Use a composite interface if you need to activate multiple
views.
1.4.4. Model
Web MVC

You can use the @ModelAttribute annotation:
* On a method argument in @RequestMapping methods to create or access an Object from the model
and to bind it to the request through a WebDataBinder.

* As a method-level annotation in @Controller or @ControllerAdvice classes, helping to initialize
the model prior to any @RequestMapping method invocation.

* On a @RequestMapping method to mark its return value as a model attribute.
This section discusses @ModelAttribute methods, or the second item from the preceding list. A
controller can have any number of @ModelAttribute methods. All such methods are invoked before

@RequestMapping methods in the same controller. A @ModelAttribute method can also be shared
across controllers through @ControllerAdvice. See the section on Controller Advice for more details.

@ModelAttribute methods have flexible method signatures. They support many of the same
arguments as @RequestMapping methods (except for @ModelAttribute itself and anything related to the
request body).

The following example uses a @ModelAttribute method:

38

web.pdf#mvc-ann-modelattrib-methods

Java

@ModelAttribute

public void populateModel(@RequestParam String number, Model model) {
model.addAttribute(accountRepository.findAccount(number));
// add more ...

Kotlin

@ModelAttribute

fun populateModel(@RequestParam number: String, model: Model) {
model.addAttribute(accountRepository.findAccount(number))
// add more ...

The following example adds one attribute only:

Java

@ModelAttribute
public Account addAccount(@RequestParam String number) {
return accountRepository.findAccount(number);

}

Kotlin

@ModelAttribute
fun addAccount(@RequestParam number: String): Account {
return accountRepository.findAccount(number);

}

When a name is not explicitly specified, a default name is chosen based on the

o type, as explained in the javadoc for Conventions. You can always assign an explicit
name by using the overloaded addAttribute method or through the name attribute
on @ModelAttribute (for a return value).

Spring WebFlux, unlike Spring MVC, explicitly supports reactive types in the model (for example,
Mono<Account> or io.reactivex.Single<Account>). Such asynchronous model attributes can be
transparently resolved (and the model updated) to their actual values at the time of @RequestMapping
invocation, provided a @ModelAttribute argument is declared without a wrapper, as the following
example shows:

39

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/core/Conventions.html

Java

@ModelAttribute

public void addAccount(@RequestParam String number) {
Mono<Account> accountMono = accountRepository.findAccount(number);
model.addAttribute("account", accountMono);

}

@PostMapping("/accounts")

public String handle(@ModelAttribute Account account, BindingResult errors) {
/] ...

}

Kotlin

In

import org.springframework.ui.set

@ModelAttribute

fun addAccount(@RequestParam number: String) {
val accountMono: Mono<Account> = accountRepository.findAccount(number)
model["account"] = accountMono

}

@PostMapping("/accounts")

fun handle(@ModelAttribute account: Account, errors: BindingResult): String {
/] ...

}

addition, any model attributes that have a reactive type wrapper are resolved to their actual

values (and the model updated) just prior to view rendering.

You can also use @ModelAttribute as a method-level annotation on @RequestMapping methods, in
which case the return value of the @RequestMapping method is interpreted as a model attribute. This
typically not required, as it is the default behavior in HTML controllers, unless the return value is
String that would otherwise be interpreted as a view name. @ModelAttribute can also help to

is
a

customize the model attribute name, as the following example shows:

Java

60

@GetMapping("/accounts/{id}")
@ModelAttribute("myAccount")
public Account handle() {

/] ...

return account;

Kotlin

@GetMapping("/accounts/{id}")
@ModelAttribute("myAccount”)
fun handle(): Account {

/] ...

return account

1.4.5. DataBinder

Web MVC

@Controller or @ControllerAdvice classes can have @InitBinder methods, to initialize instances of
WebDataBinder. Those, in turn, are used to:

* Bind request parameters (that is, form data or query) to a model object.

* Convert String-based request values (such as request parameters, path variables, headers,
cookies, and others) to the target type of controller method arguments.

» Format model object values as String values when rendering HTML forms.

@InitBinder methods can register controller-specific java.beans.PropertyEditor or Spring Converter
and Formatter components. In addition, you can use the WebFlux Java configuration to register
Converter and Formatter types in a globally shared FormattingConversionService.

@InitBinder methods support many of the same arguments that @RequestMapping methods do, except
for @ModelAttribute (command object) arguments. Typically, they are declared with a WebDataBinder
argument, for registrations, and a void return value. The following example uses the @InitBinder
annotation:

Java

@Controller
public class FormController {

@InitBinder @M
public void initBinder(WebDataBinder binder) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setlenient(false);
binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat,
false));
}

I woo

@ Using the @InitBinder annotation.

61

web.pdf#mvc-ann-initbinder

Kotlin

@Controller
class FormController {

@InitBinder @

fun initBinder(binder: WebDataBinder) {
val dateFormat = SimpleDateFormat("yyyy-MM-dd")
dateFormat.isLenient = false

binder.registerCustomEditor(Date::class.java, CustomDateEditor(dateFormat,

false))

}

/] ...
+

Alternatively, when using a Formatter-based setup through a shared FormattingConversionService,

you could re-use the same approach and register controller-specific Formatter instances, as the
following example shows:

Java

@Controller
public class FormController {

@InitBinder
protected void initBinder(WebDataBinder binder) {

binder.addCustomFormatter (new DateFormatter("yyyy-MM-dd")); @®
}

/] ...

@ Adding a custom formatter (a DateFormatter, in this case).

Kotlin

@Controller
class FormController {

@InitBinder

fun initBinder(binder: WebDataBinder) {
binder.addCustomFormatter (DateFormatter("yyyy-MM-dd")) @®

}

I woo

@ Adding a custom formatter (a DateFormatter, in this case).

62

1.4.6. Managing Exceptions

Web MVC

@Controller and @ControllerAdvice classes can have @ExceptionHandler methods to handle
exceptions from controller methods. The following example includes such a handler method:

Java

@Controller
public class SimpleController {

/...

@ExceptionHandler @M

public ResponseEntity<String> handle(IOException ex) {
/] ...

}

@ Declaring an @ExceptionHandler.

Kotlin

@Controller
class SimpleController {

I wo

@ExceptionHandler @

fun handle(ex: IOException): ResponseEntity<String> {
/] ...

}

@ Declaring an @ExceptionHandler.

The exception can match against a top-level exception being propagated (that is, a direct
I0Exception being thrown) or against the immediate cause within a top-level wrapper exception
(for example, an I0Exception wrapped inside an I1legalStateException).

For matching exception types, preferably declare the target exception as a method argument, as
shown in the preceding example. Alternatively, the annotation declaration can narrow the
exception types to match. We generally recommend being as specific as possible in the argument
signature and to declare your primary root exception mappings on a @ControllerAdvice prioritized
with a corresponding order. See the MVC section for details.

An @ExceptionHandler method in WebFlux supports the same method arguments

and return values as a @RequestMapping method, with the exception of request
body- and @ModelAttribute-related method arguments.

63

web.pdf#mvc-ann-exceptionhandler
web.pdf#mvc-ann-exceptionhandler

Support for eExceptionHandler methods in Spring WebFlux is provided by the HandlerAdapter for
@RequestMapping methods. See DispatcherHandler for more detail.

REST API exceptions

Web MVC

A common requirement for REST services is to include error details in the body of the response.
The Spring Framework does not automatically do so, because the representation of error details in
the response body is application-specific. However, a @RestController can use @ExceptionHandler
methods with a ResponseEntity return value to set the status and the body of the response. Such
methods can also be declared in @ControllerAdvice classes to apply them globally.

Note that Spring WebFlux does not have an equivalent for the Spring MVC

o ResponseEntityExceptionHandler, because WebFlux raises only
ResponseStatusException (or subclasses thereof), and those do not need to be
translated to an HTTP status code.

1.4.7. Controller Advice

Web MVC

Typically, the @ExceptionHandler, @InitBinder, and @ModelAttribute methods apply within the
@Controller class (or class hierarchy) in which they are declared. If you want such methods to apply
more globally (across controllers), you can declare them in a class annotated with
@ControllerAdvice or @RestControllerAdvice.

@ControllerAdvice is annotated with @Component, which means that such classes can be registered as
Spring beans through component scanning. @RestControllerAdvice is a composed annotation that is
annotated with both @ControllerAdvice and @ResponseBody, which essentially means
@ExceptionHandler methods are rendered to the response body through message conversion (versus
view resolution or template rendering).

On startup, the infrastructure classes for @RequestMapping and @ExceptionHandler methods detect
Spring beans annotated with @ControllerAdvice and then apply their methods at runtime. Global
@ExceptionHandler methods (from a @ControllerAdvice) are applied after local ones (from the
@Controller). By contrast, global @ModelAttribute and @InitBinder methods are applied before local
ones.

By default, @ControllerAdvice methods apply to every request (that is, all controllers), but you can
narrow that down to a subset of controllers by using attributes on the annotation, as the following
example shows:

64

web.pdf#mvc-ann-rest-exceptions
web.pdf#mvc-ann-controller-advice
core.pdf#beans-java-instantiating-container-scan

Java

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = RestController.class)
public class ExampleAdvicel {}

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class ExampleAdvice2 {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = {ControllerInterface.class,
AbstractController.class})

public class ExampleAdvice3 {}

Kotlin

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = [RestController::class])
public class ExampleAdvicel {}

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class ExampleAdvice2 {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = [ControllerInterface::class,
AbstractController::class])

public class ExampleAdvice3 {}

The selectors in the preceding example are evaluated at runtime and may negatively impact
performance if used extensively. See the @ControllerAdvice javadoc for more details.

1.5. Functional Endpoints
Web MVC

Spring WebFlux includes WebFlux.fn, a lightweight functional programming model in which
functions are used to route and handle requests and contracts are designed for immutability. It is
an alternative to the annotation-based programming model but otherwise runs on the same
Reactive Core foundation.

1.5.1. Overview

Web MVC

In WebFlux.fn, an HTTP request is handled with a HandlerFunction: a function that takes
ServerRequest and returns a delayed ServerResponse (i.e. Mono<ServerResponse>). Both the request and
the response object have immutable contracts that offer JDK 8-friendly access to the HTTP request

65

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/bind/annotation/ControllerAdvice.html
web.pdf#webmvc-fn
web.pdf#webmvc-fn-overview

and response. HandlerFunction is the equivalent of the body of a @RequestMapping method in the
annotation-based programming model.

Incoming requests are routed to a handler function with a RouterFunction: a function that takes
ServerRequest and returns a delayed HandlerFunction (i.e. Mono<HandlerFunction>). When the router
function matches, a handler function is returned; otherwise an empty Mono. RouterFunction is the
equivalent of a @RequestMapping annotation, but with the major difference that router functions
provide not just data, but also behavior.

RouterFunctions.route() provides a router builder that facilitates the creation of routers, as the
following example shows:

Java

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.RequestPredicates.?*;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;

PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);

RouterFunction<ServerResponse> route = route()
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson)
.GET("/person", accept(APPLICATION_JSON), handler::listPeople)
.POST("/person", handler::createPerson)
.build();

public class PersonHandler {
/] ...

public Mono<ServerResponse> listPeople(ServerRequest request) {
/] ...
}

public Mono<ServerResponse> createPerson(ServerRequest request) {
/] ...
}

public Mono<ServerResponse> getPerson(ServerRequest request) {
/] ...
}

66

Kotlin

val repository: PersonRepository = ...
val handler = PersonHandler(repository)

val route = coRouter { @
accept (APPLICATION_JSON).nest {
GET("/person/{id}", handler::getPerson)
GET("/person", handler::listPeople)

}

POST("/person", handler::createPerson)

class PersonHandler(private val repository: PersonRepository) {
/] ...

suspend fun listPeople(request: ServerRequest): ServerResponse {
/] ...
}

suspend fun createPerson(request: ServerRequest): ServerResponse {
/] e
}

suspend fun getPerson(request: ServerRequest): ServerResponse {
/] ...
}

@ Create router using Coroutines router DSL, a Reactive alternative is also available via router { }.

One way to run a RouterFunction is to turn it into an HttpHandler and install it through one of the
built-in server adapters:

* RouterFunctions.toHttpHandler (RouterFunction)

* RouterFunctions.toHttpHandler (RouterFunction, HandlerStrategies)

Most applications can run through the WebFlux Java configuration, see Running a Server.

1.5.2. HandlerFunction

Web MVC

ServerRequest and ServerResponse are immutable interfaces that offer JDK 8-friendly access to the
HTTP request and response. Both request and response provide Reactive Streams back pressure
against the body streams. The request body is represented with a Reactor Flux or Mono. The response
body is represented with any Reactive Streams Publisher, including Flux and Mono. For more on that,
see Reactive Libraries.

67

web.pdf#webmvc-fn-handler-functions
https://www.reactive-streams.org

ServerRequest

ServerRequest provides access to the HTTP method, URI, headers, and query parameters, while
access to the body is provided through the body methods.

The following example extracts the request body to a Mono<String>:

Java

Mono<String> string = request.bodyToMono(String.class);

Kotlin

val string = request.awaitBody<String>()

The following example extracts the body to a Flux<Person> (or a Flow<Person> in Kotlin), where
Person objects are decoded from someserialized form, such as JSON or XML:

Java

Flux<Person> people = request.bodyToFlux(Person.class);

Kotlin

val people = request.bodyToFlow<Person>()

The preceding examples are shortcuts that use the more general
ServerRequest.body(BodyExtractor), which accepts the BodyExtractor functional strategy interface.
The utility class BodyExtractors provides access to a number of instances. For example, the
preceding examples can also be written as follows:

Java

Mono<String> string
Flux<Person> people

request.body(BodyExtractors.toMono(String.class));
request.body(BodyExtractors.toFlux(Person.class));

Kotlin

val string
val people

request.body(BodyExtractors.toMono(String::class.java)).awaitSingle()
request.body(BodyExtractors.toFlux(Person::class.java)).asFlow()

The following example shows how to access form data:

Java

Mono<MultiValueMap<String, String> map = request.formData();

68

Kotlin

val map = request.awaitFormData()

The following example shows how to access multipart data as a map:

Java

Mono<MultiValueMap<String, Part> map = request.multipartData();

Kotlin

val map = request.awaitMultipartData()

The following example shows how to access multiparts, one at a time, in streaming fashion:

Java

Flux<Part> parts = request.body(BodyExtractors.toParts());

Kotlin

val parts = request.body(BodyExtractors.toParts()).asFlow()

ServerResponse

ServerResponse provides access to the HTTP response and, since it is immutable, you can use a build
method to create it. You can use the builder to set the response status, to add response headers, or
to provide a body. The following example creates a 200 (OK) response with JSON content:

Java
Mono<Person> person = ...

ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person,
Person.class);

Kotlin

val person: Person = ...
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).bodyValue(person)

The following example shows how to build a 201 (CREATED) response with a Location header and
no body:

69

Java

URI location = ...
ServerResponse.created(location).build();

Kotlin

val location: URI = ...
ServerResponse.created(location).build()

Depending on the codec used, it is possible to pass hint parameters to customize how the body is
serialized or deserialized. For example, to specify a Jackson JSON view:

Java

ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT,
MyJacksonView.class).body(...);

Kotlin

ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT,
MyJacksonView: :class.java).body(...)

Handler Classes
We can write a handler function as a lambda, as the following example shows:

Java

HandlerFunction<ServerResponse> helloWorld =
request -> ServerResponse.ok().bodyValue("Hello World");

Kotlin

val helloWorld = HandlerFunction<ServerResponse> {
ServerResponse.ok().bodyValue("Hello World") }

That is convenient, but in an application we need multiple functions, and multiple inline lambda’s
can get messy. Therefore, it is useful to group related handler functions together into a handler
class, which has a similar role as @Controller in an annotation-based application. For example, the
following class exposes a reactive Person repository:

70

https://www.baeldung.com/jackson-json-view-annotation

Java

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.ServerResponse.ok;

public class PersonHandler {
private final PersonRepository repository;

public PersonHandler(PersonRepository repository) {
this.repository = repository;

}

public Mono<ServerResponse> listPeople(ServerRequest request) { @
Flux<Person> people = repository.allPeople();
return ok().contentType(APPLICATION_JSON).body(people, Person.class);
}

public Mono<ServerResponse> createPerson(ServerRequest request) { @
Mono<Person> person = request.bodyToMono(Person.class);
return ok().build(repository.savePerson(person));

}

public Mono<ServerResponse> getPerson(ServerRequest request) { ®
int personld = Integer.valueOf(request.pathVariable("id"));
return repository.getPerson(personld)
.flatMap(person -> ok().contentType(APPLICATION_JSON).bodyValue(person))
.switchIfEmpty(ServerResponse.notFound().build());

@ listPeople is a handler function that returns all Person objects found in the repository as JSON.

@ createPerson is a handler function that stores a new Person contained in the request body. Note
that PersonRepository.savePerson(Person) returns Mono<Void>: an empty Mono that emits a
completion signal when the person has been read from the request and stored. So we use the
build(Publisher<Void>) method to send a response when that completion signal is received (that
is, when the Person has been saved).

® getPerson is a handler function that returns a single person, identified by the id path variable.
We retrieve that Person from the repository and create a JSON response, if it is found. If it is not
found, we use switchIfEmpty(Mono<T>) to return a 404 Not Found response.

71

Kotlin
class PersonHandler(private val repository: PersonRepository) {

suspend fun listPeople(request: ServerRequest): ServerResponse { @
val people: Flow<Person> = repository.allPeople()
return ok().contentType(APPLICATION_JSON).bodyAndAwait(people);

}

suspend fun createPerson(request: ServerRequest): ServerResponse { @
val person = request.awaitBody<Person>()
repository.savePerson(person)
return ok().buildAndAwait()

}

suspend fun getPerson(request: ServerRequest): ServerResponse { ®
val personld = request.pathVariable("id").toInt()
return repository.getPerson(personld)?.let {
ok().contentType(APPLICATION_JSON).bodyValueAndAwait(it) }
?7: ServerResponse.notFound().buildAndAwait()

@ listPeople is a handler function that returns all Person objects found in the repository as JSON.

@ createPerson is a handler function that stores a new Person contained in the request body. Note
that PersonRepository.savePerson(Person) is a suspending function with no return type.

® getPerson is a handler function that returns a single person, identified by the id path variable.
We retrieve that Person from the repository and create a JSON response, if it is found. If it is not
found, we return a 404 Not Found response.

