Spring AMQP - Reference Documentation

Mark Pollack, Mark Fisher, Oleg Zhurakousky, Dave Syer, Gary Russell

Copyright © 2010-2012 Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

(T Lo [FTox i o o PRSPPI 1
1. Quick Tour fOr the IMPELTENTcoiiiiie e 2
IS 1 oo (U o T o PRSP 2
L1.2.VeEry, Very QUICK ..ottt 2

1.1.2. With XML CONfiQUIaLioNuuuuiii s nnnnnnnnnns 2

1.1.3. With Java ConfigUIaionccooueeeiiiiiiiee e 3

I = 1 = o RSP PPERRR 4
2.USING SPHNG AMQP .ot e e e e e e s e e e e e aanrans 5
2.1 AMQP ABDSLIACIONSvveeiiieeeiiiiiiiiiie e e e e e e ettt e e e e e e s e et e e e e e e s s s snntaaereaaeessannenreeeeeens 5

2.2. Connection and Resource Managementeeeeveeeeiiiiiiiiiiiee e e et e e e e errreeee s 8

2.3 AMOPTEMPIELE ...t e e e e e st e e e e e e e e 9

2.4, SENAING MESSAGES ...ccoeii e e 9

2.5. RECEIVING IMESSAGEScuuveeeeiiuitieeeaaittea e e sttt e e s ssbe et e e sttt e e e s bt et e e s anbbe e e s asae e e e aannreeeeenees 10

2.6. MESSAPE CONVEITENS ... 12

2.7. ReQUES/REPIY MESSAINGcooieiiiierie e ettt e e e e s e e e e s s et raeeeaeas 14

2.8. Configuring the DIOKEScoiiiiiieii e 14
2.8.1. Federated EXCRANQESccooiiiiiiiiiiiec ettt 18

2.9. EXCEPLION HANAIING ...eeiiiiiiieeiie et 18
P20 B I = 105" o1 o LSS 18
2.10.1. A note on Rollback of Recaelved MESSAJESccooviuviieiiiiiiie e 19

2.10.2. Using the RabbitTransactionManagercccceeeviiiciiiiiiieeeeeeeiiiieeereee e 20

2.11. Message Listener Container Configurationcocciiiierieeeeiiiiiiiiee e 20

2.12. Resilience: Recovering from Errors and Broker Failluresccccevviiieeeiiiieeeceee, 22
2.12.1. Automatic Declaration of Exchanges, Queues and Bindingscccccceeeeeenn. 23

2.12.2. Failuresin Synchronous Operations and Options for REtrycccccvveeennee. 23

2.12.3. Message Listeners and the Asynchronous Case ..., 23

Gy o 1110 = 4 o o TSRO PRSRR 25
10 8¢ I 1 011 o [o o o S 25

3.2. Communicating With Erlang PrOCESSEScccccuviiieiieeeeiiciiiiee e e e e e e sssirrrrer e e e e e eeaneees 25
321 EXECULING RPC ...ttt 25

3.2.2. EXlangCONVEITES ...ttt e e e e e e e e e e e s et e e e e e e e e a 25

.3 EXCEPLIONS ...ttt e e 26

LIS] o FS N AN o] o] o= 1 o] P 27
0 I g1 oo (1 1 o PP PPPRPPPPPRP 27
T 1o I Lo o RS 27
4.2.1. SYnchronous EXAMPIEccocoiiiiiiiiiiiccc e 27

4.2.2. ASyNChronoUS EXMPIEccoiiiiiiiiiiiie ettt 28

G TS (0 Tox G I "o [1 29

[11. Spring INtegration - REFEIENCEviiiiiiiie et nnee s 33
5. Spring Integration AMQP SUPPOItcoooeeeeeeeee e, 34
ST I 1T [F o1 o o I PP PPPPPPRR 34

5.2. Inbound Channel AdBPLEYooiiiiiiiieeii e 34

5.3. Outbound Channel AdapLeroveeiiie i 34

5.4, INDOUNG GBLEWEYeeeeiuiteiee et ee ettt e st e e et e e et e e e s annr e e e e eeeeenees 34
5.5.0Utbound Gatewayccooeeeeiiii i 34

[V . OLNEN RESOUICESeeeiiieeeiiiiiitiee et e e e e e ettt e e e e s s et et e eaaeessaat e bee et aeaeesaasstebaeeeaaeessanssnnnnnaaaeesaans 36
6. FUther REAAINGccoeeeeieeeeeee e, 37
(211 o] Teo =0 0 1Y SRR 38

Spring AMQP ()

Preface

The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging
solutions. We provide a "template” as a high-level abstraction for sending and receiving messages. We aso
provide support for Message-driven POJOs. These libraries facilitate management of AMQP resources while
promoting the use of dependency injection and declarative configuration. In all of these cases, you will see
similarities to the IMS support in the Spring Framework. The project consists of both Java and .NET versions.
This manual is dedicated to the Java version. For links to the .NET version's manua or any other
project-related information visit the Spring AM QP project homepage.

Spring AMQP () ii

http://springsource.org/spring-amqp

Part |. Introduction

This first part of the reference documentation is a high-level overview of Spring AMQP and the underlying
concepts and some code snippets that will get you up and running as quickly as possible.

Spring AMQP () 1

Chapter 1. Quick Tour for the impatient

1.1. Introduction

Thisisthe 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmg.com/download.html). Then grab the
spring-rabbit JAR and all its dependencies - the easiest way to do that is to declare a dependency in your build
tool, e.g. for Maven:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. angp</ gr oupl d>
<artifactld>spring-rabbit</artifactld>
<versi on>1. 0. 0. RELEASE</ ver si on>

</ dependency>

1.1.1. Very, Very Quick

Using plain, imperative Javato send and receive a message:

Connecti onFactory connectionFactory = new Cachi ngConnecti onFactory();

AngpAdm n adm n = new Rabbi t Adm n(connecti onFactory);
admi n. decl ar eQueue(new Queue("nyqueue"));

AnmgpTenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFact ory);
t enpl at e. convert AndSend(" nyqueue”, "foo");

String foo = (String) tenplate.recei veAndConvert ("nmyqueue");

Note that there is a Connecti onFactory in the native Java Rabbit client as well. We are using the Spring
abstraction in the code above. We are relying on the default exchange in the broker (since none is specified in
the send), and the default binding of all queues to the default exchange by their name (hence we can use the
queue name as arouting key in the send). Those behaviours are defined in the AM QP specification.

1.1.2. With XML Configuration

The same example as above, but externalizing the resource configuration to XML :

Appl i cati onCont ext context = new GenericXm Applicati onCont ext("cl asspath:/rabbit-context.xm");
AnmgpTenpl ate tenpl ate = cont ext. get Bean(AngpTenpl at e. cl ass) ;

tenpl at e. convert AndSend(" myqueue", "foo");

String foo = (String) tenplate.recei veAndConvert ("nyqueue");

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: rabbi t="http://ww. springfranmework. org/ schema/rabbit"
Xsi : schemaLocati on="htt p://ww. spri ngfranework. or g/ schema/ r abbi t
htt p: // ww. spri ngf ranmewor k. or g/ schena/ r abbi t/ spri ng-rabbi t-1.0. xsd
http://ww. spri ngframework. or g/ scherma/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd" >

<rabbit: connection-factory id="connecti onFactory"/>
<rabbit:tenpl ate id="angpTenpl ate" connecti on-factory="connectionFactory"/>

<rabbi t: adm n connecti on-factory="connectionFactory"/>

Spring AMQP () 2

http://www.rabbitmq.com/download.html

Quick Tour for the impatient

<r abbi t: queue nane="nyqueue"/>

</ beans>

The <rabbi t: adni n/ > declaration by default automatically looks for beans of type Queue, Exchange and
Bi ndi ng and declares them to the broker on behalf of the user, hence there is no need to use that bean explicitly
in the simple Java driver. There are plenty of options to configure the properties of the componentsin the XML
schema - you can use auto-complete features of your XML editor to explore them and look at their
documentation.

1.1.3. With Java Configuration

The same exampl e again with the external configuration in Java:

Appl i cati onCont ext context = new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AnmgpTenpl ate tenpl ate = cont ext. get Bean(AngpTenpl at e. cl ass) ;

tenpl at e. convert AndSend(" myqueue", "foo");

String foo = (String) tenplate.recei veAndConvert ("nyqueue");

@Configuration
public cl ass Rabbit Configuration {

@Bean

publ i c ConnectionFactory connectionFactory() {
Cachi ngConnecti onFact ory connectionFactory = new Cachi ngConnecti onFactory("l ocal host");
return connectionFactory;

}

@Bean
publ i c AmgpAdm n amgpAdm n() {
return new Rabbit Adm n(connecti onFactory());

}

@Bean
publ i ¢ Rabbit Tenpl ate rabbitTenpl ate() {
return new Rabbit Tenpl at e(connecti onFactory());

}

@Bean
public Queue nmyQueue() {
return new Queue("nyqueue");

}

Spring AMQP () 3

Part Il. Reference

This part of the reference documentation details the various components that comprise Spring AMQP. The
main chapter covers the core classes to develop an AMQP application. This part aso includes a chapter on
integration with Erlang and a chapter about the sample applications.

Spring AMQP () 4

Chapter 2. Using Spring AMQP

In this chapter, we will explore the interfaces and classes that are the essential components for developing
applications with Spring AMQP.

