Spring Vault - Reference
Documentation

Mark Paluch

Version 1.0.0.BUILD-SNAPSHOT, 2016-09-19

Table of Contents

=3 (P 1
1. KNOWING SPIINE . . o oottt i 2
2.KNOWING VAULL . ..o e 3
3. REQUITEIMENLS . . o o oottt ittt ettt e ettt it 4
4. Additional Help RESOUICESottt it 5
S N D1) 016) o 5
4.1.1. Community FOTUIM.ot e e 5
4.1.2. Professional SUPPOTT.ttt e e 5
4.2. Following Developmentttt 5
5. NeW & NOTEWOITNY . .ottt e e 6
5.1. What'snew in Spring Vault 1.0 i 6
Reference documentationttt e 6
6. INTrOAUCTION . ..ottt et 7
6.1. DOCUMENT STIUCKULEt i it it 7
T.VaULE SUPPOTIT ..ottt i 8
7.1 DEPENACIICIES . .ottt ettt ettt ettt ettt e e e 8
7.1.1. Spring Framework. o e 9
7.1.2. Getting Startedt e 9

7.2. Connecting to Vault with Spring ... e 11
7.2.1. Registering a Vault instance using Java based metadata 12

7.3. Introduction to VaultTemplate. ... 12
7.3.1. Instantiating VaultTemplatec i 13

7.4. Vault Client SSL configurationooiiiiiiiiii i 14

7.5. Execution CallbDacks. 14

8. CLIEINE SUPPOIT. . vttt ettt ettt ettt et 16
8.1.Java’s builtin HttpURLConnection. e 16
8.2, External CLIENTS 16
9. Authentication Methods e 18

9.1. Token authenticationttt i 18

9.2. Appld authenticationttt i 18
9.2.1. CuStomM USerId. . . . oot 20

9.3. AWS-ECZ authenticationoiiiiiiruiiiii it 21

9.4. TLS certificate authentiCationouiiiiiiiiiii it 21

9.5. Cubbyhole authenticationot i 22

© 2016 The original authors.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

NOTE

Preface

The Spring Vault project applies core Spring concepts to the development of solutions using
Hashicorp Vault. We provide a "template" as a high-level abstraction for storing and querying
documents. You will notice similarities to the REST support in the Spring Framework.

This document is the reference guide for Spring Vault. It explains Vault concepts and semantics and
the syntax.

This section provides some basic introduction to Spring and Vault. The rest of the document refers
only to Spring Vault features and assumes the user is familiar with Hashicorp Vault as well as
Spring concepts.

Chapter 1. Knowing Spring

Spring Vault uses Spring framework’s core functionality, such as the IoC container. While it is not
important to know the Spring APIs, understanding the concepts behind them is. At a minimum, the
idea behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the Vault support can be used directly, with no need to invoke the IoC
services of the Spring Container. This is much like RestTemplate which can be used 'standalone’
without any other services of the Spring container. To leverage all the features of Spring Vault
document, such as the session support, you will need to configure some parts of the library using
Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information.

http://docs.spring.io/spring/docs/4.2.x/spring-framework-reference/html/spring-core.html
http://docs.spring.io/spring/docs/4.3.2.RELEASE/spring-framework-reference/html/beans.html
http://spring.io/docs

Chapter 2. Knowing Vault

Security and working with secrets is a concern of every developer working with databases, user
credentials or API keys. Vault steps in by providing a secure storage combined with access control,
revocation, key rolling and auditing. In short: Vault is a service for securely accessing and storing
secrets. A secret is anything that you want to tightly control access to, such as API keys, passwords,
certificates, and more.

The jumping off ground for learning about Vault is www.vaultproject.io. Here is a list of useful
resources:

* The manual introduces Vault and contains links to getting started guides, reference
documentation and tutorials.

* The online shell provides a convenient way to interact with a Vault instance in combination
with the online tutorial.

