
Spring AMQP - Reference Documentation

Mark Pollack, Mark Fisher, Oleg Zhurakousky, Dave Syer, Gary Russell

Copyright © 2010-2012 Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that each copy contains this

Copyright Notice, whether distributed in print or electronically.

Preface .. iii
I. Introduction .. 1

1. Quick Tour for the impatient .. 2
1.1. Introduction ... 2

1.1.1. Very, Very Quick .. 2
1.1.2. With XML Configuration ... 2
1.1.3. With Java Configuration .. 3

II. Reference .. 4
2. Using Spring AMQP ... 5

2.1. AMQP Abstractions ... 5
2.2. Connection and Resource Management ... 8
2.3. AmqpTemplate .. 9
2.4. Sending messages .. 9
2.5. Receiving messages .. 10
2.6. Message Converters ... 12
2.7. Request/Reply Messaging ... 14
2.8. Configuring the broker ... 14

2.8.1. Federated Exchanges ... 18
2.9. Exception Handling .. 18
2.10. Transactions ... 18

2.10.1. A note on Rollback of Received Messages .. 19
2.10.2. Using the RabbitTransactionManager ... 20

2.11. Message Listener Container Configuration ... 20
2.12. Resilience: Recovering from Errors and Broker Failures ... 22

2.12.1. Automatic Declaration of Exchanges, Queues and Bindings 23
2.12.2. Failures in Synchronous Operations and Options for Retry 23
2.12.3. Message Listeners and the Asynchronous Case .. 23

3. Erlang integration ... 25
3.1. Introduction ... 25
3.2. Communicating with Erlang processes .. 25

3.2.1. Executing RPC .. 25
3.2.2. ErlangConverter .. 25

3.3. Exceptions ... 26
4. Sample Applications ... 27

4.1. Introduction ... 27
4.2. Hello World ... 27

4.2.1. Synchronous Example ... 27
4.2.2. Asynchronous Example ... 28

4.3. Stock Trading .. 29
III. Spring Integration - Reference ... 33

5. Spring Integration AMQP Support ... 34
5.1. Introduction ... 34
5.2. Inbound Channel Adapter ... 34
5.3. Outbound Channel Adapter ... 34
5.4. Inbound Gateway ... 34
5.5. Outbound Gateway ... 34

IV. Other Resources .. 36
6. Further Reading .. 37
Bibliography .. 38

Spring AMQP () ii

Preface
The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging
solutions. We provide a "template" as a high-level abstraction for sending and receiving messages. We also
provide support for Message-driven POJOs. These libraries facilitate management of AMQP resources while
promoting the use of dependency injection and declarative configuration. In all of these cases, you will see
similarities to the JMS support in the Spring Framework. The project consists of both Java and .NET versions.
This manual is dedicated to the Java version. For links to the .NET version's manual or any other
project-related information visit the Spring AMQP project homepage.

Spring AMQP () iii

http://springsource.org/spring-amqp

Part I. Introduction
This first part of the reference documentation is a high-level overview of Spring AMQP and the underlying
concepts and some code snippets that will get you up and running as quickly as possible.

Spring AMQP () 1

Chapter 1. Quick Tour for the impatient

1.1. Introduction

This is the 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmq.com/download.html). Then grab the
spring-rabbit JAR and all its dependencies - the easiest way to do that is to declare a dependency in your build
tool, e.g. for Maven:

<dependency>
<groupId>org.springframework.amqp</groupId>
<artifactId>spring-rabbit</artifactId>
<version>1.0.0.RELEASE</version>

</dependency>

1.1.1. Very, Very Quick

Using plain, imperative Java to send and receive a message:

ConnectionFactory connectionFactory = new CachingConnectionFactory();

AmqpAdmin admin = new RabbitAdmin(connectionFactory);
admin.declareQueue(new Queue("myqueue"));

AmqpTemplate template = new RabbitTemplate(connectionFactory);
template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

Note that there is a ConnectionFactory in the native Java Rabbit client as well. We are using the Spring
abstraction in the code above. We are relying on the default exchange in the broker (since none is specified in
the send), and the default binding of all queues to the default exchange by their name (hence we can use the
queue name as a routing key in the send). Those behaviours are defined in the AMQP specification.

1.1.2. With XML Configuration

The same example as above, but externalizing the resource configuration to XML:

ApplicationContext context = new GenericXmlApplicationContext("classpath:/rabbit-context.xml");
AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rabbit="http://www.springframework.org/schema/rabbit"
xsi:schemaLocation="http://www.springframework.org/schema/rabbit

http://www.springframework.org/schema/rabbit/spring-rabbit-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:template id="amqpTemplate" connection-factory="connectionFactory"/>

<rabbit:admin connection-factory="connectionFactory"/>

Spring AMQP () 2

http://www.rabbitmq.com/download.html

<rabbit:queue name="myqueue"/>

</beans>

The <rabbit:admin/> declaration by default automatically looks for beans of type Queue, Exchange and
Binding and declares them to the broker on behalf of the user, hence there is no need to use that bean explicitly
in the simple Java driver. There are plenty of options to configure the properties of the components in the XML
schema - you can use auto-complete features of your XML editor to explore them and look at their
documentation.

1.1.3. With Java Configuration

The same example again with the external configuration in Java:

ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

@Configuration
public class RabbitConfiguration {

@Bean
public ConnectionFactory connectionFactory() {
CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");
return connectionFactory;

}

@Bean
public AmqpAdmin amqpAdmin() {
return new RabbitAdmin(connectionFactory());

}

@Bean
public RabbitTemplate rabbitTemplate() {
return new RabbitTemplate(connectionFactory());

}

@Bean
public Queue myQueue() {
return new Queue("myqueue");

}

}

Quick Tour for the impatient

Spring AMQP () 3

Part II. Reference
This part of the reference documentation details the various components that comprise Spring AMQP. The
main chapter covers the core classes to develop an AMQP application. This part also includes a chapter on
integration with Erlang and a chapter about the sample applications.

Spring AMQP () 4

Chapter 2. Using Spring AMQP
In this chapter, we will explore the interfaces and classes that are the essential components for developing
applications with Spring AMQP.

2.1. AMQP Abstractions

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution. These modules
are: spring-amqp, spring-rabbit and spring-erlang. The 'spring-amqp' module contains the
org.springframework.amqp.core package. Within that package, you will find the classes that represent the
core AMQP "model". Our intention is to provide generic abstractions that do not rely on any particular AMQP
broker implementation or client library. End user code will be more portable across vendor implementations as
it can be developed against the abstraction layer only. These abstractions are then used implemented by
broker-specific modules, such as 'spring-rabbit'. For the 1.0 release there is only a RabbitMQ implementation
however the abstractions have been validated in .NET using Apache Qpid in addition to RabbitMQ. Since
AMQP operates at the protocol level in principle the RabbitMQ client can be used with any broker that
supports the same protocol version, but we do not test any other brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification already. If
you are not, then have a look at the resources listed in Part IV, “Other Resources”

2.1.1. Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when performing
an operation such as ' basicPublish ', the content is passed as a byte-array argument and additional properties
are passed in as separate arguments. Spring AMQP defines a Message class as part of a more general AMQP
domain model representation. The purpose of the Message class is to simply encapsulate the body and
properties within a single instance so that the API can in turn be simpler. The Message class definition is quite
straightforward.

public class Message {

private final MessageProperties messageProperties;

private final byte[] body;

public Message(byte[] body, MessageProperties messageProperties) {
this.body = body;
this.messageProperties = messageProperties;

}

public byte[] getBody() {
return this.body;

}

public MessageProperties getMessageProperties() {
return this.messageProperties;

}

The MessageProperties interface defines several common properties such as 'messageId', 'timestamp',
'contentType', and several more. Those properties can also be extended with user-defined 'headers' by calling
the setHeader(String key, Object value) method.