2.1. AMQP Abstractions

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution. These modules
are. spring-amgp, spring-rabbit and spring-erlang. The 'spring-amgp’ module contains the
org. springframewor k. angp. core package. Within that package, you will find the classes that represent the
core AMQP "model". Our intention is to provide generic abstractions that do not rely on any particular AMQP
broker implementation or client library. End user code will be more portable across vendor implementations as
it can be developed against the abstraction layer only. These abstractions are then used implemented by
broker-specific modules, such as 'spring-rabbit’. For the 1.0 release there is only a RabbitMQ implementation
however the abstractions have been validated in .NET using Apache Qpid in addition to RabbitMQ. Since
AMQP operates at the protocol level in principle the RabbitMQ client can be used with any broker that
supports the same protocol version, but we do not test any other brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification already. If
you are not, then have alook at the resources listed in Part 1V, “ Other Resources”

2.1.1. Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when performing
an operation such as ' nasicrublish ', the content is passed as a byte-array argument and additional properties
are passed in as separate arguments. Spring AMQP defines a Message class as part of a more general AMQP
domain model representation. The purpose of the Message class is to simply encapsulate the body and
properties within a single instance so that the API can in turn be simpler. The Message class definition is quite
straightforward.

public class Message {
private final MessageProperties nessageProperties;
private final byte[] body;
public Message(byte[] body, MessageProperties nessageProperties) {
t hi s. body = body;

this. messageProperti es = nmessageProperties

}

public byte[] getBody() {
return this. body;
}

public MessageProperties get MessageProperties() {
return this.nessageProperties;

The MessageProperties interface defines several common properties such as 'messageld’, 'timestamp’,
‘contentType', and several more. Those properties can also be extended with user-defined 'headers' by calling
theset Header (String key, Object val ue) method.

2.1.2. Exchange

Spring AMQP () 5

Using Spring AMQP

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to. Each
Exchange within avirtual host of a broker will have a unigue name as well as afew other properties:

public interface Exchange {
String get Name();
String get ExchangeType();
bool ean i sDurabl e();
bool ean i sAut oDel ete();

Map<String, Object> get Argunments();

As you can see, an Exchange aso has a 'type' represented by constants defined in ExchangeTypes. The basic
types are: Di rect, Topi ¢, Fanout , Header s and Feder at ed. In the core package you will find implementations
of the Exchange interface for each of those types. The behavior varies across these Exchange types in terms of
how they handle bindings to Queues. For example, a Direct exchange alows for a Queue to be bound by a
fixed routing key (often the Queue's name). A Topic exchange supports bindings with routing patterns that may
include the "' and '# wildcards for 'exactly-one' and ‘zero-or-more', respectively. The Fanout exchange
publishes to all Queues that are bound to it without taking any routing key into consideration. For much more
information about these and the other Exchange types, check out Part |V, “Other Resources’.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange that has
no name. All Queues that are declared will be bound to that default Exchange with their names as
routing keys. You will learn more about the default Exchange's usage within Spring AMQP in
Section 2.3, “AmgpTemplate”.

2.1.3. Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like the
various Exchange classes, our implementation is intended to be an abstract representation of this core AMQP

type.
public class Queue {
private final String nane;
private vol atil e bool ean durabl e;
private vol atil e bool ean excl usi ve;
private volatile bool ean autoDel et e;

private volatile Map<String, Object> argunents;

/**

* The queue is durable, non-exclusive and non auto-delete.
*

* @aram nanme the nane of the queue.
*/
public Queue(String name) {
thi s(nane, true, false, false);
}

/] Getters and Setters omtted for brevity

Spring AMQP () 6

Using Spring AMQP

Noatice that the constructor takes the Queue name. Depending on the implementation, the admin template may
provide methods for generating a uniquely named Queue. Such Queues can be useful as a "reply-to" address or
other temporary situations. For that reason, the 'exclusive’ and 'autoDelete’ properties of an auto-generated
Queue would both be set to 'tru€'.

Note
See the section on queues in Section 2.8, “ Configuring the broker” for information about declaring
gueues using namespace support, including queue arguments.

2.1.4. Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings that connect
Queues to Exchanges are critical for connecting those producers and consumers via messaging. In Spring
AMQP, we define a Bi ndi ng class to represent those connections. Let's review the basic options for binding
Queues to Exchanges.

Y ou can bind a Queue to a DirectExchange with a fixed routing key.

new Bi ndi ng(sonmeQueue, soneDirect Exchange, "foo.bar")

Y ou can bind a Queue to a TopicExchange with arouting pattern.

new Bi ndi ng(sonmeQueue, soneTopi cExchange, "foo.*")

Y ou can bind a Queue to a FanoutExchange with no routing key.

new Bi ndi ng(someQueue, soneFanout Exchange)

We aso provide aBi ndi ngBui | der to facilitate a"fluent API" style.

Bi ndi ng b = Bi ndi ngBui | der. bi nd(sonmeQueue) . t o(someTopi cExchange) . wi th("foo.*");

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a static
import for the 'bind()' method.

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it is not an
"active' component. However, as you will see later in Section 2.8, “Configuring the broker”, Binding instances
can be used by the AmgpAdni n class to actually trigger the binding actions on the broker. Also, asyou will seein
that same section, the Binding instances can be defined using Spring's @ean-style within @onfi gurati on
classes. There is also a convenient base class which further simplifies that approach for generating
AMOQP-related bean definitions and recognizes the Queues, Exchanges, and Bindings so that they will al be
declared on the AMQP broker upon application startup.

The AmgpTenpl at e is also defined within the core package. As one of the main components involved in actual
AMQP messaging, it isdiscussed in detail in its own section (see Section 2.3, “AmgpTemplate”).

Spring AMQP () 7

Using Spring AMQP

2.2. Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our
"spring-rabbit" module since at this point, RabbitMQ is the only supported implementation.

The centra component for managing a connection to the RabbitMQ broker is the Connecti onFactory
interface. The responsibility of a ConnectionFactory implementation is to provide an instance of
or g. spri ngf ramewor k. angp. r abbi t . connect i on. Connecti on which is a wrapper for
comrabbitnyg. client.Connection. The only concrete implementation we provide is
Cachi ngConnect i onFact or y which establishes a single connection proxy that can be shared by the application.
Sharing of the connection is possible since the "unit of work™ for messaging with AMQP is actually a"channel”
(in some ways, this is similar to the relationship between a Connection and a Session in JIMS). As you can
imagine, the connection instance provides a creat eChannel method. The Cachi ngConnecti onFactory
implementation supports caching of those channels, and it maintains separate caches for channels based on
whether they are transactional or not. When creating an instance of Cachi ngConnect i onFact ory, the 'hostname'
can be provided viathe constructor. The 'username’ and ‘password’ properties should be provided as well. If you
would like to configure the size of the channel cache (the default is 1), you could cal the
set Channel CacheSi ze() method here aswell.

Cachi ngConnect i onFact ory connecti onFactory = new Cachi ngConnecti onFact ory("sonehost");
connecti onFact ory. set User nane(" guest ") ;
connecti onFact ory. set Passwor d("guest");

Connection connection = connectionFactory. createConnection();

When using XML, the configuration might look like this:

<bean i d="connecti onFactory"
cl ass="org. spri ngframewor k. angp. rabbi t. connecti on. Cachi ngConnecti onFact ory" >
<constructor-arg val ue="sonehost"/>
<property name="usernane" val ue="guest"/>
<property nanme="password" val ue="guest"/>
</ bean>

Note

There is aso a Si ngl eConnect i onFact ory implementation which is only available in the unit test
code of the framework. It is simpler than Cachi ngConnecti onFactory since it does not cache
channels, but it is not intended for practical usage outside of simple tests due to its lack of
performance and resilience. If you find a need to implement your own Connecti onFactory for
some reason, the Abst r act Connect i onFact ory base class may provide a nice starting point.

A Connect i onFact ory can be created quickly and conveniently using the rabbit namespace:

<rabbi t: connection-factory
i d="connecti onFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you. The created
instance will be a Cachi ngConnecti onFact ory. Keep in mind that the default cache size for channels is 1. If
you want more channels to be cached set a larger value via the 'channel CacheSize' property. In XML it would
look like this:

<bean i d="connecti onFactory"
cl ass="org. spri ngframewor k. angp. r abbi t. connecti on. Cachi ngConnecti onFact ory" >
<constructor-arg val ue="sonehost"/>

Spring AMQP () 8

Using Spring AMQP

<property nanme="usernane" val ue="guest"/>

<property nanme="password" val ue="guest"/>

<property name="channel CacheSi ze" val ue="25"/>
</ bean>

And with the namespace you can just add the 'channel-cache-size' attribute:

<rabbi t: connection-factory
i d="connecti onFact ory" channel - cache-si ze="25"/>

Host and port attributes can be provided using the namespace

<r abbi t: connection-factory
i d="connecti onFact ory" host="sonehost" port="5672" />

Alternatively, if running in a clustered environment, use the addresses attribute.

<r abbi t: connecti on-factory
i d="connecti onFactory" addresses="host 1: 5672, host 2: 5672" />

2.3. AmgpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring
AMQP provides a "template" that plays a central role. The interface that defines the main operations is called
AngpTenpl at e. Those operations cover the general behavior for sending and receiving Messages. In other
words, they are not unique to any implementation, hence the "AMQP" in the name. On the other hand, there are
implementations of that interface that are tied to implementations of the AMQP protocol. Unlike IMS, which is
an interface-level API itself, AMQP isawire-level protocol. The implementations of that protocol provide their
own client libraries, so each implementation of the template interface will depend on a particular client library.
Currently, there is only a single implementation: Rabbi t Tenpl at e. In the examples that follow, you will often
see usage of an "AmgpTemplate”, but when you look at the configuration examples, or any code excerpts
where the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AngpTenpl at e interface defines al of the basic operations for sending and receiving
Messages. We will explore Message sending and reception, respectively, in the two sections that follow.