* Hashicorp Vault Introduction

* Hashicorp Vault Documentation

https://www.vaultproject.io/intro/index.html
https://www.vaultproject.io/docs/index.html

Chapter 3. Requirements

Spring Vault 1.x binaries requires JDK level 6.0 and above, and Spring Framework 4.3.2.RELEASE
and above.

In terms of Vault, Vault at least 0.5.

http://spring.io/docs
https://www.vaultproject.io/

Chapter 4. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what
we think is an easy to follow guide for starting with Spring Vault module. However, if you
encounter issues or you are just looking for advice, feel free to use one of the links below:

4.1. Support

There are a few support options available:

4.1.1. Community Forum

Spring Vault on Stackoverflow Stackoverflow is a tag for all Spring Vault users to share information
and help each other. Note that registration is needed only for posting.

4.1.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Sofware, Inc., the company behind Spring Vault and Spring.

4.2. Following Development

For information on the Spring Vault source code repository, nightly builds and snapshot artifacts
please see the Spring Vault homepage. You can help make Spring Vault best serve the needs of the
Spring community by interacting with developers through the Community on Stackoverflow. If you
encounter a bug or want to suggest an improvement, please create a ticket on the Spring Vault issue
tracker. To stay up to date with the latest news and announcements in the Spring ecosystem,
subscribe to the Spring Community Portal. Lastly, you can follow the Spring blog or the project
team on Twitter (SpringCentral).

http://stackoverflow.com/questions/tagged/spring-vault
http://pivotal.io/
http://pivotal.io/
http://projects.spring.io/spring-vault/
http://stackoverflow.com/questions/tagged/spring-vault
https://github.com/spring-projects/spring-vault/issues
http://spring.io
http://spring.io/blog
http://twitter.com/springcentral

Chapter 5. New & Noteworthy

5.1. What’s new in Spring Vault 1.0

¢ Initial Vault support.

Reference documentation

Chapter 6. Introduction

6.1. Document Structure
This part of the reference documentation explains the core functionality offered by Spring Vault.
Vault support introduces the Vault module feature set.

Spring Vault provides client-side support for accessing, storing and revoking secrets. With
Hashicorp’s Vault you have a central place to manage external secret data for applications across
all environments. Vault can manage static and dynamic secrets such as application data,
username/password for remote applications/resources and provide credentials for external
services such as MySQL, PostgreSQL, Apache Cassandra, Consul, AWS and more.

https://www.vaultproject.io

Chapter 7. Vault support

The Vault support contains a wide range of features which are summarized below.

» Spring configuration support using Java based @Configuration classes

» VaultTemplate helper class that increases productivity performing common Vault operations.
Includes integrated object mapping between Vault responses and POJOs.

For most tasks, you will find yourself using VaultTemplate that leverages the rich communication
functionality. VaultTemplate is the place to look for accessing functionality such as reading data
from Vault or issuing administrative commands. VaultTemplate also provides callback methods so
that it is easy for you to get a hold of the low-level API artifacts such as RestTemplate to
communicate directly with Vault.

7.1. Dependencies

The easiest way to find compatible versions of Spring Vault dependencies is by relying on the
Spring Vault BOM we ship with the compatible versions defined. In a Maven project you would
declare this dependency in the <dependencyManagement /> section of your pom. xml:

Example 1. Using the Spring Vault BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.vault</groupId>
<artifactId>spring-vault-dependencies</artifactId>
<version>${version}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The current version is 1.0.0.BUILD-SNAPSHOT. The version name follows the following pattern:
${version}-${release} where release can be one of the following:

» BUILD-SNAPSHOT - current snapshots

* 11, M2 etc. - milestones

RC1, RC2 etc. - release candidates

RELEASE - GA release

SRT, SR2 etc. - service releases

Example 2. Declaring a dependency to Spring Vault

<dependencies>
<dependency>
<groupId>org.springframework.vault</groupId>
<artifactId>spring-vault-core</artifactId>
</dependency>
<dependencies>

7.1.1. Spring Framework

The current version of Spring Vault requires Spring Framework in version 4.3.2.RELEASE or better.
The modules might also work with an older bugfix version of that minor version. However, using
the most recent version within that generation is highly recommended.