Validation

A functional endpoint can use Spring’s validation facilities to apply validation to the request body.
For example, given a custom Spring Validator implementation for a Person:

72

core.pdf#validation
core.pdf#validation

Java
public class PersonHandler {
private final Validator validator = new PersonValidator(); @®
/] ...

public Mono<ServerResponse> createPerson(ServerRequest request) {
Mono<Person> person =
request.bodyToMono(Person.class).doOnNext(this::validate); @
return ok().build(repository.savePerson(person));

}

private void validate(Person person) {
Errors errors = new BeanPropertyBindingResult(person, "person");
validator.validate(person, errors);
if (errors.hasErrors()) {
throw new ServerWebInputException(errors.toString()); ®

}

@ Create Validator instance.
@ Apply validation.

® Raise exception for a 400 response.

73

Kotlin
class PersonHandler(private val repository: PersonRepository) {
private val validator = PersonValidator() @
/] ...

suspend fun createPerson(request: ServerRequest): ServerResponse {
val person = request.awaitBody<Person>()
validate(person) @
repository.savePerson(person)
return ok().buildAndAwait()

private fun validate(person: Person) {
val errors: Errors = BeanPropertyBindingResult(person, "person");
validator.validate(person, errors);
if (errors.hasErrors()) {
throw ServerWebInputException(errors.toString()) &

@ Create Validator instance.
@ Apply validation.

® Raise exception for a 400 response.

Handlers can also use the standard bean validation API (JSR-303) by creating and injecting a global
Validator instance based on LocalValidatorFactoryBean. See Spring Validation.

1.5.3. RouterFunction

Web MVC

Router functions are used to route the requests to the corresponding HandlerFunction. Typically, you
do not write router functions yourself, but rather use a method on the RouterFunctions utility class
to create one. RouterFunctions.route() (no parameters) provides you with a fluent builder for
creating a router function, whereas RouterFunctions.route(RequestPredicate, HandlerFunction)
offers a direct way to create a router.

Generally, it is recommended to use the route() builder, as it provides convenient short-cuts for
typical mapping scenarios without requiring hard-to-discover static imports. For instance, the
router function builder offers the method GET(String, HandlerFunction) to create a mapping for
GET requests; and POST(String, HandlerFunction) for POSTs.

Besides HTTP method-based mapping, the route builder offers a way to introduce additional
predicates when mapping to requests. For each HTTP method there is an overloaded variant that
takes a RequestPredicate as a parameter, though which additional constraints can be expressed.

74

core.pdf#validation-beanvalidation
web.pdf#webmvc-fn-router-functions

Predicates

You can write your own RequestPredicate, but the RequestPredicates utility class offers commonly
used implementations, based on the request path, HTTP method, content-type, and so on. The
following example uses a request predicate to create a constraint based on the Accept header:

Java

RouterFunction<ServerResponse> route = RouterFunctions.route()
.GET("/hello-world", accept(MediaType.TEXT_PLAIN),
request -> ServerResponse.ok().bodyValue("Hello World")).build();

Kotlin

val route = coRouter {
GET("/hello-world", accept(TEXT_PLAIN)) {
ServerResponse.ok().bodyValueAndAwait("Hello World")

}

You can compose multiple request predicates together by using:

* RequestPredicate.and(RequestPredicate) —both must match.
* RequestPredicate.or(RequestPredicate) — either can match.
Many of the ©predicates from RequestPredicates are composed. For example,
RequestPredicates.GET(String) is composed from RequestPredicates.method(HttpMethod) and

RequestPredicates.path(String). The example shown above also uses two request predicates, as the
builder uses RequestPredicates.GET internally, and composes that with the accept predicate.

Routes

Router functions are evaluated in order: if the first route does not match, the second is evaluated,
and so on. Therefore, it makes sense to declare more specific routes before general ones. This is also
important when registering router functions as Spring beans, as will be described later. Note that
this behavior is different from the annotation-based programming model, where the "most specific"
controller method is picked automatically.

When using the router function builder, all defined routes are composed into one RouterFunction
that is returned from build(). There are also other ways to compose multiple router functions
together:

* add(RouterFunction) on the RouterFunctions.route() builder

* RouterFunction.and(RouterFunction)

e RouterFunction.andRoute(RequestPredicate, HandlerFunction) — shortcut for

RouterFunction.and() with nested RouterFunctions.route().

The following example shows the composition of four routes:

75

Java

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.RequestPredicates.*;

PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);

RouterFunction<ServerResponse> otherRoute = ...

RouterFunction<ServerResponse> route = route()
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson) ®
.GET("/person", accept(APPLICATION_JSON), handler::listPeople) @
.POST("/person", handler::createPerson) ®
.add(otherRoute) @
.build();
@ GET /person/{id} with an Accept header that matches JSON is routed to PersonHandler.getPerson
@ GET /person with an Accept header that matches JSON is routed to PersonHandler.1listPeople

® POST /person with no additional predicates is mapped to PersonHandler.createPerson, and

@ otherRoute is a router function that is created elsewhere, and added to the route built.
Kotlin

import org.springframework.http.MediaType.APPLICATION_JSON

val repository: PersonRepository = ...
val handler = PersonHandler(repository);

val otherRoute: RouterFunction<ServerResponse> = coRouter { }

val route = coRouter {
GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson) @

GET("/person", accept(APPLICATION_]SON), handler::listPeople) @
POST("/person”, handler::createPerson) ®
}.and(otherRoute) @

@ GET /person/{id} with an Accept header that matches JSON is routed to PersonHandler.getPerson
@ GET /person with an Accept header that matches JSON is routed to PersonHandler.1listPeople

® POST /person with no additional predicates is mapped to PersonHandler.createPerson, and

@ otherRoute is a router function that is created elsewhere, and added to the route built.

Nested Routes

It is common for a group of router functions to have a shared predicate, for instance a shared path.
In the example above, the shared predicate would be a path predicate that matches /person, used
by three of the routes. When using annotations, you would remove this duplication by using a type-
level @RequestMapping annotation that maps to /person. In WebFlux.fn, path predicates can be

76

shared through the path method on the router function builder. For instance, the last few lines of
the example above can be improved in the following way by using nested routes:

Java

RouterFunction<ServerResponse> route = route()
.path("/person”, builder -> builder @®
.GET("/{id}", accept(APPLICATION_JSON), handler::getPerson)
.GET(accept(APPLICATION_JSON), handler::listPeople)
.POST("/person", handler::createPerson))
.build();

@ Note that second parameter of path is a consumer that takes the a router builder.

Kotlin

val route = coRouter {
"/person".nest {
GET("/{id}", accept(APPLICATION_JSON), handler::getPerson)
GET(accept (APPLICATION_JSON), handler::listPeople)
POST("/person", handler::createPerson)

Though path-based nesting is the most common, you can nest on any kind of predicate by using the
nest method on the builder. The above still contains some duplication in the form of the shared
Accept-header predicate. We can further improve by using the nest method together with accept:

Java

RouterFunction<ServerResponse> route = route()
.path("/person", b1 -> b1
.nest(accept (APPLICATION_JSON), b2 -> b2
.GET("/{id}", handler::getPerson)
.GET(handler::1listPeople))
.POST("/person", handler::createPerson))
.build();

Kotlin

val route = coRouter {
"/person".nest {
accept (APPLICATION_JSON).nest {
GET("/{id}", handler::getPerson)
GET(handler::listPeople)
POST("/person", handler::createPerson)

77

1.5.4. Running a Server

Web MVC

How do you run a router function in an HTTP server? A simple option is to convert a router
function to an HttpHandler by using one of the following:

* RouterFunctions.toHttpHandler (RouterFunction)

* RouterFunctions.toHttpHandler (RouterFunction, HandlerStrategies)

You can then use the returned HttpHandler with a number of server adapters by following
HttpHandler for server-specific instructions.

A more typical option, also used by Spring Boot, is to run with a DispatcherHandler-based setup
through the WebFlux Config, which uses Spring configuration to declare the components required
to process requests. The WebFlux Java configuration declares the following infrastructure
components to support functional endpoints:

* RouterFunctionMapping: Detects one or more RouterFunction<?> beans in the Spring
configuration, orders them, combines them through RouterFunction.andOther, and routes
requests to the resulting composed RouterFunction.

* HandlerFunctionAdapter: Simple adapter that lets DispatcherHandler invoke a HandlerFunction
that was mapped to a request.

» ServerResponseResultHandler: Handles the result from the invocation of a HandlerFunction by

invoking the writeTo method of the ServerResponse.

The preceding components let functional endpoints fit within the DispatcherHandler request
processing lifecycle and also (potentially) run side by side with annotated controllers, if any are
declared. It is also how functional endpoints are enabled by the Spring Boot WebFlux starter.

The following example shows a WebFlux Java configuration (see DispatcherHandler for how to run
it):

78

web.pdf#webmvc-fn-running
core.pdf#beans-factory-ordered

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@Bean

public RouterFunction<?> routerFunctionA() {
/] ...

}

@Bean

public RouterFunction<?> routerFunctionB() {
/] ...

}

/] ...

@0verride
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
// configure message conversion...

}

@0verride

public void addCorsMappings(CorsRegistry registry) {
// configure CORS...

}

@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
// configure view resolution for HTML rendering...

}

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

@Bean

fun routerFunctionA(): RouterFunction<*> {
/] ...

}

@Bean

fun routerFunctionB(): RouterFunction<*> {
/] ...

}

/] ...

override fun configureHttpMessageCodecs(confiqgurer: ServerCodecConfigurer) {
// configure message conversion...

}

override fun addCorsMappings(registry: CorsRegistry) {
// configure CORS...

}

override fun confiqureViewResolvers(registry: ViewResolverRegistry) {
// configure view resolution for HTML rendering...

}

1.5.5. Filtering Handler Functions

Web MVC

You can filter handler functions by using the before, after, or filter methods on the routing
function builder. With annotations, you can achieve similar functionality by using
@ControllerAdvice, a ServletFilter, or both. The filter will apply to all routes that are built by the
builder. This means that filters defined in nested routes do not apply to "top-level" routes. For
instance, consider the following example:

80

web.pdf#webmvc-fn-handler-filter-function

Java

RouterFunction<ServerResponse> route = route()
.path("/person", b1 -> b1
.nest(accept(APPLICATION_JSON), b2 -> b2
.GET("/{id}", handler::getPerson)
.GET(handler::1listPeople)
.before(request -> ServerRequest.from(request) @
.header ("X-RequestHeader", "Value")
.build()))
.POST("/person", handler::createPerson))
.after((request, response) -> logResponse(response)) @
.build();

@ The before filter that adds a custom request header is only applied to the two GET routes.

@ The after filter that logs the response is applied to all routes, including the nested ones.

Kotlin

val route = router {
"/person”.nest {

GET("/{id}", handler::getPerson)

GET("", handler::listPeople)

before { ®

ServerRequest.from(it)
.header ("X-RequestHeader", "Value").build()
}

POST("/person”, handler::createPerson)
after { _, response -> @
logResponse(response)

}

@ The before filter that adds a custom request header is only applied to the two GET routes.

@ The after filter that logs the response is applied to all routes, including the nested ones.

The filter method on the router builder takes a HandlerFilterFunction: a function that takes a
ServerRequest and HandlerFunction and returns a ServerResponse. The handler function parameter

represents the next element in the chain. This is typically the handler that is routed to, but it can
also be another filter if multiple are applied.

Now we can add a simple security filter to our route, assuming that we have a SecurityManager that
can determine whether a particular path is allowed. The following example shows how to do so:

81

Java
SecurityManager securityManager = ...

RouterFunction<ServerResponse> route = route()
.path("/person”, b1 -> b1
.nest(accept(APPLICATION_JSON), b2 -> b2
.GET("/{id}", handler::getPerson)
.GET(handler::1listPeople))
.POST("/person", handler::createPerson))
.filter((request, next) -> {
if (securityManager.allowAccessTo(request.path())) {
return next.handle(request);

}
else {
return ServerResponse.status(UNAUTHORIZED).build();
}
b
.build();

Kotlin

val securityManager: SecurityManager = ...

val route = router {
("/person” and accept(APPLICATION_JSON)).nest {
GET("/{id}", handler::getPerson)
GET("", handler::listPeople)
POST("/person", handler::createPerson)
filter { request, next ->
if (securityManager.allowAccessTo(request.path())) {

next(request)
}
else {

status(UNAUTHORIZED) .build();
}

The preceding example demonstrates that invoking the next.handle(ServerRequest) is optional. We

only let the handler function be run when access is allowed.

Besides using the filter method on the router function builder, it is possible to apply a filter to an

existing router function via RouterFunction.filter(HandlerFilterFunction).

o CORS support for functional endpoints is provided through a dedicated

CorsWebFilter.

82

webflux-cors.pdf#webflux-cors-webfilter

1.6. URI Links

Web MVC

This section describes various options available in the Spring Framework to prepare URIs.

1.6.1. UriComponents

Spring MVC and Spring WebFlux

UriComponentsBuilder helps to build URI’s from URI templates with variables, as the following
example shows:

Java

UriComponents uriComponents = UriComponentsBuilder
fromUriString("https://example.com/hotels/{hotel}") @
.queryParam("q", "{q}") @

.encode() ®
.build(); @

URT uri = uriComponents.expand("Westin", "123").toUri(); ®

@ Static factory method with a URI template.

@ Add or replace URI components.

® Request to have the URI template and URI variables encoded.
@ Build a UriComponents.

® Expand variables and obtain the URL.

Kotlin

val uriComponents = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}") @
.queryParam("q", "{q}") @
.encode() ®
.build() @

val uri = uriComponents.expand("Westin", "123").toUri() ®

@ Static factory method with a URI template.

@ Add or replace URI components.

® Request to have the URI template and URI variables encoded.
@ Build a UriComponents.

® Expand variables and obtain the URI.

The preceding example can be consolidated into one chain and shortened with buildAndExpand, as
the following example shows:

83

web.pdf#mvc-uri-building

Java

URI uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}")
.queryParam("q", "{q}")

.encode()
.buildAndExpand("Westin", "123")
Ltolri();

Kotlin

val uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}")
.queryParam("q", "{q}")
.encode()
.buildAndExpand("Westin", "123")
.tolri()

You can shorten it further by going directly to a URI (which implies encoding), as the following
example shows:

Java

URI uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}")

.queryParam("q", "{q}")
.build("Westin", "123");

Kotlin

val uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}")
.queryParam("q", "{q}")
.build("Westin", "123")

You can shorten it further still with a full URI template, as the following example shows:

Java
URI uri = UriComponentsBuilder

.fromUriString("https://example.com/hotels/{hotel}?q={q}")
.build("Westin", "123");

84

Kotlin

val uri = UriComponentsBuilder
.fromUriString("https://example.com/hotels/{hotel}?q={q}")
.build("Westin", "123")

1.6.2. UriBuilder

Spring MVC and Spring WebFlux

UriComponentsBuilder implements UriBuilder. You can create a UriBuilder, in turn, with a
UriBuilderFactory. Together, UriBuilderFactory and UriBuilder provide a pluggable mechanism to
build URIs from URI templates, based on shared configuration, such as a base URL, encoding
preferences, and other details.

You can configure RestTemplate and WebClient with a UriBuilderFactory to customize the
preparation of URIs. DefaultUriBuilderFactory is a default implementation of UriBuilderFactory that
uses UriComponentsBuilder internally and exposes shared configuration options.

The following example shows how to configure a RestTemplate:

Java
// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode;
String baseUrl = "https://example.org";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl);
factory.setEncodingMode (EncodingMode. TEMPLATE _AND_VALUES);

RestTemplate restTemplate = new RestTemplate();
restTemplate.setUriTemplateHandler(factory);

Kotlin

// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode

val baseUrl = "https://example.org"
val factory = DefaultUriBuilderFactory(baseUrl)
factory.encodingMode = EncodingMode.TEMPLATE_AND_VALUES

val restTemplate = RestTemplate()
restTemplate.uriTemplateHandler = factory

The following example configures a WebClient:

85

Java
// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode;
String baseUrl = "https://example.org";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl);
factory.setEncodingMode (EncodingMode. TEMPLATE _AND_VALUES);

WebClient client = WebClient.builder().uriBuilderFactory(factory).build();

Kotlin
// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode
val baseUrl = "https://example.org"

val factory = DefaultUriBuilderFactory(baseUrl)
factory.encodingMode = EncodingMode.TEMPLATE_AND_VALUES

val client = WebClient.builder().uriBuilderFactory(factory).build()

In addition, you can also use DefaultUriBuilderFactory directly. It is similar to wusing
UriComponentsBuilder but, instead of static factory methods, it is an actual instance that holds
configuration and preferences, as the following example shows:

Java

String baseUrl = "https://example.com";
DefaultUriBuilderFactory uriBuilderFactory = new DefaultUriBuilderFactory(baselUrl);

URI uri = uriBuilderFactory.uriString("/hotels/{hotel}")
.queryParam("q", "{q}")
.build("Westin", "123");

Kotlin

val baseUrl = "https://example.com"
val uriBuilderFactory = DefaultUriBuilderFactory(baseUrl)

val uri = uriBuilderFactory.uriString("/hotels/{hotel}")
.queryParam("q", "{q}")
.build("Westin", "123")

1.6.3. URI Encoding

Spring MVC and Spring WebFlux
UriComponentsBuilder exposes encoding options at two levels:

» UriComponentsBuilder#encode(): Pre-encodes the URI template first and then strictly encodes

86

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html#encode--

URI variables when expanded.

» UriComponents#encode(): Encodes URI components after URI variables are expanded.

Both options replace non-ASCII and illegal characters with escaped octets. However, the first option
also replaces characters with reserved meaning that appear in URI variables.

Consider ";", which is legal in a path but has reserved meaning. The first option
@ replaces ";" with "%3B" in URI variables but not in the URI template. By contrast,
w

the second option never replaces ";", since it is a legal character in a path.

For most cases, the first option is likely to give the expected result, because it treats URI variables as
opaque data to be fully encoded, while the second option is useful if URI variables do intentionally
contain reserved characters. The second option is also useful when not expanding URI variables at
all since that will also encode anything that incidentally looks like a URI variable.