2.4. Sending messages

When sending a Message, one can use any of the following methods:

voi d send(Message nessage) throws AngpException
voi d send(String routingKey, Message nmessage) throws AngpException

voi d send(String exchange, String routingKey, Message nessage) throws AmgpException

We can begin our discussion with the last method listed above since it is actually the most explicit. It allows an
AMQP Exchange name to be provided at runtime along with a routing key. The last parameter is the callback
that is responsible for actual creating of the Message instance. An example of using this method to send a
Message might look this this:

anmgpTenpl at e. send(" mar ket Dat a. t opi ¢c", "quotes. nasdaq. FOO', new Message("12.34". getBytes(), soneProperties));

Spring AMQP () 9

Using Spring AMQP

The "exchange" property can be set on the template itself if you plan to use that template instance to send to the
same exchange most or all of the time. In such cases, the second method listed above may be used instead. The
following exampleis functionally equivalent to the previous one:

anmgpTenpl at e. set Exchange(" mar ket Dat a. t opi ¢c") ;
amgpTenpl at e. send(" quot es. nasdaqg. FOO', new Message("12. 34". get Bytes(), someProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting only the
Message may be used:

anmgpTenpl at e. set Exchange(" mar ket Dat a. t opi c") ;
angpTenpl at e. set Rout i ngKey(" quot es. nasdag. FOO'") ;
amgpTenpl at e. send(new Message("12. 34". getBytes(), sonmeProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method parameters
will always override the template's default values. In fact, even if you do not explicitly set those properties on
the template, there are aways default values in place. In both cases, the default is an empty String, but that is
actually a sensible default. As far as the routing key is concerned, it's not always necessary in the first place
(e.g. aFanout Exchange). Furthermore, a Queue may be bound to an Exchange with an empty String. Those are
both legitimate scenarios for reliance on the default empty String value for the routing key property of the
template. As far as the Exchange name is concerned, the empty String is quite commonly used because the
AMOQP specification defines the "default Exchange' as having no name. Since all Queues are automatically
bound to that default Exchange (which is a Direct Exchange) using their name as the binding value, that second
method above can be used for ssimple point-to-point Messaging to any Queue through the default Exchange.
Simply provide the queue name as the "routingKey" - either by providing the method parameter at runtime:

Rabbi t Tenpl at e tenpl ate = new Rabbit Tenpl ate(); // using default no-nane Exchange
tenpl at e. send(" queue. hel | oWorl d", new Message("Hello Wirl d". getBytes(), someProperties));

Or, if you prefer to create atemplate that will be used for publishing primarily or exclusively to a single Queue,
the following is perfectly reasonable:

Rabbi t Tenpl ate tenpl ate = new Rabbit Tenpl ate(); // using default no-nane Exchange
tenpl at e. set Routi ngKey(" queue. hel | oWorl d"); // but we'll always send to this Queue
tenpl at e. send(new Message("Hell o Worl d". getBytes(), sonmeProperties));

2.5. Receiving messages

Message reception is always a bit more complicated than sending. The reason is that there are two ways to
receive a Message. The simpler option is to poll for a single Message at a time with a synchronous, blocking
method call. The more complicated yet more common approach is to register a listener that will receive
Messages On-demand, asynchronously. We will look at an example of each approach in the next two
sub-sections.

2.5.1. Synchronous Consumer

The AmgpTenpl at e itself can be used for synchronous Message reception. There are two 'receive’ methods
available. As with the Exchange on the sending side, there is a method that requires a queue property having
been set directly on the template itself, and there is a method that accepts a queue parameter at runtime.

Message receive() throws AngpExcepti on;

Spring AMQP () 10

Using Spring AMQP

Message receive(String queueNane) throws AngpExcepti on;

Just like in the case of sending messages, the AngpTenpl at e has some convenience methods for receiving
POJOs instead of Message instances, and implementations will provide a way to customize the
MessageConvert er used to create the thj ect returned:

Obj ect recei veAndConvert () throws AngpException;

bj ect recei veAndConvert (String queueNane) throws AngpExcepti on;

2.5.2. Asynchronous Consumer

For asynchronous Message reception, a dedicated component (not the AngpTenpl ate) is involved. That
component is a container for a Message consuming callback. We will look at the container and its propertiesin
just a moment, but first we should look at the callback since that is where your application code will be
integrated with the messaging system. There are a few options for the callback. The simplest of these is to
implement the MessagelLi st ener interface:

public interface Messageli stener {

voi d onMessage(Message nessage);

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use the
Channel Awar eMessageli st ener . [t looks similar but with an extra parameter:

public interface Channel Awar eMessagelLi st ener {

voi d onMessage(Message nmessage, Channel channel) throws Excepti on;

If you prefer to maintain a stricter separation between your application logic and the messaging API, you can
rely upon an adapter implementation that is provided by the framework. This is often referred to as
"Message-driven POJO" support. When using the adapter, you only need to provide a reference to the instance
that the adapter itself should invoke.

Messageli stener |istener = new Messageli st ener Adapt er (sonePoj o) ;

Now that you've seen the various options for the Message-listening callback, we can turn our attention to the
container. Basicaly, the container handles the "active" responsibilities so that the listener callback can remain
passive. The container is an example of a"lifecycle" component. It provides methods for starting and stopping.
When configuring the container, you are essentialy bridging the gap between an AMQP Queue and the
MessagelLi st ener instance. You must provide a reference to the Connect i onFact ory and the queue name or
Queue instance(s) from which that listener should consume Messages. Here is the most basic example using the
default implementation, Si mpl eMessageli st ener Cont ai ner

Si npl eMessageli st ener Cont ai ner cont ai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact or y(rabbi t Connecti onFactory);

cont ai ner. set QueueNanes("somne. queue") ;

cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (sonePoj 0)) ;

Asan "active" component, it's most common to create the listener container with a bean definition so that it can
simply run in the background. This can be done via XML.:

Spring AMQP () 11

Using Spring AMQP

<rabbit:|istener-container connection-factory="rabbitConnecti onFactory">
<rabbit:listener queues="sone.queue" ref="sonmePojo" nethod="handl e"/>
</rabbit:|istener-container>

Or, you may prefer to use the @Configuration style which will look very similar to the actual code snippet
above:

@Configuration
public class Exanpl eAngpConfi guration {

@Bean
publ i c Messageli st ener Cont ai ner nmessageli st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner cont ai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact or y(rabbi t Connecti onFactory());
cont ai ner. set QueueNane(" sone. queue") ;
cont ai ner. set Messageli st ener (exanpl eLi stener());
return cont ai ner;

}

@Bean
publi ¢ Connecti onFactory rabbit ConnectionFactory() {
Cachi ngConnecti onFact ory connecti onFactory = new Cachi ngConnecti onFactory("Il ocal host");
connecti onFact ory. set User name(" guest ") ;
connecti onFact ory. set Passwor d("guest");
return connectionFactory;

}

@Bean
publ i c MessagelLi stener exanpl elListener() {
return new Messageli stener() {
public void onMessage(Message nessage) {
System out.println("received: " + nmessage);
}

2.6. Message Converters

The AngpTenpl at e also defines several methods for sending and receiving Messages that will delegate to a
MessageConver t er . The MessageConverter itself is quite straightforward. It provides a single method for each
direction: one for converting to a Message and ancther for converting from a Message. Notice that when
converting to a Message, you may also provide properties in addition to the object. The "object" parameter
typically corresponds to the Message body.

public interface MessageConverter {

Message t oMessage(Obj ect object, MessageProperties nessageProperti es)
t hrows MessageConversi onExcepti on;

oj ect fromvVessage(Message nmessage) throws MessageConver si onExcepti on;

The relevant Message-sending methods on the AmgpTenpl ate are listed below. They are simpler than the
methods we discussed previously because they do not require the Message instance. Instead, the
MessageConverter iS responsible for "creating" each Message by converting the provided object to the byte
array for the Message body and then adding any provided MessagePr operti es.

voi d convert AndSend(Obj ect nessage) throws AngpException;

voi d convert AndSend(String routingKey, Cbject nessage) throws AngpExcepti on;

voi d convert AndSend(String exchange, String routingKey, Object nmessage) throws AngpExcepti on;

voi d convert AndSend(Obj ect nessage, MessagePost Processor nessagePost Processor) throws AngpExcepti on;

Spring AMQP () 12

Using Spring AMQP

voi d convert AndSend(String routingKey, Cbject nessage, MessagePost Processor nmessagePost Processor)
t hrows AngpExcepti on;

voi d convertAndSend(String exchange, String routingKey, Object message,
MessagePost Processor nessagePost Processor) throws AngpExcepti on;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies on the
template's "queue” property having been set.

Obj ect recei veAndConvert () throws AngpException;

bj ect recei veAndConvert (String queueNane) throws AngpExcepti on;

2.6.1. SimpleMessageConverter

The default implementation of the MessageConverter strategy is called Si npl eMessageConverter. Thisisthe
converter that will be used by an instance of RabbitTemplate if you do not explicitly configure an alternative. It
handles text-based content, serialized Java objects, and simple byte arrays.