7.1.2. Getting Started

Spring Vault support requires Vault 0.5 or higher and Java SE 6 or higher. An easy way to bootstrap
setting up a working environment is to create a Spring based project in STS.

First you need to set up a running Vault server. Refer to the Vault for an explanation on how to
startup a Vault instance.

To create a Spring project in STS go to File - New - Spring Template Project —» Simple Spring
Utility Project — press Yes when prompted. Then enter a project and a package name such as
org.spring.vault.example.

Then add the following to pom.xml dependencies section.

Example 3. Using the Spring Vault BOM

<dependencies>
<!-- other dependency elements omitted -->

<dependency>
<groupId>org.springframework.vault</groupId>
<artifactId>spring-vault-core</artifactId>
<version>{version}</version>

</dependency>

</dependencies>

You will also need to add the location of the Spring Milestone repository for maven to your pom.xml
which is at the same level of your <dependencies/> element.

http://spring.io/tools/sts
https://www.vaultproject.io/intro/

<repositories>
<repository>
<id>spring-milestone</id>
<name>Spring Maven MILESTONE Repository</name>
<url>http://repo.spring.io/libs-milestone</url>
</repository>
</repositories>

The repository is also browseable here.

You may also want to set the logging level to DEBUG to see some additional information, edit the
log4j.properties file to have

log4j.category.org.springframework.vault=DEBUG
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %40.40c:%4L - %m%n

Create a simple Secrets class to persist:

Example 4. Mapped data object

package org.spring.vault.example;
public class Secrets {

String username;
String password;

public String getUsername() {
return username;

}

public String getPassword() {
return password;

}

And a main application to run

10

http://repo.spring.io/milestone/org/springframework/vault/

Example 5. Example application using Spring Vault

package org.springframework.vault.example;

import org.springframework.vault.authentication.TokenAuthentication;
import org.springframework.vault.client.VaultClient;

import org.springframework.vault.core.VaultTemplate;

import org.springframework.vault.support.VaultResponseSupport;

public class VaultApp {
public static void main(String[] args) {

VaultTemplate vaultTemplate = new VaultTemplate(new VaultClient(),
new TokenAuthentication("00000000-0000-0000-0000-000000000000"));

Secrets secrets = new Secrets();
secrets.username = "hello";
secrets.password = "world";

vaultTemplate.write("secret/myapp", secrets);

VaultResponseSupport<Secrets> response = vaultTemplate.read("secret/myapp
", Secrets.class);
System.out.println(response.getData().getUsername());

vaultTemplate.delete("secret/myapp");

Even in this simple example, there are few things to take notice of
* You can instantiate the central helper class of Spring Vault, VaultTemplate, using the
org.springframework.vault.client.VaultClient object and the ClientAuthentication.

* The mapper works against standard POJO objects without the need for any additional metadata
(though you can optionally provide that information).

* Mapping conventions can use field access. Notice the Secrets class has only getters.

* If the constructor argument names match the field names of the stored document, they will be
used to instantiate the object

7.2. Connecting to Vault with Spring

One of the first tasks when using Vault and Spring is to create a
org.springframework.vault.client.VaultClient object using the IoC container.

11

7.2.1. Registering a Vault instance using Java based metadata
An example of using Java based bean metadata to register common Vault support classes.

Example 6. Registering a Spring Vault objects using Java based bean metadata

public class AppConfig extends AbstractVaultConfiguration {

/**
* Specify an endpoint for connecting to Vault.
*/

public VaultEndpoint vaultEndpoint() {
return new VaultEndpoint();

}

/7\‘*

* Configure a client authentication.

* Please consider a more secure authentication method
* for production use.

*/

public ClientAuthentication clientAuthentication() {
return new TokenAuthentication("::+");

}

7.3. Introduction to VaultTemplate

The class VaultTemplate, located in the package org.springframework.vault.core, is the central class
of the Spring’s Vault support providing a rich feature set to interact with Vault. The template offers
convenience operations to read, write and delete data in Vault and provides a mapping between
your domain objects and Vault data.