The following example uses the first option:

Java

URI uri = UriComponentsBuilder.fromPath("/hotel list/{city}")
.queryParam("q", "{q}")
.encode()
.buildAndExpand("New York", "foo+bar")
Ltolri();

// Result is "/hotel%201ist/New%20York?q=foo%2Bbar"

Kotlin

val uri = UriComponentsBuilder.fromPath("/hotel list/{city}")
.queryParam("q", "{q}")
.encode()
.buildAndExpand("New York", "foo+bar")
.tolri()

// Result is "/hotel%201ist/New%20York?q=foo%2Bbar"

You can shorten the preceding example by going directly to the URI (which implies encoding), as
the following example shows:

Java
URI uri = UriComponentsBuilder.fromPath("/hotel list/{city}")

.queryParam("q", "{q}")
.build("New York", "foo+bar");

87

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/util/UriComponents.html#encode--

Kotlin

val uri = UriComponentsBuilder.fromPath("/hotel list/{city}")
.queryParam("q", "{q}")
.build("New York", "foo+bar")

You can shorten it further still with a full URI template, as the following example shows:

Java

URI uri = UriComponentsBuilder.fromUriString("/hotel list/{city}?q={q}")
.build("New York", "foot+bar");

Kotlin

val uri = UriComponentsBuilder.fromUriString("/hotel list/{city}?q={q}")
.build("New York", "foo+bar")

The WebClient and the RestTemplate expand and encode URI templates internally through the
UriBuilderFactory strategy. Both can be configured with a custom strategy. as the following example
shows:

Java

String baseUrl = "https://example.com";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baselUrl)
factory.setEncodingMode(EncodingMode. TEMPLATE_AND_VALUES);

// Customize the RestTemplate..
RestTemplate restTemplate = new RestTemplate();
restTemplate.setUriTemplateHandler(factory);

// Customize the WebClient..
WebClient client = WebClient.builder().uriBuilderFactory(factory).build();

88

Kotlin

val baseUrl = "https://example.com"
val factory = DefaultUriBuilderFactory(baseUrl).apply {
encodingMode = EncodingMode.TEMPLATE_AND_VALUES

}

// Customize the RestTemplate..
val restTemplate = RestTemplate().apply {
uriTemplateHandler = factory

}

// Customize the WebClient..
val client = WebClient.builder().uriBuilderFactory(factory).build()

The DefaultUriBuilderFactory implementation uses UriComponentsBuilder internally to expand and
encode URI templates. As a factory, it provides a single place to configure the approach to encoding,
based on one of the below encoding modes:

o TEMPLATE_AND_VALUES: Uses UriComponentsBuilder#iencode(), corresponding to the first option in
the earlier list, to pre-encode the URI template and strictly encode URI variables when
expanded.

* VALUES_ONLY: Does not encode the URI template and, instead, applies strict encoding to URI
variables through UriUtils#iencodeUriVariables prior to expanding them into the template.

* URI_COMPONENT: Uses UriComponents#fencode(), corresponding to the second option in the earlier
list, to encode URI component value after URI variables are expanded.

* NONE: No encoding is applied.

The RestTemplate is set to EncodingMode.URI_COMPONENT for historic reasons and for backwards
compatibility. The WebClient relies on the default value in DefaultUriBuilderFactory, which was
changed from EncodingMode.URI_COMPONENT in 5.0.x to EncodingMode. TEMPLATE_AND_VALUES in 5.1.

1.7. CORS

Web MVC

Spring WebFlux lets you handle CORS (Cross-Origin Resource Sharing). This section describes how
to do so.
1.7.1. Introduction

Web MVC

For security reasons, browsers prohibit AJAX calls to resources outside the current origin. For
example, you could have your bank account in one tab and evil.com in another. Scripts from
evil.com should not be able to make AJAX requests to your bank API with your credentials — for
example, withdrawing money from your account!

89

web.pdf#mvc-cors
web.pdf#mvc-cors-intro

Cross-Origin Resource Sharing (CORS) is a W3C specification implemented by most browsers that
lets you specify what kind of cross-domain requests are authorized, rather than using less secure
and less powerful workarounds based on IFRAME or JSONP.

1.7.2. Processing

Web MVC

The CORS specification distinguishes between preflight, simple, and actual requests. To learn how
CORS works, you can read this article, among many others, or see the specification for more details.

Spring WebFlux HandlerMapping implementations provide built-in support for CORS. After
successfully mapping a request to a handler, a HandlerMapping checks the CORS configuration for the
given request and handler and takes further actions. Preflight requests are handled directly, while
simple and actual CORS requests are intercepted, validated, and have the required CORS response
headers set.

In order to enable cross-origin requests (that is, the Origin header is present and differs from the
host of the request), you need to have some explicitly declared CORS configuration. If no matching
CORS configuration is found, preflight requests are rejected. No CORS headers are added to the
responses of simple and actual CORS requests and, consequently, browsers reject them.

Each HandlerMapping can be configured individually with URL pattern-based CorsConfiguration
mappings. In most cases, applications use the WebFlux Java configuration to declare such
mappings, which results in a single, global map passed to all HandlerMapping implementations.

You can combine global CORS configuration at the HandlerMapping level with more fine-grained,
handler-level CORS configuration. For example, annotated controllers can use class- or method-
level @CrossOrigin annotations (other handlers can implement CorsConfigurationSource).

The rules for combining global and local configuration are generally additive — for example, all
global and all local origins. For those attributes where only a single value can be accepted, such as
allowCredentials and maxAge, the local overrides the global value. See
CorsConfiguration#icombine(CorsConfiguration) for more details.

To learn more from the source or to make advanced customizations, see:

(r) * CorsConfiguration

w
e CorsProcessor and DefaultCorsProcessor

* AbstractHandlerMapping

1.7.3. @CrossOrigin

Web MVC

The @CrossOrigin annotation enables cross-origin requests on annotated controller methods, as the
following example shows:

90

https://www.w3.org/TR/cors/
https://caniuse.com/#feat=cors
web.pdf#mvc-cors-processing
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/handler/AbstractHandlerMapping.html#setCorsConfigurations-java.util.Map-
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/cors/CorsConfiguration.html#combine-org.springframework.web.cors.CorsConfiguration-
web.pdf#mvc-cors-controller
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html

Java

@RestController
@RequestMapping("/account")
public class AccountController {

@CrossOrigin

@GetMapping("/{id}")

public Mono<Account> retrieve(@PathVariable Long id) {
/] ...

}

@DeleteMapping("/{id}")
public Mono<Void> remove(@PathVariable Long id) {

/] ...
}
}
Kotlin
@RestController

@RequestMapping("/account")
class AccountController {

@CrossOrigin

@GetMapping("/{id}")

suspend fun retrieve(@PathVariable id: Long): Account {
/] ...

}

@DeleteMapping("/{id}")

suspend fun remove(@PathVariable id: Long) {
/] ...

}

By default, @CrossOrigin allows:

 All origins.

e All headers.

* All HTTP methods to which the controller method is mapped.
allowCredentials is not enabled by default, since that establishes a trust level that exposes sensitive
user-specific information (such as cookies and CSRF tokens) and should be used only where
appropriate. When it is enabled either allowOrigins must be set to one or more specific domain (but

not the special value "*") or alternatively the allowOriginPatterns property may be used to match to
a dynamic set of origins.

maxAge is set to 30 minutes.

91

@CrossOrigin is supported at the class level, too, and inherited by all methods. The following
example specifies a certain domain and sets maxAge to an hour:

Java

@CrossOrigin(origins = "https://domain2.com", maxAge = 3600)
@RestController

@RequestMapping("/account")

public class AccountController {

@GetMapping("/{id}")

public Mono<Account> retrieve(@PathVariable Long id) {
/] ...

}

@DeleteMapping("/{id}")

public Mono<Void> remove(@PathVariable Long id) {
/] ...

}

Kotlin

@CrossOrigin("https://domain2.com", maxAge = 3600)
@ORestController

@RequestMapping("/account")

class AccountController {

@GetMapping("/{id}")

suspend fun retrieve(@PathVariable id: Long): Account {
/] ...

}

@DeleteMapping("/{id}")
suspend fun remove(@PathVariable id: Long) {

7 oo
}

You can use @CrossOrigin at both the class and the method level, as the following example shows:

92

Java

@CrossOrigin(maxAge = 3600) @
@RestController
@RequestMapping("/account")
public class AccountController {

@CrossOrigin("https://domain2.com") @

@GetMapping("/{id}")

public Mono<Account> retrieve(@PathVariable Long id) {
/] ...

}

@DeleteMapping("/{id}")

public Mono<Void> remove(@PathVariable Long id) {
/] ...

}

@ Using @CrossOrigin at the class level.

@ Using @Cross0rigin at the method level.

Kotlin

@CrossOrigin(maxAge = 3600) @
@RestController
@RequestMapping("/account")
class AccountController {

@CrossOrigin("https://domain2.com") @

@GetMapping("/{id}")

suspend fun retrieve(@PathVariable id: Long): Account {
/] ...

}

@DeleteMapping("/{id}")

suspend fun remove(@PathVariable id: Long) {
/]l ...

¥

@ Using @CrossOrigin at the class level.

@ Using @Cross0Origin at the method level.

1.7.4. Global Configuration

Web MVC

In addition to fine-grained, controller method-level configuration, you probably want to define
some global CORS configuration, too. You can set URL-based CorsConfiguration mappings

93

web.pdf#mvc-cors-global

individually on any HandlerMapping. Most applications, however, use the WebFlux Java
configuration to do that.

By default global configuration enables the following:

 All origins.
» All headers.
e GET, HEAD, and POST methods.

allowedCredentials is not enabled by default, since that establishes a trust level that exposes
sensitive user-specific information(such as cookies and CSRF tokens) and should be used only
where appropriate. When it is enabled either allowOrigins must be set to one or more specific
domain (but not the special value "*") or alternatively the allowOriginPatterns property may be
used to match to a dynamic set of origins.

maxAge is set to 30 minutes.

To enable CORS in the WebFlux Java configuration, you can use the CorsRegistry callback, as the
following example shows:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void addCorsMappings(CorsRegistry registry) {

registry.addMapping("/api/**")
.allowedOrigins("https://domain2.com")
.allowedMethods("PUT", "DELETE")
.allowedHeaders("header1", "header2", "header3")
.exposedHeaders("header1", "header2")
.allowCredentials(true).maxAge(3600);

// Add more mappings...

94

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun addCorsMappings(registry: CorsRegistry) {

registry.addMapping("/api/**")
.allowedOrigins("https://domain2.com")
.allowedMethods("PUT", "DELETE")
.allowedHeaders("header1", "header2", "header3")
.exposedHeaders("header1", "header2")
.allowCredentials(true).maxAge(3600)

// Add more mappings...

1.7.5. CORS WebFilter

Web MVC

You can apply CORS support through the built-in CorsWebFilter, which is a good fit with functional
endpoints.

o If you try to use the CorsFilter with Spring Security, keep in mind that Spring
Security has built-in support for CORS.

To configure the filter, you can declare a CorsWebFilter bean and pass a CorsConfigurationSource to
its constructor, as the following example shows:

95

web.pdf#mvc-cors-filter
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/cors/reactive/CorsWebFilter.html
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#cors

Java

@Bean
CorsWebFilter corsFilter() {

CorsConfiguration config = new CorsConfiquration();

// Possibly...
// config.applyPermitDefaultValues()

config.setAllowCredentials(true);
config.addAllowedOrigin("https://domain1.com");
config.addAllowedHeader ("*");
config.addAllowedMethod("*");

Ur1BasedCorsConfigurationSource source = new UrlBasedCorsConfigurationSource();
source.registerCorsConfiguration("/**", config);

return new CorsWebFilter(source);

Kotlin

@Bean
fun corsFilter(): CorsWebFilter {

val config = CorsConfiguration()

// Possibly...
// config.applyPermitDefaultValues()

config.allowCredentials = true
config.addAllowedOrigin("https://domain1.com")
config.addAllowedHeader ("*")
config.addAllowedMethod("*")

val source = UrlBasedCorsConfigurationSource().apply {
registerCorsConfiguration("/**", config)

}

return CorsWebFilter(source)

1.8. Web Security

Web MVC

The Spring Security project provides support for protecting web applications from malicious
exploits. See the Spring Security reference documentation, including:

96

web.pdf#mvc-web-security
https://projects.spring.io/spring-security/

WebFlux Security

WebFlux Testing Support

CSRF Protection

Security Response Headers

1.9. View Technologies

Web MVC

The use of view technologies in Spring WebFlux is pluggable. Whether you decide to use Thymeleaf,
FreeMarker, or some other view technology is primarily a matter of a configuration change. This
chapter covers the view technologies integrated with Spring WebFlux. We assume you are already
familiar with View Resolution.

1.9.1. Thymeleaf

Web MVC

Thymeleaf is a modern server-side Java template engine that emphasizes natural HTML templates
that can be previewed in a browser by double-clicking, which is very helpful for independent work
on UI templates (for example, by a designer) without the need for a running server. Thymeleaf
offers an extensive set of features, and it is actively developed and maintained. For a more
complete introduction, see the Thymeleaf project home page.

The Thymeleaf integration with Spring WebFlux is managed by the Thymeleaf project. The
configuration involves a few bean declarations, such as SpringResourceTemplateResolver,
SpringWebFluxTemplateEngine, and ThymeleafReactiveViewResolver. For more details, see
Thymeleaf+Spring and the WebFlux integration announcement.

1.9.2. FreeMarker

Web MVC

Apache FreeMarker is a template engine for generating any kind of text output from HTML to email
and others. The Spring Framework has built-in integration for using Spring WebFlux with
FreeMarker templates.

View Configuration

Web MVC

The following example shows how to configure FreeMarker as a view technology:

97

https://docs.spring.io/spring-security/site/docs/current/reference/html5/#jc-webflux
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#test-webflux
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#csrf
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#headers
web.pdf#mvc-view
web.pdf#mvc-view-thymeleaf
https://www.thymeleaf.org/
https://www.thymeleaf.org/documentation.html
http://forum.thymeleaf.org/Thymeleaf-3-0-8-JUST-PUBLISHED-td4030687.html
web.pdf#mvc-view-freemarker
https://freemarker.apache.org/
web.pdf#mvc-view-freemarker-contextconfig

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.freeMarker();

}
// Configure FreeMarker...

@Bean

public FreeMarkerConfigurer freeMarkerConfigurer() {
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplatelLoaderPath("classpath:/templates/freemarker");
return confiqurer;

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

override fun configureViewResolvers(registry: ViewResolverRegistry) {
registry.freeMarker()

}
// Confiqure FreeMarker...

@Bean

fun freeMarkerConfigurer() = FreeMarkerConfigurer().apply {
setTemplateLoaderPath("classpath:/templates/freemarker")

}

Your templates need to be stored in the directory specified by the FreeMarkerConfigurer, shown in
the preceding example. Given the preceding configuration, if your controller returns the view
name, welcome, the resolver looks for the classpath:/templates/freemarker/welcome.ftl template.

FreeMarker Configuration

Web MVC

You can pass FreeMarker 'Settings' and 'SharedVariables' directly to the FreeMarker Configuration
object (which is managed by Spring) by setting the appropriate bean properties on the
FreeMarkerConfigurer bean. The freemarkerSettings property requires a java.util.Properties object,

98

web.pdf#mvc-views-freemarker

and the freemarkerVariables property requires a java.util.Map. The following example shows how
to use a FreeMarkerConfiqurer:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

/] ...

@Bean

public FreeMarkerConfigurer freeMarkerConfigurer() {
Map<String, Object> variables = new HashMap<>();
variables.put("xml_escape"”, new XmlEscape());

FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplatelLoaderPath("classpath:/templates");
configurer.setFreemarkerVariables(variables);

return confiqurer;

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

/] ...

@Bean

fun freeMarkerConfigurer() = FreeMarkerConfigurer().apply {
setTemplatelLoaderPath("classpath:/templates"”)
setFreemarkerVariables(mapOf("xml_escape" to XmlEscape()))

See the FreeMarker documentation for details of settings and variables as they apply to the
Configuration object.

Form Handling

Web MVC

Spring provides a tag library for use in JSPs that contains, among others, a <spring:bind/> element.
This element primarily lets forms display values from form-backing objects and show the results of
failed validations from a Validator in the web or business tier. Spring also has support for the same
functionality in FreeMarker, with additional convenience macros for generating form input
elements themselves.

99

web.pdf#mvc-view-freemarker-forms

The Bind Macros

Web MVC

A standard set of macros are maintained within the spring-webflux.jar file for FreeMarker, so they
are always available to a suitably configured application.

Some of the macros defined in the Spring templating libraries are considered internal (private), but
no such scoping exists in the macro definitions, making all macros visible to calling code and user
templates. The following sections concentrate only on the macros you need to directly call from
within your templates. If you wish to view the macro code directly, the file is called spring.ftl and
is in the org.springframework.web.reactive.result.view.freemarker package.

For additional details on binding support, see Simple Binding for Spring MVC.

Form Macros

For details on Spring’s form macro support for FreeMarker templates, consult the following
sections of the Spring MVC documentation.

* Input Macros

 Input Fields

» Selection Fields

* HTML Escaping

1.9.3. Script Views

Web MVC

The Spring Framework has a built-in integration for using Spring WebFlux with any templating
library that can run on top of the JSR-223 Java scripting engine. The following table shows the
templating libraries that we have tested on different script engines:

Scripting Library Scripting Engine

Handlebars Nashorn

Mustache Nashorn

React Nashorn

EJS Nashorn

ERB JRuby

String templates Jython

Kotlin Script templating Kotlin
7 The basic rule for integrating any other script engine is that it must implement the
- ScriptEngine and Invocable interfaces.

100

web.pdf#mvc-view-bind-macros
web.pdf#mvc-view-simple-binding
web.pdf#mvc-views-form-macros
web.pdf#mvc-views-form-macros-input
web.pdf#mvc-views-form-macros-select
web.pdf#mvc-views-form-macros-html-escaping
web.pdf#mvc-view-script
https://www.jcp.org/en/jsr/detail?id=223
https://handlebarsjs.com/
https://openjdk.java.net/projects/nashorn/
https://mustache.github.io/
https://openjdk.java.net/projects/nashorn/
https://facebook.github.io/react/
https://openjdk.java.net/projects/nashorn/
https://www.embeddedjs.com/
https://openjdk.java.net/projects/nashorn/
https://www.stuartellis.name/articles/erb/
https://www.jruby.org
https://docs.python.org/2/library/string.html#template-strings
https://www.jython.org/
https://github.com/sdeleuze/kotlin-script-templating
https://kotlinlang.org/

Requirements

Web MVC
You need to have the script engine on your classpath, the details of which vary by script engine:

* The Nashorn JavaScript engine is provided with Java 8+. Using the latest update release
available is highly recommended.

* JRuby should be added as a dependency for Ruby support.
* Jython should be added as a dependency for Python support.

* org.jetbrains.kotlin:kotlin-script-util dependency and a META-
INF/services/javax.script.ScriptEngineFactory file containing a
org.jetbrains.kotlin.script.jsr223.KotlinJsr223JvmLocalScriptEngineFactory line should be
added for Kotlin script support. See this example for more detail.