2.6.1.1. Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain), it will also check for the
content-encoding property to determine the charset to be used when converting the Message body byte array to
a Java String. If no content-encoding property had been set on the input Message, it will use the "UTF-8"
charset by default. If you need to override that default setting, you can configure an instance of
Si npl eMessageConverter, Set its "defaultCharset" property and then inject that into a Rabbit Tenpl at e
instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object”, the
Si mpl eMessageConverter Will attempt to deserialize (rehydrate) the byte array into a Java object. While that
might be useful for simple prototyping, it's generally not recommended to rely on Java serialization since it
leads to tight coupling between the producer and consumer. Of course, it also rules out usage of non-Java
systems on either side. With AMQP being a wire-level protocol, it would be unfortunate to lose much of that
advantage with such restrictions. In the next two sections, well explore some aternatives for passing rich
domain object content without relying on Java serialization.

For al other content-types, the Si npl eMessageConverter Will return the Message body content directly as a
byte array.

2.6.1.2. Converting To a Message

When converting to a Message from an arbitrary Java Object, the Si npl eMessageConverter likewise deds
with byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the case of byte
arrays, there is nothing to convert), and it will set the content-type property accordingly. If the Object to be
converted does not match one of those types, the Message body will be null.

2.6.2. JsonMessageConverter

As mentioned in the previous section, relying on Java seriaization is generally not recommended. One rather
common alternative that is more flexible and portable across different languages and platforms is JSON
(JavaScript Object Notation). An implementation is available and can be configured on any Rabbi t Tenpl at e
instance to override its usage of the Si npl eMessageConvert er default.

Spring AMQP () 13

Using Spring AMQP

<bean cl ass="org. spri ngfranmewor k. angp. r abbi t. cor e. Rabbi t Tenpl at e" >
<property name="connectionFactory" ref="rabbitConnecti onFactory"/>
<property name="nessageConverter">
<bean cl ass="org. spri ngfranmewor k. angp. support. converter.JsonMessageConverter">

<I-- if necessary, override the DefaultC assMapper -->
<property name="cl assMapper" ref="custonC assMapper"/>

</ bean>

</ property>

</ bean>

2.6.3. MarshallingMessageConverter

Yet another option is the marshal |ingMessageConverter. It delegates to the Spring OXM library's
implementations of the Mar shal | er and Unnar shal | er strategy interfaces. Y ou can read more about that library
here. In terms of configuration, it's most common to provide the constructor argument only since most
implementations of Mar shal | er will aso implement Unmar shal | er.

<bean cl ass="org. spri ngfranmewor k. angp. rabbi t. core. Rabbi t Tenpl at e" >
<property name="connectionFactory" ref="rabbitConnecti onFactory"/>
<property name="messageConverter">
<bean cl ass="org. spri ngframewor k. amgp. support. converter. Marshal | i ngMessageConverter" >
<constructor-arg ref="sonel npl emenati onOX Mar shal | er AndUnmar shal | er"/ >
</ bean>
</ property>
</ bean>

2.7. Request/Reply Messaging

The AmgpTenpl at e o provides a variety of sendAndRecei ve methods that accept the same argument options
that you have seen above for the one-way send operations (exchange, routingKey, and Message). Those
methods are quite useful for request/reply scenarios since they handle the configuration of the necessary
"reply-to" property before sending and can listen for the reply message on an exclusive Queue that is created
internally for that purpose.

Similar request/reply methods are also available where the MessageConver t er isapplied to both the request and
reply. Those methods are named conver t SendAndRecei ve. See the Javadoc of AngpTenpl at e for more detail.

By default, a new temporary queue is used for each reply. However, a single reply queue can be configured on
the template, which allows you to set arguments on that queue (such as 'ha_args="all"* for mirrored queues). In
this case, however, you must also provide a <reply-listener/> sub element. This element provides a listener
container for the reply queue, with the template being the listener. All of the Section 2.11, “Message Listener
Container Configuration” attributes allowed on a <listener-container/> are allowed on the element, except for
connection-factory and message-converter, which are inherited from the template's configuration.

<rabbit:tenplate id="ampTenpl ate"
connection-factory="connecti onFactory" reply-queue="replies">
<rabbit:reply-listener />
</rabbit:tenpl ate>

While the container and template share a connection factory, they do not share a channel and therefore requests
and replies are not performed within the same transaction (if transactional).

2.8. Configuring the broker

Spring AMQP () 14

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Using Spring AMQP

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and Bindings
on the broker. These operations which are portable from the 0.8 specification and higher are present in the
AmgpAdmin interface in the org.springframework.amgp.core package. The RabbitMQ implementation of that
classis RabbitAdmin located in the org.springframework.amgp.rabbit.core package.

The AmgpAdmin interface is based on using the Spring AM QP domain abstractions and is shown below:

public interface AnmgpAdmi n {
/| Exchange Operations
voi d decl ar eExchange(Exchange exchange);
voi d del et eExchange(Stri ng exchangeNane);
// Queue Operations
Queue decl areQueue();
voi d decl areQueue(Queue queue);
voi d del et eQueue(String queueNane);
voi d del et eQueue(String queueNane, bool ean unused, bool ean enpty);
voi d purgeQueue(String queueNanme, bool ean noWit);
/1 Bi nding Operations

voi d decl ar eBi ndi ng(Bi ndi ng bi ndi ng) ;

The no-arg declareQueue() method defines a queue on the broker whose name is automatically generated. The
additional properties of this auto-generated queue are exclusive=true, autoDelete=true, and durable=false.

Note

Removing a binding was not introduced until the 0.9 version of the AM QP spec.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring XML
would look like this:

<rabbi t: connection-factory id="connectionFactory"/>

<rabbit:adm n i d="anmgpAdm n" connecti on-factory="connecti onFactory"/>

The Rabbi t Adni n implementation does automatic lazy declaration of Queues, Exchanges and Bindi ngs
declared in the same Appl i cati onCont ext . These components will be declared as son as a Connection is
opened to the broker. There are some namespace features that make this very convenient, e.g. in the Stocks
sample application we have:

<r abbi t: queue id="tradeQueue" />
<r abbi t: queue i d="mar ket Dat aQueue" />

<f anout - exchange nane="broadcast.responses"” xm ns="http://wwmv. spri ngframework. org/ schema/rabbit">
<bi ndi ngs>
<bi ndi ng queue="tradeQueue" />
</ bi ndi ngs>
</ f anout - exchange>

<t opi c- exchange name="app. st ock. mar ket data" xm ns="http://wwm. spri ngframework. or g/ schema/rabbit">
<bi ndi ngs>
<bi ndi ng queue="nmar ket Dat aQueue" pattern="9${stocks. quote. pattern}" />

Spring AMQP () 15

Using Spring AMQP

</ bi ndi ngs>
</t opi c- exchange>

In the example above we are using anonymous Queues (actualy internally just Queues with names generated
by the framework, not by the broker) and refer to them by 1D. We can also declare Queues with explicit names,
which also serve asidentifiers for their bean definitions in the context. E.g.

<rabbi t: queue name="st ocks. trade. queue"/>

Queues can be configured with additional arguments, for example, 'x-message-ttl' or 'x-ha-policy'. Using the
namespace support, they are provided in the form of a Map of argument name/argument value pairs, using the
<rabbit:queue-arguments> element.

<r abbi t: queue nane="w t hAr gunent s" >
<rabbi t: queue- ar gunent s>
<entry key="x-ha-policy" value="all" />
</ rabbit: queue- ar gunent s>
</ rabbit: queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs to be
provided.

<rabbi t: queue nanme="w t hAr gunent s" >
<r abbi t: queue- argunent s val ue-type="j ava. | ang. Long" >
<entry key="x-nmessage-ttl" val ue="100" />
</ rabbi t: queue- ar gunent s>
</ rabbit: queue>

When providing arguments of mixed types, the typeis provided for each entry element:

<r abbi t: queue nane="w t hAr gunent s" >
<r abbi t : queue- ar gunent s>
<entry key="x-nessage-ttl">
<val ue type="java. |l ang. Long">100</ val ue>
</entry>
<entry key="x-ha-policy" value="all" />
</ rabbit: queue- ar gunent s>
</ rabbit: queue>

With Spring Framework 3.2 and later, this can be declared alittle more succinctly:

<r abbi t: queue nane="w t hAr gunent s" >
<r abbi t: queue- ar gunent s>
<entry key="x-message-ttl" val ue="100" val ue-type="java. |l ang. Long" />
<entry key="x-ha-policy" value="all" />
</rabbi t: queue- ar gunent s>
</ rabbit: queue>

To see how to use Java to configure the AMQP infrastructure, ook at the Stock sample application, where there
is the @onfiguration class AbstractStockRabbitConfiguration which in tun has
RabbitClientConfiguration and RabbitServerConfiguration subclasses. The code for
AbstractStockRabbitConfiguration is shown below

@Configuration
public abstract class Abstract St ockAppRabbit Configuration {

@Bean

publi ¢ Connecti onFactory connectionFactory() {
Cachi ngConnecti onFact ory connecti onFactory = new Cachi ngConnecti onFactory("Il ocal host");
connecti onFact ory. set User name(" guest");
connecti onFact ory. set Passwor d(" guest");

Spring AMQP () 16

Using Spring AMQP

return connecti onFact ory;

}

@ean
publ i c Rabbit Tenpl ate rabbitTenplate() {
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
t enpl at e. set MessageConvert er (j sonMessageConverter());
confi gur eRabbi t Tenpl at e(t enpl ate) ;
return tenpl ate;

}
@Bean

publ i c MessageConverter jsonMessageConverter() {
return new JsonMessageConverter();
}

@ean
publ i c Topi cExchange mar ket Dat aExchange() {

return new Topi cExchange("app. st ock. mar ket data");
}

// additional code omtted for brevity

In the Stock application, the server is configured using the following @Configuration class:

@Conf i guration
public class Rabbit ServerConfiguration extends Abstract St ockAppRabbitConfiguration {

@Bean
public Queue stockRequest Queue() {

return new Queue("app. stock. request");
}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. There is no binding of the
TopicExchange to a queue in the server configuration, as that is done in the client application. The stock
request queue however is automatically bound to the AMQP default exchange - this behavior is defined by the
specification.