NOTE Once configured, VaultTemplate is thread-safe and can be reused across multiple
instances.

The mapping between Vault documents and domain classes is done by delegating to RestTemplate.
Spring Web support provides the mapping infrastructure.

The VaultTemplate class implements the interface VaultOperations. In as much as possible, the
methods on VaultOperations are named after methods available on the Vault API to make the API
familiar to existing Vault developers who are used to the API and CLI. For example, you will find
methods such as "write", "delete", "read", and "revoke". The design goal was to make it as easy as
possible to transition between the use of the Vault API and VaultOperations. A major difference in
between the two APIs is that VaultOperations can be passed domain objects instead of JSON Key-

12

Value pairs.

The preferred way to reference the operations on VaultTemplate instance is via its

NOTE . .
interface VaultOperations.

While there are many convenience methods on VaultTemplate to help you easily perform common
tasks if you should need to access the Vault API directly to access functionality not explicitly
exposed by the VaultTemplate you can use one of several execute callback methods to access
underlying APIs. The execute callbacks will give you a reference to either a RestTemplate or a
Vault(Client object. Please see the section Execution Callbacks for more information.

Now let’s look at a examples of how to work with the VaultTemplate in the context of the Spring
container.

7.3.1. Instantiating VaultTemplate
You can use Java to create and register an instance of VaultTemplate as shown below.

Example 7. Registering a aultTemplate object

class AppConfig {

public VaultTemplate vaultTemplate() {

VaultTemplate vaultTemplate = new VaultTemplate();
vaultTemplate.setSessionManager(sessionManager());
vaultTemplate.setVaultClientFactory(clientFactory());

return vaultTemplate;

public DefaultVaultClientFactory clientFactory() {
return new DefaultVaultClientFactory();

}

public DefaultSessionManager sessionManager() {
return new DefaultSessionManager(new TokenAuthentication("::+"));

}

There are several overloaded constructors of VaultTemplate. These are

* VaultTemplate(VaultClient, ClientAuthentication) - takes the VaultClient object and client
authentication

13

» VaultTemplate(VaultClientFactory, SessionManager) - takes a client factory for resource
management and a SessionManager.

7.4. Vault Client SSL configuration

SSL can be configured using SslConfiguration by setting various properties. You can set either
javax.net.ssl.trustStore to configure JVM-wide SSL settings or configure Ss1Configuration to set
SSL settings only for Spring Vault.

Ss1Confiquration ss1Configuration = new Ss1Configuration(@
new FileSystemResource("client-cert.jks"), "changeit",
new FileSystemResource("truststore.jks"), "changeit");

Ss1Configuration.forTrustStore(new FileSystemResource("keystore.jks"), @
"changeit")

Ss1Confiquration.forKeyStore(new FileSystemResource("keystore.jks"), ©)
"changeit")
@ Full configuration.
@ Configuring only trust store settings.

® Configuring only key store settings.

Please note that providing SslConfiguration can be only applied when either Apache Http
Components or the OkHttp client is on your class-path.

7.5. Execution callbacks

One common design feature of all Spring template classes is that all functionality is routed into one
of the templates execute callback methods. This helps ensure that exceptions and any resource
management that maybe required are performed consistency. While this was of much greater need
in the case of JDBC and JMS than with Vault, it still offers a single spot for access and logging to
occur. As such, using the execute callback is the preferred way to access the Vault API to perform
uncommon operations that we’ve not exposed as methods on VaultTemplate.

Here is a list of execute callback methods.
* <T> T doWithVault (ClientCallback<T> clientCallback) Executes the given ClientCallback,

allows to interact with Vault using VaultClient without requiring a session.

* <T> T doWithVault (SessionCallback<T> sessionCallback) Executes the given SessionCallback,
allows to interact with Vault in an authenticated session..