2.1.2. Exchange

Spring AMQP () 5

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to. Each
Exchange within a virtual host of a broker will have a unique name as well as a few other properties:

public interface Exchange {

String getName();

String getExchangeType();

boolean isDurable();

boolean isAutoDelete();

Map<String, Object> getArguments();

}

As you can see, an Exchange also has a 'type' represented by constants defined in ExchangeTypes. The basic
types are: Direct, Topic, Fanout, Headers and Federated. In the core package you will find implementations
of the Exchange interface for each of those types. The behavior varies across these Exchange types in terms of
how they handle bindings to Queues. For example, a Direct exchange allows for a Queue to be bound by a
fixed routing key (often the Queue's name). A Topic exchange supports bindings with routing patterns that may
include the '*' and '#' wildcards for 'exactly-one' and 'zero-or-more', respectively. The Fanout exchange
publishes to all Queues that are bound to it without taking any routing key into consideration. For much more
information about these and the other Exchange types, check out Part IV, “Other Resources”.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange that has
no name. All Queues that are declared will be bound to that default Exchange with their names as
routing keys. You will learn more about the default Exchange's usage within Spring AMQP in
Section 2.3, “AmqpTemplate”.

2.1.3. Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like the
various Exchange classes, our implementation is intended to be an abstract representation of this core AMQP
type.

public class Queue {

private final String name;

private volatile boolean durable;

private volatile boolean exclusive;

private volatile boolean autoDelete;

private volatile Map<String, Object> arguments;

/**
* The queue is durable, non-exclusive and non auto-delete.
*
* @param name the name of the queue.
*/

public Queue(String name) {
this(name, true, false, false);

}

// Getters and Setters omitted for brevity

Using Spring AMQP

Spring AMQP () 6

Notice that the constructor takes the Queue name. Depending on the implementation, the admin template may
provide methods for generating a uniquely named Queue. Such Queues can be useful as a "reply-to" address or
other temporary situations. For that reason, the 'exclusive' and 'autoDelete' properties of an auto-generated
Queue would both be set to 'true'.

Note
See the section on queues in Section 2.8, “Configuring the broker” for information about declaring
queues using namespace support, including queue arguments.

2.1.4. Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings that connect
Queues to Exchanges are critical for connecting those producers and consumers via messaging. In Spring
AMQP, we define a Binding class to represent those connections. Let's review the basic options for binding
Queues to Exchanges.

You can bind a Queue to a DirectExchange with a fixed routing key.

new Binding(someQueue, someDirectExchange, "foo.bar")

You can bind a Queue to a TopicExchange with a routing pattern.

new Binding(someQueue, someTopicExchange, "foo.*")

You can bind a Queue to a FanoutExchange with no routing key.

new Binding(someQueue, someFanoutExchange)

We also provide a BindingBuilder to facilitate a "fluent API" style.

Binding b = BindingBuilder.bind(someQueue).to(someTopicExchange).with("foo.*");

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a static
import for the 'bind()' method.

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it is not an
"active" component. However, as you will see later in Section 2.8, “Configuring the broker”, Binding instances
can be used by the AmqpAdmin class to actually trigger the binding actions on the broker. Also, as you will see in
that same section, the Binding instances can be defined using Spring's @Bean-style within @Configuration

classes. There is also a convenient base class which further simplifies that approach for generating
AMQP-related bean definitions and recognizes the Queues, Exchanges, and Bindings so that they will all be
declared on the AMQP broker upon application startup.

The AmqpTemplate is also defined within the core package. As one of the main components involved in actual
AMQP messaging, it is discussed in detail in its own section (see Section 2.3, “AmqpTemplate”).

Using Spring AMQP

Spring AMQP () 7

2.2. Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our
"spring-rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the ConnectionFactory

interface. The responsibility of a ConnectionFactory implementation is to provide an instance of
org.springframework.amqp.rabbit.connection.Connection which is a wrapper for
com.rabbitmq.client.Connection. The only concrete implementation we provide is
CachingConnectionFactory which establishes a single connection proxy that can be shared by the application.
Sharing of the connection is possible since the "unit of work" for messaging with AMQP is actually a "channel"
(in some ways, this is similar to the relationship between a Connection and a Session in JMS). As you can
imagine, the connection instance provides a createChannel method. The CachingConnectionFactory

implementation supports caching of those channels, and it maintains separate caches for channels based on
whether they are transactional or not. When creating an instance of CachingConnectionFactory, the 'hostname'
can be provided via the constructor. The 'username' and 'password' properties should be provided as well. If you
would like to configure the size of the channel cache (the default is 1), you could call the
setChannelCacheSize() method here as well.

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("somehost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");

Connection connection = connectionFactory.createConnection();

When using XML, the configuration might look like this:

<bean id="connectionFactory"
class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

<constructor-arg value="somehost"/>
<property name="username" value="guest"/>
<property name="password" value="guest"/>

</bean>

Note
There is also a SingleConnectionFactory implementation which is only available in the unit test
code of the framework. It is simpler than CachingConnectionFactory since it does not cache
channels, but it is not intended for practical usage outside of simple tests due to its lack of
performance and resilience. If you find a need to implement your own ConnectionFactory for
some reason, the AbstractConnectionFactory base class may provide a nice starting point.

A ConnectionFactory can be created quickly and conveniently using the rabbit namespace:

<rabbit:connection-factory
id="connectionFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you. The created
instance will be a CachingConnectionFactory. Keep in mind that the default cache size for channels is 1. If
you want more channels to be cached set a larger value via the 'channelCacheSize' property. In XML it would
look like this:

<bean id="connectionFactory"
class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

<constructor-arg value="somehost"/>

Using Spring AMQP

Spring AMQP () 8

<property name="username" value="guest"/>
<property name="password" value="guest"/>
<property name="channelCacheSize" value="25"/>

</bean>

And with the namespace you can just add the 'channel-cache-size' attribute:

<rabbit:connection-factory
id="connectionFactory" channel-cache-size="25"/>

Host and port attributes can be provided using the namespace

<rabbit:connection-factory
id="connectionFactory" host="somehost" port="5672" />

Alternatively, if running in a clustered environment, use the addresses attribute.

<rabbit:connection-factory
id="connectionFactory" addresses="host1:5672,host2:5672" />

2.3. AmqpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring
AMQP provides a "template" that plays a central role. The interface that defines the main operations is called
AmqpTemplate. Those operations cover the general behavior for sending and receiving Messages. In other
words, they are not unique to any implementation, hence the "AMQP" in the name. On the other hand, there are
implementations of that interface that are tied to implementations of the AMQP protocol. Unlike JMS, which is
an interface-level API itself, AMQP is a wire-level protocol. The implementations of that protocol provide their
own client libraries, so each implementation of the template interface will depend on a particular client library.
Currently, there is only a single implementation: RabbitTemplate. In the examples that follow, you will often
see usage of an "AmqpTemplate", but when you look at the configuration examples, or any code excerpts
where the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AmqpTemplate interface defines all of the basic operations for sending and receiving
Messages. We will explore Message sending and reception, respectively, in the two sections that follow.

2.4. Sending messages

When sending a Message, one can use any of the following methods:

void send(Message message) throws AmqpException;

void send(String routingKey, Message message) throws AmqpException;

void send(String exchange, String routingKey, Message message) throws AmqpException;

We can begin our discussion with the last method listed above since it is actually the most explicit. It allows an
AMQP Exchange name to be provided at runtime along with a routing key. The last parameter is the callback
that is responsible for actual creating of the Message instance. An example of using this method to send a
Message might look this this:

amqpTemplate.send("marketData.topic", "quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

Using Spring AMQP

Spring AMQP () 9

The "exchange" property can be set on the template itself if you plan to use that template instance to send to the
same exchange most or all of the time. In such cases, the second method listed above may be used instead. The
following example is functionally equivalent to the previous one:

amqpTemplate.setExchange("marketData.topic");
amqpTemplate.send("quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting only the
Message may be used:

amqpTemplate.setExchange("marketData.topic");
amqpTemplate.setRoutingKey("quotes.nasdaq.FOO");
amqpTemplate.send(new Message("12.34".getBytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method parameters
will always override the template's default values. In fact, even if you do not explicitly set those properties on
the template, there are always default values in place. In both cases, the default is an empty String, but that is
actually a sensible default. As far as the routing key is concerned, it's not always necessary in the first place
(e.g. a Fanout Exchange). Furthermore, a Queue may be bound to an Exchange with an empty String. Those are
both legitimate scenarios for reliance on the default empty String value for the routing key property of the
template. As far as the Exchange name is concerned, the empty String is quite commonly used because the
AMQP specification defines the "default Exchange" as having no name. Since all Queues are automatically
bound to that default Exchange (which is a Direct Exchange) using their name as the binding value, that second
method above can be used for simple point-to-point Messaging to any Queue through the default Exchange.
Simply provide the queue name as the "routingKey" - either by providing the method parameter at runtime:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.send("queue.helloWorld", new Message("Hello World".getBytes(), someProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to a single Queue,
the following is perfectly reasonable:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.setRoutingKey("queue.helloWorld"); // but we'll always send to this Queue
template.send(new Message("Hello World".getBytes(), someProperties));

2.5. Receiving messages

Message reception is always a bit more complicated than sending. The reason is that there are two ways to
receive a Message. The simpler option is to poll for a single Message at a time with a synchronous, blocking
method call. The more complicated yet more common approach is to register a listener that will receive
Messages on-demand, asynchronously. We will look at an example of each approach in the next two
sub-sections.