The client @Configuration classis alittle more interesting and is shown below.

@Configuration
public class RabbitCientConfiguration extends Abstract St ockAppRabbi t Confi gurati on {

@/al ue(" ${stocks. quote.pattern}")
private String market Dat aRout i ngKey;

@Bean

public Queue mar ket Dat aQueue() {
return angpAdm n(). decl areQueue();

}

/**

* Binds to the nmarket data exchange. Interested in any stock quotes

* that match its routing key.

*/
@Bean
publ i ¢ Bi ndi ng nar ket Dat aBi ndi ng() {

return Bindi ngBui | der. bi nd(
mar ket Dat aQueue()) .t o(mar ket Dat aExchange()) . wi t h(mar ket Dat aRout i ngKey) ;

}

/1 additional code omitted for brevity

Spring AMQP () 17

Using Spring AMQP

The client is declaring another queue via the declareQueue() method on the AmgpAdmin, and it binds that
gueue to the market data exchange with arouting pattern that is externalized in a propertiesfile.

2.8.1. Federated Exchanges

Rabbit supports federation; federated exchanges are backed by one of the other exchange types. Therefore,
when configuring a federated exchange, it is important to supply bindings of the appropriate type for the
backing exchange. Examplesinclude...

<f eder at ed- exchange nane="fedDi rect" backi ng-type="direct"
upstream set =" upstream set">
<di r ect - bi ndi ngs>
<bi ndi ng queue="bucket" />
</ di rect - bi ndi ngs>
</ f eder at ed- exchange>

<f eder at ed- exchange nane="fedTopi c" backi ng-type="topic"
upstream set =" upstreamset">
<t opi c- bi ndi ngs>
<bi ndi ng queue="bucket" pattern="bucket.#"/>
</t opi c- bi ndi ngs>
</ f eder at ed- exchange>

Notice that the child element, e.g. <direct-bindings/> matches the backing-type attribute.

2.9. Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For example, there are alot of
cases where | OExceptions may be thrown. The RabbitTemplate, SimpleM essagel istenerContainer, and other
Spring AMQP components will catch those Exceptions and convert into one of the Exceptions within our
runtime hierarchy. Those are defined in the 'org.springframework.amqgp’ package, and AmgpException is the
base of the hierarchy.

If you are using a Si npl eMessagelLi st ener Cont ai ner you will also be able to inject a Spring Err or Handl er
instance that can be used to react to an exception in the listener. The Error Handl er cannot prevent the
exception from eventually propagating, but it can be used to log or aert another component that there is a
problem.

2.10. Transactions

The Spring Rabbit framework has support for automatic transaction management in the synchronous and
asynchronous use cases with a number of different semantics that can be selected declaratively, asis familiar to
existing users of Spring transactions. This makes many if not most common messaging patterns very easy to
implement.

There are two ways to signal the desired transaction semantics to the framework. In both the Rabbi t Tenpl at e
and Si npl eMessageli st ener Cont ai ner there is a flag channel Transact ed which, if true, tells the framework
to use a transactional channel and to end all operations (send or receive) with a commit or rollback depending
on the outcome, with an exception signaling a rollback. Another signal is to provide an external transaction
with one of Spring's Pl at f or niTr ansact i onManager implementations as a context for the ongoing operation. If
there is aready a transaction in progress when the framework is sending or receiving a message, and the
channel Transact ed flag is true, then the commit or rollback of the messaging transaction will be deferred until

Spring AMQP () 18

Using Spring AMQP

the end of the current transaction. If the channel Transact ed flag is false, then no transaction semantics apply
to the messaging operation (it is auto-acked).

The channel Transact ed flag is a configuration time setting: it is declared and processed once when the AMQP
components are created, usually at application startup. The externa transaction is more dynamic in principle
because the system responds to the current Thread state at runtime, but in practice is often also a configuration
setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with Rabbit Tenpl at e the external transaction is provided by the caller, either
declaratively or imperatively according to taste (the usual Spring transaction model). An example of a
declarative approach (usually preferred because it is non-invasive), where the template has been configured
with channel Transact ed=t r ue:

@r ansacti onal
public void doSonething() {
String incom ng = rabbitTenpl ate. recei veAndConvert ();
/1 do sone nore database processing...
String outgoi ng = processl nDat abaseAndExt ract Repl y(i ncom ng);
rabbi t Tenpl at e. convert AndSend(out goi ng) ;

A String payload is received, converted and sent as a message body inside a method marked as @Transactional,
so if the database processing fails with an exception, the incoming message will be returned to the broker, and
the outgoing message will not be sent. This applies to any operations with the Rabbi t Tenpl at e inside a chain
of transactional methods (unless the channel is directly manipulated to commit the transaction early for
instance).

For asynchronous use cases with Si npl eMessageli st ener Cont ai ner if an external transaction is needed it has
to be requested by the container when it sets up the listener. To signal that an external transaction is required
the user provides an implementation of Pl at f or niTr ansact i onManager to the container when it is configured.
For example:

@Configuration
public cl ass Exanpl eExt ernal Transacti onAmgpConfi gurati on {

@Bean
publ i c Messageli st ener Cont ai ner nmessageli st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connect i onFact ory(rabbi t Connecti onFactory());
cont ai ner. set Transact i onManager (transacti onManager());
cont ai ner. set Channel Transact ed(true);
cont ai ner. set QueueNane(" sone. queue") ;
cont ai ner. set Messageli st ener (exanpl eLi stener ());
return contai ner;

In the example above, the transaction manager is added as a dependency injected from another bean definition
(not shown), and the channel Transact ed flag is also set to true. The effect is that if the listener fails with an
exception the transaction will be rolled back, and the message will also be returned to the broker. Significantly,
if the transaction fails to commit (e.g. a database constraint error, or connectivity problem), then the AMQP
transaction will also be rolled back, and the message will be returned to the broker. Thisis sometimes known as
a Best Efforts 1 Phase Commit, and is a very powerful pattern for reliable messaging. If the
channel Transacted flag was set to false in the example above, which is the default, then the external
transaction would still be provided for the listener, but all messaging operations would be auto-acked, so the
effect isto commit the messaging operations even on arollback of the business operation.

2.10.1. A note on Rollback of Received Messages

Spring AMQP () 19

Using Spring AMQP

AMOQP transactions only apply to messages and acks sent to the broker, so when there is a rollback of a Spring
transaction and a message has been received, what Spring AMQP has to do is not just rollback the transaction,
but also manually reject the message (sort of a nack, but that's not what the specification calls it). Such
messages (and any that are unacked when a channel is closed or aborts) go to the back of the queue on a Rabbit
broker, and this behaviour is not what some users expect, especialy if they come from a IMS background, so
it's good to be aware of it. The re-queuing order is not mandated by the AMQP specification, but it makes the
broker much more efficient, and also means that if it is under load there is a natural back off before the message
can be consumed again.

2.10.2. Using the RabbitTransactionManager

The RabbitTransactionManager is an aternative to executing Rabbit operations within, and synchronized with,
external transactions. This Transaction Manager is an implementation of the PlatformTransactionManager
interface and should be used with a single Rabbit ConnectionFactory.

I mportant
This strategy is not able to provide XA transactions, for example in order to share transactions
between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources via
ConnectionFactoryUtil s. get Transacti onal Resour ceHol der (Connecti onFactory, bool ean) instead of a
standard Connecti on. creat eChannel () cal with subsequent Channel creation. When using Spring's
Rabbi t Tenpl at e, it will autodetect a thread-bound Channel and automatically participatein it.

With Java Configuration you can setup a new RabbitTransactionManager using:

@ean

publ i c Rabbit Transacti onManager rabbit Transacti onManager () {
return new Rabbit Tr ansact i onManager (connecti onFactory);

}

If you prefer using XML configuration, declare the following bean in your XML Application Context file:

<bean i d="rabbi t TxManager"
cl ass="org. spri ngfranmewor k. angp. rabbi t. transacti on. Rabbi t Transact i onManager " >
<property name="connectionFactory" ref="connecti onFactory"/>
</ bean>

2.11. Message Listener Container Configuration

There are quite a few options for configuring a Si npl eMessagelLi st ener Cont ai ner related to transactions and
quality of service, and some of them interact with each other.

When configuring with the XML namespace, the convention is to use hyphenated attributes rather than camel
case; for example, for property 'connectionFactory', the XML equivalent is 'connection-factory'.

Table 2.1. Configuration optionsfor a message listener container
Property Description

channel Transacted Boolean flag to signal that all messages should be

Spring AMQP () 20

http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Using Spring AMQP

Property

acknowledgeMode

Description

acknowledged in a transaction (either manually or
automatically)

NONE = no acks will be sent (the default and
incompatible with channel Transact ed=t r ue).
RabbitMQ calls this "autoack" because the broker
assumes all messages are acked without any action
from the consumer. MANUAL = the listener must
acknowledge al messages by calling
Channel . basi cAck(). AUTO = the container will
acknowledge the message automatically. Note that
acknow edgeMode is complementary to
channel Transacted - if the channel is transacted then
the broker requires a commit notification in addition
to the ack.

transactionM anager

prefetchCount

External transaction manager for the operation of the
listener. Also complementary to channel Transacted -
if the channel is transacted then its transaction will
be synchronized with the external transaction.