* <> T doWithRestTemplate (String pathTemplate, Map<String, 7> variables,
RestTemplateCallback<T> callback) Expands the pathTemplate to an java.net.URI and allows low-
level interaction with the underlying org.springframework.web.client.RestTemplate.

14

Here is an example that uses the ClientCallback to initialize Vault:

return vaultTemplate.doWithVault(new ClientCallback<VaultInitializationResponse>()
{

public VaultInitializationResponse doWithVault(VaultClient client) {

VaultResponseEntity<VaultInitializationResponse> response = client
.putForEntity("sys/init",
vaultInitializationRequest, VaultInitializationResponse.class

)

if (response.isSuccessful() && response.hasBody()) {
return response.getBody();

}

return null.

1

15

Chapter 8. Client support

Spring Vault supports a various HTTP clients to access Vault’s HTTP API. Spring Vault uses
RestTemplate as primary interface accessing Vault. Dedicated client support originates from
customized SSL configuration that is scoped only to Spring Vault’s client components.

Spring Vault supports following HTTP clients:

* Java’s builtin HttpURLConnection (default client)
» Apache Http Components

* Netty

» OkHttp 2

Using a specific client requires the according dependency to be available on the classpath so Spring
Vault can use the available client for communicating with Vault.

8.1. Java’s builtin HttpURLConnection

Java’s builtin HttpURLConnection is available out-of-the-box without additional configuration. Using
HttpURLConnection comes with a limitation regarding SSL configuration. Spring Vault won’t apply
customized SSL configuration as it would require a deep reconfiguration of the JVM. This
configuration would affect all components relying on the default SSL context. Configuring SSL
settings using HttpURLConnection requires you providing these settings as System Properties. See
Customizing JSSE for further details.

8.2. External Clients

You can use external clients to access Vault’s API. Simply add one of the following dependencies to
your project. You can omit the version number if using Spring Vault’s Dependency BOM

Example 8. Apache Http Components Dependency

<dependency>
<groupId>org.apache.httpcomponents</groupIld>
<artifactId>httpclient</artifactId>
</dependency>

Example 9. Netty Dependency

<dependency>
<groupIld>io.netty</groupld>
<artifactId>netty-all</artifactId>
</dependency>

16

http://docs.spring.io/spring/docs/4.3.2.RELEASE/spring-framework-reference/html/remoting.html#rest-resttemplate
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#InstallationAndCustomization

Example 10. Square OkHttp 2

<dependency>
<groupIld>com.squareup.okhttp</groupId>
<artifactId>okhttp</artifactId>
</dependency>

17

Chapter 9. Authentication Methods

Different organizations have different requirements for security and authentication. Vault reflects
that need Dby shipping multiple authentication methods. Spring Vault supports multiple
authentications mechanisms.

9.1. Token authentication

Tokens are the core method for authentication within Vault. Token authentication requires a static
token to be provided.

Token authentication is the default authentication method. If a token is disclosed an
NOTE unintended party, it gains access to Vault and can access secrets for the intended
client.

class AppConfig extends AbstractVaultConfiguration {

/]

public ClientAuthentication clientAuthentication() {
return new TokenAuthentication("::+");

}

/]

See also: Vault Documentation: Tokens

9.2. Appld authentication

Vault supports Appld authentication that consists of two hard to guess tokens. The Appld defaults to
spring.application.name that is statically configured. The second token is the Userld which is a part
determined by the application, usually related to the runtime environment. IP address, Mac
address or a Docker container name are good examples. Spring Vault supports IP address, Mac
address and static Userld’s (e.g. supplied via System properties). The IP and Mac address are
represented as Hex-encoded SHA256 hash.

IP address-based UserlId’s use the local host’s IP address.