2.5.1. Synchronous Consumer

The AmqpTemplate itself can be used for synchronous Message reception. There are two 'receive' methods
available. As with the Exchange on the sending side, there is a method that requires a queue property having
been set directly on the template itself, and there is a method that accepts a queue parameter at runtime.

Message receive() throws AmqpException;

Using Spring AMQP

Spring AMQP () 10

Message receive(String queueName) throws AmqpException;

Just like in the case of sending messages, the AmqpTemplate has some convenience methods for receiving
POJOs instead of Message instances, and implementations will provide a way to customize the
MessageConverter used to create the Object returned:

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

2.5.2. Asynchronous Consumer

For asynchronous Message reception, a dedicated component (not the AmqpTemplate) is involved. That
component is a container for a Message consuming callback. We will look at the container and its properties in
just a moment, but first we should look at the callback since that is where your application code will be
integrated with the messaging system. There are a few options for the callback. The simplest of these is to
implement the MessageListener interface:

public interface MessageListener {

void onMessage(Message message);

}

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use the
ChannelAwareMessageListener. It looks similar but with an extra parameter:

public interface ChannelAwareMessageListener {

void onMessage(Message message, Channel channel) throws Exception;

}

If you prefer to maintain a stricter separation between your application logic and the messaging API, you can
rely upon an adapter implementation that is provided by the framework. This is often referred to as
"Message-driven POJO" support. When using the adapter, you only need to provide a reference to the instance
that the adapter itself should invoke.

MessageListener listener = new MessageListenerAdapter(somePojo);

Now that you've seen the various options for the Message-listening callback, we can turn our attention to the
container. Basically, the container handles the "active" responsibilities so that the listener callback can remain
passive. The container is an example of a "lifecycle" component. It provides methods for starting and stopping.
When configuring the container, you are essentially bridging the gap between an AMQP Queue and the
MessageListener instance. You must provide a reference to the ConnectionFactory and the queue name or
Queue instance(s) from which that listener should consume Messages. Here is the most basic example using the
default implementation, SimpleMessageListenerContainer :

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(rabbitConnectionFactory);
container.setQueueNames("some.queue");
container.setMessageListener(new MessageListenerAdapter(somePojo));

As an "active" component, it's most common to create the listener container with a bean definition so that it can
simply run in the background. This can be done via XML:

Using Spring AMQP

Spring AMQP () 11

<rabbit:listener-container connection-factory="rabbitConnectionFactory">
<rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>

</rabbit:listener-container>

Or, you may prefer to use the @Configuration style which will look very similar to the actual code snippet
above:

@Configuration
public class ExampleAmqpConfiguration {

@Bean
public MessageListenerContainer messageListenerContainer() {

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(rabbitConnectionFactory());
container.setQueueName("some.queue");
container.setMessageListener(exampleListener());
return container;

}

@Bean
public ConnectionFactory rabbitConnectionFactory() {

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");
return connectionFactory;

}

@Bean
public MessageListener exampleListener() {

return new MessageListener() {
public void onMessage(Message message) {

System.out.println("received: " + message);
}

};
}

}

2.6. Message Converters

The AmqpTemplate also defines several methods for sending and receiving Messages that will delegate to a
MessageConverter. The MessageConverter itself is quite straightforward. It provides a single method for each
direction: one for converting to a Message and another for converting from a Message. Notice that when
converting to a Message, you may also provide properties in addition to the object. The "object" parameter
typically corresponds to the Message body.

public interface MessageConverter {

Message toMessage(Object object, MessageProperties messageProperties)
throws MessageConversionException;

Object fromMessage(Message message) throws MessageConversionException;

}

The relevant Message-sending methods on the AmqpTemplate are listed below. They are simpler than the
methods we discussed previously because they do not require the Message instance. Instead, the
MessageConverter is responsible for "creating" each Message by converting the provided object to the byte
array for the Message body and then adding any provided MessageProperties.

void convertAndSend(Object message) throws AmqpException;

void convertAndSend(String routingKey, Object message) throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message) throws AmqpException;

void convertAndSend(Object message, MessagePostProcessor messagePostProcessor) throws AmqpException;

Using Spring AMQP

Spring AMQP () 12

void convertAndSend(String routingKey, Object message, MessagePostProcessor messagePostProcessor)
throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message,
MessagePostProcessor messagePostProcessor) throws AmqpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies on the
template's "queue" property having been set.

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

2.6.1. SimpleMessageConverter

The default implementation of the MessageConverter strategy is called SimpleMessageConverter. This is the
converter that will be used by an instance of RabbitTemplate if you do not explicitly configure an alternative. It
handles text-based content, serialized Java objects, and simple byte arrays.

2.6.1.1. Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain"), it will also check for the
content-encoding property to determine the charset to be used when converting the Message body byte array to
a Java String. If no content-encoding property had been set on the input Message, it will use the "UTF-8"
charset by default. If you need to override that default setting, you can configure an instance of
SimpleMessageConverter, set its "defaultCharset" property and then inject that into a RabbitTemplate

instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object", the
SimpleMessageConverter will attempt to deserialize (rehydrate) the byte array into a Java object. While that
might be useful for simple prototyping, it's generally not recommended to rely on Java serialization since it
leads to tight coupling between the producer and consumer. Of course, it also rules out usage of non-Java
systems on either side. With AMQP being a wire-level protocol, it would be unfortunate to lose much of that
advantage with such restrictions. In the next two sections, we'll explore some alternatives for passing rich
domain object content without relying on Java serialization.

For all other content-types, the SimpleMessageConverter will return the Message body content directly as a
byte array.

2.6.1.2. Converting To a Message

When converting to a Message from an arbitrary Java Object, the SimpleMessageConverter likewise deals
with byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the case of byte
arrays, there is nothing to convert), and it will set the content-type property accordingly. If the Object to be
converted does not match one of those types, the Message body will be null.

2.6.2. JsonMessageConverter

As mentioned in the previous section, relying on Java serialization is generally not recommended. One rather
common alternative that is more flexible and portable across different languages and platforms is JSON
(JavaScript Object Notation). An implementation is available and can be configured on any RabbitTemplate

instance to override its usage of the SimpleMessageConverter default.

Using Spring AMQP

Spring AMQP () 13

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">

<bean class="org.springframework.amqp.support.converter.JsonMessageConverter">
<!-- if necessary, override the DefaultClassMapper -->
<property name="classMapper" ref="customClassMapper"/>

</bean>
</property>

</bean>

2.6.3. MarshallingMessageConverter

Yet another option is the MarshallingMessageConverter. It delegates to the Spring OXM library's
implementations of the Marshaller and Unmarshaller strategy interfaces. You can read more about that library
here. In terms of configuration, it's most common to provide the constructor argument only since most
implementations of Marshaller will also implement Unmarshaller.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">

<bean class="org.springframework.amqp.support.converter.MarshallingMessageConverter">
<constructor-arg ref="someImplemenationOfMarshallerAndUnmarshaller"/>

</bean>
</property>

</bean>

2.7. Request/Reply Messaging

The AmqpTemplate also provides a variety of sendAndReceive methods that accept the same argument options
that you have seen above for the one-way send operations (exchange, routingKey, and Message). Those
methods are quite useful for request/reply scenarios since they handle the configuration of the necessary
"reply-to" property before sending and can listen for the reply message on an exclusive Queue that is created
internally for that purpose.