The number of messages to accept from the broker in
one socket frame. The higher this is the faster the
messages can be delivered, but the higher the risk of
non-sequential processing. Ignored if the
acknow edgeMbde is NONE.

shutdownTimeout

txSize

receiveTimeout

autoStartup

When a container shuts down (e.g. if its enclosing
Appl i cationCont ext is closed) it waits for in-flight
messages to be processed up to this limit. Defaults to
10 seconds. After the limit is reached, if the channel
is not transacted messages will be discarded.

If the channel is transacted or an external transaction
manager is provided, the container will attempt to
process up to this number of messages per transaction
(waiting for each one up to the receive timeout
Setting).

The maximum time to wait for each message. If
acknowledgeM ode=NONE (the default) this has very
little effect - the container just spins round and asks
for another message. It has the biggest effect for a
transactional Channel with txSize > 1, since it can
cause messages dready consumed not to be
acknowledged until the timeout expires.

Flag to indicate that the container should start when
the ApplicationContext does (as part of the
Smart Li fecycl e callbacks which happen after all
beans are initialized). Defaults to true, but set it to
falseif your broker might not be available on startup,
and then call start () later manually when you know

Spring AMQP () 21

Using Spring AMQP

Property Description

the broker is ready.

phase When autoStartup is true, the lifecycle phase within
which this container should start and stop. The lower
the value the earlier this container will start and the
later it will stop. The default is
Integer. MAX_VALUE meaning the container will
start as late as possible and stop as soon as possible.

adviceChain An array of AOP Advice to apply to the listener
execution. This can be used to apply additional cross
cutting concerns such as automatic retry in the event
of broker death. Note that simple re-connection after
an AMQP eror is handled by the
Cachi ngConnect i onFact ory, as long as the broker is
still aive.

taskExecutor A reference to a Spring TaskExecutor (or standard
JDK 1.5+ Executor) for executing listener invokers.
Default is a SimpleAsyncTaskExecutor, using
internally managed threads.

errorHandler A reference to an ErrorHandler strategy for handling
any uncaught Exceptions that may occur during the
execution of the MessagelL istener.

concurrency The number of concurrent consumers to start for each
listener.
connectionFactory A reference to the connectionFactory; when

configuring using the XML namespace, the default
referenced bean name is "rabbitConnectionFactory".

messageConverter A reference to the MessageConverter strategy for
converting AMQP Messages to listener method
arguments for any referenced 'listener’ that is a POJO.
Default is a SimpleM essageConverter.

requeueRejected Determines whether messages that are rejected
because the listener threw an exception should be
requeued or not. Default 'true'.

2.12. Resilience: Recovering from Errors and Broker Failures

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with recovery and
automatic re-connection in the event of a protocol error or broker failure. We have seen al the relevant
components aready in this guide, but it should help to bring them al together here and call out the features and
recovery scenarios individually.

The primary reconnection features are enabled by the Cachi ngConnectionFactory itself. It is also often
beneficial to use the Rabbi t Adni n auto-declaration features. In addition, if you care about guaranteed delivery,

Spring AMQP () 22

Using Spring AMQP

you probably aso need to use the channel Transacted flag in RabbitTenplate and
Si npl eMessageli st ener Cont ai ner and also the Acknow edgeMbde. AUTO (or manual if you do the acks
yourself) in the Si npl eMessageli st ener Cont ai ner .

2.12.1. Automatic Declaration of Exchanges, Queues and Bindings

The Rabbi t Admi n component can declare exchanges, queues and bindings on startup. It does thislazily, through
a Connect i onLi st ener, SO if the broker is not present on startup it doesn't matter. The first time a Connect i on
is used (e.g. by sending a message) the listener will fire and the admin features will be applied. A further
benefit of doing the auto declarations in alistener isthat if the connection is dropped for any reason (e.g. broker
death, network glitch, etc.) they will be applied again the next time they are needed.

2.12.2. Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using Rabbi t Tenpl at e (for instance), then
Spring AMQP will throw an AngpExcept i on (usually but not always Amgpl OExcept i on). We don't try to hide
the fact that there was a problem, so you have to be able to catch and respond to the exception. The easiest
thing to do if you suspect that the connection was lost, and it wasn't your fault, is to simply try the operation
again. You can do this manually, or you could look at using Spring Retry to handle the retry (imperatively or
declaratively).

Spring Retry provides a couple of AOP interceptors and a great dea of flexibility to specify the parameters of
the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP aso provides some
convenience factory beans for creating Spring Retry interceptors in a convenient form for AMQP use cases,
with strongly typed callback interfaces for you to implement custom recovery logic. See the Javadocs and
properties of Stat ef ul Ret ryQperati onsl nt ercept or and St at el essRet ryQper at i onsl nt ercept or for more
detail. Stateless retry is appropriate if there is no transaction or if a transaction is started inside the retry
callback. Note that stateless retry is simpler to configure and analyse than stateful retry, but it is not usually
appropriate if there is an ongoing transaction which must be rolled back or definitely is going to roll back. A
dropped connection in the middle of atransaction should have the same effect as arollback, so for reconnection
where the transaction is started higher up the stack, stateful retry is usually the best choice.

2.12.3. Message Listeners and the Asynchronous Case

If a MessagelLi st ener fails because of a business exception, the exception is handled by the message listener
container and then it goes back to listening for another message. If the failure is caused by a dropped
connection (not a business exception), then the consumer that is collecting messages for the listener has to be
cancelled and restarted. The Si npl eMessagelLi st ener Cont ai ner handles this seamlessly, and it leaves alog to
say that the listener is being restarted. In fact it loops endlessly trying to restart the consumer, and only if the
consumer is very badly behaved indeed will it give up. One side effect is that if the broker is down when the
container starts, it will just keep trying until a connection can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might nheed more thought
and some custom configuration, especialy if transactions and/or container acks are in use. Prior to 2.8.x,
RabhitMQ had no definition of dead letter behaviour, so by default a message that is rejected or rolled back
because of a business exception can be redelivered ad infinitum. To put a limit in the client on the number of
re-deliveries, one choice is a St at ef ul Ret ryQper ati onsl nt ercept or in the advice chain of the listener. The
interceptor can have a recovery calback that implements a custom dead letter action: whatever is appropriate
for your particular environment.

Another aternative is to set the container's rejectRequeued property to false. This causes al failed messages to
be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering the message to a Dead

Spring AMQP () 23

Using Spring AMQP

L etter Exchange.

Or, you can throw a AngpRej ect AndDont RequeueExcept i on; this prevents message requeuing, regardless of the
setting of the rejectRequeued property.

Often, a combination of both techniques will be used. Use a St at ef ul Ret ryQper at i onsl nt er cept or in the
advice chain, where it's MessageRecover throws an AmgpRej ect AndDont RequeueException. The
MessageRecover is called when al retries have been exhausted. The default MessageRecoverer simply
consumes the errant message and emits a WARN message. In which case, the message is ACK'd and won't be
sent to the Dead L etter Exchange, if any.

Spring AMQP () 24

Chapter 3. Erlang integration

3.1. Introduction

There is an open source project called Jinterface that provides a way for Java applications to communicate with
an Erlang process. The API is very low level and rather tedious to use and throws checked exceptions. The
Spring Erlang module makes accessing functions in Erlang from Java easy, often they can be one liners.

3.2. Communicating with Erlang processes

3.2.1. Executing RPC

The interface ErlangOperations is the high level API for interacting with an Erlang process.

public interface ErlangOperations {
<T> T execut e(ConnectionCal | back<T> action) throws O pException;

O pErl angObj ect execut eErl angRpc(String nodule, String function, O pErlanglist args)
throws O pExcepti on;

O pErl angObj ect execut eErl angRpc(String nodule, String function, OpErlangCbject... args)
throws O pExcepti on;

O pErl angObj ect executeRpc(String nodule, String function, Object... args)
throws O pExcepti on;

oj ect execut eAndConvert Rpc(String nodule, String function,
Erl angConverter converterToUse, Object... args) throws O pException;

/1 Sweet!
bj ect execut eAndConvert Rpc(String nodule, String function, Cbject... args)
throws O pExcepti on;

The class that implements this interface is called Er | angTenpl at e. There are a few convenience methods, most
notably execut eAndConvert Roc, as well as the execut e method which gives you access to the 'native' APl of
the Jinterface project. For ssimple functions, you can invoke execut eAndConvert Roc With the appropriate
Erlang module name, function, and arguments in a one-liner. For example, here is the implementation of the
RabbitBrokerAdmin method 'DeleteUser'

@mnagedQOper ati on
public void del eteUser(String usernane) {
er| angTenpl at e. execut eAndConvert Rpc(
"rabbit_access_control", "delete_user", usernane.getBytes());

As the Jinterface library uses specific classes such as OtpErlangDouble and OtpErlangString to represent the
primitive types in Erlang RPC calls, there is a converter class that works in concert with ErlangTemplate that
knows how to trandate from Java primitive types to their Erlang class equivalents. Y ou can also create custom
converters and register them with the ErlangTemplate to handle more complex data format trandations.

3.2.2. ErlangConverter

Spring AMQP () 25

Erlang integration

The ErlangConverter interface is shown below.

public interface ErlangConverter {

/**

* Convert a Java object to a Erlang data type.