18

https://www.vaultproject.io/docs/concepts/tokens.html
https://www.vaultproject.io/docs/auth/app-id.html

class AppConfig extends AbstractVaultConfiguration {
VVAREE
public ClientAuthentication clientAuthentication() {
AppIdAuthenticationOptions options = AppIdAuthenticationOptions.builder()
.appId("myapp") //
.userIdMechanism(new IpAddressUserId()) //
.build();

return new AppIdAuthentication(options, vaultClient());

/]

The corresponding command to generate the IP address Userld from a command line is:

$ echo -n 192.168.99.1 | sha256sum

NOTE Including the line break of echo leads to a different hash value so make sure to
include the -n flag.

Mac address-based UserId’s obtain their network device from the localhost-bound device. The

configuration also allows specifying a network-interface hint to pick the right device. The value of

network-interface is optional and can be either an interface name or interface index (0-based).

19

class AppConfig extends AbstractVaultConfiguration {

/]

public ClientAuthentication clientAuthentication() {
AppIdAuthenticationOptions options = AppIdAuthenticationOptions.builder()

.appId("myapp") //
.userIdMechanism(new MacAddressUserId()) //
.build();

return new AppIdAuthentication(options, vaultClient());

/]

The corresponding command to generate the IP address Userld from a command line is:

$ echo -n QAFEDE1234AC | sha256sum

The Mac address is specified uppercase and without colons. Including the line break

NOTE
of echo leads to a different hash value so make sure to include the -n flag.

9.2.1. Custom Userld

A more advanced approach lets you implementing your own AppIdUserIdMechanism. This class must
be on your classpath and must implement the
org.springframework.vault.authentication.AppIdUserIdMechanism interface and the createUserId
method. Spring Vault will obtain the Userld by calling createUserId each time it authenticates using
Appld to obtain a token.

MyUserIdMechanism.java

public class MyUserIdMechanism implements AppIdUserIdMechanism {

public String createUserId() {
String userId = ...
return userlId;
}
}

20

See also: Vault Documentation: Using the App ID auth backend

9.3. AWS-EC2 authentication

The aws-ec2 auth backend provides a secure introduction mechanism for AWS EC2 instances,
allowing automated retrieval of a Vault token. Unlike most Vault authentication backends, this
backend does not require first-deploying, or provisioning security-sensitive credentials (tokens,
username/password, client certificates, etc.). Instead, it treats AWS as a Trusted Third Party and
uses the cryptographically signed dynamic metadata information that uniquely represents each
EC2 instance.

class AppConfig extends AbstractVaultConfiguration {

/]

public ClientAuthentication clientAuthentication() {
return new AwsEc2Authentication(vaultClient());

}

/]

AWS-EC2 authentication enables nonce by default to follow the Trust On First Use (TOFU) principle.
Any unintended party that gains access to the PKCS#7 identity metadata can authenticate against
Vault.

During the first login, Spring Vault generates a nonce that is stored in the auth backend aside the
instance Id. Re-authentication requires the same nonce to be sent. Any other party does not have
the nonce and can raise an alert in Vault for further investigation.

The nonce is kept in memory and is lost during application restart.

AWS-EC2 authentication roles are optional and default to the AMI. You can configure the
authentication role by setting it in AwsEc2AuthenticationOptions.

See also: Vault Documentation: Using the aws-ec2 auth backend

9.4. TLS certificate authentication

The cert auth backend allows authentication using SSL/TLS client certificates that are either signed
by a CA or self-signed.

To enable cert authentication you need to:

1. Use SSL, see Vault Client SSL configuration

21

https://www.vaultproject.io/docs/auth/app-id.html
https://www.vaultproject.io/docs/auth/aws-ec2.html
https://www.vaultproject.io/docs/auth/aws-ec2.html

2. Configure a Java Keystore that contains the client certificate and the private key

class AppConfig extends AbstractVaultConfiguration {

public ClientAuthentication clientAuthentication() {
return new ClientCertificateAuthentication(options, vaultClient());

}

See also: Vault Documentation: Using the cert auth backend

9.5. Cubbyhole authentication

Cubbyhole authentication uses Vault primitives to provide a secured authentication workflow.
Cubbyhole authentication uses tokens as primary login method. An ephemeral token is used to
obtain a second, login VaultToken from Vault’s Cubbyhole secret backend. The login token is usually
longer-lived and used to interact with Vault. The login token can be retrieved either from a
wrapped response or from the data section.