Similar request/reply methods are also available where the MessageConverter is applied to both the request and
reply. Those methods are named convertSendAndReceive. See the Javadoc of AmqpTemplate for more detail.

By default, a new temporary queue is used for each reply. However, a single reply queue can be configured on
the template, which allows you to set arguments on that queue (such as 'ha_args="all"' for mirrored queues). In
this case, however, you must also provide a <reply-listener/> sub element. This element provides a listener
container for the reply queue, with the template being the listener. All of the Section 2.11, “Message Listener
Container Configuration” attributes allowed on a <listener-container/> are allowed on the element, except for
connection-factory and message-converter, which are inherited from the template's configuration.

<rabbit:template id="amqpTemplate"
connection-factory="connectionFactory" reply-queue="replies">

<rabbit:reply-listener />
</rabbit:template>

While the container and template share a connection factory, they do not share a channel and therefore requests
and replies are not performed within the same transaction (if transactional).

2.8. Configuring the broker

Using Spring AMQP

Spring AMQP () 14

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and Bindings
on the broker. These operations which are portable from the 0.8 specification and higher are present in the
AmqpAdmin interface in the org.springframework.amqp.core package. The RabbitMQ implementation of that
class is RabbitAdmin located in the org.springframework.amqp.rabbit.core package.

The AmqpAdmin interface is based on using the Spring AMQP domain abstractions and is shown below:

public interface AmqpAdmin {

// Exchange Operations

void declareExchange(Exchange exchange);

void deleteExchange(String exchangeName);

// Queue Operations

Queue declareQueue();

void declareQueue(Queue queue);

void deleteQueue(String queueName);

void deleteQueue(String queueName, boolean unused, boolean empty);

void purgeQueue(String queueName, boolean noWait);

// Binding Operations

void declareBinding(Binding binding);

}

The no-arg declareQueue() method defines a queue on the broker whose name is automatically generated. The
additional properties of this auto-generated queue are exclusive=true, autoDelete=true, and durable=false.

Note

Removing a binding was not introduced until the 0.9 version of the AMQP spec.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring XML
would look like this:

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:admin id="amqpAdmin" connection-factory="connectionFactory"/>

The RabbitAdmin implementation does automatic lazy declaration of Queues, Exchanges and Bindings

declared in the same ApplicationContext. These components will be declared as son as a Connection is
opened to the broker. There are some namespace features that make this very convenient, e.g. in the Stocks
sample application we have:

<rabbit:queue id="tradeQueue" />

<rabbit:queue id="marketDataQueue" />

<fanout-exchange name="broadcast.responses" xmlns="http://www.springframework.org/schema/rabbit">
<bindings>
<binding queue="tradeQueue" />

</bindings>
</fanout-exchange>

<topic-exchange name="app.stock.marketdata" xmlns="http://www.springframework.org/schema/rabbit">
<bindings>
<binding queue="marketDataQueue" pattern="${stocks.quote.pattern}" />

Using Spring AMQP

Spring AMQP () 15

</bindings>
</topic-exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names generated
by the framework, not by the broker) and refer to them by ID. We can also declare Queues with explicit names,
which also serve as identifiers for their bean definitions in the context. E.g.

<rabbit:queue name="stocks.trade.queue"/>

Queues can be configured with additional arguments, for example, 'x-message-ttl' or 'x-ha-policy'. Using the
namespace support, they are provided in the form of a Map of argument name/argument value pairs, using the
<rabbit:queue-arguments> element.

<rabbit:queue name="withArguments">
<rabbit:queue-arguments>

<entry key="x-ha-policy" value="all" />
</rabbit:queue-arguments>

</rabbit:queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs to be
provided.

<rabbit:queue name="withArguments">
<rabbit:queue-arguments value-type="java.lang.Long">

<entry key="x-message-ttl" value="100" />
</rabbit:queue-arguments>

</rabbit:queue>

When providing arguments of mixed types, the type is provided for each entry element:

<rabbit:queue name="withArguments">
<rabbit:queue-arguments>

<entry key="x-message-ttl">
<value type="java.lang.Long">100</value>

</entry>
<entry key="x-ha-policy" value="all" />

</rabbit:queue-arguments>
</rabbit:queue>

With Spring Framework 3.2 and later, this can be declared a little more succinctly:

<rabbit:queue name="withArguments">
<rabbit:queue-arguments>

<entry key="x-message-ttl" value="100" value-type="java.lang.Long" />
<entry key="x-ha-policy" value="all" />

</rabbit:queue-arguments>
</rabbit:queue>

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample application, where there
is the @Configuration class AbstractStockRabbitConfiguration which in turn has
RabbitClientConfiguration and RabbitServerConfiguration subclasses. The code for
AbstractStockRabbitConfiguration is shown below

@Configuration
public abstract class AbstractStockAppRabbitConfiguration {

@Bean
public ConnectionFactory connectionFactory() {

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");

Using Spring AMQP

Spring AMQP () 16

return connectionFactory;
}

@Bean
public RabbitTemplate rabbitTemplate() {

RabbitTemplate template = new RabbitTemplate(connectionFactory());
template.setMessageConverter(jsonMessageConverter());
configureRabbitTemplate(template);
return template;

}

@Bean
public MessageConverter jsonMessageConverter() {

return new JsonMessageConverter();
}

@Bean
public TopicExchange marketDataExchange() {

return new TopicExchange("app.stock.marketdata");
}

// additional code omitted for brevity

}

In the Stock application, the server is configured using the following @Configuration class:

@Configuration
public class RabbitServerConfiguration extends AbstractStockAppRabbitConfiguration {

@Bean
public Queue stockRequestQueue() {

return new Queue("app.stock.request");
}

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. There is no binding of the
TopicExchange to a queue in the server configuration, as that is done in the client application. The stock
request queue however is automatically bound to the AMQP default exchange - this behavior is defined by the
specification.

The client @Configuration class is a little more interesting and is shown below.

@Configuration
public class RabbitClientConfiguration extends AbstractStockAppRabbitConfiguration {

@Value("${stocks.quote.pattern}")
private String marketDataRoutingKey;

@Bean
public Queue marketDataQueue() {

return amqpAdmin().declareQueue();
}

/**
* Binds to the market data exchange. Interested in any stock quotes
* that match its routing key.
*/

@Bean
public Binding marketDataBinding() {

return BindingBuilder.bind(
marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

}

// additional code omitted for brevity

}

Using Spring AMQP

Spring AMQP () 17

The client is declaring another queue via the declareQueue() method on the AmqpAdmin, and it binds that
queue to the market data exchange with a routing pattern that is externalized in a properties file.

2.8.1. Federated Exchanges

Rabbit supports federation; federated exchanges are backed by one of the other exchange types. Therefore,
when configuring a federated exchange, it is important to supply bindings of the appropriate type for the
backing exchange. Examples include...

<federated-exchange name="fedDirect" backing-type="direct"
upstream-set="upstream-set">

<direct-bindings>
<binding queue="bucket" />

</direct-bindings>
</federated-exchange>

<federated-exchange name="fedTopic" backing-type="topic"
upstream-set="upstream-set">

<topic-bindings>
<binding queue="bucket" pattern="bucket.#"/>

</topic-bindings>
</federated-exchange>

Notice that the child element, e.g. <direct-bindings/> matches the backing-type attribute.

2.9. Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For example, there are a lot of
cases where IOExceptions may be thrown. The RabbitTemplate, SimpleMessageListenerContainer, and other
Spring AMQP components will catch those Exceptions and convert into one of the Exceptions within our
runtime hierarchy. Those are defined in the 'org.springframework.amqp' package, and AmqpException is the
base of the hierarchy.

If you are using a SimpleMessageListenerContainer you will also be able to inject a Spring ErrorHandler

instance that can be used to react to an exception in the listener. The ErrorHandler cannot prevent the
exception from eventually propagating, but it can be used to log or alert another component that there is a
problem.

2.10. Transactions

The Spring Rabbit framework has support for automatic transaction management in the synchronous and
asynchronous use cases with a number of different semantics that can be selected declaratively, as is familiar to
existing users of Spring transactions. This makes many if not most common messaging patterns very easy to
implement.