You need to have the script templating library. One way to do that for Javascript is through WebJars.

Script Templates

Web MVC

You can declare a ScriptTemplateConfigurer bean to specify the script engine to use, the script files
to load, what function to call to render templates, and so on. The following example uses Mustache
templates and the Nashorn JavaScript engine:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();

}

@Bean

public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("mustache.js");
configurer.setRenderObject("Mustache");
configurer.setRenderFunction("render");
return confiqurer;

101

web.pdf#mvc-view-script-dependencies
https://openjdk.java.net/projects/nashorn/
https://www.jruby.org
https://www.jython.org
https://github.com/sdeleuze/kotlin-script-templating
https://www.webjars.org/
web.pdf#mvc-view-script-integrate

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun configureViewResolvers(registry: ViewResolverRegistry) {
registry.scriptTemplate()
}

@Bean
fun confiqurer() = ScriptTemplateConfigurer().apply {
engineName = "nashorn"
setSceripts("mustache.js")
renderObject = "Mustache"
renderFunction = "render"

The render function is called with the following parameters:

» String template: The template content

* Map model: The view model

* RenderingContext renderingContext: The RenderingContext that gives access to the application
context, the locale, the template loader, and the URL (since 5.0)

Mustache.render () is natively compatible with this signature, so you can call it directly.

If your templating technology requires some customization, you can provide a script that
implements a custom render function. For example, Handlerbars needs to compile templates
before using them and requires a polyfill in order to emulate some browser facilities not available
in the server-side script engine. The following example shows how to set a custom render function:

102

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/servlet/view/script/RenderingContext.html
https://handlebarsjs.com
https://en.wikipedia.org/wiki/Polyfill

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();

}

@Bean

public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("polyfill.js", "handlebars.js", "render.js");
configurer.setRenderFunction("render");
configurer.setSharedEngine(false);
return configurer;

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

override fun confiqureViewResolvers(registry: ViewResolverRegistry) {
registry.scriptTemplate()
}

@Bean

fun confiqurer() = ScriptTemplateConfigurer().apply {
engineName = "nashorn"
setScripts("polyfill.js", "handlebars.js", "render.js")
renderFunction = "render"
isSharedEngine = false

Setting the sharedEngine property to false is required when using non-thread-safe
script engines with templating libraries not designed for concurrency, such as

o Handlebars or React running on Nashorn. In that case, Java SE 8 update 60 is
required, due to this bug, but it is generally recommended to use a recent Java SE
patch release in any case.

polyfill.js defines only the window object needed by Handlebars to run properly, as the following
snippet shows:

103

https://bugs.openjdk.java.net/browse/JDK-8076099

var window = {};

This basic render.js implementation compiles the template before using it. A production ready
implementation should also store and reused cached templates or pre-compiled templates. This can
be done on the script side, as well as any customization you need (managing template engine
configuration for example). The following example shows how compile a template:

function render(template, model) {
var compiledTemplate = Handlebars.compile(template);
return compiledTemplate(model);

Check out the Spring Framework unit tests, Java, and resources, for more configuration examples.

1.9.4. JSON and XML

Web MVC

For Content Negotiation purposes, it is useful to be able to alternate between rendering a model
with an HTML template or as other formats (such as JSON or XML), depending on the content type
requested by the client. To support doing so, Spring WebFlux provides the HttpMessagelWiriterView,
which you can use to plug in any of the available Codecs from spring-web, such as
Jackson2JsonEncoder, Jackson2SmileEncoder, or Jaxb2XmlEncoder.

Unlike other view technologies, HttpMessageWriterView does not require a ViewResolver but is
instead configured as a default view. You can configure one or more such default views, wrapping
different HttpMessagellriter instances or Encoder instances. The one that matches the requested
content type is used at runtime.

In most cases, a model contains multiple attributes. To determine which one to serialize, you can
configure HttpMessageWriterView with the name of the model attribute to use for rendering. If the
model contains only one attribute, that one is used.

1.10. HTTP Caching

Web MVC

HTTP caching can significantly improve the performance of a web application. HTTP caching
revolves around the Cache-Control response header and subsequent conditional request headers,
such as Last-Modified and ETag. Cache-Control advises private (for example, browser) and public
(for example, proxy) caches how to cache and re-use responses. An ETag header is used to make a
conditional request that may result in a 304 (NOT_MODIFIED) without a body, if the content has not
changed. ETag can be seen as a more sophisticated successor to the Last-Modified header.

This section describes the HTTP caching related options available in Spring WebFlux.

104

https://github.com/spring-projects/spring-framework/tree/master/spring-webflux/src/test/java/org/springframework/web/reactive/result/view/script
https://github.com/spring-projects/spring-framework/tree/master/spring-webflux/src/test/resources/org/springframework/web/reactive/result/view/script
web.pdf#mvc-view-jackson
web.pdf#mvc-caching

1.10.1. CacheControl

Web MVC

CacheControl provides support for configuring settings related to the Cache-Control header and is
accepted as an argument in a number of places:

e Controllers

e Static Resources

While RFC 7234 describes all possible directives for the Cache-Control response header, the
CacheControl type takes a use case-oriented approach that focuses on the common scenarios, as the
following example shows:

Java

// Cache for an hour - "Cache-Control: max-age=3600"
CacheControl ccCacheOneHour = CacheControl.maxAge(1, TimeUnit.HOURS);

// Prevent caching - "Cache-Control: no-store"
CacheControl ccNoStore = CacheControl.noStore();

// Cache for ten days in public and private caches,

// public caches should not transform the response

// "Cache-Control: max-age=864000, public, no-transform"
CacheControl ccCustom = CacheControl.maxAge(10,
TimeUnit.DAYS).noTransform().cachePublic();

Kotlin

// Cache for an hour - "Cache-Control: max-age=3600"
val ccCacheOneHour = CacheControl.maxAge(1, TimeUnit.HOURS)

// Prevent caching - "Cache-Control: no-store"
val ccNoStore = CacheControl.noStore()

// Cache for ten days in public and private caches,

// public caches should not transform the response

// "Cache-Control: max-age=864000, public, no-transform"

val ccCustom = CacheControl.maxAge(10, TimeUnit.DAYS).noTransform().cachePublic()

1.10.2. Controllers

Web MVC

Controllers can add explicit support for HTTP caching. We recommend doing so, since the
lastModified or ETag value for a resource needs to be calculated before it can be compared against
conditional request headers. A controller can add an ETag and Cache-Control settings to a
ResponseEntity, as the following example shows:

105

web.pdf#mvc-caching-cachecontrol
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/http/CacheControl.html
https://tools.ietf.org/html/rfc7234#section-5.2.2
web.pdf#mvc-caching-etag-lastmodified

Java

@GetMapping("/book/{id}")
public ResponseEntity<Book> showBook(@PathVariable Long id) {

Book book = findBook(id);
String version = book.getVersion();

return ResponseEntity
.ok()
.cacheControl(CacheControl.maxAge(30, TimeUnit.DAYS))
.eTag(version) // lastModified is also available
.body(book);

Kotlin

@GetMapping("/book/{id}")
fun showBook(@PathVariable id: Long): ResponseEntity<Book> {

val book = findBook(id)
val version = book.getVersion()

return ResponseEntity
.ok()
.cacheControl(CacheControl.maxAge(30, TimeUnit.DAYS))
.eTag(version) // lastModified is also available
.body(book)

The preceding example sends a 304 (NOT_MODIFIED) response with an empty body if the
comparison to the conditional request headers indicates the content has not changed. Otherwise,
the ETag and Cache-Control headers are added to the response.

You can also make the check against conditional request headers in the controller, as the following
example shows:

106

Java

@RequestMapping
public String myHandleMethod(ServerWebExchange exchange, Model model) {

long eTag = ... @

if (exchange.checkNotModified(eTag)) {
return null; @
}

model.addAttribute(...); ®
return "myViewName";

@ Application-specific calculation.
@ Response has been set to 304 (NOT_MODIFIED). No further processing.

® Continue with request processing.

Kotlin

@RequestMapping
fun myHandleMethod(exchange: ServerWebExchange, model: Model): String? {

val eTag: long = ... @

if (exchange.checkNotModified(eTag)) {
return null®@
}

model.addAttribute(...) ®
return "myViewName"

@ Application-specific calculation.
@ Response has been set to 304 (NOT_MODIFIED). No further processing.

® Continue with request processing.

There are three variants for checking conditional requests against eTag values, lastModified values,
or both. For conditional GET and HEAD requests, you can set the response to 304 (NOT_MODIFIED).
For conditional POST, PUT, and DELETE, you can instead set the response to 412
(PRECONDITION_FAILED) to prevent concurrent modification.

1.10.3. Static Resources

Web MVC

You should serve static resources with a Cache-Control and conditional response headers for
optimal performance. See the section on configuring Static Resources.

107

web.pdf#mvc-caching-static-resources

1.11. WebFlux Config

Web MVC

The WebFlux Java configuration declares the components that are required to process requests
with annotated controllers or functional endpoints, and it offers an API to customize the
configuration. That means you do not need to understand the underlying beans created by the Java
configuration. However, if you want to understand them, you can see them in
WebFluxConfigurationSupport or read more about what they are in Special Bean Types.

For more advanced customizations, not available in the configuration API, you can gain full control
over the configuration through the Advanced Configuration Mode.

1.11.1. Enabling WebFlux Config

Web MVC
You can use the @EnableWebFlux annotation in your Java config, as the following example shows:

Java

@Configuration
@EnableWebFlux
public class WebConfig {

}

Kotlin

@Confiquration
@EnableWebFlux
class WebConfig

The preceding example registers a number of Spring WebFlux infrastructure beans and adapts to
dependencies available on the classpath —for JSON, XML, and others.

1.11.2. WebFlux config API

Web MVC

In your Java configuration, you can implement the WebFluxConfigurer interface, as the following
example shows:

108

web.pdf#mvc-config
web.pdf#mvc-config-enable
web.pdf#mvc-config-customize

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

// Implement confiquration methods...

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

// Implement confiquration methods...

1.11.3. Conversion, formatting

Web MVC

By default, formatters for various number and date types are installed, along with support for
customization via @NumberFormat and @DateTimeFormat on fields.

To register custom formatters and converters in Java config, use the following:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride

public void addFormatters(FormatterRegistry registry) {
/] ...

}

109

web.pdf#mvc-config-conversion

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun addFormatters(registry: FormatterRegistry) {
/] ...
}

By default Spring WebFlux considers the request Locale when parsing and formatting date values.
This works for forms where dates are represented as Strings with "input" form fields. For "date"
and "time" form fields, however, browsers use a fixed format defined in the HTML spec. For such
cases date and time formatting can be customized as follows:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@lverride

public void addFormatters(FormatterRegistry registry) {
DateTimeFormatterReqistrar registrar = new DateTimeFormatterRegistrar();
registrar.setUseIsoFormat(true);
registrar.registerFormatters(registry);

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun addFormatters(registry: FormatterRegistry) {
val registrar = DateTimeFormatterRegistrar()
registrar.setUseIsoFormat(true)
registrar.registerFormatters(registry)

o See FormatterRegistrar SPI and the FormattingConversionServiceFactoryBean for
more information on when to use FormatterRegistrar implementations.

110

core.pdf#format-FormatterRegistrar-SPI
core.pdf#format-FormatterRegistrar-SPI

1.11.4. Validation

Web MVC

By default, if Bean Validation is present on the classpath (for example, the Hibernate Validator), the
LocalValidatorFactoryBean is registered as a global validator for use with @Valid and @Validated on
@Controller method arguments.

In your Java configuration, you can customize the global Validator instance, as the following
example shows:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride

public Validator getValidator(); {
/] ...

}

Kotlin

@Confiquration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

override fun getValidator(): Validator {
/] ...
}

Note that you can also register Validator implementations locally, as the following example shows:

Java

@Controller
public class MyController {

@InitBinder

protected void initBinder(WebDataBinder binder) {
binder.addValidators(new FooValidator());

}

111

web.pdf#mvc-config-validation
core.pdf#validation-beanvalidation-overview
core.pdf#validator

Kotlin

@Controller
class MyController {

@InitBinder

protected fun initBinder(binder: WebDataBinder) {
binder.addValidators(FooValidator())

}

If you need to have a LocalValidatorFactoryBean injected somewhere, create a bean
and mark it with @Primary in order to avoid conflict with the one declared in the
MVC config.

1.11.5. Content Type Resolvers

Web MVC

You can configure how Spring WebFlux determines the requested media types for @Controller
instances from the request. By default, only the Accept header is checked, but you can also enable a
query parameter-based strategy.

The following example shows how to customize the requested content type resolution:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void configureContentTypeResolver(RequestedContentTypeResolverBuilder
builder) {
/] ...
}

112

web.pdf#mvc-config-content-negotiation

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun configureContentTypeResolver(builder:
RequestedContentTypeResolverBuilder) {
/] ...
}

1.11.6. HTTP message codecs
Web MVC

The following example shows how to customize how the request and response body are read and
written:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
configurer.defaultCodecs().maxInMemorySize(512 * 1024);

}

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun configureHttpMessageCodecs(configurer: ServerCodecConfigurer) {
/] ...
}

ServerCodecConfigurer provides a set of default readers and writers. You can use it to add more
readers and writers, customize the default ones, or replace the default ones completely.

For Jackson JSON and XML, consider using Jackson20bjectMapperBuilder, which customizes
Jackson’s default properties with the following ones:

* DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is disabled.

113

web.pdf#mvc-config-message-converters
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/http/converter/json/Jackson2ObjectMapperBuilder.html
https://fasterxml.github.io/jackson-databind/javadoc/2.6/com/fasterxml/jackson/databind/DeserializationFeature.html#FAIL_ON_UNKNOWN_PROPERTIES

» MapperFeature.DEFAULT_VIEW_INCLUSION is disabled.

It also automatically registers the following well-known modules if they are detected on the
classpath:

* jackson-datatype-joda: Support for Joda-Time types.

* jackson-datatype-jsr310: Support for Java 8 Date and Time API types.

* jackson-datatype-jdk8: Support for other Java 8 types, such as Optional.

* jackson-module-kotlin: Support for Kotlin classes and data classes.

1.11.7. View Resolvers

Web MVC
The following example shows how to configure view resolution:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride

public void configureViewResolvers(ViewResolverRegistry registry) {
/] ...

}

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

override fun configureViewResolvers(registry: ViewResolverRegistry) {
/] ...
}

The ViewResolverRegistry has shortcuts for view technologies with which the Spring Framework
integrates. The following example uses FreeMarker (which also requires configuring the underlying
FreeMarker view technology):

114

https://fasterxml.github.io/jackson-databind/javadoc/2.6/com/fasterxml/jackson/databind/MapperFeature.html#DEFAULT_VIEW_INCLUSION
https://github.com/FasterXML/jackson-datatype-joda
https://github.com/FasterXML/jackson-datatype-jsr310
https://github.com/FasterXML/jackson-datatype-jdk8
https://github.com/FasterXML/jackson-module-kotlin
web.pdf#mvc-config-view-resolvers

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.freeMarker();

}

// Confiqure Freemarker...

@Bean

public FreeMarkerConfigurer freeMarkerConfigurer() {
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplateLoaderPath("classpath:/templates”);
return configurer;

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

override fun confiqureViewResolvers(registry: ViewResolverRegistry) {
registry.freeMarker()
}

// Confiqgure Freemarker...
@Bean

fun freeMarkerConfigurer() = FreeMarkerConfigurer().apply {
setTemplatelLoaderPath("classpath:/templates”)

}

You can also plug in any ViewResolver implementation, as the following example shows:

115

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void configureViewResolvers(ViewResolverRegistry registry) {
ViewResolver resolver = ... ;
registry.viewResolver(resolver);
}
}
Kotlin
@Configuration
@EnableWebFlux

class WebConfig : WebFluxConfigurer {

override fun configureViewResolvers(registry: ViewResolverRegistry) {
val resolver: ViewResolver = ...
registry.viewResolver(resolver

To support Content Negotiation and rendering other formats through view resolution (besides
HTML), you can configure one or more default views based on the HttpMessageWriterView
implementation, which accepts any of the available Codecs from spring-web. The following example
shows how to do so:

Java
@Configuration

@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.freeMarker();

Jackson2]sonEncoder encoder = new Jackson2J]sonEncoder();
registry.defaultViews(new HttpMessageWriterView(encoder));

/] ...

116

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun configureViewResolvers(registry: ViewResolverRegistry) {
registry.freeMarker()

val encoder = Jackson2J]sonEncoder()
registry.defaultViews(HttpMessageWriterView(encoder))

/] ...

See View Technologies for more on the view technologies that are integrated with Spring WebFlux.

1.11.8. Static Resources

Web MVC

This option provides a convenient way to serve static resources from a list of Resource-based
locations.

In the next example, given a request that starts with /resources, the relative path is used to find and
serve static resources relative to /static on the classpath. Resources are served with a one-year
future expiration to ensure maximum use of the browser cache and a reduction in HTTP requests
made by the browser. The Last-Modified header is also evaluated and, if present, a 304 status code is
returned. The following list shows the example:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourcelLocations("/public", "classpath:/static/")
.setCacheControl(CacheControl.maxAge(365, TimeUnit.DAYS));

117

web.pdf#mvc-config-static-resources
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/core/io/Resource.html

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun addResourceHandlers(registry: ResourceHandlerRegistry) {
registry.addResourceHandler("/resources/**")
.addResourcelocations("/public", "classpath:/static/")
.setCacheControl(CacheControl.maxAge(365, TimeUnit.DAYS))

The resource handler also supports a chain of ResourceResolver implementations and
ResourceTransformer implementations, which can be used to create a toolchain for working with
optimized resources.

You can use the VersionResourceResolver for versioned resource URLs based on an MD5 hash
computed from the content, a fixed application version, or other information. A
ContentVersionStrategy (MD5 hash) is a good choice with some notable exceptions (such as
JavaScript resources used with a module loader).

The following example shows how to use VersionResourceResolver in your Java configuration:

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler ("/resources/**")
.addResourcelLocations("/public/")
.resourceChain(true)
.addResolver(new
VersionResourceResolver().addContentVersionStrategy("/**"));

}

118

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/resource/ResourceResolver.html
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/resource/ResourceTransformer.html

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfiqurer {

override fun addResourceHandlers(registry: ResourceHandlerRegistry) {
registry.addResourceHandler("/resources/**")
.addResourcelocations("/public/")
.resourceChain(true)

.addResolver(VersionResourceResolver().addContentVersionStrategy("/**"))

}

You can use ResourceUrlProvider to rewrite URLs and apply the full chain of resolvers and
transformers (for example, to insert versions). The WebFlux configuration provides a
ResourceUr1Provider so that it can be injected into others.