* @aram obj ect the object to convert

* @eturn the Erlang data type

* @hrows ErlangConversi onException in case of conversion failure

*/

Q pErl angbj ect toErl ang(Obj ect object) throws ErlangConversi onExcepti on;

/**

* Convert froma Erlang data type to a Java object.

* @aram erl angObj ect the Erlang object to convert

* @eturn the converted Java obj ect

* @hrows Erl angConversi onException in case of conversion failure

*/

Obj ect fronErl ang(O pErl angObj ect erl angObject) throws Erl angConversi onExcepti on;

/**
* The return value from executing the Erlang RPC
*/
oj ect fronErl angRpc(String nodule, String function, O pErlangObject erlangObject)
throws Erl angConversi onExcepti on;

3.3. Exceptions

The Jinterface checked exception hierarchy is trandated into a parallel runtime exception hierarchy when

executing operations through ErlangTemplate.

Spring AMQP ()

26

Chapter 4. Sample Applications

4.1. Introduction

The Spring AMQP_Samples project includes two sample applications. The first is a smple "Hello World"
example that demonstrates both synchronous and asynchronous message reception. It provides an excellent
starting point for acquiring an understanding of the essential components. The second sample is based on a
stock-trading use case to demonstrate the types of interaction that would be common in real world applications.
In this chapter, we will provide a quick walk-through of each sample so that you can focus on the most
important components. The samples are both Maven-based, so you should be able to import them directly into
any Maven-aware | DE (such as SpringSource Tool Suite).

4.2. Hello World

The Hello World sample demonstrates both synchronous and asynchronous message reception. Y ou can import
the 'spring-rabbit-helloworld' sample into the IDE and then follow the discussion below.

4.2.1. Synchronous Example

Within the 'src/main/java directory, navigate to the 'org.springframework.amgp.helloworld' package. Open the
HelloWorldConfiguration class and notice that it contains the @Configuration annotation at class-level and
some @Bean annotations at method-level. This is an example of Spring's Java-based configuration. Y ou can
read more about that here.

@Bean
publ i c Connecti onFactory connectionFactory() {
Cachi ngConnecti onFact ory connecti onFactory = new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User name(" guest ") ;
connecti onFact ory. set Passwor d("guest");
return connecti onFactory;

The configuration also contains an instance of Rabbi t Admi n, which by default looks for any beans of type
Exchange, Queue, or Binding and then declares them on the broker. In fact, the "helloWorldQueue" bean that is
generated in HelloWorldConfiguration is an example simply because it is an instance of Queue.

@ean
public Queue hel | oWor| dQueue() {

return new Queue(this. hell oWrl dQueueNan®) ;
}

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue's name
Set asits "queue” property (for receiving Messages) and for its "routingKey" property (for sending Messages).

Now that we've explored the configuration, let's look at the code that actually uses these components. First,
open the Producer class from within the same package. It contains a main() method where the Spring
ApplicationContext is created.

public static void main(String[] args) {
Appl i cati onCont ext context = new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AmgpTenpl at e angpTenpl ate = cont ext . get Bean(AmgpTenpl at e. cl ass) ;
anmgpTenpl at e. convert AndSend("Hel l o World");
Systemout.println("Sent: Hello World");

Spring AMQP () 27

http://github.com/SpringSource/spring-amqp-samples
http://www.springsource.com/products/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java

Sample Applications

As you can see in the example above, the AmgpTemplate bean is retrieved and used for sending a Message.
Since the client code should rely on interfaces whenever possible, the type is AmgpTemplate rather than
RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance of RabbitTemplate,
relying on the interface means that this code is more portable (the configuration can be changed independently
of the code). Since the convertAndSend() method is invoked, the template will be delegating to its
MessageConverter instance. In this case, it's using the default SimpleMessageConverter, but a different
implementation could be provided to the "rabbitTemplate" bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means it will be
sharing the "rabbitTemplate" bean. That's why we configured that template with both a "routingKey" (for
sending) and "queue” (for receiving). Asyou saw in Section 2.3, “AmgpTemplate”, you could instead pass the
‘routingKey' argument to the send method and the 'queue’ argument to the receive method. The Consumer code
is basically amirror image of the Producer, calling receiveAndConvert() rather than convertAndSend().

public static void main(String[] args) {
Appl i cati onCont ext context = new Annotati onConfi gAppli cati onCont ext (Rabbit Confi gurati on.cl ass);
AmgpTenpl at e angpTenpl at e = cont ext . get Bean(AmgpTenpl at e. cl ass) ;
System out. println("Received: " + angpTenpl ate. recei veAndConvert());

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello World" in
the consol e outpui.

4.2.2. Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a dlightly more
advanced but significantly more powerful option. With a few modifications, the Hello World sample can
provide an example of asynchronous reception, ak.a. Message-driven POJOs. In fact, there is a sub-package
that provides exactly that: org.springframework.amgp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it creates
a "connectionFactory” and "rabbitTemplate" bean. This time, since the configuration is dedicated to the
message sending side, we don't even need any Queue definitions, and the RabbitTemplate only has the
'routingKey' property set. Recall that messages are sent to an Exchange rather than being sent directly to a
Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are bound to that default
Exchange with their name as the routing key. That iswhy we only need to provide the routing key here.

publ i ¢ Rabbit Tenpl ate rabbitTenpl ate() {
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
t enpl at e. set Rout i ngKey(thi s. hel | oWor | dQueueNane) ;
return tenpl ate;

Since this sample will be demonstrating asynchronous message reception, the producing side is designed to
continuously send messages (if it were a message-per-execution model like the synchronous version, it would
not be quite so obvious that it isin fact a message-driven consumer). The component responsible for sending
messages continuously is defined as an inner class within the ProducerConfiguration. It is configured to execute
every 3 seconds.

static class Schedul edProducer {

@Aut owi r ed
private volatile RabbitTenpl ate rabbit Tenpl ate;

Spring AMQP () 28

Sample Applications

private final Atom clnteger counter = new Atom clnteger();

@chedul ed(fi xedRate = 3000)
public void sendMessage() {

rabbi t Tenpl at e. convert AndSend("Hello World " + counter.increment AndGet());
}

Y ou don't need to understand al of the details since the real focus should be on the receiving side (which we
will cover momentarily). However, if you are not yet familiar with Spring 3.0 task scheduling support, you can
learn more here. The short story is that the " postProcessor” bean in the ProducerConfiguration is registering the
task with a scheduler.

Now, let's turn to the receiving side. To emphasize the Message-driven POJO behavior will start with the
component that is reacting to the messages. The classis called HelloworldHandler.

public class Hell oWrl| dHandl er {

public void handl eMessage(String text) {
System out. println("Received: " + text);
}

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any interfaces, and it doesn't
even contain any imports. It is being "adapted" to the Messagelistener interface by the Spring AMQP
Messagel istenerAdapter. That adapter can then be configured on a SimpleMessagel istenerContainer. For this
sample, the container is created in the ConsumerConfiguration class. You can see the POJO wrapped in the
adapter there.

@Bean

public Sinpl eMessageli stenerContainer |istenerContainer() {
Si npl eMessageli st ener Cont ai ner cont ai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(connecti onFactory());
cont ai ner. set QueueNane(t hi s. hel | oWor | dQueueNane) ;
cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (new Hel | oWor | dHandl er ()));
return container;

The SimpleMessagel istenerContainer is a Spring lifecycle component and will start automatically by default.
If you look in the Consumer class, you will see that its main() method consists of nothing more than a one-line
bootstrap to create the ApplicationContext. The Producer's main() method is also a one-line bootstrap, since the
component whose method is annotated with @Scheduled will also start executing automatically. You can start
the Producer and Consumer in any order, and you should see messages being sent and received every 3
seconds.

4.3. Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World sample.
However, the configuration is very similar - just a bit more involved. Since we've walked through the Hello
World configuration in detail, here well focus on what makes this sample different. There is a server that
pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe to the market data feed by
binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdag.*"). The other main feature of this demo
isarequest-reply "stock trade” interaction that is initiated by the client and handled by the server. That involves
aprivate "replyTo" Queue that is sent by the client within the order request Message itself.

The Server's core configuration is in the RabbitServerConfiguration class within the

Spring AMQP () 29

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support

Sample Applications

org.springframework.amgp.rabbit.stocks.config.server package. It extends the
AbstractStockA ppRabbitConfiguration. That is where the resources common to the Server and Client(s) are
defined, including the market data Topic Exchange (whose name is "app.stock.marketdata’) and the Queue that
the Server exposes for stock trades (whose name is "app.stock.request’). In that common configuration file, you
will also see that a JsonM essageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on the
RabbitTemplate so that it does not need to provide that exchange name with every call to send a Message. It
does this within an abstract callback method defined in the base configuration class.

public void configureRabbit Tenpl at e(Rabbi t Tenpl at e rabbit Tenpl ate) {
rabbi t Tenpl at e. set Exchange(MARKET _DATA EXCHANGE_NAME) ;
}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case, because it
will be bound to the default no-name exchange with its own name as the routing key. As mentioned earlier, the
AMOQP specification defines that behavior.