There are two ways to signal the desired transaction semantics to the framework. In both the RabbitTemplate

and SimpleMessageListenerContainer there is a flag channelTransacted which, if true, tells the framework
to use a transactional channel and to end all operations (send or receive) with a commit or rollback depending
on the outcome, with an exception signaling a rollback. Another signal is to provide an external transaction
with one of Spring's PlatformTransactionManager implementations as a context for the ongoing operation. If
there is already a transaction in progress when the framework is sending or receiving a message, and the
channelTransacted flag is true, then the commit or rollback of the messaging transaction will be deferred until

Using Spring AMQP

Spring AMQP () 18

the end of the current transaction. If the channelTransacted flag is false, then no transaction semantics apply
to the messaging operation (it is auto-acked).

The channelTransacted flag is a configuration time setting: it is declared and processed once when the AMQP
components are created, usually at application startup. The external transaction is more dynamic in principle
because the system responds to the current Thread state at runtime, but in practice is often also a configuration
setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with RabbitTemplate the external transaction is provided by the caller, either
declaratively or imperatively according to taste (the usual Spring transaction model). An example of a
declarative approach (usually preferred because it is non-invasive), where the template has been configured
with channelTransacted=true:

@Transactional
public void doSomething() {

String incoming = rabbitTemplate.receiveAndConvert();
// do some more database processing...
String outgoing = processInDatabaseAndExtractReply(incoming);
rabbitTemplate.convertAndSend(outgoing);

}

A String payload is received, converted and sent as a message body inside a method marked as @Transactional,
so if the database processing fails with an exception, the incoming message will be returned to the broker, and
the outgoing message will not be sent. This applies to any operations with the RabbitTemplate inside a chain
of transactional methods (unless the Channel is directly manipulated to commit the transaction early for
instance).

For asynchronous use cases with SimpleMessageListenerContainer if an external transaction is needed it has
to be requested by the container when it sets up the listener. To signal that an external transaction is required
the user provides an implementation of PlatformTransactionManager to the container when it is configured.
For example:

@Configuration
public class ExampleExternalTransactionAmqpConfiguration {

@Bean
public MessageListenerContainer messageListenerContainer() {

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(rabbitConnectionFactory());
container.setTransactionManager(transactionManager());
container.setChannelTransacted(true);
container.setQueueName("some.queue");
container.setMessageListener(exampleListener());
return container;

}

}

In the example above, the transaction manager is added as a dependency injected from another bean definition
(not shown), and the channelTransacted flag is also set to true. The effect is that if the listener fails with an
exception the transaction will be rolled back, and the message will also be returned to the broker. Significantly,
if the transaction fails to commit (e.g. a database constraint error, or connectivity problem), then the AMQP
transaction will also be rolled back, and the message will be returned to the broker. This is sometimes known as
a Best Efforts 1 Phase Commit, and is a very powerful pattern for reliable messaging. If the
channelTransacted flag was set to false in the example above, which is the default, then the external
transaction would still be provided for the listener, but all messaging operations would be auto-acked, so the
effect is to commit the messaging operations even on a rollback of the business operation.

2.10.1. A note on Rollback of Received Messages

Using Spring AMQP

Spring AMQP () 19

AMQP transactions only apply to messages and acks sent to the broker, so when there is a rollback of a Spring
transaction and a message has been received, what Spring AMQP has to do is not just rollback the transaction,
but also manually reject the message (sort of a nack, but that's not what the specification calls it). Such
messages (and any that are unacked when a channel is closed or aborts) go to the back of the queue on a Rabbit
broker, and this behaviour is not what some users expect, especially if they come from a JMS background, so
it's good to be aware of it. The re-queuing order is not mandated by the AMQP specification, but it makes the
broker much more efficient, and also means that if it is under load there is a natural back off before the message
can be consumed again.

2.10.2. Using the RabbitTransactionManager

The RabbitTransactionManager is an alternative to executing Rabbit operations within, and synchronized with,
external transactions. This Transaction Manager is an implementation of the PlatformTransactionManager
interface and should be used with a single Rabbit ConnectionFactory.

Important
This strategy is not able to provide XA transactions, for example in order to share transactions
between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources via
ConnectionFactoryUtils.getTransactionalResourceHolder(ConnectionFactory, boolean) instead of a
standard Connection.createChannel() call with subsequent Channel creation. When using Spring's
RabbitTemplate, it will autodetect a thread-bound Channel and automatically participate in it.

With Java Configuration you can setup a new RabbitTransactionManager using:

@Bean
public RabbitTransactionManager rabbitTransactionManager() {

return new RabbitTransactionManager(connectionFactory);
}

If you prefer using XML configuration, declare the following bean in your XML Application Context file:

<bean id="rabbitTxManager"
class="org.springframework.amqp.rabbit.transaction.RabbitTransactionManager">

<property name="connectionFactory" ref="connectionFactory"/>
</bean>

2.11. Message Listener Container Configuration

There are quite a few options for configuring a SimpleMessageListenerContainer related to transactions and
quality of service, and some of them interact with each other.

When configuring with the XML namespace, the convention is to use hyphenated attributes rather than camel
case; for example, for property 'connectionFactory', the XML equivalent is 'connection-factory'.

Table 2.1. Configuration options for a message listener container

Property Description

channelTransacted Boolean flag to signal that all messages should be

Using Spring AMQP

Spring AMQP () 20

http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Property Description

acknowledged in a transaction (either manually or
automatically)

acknowledgeMode NONE = no acks will be sent (the default and
incompatible with channelTransacted=true).
RabbitMQ calls this "autoack" because the broker
assumes all messages are acked without any action
from the consumer. MANUAL = the listener must
acknowledge all messages by calling
Channel.basicAck(). AUTO = the container will
acknowledge the message automatically. Note that
acknowledgeMode is complementary to
channelTransacted - if the channel is transacted then
the broker requires a commit notification in addition
to the ack.

transactionManager External transaction manager for the operation of the
listener. Also complementary to channelTransacted -
if the Channel is transacted then its transaction will
be synchronized with the external transaction.

prefetchCount The number of messages to accept from the broker in
one socket frame. The higher this is the faster the
messages can be delivered, but the higher the risk of
non-sequential processing. Ignored if the
acknowledgeMode is NONE.

shutdownTimeout When a container shuts down (e.g. if its enclosing
ApplicationContext is closed) it waits for in-flight
messages to be processed up to this limit. Defaults to
10 seconds. After the limit is reached, if the channel
is not transacted messages will be discarded.

txSize If the channel is transacted or an external transaction
manager is provided, the container will attempt to
process up to this number of messages per transaction
(waiting for each one up to the receive timeout
setting).

receiveTimeout The maximum time to wait for each message. If
acknowledgeMode=NONE (the default) this has very
little effect - the container just spins round and asks
for another message. It has the biggest effect for a
transactional Channel with txSize > 1, since it can
cause messages already consumed not to be
acknowledged until the timeout expires.

autoStartup Flag to indicate that the container should start when
the ApplicationContext does (as part of the
SmartLifecycle callbacks which happen after all
beans are initialized). Defaults to true, but set it to
false if your broker might not be available on startup,
and then call start() later manually when you know

Using Spring AMQP

Spring AMQP () 21

Property Description

the broker is ready.

phase When autoStartup is true, the lifecycle phase within
which this container should start and stop. The lower
the value the earlier this container will start and the
later it will stop. The default is
Integer.MAX_VALUE meaning the container will
start as late as possible and stop as soon as possible.

adviceChain An array of AOP Advice to apply to the listener
execution. This can be used to apply additional cross
cutting concerns such as automatic retry in the event
of broker death. Note that simple re-connection after
an AMQP error is handled by the
CachingConnectionFactory, as long as the broker is
still alive.

taskExecutor A reference to a Spring TaskExecutor (or standard
JDK 1.5+ Executor) for executing listener invokers.
Default is a SimpleAsyncTaskExecutor, using
internally managed threads.

errorHandler A reference to an ErrorHandler strategy for handling
any uncaught Exceptions that may occur during the
execution of the MessageListener.

concurrency The number of concurrent consumers to start for each
listener.

connectionFactory A reference to the connectionFactory; when
configuring using the XML namespace, the default
referenced bean name is "rabbitConnectionFactory".

messageConverter A reference to the MessageConverter strategy for
converting AMQP Messages to listener method
arguments for any referenced 'listener' that is a POJO.
Default is a SimpleMessageConverter.

requeueRejected Determines whether messages that are rejected
because the listener threw an exception should be
requeued or not. Default 'true'.