Unlike Spring MVC, at present, in WebFlux, there is no way to transparently rewrite static resource
URLs, since there are no view technologies that can make use of a non-blocking chain of resolvers
and transformers. When serving only local resources, the workaround is to use ResourceUr1Provider
directly (for example, through a custom element) and block.

Note that, when using both EncodedResourceResolver (for example, Gzip, Brotli encoded) and
VersionedResourceResolver, they must be registered in that order, to ensure content-based versions
are always computed reliably based on the unencoded file.

Web]Jars are also supported through the WebJarsResourceResolver which is automatically registered
when the org.webjars:webjars-locator-core library is present on the classpath. The resolver can re-
write URLs to include the version of the jar and can also match against incoming URLs without
versions — for example, from /jquery/jquery.min.js to /jquery/1.2.0/jquery.min.js.

1.11.9. Path Matching

Web MVC

You can customize options related to path matching. For details on the individual options, see the
PathMatchConfigurer javadoc. The following example shows how to use PathMatchConfigurer:

119

https://www.webjars.org/documentation
web.pdf#mvc-config-path-matching
https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/web/reactive/config/PathMatchConfigurer.html

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride
public void configurePathMatch(PathMatchConfigurer configurer) {
configurer
.setUseCaseSensitiveMatch(true)
.setUseTrailingSlashMatch(false)
.addPathPrefix("/api",
HandlerTypePredicate.forAnnotation(RestController.class));

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

@0verride
fun confiqurePathMatch(configurer: PathMatchConfigurer) {
configurer
.setUseCaseSensitiveMatch(true)
.setUseTrailingSlashMatch(false)
.addPathPrefix("/api",
HandlerTypePredicate.forAnnotation(RestController::class.java))

}
}
Spring WebFlux relies on a parsed representation of the request path called
RequestPath for access to decoded path segment values, with semicolon content
removed (that is, path or matrix variables). That means, unlike in Spring MVC, you
(r) need not indicate whether to decode the request path nor whether to remove
- semicolon content for path matching purposes.

Spring WebFlux also does not support suffix pattern matching, unlike in Spring
MVC, where we are also recommend moving away from reliance on it.

1.11.10. WebSocketService

The WebFlux Java config declares of a WebSocketHandlerAdapter bean which provides support for the
invocation of WebSocket handlers. That means all that remains to do in order to handle a
WebSocket handshake request is to map a WebSocketHandler to a URL via SimpleUr1HandlerMapping.

In some cases it may be necessary to create the WebSocketHandlerAdapter bean with a provided
WebSocketService service which allows configuring WebSocket server properties. For example:

120

web.pdf#mvc-ann-requestmapping-suffix-pattern-match

Java

@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {

@0verride

public WebSocketService getWebSocketService() {
TomcatRequestUpgradeStrategy strategy = new TomcatRequestUpgradeStrategy();
strategy.setMaxSessionIdleTimeout(OL);
return new HandshakeWebSocketService(strategy);

Kotlin

@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {

@verride
fun webSocketService(): WebSocketService {
val strategy = TomcatRequestUpgradeStrategy().apply {
setMaxSessionIdleTimeout(OL)

}
return HandshakeWebSocketService(strategy)

1.11.11. Advanced Configuration Mode

Web MVC
@EnableWebFlux imports DelegatingWebFluxConfiguration that:

* Provides default Spring configuration for WebFlux applications

* detects and delegates to WebFluxConfigurer implementations to customize that configuration.

For advanced mode, you can remove @EnableWebFlux and extend directly from
DelegatingWebFluxConfiguration instead of implementing WebFluxConfigurer, as the following
example shows:

Java

@Configuration
public class WebConfig extends DelegatingWebFluxConfiguration {

/] ...

121

web.pdf#mvc-config-advanced-java

Kotlin

@Configuration
class WebConfig : DelegatingWebFluxConfiguration {

/] ...

You can keep existing methods in WebConfig, but you can now also override bean declarations from
the base class and still have any number of other WebMvcConfigurer implementations on the
classpath.

1.12. HTTP/2

Web MVC

HTTP/2 is supported with Reactor Netty, Tomcat, Jetty, and Undertow. However, there are
considerations related to server configuration. For more details, see the HTTP/2 wiki page.

122

web.pdf#mvc-http2
https://github.com/spring-projects/spring-framework/wiki/HTTP-2-support

Chapter 2. WebClient

Spring WebFlux includes a client to perform HTTP requests with. Web(Client has a functional, fluent
API based on Reactor, see Reactive Libraries, which enables declarative composition of
asynchronous logic without the need to deal with threads or concurrency. It is fully non-blocking, it
supports streaming, and relies on the same codecs that are also used to encode and decode request
and response content on the server side.

WebClient needs an HTTP client library to perform requests with. There is built-in support for the
following:

* Reactor Netty

* Jetty Reactive HttpClient

Apache HttpComponents

* Others can be plugged via ClientHttpConnector.

2.1. Configuration

The simplest way to create a WebClient is through one of the static factory methods:

* WebClient.create()
* WebClient.create(String baselrl)

You can also use WebClient.builder () with further options:

e uriBuilderFactory: Customized UriBuilderFactory to use as a base URL.

» defaultUriVariables: default values to use when expanding URI templates.
» defaultHeader: Headers for every request.

» defaultCookie: Cookies for every request.

» defaultRequest: Consumer to customize every request.

» filter: Client filter for every request.

» exchangeStrategies: HTTP message reader/writer customizations.

» clientConnector: HTTP client library settings.
For example:

Java

WebClient client = WebClient.builder()
.codecs(configurer -> ...)
.build();

123

https://github.com/reactor/reactor-netty
https://github.com/jetty-project/jetty-reactive-httpclient
https://hc.apache.org/index.html

Kotlin
val webClient = WebClient.builder()

.codecs { configurer -> ... }
.build()

Once built, a WebClient is immutable. However, you can clone it and build a modified copy as
follows:

Java

WebClient client1 = WebClient.builder()
.filter(filterA).filter(filterB).build();

WebClient client2 = client1.mutate()
filter(filterC).filter(filterD).build();

// client1 has filterA, filterB

// client2 has filterA, filterB, filterC, filterD

Kotlin

val client1 = WebClient.builder()
.filter(filterA).filter(filterB).build()

val client2 = client1.mutate()
.filter(filterC).filter(filterD).build()

// client1 has filterA, filterB

// client2 has filterA, filterB, filterC, filterD

2.1.1. MaxInMemorySize

Codecs have limits for buffering data in memory to avoid application memory issues. By the default
those are set to 256KB. If that’s not enough you’ll get the following error:

org.springframework.core.io.buffer.DataBufferLimitException: Exceeded limit on max
bytes to buffer

To change the limit for default codecs, use the following:

124

Java

WebClient webClient = WebClient.builder()

.codecs(configurer -> configurer.defaultCodecs().maxInMemorySize(2 * 1024 *
1024))

.build();

Kotlin

val webClient = WebClient.builder()

.codecs { configurer -> configurer.defaultCodecs().maxInMemorySize(2 * 1024 *
1024) }

.build()

2.1.2. Reactor Netty
To customize Reactor Netty settings, provide a pre-configured HttpClient:

Java
HttpClient httpClient = HttpClient.create().secure(sslSpec -> ...);

WebClient webClient = WebClient.builder()
.clientConnector(new ReactorClientHttpConnector(httpClient))
.build();

Kotlin
val httpClient = HttpClient.create().secure { ... }

val webClient = WebClient.builder()
.clientConnector(ReactorClientHttpConnector (httpClient))
.build()

Resources

By default, HttpClient participates in the global Reactor Netty resources held in
reactor.netty.http.HttpResources, including event loop threads and a connection pool. This is the
recommended mode, since fixed, shared resources are preferred for event loop concurrency. In this
mode global resources remain active until the process exits.

If the server is timed with the process, there is typically no need for an explicit shutdown. However,
if the server can start or stop in-process (for example, a Spring MVC application deployed as a
WAR), you can declare a Spring-managed bean of type ReactorResourceFactory with
globalResources=true (the default) to ensure that the Reactor Netty global resources are shut down
when the Spring ApplicationContext is closed, as the following example shows:

125

Java

@Bean
public ReactorResourceFactory reactorResourceFactory() {
return new ReactorResourceFactory();

}

Kotlin

@Bean
fun reactorResourceFactory() = ReactorResourceFactory()

You can also choose not to participate in the global Reactor Netty resources. However, in this mode,
the burden is on you to ensure that all Reactor Netty client and server instances use shared
resources, as the following example shows:

Java

@Bean

public ReactorResourceFactory resourceFactory() {
ReactorResourceFactory factory = new ReactorResourceFactory();
factory.setUseGlobalResources(false); @
return factory;

@Bean
public WebClient webClient() {
Function<HttpClient, HttpClient> mapper = client -> {
// Further customizations...

};

ClientHttpConnector connector =
new ReactorClientHttpConnector(resourceFactory(), mapper); @

return WebClient.builder().clientConnector(connector).build(); ®

@ Create resources independent of global ones.

@ Use the ReactorClientHttpConnector constructor with resource factory.

® Plug the connector into the WebClient.Builder.

126

Kotlin

@Bean
fun resourceFactory() = ReactorResourceFactory().apply {
isUseGlobalResources = false @

}

@Bean
fun webClient(): WebClient {

val mapper: (HttpClient) -> HttpClient = {
// Further customizations...

}

val connector = ReactorClientHttpConnector(resourceFactory(), mapper) @

return WebClient.builder().clientConnector(connector).build() ®

@ Create resources independent of global ones.
@ Use the ReactorClientHttpConnector constructor with resource factory.

® Plug the connector into the WebClient.Builder.

Timeouts
To configure a connection timeout:

Java
import io.netty.channel.ChannelOption;

HttpClient httpClient = HttpClient.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000);

WebClient webClient = WebClient.builder()

.clientConnector(new ReactorClientHttpConnector(httpClient))
.build();

Kotlin

import io.netty.channel.ChannelOption

val httpClient = HttpClient.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000);

val webClient = WebClient.builder()

.clientConnector(new ReactorClientHttpConnector(httpClient))
.build();

127

To configure a read or write timeout:

Java

import io.netty.handler.timeout.ReadTimeoutHandler;
import io.netty.handler.timeout.WriteTimeoutHandler;

HttpClient httpClient = HttpClient.create()
.doOnConnected(conn -> conn

.addHandlerLast(new ReadTimeoutHandler(10))
.addHandlerLast(new WriteTimeoutHandler(10)));

// Create WebClient...

Kotlin

import io.netty.handler.timeout.ReadTimeoutHandler
import io.netty.handler.timeout.WriteTimeoutHandler

val httpClient = HttpClient.create()
.doOnConnected { conn -> conn
.addHandlerLast(new ReadTimeoutHandler(10))
.addHandlerLast(new WriteTimeoutHandler(10))
}

// Create WebClient...

To configure a response timeout for all requests:

Java

HttpClient httpClient = HttpClient.create()
.responseTimeout(Duration.ofSeconds(2));

// Create WebClient...

Kotlin

val httpClient = HttpClient.create()
.responseTimeout(Duration.ofSeconds(2));

// Create WebClient...

To configure a response timeout for a specific request:

128

Java

WebClient.create().get()
.uri("https://example.org/path")
.httpRequest(httpRequest -> {
HttpClientRequest reactorRequest = httpRequest.getNativeRequest();
reactorRequest.responseTimeout(Duration.ofSeconds(2));

1))
.retrieve()
.bodyToMono(String.class);

Kotlin

WebClient.create().get()
.uri("https://example.org/path")
.httpRequest { httpRequest: ClientHttpRequest ->
val reactorRequest = httpRequest.getNativeRequest<HttpClientRequest>()
reactorRequest.responseTimeout(Duration.ofSeconds(2))

}
.retrieve()
.bodyToMono(String::class.java)

2.1.3. Jetty
The following example shows how to customize Jetty HttpClient settings:

Java

HttpClient httpClient = new HttpClient();
httpClient.setCookieStore(...);

WebClient webClient = WebClient.builder()
.clientConnector(new JettyClientHttpConnector(httpClient))
.build();

Kotlin

val httpClient = HttpClient()
httpClient.cookieStore = ...

val webClient = WebClient.builder()
.clientConnector(new JettyClientHttpConnector(httpClient))
.build();

By default, HttpClient creates its own resources (Executor, ByteBufferPool, Scheduler), which remain
active until the process exits or stop() is called.

You can share resources between multiple instances of the Jetty client (and server) and ensure that

129

the resources are shut down when the Spring ApplicationContext is closed by declaring a Spring-
managed bean of type JettyResourceFactory, as the following example shows:

Java

@Bean
public JettyResourceFactory resourceFactory() {
return new JettyResourceFactory();

}

@Bean
public WebClient webClient() {

HttpClient httpClient = new HttpClient();
// Further customizations...

ClientHttpConnector connector =
new JettyClientHttpConnector(httpClient, resourceFactory()); @

return WebClient.builder().clientConnector(connector).build(); @

@ Use the JettyClientHttpConnector constructor with resource factory.

@ Plug the connector into the WebClient.Builder.

Kotlin

@Bean
fun resourceFactory() = JettyResourceFactory()

@Bean
fun webClient(): WebClient {

val httpClient = HttpClient()
// Further customizations...

val connector = JettyClientHttpConnector(httpClient, resourceFactory()) @

return WebClient.builder().clientConnector(connector).build() @

@ Use the JettyClientHttpConnector constructor with resource factory.

@ Plug the connector into the WebClient.Builder.

2.1.4. HttpComponents

The following example shows how to customize Apache HttpComponents HttpClient settings:

130

Java

HttpAsyncClientBuilder clientBuilder = HttpAsyncClients.custom();
clientBuilder.setDefaultRequestConfig(...);

CloseableHttpAsyncClient client = clientBuilder.build();

ClientHttpConnector connector = new HttpComponentsClientHttpConnector(client);

WebClient webClient = WebClient.builder().clientConnector(connector).build();

Kotlin

val client = HttpAsyncClients.custom().apply {
setDefaultRequestConfig(...)

}.build()

val connector

val webClient

HttpComponentsClientHttpConnector(client)
WebClient.builder().clientConnector(connector).build()

2.2. retrieve()

The retrieve() method can be used to declare how to extract the response. For example:

Java
WebClient client = WebClient.create("https://example.org");

Mono<ResponseEntity<Person>> result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.retrieve()

.toEntity(Person.class);

Kotlin
val client = WebClient.create("https://example.org")
val result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.retrieve()
.toEntity<Person>().awaitSingle()
Or to get only the body:

131

Java
WebClient client = WebClient.create("https://example.org");

Mono<Person> result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.retrieve()
.bodyToMono(Person.class);

Kotlin
val client = WebClient.create("https://example.org")

val result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)

.retrieve()
.awaitBody<Person>()

To get a stream of decoded objects:

Java

Flux<Quote> result = client.get()
.uri("/quotes").accept(MediaType.TEXT_EVENT_STREAM)

.retrieve()
.bodyToFlux(Quote.class);

Kotlin

val result = client.get()
.uri("/quotes").accept(MediaType.TEXT_EVENT_STREAM)

.retrieve()
.bodyToFlow<Quote>()

By default, 4xx or 5xx responses result in an WebClientResponseException, including sub-classes for
specific HTTP status codes. To customize the handling of error responses, use onStatus handlers as
follows:

Java

Mono<Person> result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.retrieve()
.onStatus(HttpStatus::is4xxClientError, response -> ...)
.onStatus(HttpStatus::isbxxServerError, response -> ...)
.bodyToMono(Person.class);

132

Kotlin

val result = client.get()

.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.retrieve()

.onStatus(HttpStatus::is4xxClientError) { ... }
.onStatus(HttpStatus::is5xxServerError) { ... }
.awaitBody<Person>()

2.3. Exchange

The exchangeToMono() and exchangeToFlux() methods (or awaitExchange { } and exchangeToFlow { }
in Kotlin) are useful for more advanced cases that require more control, such as to decode the
response differently depending on the response status:

Java

Mono<Object> entityMono = client.get()

.uri("/persons/1")
.accept(MediaType.APPLICATION_JSON)
.exchangeToMono(response -> {
if (response.statusCode().equals(HttpStatus.0K)) {
return response.bodyToMono(Person.class);
}
else if (response.statusCode().is4xxClientError()) {
// Suppress error status code
return response.bodyToMono(ErrorContainer.class);

+
else {
// Turn to error
return response.createException().flatMap(Mono::error);
}
b

133

Kotlin

val entity = client.get()
.uri("/persons/1")
.accept(MediaType.APPLICATION_JSON)
.awaitExchange {
if (response.statusCode() == HttpStatus.0K) {
return response.awaitBody<Person>()
}
else if (response.statusCode().is4xxClientError) {
return response.awaitBody<ErrorContainer>()

}
else {

throw response.createExceptionAndAwait()
}

When using the above, after the returned Mono or Flux completes, the response body is checked and
if not consumed it is released to prevent memory and connection leaks. Therefore the response
cannot be decoded further downstream. It is up to the provided function to declare how to decode
the response if needed.