@Bean
publi ¢ Queue stockRequest Queue() {

return new Queue(STOCK REQUEST_QUEUE NAME) ;
}

Now that youve seen the configuration of the Server's AMQP resources, navigate to the
‘org.springframework.amgp.rabbit.stocks package under the 'src/test/java directory. There you will see the
actual Server class that provides a main() method. It creates an ApplicationContext based on the
'server-bootstrap.xml’' config file. In there you will see the scheduled task that publishes dummy market data.
That configuration relies upon Spring 3.0's "task" namespace support. The bootstrap config file also imports a
few other files. The most interesting one is 'server-messaging.xml' which is directly under 'src/main/resources.
In there you will see the "messagelListenerContainer" bean that is responsible for handling the stock trade
requests. Finally have a look at the "serverHandler" bean that is defined in "server-handlersxml” (also in
'src/main/resources). That bean is an instance of the ServerHandler class and is a good example of a
Message-driven POJO that is also capable of sending reply Messages. Notice that it is not itself coupled to the
framework or any of the AMQP concepts. It simply accepts a TradeRequest and returns a TradeResponse.

publi c TradeResponse handl eMessage(Tr adeRequest tradeRequest) { ... }

Now that we've seen the most important configuration and code for the Server, let's turn to the Client. The best
starting point is probably RabbitClientConfiguration within the
‘org.springframework.amap.rabbit.stocks.config.client' package. Notice that it declares two queues without
providing explicit names.

@ean

public Queue mar ket Dat aQueue() {
return angpAdm n() . decl ar eQueue();

}

@ean
public Queue traderJoeQueue() ({

return angpAdm n(). decl areQueue();
}

Those are private queues, and unique names will be generated automatically. The first generated queue is used
by the Client to bind to the market data exchange that has been exposed by the Server. Recall that in AMQP,
consumers interact with Queues while producers interact with Exchanges. The "binding" of Queues to
Exchanges is what instructs the broker to deliver, or route, messages from a given Exchange to a Queue. Since

Spring AMQP () 30

Sample Applications

the market data exchange is a Topic Exchange, the binding can be expressed with a routing pattern. The
RabbitClientConfiguration declares that with a Binding object, and that object is generated with the
BindingBuilder's fluent API.

@/al ue(" ${st ocks. quote. pattern}")
private String market Dat aRout i ngKey;

@Bean
public Binding market Dat aBi ndi ng() {
return Bindi ngBui | der. bi nd(
mar ket Dat aQueue()) .t o(mar ket Dat aExchange()) . wi t h(mar ket Dat aRout i ngKey) ;

Notice that the actua value has been externalized in a properties file ("client.properties’ under
src/main/resources), and that we are using Spring's @V aue annotation to inject that value. Thisis generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making changes
to the routing pattern used for binding. Let's try that now.

Start by running org.springframework.amgp.rabbit.stocks. Server and then
org.springframework.amgp.rabbit.stocks.Client. You should see dummy quotes for NASDAQ stocks because
the current value associated with the ‘'stocks.quote.pattern’ key in client.properties is
‘app.stock.quotes.nasdag.*'. Now, while keeping the existing Server and Client running, change that property
value to 'app.stock.quotes.nyse.*' and start a second Client instance. Y ou should see that the first client is still
receiving NASDAQ quotes while the second client receives NYSE quotes. You could instead change the
pattern to get all stocks or even an individual ticker.

The final feature we'll explore is the request-reply interaction from the Client's perspective. Recall that we have
already seen the ServerHandler that is accepting TradeRequest objects and returning TradeResponse objects.
The corresponding code on the Client side is RabbitStockServiceGateway in the
‘org.springframework.amap.rabbit.stocks.gateway' package. It delegates to the RabbitTemplate in order to send

Messages.

public void send(TradeRequest tradeRequest) {
get Rabbi t Tenpl at e() . convert AndSend(tradeRequest, new MessagePost Processor () {
publ i c Message postProcessMessage(Message nessage) throws AngpException {
nessage. get MessageProperties(). set Repl yTo(new Address(def aul t Repl yToQueue));
try {
nessage. get MessageProperties().setCorrel ati onl d(
UUI D. randomJUl D() . toStri ng() . get Byt es(" UTF-8"));

catch (UnsupportedEncodi ngException e) {
t hr ow new AngpException(e);
}

return nessage;

5)s

Notice that prior to sending the message, it sets the "replyTo" address. It's providing the queue that was
generated by the "traderJoeQueue' bean definition shown above. Here's the @Bean definition for the
StockServiceGateway class itself.

@Bean
public StockServiceGateway stockServiceGateway() {
Rabbi t St ockServi ceGat eway gat eway = new Rabbit St ockServi ceGat eway() ;
gat eway. set Rabbi t Tenpl at e(rabbi t Tenpl ate());
gat eway. set Def aul t Repl yToQueue(trader JoeQueue());
return gateway;

Spring AMQP () 31

Sample Applications

If you are no longer running the Server and Client, start them now. Try sending a request with the format of
100 TCKR'. After a brief artificial delay that simulates "processing” of the request, you should see a
confirmation message appear on the Client.

Spring AMQP () 32

Part lll. Spring Integration - Reference

This part of the reference documentation provides a quick introduction to the AMQP support within the Spring
Integration project.

Spring AMQP () 33

Chapter 5. Spring Integration AMQP Support

5.1. Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon the Spring
AMQP project. Those adapters are developed and released in the Spring Integration project. In Spring
Integration, "Channel Adapters’ are unidirectional (one-way) whereas "Gateways' are bidirectional
(request-reply). We provide an inbound-channel-adapter, outbound-channel-adapter, inbound-gateway, and
outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation will be available as part
of the Spring Integration distribution. As ataster, we just provide a quick overview of the main features here.

5.2. Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel -adapter>

<angp: i nbound- channel - adapt er channel ="f r omAMP"
queue- nanes="somne. queue"
connection-factory="rabbit Connecti onFactory"/>

5.3. Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A 'routing-key' may
optionally be provided in addition to the exchange name.

<anqp: out bound- channel - adapt er channel ="t oAMJP"
exchange- nane="sone. exchange"
routi ng- key="foo0"
angp-tenpl at e="rabbi t Tenpl ate"/ >

5.4. Inbound Gateway

To receive an AMQP Message from a Queue, and respond to its reply-to address, configure an
<inbound-gateway>.

<angp: i nbound- gat eway request - channel ="fr omAMP"
repl y- channel ="t o AMQP"
queue- nanes="sone. queue"
connecti on-factory="rabbit Connecti onFactory"/>

5.5. Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from a remote client, configure an
<outbound-gateway>. A 'routing-key' may optionally be provided in addition to the exchange name.

<angp: out bound- gat eway request -channel ="t oAMJP"
repl y- channel =" f r omAMQP"

Spring AMQP () 34

http://springsource.org/spring-integration

Spring Integration AMQP Support

exchange- nane="sone. exchange"
rout i ng- key="f oo"
anmgp-tenpl at e="rabbi t Tenpl ate"/ >

Spring AMQP ()

35

Part IV. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you learn
about AMQP.

Spring AMQP () 36

Chapter 6. Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course the
authoritative source of information, and the Spring AMQP code should be very easy to understand for anyone
who is familiar with the spec. Our current implementation of the RabbitMQ support is based on their 2.8.x
version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1 document.

There are many great articles, presentations, and blogs available on the RabbitM Q Getting Started page. Since
that is currently the only supported implementation for Spring AMQP, we also recommend that as a generd
starting point for all broker-related concerns.

Finally, be sure to visit the Spring AMQP Forum if you have questions or suggestions. With this first GA
release, we are looking forward to alot of community feedback!

Spring AMQP () 37

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.rabbitmq.com/how.html
http://forum.springsource.org/forumdisplay.php?f=74

Bibliography

[jinterface-00] Ericsson AB. jinterface User Guide. Ericson AB . 2000.

Spring AMQP ()

38

	Spring AMQP - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Quick Tour for the impatient
	1.1. Introduction
	1.1.1. Very, Very Quick
	1.1.2. With XML Configuration
	1.1.3. With Java Configuration

	Part II. Reference
	Chapter 2. Using Spring AMQP
	2.1. AMQP Abstractions
	2.1.1. Message
	2.1.2. Exchange
	2.1.3. Queue
	2.1.4. Binding

	2.2. Connection and Resource Management
	2.3. AmqpTemplate
	2.4. Sending messages
	2.5. Receiving messages
	2.5.1. Synchronous Consumer
	2.5.2. Asynchronous Consumer

	2.6. Message Converters
	2.6.1. SimpleMessageConverter
	2.6.1.1. Converting From a Message
	2.6.1.2. Converting To a Message

	2.6.2. JsonMessageConverter
	2.6.3. MarshallingMessageConverter

	2.7. Request/Reply Messaging
	2.8. Configuring the broker
	2.8.1. Federated Exchanges

	2.9. Exception Handling
	2.10. Transactions
	2.10.1. A note on Rollback of Received Messages
	2.10.2. Using the RabbitTransactionManager

	2.11. Message Listener Container Configuration
	2.12. Resilience: Recovering from Errors and Broker Failures
	2.12.1. Automatic Declaration of Exchanges, Queues and Bindings
	2.12.2. Failures in Synchronous Operations and Options for Retry
	2.12.3. Message Listeners and the Asynchronous Case

	Chapter 3. Erlang integration
	3.1. Introduction
	3.2. Communicating with Erlang processes
	3.2.1. Executing RPC
	3.2.2. ErlangConverter

	3.3. Exceptions

	Chapter 4. Sample Applications
	4.1. Introduction
	4.2. Hello World
	4.2.1. Synchronous Example
	4.2.2. Asynchronous Example

	4.3. Stock Trading

	Part III. Spring Integration - Reference
	Chapter 5. Spring Integration AMQP Support
	5.1. Introduction
	5.2. Inbound Channel Adapter
	5.3. Outbound Channel Adapter
	5.4. Inbound Gateway
	5.5. Outbound Gateway

	Part IV. Other Resources
	Chapter 6. Further Reading
	Bibliography