2.12. Resilience: Recovering from Errors and Broker Failures

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with recovery and
automatic re-connection in the event of a protocol error or broker failure. We have seen all the relevant
components already in this guide, but it should help to bring them all together here and call out the features and
recovery scenarios individually.

The primary reconnection features are enabled by the CachingConnectionFactory itself. It is also often
beneficial to use the RabbitAdmin auto-declaration features. In addition, if you care about guaranteed delivery,

Using Spring AMQP

Spring AMQP () 22

you probably also need to use the channelTransacted flag in RabbitTemplate and
SimpleMessageListenerContainer and also the AcknowledgeMode.AUTO (or manual if you do the acks
yourself) in the SimpleMessageListenerContainer.

2.12.1. Automatic Declaration of Exchanges, Queues and Bindings

The RabbitAdmin component can declare exchanges, queues and bindings on startup. It does this lazily, through
a ConnectionListener, so if the broker is not present on startup it doesn't matter. The first time a Connection

is used (e.g. by sending a message) the listener will fire and the admin features will be applied. A further
benefit of doing the auto declarations in a listener is that if the connection is dropped for any reason (e.g. broker
death, network glitch, etc.) they will be applied again the next time they are needed.

2.12.2. Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using RabbitTemplate (for instance), then
Spring AMQP will throw an AmqpException (usually but not always AmqpIOException). We don't try to hide
the fact that there was a problem, so you have to be able to catch and respond to the exception. The easiest
thing to do if you suspect that the connection was lost, and it wasn't your fault, is to simply try the operation
again. You can do this manually, or you could look at using Spring Retry to handle the retry (imperatively or
declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the parameters of
the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP also provides some
convenience factory beans for creating Spring Retry interceptors in a convenient form for AMQP use cases,
with strongly typed callback interfaces for you to implement custom recovery logic. See the Javadocs and
properties of StatefulRetryOperationsInterceptor and StatelessRetryOperationsInterceptor for more
detail. Stateless retry is appropriate if there is no transaction or if a transaction is started inside the retry
callback. Note that stateless retry is simpler to configure and analyse than stateful retry, but it is not usually
appropriate if there is an ongoing transaction which must be rolled back or definitely is going to roll back. A
dropped connection in the middle of a transaction should have the same effect as a rollback, so for reconnection
where the transaction is started higher up the stack, stateful retry is usually the best choice.

2.12.3. Message Listeners and the Asynchronous Case

If a MessageListener fails because of a business exception, the exception is handled by the message listener
container and then it goes back to listening for another message. If the failure is caused by a dropped
connection (not a business exception), then the consumer that is collecting messages for the listener has to be
cancelled and restarted. The SimpleMessageListenerContainer handles this seamlessly, and it leaves a log to
say that the listener is being restarted. In fact it loops endlessly trying to restart the consumer, and only if the
consumer is very badly behaved indeed will it give up. One side effect is that if the broker is down when the
container starts, it will just keep trying until a connection can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need more thought
and some custom configuration, especially if transactions and/or container acks are in use. Prior to 2.8.x,
RabbitMQ had no definition of dead letter behaviour, so by default a message that is rejected or rolled back
because of a business exception can be redelivered ad infinitum. To put a limit in the client on the number of
re-deliveries, one choice is a StatefulRetryOperationsInterceptor in the advice chain of the listener. The
interceptor can have a recovery callback that implements a custom dead letter action: whatever is appropriate
for your particular environment.

Another alternative is to set the container's rejectRequeued property to false. This causes all failed messages to
be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering the message to a Dead

Using Spring AMQP

Spring AMQP () 23

Letter Exchange.

Or, you can throw a AmqpRejectAndDontRequeueException; this prevents message requeuing, regardless of the
setting of the rejectRequeued property.

Often, a combination of both techniques will be used. Use a StatefulRetryOperationsInterceptor in the
advice chain, where it's MessageRecover throws an AmqpRejectAndDontRequeueException. The
MessageRecover is called when all retries have been exhausted. The default MessageRecoverer simply
consumes the errant message and emits a WARN message. In which case, the message is ACK'd and won't be
sent to the Dead Letter Exchange, if any.

Using Spring AMQP

Spring AMQP () 24

Chapter 3. Erlang integration

3.1. Introduction

There is an open source project called JInterface that provides a way for Java applications to communicate with
an Erlang process. The API is very low level and rather tedious to use and throws checked exceptions. The
Spring Erlang module makes accessing functions in Erlang from Java easy, often they can be one liners.

3.2. Communicating with Erlang processes

3.2.1. Executing RPC

The interface ErlangOperations is the high level API for interacting with an Erlang process.

public interface ErlangOperations {

<T> T execute(ConnectionCallback<T> action) throws OtpException;

OtpErlangObject executeErlangRpc(String module, String function, OtpErlangList args)
throws OtpException;

OtpErlangObject executeErlangRpc(String module, String function, OtpErlangObject... args)
throws OtpException;

OtpErlangObject executeRpc(String module, String function, Object... args)
throws OtpException;

Object executeAndConvertRpc(String module, String function,
ErlangConverter converterToUse, Object... args) throws OtpException;

// Sweet!
Object executeAndConvertRpc(String module, String function, Object... args)

throws OtpException;

}

The class that implements this interface is called ErlangTemplate. There are a few convenience methods, most
notably executeAndConvertRpc, as well as the execute method which gives you access to the 'native' API of
the JInterface project. For simple functions, you can invoke executeAndConvertRpc with the appropriate
Erlang module name, function, and arguments in a one-liner. For example, here is the implementation of the
RabbitBrokerAdmin method 'DeleteUser'

@ManagedOperation
public void deleteUser(String username) {

erlangTemplate.executeAndConvertRpc(
"rabbit_access_control", "delete_user", username.getBytes());

}

As the JInterface library uses specific classes such as OtpErlangDouble and OtpErlangString to represent the
primitive types in Erlang RPC calls, there is a converter class that works in concert with ErlangTemplate that
knows how to translate from Java primitive types to their Erlang class equivalents. You can also create custom
converters and register them with the ErlangTemplate to handle more complex data format translations.

3.2.2. ErlangConverter

Spring AMQP () 25

The ErlangConverter interface is shown below.

public interface ErlangConverter {

/**
* Convert a Java object to a Erlang data type.
* @param object the object to convert
* @return the Erlang data type
* @throws ErlangConversionException in case of conversion failure
*/

OtpErlangObject toErlang(Object object) throws ErlangConversionException;

/**
* Convert from a Erlang data type to a Java object.
* @param erlangObject the Erlang object to convert
* @return the converted Java object
* @throws ErlangConversionException in case of conversion failure
*/

Object fromErlang(OtpErlangObject erlangObject) throws ErlangConversionException;

/**
* The return value from executing the Erlang RPC.
*/

Object fromErlangRpc(String module, String function, OtpErlangObject erlangObject)
throws ErlangConversionException;

}

3.3. Exceptions

The JInterface checked exception hierarchy is translated into a parallel runtime exception hierarchy when
executing operations through ErlangTemplate.

Erlang integration

Spring AMQP () 26

Chapter 4. Sample Applications

4.1. Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello World"
example that demonstrates both synchronous and asynchronous message reception. It provides an excellent
starting point for acquiring an understanding of the essential components. The second sample is based on a
stock-trading use case to demonstrate the types of interaction that would be common in real world applications.
In this chapter, we will provide a quick walk-through of each sample so that you can focus on the most
important components. The samples are both Maven-based, so you should be able to import them directly into
any Maven-aware IDE (such as SpringSource Tool Suite).

4.2. Hello World

The Hello World sample demonstrates both synchronous and asynchronous message reception. You can import
the 'spring-rabbit-helloworld' sample into the IDE and then follow the discussion below.