2.4. Request Body

The request body can be encoded from any asynchronous type handled by ReactiveAdapterRegistry,
like Mono or Kotlin Coroutines Deferred as the following example shows:

Java
Mono<Person> personMono = ... ;

Mono<Void> result = client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_JSON)
.body(personMono, Person.class)
.retrieve()

.bodyToMono(Void.class);

Kotlin
val personDeferred: Deferred<Person> = ...

client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_JSON)
.body<Person>(personDeferred)
.retrieve()
.awaitBody<Unit>()

134

You can also have a stream of objects be encoded, as the following example shows:

Java
Flux<Person> personFlux = ... ;

Mono<Void> result = client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_STREAM_JSON)
.body(personFlux, Person.class)
.retrieve()
.bodyToMono(Void.class);

Kotlin
val people: Flow<Person> = ...

client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_JSON)
.body(people)
.retrieve()
.awaitBody<Unit>()

Alternatively, if you have the actual value, you can use the bodyValue shortcut method, as the
following example shows:

Java
Person person = ... ;

Mono<Void> result = client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_JSON)
.bodyValue(person)

.retrieve()
.bodyToMono(Void.class);

Kotlin
val person: Person = ...

client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_JSON)
.bodyValue(person)
.retrieve()
.awaitBody<Unit>()

135

2.4.1. Form Data

To send form data, you can provide a MultiValueMap<String, String> as the body. Note that the
content is automatically set to application/x-www-form-urlencoded by the FormHttpMessageWriter. The
following example shows how to use MultiValueMap<String, String>:

Java
MultiValueMap<String, String> formData = ... ;

Mono<Void> result = client.post()
.uri("/path", id)
.bodyValue(formData)
.retrieve()
.bodyToMono(Void.class);

Kotlin
val formData: MultiValueMap<String, String> = ...

client.post()
.uri("/path", id)
.bodyValue(formData)
.retrieve()
.awaitBody<Unit>()

You can also supply form data in-line by using BodyInserters, as the following example shows:

Java
import static org.springframework.web.reactive.function.BodyInserters.*;

Mono<Void> result = client.post()
.uri("/path", id)
.body(fromFormData("k1", "v1").with("k2", "v2"))
.retrieve()
.bodyToMono(Void.class);

Kotlin
import org.springframework.web.reactive.function.BodyInserters.*

client.post()
.uri("/path", id)
.body(fromFormData("k1", "v1").with("k2", "v2"))
.retrieve()
.awaitBody<Unit>()

136

2.4.2. Multipart Data

To send multipart data, you need to provide a MultiValueMap<String, 7> whose values are either
Object instances that represent part content or HttpEntity instances that represent the content and
headers for a part. MultipartBodyBuilder provides a convenient API to prepare a multipart request.
The following example shows how to create a MultiValueMap<String, 7>:

Java

MultipartBodyBuilder builder = new MultipartBodyBuilder();
builder.part("fieldPart", "fieldValue");
builder.part("filePart1", new FileSystemResource("...logo.png"));
builder.part("jsonPart", new Person("Jason"));
builder.part("myPart", part); // Part from a server request

MultiValueMap<String, HttpEntity<?>> parts = builder.build();

Kotlin

val builder = MultipartBodyBuilder().apply {
part("fieldPart", "fieldValue")
part("filePart1", new FileSystemResource("...logo.png"))
part("jsonPart", new Person("Jason"))
part("myPart", part) // Part from a server request

val parts = builder.build()

In most cases, you do not have to specify the Content-Type for each part. The content type is
determined automatically based on the HttpMessagellriter chosen to serialize it or, in the case of a
Resource, based on the file extension. If necessary, you can explicitly provide the MediaType to use for
each part through one of the overloaded builder part methods.

Once a MultiValueMap is prepared, the easiest way to pass it to the WebClient is through the body
method, as the following example shows:

Java
MultipartBodyBuilder builder = ...;

Mono<Void> result = client.post()
.uri("/path", id)
.body(builder.build())
.retrieve()
.bodyToMono(Void.class);

137

Kotlin
val builder: MultipartBodyBuilder = ...

client.post()
.uri("/path", id)
.body(builder.build())
.retrieve()
.awaitBody<Unit>()

If the MultiValueMap contains at least one non-String value, which could also represent regular form
data (that is, application/x-www-form-urlencoded), you need not set the Content-Type to
multipart/form-data. This is always the case when using MultipartBodyBuilder, which ensures an
HttpEntity wrapper.

As an alternative to MultipartBodyBuilder, you can also provide multipart content, inline-style,
through the built-in BodyInserters, as the following example shows:

Java
import static org.springframework.web.reactive.function.BodyInserters.*;

Mono<Void> result = client.post()
.uri("/path", id)
.body(fromMultipartData("fieldPart", "value").with("filePart", resource))
.retrieve()
.bodyToMono(Void.class);

Kotlin
import org.springframework.web.reactive.function.BodyInserters.*
client.post()
.uri("/path", id)
.body(fromMultipartData("fieldPart", "value").with("filePart", resource))

.retrieve()
.awaitBody<Unit>()

2.5. Filters

You can register a client filter (ExchangeFilterFunction) through the WebClient.Builder in order to
intercept and modify requests, as the following example shows:

138

Java

WebClient client = WebClient.builder()
.filter((request, next) -> {

ClientRequest filtered = ClientRequest.from(request)
.header("foo", "bar")
.build();

return next.exchange(filtered);

1))
.build();

Kotlin

val client = WebClient.builder()
.filter { request, next ->

val filtered = ClientRequest.from(request)
.header("foo", "bar")
.build()

next.exchange(filtered)

.build()

This can be used for cross-cutting concerns, such as authentication. The following example uses a
filter for basic authentication through a static factory method:

Java

import static
org.springframework.web.reactive.function.client.ExchangeFilterFunctions.basicAuthenti

cation;

WebClient client = WebClient.builder()
.filter(basicAuthentication("user", "password"))
.build();

Kotlin

import
org.springframework.web.reactive.function.client.ExchangeFilterFunctions.basicAuthenti
cation

val client = WebClient.builder()

.filter(basicAuthentication("user", "password"))
.build()

139

You can create a new Web(Client instance by using another as a starting point. This allows insert or
removing filters without affecting the original WebClient. Below is an example that inserts a basic
authentication filter at index 0:

Java

import static
org.springframework.web.reactive.function.client.ExchangeFilterFunctions.basicAuthenti
cation;

WebClient client = webClient.mutate()
.filters(filterList -> {
filterList.add(@, basicAuthentication("user", "password"));

1))
.build();

Kotlin

val client = webClient.mutate()
.filters { it.add(@, basicAuthentication("user", "password")) }
.build()

2.6. Attributes

You can add attributes to a request. This is convenient if you want to pass information through the
filter chain and influence the behavior of filters for a given request. For example:

Java

WebClient client = WebClient.builder()
.filter((request, next) -> {
Optional<Object> usr = request.attribute("myAttribute");
/] ...

1))
.build();

client.get().uri("https://example.org/")
.attribute("myAttribute", "...")
.retrieve()
.bodyToMono(Void.class);

140

Kotlin

val client = WebClient.builder()
.filter { request, _ ->
val usr = request.attributes()["myAttribute"];
/] ...

}
.build()

client.get().uri("https://example.org/")
.attribute("myAttribute", "...")
.retrieve()
.awaitBody<Unit>()

Note that you can configure a defaultRequest callback globally at the WebClient.Builder level which
lets you insert attributes into all requests, which could be used for example in a Spring MVC
application to populate request attributes based on ThreadlLocal data.

2.7. Context

Attributes provide a convenient way to pass information to the filter chain but they only influence
the current request. If you want to pass information that propagates to additional requests that are
nested, e.g. via flatMap, or executed after, e.g. via concatMap, then you’ll need to use the Reactor
Context.

The Reactor Context needs to be populated at the end of a reactive chain in order to apply to all
operations. For example:

Java

WebClient client = WebClient.builder()
.filter((request, next) ->
Mono.deferContextual(contextView -> {
String value = contextView.get("foo");
/] ...

})
.build();

client.get().uri("https://example.org/")
.retrieve()
.bodyToMono(String.class)
.flatMap(body -> {
// perform nested request (context propagates automatically)...

)

.contextWrite(context -> context.put("foo", ...));

141

2.8. Synchronous Use
WebClient can be used in synchronous style by blocking at the end for the result:

Java

Person person = client.get().uri("/person/{id}", i).retrieve()
.bodyToMono(Person.class)
.block();

List<Person> persons = client.get().uri("/persons").retrieve()
.bodyToFlux(Person.class)
.collectList()
.block();

Kotlin

val person = runBlocking {
client.get().uri("/person/{id}", i).retrieve()
.awaitBody<Person>()

}

val persons = runBlocking {
client.get().uri("/persons").retrieve()
.bodyToFlow<Person>()
.tolist()

However if multiple calls need to be made, it’'s more efficient to avoid blocking on each response
individually, and instead wait for the combined result:

Java

Mono<Person> personMono = client.get().uri("/person/{id}", personld)
.retrieve().bodyToMono(Person.class);

Mono<List<Hobby>> hobbiesMono = client.get().uri("/person/{id}/hobbies", personld)
.retrieve().bodyToFlux(Hobby.class).collectList();

Map<String, Object> data = Mono.zip(personMono, hobbiesMono, (person, hobbies) -> {
Map<String, String> map = new LinkedHashMap<>();
map.put("person”, person);
map.put("hobbies", hobbies);
return map;

1))
.block();

142

Kotlin

val data = runBlocking {
val personDeferred = async {
client.get().uri("/person/{id}", personId)
.retrieve().awaitBody<Person>()

}

val hobbiesDeferred = async {
client.get().uri("/person/{id}/hobbies", personld)
.retrieve().bodyToFlow<Hobby>().toList()
}

mapOf("person" to personDeferred.await(), "hobbies" to
hobbiesDeferred.await())
}

The above is merely one example. There are lots of other patterns and operators for putting
together a reactive pipeline that makes many remote calls, potentially some nested, inter-
dependent, without ever blocking until the end.

With Flux or Mono, you should never have to block in a Spring MVC or Spring

o WebFlux controller. Simply return the resulting reactive type from the controller
method. The same principle apply to Kotlin Coroutines and Spring WebFlux, just
use suspending function or return Flow in your controller method .

2.9. Testing

To test code that uses the WebClient, you can use a mock web server, such as the OkHttp
MockWebServer. To see an example of its use, check out WebClientIntegrationTests in the Spring
Framework test suite or the static-server sample in the OkHttp repository.

143

https://github.com/square/okhttp#mockwebserver
https://github.com/square/okhttp#mockwebserver
https://github.com/spring-projects/spring-framework/blob/master/spring-webflux/src/test/java/org/springframework/web/reactive/function/client/WebClientIntegrationTests.java
https://github.com/square/okhttp/tree/master/samples/static-server

Chapter 3. WebSockets

Same as in the Servlet stack

This part of the reference documentation covers support for reactive-stack WebSocket messaging.

3.1. Introduction to WebSocket

The WebSocket protocol, RFC 6455, provides a standardized way to establish a full-duplex, two-way
communication channel between client and server over a single TCP connection. It is a different
TCP protocol from HTTP but is designed to work over HTTP, using ports 80 and 443 and allowing re-
use of existing firewall rules.

A WebSocket interaction begins with an HTTP request that uses the HTTP Upgrade header to
upgrade or, in this case, to switch to the WebSocket protocol. The following example shows such an
interaction:

GET /spring-websocket-portfolio/portfolio HTTP/1.1
Host: localhost:8080

Upgrade: websocket @

Connection: Upgrade @

Sec-WebSocket-Key: Uc919TMkWGbHFD2gnFH1tg==
Sec-WebSocket-Protocol: v10.stomp, v11.stomp
Sec-WebSocket-Version: 13

Origin: http://localhost:8080

@ The Upgrade header.

@ Using the Upgrade connection.

Instead of the usual 200 status code, a server with WebSocket support returns output similar to the
following:

HTTP/1.1 101 Switching Protocols @

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: 1qVdfYHU9hPO14JYYNXF623Gzn0=
Sec-WebSocket-Protocol: v10.stomp

@ Protocol switch

After a successful handshake, the TCP socket underlying the HTTP upgrade request remains open
for both the client and the server to continue to send and receive messages.

A complete introduction of how WebSockets work is beyond the scope of this document. See RFC
6455, the WebSocket chapter of HTMLS5, or any of the many introductions and tutorials on the Web.

Note that, if a WebSocket server is running behind a web server (e.g. nginx), you likely need to
configure it to pass WebSocket upgrade requests on to the WebSocket server. Likewise, if the

144

web.pdf#websocket
https://tools.ietf.org/html/rfc6455

application runs in a cloud environment, check the instructions of the cloud provider related to
WebSocket support.

3.1.1. HTTP Versus WebSocket

Even though WebSocket is designed to be HTTP-compatible and starts with an HTTP request, it is
important to understand that the two protocols lead to very different architectures and application
programming models.

In HTTP and REST, an application is modeled as many URLs. To interact with the application, clients
access those URLs, request-response style. Servers route requests to the appropriate handler based
on the HTTP URL, method, and headers.

By contrast, in WebSockets, there is usually only one URL for the initial connect. Subsequently, all
application messages flow on that same TCP connection. This points to an entirely different
asynchronous, event-driven, messaging architecture.

WebSocket is also a low-level transport protocol, which, unlike HTTP, does not prescribe any
semantics to the content of messages. That means that there is no way to route or process a
message unless the client and the server agree on message semantics.

WebSocket clients and servers can negotiate the use of a higher-level, messaging protocol (for
example, STOMP), through the Sec-WebSocket-Protocol header on the HTTP handshake request. In
the absence of that, they need to come up with their own conventions.

3.1.2. When to Use WebSockets

WebSockets can make a web page be dynamic and interactive. However, in many cases, a
combination of Ajax and HTTP streaming or long polling can provide a simple and effective
solution.

For example, news, mail, and social feeds need to update dynamically, but it may be perfectly okay
to do so every few minutes. Collaboration, games, and financial apps, on the other hand, need to be
much closer to real-time.

Latency alone is not a deciding factor. If the volume of messages is relatively low (for example,
monitoring network failures) HTTP streaming or polling can provide an effective solution. It is the
combination of low latency, high frequency, and high volume that make the best case for the use of
WebSocket.

Keep in mind also that over the Internet, restrictive proxies that are outside of your control may
preclude WebSocket interactions, either because they are not configured to pass on the Upgrade
header or because they close long-lived connections that appear idle. This means that the use of
WebSocket for internal applications within the firewall is a more straightforward decision than it is
for public facing applications.

3.2. WebSocket API

Same as in the Servlet stack

145

web.pdf#websocket-server

The Spring Framework provides a WebSocket API that you can use to write client- and server-side
applications that handle WebSocket messages.

3.2.1. Server

Same as in the Servlet stack

To create a WebSocket server, you can first create a WebSocketHandler. The following example shows
how to do so:

Java

import org.springframework.web.reactive.socket.WebSocketHandler;
import org.springframework.web.reactive.socket.WebSocketSession;

public class MyWebSocketHandler implements WebSocketHandler {

@0verride
public Mono<Void> handle(WebSocketSession session) {
/] ...
}
}
Kotlin

import org.springframework.web.reactive.socket.WebSocketHandler
import org.springframework.web.reactive.socket.WebSocketSession

class MyWebSocketHandler : WebSocketHandler {

override fun handle(session: WebSocketSession): Mono<Void> {
/] ...
}

Then you can map it to a URL:

146

web.pdf#websocket-server-handler

Java

@Configuration
class WebConfig {

@Bean

public HandlerMapping handlerMapping() {
Map<String, WebSocketHandler> map = new HashMap<>();
map.put("/path", new MyWebSocketHandler());
int order = -1; // before annotated controllers

return new SimpleUrlHandlerMapping(map, order);

Kotlin

@Configuration
class WebConfig {

@Bean

fun handlerMapping(): HandlerMapping {
val map = mapOf("/path" to MyWebSocketHandler())
val order = -1 // before annotated controllers

return SimpleUr1lHandlerMapping(map, order)

If using the WebFlux Config there is nothing further to do, or otherwise if not using the WebFlux
config you’ll need to declare a WebSocketHandlerAdapter as shown below:

Java

@Configuration
class WebConfig {

/] ...
@Bean

public WebSocketHandlerAdapter handlerAdapter() {
return new WebSocketHandlerAdapter();

}

147

Kotlin

@Configuration
class WebConfig {

/] ...

@Bean
fun handlerAdapter() = WebSocketHandlerAdapter()

3.2.2. WebSocketHandler

The handle method of WebSocketHandler takes WebSocketSession and returns Mono<Void> to indicate
when application handling of the session is complete. The session is handled through two streams,
one for inbound and one for outbound messages. The following table describes the two methods
that handle the streams:

WebSocketSession method Description

Flux<WebSocketMessage> receive() Provides access to the inbound message stream
and completes when the connection is closed.

Mono<Void> send(Publisher<WebSocketMessage>) Takes a source for outgoing messages, writes the
messages, and returns a Mono<Void> that
completes when the source completes and
writing is done.

A WebSocketHandler must compose the inbound and outbound streams into a unified flow and
return a Mono<Void> that reflects the completion of that flow. Depending on application
requirements, the unified flow completes when:

* Either the inbound or the outbound message stream completes.

* The inbound stream completes (that is, the connection closed), while the outbound stream is

infinite.

* At a chosen point, through the close method of WebSocketSession.

When inbound and outbound message streams are composed together, there is no need to check if

the connection is open, since Reactive Streams signals end activity. The inbound stream receives a
completion or error signal, and the outbound stream receives a cancellation signal.

The most basic implementation of a handler is one that handles the inbound stream. The following
example shows such an implementation:

148

Java
class ExampleHandler implements WebSocketHandler {

@0verride
public Mono<Void> handle(WebSocketSession session) {
return session.receive() ©)
.doOnNext(message -> {
/] ... @
b

.concatMap(message -> {
// ...

9]
.then();

@ Access the stream of inbound messages.
@ Do something with each message.
® Perform nested asynchronous operations that use the message content.

@ Return a Mono<Void> that completes when receiving completes.

Kotlin
class ExampleHandler : WebSocketHandler {

override fun handle(session: WebSocketSession): Mono<Void> {

return session.receive() ©)

.doOnNext {

/] ...)
}
.concatMap {

/] ... ®
}
.then() @

@ Access the stream of inbound messages.
@ Do something with each message.
® Perform nested asynchronous operations that use the message content.

@ Return a Mono<Void> that completes when receiving completes.

For nested, asynchronous operations, you may need to call message.retain() on
(r) underlying servers that use pooled data buffers (for example, Netty). Otherwise,
- the data buffer may be released before you have had a chance to read the data. For
more background, see Data Buffers and Codecs.

149

core.pdf#databuffers

The following implementation combines the inbound and outbound streams:
Java
class ExampleHandler implements WebSocketHandler {

@0verride
public Mono<Void> handle(WebSocketSession session) {

Flux<WebSocketMessage> output = session.receive()
.doOnNext(message -> {

/] ...

b

.concatMap(message -> {
/] ...

b

.map(value -> session.textMessage("Echo " + value));

return session.send(output);

@ Handle the inbound message stream.
@ Create the outbound message, producing a combined flow.

® Return a Mono<Void> that does not complete while we continue to receive.

Kotlin
class ExampleHandler : WebSocketHandler {
override fun handle(session: WebSocketSession): Mono<Void> {

val output = session.receive() @®
.doOnNext {
/] ...
}

.concatMap {
/] ...
}

.map { session.textMessage("Echo $it") }

return session.send(output) ®

@ Handle the inbound message stream.
@ Create the outbound message, producing a combined flow.

® Return a Mono<Void> that does not complete while we continue to receive.