Creating a wrapped token
NOTE Response Wrapping for token creation requires Vault 0.6.0 or higher.

Example 11. Crating and storing tokens

$ vault token-create -wrap-tt1="10m"

Key Value

wrapping_token: 397ccb93-ffbc-b17b-9389-380b01ca2645
wrapping_token_tt1: 0h10m@s

wrapping_token_creation_time: 2016-09-18 20:29:48.652957077 +0200 CEST
wrapped_accessor: 46bbaebb-187f-932a-26d7-4f3d86a68319

22

https://www.vaultproject.io/docs/auth/cert.html

Example 12. Wrapped token response usage

class AppConfig extends AbstractVaultConfiquration {

public ClientAuthentication clientAuthentication() {

CubbyholeAuthenticationOptions options = CubbyholeAuthenticationOptions

.builder()
.initialToken(VaultToken.of(":+:"))
.wrapped()

.build();

return new CubbyholeAuthentication(options, vaultClient());

/]

Using stored tokens

Example 13. Crating and storing tokens

$ vault token-create

Key

token
token_accessor
token_duration
token_renewable
token_policies

f9e30681-d46a-cdaf-aaal-2ae0@a%addB819
4deee9bd9-81bb-06db6-af01-723c54a72148
0s

false

[root]

$ token-create -use-limit=2 -orphan -no-default-policy -policy=none

Key

token
token_accessor
token_duration
token_renewable
token_policies

Value
895cb88b-aef4-0e33-bab5-d50007290780
e84b661c-83a8-2286-b788-1258130¢8325
0s

false

[none]

$ export VAULT_TOKEN=895cb88b-aef4-0e33-bab5-d50007290780
$ vault write cubbyhole/token token=f9e30681-d46a-cdaf-aaad-2ae0a9ad0819

23

Example 14. Stored token response usage

@Configuration
class AppConfig extends AbstractVaultConfiquration {

/]

@0verride
public ClientAuthentication clientAuthentication() {

CubbyholeAuthenticationOptions options = CubbyholeAuthenticationOptions
.builder()
.initialToken(VaultToken.of("-::"))

.path("cubbyhole/token")
.build();

return new CubbyholeAuthentication(options, vaultClient());

/]

See also:

» Vault Documentation: Tokens
» Vault Documentation:Cubbyhole Secret Backend

» Vault Documentation: Response Wrapping

24

https://www.vaultproject.io/docs/concepts/tokens.html
https://www.vaultproject.io/docs/secrets/cubbyhole/index.html
https://www.vaultproject.io/docs/concepts/response-wrapping.html

	Spring Vault - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Knowing Spring
	Chapter 2. Knowing Vault
	Chapter 3. Requirements
	Chapter 4. Additional Help Resources
	4.1. Support
	4.1.1. Community Forum
	4.1.2. Professional Support

	4.2. Following Development

	Chapter 5. New & Noteworthy
	5.1. What’s new in Spring Vault 1.0

	Reference documentation
	Chapter 6. Introduction
	6.1. Document Structure

	Chapter 7. Vault support
	7.1. Dependencies
	7.1.1. Spring Framework
	7.1.2. Getting Started

	7.2. Connecting to Vault with Spring
	7.2.1. Registering a Vault instance using Java based metadata

	7.3. Introduction to VaultTemplate
	7.3.1. Instantiating VaultTemplate

	7.4. Vault Client SSL configuration
	7.5. Execution callbacks

	Chapter 8. Client support
	8.1. Java’s builtin HttpURLConnection
	8.2. External Clients

	Chapter 9. Authentication Methods
	9.1. Token authentication
	9.2. AppId authentication
	9.2.1. Custom UserId

	9.3. AWS-EC2 authentication
	9.4. TLS certificate authentication
	9.5. Cubbyhole authentication