4.2.1. Synchronous Example

Within the 'src/main/java' directory, navigate to the 'org.springframework.amqp.helloworld' package. Open the
HelloWorldConfiguration class and notice that it contains the @Configuration annotation at class-level and
some @Bean annotations at method-level. This is an example of Spring's Java-based configuration. You can
read more about that here.

@Bean
public ConnectionFactory connectionFactory() {

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");
return connectionFactory;

}

The configuration also contains an instance of RabbitAdmin, which by default looks for any beans of type
Exchange, Queue, or Binding and then declares them on the broker. In fact, the "helloWorldQueue" bean that is
generated in HelloWorldConfiguration is an example simply because it is an instance of Queue.

@Bean
public Queue helloWorldQueue() {

return new Queue(this.helloWorldQueueName);
}

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue's name
set as its "queue" property (for receiving Messages) and for its "routingKey" property (for sending Messages).

Now that we've explored the configuration, let's look at the code that actually uses these components. First,
open the Producer class from within the same package. It contains a main() method where the Spring
ApplicationContext is created.

public static void main(String[] args) {
ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);
amqpTemplate.convertAndSend("Hello World");
System.out.println("Sent: Hello World");

Spring AMQP () 27

http://github.com/SpringSource/spring-amqp-samples
http://www.springsource.com/products/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java

}

As you can see in the example above, the AmqpTemplate bean is retrieved and used for sending a Message.
Since the client code should rely on interfaces whenever possible, the type is AmqpTemplate rather than
RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance of RabbitTemplate,
relying on the interface means that this code is more portable (the configuration can be changed independently
of the code). Since the convertAndSend() method is invoked, the template will be delegating to its
MessageConverter instance. In this case, it's using the default SimpleMessageConverter, but a different
implementation could be provided to the "rabbitTemplate" bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means it will be
sharing the "rabbitTemplate" bean. That's why we configured that template with both a "routingKey" (for
sending) and "queue" (for receiving). As you saw in Section 2.3, “AmqpTemplate”, you could instead pass the
'routingKey' argument to the send method and the 'queue' argument to the receive method. The Consumer code
is basically a mirror image of the Producer, calling receiveAndConvert() rather than convertAndSend().

public static void main(String[] args) {
ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);
System.out.println("Received: " + amqpTemplate.receiveAndConvert());

}

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello World" in
the console output.

4.2.2. Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a slightly more
advanced but significantly more powerful option. With a few modifications, the Hello World sample can
provide an example of asynchronous reception, a.k.a. Message-driven POJOs. In fact, there is a sub-package
that provides exactly that: org.springframework.amqp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it creates
a "connectionFactory" and "rabbitTemplate" bean. This time, since the configuration is dedicated to the
message sending side, we don't even need any Queue definitions, and the RabbitTemplate only has the
'routingKey' property set. Recall that messages are sent to an Exchange rather than being sent directly to a
Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are bound to that default
Exchange with their name as the routing key. That is why we only need to provide the routing key here.

public RabbitTemplate rabbitTemplate() {
RabbitTemplate template = new RabbitTemplate(connectionFactory());
template.setRoutingKey(this.helloWorldQueueName);
return template;

}

Since this sample will be demonstrating asynchronous message reception, the producing side is designed to
continuously send messages (if it were a message-per-execution model like the synchronous version, it would
not be quite so obvious that it is in fact a message-driven consumer). The component responsible for sending
messages continuously is defined as an inner class within the ProducerConfiguration. It is configured to execute
every 3 seconds.

static class ScheduledProducer {

@Autowired
private volatile RabbitTemplate rabbitTemplate;

Sample Applications

Spring AMQP () 28

private final AtomicInteger counter = new AtomicInteger();

@Scheduled(fixedRate = 3000)
public void sendMessage() {

rabbitTemplate.convertAndSend("Hello World " + counter.incrementAndGet());
}

}

You don't need to understand all of the details since the real focus should be on the receiving side (which we
will cover momentarily). However, if you are not yet familiar with Spring 3.0 task scheduling support, you can
learn more here. The short story is that the "postProcessor" bean in the ProducerConfiguration is registering the
task with a scheduler.

Now, let's turn to the receiving side. To emphasize the Message-driven POJO behavior will start with the
component that is reacting to the messages. The class is called HelloWorldHandler.

public class HelloWorldHandler {

public void handleMessage(String text) {
System.out.println("Received: " + text);

}

}

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any interfaces, and it doesn't
even contain any imports. It is being "adapted" to the MessageListener interface by the Spring AMQP
MessageListenerAdapter. That adapter can then be configured on a SimpleMessageListenerContainer. For this
sample, the container is created in the ConsumerConfiguration class. You can see the POJO wrapped in the
adapter there.

@Bean
public SimpleMessageListenerContainer listenerContainer() {

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(connectionFactory());
container.setQueueName(this.helloWorldQueueName);
container.setMessageListener(new MessageListenerAdapter(new HelloWorldHandler()));
return container;

}

The SimpleMessageListenerContainer is a Spring lifecycle component and will start automatically by default.
If you look in the Consumer class, you will see that its main() method consists of nothing more than a one-line
bootstrap to create the ApplicationContext. The Producer's main() method is also a one-line bootstrap, since the
component whose method is annotated with @Scheduled will also start executing automatically. You can start
the Producer and Consumer in any order, and you should see messages being sent and received every 3
seconds.

4.3. Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World sample.
However, the configuration is very similar - just a bit more involved. Since we've walked through the Hello
World configuration in detail, here we'll focus on what makes this sample different. There is a server that
pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe to the market data feed by
binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdaq.*"). The other main feature of this demo
is a request-reply "stock trade" interaction that is initiated by the client and handled by the server. That involves
a private "replyTo" Queue that is sent by the client within the order request Message itself.

The Server's core configuration is in the RabbitServerConfiguration class within the

Sample Applications

Spring AMQP () 29

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support

org.springframework.amqp.rabbit.stocks.config.server package. It extends the
AbstractStockAppRabbitConfiguration. That is where the resources common to the Server and Client(s) are
defined, including the market data Topic Exchange (whose name is 'app.stock.marketdata') and the Queue that
the Server exposes for stock trades (whose name is 'app.stock.request'). In that common configuration file, you
will also see that a JsonMessageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on the
RabbitTemplate so that it does not need to provide that exchange name with every call to send a Message. It
does this within an abstract callback method defined in the base configuration class.

public void configureRabbitTemplate(RabbitTemplate rabbitTemplate) {
rabbitTemplate.setExchange(MARKET_DATA_EXCHANGE_NAME);

}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case, because it
will be bound to the default no-name exchange with its own name as the routing key. As mentioned earlier, the
AMQP specification defines that behavior.

@Bean
public Queue stockRequestQueue() {

return new Queue(STOCK_REQUEST_QUEUE_NAME);
}

Now that you've seen the configuration of the Server's AMQP resources, navigate to the
'org.springframework.amqp.rabbit.stocks' package under the 'src/test/java' directory. There you will see the
actual Server class that provides a main() method. It creates an ApplicationContext based on the
'server-bootstrap.xml' config file. In there you will see the scheduled task that publishes dummy market data.
That configuration relies upon Spring 3.0's "task" namespace support. The bootstrap config file also imports a
few other files. The most interesting one is 'server-messaging.xml' which is directly under 'src/main/resources'.
In there you will see the "messageListenerContainer" bean that is responsible for handling the stock trade
requests. Finally have a look at the "serverHandler" bean that is defined in "server-handlers.xml" (also in
'src/main/resources'). That bean is an instance of the ServerHandler class and is a good example of a
Message-driven POJO that is also capable of sending reply Messages. Notice that it is not itself coupled to the
framework or any of the AMQP concepts. It simply accepts a TradeRequest and returns a TradeResponse.

public TradeResponse handleMessage(TradeRequest tradeRequest) { ... }

Now that we've seen the most important configuration and code for the Server, let's turn to the Client. The best
starting point is probably RabbitClientConfiguration within the
'org.springframework.amqp.rabbit.stocks.config.client' package. Notice that it declares two queues without
providing explicit names.