150

Inbound and outbound streams can be independent and be joined only for completion, as the
following example shows:

Java
class ExampleHandler implements WebSocketHandler {

@0verride
public Mono<Void> handle(WebSocketSession session) {

Mono<Void> input = session.receive() @
.doOnNext(message -> {
/] ...
})
.concatMap(message -> {
/] ...
}
.then();

Flux<String> source = ... ;
Mono<Void> output = session.send(source.map(session::textMessage)); @

return Mono.zip(input, output).then(); ®

@ Handle inbound message stream.
@ Send outgoing messages.

® Join the streams and return a Mono<Void> that completes when either stream ends.

151

Kotlin
class ExampleHandler : WebSocketHandler {
override fun handle(session: WebSocketSession): Mono<Void> {

val input = session.receive() @
.doOnNext {
/] ...
}

.concatMap {
/] ...

}
.then()

val source: Flux<String> = ...
val output = session.send(source.map(session::textMessage))

return Mono.zip(input, output).then()

@ Handle inbound message stream.
@ Send outgoing messages.

® Join the streams and return a Mono<Void> that completes when either stream ends.

3.2.3. DataBuffer

DataBuffer is the representation for a byte buffer in WebFlux. The Spring Core part of the reference
has more on that in the section on Data Buffers and Codecs. The key point to understand is that on
some servers like Netty, byte buffers are pooled and reference counted, and must be released when
consumed to avoid memory leaks.

When running on Netty, applications must use DataBufferUtils.retain(dataBuffer) if they wish to
hold on input data buffers in order to ensure they are not released, and subsequently use
DataBufferUtils.release(dataBuffer) when the buffers are consumed.

3.2.4. Handshake

Same as in the Servlet stack

WebSocketHandlerAdapter delegates to a WebSocketService. By default, that is an instance of
HandshakeWebSocketService, which performs basic checks on the WebSocket request and then uses
RequestUpgradeStrategy for the server in use. Currently, there is built-in support for Reactor Netty,
Tomcat, Jetty, and Undertow.

HandshakeWebSocketService exposes a sessionAttributePredicate property that allows setting a
Predicate<String> to extract attributes from the WebSession and insert them into the attributes of the
WebSocketSession.

152

core.pdf#databuffers
web.pdf#websocket-server-handshake

3.2.5. Server Configation

Same as in the Servlet stack

The RequestUpgradeStrategy for each server exposes configuration specific to the underlying
WebSocket server engine. When using the WebFlux Java config you can customize such properties
as shown in the corresponding section of the WebFlux Config, or otherwise if not using the
WebFlux config, use the below:

Java

@Configuration
class WebConfig {

©Bean
public WebSocketHandlerAdapter handlerAdapter() {
return new WebSocketHandlerAdapter(webSocketService());

}

@Bean

public WebSocketService webSocketService() {
TomcatRequestUpgradeStrategy strategy = new TomcatRequestUpgradeStrategy();
strategy.setMaxSessionIdleTimeout(OL);
return new HandshakeWebSocketService(strategy);

Kotlin

@Configuration
class WebConfig {

@Bean
fun handlerAdapter() =
WebSocketHandlerAdapter (webSocketService())

@Bean
fun webSocketService(): WebSocketService {
val strategy = TomcatRequestUpgradeStrategy().apply {
setMaxSessionIdleTimeout(0OL)

}
return HandshakeWebSocketService(strategy)

Check the upgrade strategy for your server to see what options are available. Currently, only
Tomcat and Jetty expose such options.

153

web.pdf#websocket-server-runtime-configuration

3.2.6. CORS

Same as in the Servlet stack

The easiest way to configure CORS and restrict access to a WebSocket endpoint is to have your
WebSocketHandler implement CorsConfigurationSource and return a CorsConfiguration with allowed
origins, headers, and other details. If you cannot do that, you can also set the corsConfigurations
property on the SimpleUr1lHandler to specify CORS settings by URL pattern. If both are specified, they
are combined by using the combine method on CorsConfiguration.

3.2.7. Client

Spring WebFlux provides a WebSocketClient abstraction with implementations for Reactor Netty,
Tomcat, Jetty, Undertow, and standard Java (that is, JSR-356).

The Tomcat client is effectively an extension of the standard Java one with some
o extra functionality in the WebSocketSession handling to take advantage of the
Tomcat-specific API to suspend receiving messages for back pressure.

To start a WebSocket session, you can create an instance of the client and use its execute methods:

Java
WebSocket(Client client = new ReactorNettyWebSocketClient();

URT url = new URI("ws://localhost:8080/path");
client.execute(url, session ->
session.receive()
.doOnNext (System.out::println)
.then());

Kotlin
val client = ReactorNettyWebSocketClient()

val url = URI("ws://localhost:8080/path")
client.execute(url) { session ->
session.receive()
.doOnNext(::println)
.then()

Some clients, such as Jetty, implement Lifecycle and need to be stopped and started before you can
use them. All clients have constructor options related to configuration of the underlying WebSocket
client.

154

web.pdf#websocket-server-allowed-origins

Chapter 4. Testing

Same in Spring MVC

The spring-test module provides mock implementations of ServerHttpRequest, ServerHttpResponse,
and ServerlWebExchange. See Spring Web Reactive for a discussion of mock objects.

WebTestClient builds on these mock request and response objects to provide support for testing
WebFlux applications without an HTTP server. You can use the WebTestClient for end-to-end

integration tests, too.

155

web.pdf#testing
testing.pdf#mock-objects-web-reactive
testing.pdf#webtestclient

Chapter 5. RSocket

This section describes Spring Framework’s support for the RSocket protocol.

5.1. Overview

RSocket is an application protocol for multiplexed, duplex communication over TCP, WebSocket,
and other byte stream transports, using one of the following interaction models:

* Request-Response —send one message and receive one back.

Request-Stream— send one message and receive a stream of messages back.
* Channel — send streams of messages in both directions.

* Fire-and-Forget —send a one-way message.

Once the initial connection is made, the "client" vs "server" distinction is lost as both sides become
symmetrical and each side can initiate one of the above interactions. This is why in the protocol
calls the participating sides "requester” and "responder” while the above interactions are called
"request streams" or simply "requests".

These are the key features and benefits of the RSocket protocol:

* Reactive Streams semantics across network boundary—for streaming requests such as
Request-Stream and Channel, back pressure signals travel between requester and responder,
allowing a requester to slow down a responder at the source, hence reducing reliance on
network layer congestion control, and the need for buffering at the network level or at any
level.

* Request throttling — this feature is named "Leasing" after the LEASE frame that can be sent from
each end to limit the total number of requests allowed by other end for a given time. Leases are
renewed periodically.

» Session resumption —this is designed for loss of connectivity and requires some state to be
maintained. The state management is transparent for applications, and works well in
combination with back pressure which can stop a producer when possible and reduce the
amount of state required.

* Fragmentation and re-assembly of large messages.
» Keepalive (heartbeats).
RSocket has implementations in multiple languages. The Java library is built on Project Reactor, and

Reactor Netty for the transport. That means signals from Reactive Streams Publishers in your
application propagate transparently through RSocket across the network.

5.1.1. The Protocol

One of the benefits of RSocket is that it has well defined behavior on the wire and an easy to read
specification along with some protocol extensions. Therefore it is a good idea to read the spec,
independent of language implementations and higher level framework APIs. This section provides

156

https://www.reactive-streams.org/
https://github.com/rsocket
https://github.com/rsocket/rsocket-java
https://projectreactor.io/
https://github.com/reactor/reactor-netty
https://rsocket.io/docs/Protocol
https://github.com/rsocket/rsocket/tree/master/Extensions

a succinct overview to establish some context.
Connecting

Initially a client connects to a server via some low level streaming transport such as TCP or
WebSocket and sends a SETUP frame to the server to set parameters for the connection.

The server may reject the SETUP frame, but generally after it is sent (for the client) and received (for
the server), both sides can begin to make requests, unless SETUP indicates use of leasing semantics to
limit the number of requests, in which case both sides must wait for a LEASE frame from the other
end to permit making requests.

Making Requests

Once a connection is established, both sides may initiate a request through one of the frames
REQUEST_RESPONSE, REQUEST _STREAM, REQUEST_CHANNEL, or REQUEST_FNF. Each of those frames carries one
message from the requester to the responder.

The responder may then return PAYLOAD frames with response messages, and in the case of
REQUEST_CHANNEL the requester may also send PAYLOAD frames with more request messages.

When a request involves a stream of messages such as Request-Stream and Channel, the responder
must respect demand signals from the requester. Demand is expressed as a number of messages.
Initial demand is specified in REQUEST_STREAM and REQUEST_CHANNEL frames. Subsequent demand is
signaled via REQUEST_N frames.

Each side may also send metadata notifications, via the METADATA_PUSH frame, that do not pertain to
any individual request but rather to the connection as a whole.

Message Format

RSocket messages contain data and metadata. Metadata can be used to send a route, a security
token, etc. Data and metadata can be formatted differently. Mime types for each are declared in the
SETUP frame and apply to all requests on a given connection.

While all messages can have metadata, typically metadata such as a route are per-request and
therefore only included in the first message on a request, i.e. with one of the frames
REQUEST_RESPONSE, REQUEST_STREAM, REQUEST _CHANNEL, or REQUEST _FNF.

Protocol extensions define common metadata formats for use in applications:
* Composite Metadata-- multiple, independently formatted metadata entries.
* Routing — the route for a request.

5.1.2. Java Implementation

The Java implementation for RSocket is built on Project Reactor. The transports for TCP and
WebSocket are built on Reactor Netty. As a Reactive Streams library, Reactor simplifies the job of
implementing the protocol. For applications it is a natural fit to use Flux and Mono with declarative
operators and transparent back pressure support.

157

https://github.com/rsocket/rsocket/blob/master/Extensions/CompositeMetadata.md
https://github.com/rsocket/rsocket/blob/master/Extensions/Routing.md
https://github.com/rsocket/rsocket-java
https://projectreactor.io/
https://github.com/reactor/reactor-netty

The API in RSocket Java is intentionally minimal and basic. It focuses on protocol features and
leaves the application programming model (e.g. RPC codegen vs other) as a higher level,
independent concern.

The main contract io.rsocket.RSocket models the four request interaction types with Mono
representing a promise for a single message, Flux a stream of messages, and io.rsocket.Payload the
actual message with access to data and metadata as byte buffers. The RSocket contract is used
symmetrically. For requesting, the application is given an RSocket to perform requests with. For
responding, the application implements RSocket to handle requests.

This is not meant to be a thorough introduction. For the most part, Spring applications will not have
to use its API directly. However it may be important to see or experiment with RSocket independent
of Spring. The RSocket Java repository contains a number of sample apps that demonstrate its API
and protocol features.

5.1.3. Spring Support
The spring-messaging module contains the following:

» RSocketRequester —fluent API to make requests through an io.rsocket.RSocket with data and
metadata encoding/decoding.

» Annotated Responders — @MessageMapping annotated handler methods for responding.

The spring-web module contains Encoder and Decoder implementations such as Jackson CBOR/JSON,
and Protobuf that RSocket applications will likely need. It also contains the PathPatternParser that
can be plugged in for efficient route matching.

Spring Boot 2.2 supports standing up an RSocket server over TCP or WebSocket, including the
option to expose RSocket over WebSocket in a WebFlux server. There is also client support and
auto-configuration for an RSocketRequester.Builder and RSocketStrategies. See the RSocket section
in the Spring Boot reference for more details.

Spring Security 5.2 provides RSocket support.

Spring Integration 5.2 provides inbound and outbound gateways to interact with RSocket clients
and servers. See the Spring Integration Reference Manual for more details.

Spring Cloud Gateway supports RSocket connections.

5.2. RSocketRequester

RSocketRequester provides a fluent API to perform RSocket requests, accepting and returning
objects for data and metadata instead of low level data buffers. It can be used symmetrically, to
make requests from clients and to make requests from servers.

5.2.1. Client Requester

To obtain an RSocketRequester on the client side is to connect to a server which involves sending an
RSocket SETUP frame with connection settings. RSocketRequester provides a builder that helps to

158

https://github.com/rsocket/rsocket-java/blob/master/rsocket-core/src/main/java/io/rsocket/RSocket.java
https://github.com/rsocket/rsocket-java/tree/master/rsocket-examples
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-rsocket

prepare an io.rsocket.core.RSocketConnector including connection settings for the SETUP frame.
This is the most basic way to connect with default settings:

Java
RSocketRequester requester = RSocketRequester.builder().tcp("localhost", 7000);

URI url = URI.create("https://example.org:8080/rsocket");
RSocketRequester requester = RSocketRequester.builder().webSocket(url);

Kotlin

val requester = RSocketRequester.builder().tep("localhost", 7000)

URT url = URI.create("https://example.orq:8080/rsocket");
val requester = RSocketRequester.builder().webSocket(url)

The above does not connect immediately. When requests are made, a shared connection is
established transparently and used.

Connection Setup

RSocketRequester.Builder provides the following to customize the initial SETUP frame:

» dataMimeType(MimeType) — set the mime type for data on the connection.
* metadataMimeType(MimeType) — set the mime type for metadata on the connection.
» setupData(Object) — data to include in the SETUP.

* setupRoute(String, Object::-) —route in the metadata to include in the SETUP.

setupMetadata(Object, MimeType) — other metadata to include in the SETUP.

For data, the default mime type is derived from the first configured Decoder. For metadata, the
default mime type is composite metadata which allows multiple metadata value and mime type
pairs per request. Typically both don’t need to be changed.

Data and metadata in the SETUP frame is optional. On the server side, @ConnectMapping methods
can be used to handle the start of a connection and the content of the SETUP frame. Metadata may be
used for connection level security.

Strategies

RSocketRequester.Builder accepts RSocketStrategies to configure the requester. You’ll need to use
this to provide encoders and decoders for (de)-serialization of data and metadata values. By default
only the basic codecs from spring-core for String, byte[], and ByteBuffer are registered. Adding
spring-web provides access to more that can be registered as follows:

159

https://github.com/rsocket/rsocket/blob/master/Extensions/CompositeMetadata.md

Java

RSocketStrategies strategies = RSocketStrategies.builder()
.encoders(encoders -> encoders.add(new Jackson2CborEncoder()))
.decoders(decoders -> decoders.add(new Jackson2CborDecoder()))
.build();

RSocketRequester requester = RSocketRequester.builder()
.rsocketStrategies(strategies)
.tep("localhost", 7000);

Kotlin

val strategies = RSocketStrategies.builder()
.encoders { it.add(Jackson2CborEncoder()) }
.decoders { it.add(Jackson2CborDecoder()) }
.build()

val requester = RSocketRequester.builder()
.rsocketStrategies(strategies)
.tep("localhost", 7000)

RSocketStrategies is designed for re-use. In some scenarios, e.g. client and server in the same
application, it may be preferable to declare it in Spring configuration.

Client Responders

RSocketRequester.Builder can be used to configure responders to requests from the server.

You can use annotated handlers for client-side responding based on the same infrastructure that’s
used on a server, but registered programmatically as follows:

Java

RSocketStrategies strategies = RSocketStrategies.builder()
.routeMatcher(new PathPatternRouteMatcher()) @
.build();

SocketAcceptor responder =
RSocketMessageHandler.responder (strategies, new ClientHandler()); @

RSocketRequester requester = RSocketRequester.builder()
.rsocketConnector(connector -> connector.acceptor(responder)) ®
.tep("localhost", 7000);

@ Use PathPatternRouteMatcher, if spring-web is present, for efficient route matching.
@ Create a responder from a class with @MessageMaping and/or @ConnectMapping methods.

® Register the responder.

160

Kotlin

val strategies = RSocketStrategies.builder()
.routeMatcher (PathPatternRouteMatcher()) @
.build()

val responder =
RSocketMessageHandler.responder(strategies, new ClientHandler()); @

val requester = RSocketRequester.builder()
.rsocketConnector { it.acceptor(responder) } ®
.tep("localhost", 7000)

@ Use PathPatternRouteMatcher, if spring-web is present, for efficient route matching.

@ Create a responder from a class with @MessageMaping and/or @ConnectMapping methods.

® Register the responder.

Note the above is only a shortcut designed for programmatic registration of client responders. For

alternative scenarios, where client responders are in Spring configuration, you can still declare
RSocketMessageHandler as a Spring bean and then apply as follows:

Java

ApplicationContext context = ... ;
RSocketMessageHandler handler = context.getBean(RSocketMessageHandler.class);

RSocketRequester requester = RSocketRequester.builder()
.rsocketConnector(connector -> connector.acceptor(handler.responder()))
.tep("localhost", 7000);

Kotlin
import org.springframework.beans.factory.getBean

val context: ApplicationContext = ...
val handler = context.getBean<RSocketMessageHandler>()

val requester = RSocketRequester.builder()
.rsocketConnector { it.acceptor(handler.responder()) }
.tep("localhost", 7000)

For the above you may also need to use setHandlerPredicate in RSocketMessageHandler to switch to a
different strategy for detecting client responders, e.g. based on a custom annotation such as
@RSocketClientResponder vs the default @Controller. This is necessary in scenarios with client and
server, or multiple clients in the same application.

See also Annotated Responders, for more on the programming model.

161

Advanced

RSocketRequesterBuilder provides a callback to expose the underlying
io.rsocket.core.RSocketConnector for further configuration options for keepalive intervals, session
resumption, interceptors, and more. You can configure options at that level as follows:

Java

RSocketRequester requester = RSocketRequester.builder()
.rsocketConnector (connector -> {
/] ...

1))
.tep("localhost", 7000);

Kotlin

val requester = RSocketRequester.builder()
.rsocketConnector {
//. ..

}
.tep("localhost", 7000)

5.2.2. Server Requester

To make requests from a server to connected clients is a matter of obtaining the requester for the
connected client from the server.

In Annotated Responders, @ConnectMapping and @MessageMapping methods support an
RSocketRequester argument. Use it to access the requester for the connection. Keep in mind that
@ConnectMapping methods are essentially handlers of the SETUP frame which must be handled before
requests can begin. Therefore, requests at the very start must be decoupled from handling. For
example:

Java

@ConnectMapping
Mono<Void> handle(RSocketRequester requester) {
requester.route("status").data("5")
.retrieveFlux(StatusReport.class)
.subscribe(bar -> { @
/] ...
1)
return ... @

@ Start the request asynchronously, independent from handling.

@ Perform handling and return completion Mono<Void>.

162

Kotlin

@ConnectMapping
suspend fun handle(requester: RSocketRequester) {
GlobalScope.launch {

requester.route("status").data("5").retrieveFlow<StatusReport>().collect { @
/] ...

}
}
/] .. @

@ Start the request asynchronously, independent from handling.

@ Perform handling in the suspending function.