@Bean
public Queue marketDataQueue() {

return amqpAdmin().declareQueue();
}

@Bean
public Queue traderJoeQueue() {

return amqpAdmin().declareQueue();
}

Those are private queues, and unique names will be generated automatically. The first generated queue is used
by the Client to bind to the market data exchange that has been exposed by the Server. Recall that in AMQP,
consumers interact with Queues while producers interact with Exchanges. The "binding" of Queues to
Exchanges is what instructs the broker to deliver, or route, messages from a given Exchange to a Queue. Since

Sample Applications

Spring AMQP () 30

the market data exchange is a Topic Exchange, the binding can be expressed with a routing pattern. The
RabbitClientConfiguration declares that with a Binding object, and that object is generated with the
BindingBuilder's fluent API.

@Value("${stocks.quote.pattern}")
private String marketDataRoutingKey;

@Bean
public Binding marketDataBinding() {

return BindingBuilder.bind(
marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

}

Notice that the actual value has been externalized in a properties file ("client.properties" under
src/main/resources), and that we are using Spring's @Value annotation to inject that value. This is generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making changes
to the routing pattern used for binding. Let's try that now.

Start by running org.springframework.amqp.rabbit.stocks.Server and then
org.springframework.amqp.rabbit.stocks.Client. You should see dummy quotes for NASDAQ stocks because
the current value associated with the 'stocks.quote.pattern' key in client.properties is
'app.stock.quotes.nasdaq.*'. Now, while keeping the existing Server and Client running, change that property
value to 'app.stock.quotes.nyse.*' and start a second Client instance. You should see that the first client is still
receiving NASDAQ quotes while the second client receives NYSE quotes. You could instead change the
pattern to get all stocks or even an individual ticker.

The final feature we'll explore is the request-reply interaction from the Client's perspective. Recall that we have
already seen the ServerHandler that is accepting TradeRequest objects and returning TradeResponse objects.
The corresponding code on the Client side is RabbitStockServiceGateway in the
'org.springframework.amqp.rabbit.stocks.gateway' package. It delegates to the RabbitTemplate in order to send
Messages.

public void send(TradeRequest tradeRequest) {
getRabbitTemplate().convertAndSend(tradeRequest, new MessagePostProcessor() {

public Message postProcessMessage(Message message) throws AmqpException {
message.getMessageProperties().setReplyTo(new Address(defaultReplyToQueue));
try {

message.getMessageProperties().setCorrelationId(
UUID.randomUUID().toString().getBytes("UTF-8"));

}
catch (UnsupportedEncodingException e) {

throw new AmqpException(e);
}
return message;

}
});

}

Notice that prior to sending the message, it sets the "replyTo" address. It's providing the queue that was
generated by the "traderJoeQueue" bean definition shown above. Here's the @Bean definition for the
StockServiceGateway class itself.

@Bean
public StockServiceGateway stockServiceGateway() {

RabbitStockServiceGateway gateway = new RabbitStockServiceGateway();
gateway.setRabbitTemplate(rabbitTemplate());
gateway.setDefaultReplyToQueue(traderJoeQueue());
return gateway;

}

Sample Applications

Spring AMQP () 31

If you are no longer running the Server and Client, start them now. Try sending a request with the format of
'100 TCKR'. After a brief artificial delay that simulates "processing" of the request, you should see a
confirmation message appear on the Client.

Sample Applications

Spring AMQP () 32

Part III. Spring Integration - Reference
This part of the reference documentation provides a quick introduction to the AMQP support within the Spring
Integration project.

Spring AMQP () 33

Chapter 5. Spring Integration AMQP Support

5.1. Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon the Spring
AMQP project. Those adapters are developed and released in the Spring Integration project. In Spring
Integration, "Channel Adapters" are unidirectional (one-way) whereas "Gateways" are bidirectional
(request-reply). We provide an inbound-channel-adapter, outbound-channel-adapter, inbound-gateway, and
outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation will be available as part
of the Spring Integration distribution. As a taster, we just provide a quick overview of the main features here.

5.2. Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel-adapter>

<amqp:inbound-channel-adapter channel="fromAMQP"
queue-names="some.queue"
connection-factory="rabbitConnectionFactory"/>

5.3. Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A 'routing-key' may
optionally be provided in addition to the exchange name.

<amqp:outbound-channel-adapter channel="toAMQP"
exchange-name="some.exchange"
routing-key="foo"
amqp-template="rabbitTemplate"/>

5.4. Inbound Gateway

To receive an AMQP Message from a Queue, and respond to its reply-to address, configure an
<inbound-gateway>.

<amqp:inbound-gateway request-channel="fromAMQP"
reply-channel="toAMQP"
queue-names="some.queue"
connection-factory="rabbitConnectionFactory"/>

5.5. Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from a remote client, configure an
<outbound-gateway>. A 'routing-key' may optionally be provided in addition to the exchange name.

<amqp:outbound-gateway request-channel="toAMQP"
reply-channel="fromAMQP"

Spring AMQP () 34

http://springsource.org/spring-integration

exchange-name="some.exchange"
routing-key="foo"
amqp-template="rabbitTemplate"/>

Spring Integration AMQP Support

Spring AMQP () 35

Part IV. Other Resources
In addition to this reference documentation, there exist a number of other resources that may help you learn
about AMQP.

Spring AMQP () 36

Chapter 6. Further Reading
For those who are not familiar with AMQP, the specification is actually quite readable. It is of course the
authoritative source of information, and the Spring AMQP code should be very easy to understand for anyone
who is familiar with the spec. Our current implementation of the RabbitMQ support is based on their 2.8.x
version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1 document.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started page. Since
that is currently the only supported implementation for Spring AMQP, we also recommend that as a general
starting point for all broker-related concerns.

Finally, be sure to visit the Spring AMQP Forum if you have questions or suggestions. With this first GA
release, we are looking forward to a lot of community feedback!

Spring AMQP () 37

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.rabbitmq.com/how.html
http://forum.springsource.org/forumdisplay.php?f=74

Bibliography
[jinterface-00] Ericsson AB. jinterface User Guide. Ericson AB . 2000.

Spring AMQP () 38

	Spring AMQP - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Quick Tour for the impatient
	1.1. Introduction
	1.1.1. Very, Very Quick
	1.1.2. With XML Configuration
	1.1.3. With Java Configuration

	Part II. Reference
	Chapter 2. Using Spring AMQP
	2.1. AMQP Abstractions
	2.1.1. Message
	2.1.2. Exchange
	2.1.3. Queue
	2.1.4. Binding

	2.2. Connection and Resource Management
	2.3. AmqpTemplate
	2.4. Sending messages
	2.5. Receiving messages
	2.5.1. Synchronous Consumer
	2.5.2. Asynchronous Consumer

	2.6. Message Converters
	2.6.1. SimpleMessageConverter
	2.6.1.1. Converting From a Message
	2.6.1.2. Converting To a Message

	2.6.2. JsonMessageConverter
	2.6.3. MarshallingMessageConverter

	2.7. Request/Reply Messaging
	2.8. Configuring the broker
	2.8.1. Federated Exchanges

	2.9. Exception Handling
	2.10. Transactions
	2.10.1. A note on Rollback of Received Messages
	2.10.2. Using the RabbitTransactionManager

	2.11. Message Listener Container Configuration
	2.12. Resilience: Recovering from Errors and Broker Failures
	2.12.1. Automatic Declaration of Exchanges, Queues and Bindings
	2.12.2. Failures in Synchronous Operations and Options for Retry
	2.12.3. Message Listeners and the Asynchronous Case

	Chapter 3. Erlang integration
	3.1. Introduction
	3.2. Communicating with Erlang processes
	3.2.1. Executing RPC
	3.2.2. ErlangConverter

	3.3. Exceptions

	Chapter 4. Sample Applications
	4.1. Introduction
	4.2. Hello World
	4.2.1. Synchronous Example
	4.2.2. Asynchronous Example

	4.3. Stock Trading

	Part III. Spring Integration - Reference
	Chapter 5. Spring Integration AMQP Support
	5.1. Introduction
	5.2. Inbound Channel Adapter
	5.3. Outbound Channel Adapter
	5.4. Inbound Gateway
	5.5. Outbound Gateway

	Part IV. Other Resources
	Chapter 6. Further Reading
	Bibliography