5.2.3. Requests

Once you have a client or server requester, you can make requests as follows:

Java
ViewBox viewBox = ... ;

Flux<AirportLocation> locations = requester.route("locate.radars.within") @
.data(viewBox) @
.retrieveFlux(AirportLocation.class); @

@ Specify a route to include in the metadata of the request message.
@ Provide data for the request message.

® Declare the expected response.

Kotlin
val viewBox: ViewBox = ...

val locations = requester.route("locate.radars.within") @
.data(viewBox) @
.retrieveFlow<AirportLocation>() ®

@ Specify a route to include in the metadata of the request message.
@ Provide data for the request message.

® Declare the expected response.

The interaction type is determined implicitly from the cardinality of the input and output. The
above example is a Request-Stream because one value is sent and a stream of values is received. For
the most part you don’t need to think about this as long as the choice of input and output matches
an RSocket interaction type and the types of input and output expected by the responder. The only
example of an invalid combination is many-to-one.

163

The data(Object) method also accepts any Reactive Streams Publisher, including Flux and Mono, as
well as any other producer of value(s) that is registered in the ReactiveAdapterRegistry. For a multi-
value Publisher such as Flux which produces the same types of values, consider using one of the
overloaded data methods to avoid having type checks and Encoder lookup on every element:

data(Object producer, (Class<?> element(Class);
data(Object producer, ParameterizedTypeReference<?> elementTypeRef);

The data(0Object) step is optional. Skip it for requests that don’t send data:

Java

Mono<AirportLocation> location = requester.route("find.radar.EWR"))
.retrieveMono(AirportLocation.class);

Kotlin
import org.springframework.messaging.rsocket.retrieveAndAwait

val location = requester.route("find.radar.EWR")
.retrieveAndAwait<AirportLocation>()

Extra metadata values can be added if using composite metadata (the default) and if the values are
supported by a registered Encoder. For example:

Java
String securityToken = ... ;
ViewBox viewBox = ... ;

MimeType mimeType = MimeType.valueOf("message/x.rsocket.authentication.bearer.v@");

Flux<AirportLocation> locations = requester.route("locate.radars.within")
.metadata(securityToken, mimeType)
.data(viewBox)
.retrieveFlux(AirportLocation.class);

164

https://github.com/rsocket/rsocket/blob/master/Extensions/CompositeMetadata.md

Kotlin
import org.springframework.messaging.rsocket.retrieveFlow
val requester: RSocketRequester = ...

val securityToken: String = ...
val viewBox: ViewBox = ...
val mimeType = MimeType.valueOf("message/x.rsocket.authentication.bearer.v@")

val locations = requester.route("locate.radars.within")
.metadata(securityToken, mimeType)
.data(viewBox)
.retrieveFlow<AirportLocation>()

For Fire-and-Forget use the send() method that returns Mono<Void>. Note that the Mono indicates only
that the message was successfully sent, and not that it was handled.

For Metadata-Push use the sendMetadata() method with a Mono<Void> return value.

5.3. Annotated Responders

RSocket responders can be implemented as @MessageMapping and @ConnectMapping methods.
@MessageMapping methods handle individual requests while @ConnectMapping methods handle
connection-level events (setup and metadata push). Annotated responders are supported
symmetrically, for responding from the server side and for responding from the client side.

5.3.1. Server Responders

To use annotated responders on the server side, add RSocketMessageHandler to your Spring
configuration to detect @Controller beans with @MessageMapping and @ConnectMapping methods:

Java

@Configuration
static class ServerConfig {

@Bean

public RSocketMessageHandler rsocketMessageHandler() {
RSocketMessageHandler handler = new RSocketMessageHandler();
handler.routeMatcher(new PathPatternRouteMatcher());
return handler;

165

Kotlin

@Configuration
class ServerConfig {

@Bean
fun rsocketMessageHandler() = RSocketMessageHandler().apply {
routeMatcher = PathPatternRouteMatcher()

}

Then start an RSocket server through the Java RSocket API and plug the RSocketMessageHandler for
the responder as follows:

Java

ApplicationContext context = ... ;
RSocketMessageHandler handler = context.getBean(RSocketMessageHandler.class);

(loseableChannel server =
RSocketServer.create(handler.responder())
.bind(TcpServerTransport.create("localhost", 7000))
.block();

Kotlin

import org.springframework.beans.factory.getBean

val context: ApplicationContext = ...
val handler = context.getBean<RSocketMessageHandler>()

val server = RSocketServer.create(handler.responder())
.bind(TcpServerTransport.create("localhost", 7000))
.awaitSingle()

RSocketMessageHandler supports composite and routing metadata by default. You can set its
MetadataExtractor if you need to switch to a different mime type or register additional metadata
mime types.

You’ll need to set the Encoder and Decoder instances required for metadata and data formats to
support. You’ll likely need the spring-web module for codec implementations.

By default SimpleRouteMatcher is used for matching routes via AntPathMatcher. We recommend
plugging in the PathPatternRouteMatcher from spring-web for efficient route matching. RSocket

routes can be hierarchical but are not URL paths. Both route matchers are configured to use "." as
separator by default and there is no URL decoding as with HTTP URLs.

RSocketMessageHandler can be configured via RSocketStrategies which may be useful if you need to
share configuration between a client and a server in the same process:

166

https://github.com/rsocket/rsocket/blob/master/Extensions/CompositeMetadata.md
https://github.com/rsocket/rsocket/blob/master/Extensions/Routing.md

Java

@Configuration
static class ServerConfig {

@Bean

public RSocketMessageHandler rsocketMessageHandler() {
RSocketMessageHandler handler = new RSocketMessageHandler();
handler.setRSocketStrategies(rsocketStrategies());
return handler;

}

@Bean
public RSocketStrategies rsocketStrategies() {
return RSocketStrategies.builder()
.encoders(encoders -> encoders.add(new Jackson2CborEncoder()))
.decoders(decoders -> decoders.add(new Jackson2CborDecoder()))
.routeMatcher(new PathPatternRouteMatcher())

.build();
}
}
Kotlin
@Configuration

class ServerConfig {

@Bean
fun rsocketMessageHandler() = RSocketMessageHandler().apply {
rSocketStrategies = rsocketStrategies()

}

@Bean

fun rsocketStrategies() = RSocketStrategies.builder()
.encoders { it.add(Jackson2CborEncoder()) }
.decoders { it.add(Jackson2CborDecoder()) }
.routeMatcher (PathPatternRouteMatcher())
.build()

5.3.2. Client Responders

Annotated responders on the client side need to be configured in the RSocketRequester.Builder. For
details, see Client Responders.

5.3.3. @MessageMapping

Once server or client responder configuration is in place, @MessageMapping methods can be used as
follows:

167

Java

@Controller

public class RadarsController {

@MessageMapping("locate.radars.within")
public Flux<AirportLocation> radars(MapRequest request) {

/] ...
}
}
Kotlin
@Controller

class RadarsController {

@MessageMapping("locate.radars.within")
fun radars(request: MapRequest): Flow<AirportLocation> {

/] ...
}

The above @MessageMapping method responds to a Request-Stream interaction having the route
"locate.radars.within". It supports a flexible method signature with the option to use the following

method arguments:

Method Argument
@Payload

RSocketRequester

@DestinationVariable

@Header

@Headers Map<String,
Object>

Description

The payload of the request. This can be a concrete value of asynchronous
types like Mono or Flux.

Note: Use of the annotation is optional. A method argument that is not a
simple type and is not any of the other supported arguments, is assumed
to be the expected payload.

Requester for making requests to the remote end.

Value extracted from the route based on variables in the mapping
pattern, e.g. @MessageMapping("find.radar.{id}").

Metadata value registered for extraction as described in
MetadataExtractor.

All metadata values registered for extraction as described in
MetadataExtractor.

The return value is expected to be one or more Objects to be serialized as response payloads. That
can be asynchronous types like Mono or Flux, a concrete value, or either void or a no-value
asynchronous type such as Mono<Void>.

The RSocket interaction type that an @MessageMapping method supports is determined from the

168

cardinality of the input (i.e. @Payload argument) and of the output, where cardinality means the
following:

Cardinali Description

ty

1 Either an explicit value, or a single-value asynchronous type such as Mono<T>.
Many A multi-value asynchronous type such as Flux<T>.

0 For input this means the method does not have an @Payload argument.

For output this is void or a no-value asynchronous type such as Mono<Void>.

The table below shows all input and output cardinality combinations and the corresponding
interaction type(s):

Input Output Interaction Types

Cardinality Cardinality

0,1 0 Fire-and-Forget, Request-Response
0,1 1 Request-Response

0,1 Many Request-Stream

Many 0, 1, Many Request-Channel

5.3.4. @ConnectMapping

@ConnectMapping handles the SETUP frame at the start of an RSocket connection, and any subsequent
metadata push notifications through the METADATA_PUSH frame, i.e. metadataPush(Payload) in
jo.rsocket.RSocket.

@ConnectMapping methods support the same arguments as @MessageMapping but based on
metadata and data from the SETUP and METADATA_PUSH frames. @ConnectMapping can have a pattern to
narrow handling to specific connections that have a route in the metadata, or if no patterns are
declared then all connections match.

@ConnectMapping methods cannot return data and must be declared with void or Mono<Void> as the
return value. If handling returns an error for a new connection then the connection is rejected.
Handling must not be held up to make requests to the RSocketRequester for the connection. See
Server Requester for details.

5.4. MetadataExtractor

Responders must interpret metadata. Composite metadata allows independently formatted
metadata values (e.g. for routing, security, tracing) each with its own mime type. Applications need
a way to configure metadata mime types to support, and a way to access extracted values.

MetadataExtractor is a contract to take serialized metadata and return decoded name-value pairs
that can then be accessed like headers by name, for example via @Header in annotated handler

169

https://github.com/rsocket/rsocket/blob/master/Extensions/CompositeMetadata.md

methods.

DefaultMetadataExtractor can be given Decoder instances to decode metadata. Out of the box it has
built-in support for "message/x.rsocket.routing.v0" which it decodes to String and saves under the
"route" key. For any other mime type you’ll need to provide a Decoder and register the mime type as
follows:

Java

DefaultMetadataExtractor extractor = new DefaultMetadataExtractor(metadataDecoders);
extractor.metadataToExtract(fooMimeType, Foo.class, "foo");

Kotlin

import org.springframework.messaging.rsocket.metadataToExtract

val extractor = DefaultMetadataExtractor(metadataDecoders)
extractor.metadataToExtract<Foo>(fooMimeType, "foo")

Composite metadata works well to combine independent metadata values. However the requester
might not support composite metadata, or may choose not to wuse it. For this,
DefaultMetadataExtractor may needs custom logic to map the decoded value to the output map.
Here is an example where JSON is used for metadata:

Java

DefaultMetadataExtractor extractor = new DefaultMetadataExtractor(metadataDecoders);
extractor.metadataToExtract(
MimeType.valueOf("application/vnd.myapp.metadata+json”),
new ParameterizedTypeReference<Map<String,String>>() {},
(jsonMap, outputMap) -> {
outputMap.putAll(jsonMap);
o)

Kotlin

import org.springframework.messaging.rsocket.metadataToExtract

val extractor = DefaultMetadataExtractor(metadataDecoders)
extractor.metadataToExtract<Map<String,
String>>(MimeType.valueOf("application/vnd.myapp.metadata+json”)) { jsonMap, outputMap
->

outputMap.putAll(jsonMap)

When configuring MetadataExtractor through RSocketStrategies, you can let
RSocketStrategies.Builder create the extractor with the configured decoders, and simply use a
callback to customize registrations as follows:

170

https://github.com/rsocket/rsocket/blob/master/Extensions/Routing.md

Java

RSocketStrategies strategies = RSocketStrategies.builder()
.metadataExtractorReqgistry(registry -> {
registry.metadataToExtract(fooMimeType, Foo.class, "foo");
/] ...

}
.build();

Kotlin

import org.springframework.messaging.rsocket.metadataToExtract

val strategies = RSocketStrategies.builder()
.metadataExtractorRegistry { registry: MetadataExtractorRegistry ->
registry.metadataToExtract<Foo>(fooMimeType, "foo")
/] ..

}
.build()

171

Chapter 6. Reactive Libraries

spring-webflux depends on reactor-core and uses it internally to compose asynchronous logic and
to provide Reactive Streams support. Generally, WebFlux APIs return Flux or Mono (since those are
used internally) and leniently accept any Reactive Streams Publisher implementation as input. The
use of Flux versus Mono is important, because it helps to express cardinality — for example, whether
a single or multiple asynchronous values are expected, and that can be essential for making
decisions (for example, when encoding or decoding HTTP messages).

For annotated controllers, WebFlux transparently adapts to the reactive library chosen by the
application. This is done with the help of the ReactiveAdapterRegistry, which provides pluggable
support for reactive library and other asynchronous types. The registry has built-in support for
RxJava 2/3, RxJava 1 (via RxJava Reactive Streams bridge), and CompletableFuture, but you can
register others, too.

0 As of Spring Framework 5.3, support for RxJava 1 is deprecated.

For functional APIs (such as Functional Endpoints, the WebClient, and others), the general rules for
WebFlux APIs apply — Flux and Mono as return values and a Reactive Streams Publisher as input.
When a Publisher, whether custom or from another reactive library, is provided, it can be treated
only as a stream with unknown semantics (0..N). If, however, the semantics are known, you can
wrap it with Flux or Mono.from(Publisher) instead of passing the raw Publisher.

For example, given a Publisher that is not a Mono, the Jackson JSON message writer expects multiple
values. If the media type implies an infinite stream (for example, application/json+stream), values
are written and flushed individually. Otherwise, values are buffered into a list and rendered as a
JSON array.

172

https://docs.spring.io/spring-framework/docs/5.3.4/javadoc-api/org/springframework/core/ReactiveAdapterRegistry.html

	Web on Reactive Stack
	Table of Contents
	Chapter 1. Spring WebFlux
	1.1. Overview
	1.1.1. Define “Reactive”
	1.1.2. Reactive API
	1.1.3. Programming Models
	1.1.4. Applicability
	1.1.5. Servers
	1.1.6. Performance
	1.1.7. Concurrency Model

	1.2. Reactive Core
	1.2.1. HttpHandler
	1.2.2. WebHandler API
	Special bean types
	Form Data
	Multipart Data
	Forwarded Headers

	1.2.3. Filters
	CORS

	1.2.4. Exceptions
	1.2.5. Codecs
	Jackson JSON
	Form Data
	Multipart
	Limits
	Streaming
	DataBuffer

	1.2.6. Logging
	Log Id
	Sensitive Data
	Appenders
	Custom codecs

	1.3. DispatcherHandler
	1.3.1. Special Bean Types
	1.3.2. WebFlux Config
	1.3.3. Processing
	1.3.4. Result Handling
	1.3.5. Exceptions
	1.3.6. View Resolution
	Handling
	Redirecting
	Content Negotiation

	1.4. Annotated Controllers
	1.4.1. @Controller
	1.4.2. Request Mapping
	URI Patterns
	Pattern Comparison
	Consumable Media Types
	Producible Media Types
	Parameters and Headers
	HTTP HEAD, OPTIONS
	Custom Annotations
	Explicit Registrations

	1.4.3. Handler Methods
	Method Arguments
	Return Values
	Type Conversion
	Matrix Variables
	@RequestParam
	@RequestHeader
	@CookieValue
	@ModelAttribute
	@SessionAttributes
	@SessionAttribute
	@RequestAttribute
	Multipart Content
	@RequestBody
	HttpEntity
	@ResponseBody
	ResponseEntity
	Jackson JSON

	1.4.4. Model
	1.4.5. DataBinder
	1.4.6. Managing Exceptions
	REST API exceptions

	1.4.7. Controller Advice

	1.5. Functional Endpoints
	1.5.1. Overview
	1.5.2. HandlerFunction
	ServerRequest
	ServerResponse
	Handler Classes
	Validation

	1.5.3. RouterFunction
	Predicates
	Routes
	Nested Routes

	1.5.4. Running a Server
	1.5.5. Filtering Handler Functions

	1.6. URI Links
	1.6.1. UriComponents
	1.6.2. UriBuilder
	1.6.3. URI Encoding

	1.7. CORS
	1.7.1. Introduction
	1.7.2. Processing
	1.7.3. @CrossOrigin
	1.7.4. Global Configuration
	1.7.5. CORS WebFilter

	1.8. Web Security
	1.9. View Technologies
	1.9.1. Thymeleaf
	1.9.2. FreeMarker
	View Configuration
	FreeMarker Configuration
	Form Handling

	1.9.3. Script Views
	Requirements
	Script Templates

	1.9.4. JSON and XML

	1.10. HTTP Caching
	1.10.1. CacheControl
	1.10.2. Controllers
	1.10.3. Static Resources

	1.11. WebFlux Config
	1.11.1. Enabling WebFlux Config
	1.11.2. WebFlux config API
	1.11.3. Conversion, formatting
	1.11.4. Validation
	1.11.5. Content Type Resolvers
	1.11.6. HTTP message codecs
	1.11.7. View Resolvers
	1.11.8. Static Resources
	1.11.9. Path Matching
	1.11.10. WebSocketService
	1.11.11. Advanced Configuration Mode

	1.12. HTTP/2

	Chapter 2. WebClient
	2.1. Configuration
	2.1.1. MaxInMemorySize
	2.1.2. Reactor Netty
	Resources
	Timeouts

	2.1.3. Jetty
	2.1.4. HttpComponents

	2.2. retrieve()
	2.3. Exchange
	2.4. Request Body
	2.4.1. Form Data
	2.4.2. Multipart Data

	2.5. Filters
	2.6. Attributes
	2.7. Context
	2.8. Synchronous Use
	2.9. Testing

	Chapter 3. WebSockets
	3.1. Introduction to WebSocket
	3.1.1. HTTP Versus WebSocket
	3.1.2. When to Use WebSockets

	3.2. WebSocket API
	3.2.1. Server
	3.2.2. WebSocketHandler
	3.2.3. DataBuffer
	3.2.4. Handshake
	3.2.5. Server Configation
	3.2.6. CORS
	3.2.7. Client

	Chapter 4. Testing
	Chapter 5. RSocket
	5.1. Overview
	5.1.1. The Protocol
	5.1.2. Java Implementation
	5.1.3. Spring Support

	5.2. RSocketRequester
	5.2.1. Client Requester
	Connection Setup
	Strategies
	Client Responders
	Advanced

	5.2.2. Server Requester
	5.2.3. Requests

	5.3. Annotated Responders
	5.3.1. Server Responders
	5.3.2. Client Responders
	5.3.3. @MessageMapping
	5.3.4. @ConnectMapping

	5.4. MetadataExtractor

	Chapter 6. Reactive Libraries

